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Abstract. Query optimizer uses a selectivity parameter for estimating
the size of data that satisfies a query condition. Selectivity value calcu-
lations are based on some representation of attribute values distribution
e.g. a histogram. In the paper we propose a query workload aware multi-
histogram which contains a set of equi-width sub-histograms. The multi-
histogram is designated for single-attribute-based range query selectivity
estimating. Its structure is adapted to a 2-dimensional distribution of con-
ditions of last recently processed range queries. The structure is obtained
by clustering values of boundaries of query ranges. Sub-histograms’ reso-
lutions are adapted to a variability of a 1-dimensional distribution of at-
tribute values.

Keywords: Selectivity estimation · Range query · Multi-histogram ·
embedded sub-histogram · Query workload · Data clustering · Bucket
boundaries distribution · Variability metrics

1 Introduction

Selectivity factor is used by a database query optimizer to choose the best query
execution plan. It is needed for an early estimation of size of the data that
satisfying a query condition. For a simple single-table selection condition the
selectivity is the number of rows satisfying the condition divided by the number
of all table rows. For a simple range condition based on single attribute x with
continuous domain, it may be defined as follows:

sel(Q(a < x < b)) =

b∫

a

f(x)dx. (1)

where x – a table attribute, a and b – range boundaries, f(x) – a probability
density function (PDF) that describes x attribute values distribution.

There are many approaches to representing an attribute values distribution
using different types of histogram [8]. Most of them use only an information

c© Springer International Publishing Switzerland 2015
S. Kozielski et al. (Eds.): BDAS 2015, CCIS 521, pp. 47–59, 2015.
DOI: 10.1007/978-3-319-18422-7_4



48 D.R. Augustyn

about x values distribution but also there are some that take into account an
information about query workload [6, 5, 9, 11, 1–3].

The proposed method also uses information about processed queries, but it
only collects data about the range conditions (values of range boundaries), not
about their real selectivity values obtained just after a query execution (like the
approaches presented in [6, 5, 9, 11]. [7]. Some of those approaches to query-
workload-based selectivity estimation (so-called feedback driven) are dedicated
for multi-dimensional queries (m-D range queries with conditions based on many
attributes), e.g. the approaches that use: self-tunning histogram and STHoles
[5, 9, 10], ISOMER – the maximum entropy based algorithm for feedback-driven
m-D histogram creation [11], proactive and reactive m-D histogram [7].

In this paper we introduce a new representation of attribute values distribu-
tion – a multi-histogram – which consists on non-overlapping equi-width sub-
histograms. Domains of sub-histograms depend on 2-D distribution of pairs (a, b)
that describe range boundaries of last recently processed queries. Such 2-D repre-
sentation is more detailed than 1-D one given by the including function proposed
in [1, 2]. In the proposed approach we use clustering of query range boundary
values (like in [3]) for adapting the multi-histogram to historical data about con-
ditions of processed range queries. This allows to divide whole domain of multi-
histogram and to use simple equi-width histograms (called sub-histograms) in
obtained sub-domains (there is no usage of sub-histogram in [3]).

The contributions of the paper are as follows:

– query workload aware multi-histogram representation of an attribute values
distribution,

– methods of improvement of sub-histograms’ resolutions (also partially adapted
to query workload) by increasing them in domain regions of high variability of
PDF(x).

2 Description of the Proposed Method and the Example
of Usage

2.1 Exemplary Attribute Values Distribution

The proposed method will be presented by using a sample distribution of x
attribute [3]. To build an exemplary distribution representation we use a pseu-
dorandom generator based on superposition of G = 4 Gaussian clusters with
bounded support (limited to [0, 1]), where parameters of used univariate trun-
cated normal distributions are shown in table 1. The relevant PDF is defined as
follows:

PDF(x) =

G∑
i=1

pi PDFTN(x,mi, σi, 0, 1) (2)

The distribution consists of two narrow clusters (no 3, 4 with small sigmas)
and two wide ones (no 1, 2). Of course, we may use here any type of 1-D distri-
bution, based not only on Gaussian clusters.
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Table 1. Parameters of clusters used in the definition of exemplary PDF of x
attribute [3]

