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Abstract. As regard to the evolution of the concept of text and to
the continuous growth of textual information of multiple nature which is
available online, one of the important issues for linguists and information
analysts for building up assumptions and validating models is to exploit
efficient tools for textual analysis, able to adapt to large volumes of het-
erogeneous data, often changing and of distributed nature. We propose
in this communication to look at new statistical methods that fit into
this framework but that can also extent their application range to the
more general context of dynamic numerical data.

For that purpose, we have recently proposed an alternative metric
based on feature maximization. The principle of this metric is to define
a measure of compromise between generality and discrimination based
altogether on the properties of the data which are specific to each group of
a partition and on those which are shared between groups. One of the key
advantages of this method is that it is operational in an incremental mode
both on clustering (i.e. unsupervised classification) and on traditional
categorization. We have shown that it allowed to very efficiently solve
complex multidimensional problems related to unsupervised analysis of
textual or linguistic data, like topic tracking with data changing over time
or automatic classification in natural language processing (NLP) context.
It can also adapt to the traditional discriminant analysis, often exploited
in text mining, or to automatic text indexing or summarization, with
performance that are far superior to conventional methods. In a more
general way, this approach that freed from the exploitation of parameters
can be exploited as an accurate feature selection and data resampling
method in any numerical or non numerical context.

We will present the general principles of feature maximization and
we will especially return to its successful applications in the supervised
framework, comparing its performance with those of the state of the art
methods on reference databases.
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1 Introduction

Since the 1990s, progress in computing, and in storage capacities, has allowed
the handling of extremely large volumes of data: it is not rare to deal with space
for the description of several thousand, or even tens of thousands, features. It
could be thought that the classification algorithms are more effective with a
large number of features, but the situation is not so simple. The first problem is
the increase in the calculation time. Additionally, the fact that a large number
of features are redundant, or irrelevant, for the classification task, considerably
disrupts the functioning of the classifiers. Furthermore, most training algorithms
use probabilities whose distributions may be difficult to estimate in the presence
of a very large number of features. The integration of a process of feature selection
in the frame of large dimension data classification has thus become a central
issue. In the literature, essentially three types of approach are proposed for
the selection of features: approaches directly incorporated into the classification
methods, known as “embedded”, methods based on techniques of optimization,
or “wrapper”, and approaches based on statistical tests, also named filter-based
methods. Thorough states-of-the art have been described by numerous authors,
such as Ladha et al. [21,3,13] ou [8]. Therefore, below we will simply give a brief
overview of the existing approaches.

“Embedded” approaches integrate the selection of features in the learning pro-
cess [5]. The most popular methods in this category are those based on SVM and
the methods founded on neural networks. For example, RFE-SVM (Recursive
Feature Elimination for Support Vector Machines) [14] is an integrated process,
where the selection of features is carried out in an iterative manner using an SVM
classifier and suppressing features that are the most distant from the decision
boundary.

For their part, the “wrapper” methods use a performance criterion to seek out
a pertinent sub-group of predictors [20]. Most often it is the error rate (but that
can be a prediction cost, or the area under the ROC curve). As an example, the
WrapperSubsetEval method begins with an empty set of features, and continues
until the addition of new features no longer improves performance. It uses cross-
validation to estimate learning for a given group of features [39]. Comparisons
between methods, such as that of Forman [10] clearly demonstrate that, without
taking their effectiveness into account, one of the principal drawbacks of these
two classes of methods is that they require long calculation times. This prohibits
their use in the case of strongly multidimensional data. In this context, a possible
alternative is to exploit filter-based methods.

