
A Comparison of Different Forms

of Temporal Data Management

Florian Künzner and Dušan Petković(�)

University of Applied Sciences
Rosenheim, Hochschulstr. 1, 83024, Germany

flo.kuenzner@gmx.net, petkovic@fh-rosenheim.de
http://www.fh-rosenheim.de

Abstract. Recently, the ANSI committee for the standardization of the
SQL language has published the specification for temporal data support.
This new ability allows users to create and manipulate temporal data in a
significantly simpler way instead of implementing the same features using
triggers and database applications. In this article we examine the creation
and manipulation of temporal data using built-in temporal logic and
compare its performance with the performance of equivalent hand-coded
applications. For this study, we use an existing commercial database
system, which supports the standardized temporal data model.

Keywords: Temporal data · SQL:2011 · Performance · Trigger

1 Introduction

A database represents a model of objects of the real world. During the lifetime
of an object stored in a database, its properties can change. For such objects
it is necessary to consider their time-variant aspects. For this reason, it is an
important task of database systems to support management of temporal data, i.e.
that current, past and future values of time-variant attributes can be persistently
stored.

Timestamps can be represented using time points, time intervals and set of
time intervals. Time points are an infinite but countable ordered set, which is
used to specify a time domain [16]. Time intervals specify a time domain of
an entity as the continuous set of time instants. Interval-based temporal data
models are introduced in TSQL2 [14] and in the SQL:2011 standard [6]. Sets
of time intervals represent time domain as a finite union of time intervals [15].
Almost all existing temporal data models today are based upon time intervals.

Also, there are three fundamental and orthogonal kinds of time: user-defined,
valid and transaction time. User-defined time is a time representation designed
to meet the specific needs of users. Valid time specifies when certain conditions
in the real world are, were or will be valid. Several models supporting valid time
are described in [15]. Transaction time automatically captures changes made to
the state of time-variant data in a database. This time dimension represents the
time period during which an instance is recorded in the database. Taxonomy

© Springer International Publishing Switzerland 2015
S. Kozielski et al. (Eds.): BDAS 2015, CCIS 521, pp. 92–106, 2015.
DOI: 10.1007/978-3-319-18422-7_8

A Comparison of Different Forms of Temporal Data Management 93

for classifying databases in terms of valid time and transaction time has been
developed in [13].

The first proposal for standardization of temporal data for database systems
has been submitted in 1995 and was based on [14]. This proposal showed some
shortcomings and was criticized in an article [3], thus failed to get a support of
the SQL standardization committee. Another proposal [9] has been submitted,
but the committee did not accept it. The next attempt to standardize temporal
data as a part of the SQL specification started in 2006 and ended successfully
with the publishing of the SQL:2011 standard [7]. The standard has adopted
a model, where a time period represents all time granules starting from and
including the start time, and ending with the last time granule before the end
time.

The standard introduces three different forms of tables [11]: application-time
period tables, system-versioned tables and bitemporal tables. An application-
time period table captures time periods during which data are valid in the real
world. For this reason, the user is responsible for setting the start and end times
of each time-variant attribute. Also, the user modifies the validity periods of
rows, when an error is detected. Generally, the valid time support is provided
by these tables.

One of main requirements for system-versioning table is that any modification
of rows immediately preserves the old state of these rows before executing the
UPDATE or DELETE statement. By specifying a table with system-versioning,
the user tells the system to immediately capture changes made to the state of
tables rows and, at the same time to memorize the old state of the same rows.
Therefore, the time period of a row in a system-versioning table begins at the
time in which the row was inserted into the table and ends when the row was
deleted or updated.

Bitemporal tables store and manage data with valid as well as with transaction
time. Therefore, a bitemporal table is a union of data from a corresponding
application-time period table and system-versioned table, and rows in such tables
are associated with both application-time period as well as with system-time
period. (Note that SQL:2011 does not use any particular name for these tables.
In this article, the phrase bitemporal is used in accordance to its use in the
literature.)

The aim of this paper is to examine whether the built-in support for temporal
logic reduces execution time in relation to hand-coded database applications.
Our tests showed that in the most cases execution times of built-in code is ca.
1.5 times quicker than execution time of the corresponding triggers and stored
procedures.