Cluster no 1 2 3 4

pi 0.25 0.25 0.3 0.2

mi 0.2 0.8 0.6 0.8

σi 0.12 0.12 0.001 0.01

In the further consideration we will use a high resolution equi-width histogram
which is based onN = 100 buckets. We assume that it will describe PDF(x) with
enough accuracy. To build this histogram we used 10000 samples of x values that
were generated using PDF(x). The histogram uses a series of obtained fi values
(series of frequencies of falling a x values in the i-th bucket) where i = 1, . . . , N .
It defines a probability density function:

f(x) =
1

h
fiIi(x) ∧ Ii(x) =

{
1 if x belongs to the i-th bucket

0 otherwise
(3)

where h = (max(x) − min(x))/N is a width of buckets of the histogram. The
probability density function f(x) is presented in Fig. 1. It will be called a high
resolution referential histogram.

Fig. 1.Referential representation of x attribute values distribution – the high resolution
equi-width histogram with N = 100 buckets (solid lines); SEW – standard equi-width
histogram with B = 20 buckets (dotted lines) further defined in section 2.2

This histogram is named the high resolution one because other considered-
below low resolution histograms will have significantly less number of buckets
(B � N). The histogram presented in Fig. 1 (solid lines) will be used as tempo-
rary referential accurate distribution representation. It will be used for obtaining
exact values of selectivities for any query ranges during creating standard equi-
width histograms or multi-histograms.
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2.2 Standard Equi-width Histogram

Let us use standard equi-width histogram (with B buckets) as a well-known
typical representation of the distribution of x attribute values. It will be called
SEW. Bucket’s boundaries of SEW are uniformly distributed along the x do-
main. B = 20 is the assumed number of buckets in our exemplary histogram
shown in Fig. 1 (dotted lines).

In the paper, we will try to find a better distribution representation (more
accurate for selectivity estimations) subject to the assumed value of number of
buckets (B) and taking into account an additional information about a distri-
bution of previously processed range queries.

2.3 Exemplary of Distribution of Range Query Condition Bounds

Let us assume that we have information about a distribution of boundaries
(aj , bj) of previously processed range queries Qj(aj < x < bj), where 0 ≤ aj ≤
bj ≤ 1. We assume that we have a sample – a set named Qset – which consists
of pairs (aj , bj) for j = 1, . . . ,M that come from conditions of M last processed
range queries. Our exemplary Qset presented in Fig. 2 has M = 20 pairs [3]. 16
of them (circles) are highly clustered in so-called hot regions A, B, C). Zoomed
parts of domain a× b were shown in Fig. 2 for presenting hot regions.

Fig. 2. Qset – the set of boundaries of recently processed range query – the exemplary
set of pairs (aj , bj) for j = 1 . . .M(M = 20); A, B, C – hot regions [3]

2.4 Clustering Range Query Boundaries from Learning Set

To take into account a distribution of boundaries of query ranges we will use cen-
ters of some clusters that were built from values of aj and bj as some boundaries
of buckets in a new histogram.

To obtain the error-optimal number of clusters we use K-fold cross valida-
tion method. In the k-th step of K-fold procedure (where k = 1, . . . ,K) we
divide Qset into a learning set Qset learnk and a testing one Qset testk [3].
Qset learnk will be used for obtaining some boundaries of new histogram’s
buckets. Qset testk will be used for validation of the new histogram using some
selectivity estimation error metrics.
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Fig. 3. Distribution of values from Sk which consists of either a or b values from
Qset learnk – dashed lines; Medians of four accepted clusters (with their cardinality
and width)

Let us assume that K equals 5 in our example. Thus Qset learnk consists of
16 boundaries pairs. Using Qset learnk we build a vector Sk. Sk has a 32 values
(either aj or bj) that all come from Qset learnk. Elements of Sk was presented
in Fig. 3 (dashed lines).

By applying clustering procedure for Sk we may obtain a few clusters. In the
example we use Fuzzy C-means algorithm (FCM) [4]. After that we eliminate
some so-called weak clusters (clusters with relatively low cardinality or too wide
clusters i.e. with relatively high values of standard deviation) [3]. For our example
we get Cacc = 4 accepted clusters (Fig. 3).