Filter-based approaches are selection methods that are used upstream and
independently of the learning algorithm. Based on statistical tests, they require
less calculation time than do other approaches. Most classical examples of filter-
based methods are chi-squared method [21], mutual information-based methods,
like MIFS [16], information gain-based methods, like CBS [7], correlation-based
methods, like MODTREE [22], or, nearest-neighbour-based methods, like Relief
or ReliefF [19].
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As for all statistical tests, filter-based approaches are known to behave er-
ratically in the case of very low frequency features, which are common in text
classification [21]. In this article we show that, despite their diversity, all existing
approaches are inoperative, or even detrimental, in the case of extremely unsta-
ble, multidimensional and noisy data, with a high degree of similitude between
classes. As an alternative, we propose a new method of feature selection and
contrast, based on the recently developed feature maximization metric. Further-
more, we compare the performance of this method to that of classical techniques
in the context of help with patent validation. Then we extend the range of our
study to habitually used textual reference data. The rest of this manuscript is
structured as follows: section 2 presents our new approach for feature selection;
section 3 details the data used; section 4 compares the results for the different
data corpora of the classification with and without the use of the proposed ap-
proach; section 5 outlines the use of the method in unsupervised context; section
6 presents our conclusions and perspectives.

2 Feature Maximization for Feature Selection

Feature maximization (F-max) is an unbiased metric with whichto estimate the
quality of an unsupervised classification, which uses the properties (i.e. the fea-
tures) of data associated with each cluster without prior examination of the
cluster profiles [24]. Its principal advantage is that it is totally independent of
the classification method and of its operating mode. When it is used after learn-
ing, it can be exploited to establish global indices of clustering quality [26] or
for cluster labelling [28].

Consider a group of clusters C which results from a method of clustering
applied to a dataset D represented by a group of features F . The feature maxi-
mization metric favours clusters with a maximal feature F-measure. The feature
F-measure FFc(f) of a feature f associated with a cluster c c is defined as the
harmonic mean of the feature recall FRc(f) and of the feature precision FPc(f),
themselves defined as follows:

FRc(f) =
Σd∈c′W

f
d

Σc′∈CΣd∈c′W
f
d

FPc(f) =
Σd∈cW

f
d

Σf ′∈Fc,d∈cW
f ′
d

(1)

with

FFc(f) = 2

(
FRc(f)× FPc(f)

FRc(f) + FPc(f)

)
(2)

where W f
d represents the weight of the feature f for the data d and Fc represents

all the features present in the dataset associated with the cluster C.
Taking into account the basic definition of the feature maximization metric,

its use for the task of feature selection in the context of supervised learning
becomes a simple process. Therefore, this generic metric can be applied to data
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associated with a class, as well as those associated with a cluster. The selection
process can thus be defined as non-parametered, based on classes in which a class
feature is characterised using both its capacity to discriminate between classes
(FPc(f) index) and its ability to faithfully represent the class data (FRc(f)
index). The Sc set of features that are characteristic of a given class c belonging
to the group of classes C is translated by:

Sc =
{
f ∈ Fc | FFc(f) > FF (f) and FFc(f) > FFD

}
where (3)

FF (f) = Σc′∈C

FF c′(f)

|C/f | and FFD = Σf∈F
FF (f)

|F | (4)

where C/f represents the subset of C in which the f feature is represented.

Finally, the set of all selected features SC is the subset of F defined by:

SC = ∪c∈CSC . (5)

In other words, the features that are judged relevant for a given class are those
whose representations are better than average in this class, and better than the
average representation of all the features in terms of feature F-measure.

In the specific context of the process of feature maximization, an improvement
by contrast step can be exploited as a complement to the first step of selection.
The role of this is to adapt the description of each single data to the specific
characteristics of its associated class. This consists of modifying the data weight-
ing schema in a distinct way for each class, taking into account the information
gain supplied by feature F-measure of the features locally in this class.

The information gain is proportional to the relation between the F-measure
value of a feature in the FFc(f) class and the average F-measure value of this
feature for the whole partition. Given one single data and one single feature
describing this data, the resulting gain acts as a contrast factor that adjusts the
weight of this feature in the data profile, optionally taking into account its prior
establishment. For a feature f belonging to the group of selected features Sc

from a class C, the gain Gc(f) is expressed as:

Gc(f) = (FFc(f)/FF (f))k (6)

where k is a magnification factor that can be optimized according to the resulting
accuracy.