For this study, we use an existing commercial database system, IBM DB2,
which supports the standardized temporal logic [12]. Besides DB2, Oracle Ver-
sion 12c as well as Teradata support temporal logic. Teradatas temporal support
does not correspond to the specification in the SQL:2011 standard, while Oracles
implementation is incomplete in relation to the DB2 support of this specification.

94 F. Künzner and D. Petković

1.1 Related Work

Temporal databases have been a research topic since more than 25 years. During
this time, numerous temporal models and query languages have been proposed.
An annotated bibliography on temporal aspects can be found in [5]. The glossary
of temporal database concepts is given in [8]. Taxonomy for the classification of
temporal databases according to time dimensions has been developed in [13]. Ac-
cording to this taxonomy, Gadias work, described in [15] is a temporal data model
concerning valid time. Ben-Zvi proposed the first data model for bitemporal
databases, a temporal query language, storage architecture, indexing, recovery,
concurrency, synchronization, and its implementation [4]. Snodgrass attached
four implicit attributes to each time-varying relation, and presented a corre-
sponding temporal query language [15]. The bitemporal data model, BCDM [1]
forms the basis for the Temporal Structured Query Language. The article [17]
discusses the standardization of database systems from another angle of view.

Performance issues in relation to temporal data have been investigated in
several papers. In her work [1], Attay compared attribute and tuple timestamp-
ing in relation to the BCDM data model. Our work is similar to the work at
IBM described in [12]. In contrast to our tests, the authors in [12] compare im-
plementation of a subset of valid time capabilities with built-in temporal data
management versus hand-coded implementation of equivalent logic. The built-
in implementation of temporal logic reduced coding requirements by ca. 90%
in relation to the implementation of the same in corresponding applications. In
relation to lines of code, triggers and Java applications required 16 and 45 times
more LOCs, respectively.

1.2 Roadmap

The rest of this article is organized in the following way: Section 2 deals with
issues in relation to application-time period tables. Different cases concerning
integrity constraints as well as DML statements on such tables are analyzed and
compared. Section 3 discusses two different cases in relation to DML statements
of system-versioned tables. In Section 4 we show cases in relation to integrity
constraints and DML statements concerning bitemporal tables. Section 5 sum-
marizes all experimental results from Chapters 2-4. The last section gives con-
clusions and discusses future work. The article has an appendix (Supplement),
which contains the code of all triggers and stored procedures used for testing.

Each of the following three sections (Sections 2-4) has the same structure.
First, we give basic specifications of all tables used in the following subsections.
After that, the issues in relation to key integrity are discussed. In the final
subsection, the discussion of DML statements is given.

2 Application-Time Period Tables

The creation of application-time period tables requires that the user explicitly
defines two time-variant columns, which specify the start and end times of the

A Comparison of Different Forms of Temporal Data Management 95

period of each row. Both columns must be defined with the NOT NULL property
and their type can be any date type (DATE or TIMESTAMP). The PERIOD
clause, which is a new extension to SQL, instructs the system to use these time-
variant columns to track the start and end points of time values for each row.
(This clause implicitly enforces the constraint that start time < end time.)

2.1 Basic Specifications

The employees table is an SQL table used for testing of a logic implemented
in hand-coded applications. The corresponding CREATE TABLE statement is
given in Example 1. Similarly, the T employees table is the corresponding table
with the built-in temporal logic and handles valid time. (IBM calls such a table
”table with business time”.) The corresponding statement is given in Example 2.

Example 1

CREATE TABLE employees (
E_Id INT NOT NULL , E_Name CHAR (20) NOT NULL ,
E_Start DATE NOT NULL , E_End DATE NOT NULL ,
E_Dept INT ,
PRIMARY KEY (E_Id , E_Start));

-- Start_Time <= End_Time -> must be explicitly checked
ALTER TABLE employees ADD CONSTRAINT emp_check

CHECK(E_Start <= E_End);

Example 2

CREATE TABLE T_employees (
E_Id INT NOT NULL , E_Name CHAR (20) NOT NULL ,
E_Start DATE NOT NULL , E_End DATE NOT NULL ,
E_Dept INT ,
PERIOD BUSINESS_TIME (E_Start , E_End),
PRIMARY KEY (E_Id , BUSINESS_TIME WITHOUT OVERLAPS));

For our tests, each of these tables is consecutively loaded with 100, 1000,
10.000, and 100.000 rows. Examples for loading data in both tables are given
in Examples 3 and 4, respectively. As can be seen from these examples, both
INSERT statement are equivalent. The reason is that in both CREATE TABLE
statements the user has to specify start and end time of the corresponding time
period.

