
Topics in Safety, Risk, Reliability and Quality

Kevin MacG. Adams

Non-functional 
Requirements 
in Systems 
Analysis and 
Design



Topics in Safety, Risk, Reliability and Quality

Volume 28

Series editor

Adrian V. Gheorghe, Old Dominion University, Norfolk, VA, USA

Editorial Advisory Board

Hirokazu Tatano, Kyoto University, Kyoto, Japan
Enrico Zio, Ecole Centrale Paris, France and Politecnico di Milano, Milan, Italy
Andres Sousa-Poza, Old Dominion University, Norfolk, VA, USA



More information about this series at http://www.springer.com/series/6653

http://www.springer.com/series/6653


Kevin MacG. Adams

Non-functional Requirements
in Systems Analysis
and Design

123



Kevin MacG. Adams
Information Technology and Computer
Science

University of Maryland University College
Adelphi, MD
USA

ISSN 1566-0443 ISSN 2215-0285 (electronic)
Topics in Safety, Risk, Reliability and Quality
ISBN 978-3-319-18343-5 ISBN 978-3-319-18344-2 (eBook)
DOI 10.1007/978-3-319-18344-2

Library of Congress Control Number: 2015937211

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)



To Admiral Hyman G. Rickover, Vice
Admiral Levering Smith and Rear Admiral
Wayne Meyer who conquered bureaucratic
engineering through technical excellence
and personal perseverance to produce
complex systems that have ensured
our liberty through strength and vigilance.

Kevin MacG. Adams
University of Maryland

University College



Preface

At the end of the last century, corporations and government entities in the United
States showed increasing concern for the loss of competitive advantage previously
enjoyed by products designed and manufactured in the United States. The loss of
competitive advantage experienced by manufacturers of these products was
attributed to a variety of causes that both threatened the country’s standard of living
as well as its position within the larger world economy (Dertouzos et al. 1989). A
report by the National Research Council reported that:

Engineering design is a crucial component of the industrial product realization process. It
is estimated that 70 percent or more of the life cycle cost of a product is determined during
design. (NRC 1991, p. 1)

The engineering community agreed with this assessment, stating that “market
loss by U.S. companies is due to design deficiencies more than manufacturing
deficiencies” (Dixon and Duffey 1990, p. 13). A variety of studies on both man-
ufacturing and engineering design were undertaken in order to improve the situation
in both the industrial sector and in academia (NRC 1985, 1986, 1991). The engi-
neering community found that in order to improve both the cost and efficacy of
products produced for the global economy and “To regain world manufacturing
leadership, we need to take a more strategic approach by also improving our
engineering design practices” (Dixon and Duffey 1990, p. 9).

“Market loss by U.S. companies is due to design deficiencies more than man-
ufacturing deficiencies” (Dixon and Duffey 1990, p. 13). The engineering design
process in use in the industrial sector required improvement, but more importantly,
the theory of design and implementing design methodologies advocated by the
academic community were stagnant. A renewed emphasis on design and a new
subdiscipline in engineering design were adopted by the engineering community.
New requirements for design activities in the academic curricula were mandated,
and the national engineering accreditation organization included additional design
criteria as part of the accreditation assessment process. Major efforts to reinvigorate
design in both undergraduate and graduate engineering programs in the United
States have reemphasized the role of design in the engineering curricula. This text

vii



has been developed to address a unique topic in engineering design, thereby filling
a void in the existing engineering literature.

The topic of this text—Nonfunctional Requirements in Systems Analysis and
Design—supports endeavors in the engineering of systems. To date, nonfunctional
requirements have only been addressed within highly focused subdisciplines of
engineering (e.g., reliability, maintainability, availability; traceability; testability;
survivability; etc.). The wider engineering community has not had access to
materials that permit them to develop a holistic, systemic perspective for non-
functional requirements that regularly affect the entire system. Having a basic
understanding of how the principal nonfunctional requirements affect the sustain-
ment, design, adaptability, and viability concerns of a system at a high level, should
help fill a void in the existing engineering literature.

To support this approach to understanding nonfunctional requirements during
engineering design endeavors, the book is divided into six major parts: (1) Systems
Design and Nonfunctional Requirements; (2) Sustainment Concerns; (3) Design
Concerns; (4) Adaptation Concerns; (5) Viability Concerns; and (6) Conclusion.

Part I focuses on the purposeful design of systems and how nonfunctional
requirements fit into the design approach. Chapter 1 provides an introduction to the
design of engineering systems, and reviews how engineers in the various engi-
neering disciplines are responsible for developing designs for complex man-made
systems. It also addresses systematic design, the breadth and depth of disciplines
associated with design activities, and the use of life cycle models and supporting
processes in the systems design process. Chapter 2 provides a description of
engineering design and explains how it fits within the larger scientific paradigm. It
includes a description of the desirable features and thought processes invoked in
good engineering design methodologies. The chapter contains a high-level over-
view of seven historically significant design methodologies. It concludes with a
more detailed section on axiomatic design and explains why axiomatic design is
proposed as an effective system-based approach to the design of engineering sys-
tems. Chapter 3 provides a formal definition for nonfunctional requirements and the
role they play in the engineering design of man-made, complex systems. It
addresses the wide range of nonfunctional requirements, and introduces a number
of taxonomies that have been used to describe nonfunctional requirements. The
chapter concludes by presenting a notional taxonomy or framework for under-
standing nonfunctional requirements and their role as part of any system design
endeavor. This taxonomy distributes 27 nonfunctional requirements into four
concerns: sustainment concerns, design concerns, adaptation concerns, and viability
concerns. The four concerns serve as the headings for the next four Parts of the text.

Part II addresses sustainment concerns during systems design endeavors. It is
divided into two chapters which address five nonfunctional requirements. Chapter 4
addresses the nonfunctional requirements for reliability and maintainability. The
section on reliability reviews the basic theory, equations, and concepts that underlie
its utilization, addresses how reliability is applied in engineering design, and also
explains how reliability is used as a technique for determining component reli-
ability. The section concludes with a metric and measureable characteristic for

viii Preface

http://dx.doi.org/10.1007/978-3-319-18344-2_1
http://dx.doi.org/10.1007/978-3-319-18344-2_2
http://dx.doi.org/10.1007/978-3-319-18344-2_3
http://dx.doi.org/10.1007/978-3-319-18344-2_4


reliability. The section on maintainability defines basic terminology, how main-
tainability is used in engineering design, and introduces the maintenance and
support concept. It concludes with a metric and measureable characteristic for
maintainability. Chapter 5 addresses the nonfunctional requirements of availability,
operability, and testability. The topic on availability and operability introduces
basic theory, equations and concepts that underlie availability, how availability is
applied in engineering design, and concludes with a metric and measureable
characteristic for reliability. The second major topic in the chapter defines test-
ability, discusses how it is used in engineering design, establishes a relationship to
availability, and concludes with a metric and measureable characteristic for
testability.

Part III addresses design concerns during systems design endeavors. It is divided
into three chapters which address nine nonfunctional requirements. Chapter 6
addresses the nonfunctional requirements for conciseness, modularity, simplicity,
and traceability. The topic on conciseness reviews the basic terminology, equations,
and concepts that underlie its utilization, and proposes a metric for measuring and
evaluating conciseness. The next section discusses the concept of modularity and
how it affects systems designs. A number of specific modularity measures from the
extant literature are presented. The section concludes with the selection of a mea-
sure for modularity, and presents a structural map relating the metric and the
measurement attributes for modularity. The section on simplicity contrasts it with
complexity, reviews relevant measures for complexity, and presents a measureable
characteristic for complexity. The chapter concludes by discussing traceability, in
relation to how it impacts system design endeavors, and develops a metric for
evaluating traceability in systems designs. Chapter 7 addresses the nonfunctional
requirements for compatibility, consistency, and interoperability. The chapter
begins by reviewing compatibility and the basic terminology, equations, and con-
cepts that underlie its utilization. Compatibility and its relation to standards is
addressed, and a measure for evaluating compatibility in systems design is pro-
vided. The second section discusses the concept of consistency in terms of how it
affects systems designs, and proposes a measure for consistency that is based upon
requirements validation, functional verification, and design verification activities.
The final section in this chapter addresses interoperability by providing both a
definition and models of interoperability, and proposes a formal method for eval-
uating interoperability. Chapter 8 addresses the nonfunctional requirement for
safety. The chapter contrasts machine age systems safety with systems-age con-
cerns, and provides a system-based model for system safety. The chapter concludes
by relating the proposed measure for evaluating systems safety to a metric, and
includes a structural map for systems safety.

Part IV addresses adaptation concerns during systems design endeavors. It is
divided into two chapters which address nine nonfunctional requirements.
Chapter 9 addresses the nonfunctional requirements for adaptability, flexibility,
modifiability and scalability, and robustness. The chapter begins with a section that
reviews the concept of changeability, its three unique elements, and presents a
method for representing systems change using a state-transition-diagram. Both

Preface ix

http://dx.doi.org/10.1007/978-3-319-18344-2_5
http://dx.doi.org/10.1007/978-3-319-18344-2_6
http://dx.doi.org/10.1007/978-3-319-18344-2_7
http://dx.doi.org/10.1007/978-3-319-18344-2_8
http://dx.doi.org/10.1007/978-3-319-18344-2_9


adaptability and flexibility are defined, and a method for distinguishing between
these two nonfunctional properties is proposed. Modifiability is defined, and a
distinction between it and both scalability and maintainability is provided.
Robustness is defined, and its impact on design considerations is discussed. The
chapter concludes by defining a measure and a means for measuring changeability
that is a function of all four nonfunctional requirements discussed in the chapter.
Chapter 10 addresses the nonfunctional requirements for extensibility, portability,
reusability, and self-descriptiveness. The chapter begins by reviewing extensibility,
its definitions, and how it is approached as an aspect of purposeful systems design.
Portability is defined, positioned as a desirable characteristic, and is discussed as it
relates to the four factors designers must consider in order to achieve portable
designs. Reusability is addressed by providing both a definition and an explanation
of its role in systems designs. Both top-down or bottom-up approaches, and three
unique techniques that address reusability are presented. The section concludes by
recommending two strategies and ten heuristics that support reusability in systems
designs. Self-descriptiveness is defined and discussed by emphasizing the types of
problems associated with poor self-descriptiveness. Seven design principles for
user-systems dialogue are proposed to decrease errors and improve system self-
descriptiveness. The chapter concludes by defining a measure and a means for
measuring adaptation concerns, which is a function of extensibility, portability,
reusability, and self-descriptiveness.

Part V addresses viability concerns during systems design endeavors. It is divided
into two chapters which address eight nonfunctional requirements. Chapter 11
addresses the nonfunctional requirements for understandability, usability, robust-
ness, and survivability. The first three nonfunctional requirements are defined and
positioned within the requirements for good system design. The fourth nonfunctional
requirement, survivability, is defined and 17 design principles that may be invoked
when designing for survivability are addressed. The chapter concludes by defining a
measure and a means for measuring core viability concerns, which is a function of
understandability, usability, robustness, and survivability. Chapter 12 addresses the
nonfunctional requirements for accuracy, correctness, efficiency, and integrity. The
chapter begins by reviewing accuracy, its definitions, and concepts related to ref-
erence value, precision, and trueness. The second section defines correctness, and
demonstrate how both verification and validation activities provide evaluation
opportunities to ensure correctness. Four design principles that support the devel-
opment of systems that correctly represent the specified requirements for the system
are reviewed. Efficiency is addressed by providing a clear definition for efficiency,
and by establishing a proxy for system efficiency. Integrity and the concept that
underlies its use as a nonfunctional requirement in systems designs is reviewed.
Thirty-three security design principles, and the life cycle stages where they should be
invoked when designing for systems for integrity are proposed. The chapter con-
cludes by defining a measure and a means for measuring other viability concerns,
which is a function of accuracy, correctness, efficiency, and integrity.

Part VI provides a conclusion in Chap. 13. The conclusion reviews the climate
that led to the small crisis in engineering design during the late 1980s and the need

x Preface

http://dx.doi.org/10.1007/978-3-319-18344-2_10
http://dx.doi.org/10.1007/978-3-319-18344-2_11
http://dx.doi.org/10.1007/978-3-319-18344-2_12
http://dx.doi.org/10.1007/978-3-319-18344-2_13


for revision of the engineering curricula and accreditation criteria. The major efforts
to reinvigorate design in both undergraduate and graduate engineering programs in
the United States which reflected the reemphasis of the role of design in the
engineering curricula are covered. Finally, the rationale for the development of the
text, and the need to address nonfunctional requirements in systems analysis and
design endeavors are reviewed.

This book is intended for use by systems practitioners or in a graduate course in
either systems engineering or systems design where an understanding of nonfunc-
tional requirements as an element of the design process must be understood. Given its
discipline-agnostic nature, it is just as appropriate for use in a software, mechanical,
or civil engineering class on design or requirements. The book may be utilized in a
traditional 12- or 14-week schedule of classes. Part I should be taught in order of
appearance in the book to provide the proper theoretical foundation. Parts II–V can be
taught in any order, although, lacking any other preference, they can be taught in the
order in which they appear. The conclusion in Chap. 13 should follow the conclusion
of Parts I–V, as it builds on the information developed in Chaps. 4–12.

Upon completion of the text, the reader or student should have an improved
understanding and appreciation for the nonfunctional requirements present in
complex, man-made systems. Although the text addresses only 27 nonfunctional
requirements, the author recognizes that many additional nonfunctional require-
ments exist and that they may be required to be addressed in many systems design
endeavors. However, armed with the approach used in understanding the 27 defined
functional requirements (i.e., definition, design utilization, measurement, and
evaluation), additional nonfunctional requirements may be similarly treated.

As always, the author takes responsibility for the thoughts, ideas, and concepts
presented in this text. Readers are encouraged to submit corrections and suggestions
through correspondence with the author in the spirit of continuous improvement.

References

Dertouzos, M. L., Solow, R. M., & Lester, R. K. (1989). Made in America: Regaining the
Productive Edge. Cambridge, MA: MIT Press.

Dixon, J. R., & Duffey, M. R. (1990). The neglect of engineering design. California Management
Review, 32(2), 9–23.

NRC. (1985). Engineering Education and Practice in the United States: Foundations of Our
Techno-Economic Future. Washington, DC: National Academies Press.

NRC. (1986). Toward a New Era in U.S. Manufacturing: The Need for a National Vision.
Washington, DC: National Academies Press.

NRC. (1991). Improving Engineering Design: Designing for Competitive Advantage. Washington,
DC: National Academy Press.

Preface xi

http://dx.doi.org/10.1007/978-3-319-18344-2_13
http://dx.doi.org/10.1007/978-3-319-18344-2_4
http://dx.doi.org/10.1007/978-3-319-18344-2_12


Acknowledgments

I would like to start by acknowledging three inspirational naval engineers that led
the most successful naval engineering endeavors of the twentieth century. Their
legacy has directly affected me and my perspective on engineering.

• Admiral Hyman G. Rickover [1900–1986], Father of the Nuclear Navy, led the
group of engineers, scientists, and technicians that developed and maintained the
United States Navy’s nuclear propulsion program from its inception in 1946 until
his retirement in 1983. Acknowledged as “the most famous and controversial
admiral of his era,” (Oliver 2014, p. 1) Admiral Rickover’s personal leadership,
attention to detail, conservative design philosophy, and program of intense
supervision ensured that the Nuclear Navy has remained accident-free to this day.
I was privileged to serve, in positions as an enlisted machinist’s mate, a sub-
marine warfare officer, and a submarine engineering duty officer in Admiral
Rickover’s program for over 23 years. Admiral Rickover’s legacy was present in
all we did. The magnificent underwater vessels that continue to protect this
country are a tribute to both his engineering brilliance and his ability to persevere
in the face of great odds.

• Vice Admiral Levering Smith [1910–1993] served as the first technical director
for the Polaris submarine launched ballistic missile program, “the most con-
vincing and effective of the nation's strategic deterrent weapon systems”
(Hawkins 1994, p. 216). He served in this capacity from 1956 until his retirement
in 1974. During this time, Vice Admiral Smith led the team that conceived and
developed Polaris, transitioned the force from Polaris to Poseidon, and led the
conceptual development of the current Trident ballistic missile system. The
legacy of the Navy’s strategic systems program “may have set an unattainable
standard for any equally important national endeavor” (Hawkins 1994, p. 215).
Once again, I was privileged to serve on a Polaris-Poseidon capable submarine
for a period of five years. Vice Admiral Smith’s technical acumen was present
throughout the weapons department and the field activities providing support for
our operations.

xiii



• Rear Admiral Wayne Meyer [1926–2009], Father of Aegis, guided the devel-
opment and fielding of the Navy’s Aegis weapons system, the Shield of the Fleet,
from 1970 until 1983. Rear Admiral Meyer changed the way Navy surface
combatants were designed, built, and delivered to the Navy. The first Aegis
warship, “TICONDEROGA and her combat system were the product of a single
Navy Project Office (PMS 400), led by RADM Wayne E. Meyer and assigned
the total responsibility for designing, building, deploying, and maintaining the
AEGIS fleet. The creation of this single office with total responsibility repre-
sented a sea change in Navy policy and organization for acquisition of surface
combatants” (Threston 2009b, p. 109). As a member of the submarine force, I
had no personal involvement with this program. However, my father was a senior
manager at the Radio Corporation of America (RCA) which served as the prime
contractor for Aegis. My father introduced me to Rear Admiral Meyer when I
was a junior in high school. I had many occasions to hear firsthand stories about
how this amazing Naval engineer was changing the way surface warships were
being acquired by the Navy. The admiral’s build a little, test a little, learn a lot
approach was adopted throughout the program and has served me well in my
own career. The utilization of system budgets was revolutionary. “In addition to
obvious budgets (such as weight, space, power, and cooling), other budgets were
established for system errors, reliability, maintainability and availability, system
reaction time, maintenance man-hours, and a large number of others” (Threston
2009a, p. 96). The purposeful use and positive effects of systems budgets, which
address nonfunctional requirements, has stayed with me and have heavily
influenced the notions and structure for this book.

