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Abstract There is a lack of building energy modeling in current planning support
systems (PSS) while building energy efficiency is getting greater attention. This is
due to the current limitations of energy modeling at the urban scale and the
inconsistency between the available urban data and that required for modeling. The
chapter seeks to fill this gap by developing a GIS-based urban building energy
modeling system, using the Urban-EPC simulation engine, a modified Energy
Performance Calculator engine. This modeling system is compatible with other
planning tools, enhanced by the combination of physical and statistical modeling,
and adjustable in its resolution, speed and accuracy. Through processing the Data
Preparation, Pre-Simulation, Main Simulation and Visualization and Analysis
models in this energy modeling system, the urban data related to the basic building
information, mutual shading, microclimate and occupant behavior are collected,
modified, and synthesized in the GIS platform and then used as the input of the
Urban-EPC engine to get energy use of every building in a city, which could be
further visualized and analyzed. The method is applied in Manhattan to show its
potential as an important component in PSS to inform urban energy policy making.
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1 Introduction

The energy used in buildings is a large share of overall energy use, e.g. 20–40 % in
developed countries, and the potential for reduction is drawing the attention of
planners and policy makers (Perez-Lombard et al. 2008). Although it was stated
from a long time ago that energy use is an important aspect in planning support
systems (PSS) for the sustainable urban development (Harris and Batty 1993;
Mohammadi et al. 2013; Snyder 2003), the investigation of building energy use is
still rare in the PSS field. Only a few researchers have incorporated a “Performance/
Evaluation Model” that measures building energy use in PSS and Geodesign and
used the results as the criteria to evaluate different planning scenarios (Quan et al.
2013; Yeo et al. 2013).

The discrepancy between the lack of building energy assessments in PSS and
Geodesign models and the increasing need to assess the energy performance of
different urban forms is due to two reasons: modeling limitations and data incon-
sistencies. First, there are significant modeling limitations in measuring large-scale
building energy use. Traditional engineering-based building energy modeling tools,
including the US standard program DOE-2 and its successor EnergyPlus (Crawley
et al. 2001), IES-VE (Virtual Environment by Integrated Environmental Solution, a
commercial building simulation tool) (Integrated Environmental Solutions Limited
2012), analyze only an individual building as a single system for simplification (Al-
Homoud 2001). There are four major groups trying to scale this up to the city level,
but none have provided a sufficient solution to account for the influence of urban
contexts at different spatial scales. The first group scales energy assessment from
single buildings to urban areas directly by using simple building stock approaches.
However despite the discussion of spatial variations in the “second order uncer-
tainty” (Booth et al. 2012), little concern was placed on the influence of building
locations and their urban contexts. The second group is considerably aware of the
urban context in their modeling (Pisello et al. 2012; Wong et al. 2011). However
their approaches tend to be confined by specific urban settings and are hard to apply
to other places. The third group has developed fully fledged energy modeling
methods for the urban environment, including CitySim and UMI (Reinhart et al.
2013; Robinson et al. 2009). But as stand-alone software, they require tedious data
transferal and rebuilding from ArcGIS data as widely used in urban studies. The last
group led by Steemers and Ratti has developed the LT model to measure building
energy based on raster data in GIS (Ratti and Richens 2004). But their specific
assumptions of occupant behavior and the resolutions of the raster limit its use at
the city scale.

Besides the unawareness of urban context, the engineering-based methods in the
four groups require basic knowledge of building physics, HVAC (heating, venti-
lation and air conditioning) systems, etc., which are unfamiliar to most planners.
This calls for a simplified, cross-scale, context-sensitive and GIS-based modeling
method to measure urban building energy use in PSS.
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Second, data inconsistency is another obstacle in developing and applying the
building energy modeling in PSS. On the one hand, there are plenty of urban data
available such as building intensity and population. On the other hand, building
energy modeling methods require very detailed building component data, such as
building shapes, materials, fenestrations, occupant schedules and HVAC systems,
which are lacking at the urban scale (Al-Homoud 2001; Flaxman 2010). Due to
such discrepancies between the available urban data that could provide general
building information and the missing specific building-level data for detailed
building information required by the building energy modeling, researchers and
planners have only been able to estimate building energy use in small areas using
surveys of detailed building data (Reinhart et al. 2013; Robinson et al. 2009), or to
roughly estimate the building energy performance in large areas with simplified
assumptions (Quan et al. 2013). Developing urban building energy modeling
requires finding a way to use related information in urban data to get the detailed
information as building scale data, which connects data at urban and building scale.