The active features of a class are those for which the information gain is higher
than 1. Given that the proposed method is one of selection and of contrast based
on the classes, the average number of active features per class is comparable to
the total number of features selected in the case of habitual selection methods.
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3 Validating the Approach on Real-World Data

One of the goals of the QUAERO project is to use bibliographic information
to help experts to judge patent precedence. Thus, initially it was necessary to
prove that it is possible to associate such information with the patent classes
in a pertinent manner; or in other words, to classify it correctly within these
classes. Main experimental data source comprised 6387 patents from the phar-
macological domain in an XML format, grouped into 15 sub-classes of the A61K
class (medical preparation). The bibliographic references in the patents were
extracted from the Medline database1. 25887 citations were extracted from the
6387 patents. Interrogation of the Medline database with the extracted citations
allowed bibliographic notices of 7501 references to be recovered. Each notice was
then labelled with the first classment code of the citing patent [15]. Each notice’s
abstract was treated and transformed into a bag of words [36] using the TreeTag-
ger tool [37]. To reduce the noise generated by this tool, a frequency threshold of
45 (i.e. an average threshold of 3 per class) was applied to the extracted descrip-
tors. The result was a description space limited to the 1804 dimension. A last
TF-IDF weighting step was applied [36]. The series of labelled notices, which
were thus pre-treated, represented the final corpus on which training was car-
ried out. This last corpus was highly unbalanced. The smallest class (A61K41)
contained 22 articles, whereas the largest contained 2500 (A61K31 class). The
inter-class similarity was calculated using a cosine correlation. This indicated
that more than 70% of pairs of classes had a similarity of between 0.5 and 0.9.
Thus, the ability of a classification model to precisely detect the correct class is
strongly reduced. A solution commonly used to contend with an imbalance in
classes’ data is sub-sampling of the larger classes [12] and/or over-sampling of
the smaller ones [6]. However, re-sampling, which introduced redundancy into
the data, does not improve the performance of this dataset, as was shown by
Hajlaoui et al. (2012). Therefore, we have proposed an alternative solution de-
tailed below, namely to edit out the features that are judged irrelevant and to
contrast those considered reliable [25].

As a complement, 4 other well-known reference text datasets have been ex-
ploited for validation of the method:

– The R8 and R52 corpora were obtained by Cardoso Cachopo2 from the R10
and R90 datasets, which are derived from the Reuters 21578 collection3.
The aim of these adjustments was to only retain data that had a single
label. Considering only monothematic documents and classes that still had
at least one example of training and one of test, R8 is a reduction of the R10
corpus (the 10 most frequent classes) to 8 classes and R52 is a reduction of
the R90 corpus (90 classes) to 52 classes.

– The Amazontm corpus (AMZ) is a UCI dataset [2] derived from the rec-
ommendations of clients of the Amazon web site that are usable for author

1 http://www.ncbi.nlm.nih.gov/pubmed/
2 http://web.ist.utl.pt/∼acardoso/datasets/
3 http://www.research.att.com/∼lewis/reuters21578.html

http://www.ncbi.nlm.nih.gov/pubmed/
http://web.ist.utl.pt/~acardoso/datasets/
http://www.research.att.com/~lewis/reuters21578.html
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identification. To evaluate the robustness of the classification algorithms with
respect to a large number of target classes, 50 of the most active users who
have frequently posted comments in these newsgroups were identified. Thirty
messages were collected for each of them. Each message included the authors’
linguistic style, such as the use of figures, punctuation, frequent words and
sentences.

– The 20Newsgroups dataset [19] is a collection of approximately 20,000 docu-
ments (almost) uniformly distributed among 20 different discussion groups.
We consider two “bag of words” versions of this dataset in our experiments.
In the (20N - AT) version, all words are preserved and non-alphabetic charac-
ters are converted into spaces. It resulted in a 11153 words description space.
The (20N - ST) version is obtained after a additionnal step of stemming.The
words of less than 2 characters, as well as stopwords (S24 SMART list [36]),
are eliminated. The stemming is performed using Porter’s algorithm [33].
The description space is thus reduced to 5473 words.

