SketchCode — An Extensible Code Editor
for Crafting Software

Siemen Baader®™ and Susanne Bgdker

Department of Computer Science, Aarhus University,
Aabogade 34, 8200 Aarhus N, Denmark
{sb,bodker}@cs.au.dk

Abstract. We present SketchCode, a code editor that its users can aug-
ment with visual elements to represent domain and program concepts.
We examine programming as sketching and identify the techniques of
postsyntactic augmentation, macro components, and interactive seman-
tic enrichment. Based on studies of programmers, we discuss these tech-
niques as a promising way for code editing and tool appropriation.

Keywords: Programming + Crafting + Sketching

1 Introduction

Domain specific programming tools can be very effective at supporting devel-
opment and workflows within their particular area. We note that programmers
often act as end-user developers in the sense of Ko et al. [2], in that they cre-
ate and appropriate tools to fit their domain and own ways of working. Sim-
ilarily, designers make extensive use of sketching and model making as ways
of expressing a design in the making. Lindell characterized both disciplines as
‘crafting’ [4], and we believe that programming and designing share similari-
ties in their relieance on thinking through action and the creation of supporting
structures as central activities. While the creative use of expressive materials is
widely accepted within design professions, programmers do not have access to
modifying their code writing tools in the same practical ways, and most end-user
appropriation of programming tools is not very feasible beyond the configuration
of standard editors and refactoring of source code. We report on early findings
from a design-oriented effort to understand the end-user development aspects of
programming. We ask “What can we learn from design studies to support the
expressive and appropriative aspects of programming practice, and how can we
design programming tools to support this?”

In this paper we report on two things: How end-user development in program-
ming can be interpreted as design, in particular sketching, and which require-
ments this interpretation offers. Based on an empirical study of programmers
we present SketchCode. We introduce the interface techniques of postsyntactic
augmentation, which allows the inlining of rich visual editors in plain text code,

© Springer International Publishing Switzerland 2015
P. Diaz et al. (Eds.): IS-EUD 2015, LNCS 9083, pp. 211-216, 2015.
DOI: 10.1007/978-3-319-18425-8_18

212 S. Baader and S. Bgdker

macro components, which are rich interactive editors for domain and program
concepts, and interactive semantic enrichment, which allows the insertion of non-
parseable parts into source code. Figure 1 shows how source code is augmented
and intermixed with components that represent higher level concepts.

enon SketchCode [y
[« l»][+]Q sketchcode (4 (0]

var fsm = null;

var greeting = ["H

function

. r

fom =

inactive paused fadingIn shown fadingOut
cancelTimer() moveTooltip()
saveCursor() goto fadein
move do X do ...
msout do X do ...
tmout do X

hover

do Z

e goto inactive

var]

var D = D; Declaration-Assignment
var text

Fig. 1. The SketchCode extensible editor displays the concept of postsyntactic augmen-
tation. It shows white plain text source code (top line), colored macro components of
varying complexity, and interactive semantic enrichment via an autocompletion menu.

2 Programming seen from a Sketching Perspective

To identify theoretical requirements for a programming system informed by
design studies, we rely in the concepts of crafting, reflective practice and sketch-
ing. Lindell [4] demonstrated that interaction designers and programmers share
a crafting epistemology. Likewise informed by reflective practice, Buxton [1]
and Lim et al. [3] studied the specifics of sketching techniques and prototypes
in design. Applying these perspectives to programming results in the following
perspectives on code and editors as a design material:

Backtalk. Reflective practice is a dialectic process and depends on backtalk
from the code and editor in order to advance the solution (reflection in action)
or to rephrase the approach (reflection on action). In programming, we have
observed backtalk from four sources: running the code, reasoning about the
code, feedback from static analysis, and representing the code differently (e.g. in
a diagram). To support the cycle of reflective practice, a system can e.g. tolerate
broken and pseudo code, simultanously allow different (e.g. visual) representa-
tions and perform automated reasoning.

SketchCode — An Extensible Code Editor for Crafting Software 213

Ezternalizing and Improvising. Lim et al. [3] introduced the notions of filter-
ing dimensions and manifestation dimensions as ways to using protypes and
sketches economically. In coding, filtering dimensions include properties like
execution order, stateful situations like in user interfaces and visual properties
like color codes. Effective manifestations include meaningful names and refac-
tored code, but also graphical representations like charts, tables and formulae
available in a modern browser.