In order to fill those research gaps, this chapter aims to develop a GIS-based
urban building energy modeling system using what we call the Urban-EPC engine,
a modified version of a reduced-order building energy model called the Energy
Performance Coefficient Calculator, or EPC for short. The EPC is an implemen-
tation of the ISO 13790:2008 standard, which lays out a calculation recipe for
normatively estimating building energy performance using basic physics-based
equations involving a comparatively small set of parameters and normative state-
ments about the assumed usage scenario, system efficiency, etc. per functional type
of building (ISO 2008). The underlying model of the EPC is much smaller than
tools such as EnergyPlus, resulting in not only faster computational speed, but also
an input parameter set that is much smaller and simultaneously aggregated to a level
more commensurate with urban GIS data. Through its simplicity and unified
modeling assumptions, this approach forms the basis for assessing building energy
performance in a standardized and transparent way (Hogeling and Van Dijk 2008).
Because of this, the EPC is well-suited for rating the energy performance of both
new and existing buildings. In addition, the normative assumptions were calibrated
on a large collection of different buildings, making the calculator well suited for the
macro-level calculations as reported in this chapter, e.g. where the information
about individual buildings is thin.

The EPC recipe is based on the hourly heat balance of the whole building using
inputs such as wall and window areas, shading coefficients, material properties, net
functional floor area, lighting density, internal heat production from appliances,
plug loads, temperature set points and occupancy schedules. The calculation goes
through three steps. Based on hourly calculations in the local weather conditions,
the heating and cooling loads are calculated. This thermal demand is then translated
into the delivered energy (electric and gas) used by the building systems. The
translation is driven by macro system efficiency factors, normatively defined per
system type. Finally, with the addition of data on other electricity usage in the
building, the total consumption can be calculated and translated into primary energy
units, i.e. the summation of the primary energy (gas, coal, oil) that is consumed by
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the generation sites. Comparative analyses have shown that the calculator is
accurate for the purpose described in this chapter (Kim et al. 2013; Lee et al. 2013).

This energy modeling method has five advantages over previous methods:

Urban context sensitive: the modeling takes the influence of urban context into
account and is able to estimate building energy performance in different urban
environments.
Urban data driven: it utilizes abundant urban data to inform building energy
modeling, providing building details and urban contexts, using DOE (Department
of Energy) reference buildings (Deru et al. 2011) as the complement.
GIS based: it is based on the ArcGIS platform, widely used software in PSS, and
therefore it is relatively easy for planners to run the modeling and visualize the
results.
Planning oriented: as a geo-based modeling method, it allows planners to easily
map the simulated energy use and overlay them with other planning mappings for
further analysis.
Resolution controlled: the temporal resolution of the modeling could be changed to
provide hourly, daily, weekly, monthly or annual building energy use results.
Similarly, the accuracy resolution can also be changed to the high, medium and
acceptable levels. It allows users to adjust the trade-offs between accuracy and
speed with purposes of analysis.

This modeling system requires ArcGIS 10.x and Microsoft Excel to be installed on
the PC being used.

2 Methodology

The methodology of the modeling system incorporates three aspects: the influence of
the urban context on building energy use; the role of urban data in building energy
simulation; and the integration of data processing and energy simulation as one
modeling system. Urban-EPC enhances EPC to account for these first two aspects; a
larger software architecture then coordinates the Urban-EPC to realize the third.

2.1 The Influence of Urban Context on Building Energy Use

It is well discussed that building design, system efficiency and occupant behavior
have considerable impacts on building energy consumption (Al-Homoud 2001).
Besides the three factors, some scholars are aware of the importance of urban
context in building energy (Golany 1996; Mitchell 2005; Ratti et al. 2005;
Steadman 1979). However, few comprehensive studies have been conducted to date
and the ways in which urban context influences building energy use are still
unclear. Such influences can be explored using a systems perspective. Although a
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single building is already a complex system, in a larger urban system it is seen as
only one component. In such a “system of systems” or “network of networks”
(Ackoff 1971; Batty 2013; Maier 1998), the interactions among different compo-
nents can significantly affect the individual performance and the overall system
performance. The influence of urban context on building energy captures such
system interactions including the following three types:

Interactions between a building and other buildings and obstructions: As solar
radiation on the building facades influences building energy use significantly, the
obstruction of sunlight by surrounding buildings, trees and other obstructions plays
an important role in building energy use. Such interactions among geometries are
known as external shading effects or mutual shading effects (Littlefair 1998;
McPherson and Simpson 2003; Ok 1992; Quan et al. 2014; Ratti et al. 2005; Rode
et al. 2013; Yezioro and Shaviv 1994; Yi and Malkawi 2009). The effects generally
increase building energy use during winter and reduce it during summer because of
less solar gain.

