
Data Sharing and Exchange:

General Data-Mapping Semantics

Rana Awada(�) and Iluju Kiringa(�)

University of Ottawa, EECS, Ottawa, Ontario, Canada
{rawad049,iluju.kiringa}@uottawa.ca

Abstract. Traditional data sharing and exchange solved the problem
of exchanging data between applications that store same information us-
ing different vocabularies. We discuss in this paper the data sharing and
exchange problem between applications that store related data which do
not necessarily possess the same meaning. We first consider this problem
in settings where source instances are complete – that is, do not con-
tain unknown data. Then we address more collaborative scenarios where
peers can store incomplete information. We define the semantics of these
settings, and we provide the data complexity for generating solutions
and the minimal among those. Also, we distinguish between sound and
complete certain answers as semantics for conjunctive query answering.

1 Introduction

Integrating related data from independent sources which possess differences in
both structure and vocabulary, is a problem that was first addressed in data
coordination (DC) settings [6]. A DC setting [6] S consists of two schemas
S1 and S2, and a set of mapping tables {M}. DC settings introduced so far
considered mapping tables M with general interpretation of related data; that
is, a pair (a, b) holds in M if a is related to b (where a belongs to the instance
of S1 and b belongs to the instance of S2), and the related relationship does not
possess any particular meaning. Although DC amalgamates data of different
applications in a single result, it still uses in this set the different vocabularies
of these applications. Such a property makes it harder in applications to analyse
this data and make decisions about it. We elaborate this property in the following
example.

Example 1. Let S = (S1,S2,M) be a DC setting. Assume that schema S1

of university Univa consists of the relation symbols Student(sname, sage) and
Enroll(sname, cname, cgrade), and schema S2 of Univb consists of the relation
symbols St(sname, sage) and Take(sname, cname, cgrade). Relation Student
(St) stores students’ names and ages information. Relation Enroll (Take) stores
the set of courses that each student completed with the final grades that he/she
received in these courses. In addition, assume that S1 and S2 are connected
by the mapping table M which contains the pairs: {(Cida,Cid1), (Cida,Cid2)}.
Let I1 = {Student(Alex,18), Enroll(Alex,Cida,80)} be an instance of S1, and I2

c© Springer International Publishing Switzerland 2015
S. Kozielski et al. (Eds.): BDAS 2015, CCIS 521, pp. 159–169, 2015.
DOI: 10.1007/978-3-319-18422-7_14

160 R. Awada and I. Kiringa

= {St(Ben,19), Take(Ben,Cid1,B), Take(Ben,Cid2,C)} be an instance of S2. To
retrieve the list of students from both universities that completed course Cida
or those corresponding to it according to M, authors in [6] rewrite a query Q
posed to Univa to a query Q′ using M then pose it to Univb. Query Q′ can be:
Select sname, cname From Take Where cname = Cid1 Or cname = Cid2. The
combined result of Q and Q′ is {(Alex,Cida), (Ben,Cid1), (Ben,Cid2)}.
In Example 1, the combined result ofQ andQ′ has elements Cida, Cid1, and Cid2
which are different vocabularies. Such a property makes it hard to compare the
performances of Alex and Ben in a certain course. In DC [6], one source element
can be mapped in M to one or more target elements. Clearly, a higher number
of mapped elements lead to bigger sizes of combined results, and more expensive
query computations. For some queries, retrieving a portion of the result can
be informative enough for users to escape the more expensive computation of
the full result.Therefore, to control the size or related information returned,
authers in [6] introduced the notions of complete and sound query translations
that allow users compute the full set of correct answers of conjunctive queries
(CQs), called complete answers, and a portion of those, named sound answers,
respectively. From Example 1, query Q′ is a complete query translation, while a
sound query translation can be Q′′ = Select sname, cname From Take Where
cname = Cid1 (since both Cid1 and Cid2 are mapped to Cida in M).

