
Chapter 6
Simulating Urban Resilience: Disasters,
Dynamics and (Synthetic) Data

A. Yair Grinberger, Michal Lichter and Daniel Felsenstein

Abstract An agent based (AB) simulation model of urban dynamics following a
disaster is presented. Data disaggregation is used to generate ‘synthetic’ data with
accurate socio-economic profiling. Entire synthetic populations are extrapolated at
the building scale from survey data. This data is coupled with the AB model. The
disaggregated baseline population allows for the bottom-up formulation of the
behavior of an entire urban system. Agent interactions with each other and with the
environment lead to change in residence and workplace, land use and house prices.
The case of a hypothetical earthquake in the Jerusalem CBD is presented as an
illustrative example. Dynamics are simulated for a period up to 3 years, post-
disaster. Outcomes are measured in terms of global resilience measures, effects on
residential and non-residential capital stock and population dynamics. The visual-
ization of the complex outputs is illustrated using dynamic web-mapping.

1 Introduction

Urban resilience is invariably conceptualized as a cities’ ability to ‘bounce back’,
post-disaster, to some pre-existing equilibrium (Campanella 2008; Godschalk 2003;
Müller 2011). This pre-shock state embodies spatial and temporal relationships,
direct and indirect effects and short and long term process. Disentangling these in
order to isolate those factors promoting urban resilience is particularly challenging. In
addition, urban resilience is more than just the sum of the parts of its’ inhabitants’
individual resilience. While cities are agglomerations of individuals, they are also
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much more. For example, they represent the accumulation of rounds of fixed capital
expressed in infrastructure and other hard investment. These are generally expressed
in terms of stock variables (roads, buildings etc.). In the event of a shock, resilience of
stock will be expressed in static terms, for example bymaintaining function (transport
flows, energy provision, providing shelter) in the face of adverse conditions.

However, cities are also much more than accumulations of capital stock. They
comprise complex network and flow systems such as input-output relations between
producers and consumers, origin-destination traffic patterns and so on. These rep-
resent a dynamic and long term view of resilience that involves not just maintaining
the existing state of the city but also recovering in order to reach a desired state.
Flows of information, labour and capital have the ability to not just maintain current
conditions but to change the urban growth trajectory by increasing productivity
over the medium to long term. Dynamic resilience therefore contributes variable
inputs to urban development and the more inputs are variable, the greater the
likelihood of inefficient allocation of urban resources (Rose 2009).

This chapter presents a disaggregated agent-based (AB) simulation model of
urban resilience in the wake of a disaster. The activities of multiple agents create a
computable system in which the actions of individual agents affect each other and
the system as a whole. The result is a complex network of behavior patterns that
could not have been predicted by simply aggregating individual agent behavior.
The system can be simulated and subjected to various exogenous shocks. The
motivation for the study is to show how a bottom-up simulation modeling approach
combined with an initial population created from synthetic data at the building
scale, can be used to aid urban rejuvenation in the aftermath of a disaster. We also
illustrate how web-based technology can be used for communicating these findings
to planners, policy makers and the public.

2 Agent-Based Modeling and Urban Disasters

Urban disasters occur randomly in time and space. They affect both individuals and
the environments that they populate. Large scale disasters are generally not one-
time disturbances but generate a series of sub-incidents such as aftershocks in the
case of earthquakes or secondary contamination in the case of pandemics. These
keep the disaster environment in state of flux. Individuals therefore operate in a
randomly changing context. By ‘agentizing’ this environment (Axtell 2000) and
reducing its elements to autonomous programmable entities, it becomes amenable
for management.

Agent-based simulations have been applied in a variety of disaster contexts such
as flooding, fires and earthquakes (Chen and Zhan 2008; Crooks and Wise 2013;
Dawson et al. 2011). The AB framework lends itself to these situations. A high
level of agent heterogeneity can be programmed and applied differentially to the
various stages of an urban disaster from mitigation and preparation through
response and on to recovery. This yields a rich array of human behaviors.
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For example, AB models have been coupled with network models for simulating
evacuation (Chen et al. 2012). GIS tools and crowdsourced data has been combined
with agent based modeling to assist with post disaster recovery analysis (Crooks
and Wise 2013). Kwan and Lee (2005) merged network analysis, GIS and 3D
visualization tools to provide a realtime micro-scale simulation tools for emergency
response at the individual building or city block level. In the field of traffic mod-
eling, Chen and Zhan (2008) have used the AB approach to evaluate different
evacuation strategies under different road network and population density regimes.
The emergency response literature also uses AB modeling in urban contexts to
provide a simulation capability for the public health and medical communities. This
allows for the efficient management of medical and evacuation resources under
conditions of severe uncertainty and stress. Invariably these systems use hybrid
architecture that integrates a simulator with GIS, databases and rule based protocols
for agents (Narzisi et al. 2006; Zimmerman et al. 2010).

