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Abstract. Development of database technology facilitates wider inte-
gration of diverse data types, which in turn increases opportunities to
ask ad hoc queries, and gives new possibilities of declarative queries opti-
mization. For more than a decade, work on supporting multidimensional
arrays in databases has been carried out, which led to such DBMSs as ras-
daman, SciDB and SciQL. However, the DBMSs lack the ability to han-
dle queries concerning geographic phenomena varying continuously over
space (called geofields) which were measured in irregularly distributed
nodes (e.g. air pollution). This paper addresses this issue by presenting
an extension of SQL making possible to write declarative queries ref-
erencing geofields, called geofield queries. Geofield query optimization
opportunities are also shortly discussed.
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1 Introduction
We can observe how functionality migrates from GIS applications to databases.
This allows for better data integration, ACID guarantees, ad hoc querying, and
automatic optimization of processing, when a declarative language, such as SQL,
is used. Design and implementation of conventional relational database manage-
ment systems (RDBMSs) have been driven by business requirements, and, as
a consequence, they only partially meet scientific community requirements [16].
Especially during remote sensing and simulations, a lot of data is gathered that is
naturally stored as multidimensional arrays [12, 17]. However, storing, querying
and modifying such multidimensional arrays are not supported by conventional
RDBMSs. Such problems led to the development of array DBMSs. The appear-
ance and development of array DBMSs have been driven by attempts to make
multidimensional arrays the first class citizens in databases, and to integrate
multidimensional arrays with relations. Currently, there is work in progress on
adding multidimensional arrays support to ISO SQL standard [12].

Phenomena in space can be conceptualized as fields, varying continuously
over space, and/or objects, being discrete spatial entities. To emphasize con-
nections with geographical space in the paper, following [9], the terms geofield
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and geoobject are used in place of the terms field and object. In the OGC spec-
ifications the term coverage is used as a synonym of geofield [6]. In the paper
queries concerning geofields will be called geofield queries. Geofields are divided
into quantitative geofields and qualitative geofields. A quantitative geofield is a
function assigning elements of its domain values measured on interval or ratio
scale. A qualitative geofield is a function assigning elements of its domain values
measured on nominal or ordinal scale, e.g. numbers of intervals of a geofield val-
ues. The domain of geofield may be 2D or 3D spatial, 3D or 4D spatio-temporal
or of a higher dimension. As far as spatial data are concerned, the most com-
mon is 2D spatial, however, in the last years significant progress has been done
in spatio-temporal prediction methods [8], which allows to generalize concepts
presented in the previous work [4, 5].

Geofields are naturally represented by multidimensional arrays, when they are
results of remote sensing or simulations on a regular grid – such a representa-
tion will be called array representation. However, geofields values are also often
measured in monitoring networks with irregularly placed nodes, and such results
are naturally stored in classical database tables – such a representation will be
called table representation. Computing answers to geofield queries usually re-
quires finding geofields values in places in which they had not been measured. In
the case of the array representation simple and fast interpolation methods (e.g.
developed for rasters processing) can be used. However, in the case of the table
representation, more sophisticated and computationally intensive methods, such
as Kriging, are needed [7]. A formula used for estimation of geofield values using
its table representation will be called geofield (mathematical) model.

In the traditional approach to processing table representations of geofields, a
database is only used for storing their point measurements. As a consequence,
geofields processing leads to unloading the measurements and using external
tools to compute array representations of the geofields. The result arrays are
usually stored in a file system for further processing. Array DBMSs solve the
problem partially by allowing to load the computed array representations back
to the database. However, they miss the opportunity to include a conversion
between table and array representations in the query optimization process.

The main idea of the presented work consists in adding operations on geofields
to SQL and taking them into account during the query optimization phase.
Of these operations, the conversion between table and raster representations of
geofields is of key importance, as it can easily dominate the query execution
time [3].