In addition, I have had the opportunity to serve with and work for a number of
engineers and technicians who have been tasked with operating and maintaining the
systems of Admirals Rickover, Smith, and Meyer. They took the time to teach me
the intricacies involved in operating and maintaining complex systems. Special
thanks to Art Colling, Stan Handley, Mel Sollenberger, John Almon, Butch Meier,
Joe Yurso, Steve Krahn, George Yount, John Bowen, Vince Albano, and Jim Dunn
for supporting me in the quest to understand the engineering of systems.

To the many students I have been privileged to teach at both the University of
Maryland University College, the College of William and Mary, Virginia Wesleyan
College, and Old Dominion University: Your quest for knowledge has challenged
me to constantly renew and improve my own understanding as part of the learning
process.

To my parents, for providing the love, resources, and basic skills required to
thrive as an engineer. To my children, for many hours of challenges, joy, and
amazement. Finally, to my wife, for her constant support, companionship, and love
throughout the process of completing this book and our journey through life
together.

Kevin MacG. Adams

xiv Acknowledgments



References

Hawkins, W. M. (1994). Levering Smith. In S. Ostrach (Ed.), Memorial Tributes (Vol. 7,
pp. 214–220). Washington, DC: National Academies Press.

Oliver, D. (2014). Against the Tide: Rickover’s Leadership Principles and the Rise of the Nuclear
Navy. Annapolis, MD: Naval Institute Press.

Threston, J. T. (2009a). The aegis weapons system: Part I. Naval Engineers Journal, 121(3),
85–108.

Threston, J. T. (2009b). The aegis weapons system: Part II. Naval Engineers Journal, 121(3),
109–132.

Acknowledgments xv



Contents

Part I Systems Design and Non-functional Requirements

1 Introduction to the Design of Engineering Systems . . . . . . . . . . . . 3
1.1 Introduction to the Design of Engineering Systems . . . . . . . . . 3
1.2 Engineering Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Engineers and Engineering in Design . . . . . . . . . . . . . . . . . . 5
1.4 Design in the System Life Cycle Model . . . . . . . . . . . . . . . . 10
1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Design Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 Introduction to Design Methodologies . . . . . . . . . . . . . . . . . . 15
2.2 Introduction to the Discipline of Engineering Design. . . . . . . . 16

2.2.1 Features that Support Design Methodologies . . . . . . . 17
2.2.2 Thought in a Design Methodology . . . . . . . . . . . . . . 19
2.2.3 Synthesis of Thought and Features that Support

All Engineering Design Methodologies . . . . . . . . . . . 21
2.3 Methodological Terms and Relationships . . . . . . . . . . . . . . . . 21

2.3.1 Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Philosophy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.4 Method or Technique . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.5 Relationship Between Scientific Terms . . . . . . . . . . . 24

2.4 Hierarchical Structure for Engineering Design . . . . . . . . . . . . 25
2.4.1 Paradigm for Engineering as a Field of Science . . . . . 25
2.4.2 Philosophy for Engineering . . . . . . . . . . . . . . . . . . . 25
2.4.3 Methodology for Engineering Design . . . . . . . . . . . . 26

xvii

http://dx.doi.org/10.1007/978-3-319-18344-2_1
http://dx.doi.org/10.1007/978-3-319-18344-2_1
http://dx.doi.org/10.1007/978-3-319-18344-2_1#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_1#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_1#Sec2
http://dx.doi.org/10.1007/978-3-319-18344-2_1#Sec2
http://dx.doi.org/10.1007/978-3-319-18344-2_1#Sec3
http://dx.doi.org/10.1007/978-3-319-18344-2_1#Sec3
http://dx.doi.org/10.1007/978-3-319-18344-2_1#Sec4
http://dx.doi.org/10.1007/978-3-319-18344-2_1#Sec4
http://dx.doi.org/10.1007/978-3-319-18344-2_1#Sec5
http://dx.doi.org/10.1007/978-3-319-18344-2_1#Sec5
http://dx.doi.org/10.1007/978-3-319-18344-2_1#Bib1
http://dx.doi.org/10.1007/978-3-319-18344-2_2
http://dx.doi.org/10.1007/978-3-319-18344-2_2
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec2
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec2
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec3
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec3
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec4
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec4
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec5
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec5
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec5
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec6
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec6
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec7
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec7
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec8
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec8
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec9
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec9
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec10
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec10
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec11
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec11
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec12
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec12
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec13
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec13
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec14
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec14
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec15
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec15


2.5 Engineering Design Methodologies . . . . . . . . . . . . . . . . . . . . 26
2.5.1 Methodology by Morris Asimov . . . . . . . . . . . . . . . . 26
2.5.2 Methodology by Nigel Cross . . . . . . . . . . . . . . . . . . 28
2.5.3 Methodology by Michael J. French . . . . . . . . . . . . . . 29
2.5.4 Methodology by Vladimir Hubka

and W. Ernst Eder . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.5 Methodology by Stuart Pugh . . . . . . . . . . . . . . . . . . 30
2.5.6 Methodology by the Association of German

Engineers (VDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.7 Methodology by Pahl, Beitz, Feldhusen,

and Grote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6 The Axiomatic Design Methodology . . . . . . . . . . . . . . . . . . . 36

2.6.1 Introduction to the Axiomatic Design
Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6.2 Domains in the Axiomatic Design Methodology . . . . . 38
2.6.3 Independence Axiom. . . . . . . . . . . . . . . . . . . . . . . . 39
2.6.4 The Information Axiom . . . . . . . . . . . . . . . . . . . . . . 40
2.6.5 Constraints or Non-functional Requirements . . . . . . . . 41

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Introduction to Non-functional Requirements. . . . . . . . . . . . . . . . 45
3.1 Introduction to Non-functional Requirements . . . . . . . . . . . . . 45
3.2 Definitions for Functional and Non-functional

Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.1 Functional Requirements . . . . . . . . . . . . . . . . . . . . . 46
3.2.2 Non-functional Requirements . . . . . . . . . . . . . . . . . . 48
3.2.3 A Structure for Non-functional Requirements . . . . . . . 50

3.3 Identification and Organization of Non-functional
Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Classification Models for Non-functional Requirements . . . . . . 51
3.4.1 Boehm’s Software Quality Initiative . . . . . . . . . . . . . 54
3.4.2 Rome Air Development Center Quality Models . . . . . 54
3.4.3 FURPS and FURPS+ Models . . . . . . . . . . . . . . . . . . 56
3.4.4 Blundell, Hines and Stach’s Quality Measures . . . . . . 58
3.4.5 Somerville’s Classification Schema . . . . . . . . . . . . . . 62
3.4.6 International Standards . . . . . . . . . . . . . . . . . . . . . . 62
3.4.7 NFR Elicitation . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Notional Framework for Understanding Major NFR
in Systems Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5.1 Rationalization of Non-functional Requirements

Classification Schemas . . . . . . . . . . . . . . . . . . . . . . 63
3.5.2 Unique Non-functional Requirements . . . . . . . . . . . . 65

xviii Contents

http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec16
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec16
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec17
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec17
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec18
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec18
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec19
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec19
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec20
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec20
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec20
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec21
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec21
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec22
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec22
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec22
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec23
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec23
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec23
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec24
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec24
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec25
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec25
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec25
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec26
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec26
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec27
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec27
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec28
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec28
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec29
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec29
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec30
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Sec30
http://dx.doi.org/10.1007/978-3-319-18344-2_2#Bib1
http://dx.doi.org/10.1007/978-3-319-18344-2_3
http://dx.doi.org/10.1007/978-3-319-18344-2_3
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec2
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec2
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec2
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec3
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec3
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec4
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec4
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec5
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec5
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec6
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec6
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec6
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec7
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec7
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec8
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec8
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec9
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec9
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec13
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec13
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec14
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec14
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec15
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec15
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec16
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec16
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec17
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec17
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec18
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec18
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec18
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec19
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec19
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec19
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec20
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec20


3.5.3 Formal Definitions for Most Frequent
Non-functional Requirements . . . . . . . . . . . . . . . . . . 65

3.5.4 Notional Taxonomy of Non-functional
Requirements for Systems . . . . . . . . . . . . . . . . . . . . 66

3.5.5 Utilization of the NFR Taxonomy for Systems . . . . . . 69
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Part II Sustainment Concerns

4 Reliability and Maintainability . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.1 Introduction to Reliability and Maintainability . . . . . . . . . . . . 75
4.2 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.1 Reliability Definitions . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.2 The Reliability Function . . . . . . . . . . . . . . . . . . . . . 78
4.2.3 Component Reliability Models . . . . . . . . . . . . . . . . . 80
4.2.4 Reliability in System Design Efforts . . . . . . . . . . . . . 84
4.2.5 FMEA and FEMCA . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2.6 Measuring Reliability . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Maintainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.1 Maintainability Definitions . . . . . . . . . . . . . . . . . . . . 86
4.3.2 Terminology Associated with Maintainability . . . . . . . 87
4.3.3 Maintainability Calculations . . . . . . . . . . . . . . . . . . . 88
4.3.4 Maintenance Support Concept . . . . . . . . . . . . . . . . . 89
4.3.5 Maintainability in Systems Design Efforts . . . . . . . . . 90
4.3.6 Measuring Maintainability . . . . . . . . . . . . . . . . . . . . 91

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Availability, Operability, and Testability . . . . . . . . . . . . . . . . . . . 93
5.1 Introduction to Availability and Testability. . . . . . . . . . . . . . . 93
5.2 Availability and Operability . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.1 Availability and Operability Definitions . . . . . . . . . . . 94
5.2.2 Equations for Operational Availability (Ao) . . . . . . . . 95
5.2.3 Availability in Systems Design Efforts . . . . . . . . . . . 96
5.2.4 Measuring Operational Availability (Ao) . . . . . . . . . . 97

5.3 Testability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.1 Testability Definitions . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.2 Testability in Systems Design. . . . . . . . . . . . . . . . . . 99
5.3.3 Measuring Testability . . . . . . . . . . . . . . . . . . . . . . . 100

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Contents xix

http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec21
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec21
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec21
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec22
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec22
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec22
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec23
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec23
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec24
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Sec24
http://dx.doi.org/10.1007/978-3-319-18344-2_3#Bib1
http://dx.doi.org/10.1007/978-3-319-18344-2_4
http://dx.doi.org/10.1007/978-3-319-18344-2_4
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec2
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec2
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec3
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec3
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec4
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec4
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec5
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec5
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec8
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec8
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec9
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec9
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec10
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec10
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec11
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec11
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec12
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec12
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec13
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec13
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec14
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec14
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec15
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec15
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec16
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec16
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec17
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec17
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec18
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Sec18
http://dx.doi.org/10.1007/978-3-319-18344-2_4#Bib1
http://dx.doi.org/10.1007/978-3-319-18344-2_5
http://dx.doi.org/10.1007/978-3-319-18344-2_5
http://dx.doi.org/10.1007/978-3-319-18344-2_5#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_5#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_5#Sec2
http://dx.doi.org/10.1007/978-3-319-18344-2_5#Sec2
http://dx.doi.org/10.1007/978-3-319-18344-2_5#Sec3
http://dx.doi.org/10.1007/978-3-319-18344-2_5#Sec3
http://dx.doi.org/10.1007/978-3-319-18344-2_5#Sec4
http://dx.doi.org/10.1007/978-3-319-18344-2_5#Sec4
http://dx.doi.org/10.1007/978-3-319-18344-2_5#Sec4
http://dx.doi.org/10.1007/978-3-319-18344-2_5#Sec5
http://dx.doi.org/10.1007/978-3-319-18344-2_5#Sec5
http://dx.doi.org/10.1007/978-3-319-18344-2_5#Sec6
http://dx.doi.org/10.1007/978-3-319-18344-2_5#Sec6
http://dx.doi.org/10.1007/978-3-319-18344-2_5#Sec6
http://dx.doi.org/10.1007/978-3-319-18344-2_5#Sec7
http://dx.doi.org/10.1007/978-3-319-18344-2_5#Sec7
http://dx.doi.org/10.1007/978-3-319-18344-2_5#Sec8
http://dx.doi.org/10.1007/978-3-319-18344-2_5#Sec8
http://dx.doi.org/10.1007/978-3-319-18344-2_5#Sec9
http://dx.doi.org/10.1007/978-3-319-18344-2_5#Sec9
http://dx.doi.org/10.1007/978-3-319-18344-2_5#Sec10
http://dx.doi.org/10.1007/978-3-319-18344-2_5#Sec10
http://dx.doi.org/10.1007/978-3-319-18344-2_5#Sec11
http://dx.doi.org/10.1007/978-3-319-18344-2_5#Sec11
http://dx.doi.org/10.1007/978-3-319-18344-2_5#Bib1


Part III Design Concerns

6 Conciseness, Modularity, Simplicity and Traceability . . . . . . . . . . 105
6.1 Introduction to Conciseness, Modularity, Simplicity

and Traceability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Conciseness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.1 Conciseness Definitions . . . . . . . . . . . . . . . . . . . . . . 106
6.2.2 Conciseness in Systems Design Efforts . . . . . . . . . . . 107
6.2.3 Measuring Conciseness . . . . . . . . . . . . . . . . . . . . . . 108

6.3 Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.1 Modularity Definition . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.2 Definitions for Coupling and Cohesion . . . . . . . . . . . 109
6.3.3 Modularity Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.4 Modularity in Systems Design Efforts . . . . . . . . . . . . 113
6.3.5 Measuring Modularity . . . . . . . . . . . . . . . . . . . . . . . 114

6.4 Simplicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.4.1 Simplicity and Complexity Definitions . . . . . . . . . . . 114
6.4.2 Characteristics of Complexity . . . . . . . . . . . . . . . . . . 115
6.4.3 Methods for Measuring Complexity in Systems . . . . . 115
6.4.4 Measuring Complexity . . . . . . . . . . . . . . . . . . . . . . 119

6.5 Traceability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.5.1 Traceability Definitions . . . . . . . . . . . . . . . . . . . . . . 120
6.5.2 Traceability in Systems Design Efforts . . . . . . . . . . . 122
6.5.3 A Method for Evaluating Traceability . . . . . . . . . . . . 123
6.5.4 Measuring Traceability . . . . . . . . . . . . . . . . . . . . . . 127

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7 Compatibility, Consistency, Interoperability . . . . . . . . . . . . . . . . . 131
7.1 Introduction to Compatibility, Consistency,

and Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.2 Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2.1 Compatibility Definition . . . . . . . . . . . . . . . . . . . . . 132
7.2.2 Standards—the Means for Ensuring

Compatibility in Systems . . . . . . . . . . . . . . . . . . . . . 133
7.2.3 Compatibility in Systems Design Efforts . . . . . . . . . . 135
7.2.4 Evaluating Compatibility in Design . . . . . . . . . . . . . . 135
7.2.5 A Method for Measuring Compatibility

in Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.2.6 Measuring Compatibility . . . . . . . . . . . . . . . . . . . . . 137

7.3 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.3.1 Consistency Definition . . . . . . . . . . . . . . . . . . . . . . 138
7.3.2 Consistency in Systems Design Efforts . . . . . . . . . . . 138

xx Contents

http://dx.doi.org/10.1007/978-3-319-18344-2_6
http://dx.doi.org/10.1007/978-3-319-18344-2_6
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec2
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec2
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec3
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec3
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec4
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec4
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec5
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec5
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec6
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec6
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec7
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec7
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec8
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec8
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec9
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec9
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec11
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec11
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec12
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec12
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec13
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec13
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec14
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec14
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec15
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec15
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec16
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec16
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec20
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec20
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec21
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec21
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec22
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec22
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec23
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec23
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec24
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec24
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec27
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec27
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec28
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Sec28
http://dx.doi.org/10.1007/978-3-319-18344-2_6#Bib1
http://dx.doi.org/10.1007/978-3-319-18344-2_7
http://dx.doi.org/10.1007/978-3-319-18344-2_7
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec2
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec2
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec3
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec3
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec4
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec4
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec4
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec5
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec5
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec6
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec6
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec7
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec7
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec7
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec8
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec8
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec9
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec9
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec10
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec10
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec11
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec11


7.3.3 Methods for Evaluating Consistency in Design . . . . . . 139
7.3.4 A Method for Measuring Consistency in Design. . . . . 140
7.3.5 Measuring Consistency . . . . . . . . . . . . . . . . . . . . . . 143

7.4 Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.4.1 Interoperability Definition . . . . . . . . . . . . . . . . . . . . 143
7.4.2 Models for Interoperability. . . . . . . . . . . . . . . . . . . . 144
7.4.3 Interoperability in Systems Design Efforts . . . . . . . . . 145
7.4.4 Methods for Evaluating Interoperability . . . . . . . . . . . 146
7.4.5 i-Score Model for Evaluating System

Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.4.6 Measuring Interoperability . . . . . . . . . . . . . . . . . . . . 151

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8 System Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.1 Introduction to Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.2 Safety Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.3 Safety in Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.4 Safety in System Design Efforts . . . . . . . . . . . . . . . . . . . . . . 158
8.5 A Systems Based Accident Model . . . . . . . . . . . . . . . . . . . . 159

8.5.1 Systems-Theoretic Principles of STAMP . . . . . . . . . . 159
8.5.2 Intersection of STAMP Criteria

and Systems Design . . . . . . . . . . . . . . . . . . . . . . . . 160
8.6 A Measure for Evaluating System Safety . . . . . . . . . . . . . . . . 162

8.6.1 Scale for System Safety . . . . . . . . . . . . . . . . . . . . . . 162
8.6.2 Proposed Measurement Scale for System Safety . . . . . 163

8.7 Measuring System Safety. . . . . . . . . . . . . . . . . . . . . . . . . . . 164
8.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Part IV Adaptation Concerns

9 Adaptability, Flexibility, Modifiability and Scalability,
and Robustness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
9.1 Introduction to Changeability . . . . . . . . . . . . . . . . . . . . . . . . 169
9.2 The Concept of Changeability . . . . . . . . . . . . . . . . . . . . . . . 170

9.2.1 Agent for Change . . . . . . . . . . . . . . . . . . . . . . . . . . 171
9.2.2 Mechanism of Change. . . . . . . . . . . . . . . . . . . . . . . 171
9.2.3 Effects of Change on Systems and Their

Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
9.2.4 Depicting Change Events . . . . . . . . . . . . . . . . . . . . . 171

Contents xxi

http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec12
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec12
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec13
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec13
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec16
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec16
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec17
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec17
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec18
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec18
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec19
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec19
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec20
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec20
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec21
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec21
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec22
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec22
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec22
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec25
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec25
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec26
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Sec26
http://dx.doi.org/10.1007/978-3-319-18344-2_7#Bib1
http://dx.doi.org/10.1007/978-3-319-18344-2_8
http://dx.doi.org/10.1007/978-3-319-18344-2_8
http://dx.doi.org/10.1007/978-3-319-18344-2_8#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_8#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_8#Sec2
http://dx.doi.org/10.1007/978-3-319-18344-2_8#Sec2
http://dx.doi.org/10.1007/978-3-319-18344-2_8#Sec3
http://dx.doi.org/10.1007/978-3-319-18344-2_8#Sec3
http://dx.doi.org/10.1007/978-3-319-18344-2_8#Sec4
http://dx.doi.org/10.1007/978-3-319-18344-2_8#Sec4
http://dx.doi.org/10.1007/978-3-319-18344-2_8#Sec5
http://dx.doi.org/10.1007/978-3-319-18344-2_8#Sec5
http://dx.doi.org/10.1007/978-3-319-18344-2_8#Sec6
http://dx.doi.org/10.1007/978-3-319-18344-2_8#Sec6
http://dx.doi.org/10.1007/978-3-319-18344-2_8#Sec7
http://dx.doi.org/10.1007/978-3-319-18344-2_8#Sec7
http://dx.doi.org/10.1007/978-3-319-18344-2_8#Sec7
http://dx.doi.org/10.1007/978-3-319-18344-2_8#Sec8
http://dx.doi.org/10.1007/978-3-319-18344-2_8#Sec8
http://dx.doi.org/10.1007/978-3-319-18344-2_8#Sec9
http://dx.doi.org/10.1007/978-3-319-18344-2_8#Sec9
http://dx.doi.org/10.1007/978-3-319-18344-2_8#Sec10
http://dx.doi.org/10.1007/978-3-319-18344-2_8#Sec10
http://dx.doi.org/10.1007/978-3-319-18344-2_8#Sec11
http://dx.doi.org/10.1007/978-3-319-18344-2_8#Sec11
http://dx.doi.org/10.1007/978-3-319-18344-2_8#Sec12
http://dx.doi.org/10.1007/978-3-319-18344-2_8#Sec12
http://dx.doi.org/10.1007/978-3-319-18344-2_8#Bib1
http://dx.doi.org/10.1007/978-3-319-18344-2_9
http://dx.doi.org/10.1007/978-3-319-18344-2_9
http://dx.doi.org/10.1007/978-3-319-18344-2_9
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec2
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec2
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec3
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec3
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec4
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec4
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec5
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec5
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec5
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec6
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec6


9.3 Adaptability and Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . 173
9.3.1 Adaptability Definition . . . . . . . . . . . . . . . . . . . . . . 173
9.3.2 Flexibility Definition . . . . . . . . . . . . . . . . . . . . . . . . 173
9.3.3 Relationship Between Adaptability

and Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
9.4 Modifiability and Scalability . . . . . . . . . . . . . . . . . . . . . . . . 174

9.4.1 Modifiability Definition . . . . . . . . . . . . . . . . . . . . . . 175
9.4.2 Modifiability in Systems . . . . . . . . . . . . . . . . . . . . . 176

9.5 Robustness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
9.5.1 Robustness Definition . . . . . . . . . . . . . . . . . . . . . . . 177
9.5.2 Robustness in Systems . . . . . . . . . . . . . . . . . . . . . . 177

9.6 Changeability in Systems Design Efforts . . . . . . . . . . . . . . . . 178
9.6.1 A Method for Evaluating Changeability . . . . . . . . . . . 178
9.6.2 Measuring Changeability . . . . . . . . . . . . . . . . . . . . . 180

9.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

10 Extensibility, Portability, Reusability
and Self-descriptiveness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
10.1 Introduction to Extensibility, Portability,

Reusability and Self-descriptiveness . . . . . . . . . . . . . . . . . . . 183
10.2 Extensibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

10.2.1 Definition for Extensibility. . . . . . . . . . . . . . . . . . . . 185
10.2.2 Extensibility in Systems Design . . . . . . . . . . . . . . . . 185

10.3 Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
10.3.1 Definition for Portability . . . . . . . . . . . . . . . . . . . . . 187
10.3.2 Portability in Systems Design . . . . . . . . . . . . . . . . . . 187

10.4 Reusability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
10.4.1 Definition for Reusability. . . . . . . . . . . . . . . . . . . . . 189
10.4.2 Reusability as an Element of Systems Design. . . . . . . 189

10.5 Self-descriptiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
10.5.1 Definition for Self-descriptiveness. . . . . . . . . . . . . . . 192
10.5.2 Self-descriptiveness in Systems Design . . . . . . . . . . . 192

10.6 A Method for Evaluating Extensibility, Portability,
Reusability and Self-descriptiveness . . . . . . . . . . . . . . . . . . . 193
10.6.1 Development of Measurement Scales. . . . . . . . . . . . . 194
10.6.2 Measuring Extensibility, Portability,

Reusability and Self-descriptiveness . . . . . . . . . . . . . 196
10.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

xxii Contents

http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec7
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec7
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec8
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec8
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec9
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec9
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec10
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec10
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec10
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec11
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec11
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec12
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec12
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec13
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec13
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec14
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec14
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec15
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec15
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec16
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec16
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec17
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec17
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec18
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec18
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec23
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec23
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec24
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Sec24
http://dx.doi.org/10.1007/978-3-319-18344-2_9#Bib1
http://dx.doi.org/10.1007/978-3-319-18344-2_10
http://dx.doi.org/10.1007/978-3-319-18344-2_10
http://dx.doi.org/10.1007/978-3-319-18344-2_10
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec2
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec2
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec3
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec3
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec4
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec4
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec5
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec5
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec6
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec6
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec7
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec7
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec8
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec8
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec9
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec9
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec10
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec10
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec11
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec11
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec12
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec12
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec13
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec13
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec14
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec14
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec14
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec15
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec15
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec19
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec19
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec19
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec20
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Sec20
http://dx.doi.org/10.1007/978-3-319-18344-2_10#Bib1


Part V Viability Concerns

11 Understandability, Usability, Robustness and Survivability . . . . . . 201
11.1 Introduction to Understandability, Usability,

Robustness and Survivability . . . . . . . . . . . . . . . . . . . . . . . . 201
11.2 Understandability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

11.2.1 Definition for Understandability . . . . . . . . . . . . . . . . 202
11.2.2 Elements of Understandability . . . . . . . . . . . . . . . . . 203
11.2.3 Understandability in Systems Design. . . . . . . . . . . . . 204

11.3 Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
11.3.1 Definition for Usability . . . . . . . . . . . . . . . . . . . . . . 206
11.3.2 Usability in Systems Design. . . . . . . . . . . . . . . . . . . 207

11.4 Robustness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
11.4.1 Definition for Robustness. . . . . . . . . . . . . . . . . . . . . 210
11.4.2 Robustness as an Element of Systems Design. . . . . . . 210

11.5 Survivability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
11.5.1 Definition for Survivability . . . . . . . . . . . . . . . . . . . 213
11.5.2 Survivability Concepts. . . . . . . . . . . . . . . . . . . . . . . 213
11.5.3 Survivability in Systems Design . . . . . . . . . . . . . . . . 214

11.6 A Method for Evaluating Understandability, Usability,
Robustness and Survivability . . . . . . . . . . . . . . . . . . . . . . . . 215
11.6.1 Development of Measurement Scales. . . . . . . . . . . . . 216
11.6.2 Measuring Understandability, Usability,

Robustness and Survivability . . . . . . . . . . . . . . . . . . 217
11.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

12 Accuracy, Correctness, Efficiency, and Integrity. . . . . . . . . . . . . . 221
12.1 Introduction to Accuracy, Correctness, Efficiency,

and Integrity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
12.2 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

12.2.1 Definition for Accuracy . . . . . . . . . . . . . . . . . . . . . . 223
12.2.2 Accuracy in Measurement . . . . . . . . . . . . . . . . . . . . 224
12.2.3 Accuracy in Systems Design . . . . . . . . . . . . . . . . . . 227

12.3 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
12.3.1 Definition for Correctness . . . . . . . . . . . . . . . . . . . . 229
12.3.2 Evaluating Correctness in Systems Designs . . . . . . . . 230
12.3.3 Methods for Ensuring Correctness

During System Design. . . . . . . . . . . . . . . . . . . . . . . 232
12.3.4 Summary for Correctness. . . . . . . . . . . . . . . . . . . . . 235

12.4 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
12.4.1 Definition for Efficiency . . . . . . . . . . . . . . . . . . . . . 236
12.4.2 Addressing System Efficiency During

Design Endeavors . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Contents xxiii

http://dx.doi.org/10.1007/978-3-319-18344-2_11
http://dx.doi.org/10.1007/978-3-319-18344-2_11
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec2
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec2
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec3
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec3
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec4
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec4
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec5
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec5
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec6
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec6
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec7
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec7
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec8
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec8
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec9
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec9
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec10
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec10
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec11
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec11
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec14
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec14
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec15
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec15
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec16
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec16
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec17
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec17
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec18
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec18
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec18
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec19
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec19
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec23
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec23
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec23
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec24
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Sec24
http://dx.doi.org/10.1007/978-3-319-18344-2_11#Bib1
http://dx.doi.org/10.1007/978-3-319-18344-2_12
http://dx.doi.org/10.1007/978-3-319-18344-2_12
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec2
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec2
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec3
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec3
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec4
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec4
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec10
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec10
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec14
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec14
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec15
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec15
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec16
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec16
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec19
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec19
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec19
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec24
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec24
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec25
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec25
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec26
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec26
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec27
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec27
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec27


12.5 Integrity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
12.5.1 Definition for Integrity . . . . . . . . . . . . . . . . . . . . . . 239
12.5.2 Integrity Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . 241
12.5.3 Integrity in Systems Design . . . . . . . . . . . . . . . . . . . 241

12.6 A Method for Evaluating Accuracy, Correctness,
Efficiency, and Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
12.6.1 Development of Measurement Scales. . . . . . . . . . . . . 245
12.6.2 Measuring Accuracy, Correctness, Efficiency,

and Integrity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
12.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Part VI Conclusion

13 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
13.1 Position and Importance of Engineering Design . . . . . . . . . . . 253
13.2 Education in Engineering Design . . . . . . . . . . . . . . . . . . . . . 254
13.3 Position of This Text Within Engineering Design . . . . . . . . . . 257
13.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

xxiv Contents

http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec30
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec30
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec31
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec31
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec32
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec32
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec33
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec33
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec34
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec34
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec34
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec35
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec35
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec39
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec39
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec39
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec40
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Sec40
http://dx.doi.org/10.1007/978-3-319-18344-2_12#Bib1
http://dx.doi.org/10.1007/978-3-319-18344-2_13
http://dx.doi.org/10.1007/978-3-319-18344-2_13
http://dx.doi.org/10.1007/978-3-319-18344-2_13#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_13#Sec1
http://dx.doi.org/10.1007/978-3-319-18344-2_13#Sec2
http://dx.doi.org/10.1007/978-3-319-18344-2_13#Sec2
http://dx.doi.org/10.1007/978-3-319-18344-2_13#Sec3
http://dx.doi.org/10.1007/978-3-319-18344-2_13#Sec3
http://dx.doi.org/10.1007/978-3-319-18344-2_13#Sec4
http://dx.doi.org/10.1007/978-3-319-18344-2_13#Sec4
http://dx.doi.org/10.1007/978-3-319-18344-2_13#Bib1


Part I
Systems Design and Non-functional

Requirements



Chapter 1
Introduction to the Design
of Engineering Systems

Abstract Engineering Systems, the man-made systems that provide important
functions in modern societies, are designed by engineers. The design of engineering
systems is a formal process which invokes both technical and human elements to
provide the blueprint for systems which simultaneously provide for the needs of a
system’s stakeholders while not harming the environment or living beings.
Engineering design is the term used for the formal processes and methodologies
used to create and maintain man-made systems in a life cycle that runs from
inception through retirement and disposal.

1.1 Introduction to the Design of Engineering Systems

The term engineering systems used in the title of this chapter may be puzzling. This
term is used purposefully in order to account for an emerging discipline in engineering
that addresses “systems that fulfill important functions in society” (de Weck et al.
2011, p. xi). The term describes “both these systems and new ways of analyzing and
designing them” (de Weck et al. 2011, p. xi). The new discipline, engineering sys-
tems, addresses technology and technical systems by harmonizing them with the
organizational, managerial, policy, political, and human factors that surround the
problem while allowing the stakeholder’s needs to be met while not harming the
larger society. Some may recognize these challenges as being closely related to
terminology such as socio-technical systems (STS), engineering-in-the-large, or
macro-engineering. Engineering systems is an approach that is in agreement with the
author’s own holistic worldview for systems endeavors, which invokes a systemic
view when dealing with systems, messes, and problems (Hester and Adams 2014).

The chapter will begin by reviewing design and how engineers in the various
engineering disciplines are responsible for developing the designs for complex
man-made systems. It will conclude by addressing systematic design, the breadth

© Springer International Publishing Switzerland 2015
K.M. Adams, Non-functional Requirements in Systems Analysis and Design,
Topics in Safety, Risk, Reliability and Quality 28,
DOI 10.1007/978-3-319-18344-2_1

3



and depth of disciplines associated with design activities, and the use of life cycle
models and supporting processes in the systems design process.

The chapter has a specific learning goal and associated competencies. The
learning goal of this chapter is to be able to discriminate engineering design from
the less formal design-in-the-small invoked by inventors, hobbyists, entrepreneurs,
and ordinary human beings who tend to limit their scope to single, focused pur-
poses, goals, and objectives. This chapter’s goal is supported by the following
objectives:

• Describe the role of engineering vis-à-vis science.
• Describe the disciplines that affect engineering design.
• Identify the elements that make design a systematic endeavor.
• Describe the 5 major stages in the system life cycle.
• Recognize the technical processes in the system design stage.

The ability to achieve these objectives may be fulfilled by reviewing the materials
in the chapter topics which follow.

1.2 Engineering Design

Design is defined as:

The process of defining the architecture, components, interfaces, and other characteristics of
a system or component (IEEE & ISO/IEC 2010, p. 100).

Design is process that can be achieved by inventors, hobbyists, entrepreneurs, and
ordinary human beings. However, when the process is applied to complex man-
made systems it most often falls under the purview of engineers and the engineering
disciplines. 1978 Nobel Laureate Herbert A. Simon [1916–2001] expressed his
opinion about engineers and design stating.

Engineering… are concerned not with the necessary but with the contingent—not with how
things are but with how they might be—in short, with design (Simon 1996, p. xii).

As such, a review of some definitions of engineering design is warranted. Table 1.1
contains definitions of engineering design that are worthy of consideration in the
quest to understand the uniqueness and importance of the engineering design
process.

From the definitions in Table 1.1 it is clear that engineering design is a creative,
contingent, problem-solving process that includes technological and social com-
ponents required for product realization. Those responsible for engineering design
are engineers. The section that follows will focus on engineers and engineering in
design.