Example 3

INSERT INTO employees
VALUES (115, 'Dante', DATE '2012 -01 -01', DATE '2012 -12 -01', 10);

Example 4

INSERT INTO T_employees
VALUES (115, 'Dante', DATE '2012 -01 -01', DATE '2012 -12 -01', 10);

2.2 Key Integrity Constraints on Application-Time Period Tables

Primary Key Integrity. There are two key integrity constraints: one con-
cerning primary key (PK) and the other concerning foreign key i.e. referential

96 F. Künzner and D. Petković

integrity (RI). The first consequence of adding time support to an application-
time period table is that the ”convenient” primary key for the relational model
is not sufficient for temporal logic and tables with time-variant columns have to
consider the timestamp. In other words, the E Id column in Example 2 does
not suffice to guarantee uniqueness of rows in the T employees table and the
primary key specification has to include the E start and E End columns. How-
ever, this is still not enough for the uniqueness of rows, while we wish to specify
that there can be only one E Id value at any given time. In other words, we
want that an employee belongs to exactly one department at the same time. For
this reason, the standard specifies the WITHOUT OVERLAPS clause, which
forbids overlapping of time periods. The first test we applied concerns the prob-
lem of primary key integrity. Example 5 tries to insert a row, which violates
the constraint specified with the WITHOUT OVERLAPS clause in the CRE-
ATE TABLE statement of Example 2 and the already existing row inserted in
Example 3.

Example 5

INSERT INTO T_employees
VALUES (115, 'Dante', DATE '2012 -01 -01', DATE '2012 -03 -01', 10);

The same constraint for the convenient SQL table (employees) is shown
in Example 6. The trigger in this example rejects the execution of INSERT
statements that violate the PK constraint on the employees table. Note that
this trigger is the only one, which is presented in the text of this article to
demonstrate implementation of hand-coded applications. All other applications
that will be discussed below can be found in the Supplement.

Example 6

-- the '!' sign is used as a delimiter
CREATE OR REPLACE TRIGGER EMPLOYEES_TRIGGER_INSERT

BEFORE INSERT ON employees REFERENCING NEW AS newRow
FOR EACH ROW
BEGIN

DECLARE i INTEGER ;
SELECT COUNT (*) INTO i

FROM employees
WHERE newRow.E_Id = E_Id

AND newRow.E_End > E_Start
AND newRow.E_Start < E_End;

IF i > 0 THEN CALL
RAISE_APPLICATION_ERROR(-20001, 'PK Times overlaps ');

END IF;
END!

Referential Integrity. If we suppose that there is the T Departments table,
which is a parent table of the T employees table, the convenient referential in-
tegrity involving these two tables cannot be satisfied, if the similar requirements
from the last subsection are valid, i.e. that every value of the E Dept column of
the T employees table corresponds to the department number column of the
T Departments table at every point in time. The SQL:2011 standard specifies
the corresponding FOREIGN KEY clause (with the REFERENCES option),

A Comparison of Different Forms of Temporal Data Management 97

but the implementation of such a clause does not yet exist in IBM DB2 [10]. For
this reason, a corresponding case cannot be tested at this moment.

2.3 DML Statements and Application-Time Period Tables

The semantics for DML statements differ significantly for application-time period
tables in relation to the conventional SQL. Table 1 shows the differences for all
three of these statements.

Table 1. The semantics of DML statements for application-time tables

Conventional SQL SQL Temporal

INSERT
(one row)

Inserting the new row Inserting a new row or prolonging the
valid time of an existing row.

UPDATE
(one row)

Updating the row Shortening the valid time of the row and
inserting a new row or prolonging valid
time of an existing row.

DELETE
(one row)

Deleting the row Shortening the valid time of the row or
deleting the row.

The case we examine concerns the DELETE statement. As can be seen from
Table 1, the deletion of a row with a time-variant attribute means that its valid
time is shortened or deleted. Example 7 shows such a DELETE statement for
the T employees table. After execution of this statement, the result contains
two rows with E Id = 115, one with the time period ending on 15.7.2012, and
the other beginning on 15.8.2012.