The remainder of the paper is organized as follows. section 2 outlines the
Peano relation and PNR representation, as these concepts are fundamental to
previous work on geofield queries optimization and influence the extension of
SQL for geofield queries described in section 3. Section 3 contains the main
contribution of the paper. Section 4 shortly describes how the presented SQL
extension can help to speed up geofield query processing. It summarizes pre-
viously published geofield optimization rules and presents new ideas connected
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with optimization of quantitative geofields. Section 5 consists of a survey of
related work. The paper is concluded in section 6.

2 Peano Relation and PNR Representation

The concepts of the Peano relation and the PNR representation are presented
in [5], while [4] discusses efficiency of generating the PNR representation of a
qualitative geofield based on the PNR representation and a geofield variability
model. A thorough discussion of the concepts and exhaustive experimental re-
sults for 2D qualitative geofields are given in [2]. This section quotes the most
important informations on the Peano relation and the PNR representation, which
are used in the rest of the paper.

The PNR representation is based on discrete coordinates, in which sides
lengths of the elementary quadrants are used as units [2]. This resembles ap-
proach used in array DBMSs, however, all geofields generated in a given query
share the same discrete coordinates, which simplifies computations. The elemen-
tary quadrant can be treated as a synonym of the cell in array terminology. The
area in which values of the given geofield must be computed to answer a query
is called geofield context region. Elementary quadrants are ordered by a Peano
N space-filling curve, and their ranges are stored in a relation valued attribute.
Such a representation is called PNR representation. The PNR representation of
a geofield consists of the PNR representation of zones in which geofield model
values belong to the same intervals.

A quantitative geofield has predefined virtual attributes: location and value.
The attribute location provides spatial coordinates of the center of an elemen-
tary quadrant (array cell), and the attribute value – the geofield value com-
puted for this location. A qualitative geofield has predefined attributes interval,
lBound, uBound and shape. The attribute interval stores the interval number
described by the given tuple, the attributes lBound and uBound store lower and
upper bounds of the interval respectively, and the attribute shape stores Peano
keys of all elementary quadrants approximating fragments of the computational
space in which values of the geofield model fall into this interval.

3 SQL Extension for Geofield Queries

In this section, an extension of SQL for geofield queries is presented. It consists
of a data type, called geofield, the create geofield statement, and a short
description how they can be integrated with SQL dialects used in array DBMSs.
Quantitative geofields are created as multidimensional arrays, so the arrays op-
erations can be used to process them. The PNR representation of qualitative
geofields may be interpreted as a quadtree (or an octree, etc.) representation of
a multidimensional array, so operations on such arrays may be easily adjusted
to the PNR representation. The main difference between processing multidimen-
sional arrays in array DBMSs (see section 5) and the approach presented in this
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paper is the possibility of generating on-the-fly only the needed parts of geofields
during query processing in the presented approach.

Let us assume, that we have a table storing point measurements of ambient
air pollution:
create table air pollution (

measurement id integer primary key,
pollutant code varchar not null,
measurement location geometry not null,
measurement time timestamp not null,
measured value double not null,
measurement quality varchar not null,
check (measurement quality in (’ERROR’, ’POOR’, ’GOOD’))

);

3.1 Create Geofield Statement

The most basic and important part of the SQL extension is the create geofield
statement:
create [virtual | materialized] [qualitative | quantitative]

geofield <geofield name> as
select <column name | expression> as measurement location,

[<column name | expression> as measurement time,]
<column name | expression> as measurement value

from <measurement table name>
where [<conditions on measurements> and]

CRS = <CRS code> and
interpolation = <interpolation parameters> and
[square classifier = <square classifier parameters> and]
[intervals = <intervals boundary definion>] and
[context region = <geoobject | subquery | array range> ]
[resolution = <integer | double <unit>>];

The names measurement location, measurement time and measurement value
are treated as keywords, allowing to designate a column or an expression as, re-
spectively, the locations of the measurement points, the time instants or the time
periods of the measurements, and the measured values.