4 1 Introduction to the Design of Engineering Systems



1.3 Engineers and Engineering in Design

Engineering is “the science by which the properties of matter and the sources of
power in nature are made useful to humans in structures, machines, and products”
(Parker 1994, p. ix). Theodore von Kármán [1881–1963], the great aeronautical

Table 1.1 Definitions for engineering design

Definition Source

“Engineering design is the process of applying the various
techniques and scientific principles for the purpose of
defining a device, a process or a system in sufficient detail to
permit its physical realization”

Baddour et al. (1961, p. 647)

“Design is a complex process that combines creative
thinking, experience, intuition, and quantitative analysis”

Ishii et al. (1988, p. 53)

“Engineering schools to teach about artificial things: how to
make artifacts that have desired properties and how to design.
Schools of engineering, as well as schools of architecture,
business, education, law, and medicine, are all centrally
concerned with the process of design”

Simon (1996, p. 111)

“As the key technical ingredient in the product realization
process, engineering design bears responsibility for
determining in detail how products will be made to meet
performance and quality objectives for the customer at a cost
that permits a competitive price”

NRC (1991, p. 10)

“Engineering design has both technological and social
components. The technological component includes
knowledge about engineering science, design methods,
engineering models, materials, manufacturing, and
computers. The social component includes corporate
organization and culture, team design methods, the nature of
the design task and of the designer, customer attributes, and
employee involvement”

NRC (1991, p. 10)

“An ever-evolving problem-solving activity, engineering
design encompasses many different and increasingly advanced
practices, including methods for converting performance
requirements into product features, computer-integrated
manufacturing, cross-functional teams, statistical methods,
competitive benchmarking of products, computerized design
techniques, and new materials and manufacturing processes.
These and other methods used by the most competitive
companies worldwide do not exist or operate independently,
but rather are integrated into a unified process”

NRC (1991, p. 10)

“Engineering design is always a contingent process, subject
to unforeseen complications and influences as the design
develops. The precise outcomes of the process cannot be
deduced from its initial goal. Design is not, as some
textbooks would have us believe, a formal, sequential process
that can be summarized in a block diagram”

Ferguson (1994, p. 37)

1.3 Engineers and Engineering in Design 5



engineering pioneer and co-founder of Cal Tech’s Jet Propulsion Laboratory, has
been attributed with the following statement.

The scientist seeks to understand what is. The engineer seeks to create what never was
(Petroski 2010, p. 20).

Von Kármán was able to simply state what many committees, boards, and regu-
lators have tried to do in defining engineering. The root for the word engineering is
derived from the Latin ingenium, which means innate or natural quality.
Engineering has many definitions. One of the more comprehensive and thoughtful
has been assembled by the historians of engineering (Kirby et al. 1990).

The art of the practical application of scientific and empirical knowledge to the design and
production or accomplishment of various sorts of constructive projects, machines, and
materials of use or value to man (p. 2).

Engineering has a number of supporting elements.

It is customary to think of engineering as part of a trilogy, pure science, applied science,
and engineering. It needs emphasis that this trilogy is only one of a triad of trilogies into
which engineering fits. The first is pure science, applied science, and engineering. The
second is economic theory, finance, and engineering. The third is social relations, industrial
relations, and engineering. Many engineering problems are as closely allied to social
problems as they are to pure science (Cross 1952, p. 55).

Figure 1.1 is a depiction of engineering in the triad of trilogies.
The triad of trilogies helps to characterize the real-world elements that provide

the context for engineering endeavors. Engineering applies science to design,
develop, and implement solutions. However these solutions exist in the real-world
and as such are bounded by financial and social constraints, requiring engineers to
have extended knowledge in these disciplines. Dixon (1966) provides the structure

Science

Industrial
Relations

Social
Relations Finance

Economic 
Theory

Applied
Science

Engineering

Fig. 1.1 Engineering as an
element of the Triad of
Trilogies

6 1 Introduction to the Design of Engineering Systems



for a perspective of the central activity of engineering design in Fig. 1.2 that
integrates itself with disciplines such as art, science, politics, and production.

Penny (1970) discusses the principles of engineering design, using Dixon’s
(1966) perspective and as a starting point for a discussion about the engineering
design process.

The process that we label design has evolved as human beings have constructed
larger systems of increased complexity. A very simple diagram may be used to
capture the essential process of engineering design. In Fig. 1.3 engineering design is
presented in an ICOM diagram. ICOM is an acronym for Input, Control, Output,
and Mechanism (NIST 1993) and is used to describe the functions of the arrow on
the processes performed on the system or component in Fig. 1.3.

Each of the elements in Fig. 1.3 are described in terms of one another and the
processes used to approach their solution in Table 1.2.

In order to successfully accomplish the tasks in Table 1.2 the engineer is
required to acquire and maintain specialized knowledge, skills, and abilities
(KSAs). The requisite KSAs are gained through (1) formal education in under-
graduate-level engineering programs1 and (2) during training under the supervision

Science

Engineering 
Science

Engineering
Design

Production

Economics Sociology
Psychology Politics

Industrial
Design

ArchitectureArt

Engineering 
Technology

Fig. 1.2 The central activity of engineering design [adapted from a Fig. 1.1 in (Dixon 1966, p. 8)]

1Engineering programs in the United States are accredited by the Accreditation Board for
Engineering and Technology (ABET).

1.3 Engineers and Engineering in Design 7



of an experienced engineer.2 An overview of the KSAs and associated factors that
support successful engineering are presented in Table 1.3.

The application of the KSAs required for engineering in a formal process for
accomplishing a system design are accomplished through formal design methods.
Bayazit (2004) provides a brief historical review of research in design methods in
the systems age (Ackoff 1974). This area of interest is labeled design science.

Design science uses scientific methods to analyze the structures of technical systems and
their relationships with the environment. The aim is to derive rules for the development of
these systems from the system elements and their relationships (Pahl et al. 2011, p. 9).

The instantiation of a scientific method for design is a design methodology which is
defined as:

A systematic approach to creating a design consisting of the ordered application of a
specific collection of tools, techniques, and guidelines (IEEE & ISO/IEC 2010, p. 102).

System
or

Component
Input Output

Laws of Nature

Resources

Fig. 1.3 Schematic of
engineering design process
[adapted from Fig. 1.3 in
(Dixon 1966, p. 12)]

Table 1.2 Description of the elements in the engineering design process

Given elements Solve for Process

Input, laws of nature, system or
component

Output Analysis (i.e., deduction)

Output, laws of nature, system or
component

Input Inverse analysis (i.e., reverse
engineering)

Input, output, system or component Laws of nature Science (i.e., induction)

Input, output, laws of nature System or
component

Engineering design

2All 50 states have licensing programswhere engineers are designated as either engineers-in-training
or engineering interns during the period after they have passed their fundamentals of engineering
examination and are serving an apprenticeship. Licensed engineers are designated as Professional
Engineers and use the title, P.E.

8 1 Introduction to the Design of Engineering Systems



It is important to note that the word systematic is prominent in the definition of a
design methodology. Systematic design provides an effective way to rationalize the
design and production process” (Pahl et al. 2011, p. 9). In developing a rational
approach to the design process the design methodology must:

Table 1.3 KSAs required for successful engineering endeavors

KSA Type Factor Definition

Knowledge—“Knowledge refers to
an organized body of information
associated with facts or procedures
which, if applied, makes adequate
performance on the job possible”
(Chang and Lin 2011, p. 238)

Engineering
science

“Thorough knowledge and training
in depth in an engineering science
specialty” (Dixon 1966, p. 13)

Manufacturing
processes

“Knowledge of and an appreciation
for the potential and limitations of
both old and new manufacturing
processes” (Dixon 1966, p. 13)

Skill—“Skill refers to the proficient
manual, verbal or mental
manipulation of data or things.
Examples of proficient manipulation
of things are skill in typing or skill
in operating a vehicle” (Chang and
Lin 2011, p. 238)

Engineering Demonstrated proficiency in the
application of requisite knowledge
and ability during a period of
apprenticeship in an engineering
science specialty

Ability—“Ability refers to the
power to perform an observable
activity at the present time. This
means that abilities have been
evidenced through activities or
behaviors that are similar to those
required on the job, e.g., ability to
plan and organize work” (Chang and
Lin 2011, p. 238)

Inventiveness “The ability to think or discover
valuable, useful ideas or concepts”
(Dixon 1966, p. 13)

Engineering
analysis

“The ability to analyze a given
component, system, or process using
engineering or scientific principles
in order to arrive quickly at
meaningful answers” (Dixon 1966,
p. 13)

Interdisciplinary
focus

“The ability to deal competently and
confidently with basic problems or
ideas form disciplines outside one’s
specialty” (Dixon 1966, p. 13)

Computational
mathematics

“The ability to bring powerful
mathematical and computational
skills to a problem when
appropriate” (Dixon 1966, p. 13)

Decision making “The ability to make decisions in the
face of uncertainty but with a fill
grasp of all the factors involved”
(Dixon 1966, p. 13)

Communications “The ability to express oneself
clearly and persuasively orally,
graphically, and in writing” (Dixon
1966, p. 13)

1.3 Engineers and Engineering in Design 9



• allow a problem-directed approach; i.e., it must be applicable to every type of
design activity; no matter which specialist field it involves

• foster inventiveness and understanding; i.e., facilitate the search for optimum
solutions

• be compatible with the concepts, methods and findings of other disciplines
• not rely on finding solutions by chance
• facilitate the application of known solutions to related tasks
• be compatible with electronic data processing
• be easily taught and learned
• reflect the findings or cognitive psychology and modern management science;

i.e., reduce workload, save time, prevent human error, and help to maintain
active interest

• ease the planning and management of teamwork in an integrated and inter-
disciplinary product development process

• provide guidance for leaders of product development teams (Pahl et al. 2011,
p. 10).

Chapter 2 will discuss a number of methodologies used in engineering design.

1.4 Design in the System Life Cycle Model

The processes that develop, operate, and eventually retire modern systems are best
described as a life cycle. The life cycle is a model of the real-world events and
processes that surround the system. Life cycle models have distinct phases or stages
that mark important points in the life of the system. For systems endeavors life
cycle models are described using standards developed by stakeholders from
industry, government, and academia that are published by the Institute of Electrical
and Electronics Engineers (IEEE) and the International Organization for
Standardization (ISO) and the International Electrotechnical Commission (IEC).
The standard we use for man-made systems life cycles is IEEE and ISO/IEC
Standard 15288: Systems and software engineering—System life cycle processes
(IEEE & ISO/IEC 2008). Important concepts from IEEE Standard 15288 include:

• Every system has a life cycle. A life cycle can be described using an abstract
functional model that represents the conceptualization of a need for the system,
its realization, utilization, evolution and disposal.

• The stages represent the major life cycle periods associated with a system and
they relate to the state of the system description or the system itself. The stages
describe the major progress and achievement milestones of the system through
its life cycle. They give rise to the primary decision gates of the life cycle (IEEE
& ISO/IEC 2008, p. 10).

A typical systems life cycle model would consist of the stages and associated goals
shown in Table 1.4.

10 1 Introduction to the Design of Engineering Systems

http://dx.doi.org/10.1007/978-3-319-18344-2_2


The design stage of the system life cycle uses a number of technical processes
described in IEEE Standard 15288 (2008) to accomplish the goals of design.
Table 1.5 is a listing of the technical processes and the purposes that are invoked to
accomplish the design phase.

The detailed outcomes, and associated activities and tasks for each technical
process are described in IEEE Std 15288 (2008).

Table 1.4 Typical Life Cycle Model stages and goals

Life cycle stage Goals

Concept To understand the needs of the system’s stakeholders, explore
concepts, and develop viable solutions

Design To transform stakeholder needs to system requirements, to create
solution descriptions, build the system, and to verify and validate the
system

Production To produce, inspect and test the system

Operations and
Maintenance

To operate and maintain the system

Retirement and
Disposal

To replace and responsibly dispose of the existing system

Table 1.5 Technical Processes in the Design Stage

Technical Process Purpose

Stakeholder
requirements definition

“define the requirements for a system that can provide the services
needed by users and other stakeholders in a defined environment”
(IEEE & ISO/IEC 2008, p. 36)

Requirements Analysis “transform the stakeholder, requirement-driven view of desired
services into a technical view of a required product that could
deliver those services” (IEEE & ISO/IEC 2008, p. 39)

Architectural Design “synthesize a solution that satisfies system requirements” (IEEE &
ISO/IEC 2008, p. 40)

Implementation “realize a specified system element” (IEEE & ISO/IEC 2008, p. 43)

Integration “assemble a system that is consistent with the architectural design”
(IEEE & ISO/IEC 2008, p. 44)

Verification “confirm that the specified design requirements are fulfilled by the
system” (IEEE & ISO/IEC 2008, p. 45)

Transition “establish a capability to provide services specified by stakeholder
requirements in the operational environment” (IEEE & ISO/IEC
2008, p. 46)

Validation “provide objective evidence that the services provided by a system
when in use comply with stakeholders’ requirements, achieving its
intended use in its intended operational environment” (IEEE & ISO/
IEC 2008, p. 47)

1.4 Design in the System Life Cycle Model 11



1.5 Summary

The information presented in this chapter introduced engineers and how they
transform human needs, through formal methods of design, into complex man-
made systems. The systematic nature of design and the breadth and depth of dis-
ciplines associated with design activities were also reviewed. The systematic nature
of engineering and the use of life cycle models and supporting processes were
highlighted as essential elements of engineering design.

The next chapter will discuss a number of engineering methodologies that may
be used to invoke repeatable processes for the engineering design of man-made
systems.

References

Ackoff, R. L. (1974). The systems revolution. Long Range Planning, 7(6), 2–20.
Baddour, R. F., Holley, M. J., Koppen, O. C., Mann, R. W., Powell, S. C., Reintjes, J. F., et al.

(1961). Report on engineering design. Journal of Engineering Education, 51(8), 645–661.
Bayazit, N. (2004). Investigating design: A review of forty years of design research. Design Issues,

20(1), 16–29.
Chang, H.-L., & Lin, J.-C. (2011). Factors that Impact the Performance of e-Health Service

Delivery System. In: Proceedings of the 2011 International Joint Conference on Service
Sciences (IJCSS) (pp. 237–241). Los Alamitos, CA: IEEE Computer Society.

Cross, H. (1952). Engineers and Ivory Towers. New York: McGraw-Hill.
de Weck, O. L., Roos, D., & Magee, C. L. (2011). Engineering systems: Meeting human needs in

a complex technological world. Cambridge, MA: MIT Press.
Dixon, J. R. (1966). Design engineering: Inventiveness, analysis, and decision making. New York:

McGraw Hill.
Ferguson, E. S. (1994). Engineering and the Mind’s Eye. Cambridge, MA: MIT Press.
Hester, P. T., & Adams, K. M. (2014). Systemic thinking—Fundamentals for understanding

problems and messes. New York: Springer.
IEEE, & ISO/IEC. (2008). IEEE and ISO/IEC Standard 15288: Systems and software engineering

—System life cycle processes. New York and Geneva: Institute of Electrical and Electronics
Engineers and the International Organization for Standardization and the International
Electrotechnical Commission.

IEEE, & ISO/IEC. (2010). IEEE and ISO/IEC Standard 24765: Systems and Software Engineering
—Vocabulary. New York and Geneva: Institute of Electrical and Electronics Engineers and the
International Organization for Standardization and the International Electrotechnical
Commission.

Ishii, K., Adler, R., & Barkan, P. (1988). Application of design compatibility analysis to
simultaneous engineering. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, 2(1), 53–65.

Kirby, R. S., Withington, S., Darling, A. B., & Kilgour, F. G. (1990). Engineering in history.
Mineola, NY: Dover Publications.

NIST. (1993). Integration Definition for Function Modeling (IDEF0) (FIPS Publication 183).
Gaithersburg, MD: National Institute of Standards and Technology.

NRC. (1991). Improving engineering design: Designing for competitive advantage. Washington,
DC: National Academy Press.

12 1 Introduction to the Design of Engineering Systems



Pahl, G., Beitz, W., Feldhusen, J., & Grote, K.-H. (2011). Engineering design: A systematic
approach (K. Wallace & L. T. M. Blessing, trans) (3rd ed.). Darmstadt: Springer.

Parker, S. (Ed.). (1994). McGraw-Hill Dictionary of eEngineering. New York: McGraw-Hill.
Penny, R. K. (1970). Principles of engineering design. Postgraduate Medical Journal, 46(536),

344–349.
Petroski, H. (2010). The essential engineer: Why science alone will not solve our global problems.

New York: Alfred A. Knopf.
Simon, H. A. (1996). The sciences of the artificial (3rd ed.). Cambridge, MA: MIT Press.

References 13



Chapter 2
Design Methodologies

Abstract Engineering design is a formal discipline within the field of engineering.
The study of design methodologies is a sub-discipline and requires the use of unique
modes of thought and the application of a number of specific features to ensure that
designs are both repeatable and result in products that are useful for a specified period
of service. A methodology is purposefully positioned in a formal hierarchy of sci-
entific approaches, supported by a specific paradigm and philosophy while acting as
the framework for more detailed methods and techniques. There are a number of
unique engineering designmethodologies, frameworks, andmodels that have evolved
to provide the structural framework for the applicable design processes, methods, and
techniques. The Axiomatic Design Methodology provides a systems-based frame-
work for design that permits design alternatives to be evaluated based on quantitative
analysis, eliminating the need for messy qualitative and cost-based models.