– The WebKB dataset (WKB) contains 8282 pages collected from the depart-
ments of computer science of various universities in January 1997 by the
World WideKnowledge Base, a project of the CMU text learning group4

(Carnegie Mellon University, Pittsburgh). The pages have been manually di-
vided into 7 classes: student, faculty, department, course, personal, project,
other. We operate on the Cardoso Cachopo’s reduced version in which classes
“department” and “staff” were rejected due to their low number of pages,
and the class “other” has been deleted. Cleaning and stemming methods
used for the 20Newsgroups dataset are then applied on the reduced dataset.
It resulted in a 4158 items dataset described by a 1805 words description
space.

4 Experiments and Results

4.1 Experiments

To carry out our experiments, we first took into consideration different classifica-
tion algorithms that are implemented in the Weka tool box5: decision trees (J48)
[35], random forests (RF)[4], KNN [1], habitual Bayesian algorithms, i.e. the
Multinomial Nave Bayes (MNB) and Bayesian Network (BN), and finally, the
SMO-SVM algorithm (SMO) [32]. The default parameters were used during
the implementation of these algorithms, apart from KNN for which the num-
ber of neighbours was optimized based on the resulting precision. Secondly, we
placed the accent more particularly on tests of the efficacy of feature selection
approaches, including our new proposition (FMC). In our test, we included a
panel of filter-based approaches applicable on large dimension data, using once
again the Weka platform. The methods tested include: chi-squared [21], informa-
tion gain [16], CBF [7], symmetric incertitude [40], ReliefF [19] (RLF), Principal

4 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
5 http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
http://www.cs.waikato.ac.nz/ml/weka/


New Metrics and Related Statistical Approaches for Efficient Mining 9

Component Analysis [31] (PCA). Default parameters were used for most of these
methods except for PCA, where the explained variance percentage is tuned with
respect to the resulting accuracy. Initially we tested the methods separately. In a
second phase, we combined the feature selection supplied by the different meth-
ods with the F-max contrast method that we have proposed (eq. 6). We used a
10-fold cross-validation in all our experiments.

4.2 Results

The different results are presented in tables 1 to 8. They are based on measure-
ments of standard performance (level of true positives [TP] or recall [R], level
of false positives [FP], Precision [P], F-measure [F] and ROC) weighted by class
size, then averaged for all the classes. For each table and each combination of
selection and classification methods, an indicator of performance gain/loss (TP
Incr) is calculated using the TP of SMO level on original data as a reference. Fi-
nally, as the results for chi-squared, information gain and symmetric incertitude

Table 1. Classification results on initial data

TP(R) FP P F ROC TP Incr

J48 0.42 0.16 0.40 0.40 0.63 -23%

RandomForest 0.45 0.23 0.46 0.38 0.72 -17%

SMO 0.54 0.14 0.53 0.52 0.80 0% (Ref)

BN 0.48 0.14 0.47 0.47 0.78 -10%

MNB 0.53 0.18 0.54 0.47 0.85 -2%

KNN (k=3) 0.53 0.16 0.53 0.51 0.77 -2%

Table 2. Results of classification after the selection of features (BN classifier)

TP(R) FP P F ROC Nbr. var. TP Incr

CHI+ 0.52 0.17 0.51 0.47 0.80 282 -4%

CBF 0.47 0.21 0.44 0.41 0.75 37 -13%

PCA (50% vr.) 0.47 0.18 0.47 0.44 0.77 483 -13%

RLF 0.52 0.16 0.53 0.48 0.81 937 -4%

FMC 0.99 0.003 0.99 0.99 1 262/cl +90%

Table 3. Results of classification after the selection of FMC features

TP(R) FP P F ROC TP Incr

J48 0.80 0.05 0.79 0.79 0.92 +48%

RandomForest 0.76 0.09 0.79 0.73 0.96 +40%

SMO 0.92 0.03 0.92 0.91 0.98 +70%

BN 0.99 0.003 0.99 0.99 1 +90%

MNB 0.92 0.03 0.92 0.92 0.99 +71%

KNN (k=3) 0.66 0.14 0.71 0.63 0.85 +22%
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were identical, they only figure once in the tables, as results of the chi-squared
type (and are noted CHI+).