Interactions between a building and the microclimates around it: Aspects of the
local climate—including air temperature and wind patterns—can be modified by
urban form-related factors, e.g. reduced radiative heat loss and turbulent heat
transfer in urban canyons, increased thermal storage within buildings and imper-
vious surfaces, anthropogenic heat release in the urban context, etc. (Eliasson 2000;
Hassid et al. 2000; Oke et al. 1991; Steemers 2003; Wong et al. 2011). Often
known as the ‘urban heat island effect’, modified urban microclimates can reduce
building energy in winter and increase it in summer (Kolokotroni et al. 2006;
Santamouris et al. 2001).

Interactions between buildings and occupants: The occupancy pattern, including
the density and behavior, could lead to variations of building energy use in the same
building. Although the influence of occupant behavior is still unclear (Branco et al.
2004; Guerra Santin et al. 2009), the impact of occupant density is straightforward.

The influences of these interactions are measured in this modeling system as
mutual shadings, zonal microclimates and occupant densities by different tools and
engines to inform the building energy simulation. To assess those influences, urban
scale data are needed.

2.2 The Role of Urban Data in Building Energy Simulation

There is an ever-increasing supply of urban data. Enormous amounts of information
are produced and collected through traditional commercial and administrative
censuses and surveys, and more recently from mobile and social media data such as
real-time geo-labeled tweet data, traffic data, etc. (Döllner and Hagedorn 2007;
Reades et al. 2007). Urban data are of diverse types (e.g. population, economics,
transportation), available at various scales (e.g. census tracts, neighborhoods, cit-
ies), in different formats (spatial and aspatial data), all collected for different points
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in time or time periods. Such rich resources could greatly inform urban building
energy modeling after a careful selection of what is required directly and indirectly
by the simulation engine.

The core simulation engine of the Urban-EPC consists of the EPC, reference
building models from the US Department of Energy (DOE), a shading engine, a
microclimate engine, and an occupancy engine. In the EPC, general building
component information such as floor areas and room volumes are taken from
building footprint data, parcel data and land use data in the urban dataset. However,
some detailed building data such as materials, heating, ventilation and air condi-
tioning (HVAC) systems, and window-wall ratios, are also required by the EPC
which cannot be found in the urban data. A set of commercial reference building
models, developed by the US Department of Energy (DOE) and representative of
the national building stock, are used to provide missing building model inputs.
These contain three categories of building vintage (based on the construction year),
each of which includes 16 building types representing most of the commercial
buildings across 16 US climate zones. Model inputs, including geometry, envelope,
material properties, building usage and operational schedules were developed from
several building databases such as F.W. Dodge building stock and forecast data
(Dodge Data and Analytics 2005), engineering studies, design standards and
guidelines such as ASHRAE (1989, 2004), and statistics such as the Commercial
Building Energy Consumption Survey (CBECS) (U.S. Energy Information
Administration 2005). Detailed building information can be determined by linking
reference building types with the information of the building function and con-
struction year provided by the urban data. Using the reference building, the Urban-
EPC model manages to get the detailed information of each building based on its
related urban data, and thus reduces data inconsistency between available urban
data and required building data.

In the Urban-EPC core engine, three sub-engines capture the influence of urban
context on building energy. The shading engine uses the building footprint, tree
canopy, topography and parcel data to calculate external/mutual shading effects on
the windows. The microclimate engine takes weather information, building foot-
print, land cover, vegetation, street, and block data as input to estimate local air
temperature and wind patterns. The occupancy engine utilizes population and job
data to generate occupant density and use schedules of residential, commercial and
public buildings.

This Urban-EPC model requires the parameters shown in Table 1 as inputs, all of
which could be found in the urban data complemented by the reference building
database.