Sketching and Modeling. Visualizations and automated reasoning approxi-
mate the agenda of modeling tools. Unlike offline sketches, models and repre-
sentations in code can be reused and linked with the concepts they represent.
However, modeling tools require the complete specification of models to work,
and in order not to prevent other kinds of backtalk, a system informed by sketch-
ing should allow, but not require, complete modeling.

3 Programmer Studies

We conducted 6 participant observations of 30 minutes and semi-structured
interviews with web-programmers in two startup companies. In addition we
collected 103 scenarios of interest to the sketching perspective in the form of
annotated screen shots from the first author’s own programming practice.

Backtalk. The most direct mode of backtalk was making a change and exe-
cuting the program to see the result. Programmers furthermore relied on mental
execution to find bugs, e.g. reasoning about front-end code that was broken
beyond execution. Static analysis was another source of backtalk, e.g. using the
JSLint static analysis tool regularly without executing the code. A final source
of backtalk comes from the representation, e.g. using state charts and transition
matrices to reason about complex network interactions. We observed backtalk
from a variety of sources, and rather than siding either with dynamic (backtalk
from execution) or compiled languages (backtalk from static analysis), program-
ming systems should provide backtalk suitable to the specific situation.

Representation. Several situations indicated that the programmers benefited
from concise representations of the programing concepts at hand, e.g. preferring
the concise JQuery library over the browser’s verbose DOM API, or writing
hexadecimal CSS color codes and repeatedly refreshing the browser in trial-and-
error cycles to find a desired color.

Modeling. The situations of representing colors and the different state chart
representations lend themselves not only to visual representation, but also to
direct manipulation interfaces and concept-specific editing assistance. The issues
of representation and receiving relevant backtalk go hand in hand with issues of
modeling, i.e. elevating the source codes semantic level beyond the textual level.

Emergence and refining. The programmers saw static programming systems
as heavyweight and dominated by boilerplate, which indicates that a system
should be vary of imposing formal structures up front, and allow the coexistence
of higher level concepts, visual representations and very crude code, and the
gradual refinement of code into higher level components. One programmer e.g.

214 S. Baader and S. Bgdker

used Emacs because it allowed him to execute code in an anonymous buffer
without having to name a file.

4 The SketchCode Extensible Code Editor

Figure 1 shows the SketchCode editor. It is implemented as a number of partly
usable prototypes used to develop the conceptual design. The editor contains
both source code in plain text (top line) and instances of macro components
representing the declaration and assignment of a variable, a function, and one
representing the configuration of a finite state machine using three panels (a state
chart, a transition matrix and code). The programmer writes code and navigates
the editor like a standard editor. However, macro components govern their own
user interfaces and support and restrict editing according to their meaning. Since
macro components can represent both very complex but also very simple con-
cepts in code, the editor does not offer syntax coloring but instead provides
macro components for basic concepts such as functions and variables.

The user inserts instances of macro components into the source code using
an autocompletion menu, which we call interactive semantic enrichment. In
Figure 1, the user is just about to insert another instance of a variable declara-
tion and assignment component. Editors within macro components may recur-
sively contain other macro components. At run time, the macro components
are expanded to valid syntax within their surrounding region. E.g., a macro
component representing a CSS color expands to the string #CC0000 within a
CSS stylesheet, while it will expand to "#CC0000" to be a valid expression in a
JavaScript context.

800 SketchCode & 800 SketchCode

[1>][+]Q skerchCode cade [1>][+]Q skerchcode cader | (O]

color = #BAA0000 var door = null;

LECE R stateChart [l Matrix il DSL |

open

close

unlock
locked

Fig. 2. Visual Macro Components: A CSS color wheel (left) and a state chart (right)

Macro components are built as small interactive web user interfaces, and
integrate with the surrounding SketchCode environment in a standardized way.
Figure 3 shows pseudo code for an interactive color picker to edit CSS color

SketchCode — An Extensible Code Editor for Crafting Software 215

codes. Complex macro components such as the state machine contain executable
code in their expanded representation, and to avoid name clashes, this should
be implemented as hygienic macros.

The key aspects of this design consist of three parts. First, it allows the
gradual refinement of plain text code into more semantic representations only as
needed — the use of macro components is not enforced, and the editor can be used
as a plain code editor until specialized macro components are needed. Second,
the creation of macro components makes use of the skills that the programmers
are proficient in. Third, the system integrates with the text-based ecosystems
that programmers live in, like version control and interpreters.