We will use centers of accepted clusters i.e. medians me1, . . . ,meacc = 0.0103,
0.0888, 0.586, 0.7190 as some buckets of the new histogram. Those steps are
described more detailed in [3].

2.5 Creating Equi-width-Based Multi-histogram

A new type of histogram – a multi-histogram denoted by MH – is constructed
as a series of equi-width sub histograms (sH) embedded in intervals defined by
the centers of clusters obtained from historical data about the distribution of
boundaries of query ranges.

Due to Cacc clusters, we have Cacc + 1 sub-histograms. They are located be-
tween Cacc cluster centers, i.e. min(x),me1, . . . ,meacc,max(x). Each equi-width
sub histogram sHr is described by: sr – a start value, er – an end value, Br –
a number of buckets where r = 1, . . . , Cacc + 1 and er = sr + 1 for r ≤ Cacc,
s1 = min(x), eCacc+1 = max(x).

Let us assume that B is a given total number of bucket in the multi-histogram
(i.e. in all sub-histograms). Thus:

B =

Cacc+1∑
r=1

Br. (4)

The multi-histogram has B + 1 buckets boundaries. Cacc + 2 boundaries are al-
ready defined by domains of sub-histograms, i.e. set of pairs (sr, er), and min(x),
and max(x). Remaining B + 1 − (Cacc + 2) boundaries should be distributed
among sub-histograms.
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To obtain a final multi-histogram definition we should propose values Br − 1,
i.e. numbers of internal boundaries in each sub-histogram sHr.

In this first approach to distributing locations of B − Cacc − 1 boundaries
we assume that those locations should be almost uniformly distributed. Let us
denote Lr = er − sr as a width of the sub-histogram sHr, and L = max(x) −
min(x) =

∑Cacc+1
r=1 Lr as a width of the whole multi-histogram. We assume here

that Br−1 should by approximately proportional to a relative width of the r-th
sub-histogram:

Br − 1 ≈ A
Lr

L
(5)

where A is some unknown constant.
Using (4) and (5) we may obtain A and Br:

A ≈ B − Cacc − 1, (6)

Br − 1 ≈ (B − Cacc − 1)
Lr

L
. (7)

In (5)–(7) we used symbol ≈ because Br is a natural number so, in fact,
we numerically find the optimal series of B1, . . . , Br, . . . , BCacc+1 and Br ∈ N
that minimizes some square evaluation function F (B1, . . . , Br, . . . , BCacc+1) =∑Cacc+1

r=1 ((B − Cacc − 1)Lr

L + 1−Br)
2 subject to (4).

Having Br we may construct all sub-histograms i.e. the final multi-histogram,
using values of the high-resolution referential histogram (which is shown in
Fig. 1).

To evaluate an accuracy of any histogramH we use the following error metrics:

– a relative selectivity estimation error for Q (a given condition range query):

RelErrSelH(a, b)=RelErrSelH(Q(a < x < b))=
|ŝelH(Q)−sel(Q)|

sel(Q)
· 100%,

(8)
– a mean relative selectivity estimation error for QS (a given set of conditions):

MeanRelErrSelH(QS) = mean(a,b)∈QS RelErrSelH(a, b). (9)

ŝelH denotes an approximated selectivity value calculated with a H histogram.
H is SEW (standard equi-width histogram) or MH (multi-histogram). sel de-
notes an exact value of selectivity calculated with the high-resolution referential
histogram from Fig. 1.

Using (9) and the testing set Qset testk (see section 2.3) as QS we obtain:
MeanRelErrSelMH(Qset testk) ≈ 15.8 < MeanRelErrSelSEW (Qset testk) ≈
31.7. Thus, in our example the multi-histogram (MH shown in Fig. 4a) gives bet-
ter accuracy (than SEW ) in selectivity estimations for range query conditions
from Qset testk.
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Fig. 4. SEW – standard equi-width histogram (dashed lines); locations of borders
between sub histograms (vertical dotted lines) – series of medians; multi-histograms:
a) MH – simple multi-histogram (solid lines), b) MHVar (alternatively called VARIA2-
aware) – frequencies variability aware multi-histogram (solid lines) further defined in
section 2.7

2.6 Improving Multi-histogram by Eliminating Boundaries
from those Sub-histograms that Describe almost Uniform
Distributions

To improve a multi-histogram we propose to take into account variability of
frequencies (describing x distribution) in process of obtaining a distribution of
numbers of internal buckets (Br) in sub-histograms (sHr).