2.1 Introduction to Design Methodologies

This chapter will introduce a number of engineering methodologies that may be used
to invoke repeatable processes for the purposeful design of engineering systems. The
term engineering systems may be used either as (1) a noun—“systems that fulfill
important functions in society” (de Weck et al. 2011, p. xi) or (2) a verb—“new ways
of analyzing and designing them” (de Weck et al. 2011, p. xi). In the verb form
engineering systems addresses technology and technical systems by harmonizing
them with the organizational, managerial, policy, political, and human factors that
surround the problem while allowing the stakeholder’s needs to be met while not
harming the larger society. The analysis and design efforts for engineering systems
require formal methodologies in order to implement repeatable processes that both
invoke proven engineering processes and are subject to efforts to improve those
processes.

The chapter will begin by discussing the discipline of engineering design and its
sub-disciplines of design theory and design methodology. The features and modes
of thought that support engineering design endeavors are reviewed.

© Springer International Publishing Switzerland 2015
K.M. Adams, Non-functional Requirements in Systems Analysis and Design,
Topics in Safety, Risk, Reliability and Quality 28,
DOI 10.1007/978-3-319-18344-2_2

15



The next section defines the terminology required to understand how a meth-
odology is positioned in the scientific paradigm. The section that follows provides a
formal hierarchical relationship between the terms.

This is followed by a section that presents seven historically significant engi-
neering design methodologies. The basics tenets of each methodology, including
the major phases, stages, and steps associated with each model are reviewed.
References for further study of each methodology are provided.

The chapter concludes by presenting a formal methodology for accomplishing
engineering technical processes, the Axiomatic Design Methodology. The
Axiomatic Design Methodology provides the framework through which system
functional and non-functional requirements are satisfied by design parameters and
process variables in the system design.

The chapter has a specific learning goal and associated competencies. The
learning goal of this chapter is to be able to identify describe engineering design, its
position in the scientific paradigm and a number of specific methodologies for
conducting engineering design endeavors. This chapter’s goal is supported by the
following objectives:

• Describe engineering design as a discipline.
• Differentiate between design theory and design methodology.
• Describe the desirable features of engineering design.
• Describe the double-diamond model of design.
• Construct a hierarchical structure that includes a paradigm, philosophy, meth-

odology method, and technique.
• Differentiate between the seven historical design methodologies.
• Describe the major features of the Axiomatic Design Methodology.

The ability to achieve these objectives may be fulfilled by reviewing the materials
in the chapter topics which follow.

2.2 Introduction to the Discipline of Engineering Design

The study of engineering design is a discipline within the broader field of engi-
neering. The scholarly journals in the discipline that address transdisciplinary
engineering design topics are presented in Table 2.1.

Design theory (or design science) and design methodology represent two aca-
demic subjects within the discipline of engineering design that each have their own
unique viewpoints and research agendas. The two subject areas are simply defined
as follows:

• Design theory—is descriptive as indicates what design is (Evbuomwan et al.
1996, p. 302).

• Design methodology—is prescriptive as it indicates how to do design
(Evbuomwan et al. 1996, p. 302)

16 2 Design Methodologies



This chapter is focused upon design methodology—the how to of design. More
precisely, how does a specific engineering design methodology sequence and
execute the technical processes of the design stage of the systems life cycle which
were described at the end of Chap. 1? The purpose of each of the technical pro-
cesses required for the design stage are established in IEEE Standard 15288 (2008)
and presented in Table 2.2 (repeated from Table 1.5).

The section that follows will discuss the features and properties that a design
methodology must possess in order to effectively execute the eight processes in
Table 2.2.

2.2.1 Features that Support Design Methodologies

Self conscious design contains many well-known activities such as decision making,
optimization, modeling, knowledge production, prototyping, ideation, or evaluation.
However, it cannot be reduced to any one of them or all of these activities (e.g., decisions
are made in design, but design is more than decision making). Thus, design theory is not
about modeling everything that one can find in a design practice, its goal is to precisely

Table 2.1 Scholarly journals for engineering design

Journal (ISSN) Description Publication
period/issues

Journal of Engineering
Design (0954–4828)

Articles on research into the improvement of
the design processes/practices in industry and
the creation of advanced engineering products,
and academic studies on design principles

1990-present,
4/year

Research in Engineering
Design (0934–9839)

Research papers on design theory and
methodology in all fields of engineering,
focusing on mechanical, civil, architectural, and
manufacturing engineering

1989-present,
4/year

Design Issues
(0747–9360)

Examines design history, theory, and criticism.
Provokes inquiry into the cultural and
intellectual issues surrounding design

1984-present,
4/year

Design Studies
(0142–694X)

Approaches the understanding of design
processes from comparisons across all domains
of application, including engineering and
product design, architectural and urban design,
computer artefacts and systems design

1979-present,
6/year

Journal of Mechanical
Design (1050–0472)

Serves the broad design community as the
venue for scholarly, archival research in all
aspects of the design activity with emphasis on
design synthesis

1978-present,
12/year

Journal of Research
Design (1748–3050)

Interdisciplinary journal, emphasizing human
aspects as a central issue of design through
integrative studies of social sciences and design
disciplines

2001-present,
4/year

2.2 Introduction to the Discipline of Engineering Design 17

http://dx.doi.org/10.1007/978-3-319-18344-2_1
http://dx.doi.org/10.1007/978-3-319-18344-2_1


address issues that are beyond the scope of the classical models that accompany its con-
stituent activities (decision making, prescriptive models, hypothetic-deductive model and
others). The questions this goal raises are of course: What, then, are the core phenomena of
Design? Is Design driven by novelty, continuous improvement, creativity, or imagination?
(Le Masson et al. 2013, pp. 97–98).

There are a number of features (or properties) that should be possessed by each
and every design methodology. The features are prominent elements characteristic
of each and every successful engineering design endeavor. While most design
methodologies do not formally address these features, they are unwritten elements
that the both the methodology and team members must invoke during the design
endeavor. The features are foundational to every engineering design methodology
and ensure that the methodology effectively and efficiently executes the eight
technical processes of the design stage. Ten features that support design method-
ologies are presented in Table 2.3 (Evbuomwan et al. 1996).

All of the features in Table 2.3 represent unique facets (i.e., one side of some-
thing many-sided) that the design methodology must contain in order to effectively
and efficiently execute the technical processes of the design stage during the sys-
tems life cycle. The first letters of each of the features may be combined to create
the acronym ERICOIDITI. The features are depicted in Fig. 2.1.

The next section will address the types of thought invoked during the execution
of a design methodology.

Table 2.2 Technical processes in the design stage

Technical process Purpose

1. Stakeholder
requirements definition

“Define the requirements for a system that can provide the
services needed by users and other stakeholders in a defined
environment” IEEE and ISO/IEC (2008, p. 36)

2. Requirements analysis “Transform the stakeholder, requirement-driven view of desired
services into a technical view of a required product that could
deliver those services” IEEE and ISO/IEC (2008, p. 39)

3. Architectural design “Synthesize a solution that satisfies system requirements” IEEE
and ISO/IEC (2008, p. 40)

4. Implementation “Realize a specified system element” IEEE and ISO/IEC (2008,
p. 43)

5. Integration “Assemble a system that is consistent with the architectural
design” IEEE and ISO/IEC (2008, p. 44)

6. Verification “Confirm that the specified design requirements are fulfilled by
the system” IEEE and ISO/IEC (2008, p. 45)

7. Transition “Establish a capability to provide services specified by
stakeholder requirements in the operational environment” IEEE
and ISO/IEC (2008, p. 46)

8. Validation “Provide objective evidence that the services provided by a
system when in use comply with stakeholders’ requirements,
achieving its intended use in its intended operational
environment” IEEE and ISO/IEC (2008, p. 47)

18 2 Design Methodologies



2.2.2 Thought in a Design Methodology

Design teams invoke different modes of thinking during execution of a design
methodology. The particular type of thought is a function of the execution point in
the methodology and the unique process being utilized. Two major modes of
thought exist in most methodologies—divergence and convergence, which are
inter-related and complementary. The sequence of divergence and convergence is
represented by the Double-diamond Model of Design (Norman 2013) depicted in
Fig. 2.2.

The idea behind the Double-diamond is that when a design idea is conceived, the
first action is to expand the team’s thinking (divergence) allowing the team to
explore all of the issues related to the design idea. Once all of the ideas related to
the design idea are surfaced and reviewed, the team may then focus their thinking
(convergence) on what the design should do. After the team has decided what the
design should accomplish, the team must once again expand their thinking
(divergence) to review all of the possible solution alternatives for the system.
Finally, once all of the solution alternatives have been identified and reviewed, the
team may focus (convergence) on a single satisficing solution.

Table 2.3 Desirable features that support design methodologies

Feature Description

Exploratory Design is a formal professional endeavor requiring specific knowledge,
skills, and abilities

Rational Design is rational involving logical reasoning, mathematical analysis,
computer simulation, laboratory experiments and field trials, etc

Investigative Design requires inquiry into the stakeholder’s requirements and
expectations, available design techniques, previous design solutions, past
design failures and successes, etc

Creative Design requires know-how, ingenuity, memory, pattern recognition
abilities, informed solution scanning, lateral thinking, brainstorming,
analogies, etc

Opportunistic Both top-down and bottom-up approaches are used by the design team
based upon the situation presented

Incremental Improvements or refinements are proposed during the design process in
order to achieve an improved design

Decision-making Design requires value judgements. Courses of action and selection from
competing solutions are based on experience and criteria provided by the
system’s stakeholders

Iterative Design is iterative. Artifacts are analyzed with respect to functional and
non-functional requirements, constraints, and cost. Revisions are based on
experience and feedback mechanisms

Transdisciplinary Design of engineering systems requires a transdisciplinary team

Interactive Design is interactive. The design team is an integral part of the actual
design

2.2 Introduction to the Discipline of Engineering Design 19



Desirable
Features

Fig. 2.1 Desirable features of engineering methodologies

Deliver

Finding the Right Solution

Discover DevelopDefine

Finding the Right Problem

Fig. 2.2 Double diamond model of design

20 2 Design Methodologies



2.2.3 Synthesis of Thought and Features that Support All
Engineering Design Methodologies

To be successful, the design team must invoke both the desirable features and the
two modes of thinking as a matter of routine during the execution of the technical
processes within the design methodology adopted for the design endeavor. The
ability to apply thinking modes required for the technical processes and to include
each of the desirable features provides a solid framework for the design effort.
Figure 2.3 is a depiction of the synthesis of thought and desirable features that
provide support for all engineering design methodologies.

The section that follows will review the terminology and relationships associated
with a methodology.

2.3 Methodological Terms and Relationships

In order to better understand where a methodology fits in the scientific hierarchy,
the next section will review and define key terms that include paradigm, philoso-
phy, methodology, method, and technique. The section will also present a struc-
tured relationship between the terms.

Deliver

Finding the Right Solution

Discover DevelopDefine

Finding the Right Problem

Desirable
Features

Desirable
Features

Fig. 2.3 Synthesis of features and thought

2.2 Introduction to the Discipline of Engineering Design 21



2.3.1 Paradigm

Paradigm is a term attributed to the physicist and modern Philosopher of Science
Thomas Kuhn [1922–1996]. Two definitions for paradigm are presented in
Table 2.4.

From these definitions a composite definition for paradigm is developed which
states that a paradigm is the whole network of theories, beliefs, values, methods,
objectives, professional and educational structure of a scientific community. As
such the paradigm associated with the field of engineering and the discipline of
engineering design requires the paradigm to contain:

• The network of beliefs and values,
• The professional and education structure, and
• The worldview for a scientific community.

2.3.2 Philosophy

Two relevant definitions of philosophy are presented in Table 2.5.
From these definitions a composite definition for philosophy states that philos-

ophy is the logical analysis of the concepts, propositions, proofs, theories of sci-
ence, as well as of those which we select in available science as common to the

Table 2.4 Definitions of paradigm

Definition Source

“The entire constellation of beliefs, values, techniques, and so on
shared by the members of a given community”

Kuhn (1996, p. 175)

“The whole network of theories, beliefs, values, methods, objectives,
professional and educational structure of a scientific community”

Psillos (2007, p. 174)

Table 2.5 Definitions of philosophy

Definition Source

“Philosophy deals with science only from the logical viewpoint.
Philosophy is the logic of science, i.e., the logical analysis of the
concepts, propositions, proofs, theories of science, as well as of
those which we select in available science as common to the
possible methods of constructing concepts, proofs, hypotheses,
theories”

Carnap (1934, p. 6)

“The different ways in which we classify whatever the world, or
any world, contains”

Proudfoot and Lacey
(2010, p. 302)

22 2 Design Methodologies



possible methods of constructing concepts, proofs, hypotheses, theories. The
application of the notion of philosophy to the field of engineering and discipline of
engineering design requires the supporting philosophy to contain:

• The body of theoretical knowledge that underpins the worldview,
• Is at the highest level of abstraction, and
• Contains the systems laws, principles, theorems, and axioms used by the sci-

entific community to address the world.

2.3.3 Methodology

Three relevant definitions of a methodology are presented in Table 2.6.
From these definitions a composite definition for methodology states that a

methodology is the systematic analysis and organization of the rational and
experimental principles and processes which guide a scientific inquiry. The
application of the definition for methodology to the field of engineering and the
discipline of engineering design requires the supporting methodology to be:

• It is one of the systemic approaches that is used to guide scientific endeavor, and
• Is a blend of more than one systemic methodology, becoming increasingly

specific until it becomes a unique methodology.

2.3.4 Method or Technique

Both method and technique are terms that require definition in order to both dif-
ferentiate them and provide for a common language for engineering design.

• Method: A systematic procedure, technique, or mode of inquiry employed by or
proper to a particular discipline or art (Mish 2009, p. 781).

• Technique: A body of technical methods (as in a craft or in scientific research)
(Mish 2009, p. 1283).

Table 2.6 Definitions of methodology

Definition Source

“The philosophical study of the scientific method.” Honderich (2005, p. 598)

“A structured set of methods or techniques to assist people in
undertaking research or intervention.”

Mingers (2003, p. 559)

“The systematic analysis and organization of the rational and
experimental principles and processes which guide a scientific
inquiry, or which constitute the structure of the special sciences
more particularly.”

Runes (1983, p. 212)

2.3 Methodological Terms and Relationships 23



The section that follows will provide a hierarchical relationship between each of
the terms utilized in the description of an engineering methodology.

2.3.5 Relationship Between Scientific Terms

There is a distinct relationship between the terms paradigm, philosophy, method-
ology, method, and technique. Dr. Peter Checkland, acknowledged as a leader in
the development of systemic methodologies states:

I take a methodology to be intermediate in status between a philosophy, and a technique …
a technique is a precise specific programme of action which will produce a standard result
… A methodology will lack the precision of a technique but will be a firmer guide to action
than a philosophy (Checkland 1999, p. 162).

The relationships between a paradigm, philosophy, methodology, method, and
technique are depicted in Fig. 2.4.

Methodology
The body of 

theoretical 
knowledge that 
underpins the 
worldview.

Is at the highest 

level of 
abstraction.

Contains the 

systems laws ,
principles ,
theorems, and 
axioms used by 
the scientific 
community to 
address the world.

One of the systemic 

approaches that is 
used to guide 
scientific endeavor.

A blend of more 

than one systemic 
methodology ,
becoming 
increasingly specific 
until it becomes a 
unique 
methodology.

Philosophy

Paradigm

Method

TechniqueFocused.

Systematic.

Discipline related.
Narrow.

Step by step 

procedures.

Precise actions.

Standard results.

The network of 

beliefs and 
values.

The professional 

and education 
structure.

The worldview for 

a scientific 
community.

Fig. 2.4 Relationship between scientific terms

24 2 Design Methodologies



2.4 Hierarchical Structure for Engineering Design

Figure 2.4 provides the structure within which an engineering design methodology
exists. Documents that support a methodology in engineering design will be dis-
cussed in the section that follow.

2.4.1 Paradigm for Engineering as a Field of Science

The top-level, the paradigm, that surrounds all engineering efforts is science, the
scientific method and scientific community. The “sciences are organized bodies of
knowledge” (Nagel 1961, p. 3) which at its highest level includes six major fields:
(1) natural sciences; (2) engineering and technology; (3) medical and health sci-
ences; (4) agricultural sciences; (5) social sciences; and (6) humanities (OECD
2007). Each science is guided by “the desire for explanation which are at once
systematic and controllable by factual evidence that generates science” (Nagel
1961, p. 4). “Science is not a rigid body of facts. It is a dynamic process of
discovery. It is alive as live itself” (Angier 2007, p. 19).

2.4.2 Philosophy for Engineering

The second-level, philosophy, serves to focus all engineering efforts and contains a
guide to the theoretical body of knowledge that underpins the worldview for all
engineers. There is an overarching body of knowledge that encompasses general
engineering knowledge (NSPE 2013) and individual bodies of knowledge for each
engineering discipline. For instance, the Guide to the Systems Engineering Body of
Knowledge or SEBoK (BKCASE-Editorial-Board 2014) and the Guide to the
Software Engineering Body of Knowledge or SWEBOK (Bourque and Fairley
2014). The body of knowledge acts as a guide to the specific knowledge areas
required to effectively practice engineering in the discipline governed by the body
of knowledge. Each body of knowledge endeavors to:

• To promote a consistent worldwide view of the engineering discipline,
• To specify the scope of, and clarify the relationship of the engineering discipline

with other scientific fields and engineering disciplines,
• To characterize the contents of the engineering discipline,
• To provide a topical access to the body of knowledge in the extant literature, and
• To provide a foundation for curriculum development and for individual certi-

fication and licensing material in the discipline.

2.4 Hierarchical Structure for Engineering Design 25



2.4.3 Methodology for Engineering Design

The third level, the methodology, serves to focus all engineering design efforts (a
discipline of engineering) in achieving the technical processes required to design a
man-made systems. The definition of a design methodology was provided in
Chap. 1.