Our main interest in this work is to solve the heterogeneity problem in DC
settings while allowing users to generate sound and complete answers of CQs.
Intuitively, one possible solution is to exchange data from independent sources
and store it in a separate target using a unified set of vocabularies, prior to
applying queries. It turns out that data sharing and exchange (DSE) settings
introduced recently in [3] provides such a functionality, and in particular, DSE
solutions in this setting suits well our requirement to generate sound and com-
plete answers. As given in [3], a DSE setting is a tuple S = (S,T,M, Σst),
where S and T are source and target schemas, respectively; M is an st-mapping
table, and Σst consists of a set of mapping source-to-target tuple-generating de-
pendencies (st-tgds). DSE [3] however supports applications that refer to same
elements using different sets of vocabularies; that is, they use the equivalence
semantics of related data in st-mapping tables.

We discuss in this paper a DSE setting, denoted by DSEG, to exchange related
information between applications that possess different schemas and different
domains of constants. Our main contributions are the following: (1) we provide
algorithms to generate DSE solutions in Logspace, (2) we provide algorithms
to generate more compact universal DSE solutions, minimal universal DSE solu-
tions, in Logspace, (3) we formally define sound and complete certain answers
as semantics for CQ answering and we provide algorithms to generate those, (4)
finally, we address the DSEG problem in more challenging settings where source
instances contain unknown information in the form of nulls.

Data Sharing and Exchange: General Data-Mapping Semantics 161

2 Preliminaries and Related Work

We start this section by defining the notations that we will use through our the
paper. Then we give a brief summary of two settings defined previously in the lit-
erature to address the data exchange and data coordination problems. These are
data exchange (DE) [5] and DSE [3] settings.

A schema R is a finite set {R1, . . . , Rk} of relation symbols, with each Ri

having a fixed arity ni > 0. Let D be a countably infinite domain. An instance I
ofR assigns to each relation Ri ofR a finite ni-ary relationRI

i ⊆ Dni . Sometimes
we write Ri(t̄) ∈ I instead of t̄ ∈ RI

i , and call Ri(t̄) a fact of I. The domain
dom(I) of instance I is the set of all elements that occur in any of the relations
RI

i . We often define instances by simply listing the facts that belong to them.

Data Exchange Settings. Data exchange [5] is the problem of extracting an
instance over a source schema S and transform it to confirm to an independent
target schema T. More formally, a DE setting is a tuple S = (S,T, Σst), where
S is a source schema, T is an independent target schema, Σst is a set of st-
tgds which are FO sentences of the form ∀x̄∀ȳ∀z̄ (φ(x̄, ȳ) → ∃w̄ ψ(z̄, w̄)), where
φ(x̄, ȳ) and ψ(z̄, w̄) are conjunctions of relational atoms over S and T, respec-
tively. It was customary in DE to exchange data based on st-tgds that consists
of positive predicates and equality formulas, until authors in [4] introduced a
solution that solved the problem of exchanging data using st-tgds which contain
negated predicates and/or inequality formulas. In their solution, they extended

the source schema S to Ŝ := S∪{R̂ : ¬R ∈ Σst}∪{N}. They also re-constructed
Σst to Σ̂st by replacing each negated literal ¬R(x̄) with R̂(x̄), and inequality

x �= y over S with and N(x, y) over Ŝ, respectively. Each table R̂ is populated
with the evaluation of ¬R(x̄) on the instance I of S, and N(x, y) contains all
the pairs of elements (a, b) in dom(I) such that a �= b.

An instance J of a target schema T is said to be a solution for a source
instance I under S = (S,T, Σst), if the instance (I, J) of S ∪ T satisfies Σst.
The DE literature identified a class of “good” solutions, called the universal
solutions, that in a precise way represent all other solutions. To define those,
authors in [5] used the notion of homomorphism between instances. Let K1

and K2 be instances of the same schema R. A homomorphism h from K1 to
K2 is a function h : dom(K1) → dom(K2) such that: (1) h(c) = c for every
c ∈ Const∩dom(K1), and (2) for every R ∈ R and tuple ā = (a1, . . . , ak) ∈ RK1 ,
it holds that h(ā) = (h(a1), . . . , h(ak)) ∈ RK2 . Let S be a DE setting, I a source
instance and J a solution under S. Then J is a universal solution under S, if
for every solution J ′ for I under S, there exists a homomorphism from J to J ′.