In this second approach to built a multi-histogram we will assume that after
finding Cacc we do not introduce any internal boundaries into such sub-histogram
where there exist no significant changes of frequencies fi (eq. (3) and Fig. 1) that
belong to the domain of this sub-histogram. After the proposed step, such sub-
histogram will have only a one bucket. So there will be more boundaries to
distribute among remaining sub-histograms.

To select such sub-histogram sHr we propose to use such condition:

VARIA1r =
std(f(x))|x∈[sr ,er ]

MVr
≤ THR (10)

where THR is some threshold value (e.g. from 1% ∼ 10%), and

MVr = mean(f(x))|x∈[sr ,er ] =

∫ er

sr

f(x)dx, (11)

and std(f(x))|x∈[sr ,er] =
(∫ er

sr
(f(x)−MVr)

2dx
) 1

2

.
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For the exemplary sub-histograms we obtain (VARIA1r)
Cacc+1
r=1 = (0.01, 72.3,

89.3, 97.6, 114) what allows to select only the first sub-histogram (r = 1) accord-
ing to the assumed threshold value (THR = 10%). This sub-histogram i.e. sH1

will not be taken into account in further distributing of B − Cacc − 1 locations
of boundaries (described in section 2.7). It will have only a one bucket.

In fact, the above-considered try of improvement of this MH does not change
the distribution of B−Cacc− 1 locations of boundaries in our example (because
the selected sub-histogram sH1 already has only a one bucket) but it may have
an impact on the distribution of boundaries locations for other distribution of x
values or values in Qset’s elements.

2.7 Improving Multi-histogram by Increasing Resolution of
Selected Sub-histograms

In this section we propose more advanced metrics of variability of distribution
of frequencies fi within a domain [sr, er] of some sub-histogram sHr. Using
it we may increase a resolution of some sub-histograms for high variability of
frequencies.

Till now we have assumed that we take into account a distribution of query
conditions i.e. a 2-dimensional distribution of pairs (a, b) (samples from this dis-
tribution are given byQset learnk) to find extreme boundaries of sub-histograms
(series of cluster’s medians). Now let us also take into account a distribution of
widths or query ranges, i.e. a 1-dimensional distribution of z = b − a. This
distribution of z will have an impact on a distribution of number of internal
boundaries of sub-histograms. Such approach may allows to partially adapt a
multi-histogram to a (possible in future) shifted distribution of query ranges.
The exemplary discrete z values distribution (obtained from Qset learnk) is
shown in Fig. 5.

Fig. 5. The distribution of z = b − a, i.e. the distribution of widths of query ranges
obtained from Qset learnk

z distribution allows to obtain a window size for further analysis i.e. we chose
as the window size such maximal z∗ that:

P (z ≥ z∗) = p (12)

where p is an assumed value of confidence level.
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Let us assume p = 0.9. Then for the considered example (i.e. the z distribution
from Fig. 5) we obtain z∗ = 0.082 (dashed line in Fig. 5).

We will use the value of z∗ to determine a maximal resolution with which we
will evaluate a variability of frequencies fi (see section 2.1) within a domain of
a sub-histogram.

Let us define a window function w(t) with width equals z∗:

w(t) = 1(t)− 1(t− z∗) (13)

where 1(t) is the step function.
We will consider a series of queries with ranges that are included in a domain

of a sub-histogram sHr and with range lengths equal z∗. This means that we
will consider window queries Qw(t < x < t+ z∗) for all t ∈ [sr, er − z∗].