800 SketchCode o

class ColorPicker << MacroComponent:
// insertion
static insertionMatchText: String of text
static insertionMenuView: String of HTML
constructor: fn()

// load, save and expand

toCSS: fn() -> String for CSS, e.g. #CC0000

toJsS: fn() -> String for JavaScript, e.g "#CC0000"
toPersistence: fn() -> JSON object to save state
fromPersistence: fn(JSONData)

// concept specific fields and UI code

static viewTemplate: String of HTML to build GUI
color: ColorObject

drawColorWheel: fn() // JavaScript UI code

Fig. 3. The macro component programming interface shown in pseudo code

We conducted an early evaluation of the SketchCode concept by confronting
the programmers with the prototype and discussing how they would use and
extend it. Reactions ranged from excitement to skepticism with regard to the
efficiency and uniform editing capabilities achieved in text-only environments.
One sceptic noted that “everything can be expressed in text, and I believe it
should”. On the other end, one programmer noted that this was “a very inter-
esting concept, I already build visualisations for my database.” Two of them
have since started implementing visual code editing in their own toolmaking.

We draw two main conclusions. First, lightweight tooling is important to
the audience, and a running prototype must test if the system remains efficient
and easy to use with an increasing number of macro components. Second, we
have seen evidence of toolmaking and appropriation, but programmers are not
fully aware of the effects of changing and evolving representations and should be
educated in this way of thinking before the concept can be tested properly.

216 S. Baader and S. Bgdker

5 Discussion and Conclusion

We have introduced the perspectives of crafting and in particular sketching, iden-
tified central elements of it in programming practice and proposed the design
of SketchCode and its key concepts of postsyntactic augmentation, macro com-
ponents and interactive semantic enrichment to accomodate sketching better in
code editors. With this, we argue for a more fine-grained view on the process
of programming, its different kinds of backtalk, and how it can benefit from
evolutionary creation of supporting semantic structures and visualizations.

Language workbenches address issues of backtalk from static analysis and
representations well, but they require the programmer to work directly on the
abstract syntax tree. This requires programmers to re-learn their editing tools
and to define concepts up-front [6]. We propose a more gradual approach, where
most code can be edited in a traditional way, and semantic editing introduced
gradually as needed. Agentsheets [5] is another toolkit for creating and evolving
(visual) programming languages, and differs mainly from SketchCode in that
the latter uses plain text and web technology concepts from within the domain
of the end users. Live programming systems such as Processing and Smalltalk
cater more to getting backtalk from executing code than SketchCode, and less
to backtalk from representation.

Overall, SketchCode presents a balance towards supporting backtalk from
representation and domain specific editing support, while taking into account
the needs for emergence, existing practices and known technologies within the
domain of its user population.

Acknowledgments. We thank Joseph Kiniry for exceptional support, and Clemens
Klokmose and our three reviewers for constructive feedback.

References

1. Buxton, B.: Sketching user experiences: getting the design right and the right design.
Morgan Kaufmann (2010)

2. Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M.,
Scaffidi, C., Lawrance, J., Lieberman, H., Myers, B., et al.: The state of the art in
end-user software engineering. ACM Computing Surveys (CSUR) 43(3), 21 (2011)

3. Lim, Y.K., Stolterman, E., Tenenberg, J.: The anatomy of prototypes: Proto-
types as filters, prototypes as manifestations of design ideas. ACM Transactions
on Computer-Human Interaction (TOCHI) 15(2), 7 (2008)

4. Lindell, R.: Crafting interaction: The epistemology of modern programming. Per-
sonal and ubiquitous computing 18(3), 613-624 (2014)

5. Repenning, A., Sumner, T.: Agentsheets: A medium for creating domain-oriented
visual languages. Computer 28(3), 17-25 (1995)

6. Voelter, M., Siegmund, J., Berger, T., Kolb, B.: Towards user-friendly projectional
editors. In: Combemale, B., Pearce, D.J., Barais, O., Vinju, J.J. (eds.) SLE 2014.
LNCS, vol. 8706, pp. 41-61. Springer, Heidelberg (2014)

	SketchCode -- An Extensible Code Editor for Crafting Software
	1 Introduction
	2 Programming seen from a Sketching Perspective
	3 Programmer Studies
	4 The SketchCode Extensible Code Editor
	5 Discussion and Conclusion
	References