3 Method

To account for the spatio-temporal dynamics of urban disasters we present an
agent-based framework that is driven by synthetic spatial data (Fig. 1). In this
framework, residential choice, workplace and activity location are determined

Fig. 1 Simulating resilience: a general framework
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bottom-up while land use and house prices are fixed top-down. As agents are
inherently mobile, their behavioral response is articulated in varying temporal and
spatial dimensions. While much of the data for observing agents behavior is only
available at coarse administrative units, we use a GIS-based method for the accurate
socio-economic profiling of the population under such circumstances. This involves
moving from a database describing only hundreds or thousands of spatial units to
one containing records of millions of buildings and individuals over time. In the
resultant spatial data, every individual in a city is synthetically represented by a
single specific record. This database is input to an agent-based model of urban
disasters as the initial physical properties of the urban environment and the dis-
tribution of the units (Fig. 1). Repast Simphony 2.0, an open source, Java-based
programming platform, is used as the simulator (Crooks and Castle 2012). Model
outputs are delivered and visualized using web-GIS.

The urban system is modeled as the outcome of interactions between agents and
the environment (Fig. 1). In this section we describe the mechanics of the agent-
based procedures that give the database a dynamic, multi-dimensional nature. These
mechanics rely on (necessary) simplifying assumptions. While this limits realism, it
is required for modeling an agent-rich environment. To increase the validity of
results, the model’s mechanics are ‘structurally stochastic’, as the random prefer-
ence element allows behavior to vary in relation to the basic behavioral structure
(Reichert and Mieleitner 2009). While the assumptions we make are not
ungrounded, the stochastic element diminishes possible diversion from realistic
behavior, given the large number of agents in our model. Common validation
processes (such as backstacking) are inapplicable in the case of long-term effects.
Hence the need for a solid base for the mechanics of the model.

3.1 Behavior of Agents

Citizen agents are organized at two levels—as individuals and clustered into
households. Each agent embodies both socio-economic and spatial properties.
Residential decisions are made at the household level while activities and work-
place location decisions are executed by individuals. Agent behavior is not ad hoc
but grounded in standard behavioral principles of utility maximization and risk
evasiveness (Lancaster 1966), satisficing (Simon 1952), preferences for scale in
economic activity (Fujita and Thisse 2002) and segregative residential choice
(Schelling 1971). Residential and activity location decisions are guided by a search
process grounded in ‘satisficing’ behavior. In this process the first location found to
satisfy a set of constraints and a utility threshold that represents preferences, is
chosen. This threshold is randomly drawn for each agent from the range [0,1].
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3.1.1 Place of Residence

At any given moment, a household may decide to relocate or to move out of the
city. In most cases this choice is probabilistic and dependent upon exogenous
probabilities for out-migration/relocation. In exceptional cases a household is
forced out of home due to land-use dynamics such as residential building use
becoming commercial or due to the direct destruction resulting from the disaster. In
this case the choice between relocation and out-migration is entirely random. The
choice of new place of residence (Eq. 1) is guided by two elements: the affordability
of a dwelling and its attractiveness (Chen et al. 2012). These are evaluated in
relation to the household’s willingness to allocate up to one third of monthly
income to housing (a budget constraint) and preference for residential segregation
represented by limited tolerance to change in living environment:

bh ¼ j ) Ih
3
[HPj

� �
� kh [

U
�Ij��Ih
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� �
þ U

�Aj��Ah
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� �
2

2
4
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where
bh is the new residential location for household h randomly drawn from a

choice set that includes all vacant buildings and partially occupied
residential buildings,

j is the building considered,
½ � is a binary expression with value of 1 if true and 0 otherwise,
Ih is household h’s monthly income,
HPj is monthly housing cost of an average housing unit in building j,
kh is the tolerance level for household h,
U is the standard normal cumulative probability function,
�Ij; �Aj are the average household income and average age of individuals in

building j, respectively
�Ih; �Ah are average household income and average age of individuals in

residential buildings within 100 m of current residential location of
household h,

Irh ;Arh are standard deviations of household income and of resident age in
residential buildings within 100 m from current home location of
household h, respectively.