If we assume for a little that a sub-histogram sHr has only a one bucket then
such histogram contains only one single value equals MVr (given by (11). Let us
find a selectivity of Qw for given t using such one-bucket sHr:

sel1bck-sHr(Qw(t < x < t+ z∗)) =

t+z∗∫

t

MVrdτ = MVr z∗ = const. (14)

We may find a selectivity of Qw for given t using f(x):

sel(Qw(t < x < t+ z∗)) =

t+z∗∫

t

f(τ)w(τ − t)dτ (15)

as a function convolution of f and w on interval [t, t+ z∗].
Let us define a scaled selectivity formula as follows:

sel(Qw(t < x < t+ z∗))
z∗

=
1

z∗

t+z∗∫

t

f(τ)w(τ − t)dτ. (16)

We may consider the scaled sel(Qw) as a moving average filter. The result
of applying the filter for the exemplary frequencies fi (see section 2.1) and z∗

equals 0.08 is shown in Fig. 6.
We introduce a new metrics of variability of frequencies within a sub-histogram

sHr (using a filter based on value of z∗) as mean selectivity estimation absolute
error:

VARIA2r=
∫ er−z∗

sr
|sel1bck-sHr(Qw(t<x<t+z∗))−sel(Qw(t<x<t+z∗))|dt,

VARIA2r=
∫ er−z∗

sr
|MVr z∗ − sel(Qw(t < x < t+ z∗))|dt,

VARIA2r=frac1z∗
∫ er−z∗

sr
|MVr − sel(Qw(t<x<t+z∗))

z∗ |dt.
(17)

The presented above definition of VARIA2r ratio (17) is valid for er − sr ≥ z∗.
For a narrow sub-histogram sHr where er−sr < z∗, a value of VARIA2r equals 0.
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Fig. 6. Applying scaled selectivity sel(Qw)/z
∗ as a moving average filter (z∗ = 0.08);

frequencies fi (connected by solid lines); averaged frequencies after applying the scaled
selectivity filter (dotted lines)

Let us denote VARIA2 defined as follows:

VARIA2 =

Cacc+1∑
r=1

VARIA2r. (18)

Using VARIA2r/VARIA2 ratios we may refine the formula (5) for obtaining
Br − 1 as follows:

Br − 1 ≈ A

(
α
Lr

L
+ β

VARIA2r
VARIA2

)
(19)

where α – a weight of an importance of a sub-histogram domain width and β –
a weight of an importance of variability of frequencies within this sub histogram
(α, β ≥ 0 , α+ β = 1).

Using (4) and (19) we may obtain:

A ≈ B − Cacc − 1∑Cacc+1
r=1

(
αLr

L + β VARIA2r
VARIA2

) . (20)

A multi-histogram which numbers of SHr ’s boundaries (Br) depend either on
Lr and VARIA2r will be called MHVar (or VARIA2-aware histogram).

Here, in the considered example, we propose equal impacts of the both ratios
i.e. α = β = 1/2. Thus using (19) and (20) and Br ∈ N we obtain (B1, . . . , Br,
. . . , BCacc + 1) = (1, 2, 7, 6, 4). The new MHVar based on (1, 2, 7, 6, 4) is pre-
sented in Fig. 4b (solid lines). The 4-th sub-histogram of MHVar has 6 buckets
(domain of sH4 is a region of higher variability of frequencies fi). It is the greater
value than 4 – the number of bucket of the 4-th sub-histogram of MH (shown
in Fig. 4a).

To evaluate MHVar we again use (9) and the testing set Qset testk (sec-
tion 2.3): MeanRelErrSelMHV ar(Qset testk) ≈ 10.1 < MeanRelErrSelMH

(Qset testk). For Qset testk applying the VARIA2-aware histogram (MHVar)
gives a little better selectivity estimation accuracy than applying the previously
obtained multi-histogram (MH ).
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2.8 Selecting Number of Clusters of Range Boundaries to Obtain
Error-Optimal Multi-histogram

K-fold cross validation method allows to find a value of the error-optimal Copt

amnong C values – numbers of clusters in Sk, where C ∈ N and 1 ≤ C ≤ B− 1
(B−1 because two of boundaries from all B+1 boundaries are already defined by
min(x) and max(x)). For each value of C we obtain a value of accepted clusters
Cacc (0 ≤ Cacc ≤ C) after eliminating weak clusters.