Example 7

DELETE FROM T_employees FOR PORTION OF BUSINESS_TIME
FROM DATE '2012 -07 -15' TO DATE '2012 -08 -15' WHERE E_Id = 115;

The example above uses the new clause - FOR PORTION -, which is the
temporal extension of the DELETE (and UPDATE) statement. The Supplement
shows the implementation of the corresponding stored procedure. (In this case,
we used a stored procedure to implement temporal logic, because that way the
explicit values of start and end times can be passed to the system using two
parameters.)

3 System-Versioned Tables

System-versioned tables comprise system times, which are always updated, when
the data modification statements are executed. These tables contain two ad-
ditional columns, for system start time and system end time. In contrast to
application-time period tables, the system maintains the start and end times of
the periods of rows.

98 F. Künzner and D. Petković

3.1 Basic Specifications

The departments table, created in Example 8 is the parent table of the em-
ployees table from Example 1. This table and the corresponding history ta-
ble are used for testing a logic implemented in hand-coded applications and
for transaction time. Similarly, the S departments table is the corresponding
system-versioned table with the built-in temporal logic. (IBM calls such a table
”table with system time”.) The corresponding CREATE TABLE statement is
given in Example 9.

The two time-variant columns of the S departments table (D Start and
D End) are specified by the user, but their values are provided by the system.
The third column, TRANS Start, is used to track when the transaction first
executed a statement that changes the tables data. The PERIOD clause has
the same meaning as the clause with the same name for application-time period
tables.

As can be seen from Example 9, IBM DB2 uses two tables, one for current
data, (S departments) and one for historical data (Dept history). This is in
contrast to the SQL:2011 specification, which defines only one table for current
and historical data. Both DB2 tables are compatible to each other, and the sys-
tem automatically moves the non-current data in the history table. Additionally,
the ALTER TABLE statement in Example 9 alters the current table to enable
versioning and identify the corresponding history table.

Example 8

CREATE TABLE departments(
D_id INT NOT NULL , D_Name CHAR(20),
D_Start TIMESTAMP(12), D_End TIMESTAMP(12),
PRIMARY KEY (D_Id));

CREATE TABLE departments_History(
D_id INT NOT NULL , D_Name CHAR(20),
D_Start TIMESTAMP(12) NOT NULL , D_End TIMESTAMP(12) NOT NULL ,
PRIMARY KEY (D_Id , D_Start));

Example 9

CREATE TABLE S_departments(
D_id INT NOT NULL , D_Name CHAR(20),
D_Start TIMESTAMP(12) GENERATED ALWAYS AS ROW BEGIN NOT NULL ,
D_End TIMESTAMP(12) GENERATED ALWAYS AS ROW END NOT NULL ,
TRANS_Start GENERATED ALWAYS AS TRANSACTION

START ID IMPLICITLY HIDDEN,
PERIOD SYSTEM_TIME (D_Start , D_End), PRIMARY KEY (D_id));

CREATE TABLE Dept_History LIKE S_departments;
ALTER TABLE S_departments ADD VERSIONING USE HISTORY TABLE Dept_History;

The following examples show how rows can be inserted in both tables created
in Example 8 and Example 9.

Example 10

INSERT INTO departments
VALUES (1, 'D1', CURRENT TIMESTAMP , DATE '9999 -12 -31');

Example 11

INSERT INTO S_departments (D_Id , D_Name) VALUES ('1', 'D1');

A Comparison of Different Forms of Temporal Data Management 99

The INSERT statements in Examples 10 and 11 are different, because in
temporal logic, values for transaction start and end times are assigned by the
system.

3.2 Key Integrity Constraints on System-Versioned Tables

The specification of key integrity constraints on system-versioned tables is sig-
nificantly simpler than the specification of the same integrity constraints on
application-time period tables. The reason is that these constraints (primary
key constraint and referential integrity) must be enforced only on the current
rows, because the same constraints have been already checked at the time where
historical rows were current ones. For this reason, there is no need to include
time-variant columns (begin system time and end system time) in the primary
key and referential integrity definitions. In other words, the key integrity con-
straints on system-versioned tables are analogous to the same constraints in the
conventional SQL.

3.3 DML Statements and System-Versioned Tables

The semantics for the INSERT, UPDATE and DELETE statements differ for
system-versioned tables in relation to the conventional SQL. Table 2 shows the
differences for all three of these statements.

Table 2. The semantics of DML statements in system-versioned tables

Conventional SQL SQL Temporal

INSERT Inserting a new row Inserting a new row

UPDATE
(one row)

Modifying the row Ending the currentness of that row and
inserting a new row as a substitution for
the ex-current row.