However, the availability of related urban data varies from city to city. In some
cities, open-source urban data may be greatly limited.
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Table 1 Input requirements of the Urban-EPC model and related urban data

Model
components

Required input
parameters

Data
source

Related urban data Specific urban
data sources

Detailed
building
information

Building shapes (e.g.
total floor areas,
volumes, façade
areas, rooftop areas)

Urban
data

Building footprint
data, parcel data,
topography data

City Department
of Planning

Window to wall
ratios

Reference
building
and urban
data

Building footprint
data, parcel data,
land use data

City Department
of Planning

Building materials Reference
building
and urban
data

Building footprint
data, parcel data,
land use data

City Department
of Planning

HVAC system Reference
building
and urban
data

Building footprint
data, parcel data,
land use data

City Department
of Planning

Shading
engine

Building geometries Urban
data

Building footprint
data, parcel data,
topography data

City Department
of Planning

Other obstruction
geometries

Urban
data

Tree canopy data,
topography data

City Department
of Planning, City
GIS Portal

Microclimate
engine

Urban canyon
parameters

Urban
data

Urban block shape
data, building
footprint data, parcel
data, street network
data

City Department
of Planning

Percentage of
pervious surfaces and
building rooftops

Urban
data

Land cover data,
building footprint
data, vegetation
data, tree canopy
data

City Department
of Planning, City
GIS Portal

Weather data Imbedded
in EPC
and urban
data

Weather station data NOAA
(National
Oceanic and
Atmospheric
Administration)

Occupant
behavior
modification

Occupant density Reference
building
and urban
data

Population
distribution data, job
distribution data

U.S. Census
Bureau

Occupant behavior Reference
building
and urban
data

Detailed population
distribution data,
detailed job
distribution data

U.S. Census
Bureau

24 Urban Data and Building Energy Modeling … 453



2.3 The Integration of Data Processing and Energy
Simulation as One Modeling System

Based on an understanding of the influence of the urban context, the core Urban-
EPC engine and its related urban data, a GIS-based urban building energy modeling
system is developed.

2.3.1 Structure of the Modeling System

The modeling system developed in this chapter contains four major models: the
Data Preparation Model, the Pre-Simulation Model, the Main Simulation Model
and the Visualization and Analysis Model. This modeling system uses urban data
from various sources as its input, integrates and refines them into a new set of data
required by the pre-simulation engines, provides the resulting data to the main
simulation model, and visualizes and analyzes the final results with other urban
data. The modeling system structure and its data flow are shown in Fig. 1.

The whole system runs on the GIS platform except for the main simulation
engine, which runs in Excel but is organized and linked to GIS by ArcPy, “a site
package that builds on the successful arcgisscripting module” (Esri 2012). The
whole modeling system is developed in two GIS tool forms based on a trade-off
between usability and speed: the ModelBuilder toolboxes and the ArcPy codes. The
ModelBuilder approach is easy to use for planners, but is also relatively slow. The
ArcPy codes run much faster but require basic knowledge of ArcPy. Generally the
ModelBuilder approach is more useful for energy simulation of small areas while
the ArcPy approach is the better choice for large urban areas.

Fig. 1 Structure and the data flow of the urban building energy system
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2.3.2 Data Preparation Model

The Data Preparation Model organizes, modifies and integrates the urban data from
different sources into a new dataset to inform pre-simulation engines. Within this
model, there are four streams of data flow. The first data stream starts with the
building, parcel, land use, and topography data, sorting and transforming them into
inputs, encoding the building function, construction year, building shape and
detailed façade dimensions in eight orientation categories (as required by the EPC).
From the façade information, the second data stream provides sample window point
matrices and calculates their obstruction angles for the shading engine; this engine
measures where solar direction radiation is blocked due to surrounding obstructions
within a certain distance, as shown in Fig. 2. The obstruction angle then equals
arctan(H/D). The third data stream extracts population density, job density and
population composition information such as age, gender and education information
from the demographic and job data. The fourth data stream uses urban block, street,
land cover, and weather data to calculate canyon height, canyon ratio (the canyon
height/the canyon width) and impervious surface ratio, which are important input
parameters in the microclimate engine.