A random-order search process is initiated whenever a household relocates or
when a new household migrates into the city. The volume of in-migration is pro-
portional to the number of vacant dwelling spaces and to an exogenous ratio of in-
migration to out-migration. The search process is terminated if 100 iterations do not
lead to relocation. In this case the household (whether in-migrant or native) leaves
the city. If the conditions for relocation are fulfilled, the dwelling unit is removed
from the set of vacant units.
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3.1.2 Workplace Location

Location of workplace is related to land-use as each employment sector is asso-
ciated with a particular use (e.g. commercial, industrial, governmental etc.). Apart
from this constraint, locational choice (Eq. 2) is dependent on distance-minimizing
and preference for scale (representing more opportunities):

WPi ¼ bj ) LUj ¼ ELUi
� � � ki [

Dij
�
maxDi

þ 1� FSj
�
maxFS

2

" #
¼ 1 ð2Þ

where
WPi is the workplace location of individual i,
ELUi is the employment-sector-related land-use for individual i,
ki is the preferences index,
Dij is the distance between building j and individual i’s place of residence,
maxDi is the distance of the building within the study area furthest away from

individual i’s place of residence.

Workplace is not part of the initial database and agents are assigned to locations
within the model. These locations are assumed to be stable unless the building
changes use. Only in such a case is the search for a new workplace initiated.

3.1.3 Location of Activities

Each day an individual agent participates in a varying number of activities. This
number is dependent on individual attributes promoting or inhibiting mobility and
accessibility (e.g. age, car ownership, disability) as well as employment status and
personal preferences:

NAci ¼ a � ki
0:5

	 

� 1þ carh � 0:33ð Þ � 1� disi � 0:33ð Þ

����
� 1þ agei ¼ 2½ � � 0:33ð Þ � 1� agei 6¼ 2½ � � 0:33ð Þk þ empi � loci

ð3Þ

where
NAci is the number of activities for resident i,
ki is a preference index,
carh is a binary variable equal to 1 if the household h owns a car and 0 otherwise,
disi is a binary variable equal to 1 if individual i is disabled and 0 otherwise,
agei is the age group of individual i,
empi is a binary variable equal to 1 if i is employed and 0 otherwise,
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loci is a binary variable equal to 1 when i’s workplace is located within the study
area and 0 otherwise,

xk k indicates the nearest integer number to x,
a is the average number of activities based on employment status; equals 2.5

for employed residents and 3 for non-employed.

The number of activities thus ranges between 0 and 12. The location of each
activity is set by distance from previous location (starting from home) minimizing
preferences, risk evasive behavior and preferences for scale. Risk evasiveness is
embodied in the tendency to avoid areas in which a large proportion of the
buildings are vacant and volume of floor-space represents preferences for scale.

atþ1;i ¼ bj ) bj 6¼ at;i
� � � ki �Att bj

� � � ¼ 1 ð4Þ

where
at;i is the current location of individual i,
atþ1;i is the next location of activity of individual i,
ki is a randomly drawn number between [0,1] reflecting activity location

preferences,
Att bj

� 
is the attractiveness score for building j, calculated as follows:

Att bj
�  ¼

1� REj
�
RBj

þ 1� Dij
�
maxDi

� 1þ 0:33 � �carh þ disi þ agei ¼ 3½ �ð Þð Þ
þ LUj ¼ nonRes
� � � FSj�maxFS

2þ LUj ¼ nonRes
� � ð5Þ

where
REj is the number of unoccupied buildings within a 100 m buffer of building j,
RBj is the number of buildings within a 100 m buffer of building j,
Dij is the distance of building j from the current location of individual i,
Dij is the distance of the building within the study area furthest away from the

current location of individual i,
LUj is the land-use of building j,
nonRes is non-residential use,
FSj is the floor-space volume of building j,
max
FS

is the floor-space volume of the largest non-residential building within the
study area.
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3.2 Environmental Processes

In most agent-based models the environment is a passive backdrop which changes
only as a direct consequence of agents’ actions (for example, changes in resource
levels due to consumption by agents). However many components of the urban
environment while not pro-active are at least reactive. For the sake of simplicity
these are not modeled individually but in aggregate, they are treated as components
of environmental sensitivity. Individual spatial elements such as census tracts,
buildings and dwelling units are characterized as quasi-agents. These are not
autonomous or mobile but are sensitive to environmental changes. This mechanism
operates top-down as the effects of aggregate trends trickle down to the level of
individual quasi-agents. We employ this mechanism in the areas of land-use
dynamics and house prices.