For our main patent collection, table 1 shows that the performances of all
classification methods are weak for the dataset considered, provided no feature
selection process is carried out. In this context, this table also confirms the
superiority of the SMO, KNN and Bayesian methods compared to the other
two methods, based on decision trees. Additionally, SMO gave the best global
performance in terms of discrimination, as demonstrated by its highest ROC
value. However, this method is clearly not usable in an operational context of
patent evaluation such as QUAERO, because of the major confusion between
classes. This shows its intrinsic inability to cope with the attraction effect of the
largest classes. Each time that a standard feature selection method is applied in
our context, in association with the best classification methods, its use alters the
quality of the results slightly, as indicated in table 2. Table 2 also underlines the
fact that the reduction in the number of feature by the FMC method is similar
to CHI+ (in terms of active features; see section 2 for more details), but that
its use stimulates the performances of classification methods, particularly those
of Bayesian methods (table 3), leading to impressive classification results in the
context of highly complex classification: 0.987 accuracy i.e. only 94 misclassed
data with the BN method, amongst a total of 7252.

The results presented in table 4 illustrate more precisely the efficiency of the
F-max contrast method that acts on data description (eq. 6). In experiments re-
lating to this table, the contrast is applied individually to the features extracted
by each selection method, and in a second step a BN classifier is applied to
the resulting contrasted data. The results show that, irrespective of the type of
method used for feature selection, the performances of the resulting classification
are re-enforced each time that the F-max contrast is applied downstream of the
selection. The average performance increase is 44%. Finally, table 5 illustrates
the ability of the FMC approach to efficiently confront the problems of imbal-
ance and class similitude. The examination of TP level variations (especially in
the small classes) seen in this Table shows that the attraction effect of data from
the largest classes, produced at a high level in the case of the use of original
data, is practically systematically overcome each time the FMC approach is ex-
ploited. The ability of this approach to correct class imbalance is equally clearly
demonstrated by the homogeneous distribution of active features in the different
classes, despite the extremely heterogeneous class size.

Table 4. Results of classification with different feature selection methods, and F-max
contrast (BN classifier)

TP(R) FP P F ROC Nbr. var. TP Incr

CHI+ 0.79 0.08 0.82 0.78 0.98 282 +46%

CBF 0.63 0.15 0.69 0.59 0.90 37 +16%

PCA (50% vr.) 0.71 0.11 0.73 0.67 0.53 483 +31%

RLF 0.79 0.08 0.81 0.78 0.98 937 +46%

FMC 0.99 0.003 0.99 0.99 1 262/cl +90%
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Fig. 1. Confusion matrix of the optimal results before and after feature selection on
PAT-QUAERO dataset (SMO classification)

Table 5. Characteristics/class before and after FMC selection (BN classifier)

Class Label Size Feat. Select. % TP FMC % TP before

a61k31 2533 223 1 0.79

a61k33 60 276 0.95 0.02

a61k35 459 262 0.99 0.31

a61k36 212 278 0.95 0.23

a61k38 1110 237 1 0.44

a61k39 1141 240 0.99 0.65

a61k41 22 225 0.24 0

a61k45 304 275 0.98 0.09

a61k47 304 278 0.99 0.21

a61k48 140 265 0.98 0.12

a61k49 90 302 0.93 0.26

a61k51 78 251 0.98 0.26

a61k6 47 270 0.82 0.04

a61k8 87 292 0.98 0.02

a61k9 759 250 1 0.45

The summary of the results of the four complementary datasets is presented
in tables 6 to 8. These tables highlight the fact that the FMC method can very
significantly improve the performance of the classifiers in different types of cases.
As in the context of our previous experience (patents), the best performances
are obtained with the use of the FMC method in combination with the MNB
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Table 6. List of high contrast features (lemmes) for the 8 classes of the REUTERS8
corpus