2.3.3 Pre-simulation Model and Main Simulation Model

The pre-simulation model includes the reference building dataset and the three
urban context engines and provides important inputs to the Urban-EPC engine. The
reference buildings are used to determine more detailed building information based
on building functions and construction years. The shading simulation engine takes
the obstruction angles of each window from all possible directions, and compares
them with the zenith angle of the sun every hour throughout a year to find whether a
window is shaded and then calculates the shading factor as the percentage of shaded
windows on each façade. The microclimate simulation engine parameterizes urban
characteristics from the urban block, street and land cover data into four urban
parameters in each microclimate zone: canyon height, canyon ratio, pervious road

Fig. 2 The obstruction angle of one point
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fraction and building roof fraction. It relates microclimate changes to these urban
parameters through explicit statistical formulations such that buildings with similar
urban parameter values share a similar microclimate, i.e. hourly ambient temper-
ature and wind data. Then, by dividing all of the buildings into several climate
zones and assuming that buildings in the same zone share a set of typical urban
parameter values, the number of microclimate simulations can be reduced to only
the number of zones. This dividing process is performed using a K-means clus-
tering algorithm (MacQueen 1967), which selects 50 climate zones and the typical
values for each zone such that the average difference between values of a single
building and the typical values of its microclimate zone is minimized. The modi-
fication of occupant density is based on the population density and job density from
urban data while the occupant behavior change is referred to the related literature.

Taking as input the detailed building information from the reference building
approach, the shading factors of each building from the shading engine, the ambient
temperature and wind data of each microclimate zone from the microclimate
engine, the modified occupant behavior data from the occupancy engine, as well as
the general building information extracted directly from the urban data, the core
engine generates the hourly energy consumption of each building throughout a year
in the Main Simulation Model. The results are then aggregated into monthly and
annual building energy use data.

2.3.4 Visualization and Analysis Model

In the Visualization and Analysis Model, simulated building energy use is mapped
to building GIS data for visualization. The simulated energy data are generated in
this modeling system from the urban data and now they become a new part of the
urban data in GIS format. They can be easily overlaid with other urban data for
further analysis such as the density-energy relations. Also, since the models and
engines are loosely coupled in the whole system, new engines and modules could
be added to this system to extend its analysis capacity.

3 Case Study: Energy Performance of Buildings
in Manhattan

The Manhattan borough in New York City is taken as a test case to demonstrate
how the proposed urban building energy modeling system works in an actual urban
area. The simulation results are then compared with measured data from 2012.
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3.1 Case Area

According to the borough boundary and building footprint data of Manhattan (NYC
Department of City Planning 2014; NYC Department of Information Technology
and Telecommunications 2014), there were 45,920 buildings with the total floor
area of 43,743,004 sq. ft. in 2013.

3.2 Data Preparation

In the Data Preparation Model, related urban data were organized to provide the
inputs for the simulation. Although data production dates range from 2010 to 2013,
this study makes the assumption that urban changes during these four years are
minimal and that all the data represent Manhattan in 2012.

3.2.1 General Building Information

The building footprint data only contain the buildings’ geometric information. In
order to get other information such as building types, built years, etc., the parcel-
level PLUTO (Primary Land Use Tax Lot Output) data was joined to the building
footprints (NYC Department of City Planning 2014), as shown in Fig. 3a. However,
the geometric data in both dataset does not quite match and so some corrections
were made to estimate the building heights and number of stories, with references to
Google Earth 3D buildings.

Based on the orientations, the facades were categorized into eight groups, as
shown in Fig. 3b. Because the Manhattan grid has its particular orientation of 29°,
the eight default orientations in the EPC calculator were modified in this case study
by adding 29 degrees to each, which became 29°, 74°, 119°, 164°, 209°, 254°, 299°
and 344°. The areas of those categorized facades, as well as the building floor areas
and volumes were calculated as the input of the energy simulation model.

3.2.2 Mutual Shading Data

In this case study, only buildings are considered as obstructions in the shading
effect. Since the GIS building footprint data already contains elevation data, the
facades can be readily located without additional topography data. Then, point
matrices were generated on facades wider than 5 ft. and higher than one storey to
represent samples of windows, assuming that windows are evenly distributed at
each floor on the facades. The vertical spacing of the point matrices is the storey
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Fig. 3 Top Overlaying of the building footprints and PLUTO parcel data; Middle Categorized
facade orientations; Bottom Microclimate zone overlaid on the land cover; all in Midtown,
Manhattan
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height, while the horizontal spacing is set at 40 ft. for simplicity. Overall there are
397,404 points generated on the facades of 45,920 buildings in Manhattan.