The create geofield statement can be used on its own or can be embedded
into other SQL statements, such as: select, insert or update.

Geofields are by default virtual, which means that the create geofield
statement only adds the definition of a geofield to the database dictionary. The
materialized keyword has been added to improve the integration with multidi-
mensional arrays (an example is given later), and as an optimization mechanism.

There is no clause for geofield domain definition in the create geofield
statement, as the estimation of geofield values depends on the interpolation
method and node search rule used. Instead, the user can define a geofield context
region specifying an area on which geofield estimation can be undertaken. An
attempt to estimate a geofield value outside its context region will return a
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special marker UGV (Unknown Geofield Value). The resolution column allows
the user to determine the size of the elementary quadrants. It defaults to the
array cell size used in a query.

All geofield properties definitions stored in the database dictionary can be
overwritten when the geofield is used, e.g. in the select statement the default
interpolation method or its default parameters can be changed, or in the insert
statement the default context region can be redefined.

As in geostatistics usually Kriging is the best choice [7], to simplify geofield
definition, a special registry of variograms models is added. Also, a registry for
geofield variability models used by quandrant classifiers [4] is created.

The following statement creates an exemplary geofield of airborne suspended
matter, called suspended matter:
create virtual geofield suspended matter as
select measurement location, measurement time,

measurement value
from air pollution
where pollutant code = ‘SUSPENDED MATTER’ and

measurement quality = ’GOOD’ and
CRS = ‘EPSG:4326’ and
interpolation = ’{method: OK, semivariogramID: 71,

nodeSearchType: QUADS, nodeSearchN: 6,
nodeSearchR: 11 km}’ and

resolution = 5 m;
The geofield suspended mattermathematical model uses measurements of air-

borne suspended matter from the table air pollution (condition pollutant
code = ‘SUSPENDED MATTER’) of good quality (condition measurement quality
= ’GOOD’), and is based on Ordinary Kriging (OK) with semivariogram with ID =
71. A quadrant search of measurement nodes, with six nodes for quadrant and the
maximal distance of the search equal to 11 km, is used. Elementary quadrants (ar-
ray cells) have side length of five meters. No context region is defined, so it must
be explicitly provided in a query referencing the geofield, or it must be inferred
from the query.

The definition of the geofield suspended matter can be used to compute a
quantitative geofield of the average-yearly distribution in 2013 of airborne sus-
pended matter in the context region specified by coordinates given by a polygon:
select location, value
from suspended matter
where year(measurement time) = 2013 and

context region = polygon(49.95,18.38, 50.55,18.38,
50.55,19.58, 49.95,19.58, 49.95,18.38);

A qualitative geofield, defined by four intervals: (−∞, 110], (110, 165], (165, 220],
and (220,∞) µg/m3, can be generated, using the BPO square classifier [4] (with:
geofield variability model stored in the registry with ID = 10, and distortion coef-
ficient = 0.8), by following query:



432 P. Bajerski

select interval, shape
from suspended matter
where year(measurement time) = 2013 and

square classifier = ’{type: BPO, geofieldVariabilityModelID:
10, beta: 0.8}’ and

intervals = (110, 165, 220) and
context region = polygon(49.95,18.38, 50.55,18.38,

50.55,19.58, 49.95,19.58, 49.95,18.38);

3.2 Geofield as a Table Column

The following example illustrates how geofield can be used as a virtual column
in a table:
create table city (

city id integer primary key,
city name varchar not null,
city boundary geometry not null,
sm pollution geofield

);
Using the exemplary geofield suspended matter, information about Gliwice

can be inserted by statement:
insert into city(city id, city name, city boundary, sm pollution)
values (1, ’Gliwice’, <WKT GEOM>,

suspended matter where context region = city boundary);
In the insert statement the value of the column context region is set to
the boundary of Gliwice (<WKT GEOM> is a placeholder for the polygon defining
boundary of Gliwice). Geofields can be defined inline, but defining them as sepa-
rate statements (as in the running example) simplifies other statements, removes
redundancy, and makes the code more readable.