Averaged MeanRelErrSel (which uses (9)) allows finding the optimal Copt for
our example as we can see in Fig. 7. We show here only values 3 ≤ C ≤ 9 (not
1 ≤ C ≤ 19) because for the other C values we have Cacc values are equal 0
(there are no accepted clusters).

Fig. 7. K-fold cross validation results: the dependency between Averaged MeanRel-
ErrSel (calculated for histograms: MHVar, MH, SEW ) and the number of clusters
equals C

For our example we obtain C = 6 (with corresponding Cacc = 4) as the error-
optimal value, i.e. with the smallest Averaged MeanRelErrSel equals 10.9%.

MHVar based on Copt = 6 clusters proved to be the most accurate represen-
tation for the considered example i.e. for the exemplary attribute distribution
(given by f(x) in Fig. 1) and for the exemplary distribution of boundaries of
query ranges (given by Qset in Fig. 2).

3 The Algorithm for Obtaining Multi-histogram

The proposed method allows obtaining the error-optimal multi-histogram
MHVar for an arbitrary given value of B i.e. the number of MHVar ’s buck-
ets.

We assume that we have available Qset i.e. M pairs of boundaries of last
recently processed range query conditions.

The proposed method consists on the following steps:

1. Create a temporary referential representation of x attribute values distribu-
tion i.e. build a high resolution equi-width histogram which describes f(x).

2. Create SEW – a low resolution standard equi-width histogram using the
high resolution histogram.
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3. For each C from 1, . . . , B − 1 (using K-fold cross validation method) ob-
tain an error metrics value i.e. an Average MeanRelErrSel which evaluates
MHVar histogram based on C clusters:
3.1. Cluster a learning set Qset learn (formed from values of Qset) using

FCM.
3.2. Eliminate weak clusters, i.e. obtain Cacc accepted clusters (this deter-

mines Cacc + 1 sub-histograms sHr where r = 1, . . . , Cacc + 1).
3.3. Assume an only one bucket in those sub-histograms sHr where VARIA1r

≤ THR (eq. (10)).
3.4. Distribute B − Cacc − 1 locations of bucket boundaries among sub-

histograms according to (19) and (20) using VARIA2r (but omitting
the sub-histograms with one bucket that were selected in 3.3).

3.5. Having bucket’s boundaries, create MHVar using the high resolution
histogram.

3.6. Obtain MeanRelErrSel for MHVar and SEW using query ranges from
a testing set (i.e.: Qset test = Qset \Qset learn).

3.7. Aggregate values of MeanRelErrSel.
4. Choose this MHVar multi-histogram which has the smallest Averaged Mean-

RelErrSel (if Averaged MeanRelErrSel for MHVar is less than the one for
SEW, else choose SEW ).

The proposed method of obtaining MHVar is designated to be invoked during
update statistics (not during on-line query processing) so it is rather not a time-
critical operation (in opposite to selectivity calculation).

4 Conclusions

The proposed method of range query selectivity estimation is based on a multi-
histogram –MH. A MH is such representation of an attribute values distribution
which additionally takes into account a distribution of range boundaries of re-
cently processed queries. Query workload is reflected in a division of MH into
sub-histograms by using centers of clusters of range boundaries values. These
results in creating equi-width sub-histograms embedded in MH. In the paper
we also propose an improved multi-histogram – MHVar – which additionally
supports an increased resolution in sub-histograms based on regions of high
variability of an attribute values distribution. In MHVar we do not distribute
buckets among the sub-histogram where attribute distribution is almost uni-
form. Additionally, having a knowledge of past query workload we may set a
window size in some moving average filter and measure the variability of fre-
quencies in sub-histograms. This allows refining the distribution of boundaries
among selected sub-histograms embedded in MHVar.

In future we plan to confirm advantages ofMHVar (in accuracy of range query
selectivity estimations) against different query workload profiles in more experi-
ments.

The future work may concentrate on improving of handling historical data
about query workload. In this approach we store M last processed queries. This
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may be too short-time description of a past query workload. Thus in future, we
plan to use the micro clustering technique [12] which allows taking into account
some impact of older queries.

Another direction of research may be considering the other type of histogram
as a sub-histogram (i.e. not necessary equi-width one) like equi-high one or V-
optimal one.
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