Trade Grain Ship Acq

6.35 tariff 5.60 agricultur 6.59 ship 5.11 common
5.49 trade 5.44 farmer 6.51 strike 4.97 complet
5.04 practic 5.33 winter 6.41 worker 4.83 file
4.86 impos 5.15 certif 5.79 handl 4.65 subject
4.78 sanction 4.99 land 5.16 flag 4.61 tender

Learn Money-fx Interest Crude

7.57 net 6.13 currenc 5.95 rate 6.99 oil
7.24 loss 5.55 dollar 5.85 prime 5.20 ceil
6.78 profit 5.52 germani 5.12 point 4.94 post
6.19 prior 5.49 shortag 5.10 percentag 4.86 quota
5.97 split 5.16 stabil 4.95 surpris 4.83 crude

Table 7. Results of classifications after FMC feature selection (MNB/BN classifier)

TP (R) FP P F ROC TP Incr.

- 0.937 0.02 0.942 0.938 0.984
Reuters8 (R8) FMC 0.998 0.001 0.998 0.998 1 +6%

- 0.91 0.01 0.909 0.903 0.985
Reuters52 (R52) FMC 0.99 0.001 0.99 0.99 0.999 +10%

- 0.748 0.05 0.782 0.748 0.981
Amazon FMC 0.998 0.001 0.998 0.998 1 +33%

- 0.882 0.006 0.884 0.881 0.988
20NewsGroup-AT (all terms) FMC 0.992 0 0.992 0.1 1 +13%

- 0.865 0.007 0.866 0.864 0.987
20NewsGroup-ST (stemmed) FMC 0.991 0.001 0.991 1 1 +15%

- 0.842 0.068 0.841 0.841 0.946
WebKB FMC 0.996 0.002 0.996 0.996 0.996 +18%

Table 8. Dataset information an complementary results after FMC feature selection
(5 reference datasets and MNB or BN classification)

R8 R52 AMZ 20N-AT 20N-ST WKB

Nb. class 8 52 50 20 20 4

Nb. data 7674 9100 1500 18820 18820 4158

Nb. feat. 3497 7369 10000 11153 5473 1805

Nb. sel. feat. 1186 2617 3318 3768 4372 725

Act. feat./class (av.) 268.5 156.05 761.32 616.15 525.95 261

Magnification factor 4 2 1 4 4 4

Misclassed (Std) 373 816 378 2230 2544 660

Misclassed (FMC) 19 91 3 157 184 17

Comp. time (s) 1 3 1.6 10.2 4.6 0.8
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C1- 7(7) [315(315)]
----------

Prevalent Label --- = Cause-Experiencer

0.273245 G-Cause-Experiencer
0.173498 C-SUJ:Ssub,OBJ:NP
0.138411 C-SUJ:NP,DEOBJ:PP
0.091732 C-SUJ:NP,DEOBJ:PP,DUMMY:REFL
. . .
**********
**********
0.013839 T-Asset
0.013200 C-SUJ:NP,DEOBJ:Ssub,POBJ:PP
0.009319 C-SUJ:Ssub,OBJ:NP,POBJ:PP
. . .
[flatter 0.907200 3(1)] [charmer 0.889490 3(0)] [ex-
ulter 0.889490 3(0)] [**frissonner 0.889490 3(0)]
[mortifier 0.889490 3(0)] [époustoufler 0.889490
3(0)] [pâtir 0.889490 3(0)] [ravir 0.889490 3(0)]
[**trembler 0.889490 3(0)] [**trembloter 0.889490
3(0)] [décourager 0.872350 2(2)]. . .

Fig. 2. Sample output for a French verb cluster produced with the IGNGF cluster-
ing method. The exploited features represent either verb subcategorization frames or
semantic labels.

and BN Bayesian classifiers. Table 7 presents the comparative results of such a
combination. It demonstrates that the FMC method is particularly effective in
increasing the performance of the classifiers when the complexity of the classi-
fication task becomes higher because of an increasing number of classes (AMZ
corpus). Table 8 supplies general information about the data and the behaviour
of the FMC selection method. They illustrate the significant reduction in the
classification complexity obtained with FMC because of the drop in the number
of features to manage, as well as the concomitant decrease of badly classed data.
It also stresses the calculation time, which is highly curbed for this method (the
calculation is carried out on Linux using a laptop computer equipped with an
Intel R© Pentium R© B970 2.3Ghz processor and 8Go of memory).