From each point representing a sample window position, lines of sight were
generated in GIS with the angle interval of 15°, which is the average angle that the
sun’s position changes by every hour throughout a year in New York City (NYC)
(SunEarthTools.com 2014). The maximum obstruction angle along each line was
calculated by intersecting the buildings with the line of sight. The length of the line
of sights was set to be 3281 ft. (1 km) to intersect buildings lower than 500 and
6562 ft. (2 km) to intersect buildings taller than 500 ft. Considering the solar path
throughout 2012 in Manhattan, the possible angles of the lines of sight are limited.
Therefore a 397,404 × 17 matrix was generated with the rows as the points and the
columns as the maximum obstruction angles along lines of sight. The point matrices
and the lines of sight are shown in Fig. 4.

3.2.3 Microclimate Data

In this study, census tracts were chosen as the spatial units to divide Manhattan into
288 parts and further aggregated to 257 microclimate zones to match the spatial
extents of the PLUTO data. In each part, average street width and average building
heights were calculated to get the urban canyon widths and heights based on the
building footprints, PLUTO, and street data. Pervious road fractions and building
roof fractions were measured by extracting information from the land cover data
overlaid by census tracts in Manhattan, as shown in Fig. 3c.

Fig. 4 Point matrices on the façades and the lines of sight from a sample point
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3.2.4 Occupant Density Data

To estimate occupant densities, the block level population data from the 2010
Census TIGER (Topologically Integrated Geographic Encoding and Referencing)
and the block level job data from LODES (Longitudinal Employer-Household
Dynamics Origin-Destination Employment Statistics) were joined to the census
blocks and aggregated to the microclimate zones to get the population and job
densities (United States Census Bureau 2014a, b). Those density data were then
applied to buildings within the zones as the occupant densities for residential and
commercial buildings. Occupant behavior modification was not tested in this case.

3.3 Energy Simulation Using the Urban-EPC Engine

The Pre-Simulation Model uses the shading, microclimate, and occupancy engines
to determine hourly shading factors for building facades, hourly ambient temper-
atures for each microclimate zone, and occupant density data. Detailed building
information were obtained from the reference building dataset for NYC. These data,
together with the building information, were used as the input of the simulation to
estimate the hourly total energy use, electricity use and gas use of each building in
Manhattan throughout the year of 2012.

3.4 Visualization and Analysis

The resulting estimates of building energy use were joined back to the building data
and visualized in ArcGIS to show the distribution of annual building energy use in
Manhattan in 2012, as in Fig. 5. It is clear that the buildings consuming the most
energy are located in downtown and midtown. However, the mapping of building
energy use intensity tells another story. The comparison of building energy use and
its intensity shown in Fig. 6 suggests that although the skyscrapers in the downtown
and midtown areas consume the most energy, their energy intensities measured by
energy use per floor areas are moderate compared to the mid-rise and low-rise
buildings on the island. How building energy efficiency varies with building form
and density could be further analyzed based on the results of this energy modeling
system.

There is also a temporal dimension in the output of the modeling system. The
hourly result data can show the fluctuation of building energy over 24 h in a typical
day in Manhattan, or can be aggregated to show the monthly variation of average
building energy use intensity to better understand the dynamics of the building
energy use, as in Fig. 7.
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Fig. 5 Building energy use mapping in Manhattan in 2012 (kWh)
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3.5 Validation

The reliability and accuracy of the urban building energy modeling system is
critical when applied to support planning practice and policy making. However, so
far, few building energy modeling studies at the urban level has been rigorously
validated based on a large dataset of measure data. In this case study, the validation
used a building energy use dataset in 2012 provided under the Local Law 84
(LL84) published by The New York City Department of Buildings (DOB), which
requires “annual benchmarking data to be submitted by owners of buildings with

Fig. 6 Comparison of (top)
building energy use (EU)
mapping and (bottom)
building energy use intensity
(EUI) mapping of Manhattan
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more than 50,000 sq. ft. for public disclosure” (The City of New York 2014). The
2012 LL84 dataset contains the annual energy use data of 1680 buildings in
Manhattan, and after cleaning up missing and outlier data, 1118 buildings were left
as the dataset for validation.

The validation shows that in 80.1 % of the buildings, the estimated energy use is
within the range of 0.5–2 times of the measured energy use, suggesting an overall
good fit (Fig. 8). The NMBE (net mean bias error) is 0.28, which suggests that the
total estimation of all EUI is larger than the reported by around 28 %. The
CVRMSE (coefficient of variance root mean square error) is 0.69 at the same time,
indicating that for estimation of a single building the average error is around 69 %.
Comparing the two indices to the ASHRAE (American Society of Heating,
Refrigerating Air-Conditioning Engineers) standard of 0.05 for NMBE and 0.15 for
CVRMSE for monthly energy consumption of a single building, the accuracy is
sufficient for the urban level building energy simulation given so many uncer-
tainties in the assumed data and modeling parameters.