A systematic approach to creating a design consisting of the ordered application of a
specific collection of tools, techniques, and guidelines (IEEE and ISO/IEC 2010, p. 102).

A design methodology can be envisioned as a framework or model that focuses the
actions of human beings that are attempting to define an object, device, process, or
system in order to provide the details required to effect construction, assembly, and
implementation for use.

Design models are the representations of philosophies or strategies proposed to show how
design is and may be done (Evbuomwan et al. 1996, p. 305).

The section that follows will present a number of formal methodologies that may be
utilized during the design of engineering system.

2.5 Engineering Design Methodologies

This section will present a number of major engineering design methodologies.
Each methodology will be reviewed at a very high-level, but will contain adequate
references that may guide further investigation of the details of the methodology. It
is important to remember that the methodology is a framework or model that guides
the execution, tracking, and accomplishment of technical tasks required to
accomplish the design of a man-made system. Seven select methodologies will be
presented in chronological order of their appearance in the literature.

2.5.1 Methodology by Morris Asimov

Morris Asimow [1906–1982], a professor of engineering systems at the University
of California at Los Angeles, developed the seven-phase linear chronological
structure (i.e., morphology) for design projects depicted in Fig. 2.5. Asimow was
the initial author to discuss morphology in engineering design and as such has the
distinction of authoring one of the earliest texts on the topic.

Notice that Fig. 2.5 contains three phases identified as the design phases. The
purposes of each design phase are as follows:

• Feasibility study—“to achieve a set of useful solutions to the design problem”
(Asimow 1962, p. 12).

26 2 Design Methodologies

http://dx.doi.org/10.1007/978-3-319-18344-2_1


• Preliminary design—“to establish which of the proffered alternatives is the best
design concept” (Asimow 1962, p. 13).

• Detailed design—“to furnish the engineering description of a tested and pro-
ducible design” (Asimow 1962, p. 13)

Identification
of

Need

Phase I
Feasibility analysis

Phase II
Preliminary design

Phase III
Detailed design

Phase IV 
Construction Planning 

Phase V
Distribution Planning

Phase VI 
Consumption planning

Phase VII
Retirement planning

Design
Phases

Production 
and 

Consumption 
Cycle 

Phases

Fig. 2.5 Seven phases of a
complete project [adapted
from (Asimow 1962, p. 12)]

2.5 Engineering Design Methodologies 27



This step-wise execution of design phases and the associated processes should be
familiar to every engineer as it serves as the foundation for teaching the sequential
path of activities involved in delivering products and systems. The details of each of
the seven phases are presented as individual chapters in Asimow’s text Introduction
to Design (1962).

2.5.2 Methodology by Nigel Cross

Nigel Cross, an emeritus professor of design studies at The Open University in the
United Kingdom and current editor-in-chief of the scholarly journal Design Studies,
published the first version of the eight-stage model of design shown in Fig. 2.6 in
1984. This model is unique in that it permits the user to visualize how the larger
design problem may be broken into sub-problems and sub-solutions which are then
synthesized into the total solution.

The three stages on the left hand side of the model and the one stage in the
bottom middle establishes objectives, functions, requirements, and characteristics of
the problem. The three stages on the right hand side of the model and the one in the
upper middle generate, evaluate, and provide improvements to alternatives and
identify additional opportunities that may be relevant to the problem’s design
solution. The right hand side responds to and provides feedback to the left hand
side. The details of this model are presented in Cross’ text Engineering Design
Methods (Cross 2008), which is now in its 4th edition.

Overall
Solution

Sub-
problems

Objectives

Functions

Requirements Characteristics Alternatives

Evaluation

ImprovementOpportunities

Stage flow
direction

Sub-
solutions

Overall
Problem

Fig. 2.6 Eight stages of the design process [adapted from (Cross 2008, p. 57)]

28 2 Design Methodologies



2.5.3 Methodology by Michael J. French

Michael J. French, Emeritus Professor of Engineering Design at Lancaster
University proposed a block diagram of total design in his text Conceptual Design
for Engineers in 1985. His four-phase model is depicted in Fig. 2.7.

The details associated with this model of design are presented in his text
Conceptual Design for Engineers (French 1998) which has recently been reissued
in its 3rd edition.

Need

Phase I
Analysis of Problem

Feedback
loop

Statement 
of 

problem

Phase II
Conceptual design

Phase III 
Embodiment of 

Schemes 

Phase IV
Detailing

Selected 
Schemes

Working 
drawings 

etc.

Fig. 2.7 Block diagram of
the design process [adapted
from Fig. 1.1 in (French 1998,
p. 2)]

2.5 Engineering Design Methodologies 29



2.5.4 Methodology by Vladimir Hubka and W. Ernst Eder

Vladimir Hubka [1924–2006] was the head of design education at the Swiss
Federal Technical University (ETH) in Zürich from 1970 until 1990. His area of
expertise was design science and the theory of technical systems. Hubka proposed a
four-phase, six step model that addressed elements of design from concept through
creation of assembly drawings. A simplified depiction of Hubka’s design process
model that represents the states of the technical processes during the design phases
is depicted in Fig. 2.8.

This is a unique model in that specific design documents are identified as
deliverable objects upon completion of the various steps. The details of this
innovative approach to design are described in the text Design Science:
Introduction to the Needs, Scope and Organization of Engineering Design
Knowledge (Hubka and Eder 1995). Hubka’s long-time colleague W. Ernst Eder
provides an excellent compilation on Hubka’s legacy, which includes his views on
both engineering design science and the theory of technical systems, providing a
glimpse into a number of fascinating views on these subjects (Eder 2011).

2.5.5 Methodology by Stuart Pugh

Stuart Pugh [1929–1993] was the Babcock Professor of Engineering Design and the
head of the Design Division at the University of Strathclyde in Glasgow, Scotland
from 1985 until him untimely death in 1993. During his time at Strathclyde he
completed his seminal work Total Design: Integrated Methods for Successful
Product Engineering (1991). Pugh was an advocate of participatory design using
transdisciplinary teams. Until Pugh fostered this idea in both his teaching and
consulting work, most engineers focused on technical elements of the design and
rarely participated in either the development process or the commercial aspects
associated with the product. Pugh’s use of transdisciplinary teams ensured that both
technical and non-technological factors were included in what he labeled Total
Design.

Pugh’s Total Design Activity Model has four parts. The first part is the design
core of six phases: (1) user need; (2) product specification; (3) conceptual design;
(4) detail design; (5) manufacture; and (6) and sales. The six phases of the design
core are depicted in Fig. 2.9. The iterations between the phases account for changes
to the objectives for the product during the period of design.

The second part of the Total Design Activity Model is the product design
specification (PDS). The PDS envelopes the design core and contains the major
specification elements required to design, manufacture and sell the product. The
major elements of a PDS are presented in Table 2.7.

When the PDS is placed on the design core the Total Design Activity Model is
represented by two of its four parts as depicted in Fig. 2.10. The lines that radiate

30 2 Design Methodologies



Development contract

Improve
Evaluate, select,

decide
Check

Elaborate or clarify the assigned 
specification

Design specification

Improve
Evaluate, select,

decide
Check

Establish the function structure and 
investigate alternatives

Function structure

Improve
Evaluate, select,

decide
Check

Establish the organ structure and 
investigate alternatives

Organ structure (concept)

Improve
Evaluate, select,

decide
Check

Establish the component structure (1) and
investigate alternatives

Component structure – preliminary 
layout

Step 1:
Elaborate the 
assigned task

Step 2:
Conceptualizing

Step 3:
Conceptual

Design

Improve
Evaluate, select,

decide
Check

Establish the component structure (2) and
investigate alternatives

Component structure – dimensional 
layout

Step 4:
Embodying

Step 5:
Laying Out

Release

Improve
Evaluate, select,

decide
Check

Establish the component structure (3) and
investigate alternatives

Representation and description of 
technical system

Step 6:
Detailing

Phase I

Phase II

Phase III

Phase IV

Fig. 2.8 Depiction of Hubka’s design model [adapted from Figs. 7–13 (Hubka and Eder 1995)]

2.5 Engineering Design Methodologies 31



Market

Specification

Concept Design

Detail Design

Manufacture

Sell

Main
Design
Flow

Iterations

Iterations

Fig. 2.9 Main design core
[adapted from Fig. 1.4 in
(Pugh 1991, p. 6)]

Table 2.7 Elements of the product design specification

Customer Processes Size Shipping Performance

Disposal Aesthetics Politics Installation Weight

Maintenance Competition Packing Reliability Shelf life
storage

Patents Environment Testing Safety Legal

Documentation Quality Product
lifespan

Materials Ergonomics

Standards
specifications

Manufacturing
facilities

Market
constraints

Company
constraints

Life in
service

Product cost Time scale

32 2 Design Methodologies



from and surround the core phases are the elements of the PDS relevant to the
particular product’s design.

The third part of the Total Design Activity Model are the inputs from the dis-
cipline independent methods required to execute the design core. These include
both the desirable features of engineering design and the two modes of thought as
depicted in Fig. 2.3 and many others. The fourth and final part of the Total Design
Activity Model are the inputs from the technology and discipline dependent sources.
Many discipline specific methods are required to execute the elements of the PDS
that surround the design core. Examples include stress and strain analysis, welding,

Market

Specification

Concept Design

Detail Design

Manufacture

Sell

Element of the PDS
From Table 2.7

Element of the PDS 
from Table 2.7

Specification is 
formulated in the 2 nd

element

Conceptual design 
equates to this 
specification

Detailed design 
equates to this 
specification

Design is in balance 
with the specification

Element of the PDS
From Table 2.7

Element of the PDS
From Table 2.7

Fig. 2.10 Design core and surrounded by PDS [adapted from Fig. 1.5 in (Pugh 1991, p. 7)]

2.5 Engineering Design Methodologies 33



electromagnetic surveys, heat transfer studies, etc. The completed Total Design
Activity Model is depicted in Fig. 2.11.

The Total Design Activity Model depicted in Fig. 2.11 includes examples of both
technology and discipline specific methods and discipline independent methods to
be illustrative of the inputs to the model. Real-world implementation of this model
would involve many more methods. The details of this detailed model for to design
are described in Pugh’s seminal text Total Design: Integrated Methods for
Successful Product Engineering (1991).

2.5.6 Methodology by the Association of German
Engineers (VDI)

In Germany, the Association of German Engineers (VDI) has a formal guideline for
the Systematic Approach to the Design of Technical Systems and Products (VDI
1987). The guideline proposes a generalized approach to the design of man-made
systems that has wide applicability within a wide range of engineering disciplines.
This approach is depicted in Fig. 2.12.

Interactive

Market

Specification

Concept Design

Detail Design

Manufacture

Sell

Technology and Discipline 
Specific Methods

Discipline Independent 
Methods

Incremental

Fig. 2.11 Total design activity model

34 2 Design Methodologies



The model has four phases made up of seven stages and a specific result is
associated with each stage. The approach in Fig. 2.12 should be “… regarded as a
guideline to which detailed working procedures can be assigned. Special emphasis
is placed on the iterative nature of the approach and the sequence of steps must not
be considered rigid” (Pahl et al. 2011, p. 18).

Phase I

Task

Stage 1
Clarify and define the task

Stage 2
Determine functions and 

their structure

Stage 3
Search for solution 
principles and their 

combinations

Stage 4
Divide into realizable 

modules

Stage 5
Develop layouts of key 

modules

Stage 6
Complete overall layout

Stage 7
Provide production and 
operating instructions

Further realization

Specification

Function structure

Principle solution

Module structure

Preliminary layouts

Definitive layout

Product 
documents

Phase II

Phase III

Phase IV

Stage Results

Fig. 2.12 General approach to design [adapted from Fig. 3.3 in (VDI 1987, p. 6)]

2.5 Engineering Design Methodologies 35



2.5.7 Methodology by Pahl, Beitz, Feldhusen, and Grote

The team of Gerhard Pahl, Wolfgang Beitz, Jörg Feldhusen, and Karl-Heinrich
Grote have authored one of the most popular textbooks on design, Engineering
Design: A Systematic Approach (2011). In this text they propose of model for
design that has four main phases: (1) planning and task clarification; (2) conceptual
design; (3) embodiment design; and (4) detailed design. The simple nature of the
model does not warrant a figure, but each of the phases are described in the
following:

• Task Clarification—the purpose of this phase “is to collect information about the
requirements that have to be fulfilled by the product, and also about the existing
constraints and their importance” (Pahl et al. 2011, p. 131).

• Conceptual Design—the purpose of this phase is to determine the principle
solution. “This is achieved by abstracting the essential problems, establishing
function structures, searching for suitable working principles and then com-
bining those principles into a working structure” (Pahl et al. 2011, p. 131).

• Embodiment Design—the purpose of this phase is to “determine the construc-
tion structure (overall layout) of a technical system in line with technical and
economic criteria. Embodiment design results in the specification of a layout”
(Pahl et al. 2011, p. 132).

• Detailed Design—the purpose of this phase is to finalize “the arrangement,
forms, dimensions, and surface properties of all the individual parts are finally
laid down, the materials specified, production possibilities assessed, costs esti-
mated, and all the drawings and other production documents produced. The
detailed design phase results in the specification of information in the form of
production documentation (Pahl et al. 2011, p. 132).

The details of each of the phases in this model are presented in their text
Engineering Design: A Systematic Approach (Pahl et al. 2011) which is now in its
3rd edition.

The section that follow will discuss an eighth design methodology—Axiomatic
Design.

2.6 The Axiomatic Design Methodology

The Axiomatic Design Methodology is given special treatment in this chapter
because it not only satisfies the Technical Processes in Table 2.2, but it also meets
nine critical attributes that ensure a methodology remain sustainable (Adams and
Keating 2011). The nine (9) critical attributes and how the Axiomatic Design
Methodology satisfies these are presented in Table 2.8.

It is important to note that one of the most unique features of the Axiomatic
Design Methodology (ADM) is its ability to not only satisfy the Technical

36 2 Design Methodologies



Table 2.8 Critical attributes of the axiomatic design methodology (ADM)

Critical Attribute Attribute description and satisfaction in the ADM

1. Transportable A methodology must be capable of application across a spectrum of
complex engineering problems and contexts. The ADM has been
successfully applied to a wide variety of design problems is multiple
domains

2. Theoretical
and Philosophical
Grounding

A valid methodology must have a linkage to a theoretical body of
knowledge as well as philosophical underpinnings that form the basis
for the methodology and its application. The theoretical body of
knowledge for the ADM is systems theory

3. Guide to Action A methodology must provide sufficient detail to frame appropriate
actions and guide direction of efforts to implement the methodology.
The ADM provides clear guidance on how to transform customer
requirements to functional and non-functional requirements to design
parameters and process variables

4. Significance A methodology must exhibit the holistic capacity to address multiple
problem domains, minimally including contextual, human,
organizational, managerial, policy, technical, and political aspects. The
ADM addresses functional and non-functional requirements and systems
constraints

5. Consistency A methodology must be capable of providing replicability of approach
and results interpretation based on deployment of the methodology in
similar contexts. The ADM mathematical rigor ensures consistency of
results

6. Adaptable A methodology must be capable of flexing and modifying the approach,
configuration, execution, or expectations based on changing conditions
or circumstances. The ADM may be applied in a variety of conditions
and circumstances subject to compliance with the axioms of systems
theory

7. Neutrality A methodology attempts to minimize and account for external influences
in application and interpretation. The ADM is sufficiently transparency
in technique to eliminate bias, surface assumptions, and account for
limitations during execution of the methodology

8. Multiple Utility A methodology supports a variety of applications with respect to
complex systems to include new system design, existing system
transformation, and assessment of systems problems. The ADM may be
applied across multiple problem domains and applications

9. Rigorous A methodology must be capable of withstanding scrutiny with respect to:
(1) identified linkage to a body of theory and knowledge; (2) sufficient
depth to demonstrate detailed grounding in relationship to the theory
and knowledge; and (3) capable of providing transparent, replicable
results with accountability for explicit logic used to draw conclusions
and interpretations. The ADM’s grounding in systems theory,
application of axioms for information entropy and independence, and its
mathematical rigor ensure replicable results that use common logic for
the development of conclusions

2.6 The Axiomatic Design Methodology 37



Processes for design presented in Table 2.2, but its ability to invoke specific axioms
of systems theory in order to develop quantitative measures for evaluating systems
design endeavors. None of the seven design methodologies reviewed in Sect. 2.5
demonstrated that ability.

The sections that follow will introduce the basic elements of the ADM. The
central focus will be on its ability to selection the best design alternative based upon
a quantitative evaluation of the design’s ability to satisfy its functional and non-
functional requirements. The elimination of qualitative evaluation parameters and
cost is a major shift from every other design methodology. As such, the Axiomatic
Design Methodology is positioned as the premier methodology for systems design
endeavors.

2.6.1 Introduction to the Axiomatic Design Methodology

The Axiomatic Design Methodology was developed by Professor Nam P. Suh
while at the Massachusetts Institute of Technology. Professor Suh’s design
framework is founded upon two axioms of systems theory, that he titles the
independence axiom and the information axiom. Suh uses these axioms, in con-
junction with the concept of domains to develop a framework where customer
attributes are transformed into process variables in a completed design. The basic
idea of an axiomatic design framework was envisioned by Dr. Suh in the mid-1970s
and was first published in 1990 (Suh 1990) and updated in 2001 (Suh 2001). The
sections that follow will provide a high-level description of the Axiomatic Design
Methodology.