DELETE
(one row)

Deleting the row Ending the currentness of the row.

For system-versioned tables, our tests for DML concern the UPDATE (Ex-
ample 12) and DELETE (Example 13) statements.
Example 12

UPDATE S_departments SET D_Name = 'D3' WHERE D_id = 1;

As can be seen from Table 2, the UPDATE statement in Example 12 will
be replaced by an UPDATE and an INSERT statement: the former concerning
the table with current values and the latter concerning the history table. The
existing row in the S departments table will be modified, with the new value
for the D Name column, and the start system time of the row will be set to the
time, when the UPDATE statement has been performed. The historical row will

100 F. Künzner and D. Petković

have the end transaction time set to the time, when the UPDATE statement
has been performed. (All other values of this row will be unchanged.)

Example 13

DELETE FROM S_departments WHERE D_id = 1;

The DELETE statement in Example 13 ends the currentness of the row with
D id=1. This means that two statements will be executed: a DELETE and
an INSERT. In other words, the row will be deleted from the S departments
table and the new row will be inserted in the history table with the value of end
transaction time set to the current time.

4 Bitemporal Tables

As already stated, valid time and transaction time represent two different kinds
of time, which are orthogonal to each other. In the case that an application needs
both of these dimensions, bitemporal tables are used. For this reason, the main
requirement in relation to bitemporal tables is to present start and end of the
valid time as well as its currentness in relation to transaction i.e. system time.

4.1 Basic Specifications

The B departments table is an SQL table used for testing of bitemporal
logic implemented in hand-coded applications. The CREATE TABLE state-
ment for this table is given in Example 14. (The second CREATE TABLE
statement in this example creates the corresponding history table.) Similarly,
the BITemp departments table is a table with the built-in temporal logic
and it handles bitemporal time. As in the case of system-versioned tables, the
user has to create a corresponding history table and to activate versioning for
it. The corresponding CREATE TABLE statements are given in Example 15.

Example 14

CREATE TABLE B_departments(
D_id INT NOT NULL , D_Name CHAR(20), D_Dept INT,
V_Start DATE NOT NULL , V_End DATE NOT NULL , -- BUSINESS_TIME
D_Start TIMESTAMP(12), D_End TIMESTAMP(12), -- SYSTEM_TIME
PRIMARY KEY (D_id , V_Start));

-- Start_Time <= End_Time -> must be explicitly checked
ALTER TABLE B_departments

ADD CONSTRAINT B_departments_check CHECK(V_Start <= V_End);
-- History Table
CREATE TABLE B_departments_History(

D_id INT NOT NULL , D_Name CHAR(20), D_Dept INT,
V_Start DATE NOT NULL , V_End DATE NOT NULL ,
D_Start TIMESTAMP(12) NOT NULL , D_End TIMESTAMP(12) NOT NULL ,
PRIMARY KEY (D_id , D_Start , V_Start));

Example 15

CREATE TABLE BITemp_departments(
D_id INT NOT NULL , D_Name CHAR(20), D_Dept INT,
-- BUSINESS_TIME
V_Start DATE NOT NULL , V_End DATE NOT NULL ,

A Comparison of Different Forms of Temporal Data Management 101

PERIOD BUSINESS_TIME (V_Start , V_End),
-- SYSTEM_TIME
D_Start TIMESTAMP(12) GENERATED ALWAYS AS ROW BEGIN NOT NULL ,
D_End TIMESTAMP(12) GENERATED ALWAYS AS ROW END NOT NULL ,
TRANS_Start GENERATED ALWAYS AS TRANSACTION

START ID IMPLICITLY HIDDEN,
PERIOD SYSTEM_TIME (D_Start , D_End),
PRIMARY KEY (D_Id , BUSINESS_TIME WITHOUT OVERLAPS));

CREATE TABLE BITemp_Dept_history LIKE BITemp_departments;
ALTER TABLE BITemp_departments

ADD VERSIONING USE HISTORY TABLE BITemp_Dept_history;

The following two examples show how rows can be inserted in the
B departments and BITemp departments tables, respectively.