Data Sharing and Exchange Settings. DSE [3] exchanges data between
applications that refer to same objects using different instance values. Formally,
a DSE setting is a tuple S = (S,T,M, Σst), where: (1) S and T are a source and
a target schema, respectively; (2) M is a binary relation symbol that appears
neither in S nor in T, and that is called a source-to-target (st-) mapping and
(3) Σst consists of a set of mapping st-tgds, which are FO sentences of the
form ∀x̄∀ȳ∀z̄ (φ(x̄, ȳ)∧μ(x̄, z̄) → ∃w̄ ψ(z̄, w̄)), where (i) φ(x̄, ȳ) and ψ(z̄, w̄) are

162 R. Awada and I. Kiringa

conjunctions of relational atoms over S and T, resp., (ii) μ(x̄, z̄) is a conjunction
of atomic formulas that only use the relation symbol M.

While data mappings possessed no particular meaning in DC settings [6], au-
thors in [3] adopted the equivalence semantics in st-mapping tables; that is two
elements a and b are mapped in an st-mapping table M only if they possess the
same meaning. Apparently, and as discussed in [3], such equivalence interpreta-
tion of related data can entail new equivalent elements in M. For example, if
an element a is related to elements a′ and a′′ in M and element b is related to
elements a′ and b′ in M, then as a consequence elements a′′ and b′ are considered
equivalent according to the semantics of M and a can be mapped to b′ in M.
This equivalence property in st-mapping tables made the knowledge exchange
framework [2] be a natural representation for DSE [3]. A knowledge base (KB)
over a schema R is a pair (K,Σ), where K is an instance of R (the explicit data)
and Σ is a set of logical sentences over R (the implicit data).

In DSE [3], source and target instances store explicit data accompanied with
implicit information in the form of full tgds1 – denoted byΣs andΣt respectively–
that complete the source KB, the st-mapping table, and the target KB with the
entailed information. They also defined a class of “good” solutions – they called it
universal DSE solutions – that could be generated in Logspace.

Let S = (S,T,M, Σst) be a DSE setting [3], I a source instance, M an st-
mapping table, J a target instance. Denote by KR′ the restriction of instance
K to a subset R′ of its schema R. Recall that Σs, Σt are the source and target
completions of S, respectively. Then, J is a DSE solution for I and M under S,
if for every K ∈ Mod((J ∪ {M}), Σt)

2 there is K ′ ∈ Mod((I ∪ {M}), Σs) such
that the following hold: (a)K ′

M ⊆ KM, and (b) KT � ((K ′
S∪{K ′

M}), Σst) under
S. In addition, J is a universal DSE solution for I and M under S, if J is a DSE
solution, and for everyK ′ ∈ Mod((I∪{M}, Σs) there is K ∈ Mod((J∪{M}, Σt)
such that (a) KM ⊆ K ′

M, and (b) KT � ((K ′
S ∪ {K ′

M}), Σst) under S.

3 General Data Sharing and Exchange

As before, instances of S (resp. T) are called source (resp. target) instances3.
Instances of M are called st-mapping tables4. Also, as the case in [3], we assume
the existence of two (not necessarily disjoint) countably infinite sets of constants
ConstS and ConstT, that denote the set of source and target constants, respec-
tively. We also assume the existence of a countably infinite set Var of labeled
nulls (that is disjoint from both ConstS and ConstT). For the time being we
assume that dom(I) ∈ ConstS. We will drop this assumption later in section 4.
Also, as the case in [3], st-mapping tables are over (ConstS,ConstT).

1 A full tgd is a tgd that does not contain existentially quantified variables.
2 Mod((J ∪ {M}), Σt) is defined as the set of instances of (T ∪ {M}) that contain
the explicit data in (J ∪ {M}) and satisfy the implicit data in Σt.