2.6.2 Domains in the Axiomatic Design Methodology

A key concept in axiomatic design is that of domains. In the design world there are
four domains: (1) the customer1 domain, which is characterized by customer
attributes that the customer and associated stakeholders would like to see in the
their system; (2) The functional domain where the customer’s detailed specifica-
tions, specified as both functional requirements (FR) and non-functional require-
ments (NFR) or what Suh describes as constraints (C) are specified; (3) The
physical domain where the design parameters emerge; and (4) The process domain
where process variables enable the design. Figure 2.13 is a depiction of the four
domains of the design world.

1This chapter will adhere to Dr. Suh's term customer. However, note that this term is too narrowly
focused. Therefore, the reader is encouraged to substitute the term stakeholder, which includes the
larger super-set of those associated with any systems design.

38 2 Design Methodologies



2.6.3 Independence Axiom

A second key concept of axiomatic design is the independence axiom. The inde-
pendence axiom states:

Maintain the independence of the functional requirements (Suh 2005b, p. 23).

Simply stated, each functional requirement2 should be satisfied without affecting
any other functional requirement. During the conceptualization process the func-
tional requirements are transformed from the functional domain where they state
what, to the physical domain where they will be met by how. The mapping should
be one design parameter (DP) to one functional requirement (FR). Mathematically
this can be related as two vectors, the FR vector [FR] and the DP vector [DP] as
shown in Eq. 2.1.

Equation for Functional Requirements

FR½ � ¼ A½ �½DP� ð2:1Þ

where [A] is the design matrix which relates FRs to DPs and is:

Equation for Design Matrix

A½ � ¼
A11 A12 A13
A21 A22 A23
A31 A23 A33

������

������
ð2:2Þ

Customer
Attributes

(CA)

Functional 
Requirements

(FR)

Constraints (C) or 
Non-functional
Requirements 

(NFR)

Design
Parameters

(DP)

Process
Variables

(PV)

Customer
Domain

Functional
Domain

Physical
Domain

Process
Domain

Mapping

Mapping

MappingMapping

Fig. 2.13 Four domains of the design world

2Only functional requirements will be addressed in this description, but the concept also applies to
the non-functional requirements that act as constraints on the system design.

2.6 The Axiomatic Design Methodology 39



Using the design matrix in Eqs. 2.2 and 2.1 may be written as Eq. 2.3.

Expanded Equation for Functional Requirements

FR1 ¼ A11DP1 þ A12DP2 þ A13DP3

FR2 ¼ A21DP1 þ A22DP2 þ A23DP3

FR3 ¼ A31DP1 þ A32DP2 þ A33DP3

ð2:3Þ

This satisfies the general relationship in Eq. 2.4.

General Equation for Functional Requirements

FR ¼
Xn

i¼1

AijDPj ð2:4Þ

where i = the number of Design Parameters (DP).
The independence axiom may be used to evaluate design complexity. Most

systems exhibit complexity as a result of excessive interaction between components
within the system design. Design complexity may be measured by observing sys-
tem coupling, i.e., where the number of DPs is less than the number of FRs. In this
case the design has added complexity because DPs are satisfying more than one FR,
or the FR has not been satisfied.

The relevance of the independence axiom has additional utility in that individual
designs may be evaluated, not qualitatively, but quantitatively, based on the rela-
tionship to an ideal design. The ideal design is one where the number of DPs are
equal to the number of FRs, where the FRs are kept independent of one another. All
design alternatives may be evaluated against the concept of an ideal design.

2.6.4 The Information Axiom

The information axiom is one of the seven axioms of systems theory (Adams et al.
2014). The Information Axiom states:

Systems create, possess, transfer, and modify information. The information principles
provide understanding of how information affects systems (Adams et al. 2014, p. 119).

The information axiom’s principle invoked by Suh (1990, 2001) in his formulation
for Axiomatic Design is the principle of information redundancy. Information
redundancy is “the fraction of the structure of the message which is determined not
by the free choice of the sender, but rather by the accepted statistical rules gov-
erning the use of the symbols in question” (Shannon and Weaver 1998, p. 13). It is
the number of bits used to transmit a message minus the number of bits of actual
information in the message.

40 2 Design Methodologies



The Axiomatic Design Methodology’s information axiom makes use of
Shannon’s generalized formula for information entropy,3 which is a measure of the
uncertainty of the information, or the unpredictability of information content, as
presented in Eq. 2.5.

Shannon’s Equation for Information Entropy

H ¼ �
X

pilogpi ð2:5Þ

where:
H information entropy
pi probability of the information elements

The reformulated equation for information content (I), as related to the probability
(pi) of a design parameter (DPi) satisfying a functional requirement (FRi) is pre-
sented in Eq. 2.6.

System Information Content

Isys ¼ �
Xn

i¼1

log2pi ð2:6Þ

The information axiom, when used in this context, states that the system design
with the smallest Isys (i.e., the design with the least amount of information) is the
best design. This is perfectly logical, because such a design requires the least
amount of information to fulfill the design parameters.

The Axiomatic Design Methodology’s utilization of Shannon’s information
entropy is remarkable because a system’s design complexity, most often expressed
as a qualitative assessment, may be represented as a quantitative measure based on
the information entropy required to satisfy the design parameters.

2.6.5 Constraints or Non-functional Requirements

The design goals include not only the functional requirements (FRi), but constraints
(Ci) which place bounds on acceptable design solutions. Axiomatic design
addresses two types of constraints: (1) input constraints, which are specific to the
overall design goals and apply to all proposed designs; and (2) system constraints,
which are specific to a particular system design.

3Information entropy is sometimes referred to as Shannon Entropy. For more information on
Information Theory the reader may review either Ash (1965). Information Theory. New York:
Dover Publications, or Pierce (1980). An Introduction to Information Theory: Symbols, Signals
and Noise (2nd, Revised ed.). New York: Dover Publications.

2.6 The Axiomatic Design Methodology 41



Constraints affect the design process by generating a specific set of functional requirements,
guiding the selection of design solutions, and being referenced in design evaluation (Suh
2005a, p. 52).

The specific set of functional requirements generated by the constraints will be
labeled non-functional requirements. Non-functional requirements (NFR) are
addressed within the Axiomatic Design Methodology in the same manner as
functional requirements. A discussion and nominal taxonomy for non-functional
requirements will be presented in the next chapter.

2.7 Summary

In this chapter engineering design has been defined and positioned within the larger
scientific paradigm and the engineering field. Desirable features and two modes of
thought used in of engineering design were addressed. Terminology relating a
methodology within a hierarchy of scientific approaches has been provided. Finally,
seven historical and one preferred methodology for system design endeavors were
presented.

The next chapter will review the definition for non-functional requirements and
the role they play in every engineering design of man-made systems. It will also
develop a notional taxonomy for identifying and addressing non-functional
requirements in a system design endeavor.

References

Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems
theory: The foundation for understanding systems. Systems Engineering, 17(1), 112–123.

Adams, K. M., & Keating, C. B. (2011). Overview of the systems of systems engineering
methodology. International Journal of System of Systems Engineering, 2(2/3), 112–119.

Angier, N. (2007). The canon: A whirlwig tour of the beautiful basics of science. New York:
Houghton Mifflin Company.

Ash, R. B. (1965). Information theory. New York: Dover Publications.
Asimow, M. (1962). Introduction to design. Englewood Cliffs: Prentice-Hall.
BKCASE-Editorial-Board. (2014). The guide to the systems engineering body of knowledge

(SEBoK), version 1.3. In R. D. Adcock (Ed.), Hoboken, NJ: The Trustees of the Stevens
Institute of Technology.

Bourque, P., & Fairley, R. E. (Eds.). (2014). Guide to the software engineering body of knowledge
(version 3.0). Piscataway, NJ: Institute of Electrical and Electronics Engineers.

Carnap, R. (1934). On the character of philosophic problems. Philosophy of Science, 1(1), 5–19.
Checkland, P. B. (1999). Systems thinking. Systems Practice. Chichester: Wiley.
Cross, N. (2008). Engineering design methods (4th ed.). Hoboken, NJ: Wiley.
de Weck, O. L., Roos, D., & Magee, C. L. (2011). Engineering systems: Meeting human needs in

a complex technological world. Cambridge, MA: MIT Press.
Eder, W. E. (2011). Engineering design science and theory of technical systems: Legacy of

Vladimir Hubka. Journal of Engineering Design, 22(5), 361–385.

42 2 Design Methodologies



Evbuomwan, N. F. O., Sivaloganathan, S., & Jebb, A. (1996). A survey of design philosophies,
models, methods and systems. Proceedings of the Institution of Mechanical Engineers, Part B:
Journal of Engineering Manufacture, 210(4), 301–320.

French, M. J. (1998). Conceptual design for engineers (3rd ed.). London: Springer.
Honderich, T. (2005). The Oxford companion to philosophy (2nd ed.). New York: Oxford

University Press.
Hubka, V., & Eder, W. E. (1995). Design science: Introduction to the needs, scope and

organization of engineering design knowledge (2nd ed.). New York: Springer.
IEEE and ISO/IEC. (2008). IEEE and ISO/IEC Standard 15288: Systems and software

engineering—system life cycle processes. New York: Institute of Electrical and Electronics
Engineers and the International Organization for Standardization and the International
Electrotechnical Commission.

IEEE and ISO/IEC. (2010). IEEE and ISO/IEC Standard 24765: Systems and software
engineering—vocabulary. New York : Institute of Electrical and Electronics Engineers and
the International Organization for Standardization and the International Electrotechnical
Commission.

Kuhn, T. S. (1996). The structure of scientific revolutions. Chicago: University of Chicago Press.
Le Masson, P., Dorst, K., & Subrahmanian, E. (2013). Design theory: History, state of the art and

advancements. Research in Engineering Design, 24(2), 97–103.
Mingers, J. (2003). A classification of the philosophical assumptions of management science

methods. Journal of the Operational Research Society, 54(6), 559–570.
Mish, F. C. (Ed.). (2009). Merriam-webster’s collegiate dictionary (11th ed.). Springfield, MA:

Merriam-Webster, Incorporated.
Nagel, E. (1961). The structure of science: Problems in the logic of scientific explanation. New

York: Harcourt, Brace & World.
Norman, D. A. (2013). The design of everyday things (Revised and expanded ed.). New York:

Basic Books.
NSPE. (2013). Engineering body of knowledge. Washington, DC: National Society of Professional

Engineers.
OECD. (2007). Revised field of science and technology (FOS) classification in the frascati manual.

Paris: Organization for Economic Cooperation and Development.
Pahl, G., Beitz, W., Feldhusen, J., & Grote, K.-H. (2011). Engineering design: A systematic

approach (K. Wallace & L. T. M. Blessing, Trans. 3rd ed.). Darmstadt: Springer.
Pierce, J. R. (1980). An introduction to information theory: Symbols, signals & noise (2nd Revised

ed.). New York: Dover Publications.
Proudfoot, M., & Lacey, A. R. (2010). The Routledge dictionary of philosophy (4th ed.).

Abingdon: Routledge.
Psillos, S. (2007). Philosophy of science A-Z. Edinburgh: Edinburgh University Press.
Pugh, S. (1991). Total design: Integrated methods for successful product engineering. New York:

Addison-Wesley.
Runes, D. D. (Ed.). (1983). The standard dictionary of philosophy. New York: Philosophical

Library.
Shannon, C. E., & Weaver, W. (1998). The mathematical theory of communication. Champaign,

IL: University of Illinois Press.
Suh, N. P. (1990). The principles of design. New York: Oxford University Press.
Suh, N. P. (2001). Axiomatic design: Advances and applications. New York: Oxford University

Press.
Suh, N. P. (2005a). Complexity in engineering. CIRP Annals Manufacturing Technology, 54(2),

46–63.
Suh, N. P. (2005b). Complexity: Theory and applications. New York: Oxford University Press.
VDI. (1987). Systematic approach to the design of technical systems and products (VDI Guideline

2221). Berlin: The Association of German Engineers (VDI).

References 43



Chapter 3
Introduction to Non-functional
Requirements

Abstract One of the most easily understood tasks during any systems design
endeavor is to define the systems functional requirements. The functional
requirements are a direct extension of the stakeholder’s purpose for the systems and
the goals and objectives that satisfy them. Less easily understood are a systems non-
functional requirements, or the constraints under which the entire system must
operate. Identification of non-functional requirements should happen early in the
conceptual design stage of the systems life cycle, for the same reason that functional
requirements are defined up-front—that is, costs sky-rocket when new requirements
are added late in a systems design sequence. Approaches for addressing non-
functional requirements are rarely addressed in texts on systems design. In order to
provide a logical and repeatable technique for addressing over 200 existing non-
functional requirements, they must be reduced parsimoniously to a manageable
number. Over 200 non-functional requirements are reduced, using results reported
in eight models from the extant literature. The 27 resultant non-functional
requirements have been organized in a taxonomy that categorizes the 27 major non-
functional requirements within four distinct categories. Utilization of this taxonomy
provides a framework for addressing non-functional requirements during the early
system design stages.

3.1 Introduction to Non-functional Requirements

This chapter will begin by reviewing the definition for non-functional requirements
and the roles they play in the engineering design of man-made systems. The chapter
will then address the wide range of non-functional requirements and introduce a
number of taxonomies used to describe non-functional requirements. It will con-
clude by presenting a notional taxonomy or framework for understanding non-
functional requirements and their role as part of any system design endeavor.

The chapter has a specific learning goal and associated objectives. The learning
goal of this chapter is to be able to describe nonfunctional requirements and a

© Springer International Publishing Switzerland 2015
K.M. Adams, Non-functional Requirements in Systems Analysis and Design,
Topics in Safety, Risk, Reliability and Quality 28,
DOI 10.1007/978-3-319-18344-2_3

45



taxonomy for addressing them during systems design endeavors. This chapter’s
goal is supported by the following objectives:

• Define a non-functional requirement.
• Discuss three aspects of non-functional requirements that complicate dealing

with them.
• Name 10 non-functional requirements.
• Discuss the historical development of frameworks for non-functional

requirements.
• Describe the elements of the Taxonomy of NFR for Systems.
• Describe the four-level structural map for measuring the attributes of non-

functional requirements.

3.2 Definitions for Functional and Non-functional
Requirements

All system design efforts start with a concept for the system. Concepts start as ideas
and are moved forward is a series of actions during the concept design stage of the
systems life cycle. As the system life cycle progresses the system’s concept is
transposed into formal system-level requirements where the stakeholder’s needs are
transformed into discrete requirements.

During the concept design stage two requirements-related technical processes,
depicted in Table 3.1, are invoked.

The requirements addressed in Table 3.1 are functional requirements.

3.2.1 Functional Requirements

A functional requirement, as defined in the standard for systems and software
engineering vocabulary is defined as:

Table 3.1 Requirements-related technical processes in the concept design stage

Technical process Purpose

Stakeholder
requirements definition

“Define the requirements for a system that can provide the services
needed by users and other stakeholders in a defined environment”
IEEE and ISO/IEC (2008, p. 36)

Requirements analysis “Transform the stakeholder, requirement-driven view of desired
services into a technical view of a required product that could
deliver those services” IEEE and ISO/IEC (2008, p. 39)

46 3 Introduction to Non-functional Requirements



1. A statement that identifies what a product or process must accomplish to produce
required behavior and/or results. 2. A requirement that specifies a function that a system or
system component must be able to perform. (IEEE and ISO/IEC 2010, p. 153)

There are additional definitions which will provide additional insight about this
category of requirement. Table 3.2 provides definitions from two of the most
popular systems engineering and systems design texts.
From these two definitions it is clear that functional requirements have the fol-
lowing essential characteristics (note that all of these are characterized by verbs):

1. Define what the system should do.
2. Be action oriented.
3. Describe tasks or activities.
4. Are associated with the transformation of inputs to outputs.

These are the requirements that the Axiomatic Design Methodology describes as
FRi which are mapped to Design Parameters DPi during the transformation from the
functional domain to the physical domain as part of the Axiomatic Design
Methodology described in Chap. 2.

In the Axiomatic Design Methodology the design goals include not only the
functional requirements (FRi), but constraints (Ci) which place bounds on accept-
able design solutions. Axiomatic design addresses two types of constraints: (1)
input constraints, which are specific to the overall design goals and apply to all
proposed designs; and (2) system constraints, which are specific to a particular
system design.

Constraints affect the design process by generating a specific set of functional requirements,
guiding the selection of design solutions, and being referenced in design evaluation. (Suh
2005, p. 52)

The specific set of functional requirements generated by the constraints will be
labeled non-functional requirements. Non-functional requirements (NFR) are
addressed within the Axiomatic Design Methodology in the same manner as
functional requirements. A discussion of non-functional requirements will be pre-
sented in the next section.

Table 3.2 Definitions for functional requirement

Definition Source

“These refer largely to what the system should do. These
requirements should be action oriented and should describe the tasks
or activities that the system performs during its operation”

Kossiakoff et al.
(2011, p. 145)

“Functional requirements relate to specific functions (at any level of
abstraction) that the system must perform while transforming inputs
into outputs. As a result, a functional requirement is a requirement
that can be associated with one or more of the system’s outputs”

Buede (2000, p. 130)

3.2 Definitions for Functional and Non-functional Requirements 47

http://dx.doi.org/10.1007/978-3-319-18344-2_2


3.2.2 Non-functional Requirements

Non-functional requirements, as defined in the standard for systems and software
engineering vocabulary are defined as:

A software requirement that describes not what the software will do but how the software
will do it. Syn: design constraints, non-functional requirement. EXAMPLE software per-
formance requirements, software external interface requirements, software design con-
straints, and software quality attributes. Nonfunctional requirements are sometimes difficult
to test, so they are usually evaluated subjectively. (IEEE and ISO/IEC 2010, p. 231)

While the IEEE Guide for Developing System Requirements Specifications (IEEE
1998b) is silent on non-functional requirements, the IEEE Recommended Practice
for Software Requirements Specifications (IEEE 1998a) states that requirements
consist of “functionality, performance, design constraints, attributes, or external
interfaces” (p. 5). Descriptions of what each software requirement is supposed to
answer are presented in Table 3.3.
There are additional definitions which will help give additional insight about non-
functional requirements. Table 3.4 provides definitions from a variety of systems
and software engineering and design texts.
There are three additional aspects to non-functional requirements that complicate
the situation.