Example 16

INSERT INTO B_Departments (D_Id , D_Name , V_Start , V_End , D_Start , D_End)
VALUES (1, 'D2', DATE '2011 -01 -01', DATE '2012 -01 -01',

CURRENT TIMESTAMP , DATE '9999 -12 -31');

Example 17

INSERT INTO BITemp_Departments (D_Id , D_Name , V_Start , V_End)
VALUES (1, 'D1', DATE '2011 -01 -01', DATE '2012 -01 -01');

The INSERT statements in Examples 16 and 17 are different, because in the
case of built-in temporal logic, the start system time and end system time are
assigned by the system.

4.2 Key Integrity Constraints on Bitemporal Tables

The integrity constraint for primary key on bitemporal tables is similar to the
corresponding constraint for application-time period tables. The INSERT state-
ment in Example 18 violates this constraint.

Example 18

INSERT INTO BITemp_Departments (D_Id , D_Name , V_Start , V_End)
VALUES (115, 'D1', DATE '2011 -02 -01', DATE '2012 -03 -01');

4.3 DML Statements and Bitemporal Tables

Temporal modifications for bitemporal tables are similar to temporal modifi-
cations for application-time period tables. The main difference is that updates
(instead of deletions) are performed on transaction end time.

Example 19

DELETE FROM BITemp_departments FOR PORTION OF BUSINESS_TIME
FROM DATE '2011 -01 -01' TO DATE '2011 -02 -01' WHERE D_id = 115;

For the DELETE statement in Example 19 above, the system performs two
statements, an UPDATE and an INSERT. The UPDATE statement will modify
the existing row. The start valid time of the row will be updated to the new
value (2011-02-01), while the start system time and end system time will be
the time, when the DELETE statement above has been executed and forever,
respectively. (The end valid time will be unchanged.) The INSERT statement

102 F. Künzner and D. Petković

inserts a new row in the history table and modifies the system end time of the
original row from forever to the time, when the row has been deleted. Both valid
time values as well as the start system time will be unchanged.

5 Test Results

To evaluate performance tests described above, we use a host system with 8 GB
RAM and the Intel Q6600 processor with 2.4 GHz. The software was installed on
a virtual machine (VMware) with 3 GB RAM and four kernels. The operating
system was Windows 7 Professional 64 Bit.

The database system used for testing is IBM DB2 V 10.5 (64 bit edition), with
IBM Data Studio V 3.2 as interface to the database server. Although Data Studio
displays execution times for each executed statement, our tests showed that these
times are unreliable i.e. vary significantly from each other and therefore this tool
could not be used for performance test. For this reason, we used a command
script, which starts the db2batch command. Each table is consecutively loaded
with 100, 1000, 10000, and 100000 rows and tests with each load have been
executed ten times. The tables below contain the following columns: number
of rows, the tables name, average of each execution time and corresponding
standard deviation. The last column shows the ratio between execution times
of built-in code and execution times of corresponding triggers. All measures are
given in milliseconds.

Table 3. Application-time period table, test of PK integrity

Rows Table Mean Standard devation Speedup
(ms) (ms)

100 Employees 72 9
100 T employees 59 9 1.21

1000 Employees 824 68
1000 T employees 620 58 1.33

10000 Employees 9135 202
10000 T employees 6878 95 1.33

100000 Employees 90229 1397
100000 T employees 69661 469 1.30

Table 3 shows execution times for violation of PK integrity with the INSERT
statement in Examples 5 and 6. For all loads, the ratio shows that execution
time of temporal logic is ca. 1.3 times faster than corresponding hand-coded
applications.

Table 4 shows execution times for the DELETE statement in Example 7
and the corresponding stored procedure. For all but first load, the ratio shows
the similar results as for the previous test, i.e. that execution time of temporal
logic is ca. 1.45 times faster than corresponding hand-coded applications. (The
anomalous result is due to the very small amount of rows in the first load.)

A Comparison of Different Forms of Temporal Data Management 103

Table 4. Application-time period table: Execution of a DML statement (DELETE)

Rows Table Mean Standard devation Speedup
(ms) (ms)

100 Employees 109 12
100 T employees 514 54 0.21

1000 Employees 1007 11
1000 T employees 694 92 1.45

10000 Employees 9004 273
10000 T employees 6089 247 1.48

100000 Employees 88388 613
100000 T employees 58956 223 1.50

Table 5. System-versioned table: Execution of a DML statement (UPDATE)

Rows Table Mean Standard devation Speedup
(ms) (ms)