3.2.1 Commercial Land-Use Dynamics

In the context of these dynamics, we enlist three assumptions. First, revenue levels
required by a commercial function in order to be profitable are proportional to its
floor-space volume. Second, actual revenues at a location are proportional to local
flows of customers and third, flows are proportional to the traffic loads1 in the
vicinity of the function. This set of assumptions allows for formalizing the (logistic)
probability of land-use change (Eq. 6) as related to the congruence between floor-
space volume and traffic loads at a location (Eq. 7). This congruence, formalized as
the difference in the relative position within an exponential distribution (Eq. 8), thus
represents demand or supply surplus:

Pj;t Dxj;t
�  ¼ e�Dxj;t

1þ e�Dxj;t
ð6Þ

Dxj;t ¼
zTRj;t � zFSt;t

zFSj j ð7Þ

zyt;j ¼ k̂t � e�k̂t�yj;t � e�k̂t�ymedt
� �

ð8Þ

where of land-use change for building j at time t,
Pj;t is the probability
Dxj;t is the relative difference in standardized values for traffic load and floor-space

for building j at time t.

1We do not employ a shortest-path algorithm for movement routes but use a computationally less-
demanding model where agents move at each step to the not-already-visited node closest to the
destination (in aerial distance; loops are removed from the path). This also represents satisficing
behavior.
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zyj;t is the standardized value y (in relation to the median value ymedt ) for building

j at time t drawn from the exponential distribution y�Exp k̂t
� �

, k̂t ¼ 1
�y.

Traffic loads are calculated as the average daily load (citizens per meter) on roads
within 100 m radius for the building for the preceding 30 days. P values of 0.99 and
above are set to represent a demand surplus. For such values, residential or vacant
buildings become commercial functions. In such a case, any residents in the
location relocate according to principles discussed in Sect. 3.1.1. Values within the
range [P(1) − 0.01, P(1)] are used to identify supply surplus, or unprofitability,
which results in commercial buildings becoming vacant. Such formalization and
critical values limit the sensitivity of large commercial functions and small resi-
dential uses, thus eliminating a possible bias for changing initial uses in these cases.

3.2.2 Dynamic House Pricing

Housing decisions (Sect. 3.1.1) are made in relation to prices. These prices repre-
sent demand, supply and the locational (dis)advantages of a specific dwelling unit
(DU) and building. In order to capture the unique contribution of such market-level
dynamics to the value of the individual unit, we formalize a three-stage mechanism.
Within this mechanism the effects of global changes trickle down from the census-
tract (CT) level to the building and DU level. Average housing values per meter in
CTs (Eq. 9) change daily with changes to supply, demand and accessibility to
services (supply of non-residential functions) within them. These prices set the
value of individual buildings, along with local accessibility levels (Eq. 10).
Assuming equal size for all DUs within a building, the monthly cost of housing is
derived in relation to the average willingness to pay of the population (Eq. 11).
Changes to commercial values are the result of a similar simpler process which is
dependent on supply only and ends at the building level (see Eqs. 10 and 11):

AVCT ;tþ1 ¼ AVCT ;t

� 1þ log
popCT ;tþ1

�
popCT ;t þ resCT ;t

�
resCT ;tþ1

� �
� LU ¼ Res½ � þ nResCT ;tþ1

�
nResCT ;t

� ��1þ2� LU¼Res½ �

1þ 2 � LU ¼ Res½ �

0
B@

1
CA

0
B@

1
CA
ð9Þ

where
AVCT ;t is average value (commercial or house prices) per meter in CT at time

t,
popCT ;t is population in CT at time t,
resCT ;t is the number of residential buildings in CT at time t,
nResCT ;t is the number of non-residential buildings in CT at time t,
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LU ¼ Res½ � is a binary expression which is true (equals 1) if AV relates to house
prices and 0 otherwise

Vj;t ¼ AVCT ;t � FSj � SLj;t
�
SLCT ;t

� � LU¼Res½ �
ð10Þ

where:
Vj;t is the house price of a dwelling unit in building j at time t,
SLs;t is the service level within area s at time t—the ratio of non-residential

buildings to residential buildings in the census tract CT if s = CT or, if s = j,
within a 100 m buffer of building j.

PDU;t ¼

�It=3 � 1þ
Vj;t=#Apj�

PLt
l¼1

Vl;t

�PLt
l¼1

#Apl

Prt

0
BBBB@

1
CCCCA

c
ð11Þ

where
PDU;t is the monthly cost of living in dwelling unit DU at time t,
�It is the average household income in the study area at time t,
#Ap is the number of DUs within a building. If the building is initially

residential, this is equal to its initial population size. Otherwise it is the
floor-space volume of the building divided by 90 (the average DU size in
meters),

Lt is the number of residential buildings in the study area at time t,
Prt is the standard deviation of DU prices within the study area at time t,
c is a constant.