The following example shows how a geofield may be added as a virtual at-
tribute of an array-typed column. The following example extends the example
from the listing 2 from [12], describing ISO SQL extension proposal.
create table landsat scenes air pollution (
id integer not null,
acquired date not null,
scene row (band1 integer,

...,
band5 integer,
sm pollution geofield default suspended matter

where time = acquired
)

array [ x ( 1 : 5000 ) , y ( 1 : * ) ]
);

In the create table statement default geofield is provided. The condition time
= acquired imposes temporal restriction on the geofield. The geofield context
region is taken from the raster boundaries. Adding the materialized keyword
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to the geofield definition would result in computation of its raster representation
during a row insertion. If the user changes the interpolation method in a query,
a new geofield raster representation will be computed using the modified geofield
model.

4 Optimizability of Geofield Queries

This section shortly discuses opportunities given by using virtual (dynamically
computed) geofields in declarative queries. The simplest and the most basic oper-
ation – in the context of this paper – is the conversion of a geofield from its table
representation to an array representation. As the cost of the conversion is deter-
mined by interpolation, minimization of the number of places in which geofield
values must be computed leads to significant query processing speedup [2, 4].
This can be achieved by integration of the conversion with an array constructor
as shown in the previous section. If there are any conditions on geofield values
in the query, passing them to the conversion called in an array constructor may
significantly speedup query processing, as shown in [4] for qualitative geofields
creation. This is especially profitable for qualitative geofields, but may be also
used for quantitative geofields.

If a geofield query references more than one qualitative geofield, using the
concepts presented in section 2 may significantly speedup query processing. The
PNR representation may be used internally by a DBMS, and the intermediate
result can be converted from the PNR representation to the array representation
for further processing. The ideas presented in [5] and [4] may be easily generalized
into more than 2D space, as far as an interpolation method is available for
required dimensionality [8].

Let us assume, that a query states that values of a raster R must belong to
an interval i1, and values of a geofield G must belong to an interval i2. We can
distinguish three strategies for the query evaluation: 1) compute the geofield
G for the intersection of the domains of the raster R and the geofield G, read
the raster R, perform the selections on its values and find the cells which fulfill
both conditions; 2) read the raster R, find the cells which values belong to the
interval i1, compute the geofield G only for these cells and check if the computed
values belong to the interval i2 ; 3) compute the geofield G and find its cells
belonging to the interval i2, read only the chunks of the raster R which contain
these cells, and check if they belong to the interval i1. As the interpolation
is time expensive, usually the second strategy should be the best. However, if
the selection on the geofield G values has high selectivity and the raster R is
very large, then the third strategy may be the best. If both selectivities are
low, then the first strategy may be the best, as anyway the whole geofield G
must be computed and the whole raster R must be read. As experiments and
theoretical analysis showed [2], usually qualitative geofield computation using
quadrant classifiers [4] is much faster when the geofield context region consists
of a small number of large quadrants, than when it consists of larger number
of smaller quandrants. This can be explained by a rule of thumb telling that
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the quadrant classification cost is proportional to the number of its boundary
elementary quadrants, while the raster computation cost is proportional to the
number of its cells (elementary quadrants). As shortly discussed, even in such a
simple case, the choice of the best strategy is not clear and a cost optimizer is
needed [2,4]. The problem complicates significantly, when more geofields should
be computed and combined by some operations, e.g. finding areas where some
pollutants exceed given thresholds — this problem reminds the classical join
order problem from relational databases [2].