100 Departments 79 16
100 S departments 63 9 1.24

1000 Departments 813 100
1000 S departments 616 70 1.32

10000 Departments 8033 94
10000 S departments 6936 178 1.16

100000 Departments 82026 2444
100000 S departments 70803 723 1.16

Table 6. System-versioned table: Execution of a DML statement (DELETE)

Rows Table Mean Standard devation Speedup
(ms) (ms)

100 Departments 69 10
100 S departments 59 8 1.18

1000 Departments 658 85
1000 S departments 544 78 1.21

10000 Departments 7885 164
10000 S departments 6597 524 1.20

100000 Departments 82987 2302
100000 S departments 71040 696 1.17

Table 5 shows execution times for UPDATE in Example 12 and the corre-
sponding trigger. The execution times differ non-significantly from the times in
Table 3 and 4. The slightly better ratio for hand-coded applications can be ex-
plained with the minor complexity of system-versioned tables (see Section 3.3).
The same is true for execution times of the DELETE statement in Table 6.

Table 7 shows execution times for violation of PK integrity with the IN-
SERT statement for bitemporal tables. The corresponding statement is given
in Example 18 and the corresponding trigger. The semantics of this constraint

104 F. Künzner and D. Petković

Table 7. Bitemporal table: Test of PK integrity

Rows Table Mean Standard devation Speedup
(ms) (ms)

100 B departments 75 17
100 BITemp departments 59 10 1.27

1000 B departments 895 76
1000 BITemp departments 668 50 1.34

10000 B departments 10546 200
10000 BITemp departments 7713 146 1.37

Table 8. Bitemporal table: Execution of a DML statement (DELETE)

Rows Table Mean Standard devation Speedup
(ms) (ms)

100 B departments 297 25
100 BITemp departments 58 11 5.13

1000 B departments 3175 262
1000 BITemp departments 573 50 5.54

10000 B departments 45078 1813
10000 BITemp departments 7277 225 6.19

for bitemporal tables is equivalent to the semantics of the same constraint for
application-time period tables. Therefore, the ratio of execution times is similar.

Table 8 shows execution times for a DML statement (Example 19) for bitem-
poral tables. As can be seen in Section 4.3, the semantics of UPDATE and
DELETE statements on bitemporal tables is very complex. (The most complex
form of an UPDATE statement requires an UPDATE and three INSERT state-
ments.) Therefore, execution times of triggers and stored procedures for DML
statements of bitemporal tables are several times more slowly than the corre-
sponding implementation of temporal logic.

6 Conclusions and Future Work

In database systems, which do not support built-in temporal logic, users have to
implement this functionality in their application code. The SQL:2011 standard
with its specification of temporal data and IBM DB2 with the implementation
of the same dramatically simplify the code that has to be written.

In order to show execution times of built-in temporal logic vs. corresponding
hand-coded applications, we performed experiments to measure the performance
of both groups using the same data. Our performance tests showed three im-
portant results. First, execution times of built-in code is ca. 1.5 times quicker
than execution time of the corresponding triggers and stored procedures. Sec-
ond, standard deviation of hand-coded applications is significantly greater than
corresponding deviation for applications implemented using built-in temporal
logic. Another conclusion is: the more complex the semantics of a statement, the
bigger the difference in their execution times.

A Comparison of Different Forms of Temporal Data Management 105

It is well known that the first specification of temporal data model in SQL:2011
is non-satisfying [11]. The main defect is that the standard, at this time, does
not specify two very important temporal features: the PERIOD data type and
coalescing. The PERIOD data type is defined as the time interval, which contains
a set of consecutive time units. This data type has the lower and upper limit,
which are both of type DATE or TIMESTAMP. The most important property
of this data type is that it can be used in the natural way to represent time
intervals. Additionally, it supports operations, such as CONTAINS, EQUALS,
PRECEDES and OVERLAPS as methods of the data type. We expect that
the support of this data type will come soon, and the study of performance
advantages of the PERIOD data type is one of our main goals in the future.
Also, the current standard lacks the support for coalescing. Coalescing means
that the system automatically merges the rows of a table, which overlaps [2].
This problem appears very often when an INSERT (UPDATE) statement is
performed, and time-invariant attributes of the rows are equal and at the same
time their timestamps overlaps or adjoin. It can be expected that performance
gains of the support for coalescing will bring significant benefits in relation to
hand-coded solution. For this reason, this is also one of the goals in our work.