To understand to what extent the urban context engines improve the modeling
system, results from five modeling method scenarios were compared, including
modeling with no urban context engines, modeling with the shading engine,
modeling with the microclimate engine, modeling with the occupancy engine and
modeling with all three engines (i.e. the full urban context). The results indicate that
the urban context engines improve the modeling considerably, and that there is the
trade-off between the influences of shadings which tends to increase heating loads
which are the major loads in NYC and other factors which are likely to reduce
heating loads, as shown in Table 2 and Fig. 9.

The total time used for the above simulation of the hourly energy use of 45,920
buildings in Manhattan was 80 h using a desktop computer with an Intel i7 CPU

Fig. 7 Average monthly building energy use intensity (EUI) of Manhattan
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and 32G RAM, which is quite good for such large and dense urban area. The use of
more computers with lower modeling resolutions can reduce the simulation time to
one day or less.

Fig. 8 Scatter point chart of the estimated and reported EUI (upper line estimated data = 2*
reported data; lower line estimated data = 0.5* reported data)

Table 2 Validation results of
the urban-EPC modeling and
the traditional EPC modeling
methods

Modeling method NMBE CVRMSE

EPC with urban context (all 3
engines)

0.28 0.69

EPC with shading 0.52 0.85

EPC with microclimate 0.33 0.70

EPC with occupant behavior 0.43 0.81

EPC 0.50 0.83
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4 Conclusions

There is a lack of an urban-context-aware building energy modeling method in PSS
despite the fact that the issue of building energy efficiency is receiving greater
attention. This is due to the inability of building energy modeling to account for the
urban context and the inconsistency between the available urban data and the
required building data in traditional building energy modeling tools. Although
planners have access to abundant urban data, applications using these data for
energy performance assessments of different urban design scenarios rarely occur.

This chapter has tried to explain a methodology that aims to fill this gap. The
GIS-based urban building energy modeling system that has been outlined can be
applied to other planning studies, enhanced by the combination of the building
physical modeling and statistical dataset, and adjustable in its resolution, speed and
accuracy. The modeling system as a process of using urban data to inform urban
building energy use was demonstrated using the case study of Manhattan. The
results show an acceptable level of accuracy for modeling such a large and dense
urban area based on a relatively simple method.

The modeling method also reveals some problems with data management and
tool platforms. On the data side, data inconsistency, low-level detail, and missing
information are common in urban data for many cities, especially for the infor-
mation required by building energy modeling. For example, building data and
PLUTO data have huge inconsistencies in building heights. Better management is
required to collect, examine, organize and share urban data in each city. In some
cities where open-source urban data are limited, planners need to use the BAD (Best
Available Data) to inform energy assessment and support policy making, as long as

Fig. 9 Comparison between different modeling scenarios
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reasonable assumptions are made or appropriate substitute data are chosen
(Klosterman 2008).

On the tool platform side, although GIS is a powerful analytical platform, it
becomes less capable when dealing with detailed data at a large scale. Data volume
increases considerably when the spatial level of urban studies goes down from cities
and districts to buildings, facades and even windows. As a consequence, GIS tools
become slow and often show errors because of memory limitations. ArcPy codes
run faster than the tools but are still much slower than the previous VBA language.
Therefore, GIS computation needs to be improved for handling big data in building
energy modeling.

This urban building energy modeling system shows its potential to contribute to
PSS. Its inclusion in PSS could help planners better understand how urban form
performs in terms of building energy use. It can also evaluate the environmental,
economic and social impact of large-scale energy-related renovation proposals, e.g.
implementation of white roofs or low-e glass, so as to support policy making at the
urban level. More importantly, it provides estimates of the spatial distribution of the
building energy use in a city, which allows planners and policy makers to adjust
energy supply to optimize the whole energy system. When applied to design pro-
posals, this modeling system could assist designers to reconfigure the land use
patterns and building layouts for better building energy performance.

The development of this urban building energy modeling system exemplifies
how to link building-scale engineering modeling with meso-scale urban data to
inform planning practice. It allows planners and policy makers to look at urban data
through the lens of energy performance, and to reconsider where related urban data
are, how urban data can be managed, and most importantly, what urban data can
inform urban energy policies.
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