3 We denote source instances by I, I ′, I1, . . . and target instances by J, J ′, J1,
4 We slightly abuse notations and denote both st-mapping relations and st-mapping
tables by M.

Data Sharing and Exchange: General Data-Mapping Semantics 163

Formally, a DSEG setting S is a setting where the definition of a DSE setting
introduced in [3] applies to S. We consider in DSEG source KBs of the form ((I∪
{M}), ∅), which correspond to data in the source instance I and the st-mapping
table M. On the other hand, the target KBs are of the form ((J ∪ {M}), Σt),
where J contains a portion of the exchanged data, and Σt contains a set of FO
sentences, of type full tgds, over a schema that includes T and M.

We assume in a DSEG setting that the st-mapping table M possesses the
following particular characteristic: for each value a ∈ (dom(M)∩ConstS), there
exists an element a′ ∈ (dom(M)∩ConstT) such that M(a, a′) holds, and for no
b ∈ (dom(M) ∩ ConstS) – different than a – M(b, a′) holds. We say a′ uniquely
identifies a in M. More formally, we assume M satisfies the following constraint:
∀x∃y∀z(M(x, y)∧M(z, y) → x = z). To be used later, we store in a fresh table
C, defined in both schemas S and T, the set of values in (dom(M) ∩ ConstT)
that uniquely identify source elements mapped in M. So, following Example 1,
and assuming that M includes the pair {(Cidb,Cid2), (Cidb,Cid3)}, then Cid1
uniquely identifies Cida and Cid3 uniquely identifies Cidb, and C = {Cid1, Cid3}.

We adopt (universal) DSE solutions introduced in [3] with the restriction of
Σs = ∅ to define the semantics of DSEG. We illustrate DSE solutions in DSEG

settings in the following example.

Example 2. (Example 1 cont.) In reference to the DC setting S given in Ex-
ample 1, let I1 be the source instance and M the st-mapping table in S. Also,
assume that the set of mapping st-tgds Σst is the following:
(a) Student(x, y) ∧ M(x, x′) ∧ M(y, y′) → St(x′, y′).
(b) Enroll(x,w, u) ∧ M(x, x′) ∧ M(w,w′) ∧ M(u, u′) → Take(x′, w′, u′).

Then a possible DSE solution J for I and M under S would be J = {St(Alex,
18), T ake(Alex, Cid1, B), T ake(Alex, Cid2, B)}.

Clearly, C is the sole set of target values in a DSEG instance that correctly
captures the set of source values exchanged to a target instance. Therefore,
we use C as a fundamental part of the FO sentences – the implicit data – in
Σt. The set of FO sentences d over a schema that includes M, C, and a fresh
table C ′, which specify the target elements in (dom(M) ∩ ConstT) that are in
C, are the following: (1) ∀x∀y∀z(M(x, y) ∧ M(z, y) ∧ x �= z → C′(y)), (2)
∀x∀y(M(x, y) ∧ ¬C′(y) → C(y)).

Authors in [4] addressed the problem of chasing dependencies which contain
negated predicates and inequality formulas. We adopt this solution and apply it
to the set of rules d to populate the table C. We prove the following result:

Theorem 1. Let S be a fixed DSEG setting and M be an st-mapping table.
Then generating C is in Logspace.

We define below a target completion program as a set of full tgds, denoted Σt,
over a schema that includes T and M, such that applying Σt to a universal DSE
solution J generates a universal DSE solution J ′ for I and M under S which
contains the complete set of exchanged data; that is ((I ∪ {M}), J ′) � Σst.