For these datasets, similar remarks to those mentioned for the patent dataset
can be made on the subject of the low efficiency of common feature selection
methods and the re-sampling methods. Table 8 also shows that the value of the
contrast magnification factor utilised to obtain the best performances can vary
throughout the experiments (from 1 to 4 in this last context). However, it can
be observed that by taking a fixed value for this factor, for example the highest
(here 4), the results are not down-graded. This choice thus represents a good
alternative to confront the problem of configuration.

The 5 most contrasted feature (lemmes) of the 8 classes issued from the
Reuter8 corpus are shown in table 6. The fact that the main lines of the themes
covered by the classes can be clearly demonstrated in this way illustrates the
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Table 9. Classification results on UCI Wine dataset

TP FP P F ROC TP
R Incr

J48 0.94 0.04 0.94 0.94 0.95 0% (Ref)

BN + FMC 1 0 1 1 1 +6%

Fig. 3. WINE dataset: “Proline-Color intensity” decision plan generated by J48 -
Proline is on Y axis on this and next figures

Fig. 4. WINE dataset: “Proline-Magnesium” decision plan generated by FMC (before
data contrasting)
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Fig. 5. WINE dataset: “Proline-Magnesium” decision plan generated by FMC (after
data contrasting with a magnification factor k=1)

Fig. 6. WINE dataset: “Proline-Magnesium” decision plan generated by FMC (after
data contrasting with a magnification factor k=4)

topic extraction capacities by the FMC method. Finally, the acquisition of very
good performances by combining the FMC feature selection and constrast with
a classification method such as MNB is a real advantage for large-scale usage,
given that the MNB method has incremental abilities and that the two methods
have low calculation times.

Complementary results obtained with the numerical UCI Wine dataset inter-
estingly show that, with the help of FMC, NB/BN methods are able to exploit
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only two features (among 13) for classification as a decision tree classifier like
J48 (i.e. C4.5 [27]) would do on standard data. The difference is that a perfect
result is obtained with NB/BN and FMC whereas it is not the case with J48
(table 9). Some explanations are provided by looking up at the distribution of
the class samples on the alternative decision plans of the two methods. In the
“Proline-Color intensity” decision plan exploited by J48, the different classes
are not clearly discriminable (Fig. 3). On its own side, the FMC method “ap-
parently” generates an even more complex “Proline-Magnesium” decision plan,
if contrast is not considered (Fig. 4). However, as shown in Fig. 5- 6, with the
combined effect of contrast and magnification factor (4) on data features, the dif-
ferent classes become very clearly discriminable on that decision plan, especially
when the magnification factor is increased sufficiently (Fig. 6).

5 Feature Maximization for Clustering

Like other neural free topology learning methods such as Neural Gas (NG) [30],
Growing Neural Gas (GNG) [11], or Incremental Growing Neural Gas (IGNG)
[34], the IGNGF method makes use of Hebbian learning [17] for dynamically
structuring the learning space. Hebbian learning is inspired by a theory from
neurosciences which explains how neurons connect to build neural networks.
Whereas for NG the number of output prototypes is fixed, GNG adapts this
number during the learning phase, guided by the characteristics of the data
to be classified. Prototypes and connections between them can be created or
removed depending on evolving characteristics of learning (as for example the
“age” or “maturity” of connections and the cumulated error rate of each proto-
type). A drawback of this approach is that prototypes are created or removed
after a fixed number of iterations yielding results which might not appropriately
represent complex or sparse multidimensional data. With the IGNG clustering
method this issue is addressed by allowing more flexibility when creating new
prototypes: a prototype is added whenever the distance of a new data point to an
existing prototype is above a predefined global threshold, the average distance
of all the data points to the centre of the data set. The learning process thus
becomes incremental: each incoming data point is considered as a potential pro-
totype. For all the above-mentioned methods, at each iteration over all the data
points, a data point is connected with the “closest” prototypes and at the same
time interacts with the existing model by strengthening the connections between
these “closest” prototypes and weakening those to other, less related prototypes.
Because of these dynamically changing interactions between prototypes, these
methods are “winner take most” methods in contrast to K-means (for example),
which represents a “winner-take-all” method. The notion of “closeness” is based
on a distance function computed from the features associated to the data points.