4 Context and Data

The simulation involves a hypothetical earthquake in the CBD of Jerusalem. While
the CBD lies in a relatively stable seismic area, the city itself is located only 30 km
east of the active Dead Sea Fault Line. Moreover, the majority of the buildings in
the city center were constructed prior to the institution of seismic-mitigation
building regulations, hence they are prone to damage (Salamon et al. 2010). This
study area covers 1.45 km2 and includes two major commercial spaces: the
Mahaneh Yehuda enclosed street market and the CBD (see Fig. 2). The hetero-
geneous mix of land uses is represented by residential buildings (243 Th m2, 717
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structures and 22,243 inhabitants), commercial buildings (505 Th m2, 119 struc-
tures) and government/public use buildings (420 Th m2, 179 structures). Three
major transportation arteries traverse the area and generate heavy traffic volumes:
Agripas and Jaffa (light railway route) Streets run north-west to the south-east and
King George Street runs north-south.

The available data on buildings and population in the study area is aggregate
data provided at the level of the Statistical Areas (SA).2 The data drives the model
at three different spatial resolutions: buildings, households and individuals. The
variables used to populate the buildings can be grouped into three categories and are
defined in Table 1:

• Building level: land-use, floor-space, number of floors, building value,
households.

• Household level: inhabitants, earnings, car ownership.
• Individual level: Household membership, disability, participation in the work

force, employment sector, age, workplace location.

We use a GIS buildings layer to provide the distribution of all buildings
nationally with their inherit attributes such as aerial footprint, height and primary
land use. These attributes are utilized to calculate the floor-space of each building.
We then calculate the value of buildings according to their land use and floor space.
Inhabitants' socio-economic attributes are proportionally allocated to each building,
using a methodology described in Lichter and Felsenstein (2012). The disaggre-
gated building level data serves as the basis for the further disaggregation at the

Table 1 Variables used in the model

Variable Source Spatial unit

Residential building value
per m2

National Tax authority 2008–2013 SA

Non-residential plant and
machinery value

Local authorities financial data (CBS)
(Beenstock et al. 2011)

Local
authority

Number of households CBS 2008 SA

Number of inhabitants CBS 2008 SA

Average monthly household
earnings

CBS 2008 SA

Labor force participation CBS 2008 SA

Employment by sector CBS 2008 SA

Percent disabled CBS SA

Age CBS SA

Workplace location GPS survey 2014 Survey of
individuals

2A statistical area (SA) is a uniform administrative spatial unit defined by the Israeli Central
Bureau of Statistics (CBS). It corresponds to a census tract and has a relatively homogenous
population of roughly 3000 persons.
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level of the individual. This begins with assigning each individual in the database a
unique id, so that it is represented as an entity tied to a building in the database.
Next, each person is allocated a random point location (a lat, lon coordinate) in the
building with which it is associated. Demographic attributes (labor force partici-
pation, employment sector, disabilities and age group), assigned to buildings in the
previous stage, are allocated to each individual so that they comprise the entire
distribution in the building. Individuals are then clustered into households
according to the household size (number of persons) in each building. Households
are also represented as unique entities in the database and are associated with
buildings. The clustering introduces heterogeneity in terms of the age distribution to
closely represent a “traditional family household” having both adults and children
when these are present in the building. A household entity represents the sum or
average of the attributes of its members and is further assigned attributes such as
earnings and car ownership in the same way these were assigned to individuals. The
distribution of work locations of inhabitants by employment sector is derived from
a GPS-basedtransport survey carried by the Jerusalem Transport Master Plan Team
(Oliveira et al. 2011). We use this data to create a distribution of inhabitants
working within and outside the study area, by sector of employment.

4.1 Case Study Specifications

The impact of the earthquake is modeled here as a one-time shock diffusing from a
focal point. The effects of this shock result in physical damage to buildings and the
road network. The probability that a building will collapse is proportional to its
height and distance from the epicenter (Carenno et al. 2012) and is compared to a
randomly-generated physical resilience score:

bj ¼ damaged ) Rj\
c � 10mag

Dj � log Dj
� �� �� � Fj

" #
¼ 1 ð12Þ

where
Rj is the resilience score for building j,
c is a constant,
mag is the earthquake magnitude (similar to the Richter scale),
Dj is distance of building j from the earthquake epicenter,
Fj is number of floors in building j.