References

1. Atay, C.: A Comparison of Attribute and Tuple Time Stamped Bitemporal Rela-
tional Data Models. In: Int. Conf. on Applied Computer Science (2010)

2. Boehlen, M., Snodgrass, R.: Coalescing in Temporal Databases, VLDB (1996)
3. Darwen, H., Date, C.: An Overview and Analysis of Proposals Based on the TSQL2

Approach (1996), http://www.dcs.warwick.ac.uk/∼hugh/TTM/OnTSQL2.pdf
(last visit: February 14, 2014)

4. Gadia, S.: Ben-Zvi’s Pioneering Work in Relational Temporal Databases. In:
Tansel, A., et al. (eds.) Temporal Databases. Benjamin/Cummings (1993)

5. Grandi, F.: Introducing an Annotated Bibliography on Temporal and Evolution
Aspects in the Semantic Web. SIGMOD Records 41(4) (2012)

6. Kulkarni, K., Michels, J.: Temporal Features in SQL:2011. SIGMOD Records 41(3)
(2012)

7. ISO/IEC 9075-2:2011: Database languages: SQL, Part 2 (2011)

8. Jensen, C.S., et al.: The consensus glossary of temporal database concepts - Febru-
ary 1998 version. In: Etzion, O., Jajodia, S., Sripada, S. (eds.) Temporal Databases
- Research and Practice. LNCS, vol. 1399, pp. 367–405. Springer, Heidelberg (1998)

9. Lorentzos, N.: The Interval-extended Relational Model and Its Applications to
Valid-time. In: Temporal Databases (1993)

10. Nicola, M., Sommerlandt, M.: Managing time in DB2 with temporal consistency.
IBM Developers Works (2011)

11. Petković, D.: Was lange währt, wird endlich gut: Temporale Daten im SQL-
Standard. Datenbank-Spektrum 13(2), 131–138 (2013) (in German)

12. Saracco, C., Nicola, M., Gandhi, L.: Amatter of time: Temporal datamanagement in
DB2 (2012), http://www.ibm.com/developerworks/data/library/techarticle/
dm-1204db2temporaldata/dm-1204db2temporaldata-pdf.pdf (last visit: February
14, 2014)

http://www.dcs.warwick.ac.uk/~hugh/TTM/OnTSQL2.pdf
http://www.ibm.com/developerworks/data/library/techarticle/dm-1204db2temporaldata/dm-1204db2temporaldata-pdf.pdf
http://www.ibm.com/developerworks/data/library/techarticle/dm-1204db2temporaldata/dm-1204db2temporaldata-pdf.pdf

106 F. Künzner and D. Petković

13. Snodgrass, R., Ahn, I.: Performance Evaluation of a Temporal Database Manage-
ment System. Communications of ACM (1986)

14. Snodgrass, R.: The TSQL2 Temporal Query Language. Kluwer (1995)
15. Tansel, A., Clifford, J., Gadia, S., Jajodia, S., Segev, A., Snodgrass, R.: Temporal

Databases (1993)
16. Toman, D.: A Point-based Temporal Extension of SQL. In: Bry, F., Ramakrish-

nan, R., Ramamohanarao, K. (eds.) DOOD 1997. LNCS, vol. 1341, pp. 103–121.
Springer, Heidelberg (1997)

17. Bach, M., Werner, A.: Standardization of NoSQL Database Languages. In:
Kozielski, S., Mrozek, D., Kasprowski, P., Ma�lysiak-Mrozek, B., Kostrzewa, D.
(eds.) BDAS 2014. CCIS, vol. 424, pp. 50–60. Springer, Heidelberg (2014)

	A Comparison of Different Forms of Temporal Data Management
	1 Introduction
	1.1 Related Work
	1.2 Roadmap

	2 Application-Time Period Tables
	2.1 Basic Specifications
	2.2 Key Integrity Constraints on Application-Time Period Tables
	2.3 DML Statements and Application-Time Period Tables

	3 System-Versioned Tables
	3.1 Basic Specifications
	3.2 Key Integrity Constraints on System-Versioned Tables
	3.3 DML Statements and System-Versioned Tables

	4 Bitemporal Tables
	4.1 Basic Specifications
	4.2 Key Integrity Constraints on Bitemporal Tables
	4.3 DML Statements and Bitemporal Tables

	5 Test Results
	6 Conclusions and Future Work