Let S = (S,T,M, Σst) be a DSEG setting. Σt, is the following set of FO
sentences over T ∪ {M,Rel}, and Rel is a fresh binary table:

164 R. Awada and I. Kiringa

1. For each T ∈ T ∪ {M} of arity n and 1 ≤ i ≤ n:
∀x1 · · · ∀xn(T (x1, . . . , xi, . . . , xn) → Rel(xi, xi)).

2. ∀x∀y∀z(M(z, x) ∧M(z, y) ∧ C(x) → Rel(x, y)).
3. For each T ∈ T of arity n:

∀x1, y1 · · · ∀xn, yn (T (x1, . . . , xn) ∧
∧n

i=1 Rel(xi, yi) → T (y1, . . . , yn)).

The first rule defines the reflexive relation Rel on the domain of the target
instance. The second rule captures the target elements that are related to the
same source value in the st-mapping table M. The last rule allows to complete
the symbols of T, by adding elements declared to be related in Rel.

Intuitively, applying a procedure (based on the chase [4]) to the instance
(I ∪ {M}), generates a universal DSE solution in DSEG. Thus, since the chase
runs in Logspace [1] and following Theorem 1, we can conclude that there exists
a Logspace algorithm that generates DSE solutions in fixed DSEG settings.

Most compact solutions in a DSEG setting can be identified by the class of
minimal universal DSE (MUDSE) solutions introduced in [3]. A MUDSE solution
J for a source instance I and an st-mapping table M in DSEG is such that (1)
there exists no proper subset J ′ of J where J ′ is a universal DSE solution for
I and M under S, and (2) there exists no universal DSE solution J ′ such that
(dom(J ′) ∩ ConstT) is properly contained in (dom(J) ∩ ConstT).

Example 3. (Example 2 cont.) In reference to Example 2, a possible MUDSE so-
lution J for I andM underSwould be J = {St(Alex, 18), T ake(Alex, Cid1, B)}.

We provide a procedure CompMUDSEGsolS, a variant of CompMUDSEsolS [3],
that given an instance I and an st-mapping table M in a DSEG setting S,
generates a MUDSE solution J for I and M under S.
CompMUDSGsolS:
Input: A source instance I, an st-mapping table M, and a set Σst of st-tgds.
Output: A Canonical MUDSE solution J for I and M under S.

1. Populate in the table C elements from M using the set of FO sentences d.
2. Apply a procedure (based on the chase [4]) to the instance (I ∪ {M}), and

generate a target instance J .
3. Compute a set of classes {C1, . . . , Cm} over dom(C) such that c1 and c2

exist in Ci if there exists a constant a such that M(a, c1) and M(a, c2) hold.
4. Choose a set of witnesses {w1, . . . , wm} such that wi ∈ Ci, for 1 ≤ i ≤ m.
5. Compute from J the instance J ′ := replace(J,w1, . . . , wm) by replacing

each occurrence of target constant c ∈ Ci∩dom(J) (1 ≤ i ≤ m) with wi ∈ Ci.
6. Apply a procedure (based on the core [5]) to the target instance J ′ and

generate the target instance J1 that is the core of J ′.

We prove the correctness of CompMUDSEGsolS and that it runs in Logspace
in the following result:

Theorem 2. Let S be a fixed DSEG setting, I a source instance, and M an
st-mapping table. Let J∗ be an arbitrary result for CompMUDSEGsolS. Then, J

∗

is a MUDSE for I and M under S. Also, CompMUDSEGsolS runs in Logspace.

Data Sharing and Exchange: General Data-Mapping Semantics 165

4 DSEG and Incomplete Source Data

We discuss in this section DSEG in collaborative settings in which several sources
interact, we denote it by DSEI to avoid any confusion. In such scenarios, it is
most likely that data in a source instance is obtained by an earlier exchange
from a different source, and hence may contain null values. The most intuitive
tables with null values are called näıve tables. Arenas et al. addressed in [2] the
DE problem in such collaborative settings. They proved that target instances
with positive conditional tables, named also as pc-tables 5, are the best tool to
represent source instances that contain näıve tables and/or pc-tables.