Every building that collapses becomes vacant and unusable. All residents choose
between migrating and relocating (see Sect. 3.1.1). A collapsed building blocks the
closest road. Buildings are restored to pre-shock size and the duration required for
this recovery (and the attendant re-opening of the blocked road) is proportional to
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floor-space (Carenno et al. 2012). Upon restoration, the building does not auto-
matically retain pre-shock use.

The earthquake is simulated 25 times3 with its epicenter randomly located in
order to avoid location-based bias in the results. Each simulation comprises 1000
iterations (ticks) where each tick represents one activity day of resident-agents. In
each simulation, the earthquake occurs after 50 iterations in order to let market
dynamics kick-in and stabilize. The results below describe the averages of all
simulations.

5 Results

The results presented below relate to both short and long term impacts. They
differentiate between global impacts and their temporal and spatial distributions and
between effects on population flows and housing stocks.

5.1 Aggregate Patterns and Equilibrium

Folke et al. (2002) conceptualize resilience as the ability of a system to reorganize
itself following a change. This stresses the notion of moving beyond recovery to pre-
shock state and attaining stability. The global indices of resilience presented below
are constructed in this spirit. They quantitatively assess the tendency of a system to
achieve a stable equilibrium. A system meets stability criteria if it registers consistent
value levels over a consecutive period of days. Specifically, we relate to the dif-
ference between current value and the average value over the preceding 50 days.
Attainment of equilibrium is defined as the first day (counting back from the end of
the simulation) when the day-to-day change is not significant. Table 2 presents the
frequencies of achieving equilibrium, along with average durations and final changes
in value (final to pre-shock value ratio) for a variety of indicators.

The study area is resilient to the shock across most dimensions but not in the
classical recovery sense of the term. Residential and non-residential capital stock
both stabilize in terms of size (number of buildings) and value in the simulations but
usually on values different to those existing under pre-shock conditions (the
exception being average residential value). Population, the most mobile element in
the model, does not show such stability. In the majority of cases (14/25, i.e. 56 %),
income presents a continuing change, while in the other cases equilibrium is
achieved quite late. This suggests that in spite of population size stabilizing,
migration flows keep on affecting the composition of population.

3This arbitrary number was chosen in order to balance between computing loads and convergence
of results.
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The new situation of a larger, yet cheaper, non-residential capital stock is not
fully explained by the decreasing value of non-residential stock, as stock size
stabilizes long after values. Floor-space volume, which also affects values, may
account for this trend as it decreases by 20 % on average. Most of this decrease
happens within 300 days of the shock and a negligible difference (0.56 %) is
registered between values at day 350 and day 1000, correlating with the time
required for non-residential values to achieve equilibrium. Therefore, these values
experience a large initial shock. The new non-residential functions that appear over
time are smaller in terms of floor-space and do not further affect values.

Residential stock presents a mirror image with average values lagging behind
size. Supply and demand (population size) dynamics do not temporally correlate
with the recovery of average values. This suggests that these effects may be
attributed to other elements in the house price mechanism such as service levels
(number of non-residential buildings). These stabilize just before residential values
and floor-space volume. The latter increases by 12.7 % on average. These two
trends are sufficient to contain the effects of the sharp decrease in population
thereby creating a recovery scenario in relation to housing values.

5.2 Spatial and Temporal Distribution of Effects on Stocks

As outlined in the previous section, the average post-shock picture is one of smaller
and cheaper commercial functions along with slightly larger residential buildings.

Table 2 Global resilience measures

Parameter Variable Frequency of
equilibrium (out
of 25 simulations)

Average duration
to achieve
equilibrium
(days)

Average final
change (% of
pre-shock
value)

Population Population 24 397 67.85

Average
income

11 950 50.53

Residential
stock

Residential
stock size (#
buildings)

25 332 88.34

Average
residential
value

22 677 96.12

Non-
residential
stock

Non-
residential
stock size (#
buildings)

23 670 142.43

Average non-
residential
value

25 385 78.61
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Yet inequalities in the distribution of these changes may exist, as some areas may
enjoy/suffer their consequences more than others. Furthermore, these distributions
may or may not be stable over time. Figure 2 represents the distribution of land-use
over these two dimensions. The unequal spatial pattern is evident as the propensity
for new commercial functions to emerge is greater in the areas south-west and
north-east of the market. These new land uses tend to stabilize over time, as indicated
by the diminishing vacancy rate. This phenomenon may be attributed to centripetal
and centrifugal forces. The centrifugal force is set in motion by the physical damage
of the earthquake blocking movement paths. In search of new routes, traffic patterns
disperse from pre-shock state to the south-west and north-east4 (Fig. 2, T = 100).
As traffic loads are the locus behind the spatial pattern of commercial uses
(see Sect. 3.2.1), their dispersal increases the potential profitability of new locations,
attracting new activities away from previous clusters. Yet, the new emerging
functions exert a self-enhancing centripetal force through a cyclical process of
influence: new functions attract more traffic, which increases their profitability
and attracts more uses, which further attract traffic loads. This centripetal force
continues to work long after the effects of the initial shock have subsided thus
perpetuating some of the new traffic patterns even after blocked roads start to open
up (T = 250, T = 1000).