5 Related Work

In [13] an idea and implementation of enriching the DBMS with interpolation
were presented. The implementation was based on database procedures and tem-
porary tables, not on an algebraic operation for geofield estimation, as is in this
paper. The work was presented long before any significant development of array
DBMSs took place, and included only the table representation of geofields, while
this paper presents approach encompassing both representations. However, some
ideas from [13] are still valid for array databases: geofield values interpolation
during a query evaluation, choosing an interpolation method in a query, and
specifying in a query which measurement values should be used in interpolation.

In [12] two approaches to the integration of multidimensional arrays with
relations are distinguished: a) array-as-attribute – arrays are treated as the other
data types, which allows to define columns of the array type, but prevents from
usage of arrays without tables; and b) array-as-table – arrays are on the same
level as tables, which allows to use arrays without tables, but does not allow to
define columns of the array type.

In the work on the ISO SQL extension the array-as-attribute approach is
followed [12], which is consistent with the support of one dimensional arrays
in the current ISO SQL standard. Conversion between an array and a table is
performed using the unnest and nest operators. However, during this conver-
sion no geofield values can be estimated, what is possible in the presented SQL
extension.

The rasdaman was the first array DBMS [12]. From the beginning it has been
developed as a layer above conventional RDBMSs. The rasdaman follows the
array-as-attribute approach. Each cell of an array may store one or more values
of types specified in the array declaration. The coordinates of array cells are
defined as bounded or unbounded integers. Only the simple nearest neighbor
interpolation is supported for scaling [15].

SciDB is a DBMS designed and implemented to address scientific needs [17].
It implements only the array-as-table approach and does not support tables.
SciDB provides linear algebra, but no spatial interpolation method (such as
Kriging) is available. The package SciDBR provides integration of R with SciDB,
which makes it possible to utilize sophisticated spatial interpolation methods,
however, declarative geofield queries are not supported and their optimization is
not possible.
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SciQL is an array DBMS based on column-oriented DBMS MonetDB [10] and
follows the array-as-table approach. In [10] only interpolation for time series is
mentioned.

Some commercial and open source RDBMSs have been extended with raster
data support, following the array-as-attribute approach. For example, Oracle
RDBMS provides a set of functions and procedures for raster processing. As
a consequence, usually procedural code in PL/SQL is needed, which limits the
possibility of queries optimization. The current Oracle version 12c Release 1 sup-
ports only 2D rasters and provides only basic interpolation methods for rasters
(near neighbor, bilinear, biquadratic, cubic and average) [14]. Also PostGIS pro-
vides support for 2D rasters with similar interpolation/resampling methods:
nearest neighbor, bilinear, cubic, cubic spline, Lanczos, and inverse distance
weighted [1].

To the best of the authors knowledge, none of the related DBMSs nor the
ISO SQL extension under development contains SQL capabilities similar to the
extension described in section 3 of the paper. As a consequence, optimizability
discussed in section 4 is not possible in these DBMSs.

6 Conclusions

The presented extension of SQL for geofields processing widens data integration
capabilities, gives new optimization possibilities, and eliminates the problem of
unloading data from database for interpolation in external tools and loading the
results back to the database for further processing. As discussed in the paper,
adding the geofield support to the DBMS is more than just adding an inter-
polation function, as this extension significantly influences query optimization.
Interpolation during query processing may be time consuming, but on the other
hand, it eliminates the problems connected with measurement points selection
based on the predicates included in the query, measurements updates, CRS con-
versions, as well as raster scaling, shifting and rotating. This can be especially
valuable in a multi-resolution database [11], when an array representation of a
geofield may be generated on-the-fly in the required resolution and CRS, instead
of rescaling its previously generated and stored representation. The presented
approach also allows to easily change the geofield model used (to change the in-
terpolation method and/or adjust its parameters). The impact of such changes
on the query answer can be easily evaluated as the difference may be computed
by another SQL query.

Distinguishing between qualitative and quantitative geofields is not very im-
portant to the users writing queries, but has very significant impact on query
optimizability.
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