Clearly, DSEI combines both the KB exchange and the DE with incomplete
information [2] concepts, and hence require applying the techniques from both
settings. Authors in [2] defined a variant chase algorithm which generates in
fixed DE settings universal solutions with pc-tables in Ptime. We combine this
fact with the result given in Theorem 1 to deduce that there exists a Ptime
algorithm that generates a universal DSE solution (J,Σt) for a source knowledge
base (I, ∅) in a fixed DSEI setting. On the other hand, we show in the following
Theorem that checking whether a given pc-table target instance is a universal
DSE solution in a fixed DSEI setting is of a higher complexity.

Theorem 3. Let S = (S,T,M, Σst) be a fixed DSEI setting where Σst is a
set of fixed st-tgds, I a pc-table over S, and J a pc-table over T. Also let the set
of implicit data Σt be a fixed set of full tgds. Then, checking if J is a universal
DSE solution for I is DPP

2 -complete.

The class of MUDSE solutions discussed so far in this work and in DSE
settings [3], contained solely of näıve tables. We prove in the following result that
the best tool to represent the most compact DSE solutions for target instances
with näıve tables in DSEI is indeed a näıve table. That is, there does not exist
a DSE solution with pc-tables that is more compact under S .

Theorem 4. Let S = (S,T,M, Σst) be a DSEI setting, I a source instance, M
an st-mapping table, and J a MUDSE solution (with näıve tables) for I and M
under S. Then there does not exist a solution J ′ under S such that J ′ contains
pc-tables, | J ′ | 6 < | J |, and Rep(J ′) = Rep(J) 7.

Given a DSEI setting S and a DSE solution J with pc-tables. At first, one
can think that generating the smallest subset instance of J , in the favor of gen-
erating a MUDSE solution J ′ of J under S, is possible by applying the Greedy
algorithm introduced in ordinary DE settings [5]. Briefly, a Greedy algorithm

5 A pc-table is a näıve table extended with a local condition for each tuple. This local
condition is a positive boolean combination of formulas of the form ⊥ = ⊥′ and
⊥ = a, where ⊥,⊥′ ∈ Var and a ∈ Const.

6 | T | define the number of tuples in a table T .
7 Rep(R) = {ρ(R) | ρ : Var(R) → Const is a valuation for the variables in table R (in
case R is a pc-table, then a fact ρ(t) ∈ ρ(R) only if the condition ψ in t is such that
ρ(t) = true).

166 R. Awada and I. Kiringa

R
A B C Condition

x y z true

1 1 1 x = 1

2 2 2 x = 1

3 3 3 x = 1

1 1 1 x = 2 ∧ y = 2 ∧ z = 2

Fig. 1. DSE solution J

R
A B C Condition

x y y y = z

x x z x = y

x a b true

c y d true

e f z true

Fig. 2. DSE solution J1

R′
A B C Condition

x y z x = y ∨ y = z

x a b true

c y d true

e f z true

Fig. 3. DSE solution J ′
1

initially initializes a fresh instance J ′ to J , then checks for each tuple t ∈ J ′

whether (J ′ − t) ≡ J holds (or in other words Rep(J ′ − t) = Rep(J)). If so, it
updates J ′ to be J ′− t. However, we show in Example 4 that this is not the case.

Example 4. Let S = (S,T,M, Σst) be a DSEI setting and J be a DSE solution
under S. Assume that J consists of the pc-table R given in Fig. 1. Notice that
[R − {〈1, 1, 1 : x = 1〉, 〈2, 2, 2 : x = 1〉}] ≡ R and [R − {〈3, 3, 3 : x = 1〉}] ≡ R.
However, [R−{〈1, 1, 1 : x = 1〉, 〈2, 2, 2 : x = 1〉, 〈3, 3, 3 : x = 1〉}] �≡ R. Therefore,
to check whether pc-table R′ is the smallest subset pc-table of R, we need to
non-deterministically determine whether there exists an instance R′′ ⊂ R such
that |R′′| < |R′| and R′′ ≡ R.