IGNGF uses the Hebbian learning process as IGNG, but the use of a standard
distance measure as adopted in IGNG for determining the “closest” prototype
is replaced in IGNGF by feature maximization.
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With feature maximization, the clustering process is roughly the following.
During learning, an incoming data point x is temporary added to every existing
cluster, its feature profile constituted by its maximal features and its average
feature F-measure are computed. Then the winning prototype is the prototype
whose associated cluster maximises the κ criterion given in Equation (7),

κ(c) = Δ(FFc) ∗ |Fc ∩ Fx| − ‖pc, x‖
weight

(7)

where Δ(FFc) represents the gain in feature F-measure for the new cluster,
|Fc ∩ Fx| represents the number of features shared by cluster c and the data
point x and pc is the codebook vector of the prototype associated to cluster c.
This way, those clusters are preferred which share more features with the new
data point and clusters which don’t have any common feature with the data
point are ignored. The gain in feature F-measure multiplied by the number of
shared features is adjusted by the euclidean distance of the new data point x
to the cluster’s prototype codebook vector pc. Thus, the smaller the euclidean
distance to the cluster’s prototype, less the κ value decreases. The influence
of the euclidean distance can be parametrised with a weight factor (

√
2 for

usual application). Clusters with negative κ score are ignored. The data point
is then added to the cluster c with maximal κ(c) and the connections between
its associated prototype and the neighbour prototypes are updated. If κ value is
negative for all clusters, a new prototype is created and an associated cluster is
formed with the currently considered data point.

The IGNGF method was shown to outperform other usual neural and non
neural methods for clustering tasks on sparse and/or highly multidimensionnal
and/or noisy data [27]. Moreover, it can be fruitfully combined with unsuper-
vised Bayesian reasoning for setting up the first parameter-free method capable
of automatically tracking research topics evolving over time in a realistic multi-
dimensionnal context [23]. It was also recently shown to outperform supervised
classification methods in the context of websites classification task thanks to its
capacity to highlight ”latent classes” not initially planed by the analyst [29].

Another main advantage of the method is that maximized features used by
IGNGF during learning can also be exploited in a final step for accurately la-
beling the resulting clusters. An example of such results is given in the case
of French verb clustering [9,18]. In this specific context, the IGNGF clustering
method does not only provides accurate verb clusters, outperforming state-of-
the-art methods of the domain, like spectral clustering [38]. As a complementary
result, it associates each verb cluster c with a profile containing syntactic and
semantic features characteristic of that cluster. Features are displayed in de-
creasing order of feature F-measure given by Equation (2) and features whose
feature F-measure is under the average feature F-measure of the overall clus-
tering are clearly separated from others. In the sample cluster shown in Fig. 2
these are listed above the two star lines. In addition, for each verb in a cluster,
a confidence score can be easily computed [9].
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6 Conclusion

Our main aim was to develop an efficient method of feature selection and con-
trast, which would allow routine problems linked to the supervised classification
of large volumes of textual data to be overcome. These problems are linked to
class imbalance, with a high degree of similarity between them, as they house
highly multidimensional and noisy data. To achieve our aim, we adapted a re-
cently developed metric in the unsupervised framework to the context of super-
vised classification. By means of different experiments on large textual datasets,
we illustrated numerous advantages of our approach, including its effectiveness to
improve the performance of classifiers in such a context. Notably, this approach
places the accent on the most flexible classifiers, and the least demanding in
terms of calculation times, such as the Bayesian classifiers. Another advantage
of this method is that it concerns an approach without parameters that depends
on a simple feature extraction schema. The method can thus be used in numer-
ous contexts, such as those of incremental or semi-supervised learning, and more
generally, in large scale digital learning.
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