Fig. 2 Spatial distribution of land-use change. Height represents the number of simulations in
which land-use change (colored) and vacancy (in grey) occurs. Building color indicates initial
land-use: residential (green), commercial (blue), or public (pink). Road heights represent average
traffic load. Roads in red denote values above the average

4This is also apparent in change to the average standard deviation of traffic loads (agents per
meter). Over time, the average s.d. decreases by 73.58 % in relation to pre-shock state, suggesting
a more even dispersal of traffic loads.
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5.3 Spatial and Temporal Population Dynamics

In order to characterize population flows we calculate a normalized weighted
composite ‘Social Vulnerability Index’ (SVI; see Lichter and Felsenstein 2012) at
the level of the building. The relative weights of the elements comprising the index
reflect their contribution to aggregate socio-economic vulnerability.

SVIb;t ¼ 0:5 � �Ib;t þ 0:1 � Crb;t � 0:2 � �Ab;t � 0:2 � Dsb;t

where
�Ib;t is the average monthly income of households residing in building b at time t,
Crb;t is the rate of car ownership of households residing in building b at time t,
�Ab;t is the average age within households residing in building b at time t,
Dsb;t is the share of residents who suffer disability building b at time t.

Assessing the spatio-temporal distribution of population flows is achieved via a
two-step procedure. First, we interpolate the individual SVI values of buildings
onto a continuous surface5 and then we calculate the Local Indicators of Spatial
Autocorrelation6 (LISA; Anselin 1995) for each cell. We do this at temporal
intervals of 50 days. This procedure allows for identifying clustering and dispersal
patterns over time. Figure 3 shows the significant clusters of similar values (high
LISA values).

As in the case of land use, the results suggest the existence of a similar centripetal-
centrifugal tension for population flows. The shock breaks down the initial divide of
a less vulnerable western cluster and vulnerable eastern areas (T = 50) into a pattern
of clusters surrounded by areas of mixed population (T = 150). The tendency of
households to choose living environments that preserve previous conditions (see
Sect. 3.1.1) acts as a centripetal force that makes pre-shock clusters more attractive.
As the centrifugal effect of the shock is only temporary, clustering continues and the
clusters grow and become more punctuated (T = 250 and T = 1000).

In spite of these similarities, there is a subtle yet important difference between
effects on flows and on stocks. While the dissolution of previous clusters into new
agglomerations may be interpreted as a sign of recovery and efficiency in an eco-
nomic system, in the social context this is not necessarily the case. This process of
re-grouping may in fact exacerbate vulnerability as existing communal support
systems may stop functioning. This is especially true in the case of vulnerable
populations. As they are less mobile due to greater budget constraints, they are
exposed to the effects of more resilient, in-migrant households. If such households
are characterized by high tolerance to change, they can easily relocate to more

5We use an Inverse Distance Weighting procedure. The parameters used are: pixels of 10 × 10 m,
100 m search radius and 2nd order power function.
6Neighborhood is defined using a queen contingency matrix.
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vulnerable areas. By doing so, they act as agglomeration nuclei, changing the nature
of their environment and attracting more population similar to them. As social
mixing increases, social cohesiveness of the neighborhood decays and its institu-
tions break down. Vulnerable populations are thus faced with the choice of
remaining with no support or migrating to ‘ghettos’.

5.4 Interactive Web-GIS Application for Visualization
of Results

As the simulation outputs are multi-dimensional and include vast amounts of
information on urban dynamics both spatial and temporal, we use web-GIS to
communicate the results. The complexity of outputs is hard to internalize or
visualize in their entirety using traditional graphic representations. We develop a
web-based application to allow interactive visualization and querying of the multi-
dimensional output in an intuitive and user-friendly fashion. (see http://ccg.huji.ac.
il/AgentBasedUrbanDisaster/index.html.) The site serves solely as a visualization
tool for pre generated results and not as a vehicle for distributing the model. Using a