Following the intuition in Example 4 we provide the result in Theorem 5

Theorem 5. Let S = (S,T,M, Σst) be a DSEI setting where Σst is a fixed set
of st-tgds, I a source instance with pc-tables over S and J a DSE solution with
pc-tables over T. Also, let Σt be a fixed set of full tgds. To check if there exists

a DSE solution J ′ for I and M under S such that J ′ ⊂ J is ΠP‖
2 -complete.

In some DSEI instances S, MUDSE solutions are not the most compact
solutions under S. Consider the DSE solution J1 given in Fig. 2. We can see that
the DSE solution J ′

1 given in Fig. 3 is such that J1 ≡ J ′
1, J

′
1 �⊂ J1, and |J1| > |J ′

1|.
Although pc-tables are proved in [2] to be the best tool to represent source
instances with incomplete information, we show in the following proposition
that for some DSE solutions with pc-tables there exist target instances with
conditional tables (c-table) 8 that are equivalent and more compact than those.

Proposition 1. Let S = (S,T,M, Σst) be a DSEI setting, I a source instance,
M an st-mapping table, and Σst be a set of st-tgds. Let J be a DSE solution
for I and M under S. Then, the right tool to represent the most compact DSE
solution J ′ of J is a c-table.

5 Query Answering

We distinguish in DSEG between sound and complete certain answers as seman-
tics for CQs answering. Let S be a DSEG setting, I a source instance, and M
8 c-tables are more general pc-tables that can include inequality formulas, along with
equalities, in their conditions.

Data Sharing and Exchange: General Data-Mapping Semantics 167

an st-mapping table. A complete certain answer for a CQ Q over I and M under
S, denoted by complete-certainS((I ∪{M}), Q), corresponds to the set of tuples
that belongs to the evaluation of Q over KT, for each DSE solution J for I
and M under S and K ∈ Mod((J ∪ {M}), Σt). A sound certain answer, on the
other hand, denoted by sound-certainS((I∪{M}), Q), would be a set P of tuples
that belongs to the evaluation of Q over a DSE solution J such that applying a
query completion program, denoted by Σq, in the style of the target completion
program Σt, to P would regenerate the set complete-certainS((I ∪ {M}), Q).

Computing the set complete-certainS answers using MUDSE solutions proved
in [3] to be less expensive in run times than when using universal DSE solu-
tions completed with Σt. Therefore, we introduce in what follow the method to
compute complete-certainS answers of CQs using MUDSE solutions in DSEG.

Let S be a DSEG setting, I a source instance, M an st-mapping table, and
Q(x̄) = (x̄)∃ȳ φ(x̄, ȳ) ∧ ψ(ȳ) be a CQ over T where: x̄ is a set of distinguished
variables, φ(x̄, ȳ) is a conjunction of predicate formulas with distinct variables,
and ψ(ȳ) is a conjunction of formulas of the form y1 = y2 where y1, y2 ∈ ȳ.

To compute sound-certainS((I ∪ {M}), Q), we adopt a method similar to the
combined approach given in description logic (DL) KB-exchange settings [7].
To do so, it first applies rules 1 and 2 in the target completion process Σt to
populate the table Rel with elements entailed to be related by M. Then, re-
writes query Q(x1, . . . , xn) to query: Q′(x1, . . . , xn) = (x̄)∃ȳ∃w̄ φ(x̄, ȳ) ∧ ψ′(ȳ)
where ψ′(ȳ) constitutes the formula Rel (y1, y

′) ∧Rel(y2, y
′) for each formula

y1 = y2 in ψ(ȳ), to generate the set of sound certain answers.
Intuitively, the set complete-certainS((I∪{M}), Q) cannot be simply obtained

by posing Q to the MUDSE solution J , since J might be incomplete with respect
to M. Therefore, we present below two possible methods for computing those
complete certain answers using J .

The first method would be to complete J with the information entailed by the
target completion program Σt as a first step, and this is done by applying Σt to
J (denoted as Σt(J)) and generate a complete target instance Ĵ , then apply Q
to Ĵ as a second step and discard tuples with null values.

A second method, on the other hand, leverages the approach we used to
compute sound-certainS((I ∪ {M}), Q). It first populates the table Rel and re-
writes Q to a query Q′ the same way we did to compute sound-certainS((I ∪
{M}), Q). Then it completes the evaluation of Q′ on J by returning the answer
of Q̂′(z1, . . . , zn) = Q′(x1, . . . , xn) ∧

∧n
i=1 Rel(xi, zi). We prove the correctness

of the above query re-writing methods in the below proposition.

Proposition 2. Let S = (S,T,M, Σst) be a DSEG setting, I a source instance,
M an st-mapping table, J a MUDSE solution, and Q a fixed conjunctive query
over T. Then, complete-certainS((I ∪ {M}), Q) = Q̂(J) where Q̂(z1, . . . , zn) =
(x̄)∃ȳ∃w̄ φ(x̄, ȳ) ∧Rel(y1, w1)∧ Rel(y2, w1) ∧ · · · ∧∧n

i=1 Rel(xi, zi), wi ∈ w̄.

Following Proposition 2, we deduce that the query re-writing method to com-
pute sound-certainS is correct. Also, based on the result in Theorem 2 that
MUDSE solutions can be generated in Logspace in a fixed DSEG setting, and

168 R. Awada and I. Kiringa

Table 1. List of Queries

Q1 Fetch the name and age of each student

enrolled in a course

Q2 Fetch the name and age of each student

with the names of courses he completed

Q3 Fetch the name of each student with the

name and grade of each course he finished

Q4 Fetch the list of teachers that already

taught a course

Q5 Fetch the list of teachers’ names and the

list of courses they taught

Q6 Fetch the names of students with the names

of courses they completed and the name of

the teacher that taught each course

Q7 Fetch the list of pairs of students’ names

and ages that took the same course Fig. 4.Queries of table 1 run times

since checking if a fixed CQ is satisfied in a database is in Logspace [2], we can
deduce that computing complete-certainS and sound-certainS is in Logspace.

6 Experiments

We conducted our experiments on a Lenovo workstation with a Dual-Core In-
tel(R) 1.80GHz processor, 4GB of RAM, and a 297 GB hard disk. We used
PostgreSQL(v9.2) database system. We considered in our experiments the DSEG

setting of Example 1 extended with relations Teacher (tname, tage) and Teach
(tname, cname) that specify teachers’ information and the list of courses they
teach, respectively. We used a DSE solution (that is a core [5]) with 55,000 tuples,
where each course in the source is related to 5 courses in the target. It is clear
in Fig. 1 how MUDSE solutions compute efficiently both sound and complete
certain answers for CQs.

7 Concluding Remarks

We defined in this paper a DSEG setting with general semantics of related data
in an st-mapping table M. We defined algorithms to generate DSE and MUDSE
solutions. Also, we distinguished between sound and complete certain answers
of CQs and we showed how to compute those. Finally, we addressed DSEG in a
setting where the source instance contain unknown information.

References

1. Arenas, M., Barceló, P., Libkin, L., Murlak, F.: Relational and xml data exchange
(2010)

2. Arenas, M., Perez, J., Reutter, J.: Data exchange beyond complete data (2011)

Data Sharing and Exchange: General Data-Mapping Semantics 169

3. Awada, R., Barceló, P., Kiringa, I.: Sharing and exchanging data (2013)
4. Deutsch, A., Nash, A., Remmel, J.: The chase revisited (2008)
5. Fagin, R., Kolaitis, P.G., Popa, L.: Data exchange: getting to the core (2005)
6. Kementsietsidis, A., Arenas, M., Miller, R.J.: Mapping data in peer-to-peer sys-

tems: Semantics and algorithmic issues (2003)
7. Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in el using a database

system (2008)

	Data Sharing and Exchange: General Data-Mapping Semantics
	1 Introduction
	2 Preliminaries and Related Work
	3 General Data Sharing and Exchange
	4 DSEG and Incomplete Source Data
	5 Query Answering
	6 Experiments
	7 Concluding Remarks