Fig. 3 Spatio-temporal distribution of SVI. Purple indicates higher absolute SVI values, brown
indicates lower. Height represents LISA values. Building color indicates land-use at time T in the
majority of the simulations: residential (green), commercial (blue), or public (pink)
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simple web browser, users can generate time lapse visualizations in the form of
maps and charts without any previous knowledge in handling spatial data or using
GIS. They can choose a variable of interest, visualize its change over space and
time and create location-specific information. This interaction is facilitated by
simply clicking on the map or the chart or using gauges such as buttons and sliders
(Fig. 4). When initiating such an event, a single click can trigger complex querying
of the database in the background. This necessitates database design and con-
struction in a way that allows for fast and efficient data extraction. We create a
dedicated database for the output results of time series from the model simulation.
This is achieved by using DB design that does not always follow strict design
guidelines but rather contains some flat tables to enable lateral data charting, dis-
played in pop-ups, graphs and charts. The visualization includes time lapse rep-
resentation of human mobility (household level), changes in passengers along
roads, changes in building land use and value, household socio-economic change
and so on.

The web-mapping platform is Google Maps API. Middleware functionalities are
added to the application based on JavaScript libraries and APIs. These functions
interact with the web-mapping platform to provide ancillary capabilities (Batty et al.
2010) such as time laps animation, action buttons, sliders, interactive graphs etc.

6 Conclusions

The findings above have looked at urban resilience at both the metropolitan and
local scales. With respect to the former, we observe that the resilience patterns of
residential and non-residential (commercial) capital stock are very different. Post-
disaster, non-residential stock attains equilibrium based on a pattern of smaller, less

Fig. 4 Web-based querying and visualization application of selected variables on a dynamic web-
map (see http://ccg.huji.ac.il/AgentBasedUrbanDisaster/index.html)
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expensive units, while the opposite holds for residential stock. Population levels
stabilize much faster than income, indicating demographic turnover and churning.
At the local scale, we look at the difference between the resilience of stock vari-
ables, exemplified by land use and that of flow variables, represented by a com-
posite measure of social vulnerability. Our main finding is that in the advent of a
shock, both stock and flow variables disperse and re-aggregate over time. However
more resilient socio-economic groups cope better with dispersing and then re-
clustering. Less resilient populations are more in need of community support sys-
tems and cannot rejuvenate quickly.

To add further realism, future work will need to relax some of the strong
behavioral assumptions underlying the model. For example, the demand for
housing is currently determined by affordability and attractiveness of the units on
offer. This is a slightly mechanistic representation of a process that generally
involves bidding, expectations and perceptions of opportunities. On the supply side,
it would be useful to explicitly include the behavior of building contractors. At
present, housing supply is driven by land use change and in particular by com-
mercial land use becoming residential. Furthermore, migration behavior in the
model is currently motivated by steady-state probabilities of movement augmented
by the destruction of buildings. This results in mass flight followed by stabilization
at a lower level equilibrium. We do not capture the psychological over-reaction of
population movement identified in the literature (Stein et al. 2010; Whitehead et al.
2000). In this respect, our results may be downwardly-biased.

If stronger populations have the resources to accommodate the negative impacts
of a disaster, then urban resilience is thus as much about economic welfare as it is
about engineering or morphology. From a socioeconomic perspective, it is not the
magnitude of the disaster that is important but the ability to cope with its results.
Vulnerable populations or communities can be disproportionately affected by
unanticipated disasters which are more likely to push them into crisis relative to the
general population. Much of this can only be detected at the micro level such as the
household or building. This is often smoke-screened in studies dealing with
aggregate city-wide impacts. The use of highly disaggregated and accurately pro-
filed data is thus critical in understanding urban resilience.

Two policy implications arise from the above findings. First, as an exogenous
shock has no predetermined outcomes, a disaster may elicit wildly diverging
responses in different urban environments. This has policy implications calling into
question much of the popular literature advocating a ‘one size fits all’ approach to
urban resilience (Prasad et al. 2009; UNISDR 2012). While well intentioned, the
standard check-list approach to promoting resilience may be misleading. Second,
the dynamic simulation outcomes point to differential rates of recovery over time
across the components of the urban system (for example residential and commercial
capital stock). In an effort to ‘get things done’ in the aftermath of a disaster, public
policy for urban recovery is often characterized by knee-jerk (over) reaction that
involves time-compressing rebuilding and rejuvenation measures (Olshansky et al.
2012). The redevelopment opportunities for large scale urban change over a short
period of time, afforded by disaster, fail to recognize the existence of multiple and
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unstable urban equilibria resulting from different activities recovering at different
rates. Urban resilience is as much about judiciously synchronizing recovery across
the urban system as it is about getting cities to ‘bounce back’.
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