1. Non-functional requirements can be ‘subjective’, since they can be viewed,
interpreted and evaluated differently by different people. Since NFRs are often
stated briefly and vaguely, this problem is compounded. (Chung et al. 2000,
p. 6)

2. Non-functional requirements can also be ‘relative’, since the interpretation and
importance of NFRs may vary on the particular system being considered.
Achievement of NFRs can also be relative, since we may be able to improve
upon existing ways to achieve them. For these reasons a ‘one solution fits all’
approach may not be suitable. (Chung et al. 2000, pp. 6–7)

Table 3.3 Requirements and questions they should answer

Requirement Questions requirements should answer

Functionality What is the software supposed to do?

Performance What is the speed, availability, response time, recovery time of various
software functions, etc.?

Design
constraints

Are there any required standards in effect, implementation language, policies
for database integrity, resource limits, operating environment(s) etc.?

Attributes What are the portability, correctness, maintainability, security, etc.
considerations?

External
interfaces

How does the software interact with people, the systems hardware, other
hardware, and other software?

48 3 Introduction to Non-functional Requirements



3. Furthermore, non-functional requirements can often be ‘interacting’, in that
attempts to achieve one NFR can hurt or help the achievement of other NFRs.
SAs NFRs have a global impact on systems, localized solutions may not suffice.
(Chung et al. 2000, p. 7)

The third aspect of NFRs, interacting, is an extremely important one.

One important step during specification of NFR is conflict resolution of interacting NFRs.
This is more relevant in the case of NFRs compared to functional requirements as there are
in most systems severe trade-offs among the major groups of NFRs. One might go even as
far as stating that there are inherent contradictions among distinct NFRs. For example,
performance often interferes with maintainability and reusability. (Ebert 1998, p. 178)

From these definitions and conditions practitioners may easily conclude that non-
functional requirements have the following essential characteristics (note that all of
these are characterized by adjectives that define which, what kind of, or how many):

1. Define a property or quality that the system should have.
2. Can be subjective, relative, and interacting.
3. Describe how well the systems must operate.
4. Are associated with the entire system.

Practitioners responsible for systems design could benefit from a structured
approach to the identification, organization, analysis, and refinement of non-func-
tional requirements in support of design activities (Cleland-Huang et al. 2007;

Table 3.4 Definitions for non-functional requirement

Definition Source

“A requirement that describes not what the software will do, but
how the software will do it is called a nonfunctional requirement
(NFR)”

Ebert (1998, p. 175)

“Describes a restriction on the system that limits our choices for
constructing a solution to the problem”

Pfleeger (1998, p. 141)

“A description of a property or characteristic that a software
system must exhibit or a constraint that it must respect, other
than an observable system behavior”

Wiegers (2003, p. 486)

“NFRs state constraints to the system as well as particular
notions of qualities a system might have, for example, accuracy,
usability, safety, performance , reliability, security. NFRs
constrain ‘how’ the system must accomplish ‘what’”

Cysneiros and Yu (2004,
p. 116)

“Properties or qualities the product must have to facilitate its
functionality”

Robertson and Robertson
(2005, p. 146)

“These are constraints on the services or functions offered by the
system. They include timing constraints, constraints on the
development process and standards. Non-functional
requirements often apply to the system as a whole. They do not
usually just apply to individual system features or services”

Somerville (2007, p. 119)

3.2 Definitions for Functional and Non-functional Requirements 49



Cysneiros and do Prado Leite 2004; Gregoriades and Sutcliffe 2005; Gross and Yu
2001; Sun and Park 2014).

It is precisely because non-functional requirements (NFR) describe important,
and very often critical requirements, that a formal, structured approach for their
identification, organization, analysis, and refinement is required as a distinct ele-
ment of systems design. Non-functional requirements include a broad range of
system needs that play a critical role in early development of the systems archi-
tecture (Nuseibeh 2001). Failure to formally identify and account for non-functional
requirements early in a system design may prove to be costly in later stages of the
systems life cycle. In fact, “failing to meet a non-functional requirements can mean
that the whole system is unusable” (Somerville 2007, p. 122).

3.2.3 A Structure for Non-functional Requirements

The current state of affairs with respect to non-functional requirements has shown
that:

• There is not a single, agreed upon, formal definition
• There is not a complete list.
• There is not a single universal classification schema, framework, or taxonomy.

The three sections that follow will: (1) Present a list of non-functional requirements
with appropriate formal definitions; (2) Review the historical work and research
associated with the development of a universal classification schema, framework or
taxonomy for non-functional requirements; and (3) Recommend a notional model
for understanding the major non-functional requirements in systems design.

3.3 Identification and Organization of Non-functional
Requirements

This section will identify and define the principal non-functional requirements
associated with systems. It is important to recognize that non-functional require-
ments span the complete life cycle of a system, from conception to retirement and
disposal and that each non-functional requirement has its 20 min of fame and is
accompanied by its own set of experts, zealots, and benefactors.

In their seminal work Engineering Systems: Meeting Human Needs in a
Complex Technological World, de Weck et al. (2011) of the Massachusetts Institute
of Technology, discuss the relationship between non-functional requirements and
what they term ilities.

50 3 Introduction to Non-functional Requirements



In computer science ilities are discussed as nonfunctional requirements. (de Weck et al.
2011, p. 196)
Ilities are requirements of systems, such as flexibility or maintainability, often ending in the
suffix “ility”; properties of systems that are not necessarily part of the fundamental set of
functions or constraints and sometimes not in the requirements. (de Weck et al. 2011,
p. 187)

In their chapter on life-cycle properties of systems de Weck et al. (2011) attribute
the increase in nonfunctional requirements, life-cycle properties, or ilities to the
complexity of modern systems and the scale of their deployments and the important
side effects of their ubiquitous presence in the modern era. They provide an
excellent discussion of the history associated with the expansion of the four classic
systems ilities—safety, quality, usability, and reliability—to the plethora of ilities
present in systems endeavors today. In fact, there are over 200 recognized ilities in
use in systems endeavors. Table 3.5 is an alphabetical list of 161 non-functional
requirements (Chung et al. 2000, p. 160) used in software systems engineering.
Table 3.6 includes an additional 38 non-functional requirements from the extant
literature (Mairiza et al. 2010, p. 313) that were not included in Table 3.5.
Finally, Table 3.7 is a list of 19 non-functional requirements from non-attributable
sources.
A review of the 218 non-functional requirements just presented includes just about
any -ility that can be imagined. Treatment of each of the 218 non-functional
requirements presented in Tables 3.5, 3.6, and 3.7 is not practical in a single
presentation. However, practitioners should be aware that the list of non-functional
requirements continues to wax and wane as new life cycle properties are required to
evaluate, constrain, and measure systems. It is important to note that although not
specifically included in many requirements documents, each of the over 200 non-
functional requirements often play a critical role during systems design activities. In
most cases the non-functional requirements are used as selection criteria when
choosing from an array of design alternatives.

The section that follows will review the historical work and research associated
with the development of a universal classification schema, framework or taxonomy
for non-functional requirements.

3.4 Classification Models for Non-functional Requirements

The quest to identify and organize non-functional requirements started in 1976 and
continues to this day. This section will review some of the major classification
models for non-functional requirements.

3.3 Identification and Organization of Non-functional Requirements 51



Table 3.5 A list of non-functional requirements (Chung et al. 2000, p. 160)

Accessibility Degradation of
service

Modularity Security

Accountability Dependability Naturalness Sensitivity

Accuracy Development cost Nomadicity Similarity

Adaptability Development time Observability Simplicity

Additivity Distributivity Off-peak period
performance

Software cost

Adjustability Diversity Operability Software
production time

Affordability Domain analysis cost Operating cost Space boundedness

Agility Domain analysis
time

Peak-period
performance

Space performance

Auditability Efficiency Performability Specificity

Availability Elasticity Performance Stability

Buffer space
performance

Enhanceability Planning cost Standardizability

Capability Evolvability Planning time Subjectivity

Capacity Execution cost Plasticity Supportability

Clarity Extensibility Portability Surety

Code-space
performance

External consistency Precision Survivability

Cohesiveness Fault-tolerance Predictability Susceptibility

Commonality Feasibility Process management
time

Sustainability

Communication cost Flexibility Productivity Testability

Communication time Formality Project stability Testing time

Compatibility Generality Project tracking cost Throughput

Completeness Guidance Promptness Time performance

Component
integration cost

Hardware cost Prototyping cost Timeliness

Component
integration time

Impact analyzability Prototyping time Tolerance

Composability Independence Reconfigurability Traceability

Comprehensibility Informativeness Recoverability Trainability

Conceptuality Inspection cost Recovery Transferability

Conciseness Inspection time Reengineering cost Transparency

Confidentiality Integrity Reliability Understandability

Configurability Inter-operability Repeatability Uniform
performance

Consistency Internal consistency Replaceability Uniformity

Controllability Intuitiveness Replicability Usability

Coordination cost Learnability Response time User-friendliness

Coordination time Responsiveness Validity
(continued)

52 3 Introduction to Non-functional Requirements



Table 3.5 (continued)

Main-memory
performance

Correctness Maintainability Retirement cost Variability

Cost Maintenance cost Reusability Verifiability

Coupling Maintenance time Risk analysis cost Versatility

Customer evaluation
time

Maturity Risk analysis time Visibility

Customer loyalty Mean performance Robustness Wrappability

Customizability Measurability Safety

Data-space
performance

Mobility Scalability

Decomposability Modifiability Secondary-storage
performance

Table 3.6 Additional non-
functional requirements
(Mairiza et al. 2010, p. 313)

Analyzability Demonstrability Manageability

Anonymity Durability Performance

Atomicity Effectiveness Privacy

Attractiveness Expandability Provability

Augmentability Expressiveness Quality of service

Certainty Extendability Readability

Changeability Functionality Self-descriptiveness

Communicativeness Immunity Structuredness

Complexity Installability Suitability

Comprehensiveness Integratability Tailorability

Conformance Legibility Trustability

Debuggability Likeability Viability

Defensibility Localizability

Table 3.7 Non-attributed
non-functional requirements

Degradability Heterogeneity Reproducibility

Deployability Homogeneity Resilience

Determinability Interchangeability Securability

Disposability Manufacturability Serviceability

Distributability Producability Ubiquity

Expandability Repairability

Fidelity Repeatability

3.4 Classification Models for Non-functional Requirements 53



3.4.1 Boehm’s Software Quality Initiative

Barry Boehm and two of his colleague at TRW conducted a study (Boehm et al.
1976) which produced 23 non-functional characteristics of software quality that
they arranged in a hierarchical tree. The lower-level branches in the tree contain
sub-characteristics of the higher-level characteristic. In the schema presented in
Fig. 3.1 the lower-level characteristics in the tree are necessary but not sufficient for
achieving the higher-level characteristics.

3.4.2 Rome Air Development Center Quality Models

A number of models were developed at the United States Air Force’s Rome Air
Development Center between 1978 and 1985. Three of these models are presented
in the following sections.

Portability

Understandability

Human Engineering

Efficiency

Reliability

Modifiability

Testability

Maintainability

As-is Utility

General Utility

Device-independence

Self-containedness

Accuracy

Completeness

Robustness/integrity

Consistency

Accountability

Device efficiency

Accessibility

Communicativeness

Self-descriptiveness

Structuredness

Conciseness

Legibility

Augmentability

Fig. 3.1 Software quality characteristics tree [adapted from Fig. 1 in (Boehm et al. 1976, p. 595)]

54 3 Introduction to Non-functional Requirements



3.4.2.1 Cavano and McCall’s Model

Cavano and McCall (1978) conducted a study which organized 11 non-functional
quality factors by the lifecycle phase in which they were deemed to be most
important for a developed system. The main goal of the study was to bridge the gap
between users and developers and the ensuing model mapped the user’s view with
the priority of the software system development organization. The three develop-
ment organization’s perspectives and principal questions were: (1) Product revision
—how easy is it to correct errors and add revisions? (2) Product transition—how
easy is it to adapt to changes in the technical environment? (3) Product operation—
how well does the system operate? The three perspectives and 11 non-functional
quality factors with associated questions are depicted in Fig. 3.2.

3.4.2.2 McCall’s and Masumoto’s Factor Model Tree

McCall and his colleague Mike Masumoto, under the direction of James P. Cavano,
continued the work in non-functional quality requirements and developed the
Software Quality Measurement Manual (McCall and Matsumoto 1980). Their
Quality-Factor tree is depicted in Fig. 3.3.

PRODUCT OPERATIONS

PRODUCT REVISION PRODUCT TRANSITION

Correctness {Does it do what I want?}
Reliability {Do it do it accurately all of the time?}
Efficiency {Will it run on my hardware as well as it can?}
Integrity {Is it secure?}
Usability {Can I run it?}

Portability {Will I be able to use it on another machine?}
Reusability {Will I be able to reuse some of the software?}
Interoperability {Will I be able to interface it with another system?}

Maintainability {Can I fix it?}
Flexibility {Can I change it?}
Testability {Can I test it?}

Fig. 3.2 Software quality factors [adapted from Fig. 2 in (Cavano and McCall 1978, p. 136)]

3.4 Classification Models for Non-functional Requirements 55



3.4.2.3 Software Quality Evaluation Guide

The final work on software quality was conducted between 1982 and 1984 and
resulted in the third volume of the Software Quality Evaluation Guidebook (Bowen
et al. 1985). The guidebook provides a comprehensive set of procedures and
techniques to enable data collection personnel to apply quality metrics to software
products and to evaluate the achieved quality levels. The associated model had 3
acquisition concerns, 13 quality factors, 29 criteria, 73 metrics, and over 300 metric
elements. Table 3.8 shows the relationship between the acquisition concern, quality
factors and criteria.

3.4.3 FURPS and FURPS+ Models

The FURPS Model was first introduced by Robert Grady and Deborah Caswell
(Grady and Caswell 1987). The model’s acronym is based on its five categories: (1)
functionality; (2) usability; (3) reliability; (4) performance; and (5) supportability.
The original FURPS Model “was extended to empathize various specific attributes”
(Grady 1992, p. 32) and re-designated FURPS+. The FURPS+ categories and

Traceability

Consistency

Completeness

Error Tolerance

Accuracy

Simplicity

Conciseness

Modularity

Self-descriptiveness

Operability

Training

Communicativeness

Communications complexity

Data commonality

Related Factor

 Correctness

 Reliability

 Maintainability

 Usability

 Interoperability

Criteria

Fig. 3.3 USAF quality-factor tree [adapted from (McCall and Matsumoto 1980, p. 24)]

56 3 Introduction to Non-functional Requirements



Table 3.8 Software quality evaluation guidebook model (Bowen et al. 1985)

System need factor and
acquisition concern

Quality factor and user concern Criteria

Performance factor attributes
—How well does it function?

Efficiency—How well does it utilize a
resource?

Effectiveness—
communication

Effectiveness—
processing

Effectiveness—
storage

Integrity—How secure is it? System
accessibility

Reliability—What confidence can be
placed in what it does?

Accuracy

Anomaly
management

Simplicity

Survivability—How well will it perform
under adverse conditions?

Anomaly
management

Autonomy

Distributedness

Modularity

Reconfigurability

Usability—How easy it is to use? Operability

Training

Design factor attributes—
How valid is the design?

Correctness—How well does it conform to
the requirements?

Completeness

Consistency

Traceability

Maintainability—How easy is it to repair? Consistency

Modularity

Self-
descriptiveness

Simplicity

Visibility

Verifiability—How easy is it to verify its
performance?

Modularity

Self-
descriptiveness

Simplicity

Visibility

Adaptation factor attributes
—How adaptable is it?

Expandability—How easy is it to expand
or upgrade its capability or performance?

Augmentability

Generality

Modularity

Self-
descriptiveness

Simplicity

Virtuality
(continued)

3.4 Classification Models for Non-functional Requirements 57



attributes are depicted in Table 3.9 (Grady 1992, p. 32). The FURPS+ elements
represent a number of the non-functional requirements presented in Tables 3.5, 3.6
and 3.7.

3.4.4 Blundell, Hines and Stach’s Quality Measures

James K. Blundell, Mary Lou Hines, and Jerrold Stach of the University of
Missouri—Kansas City (Blundell et al. 1997) developed a highly detailed non-
functional quality measurement model that includes 39 quality measures that are

Table 3.8 (continued)

System need factor and
acquisition concern

Quality factor and user concern Criteria

Flexibility—How easy is it to change? Generality

Modularity

Self-
descriptiveness

Simplicity

Interoperability—How easy is it to
interface with another system?

Commonality

Functional
overlap

Independence

Modularity

System
compatibility

Portability—How easy is it to transport? Independence

Modularity

Self-
descriptiveness

Reusability—How easy is it to convert for
use in another application?

Application
independence

Document
accessibility

Functional scope

Generality

Independence

Modularity

Self-
descriptiveness

Simplicity

System clarity

58 3 Introduction to Non-functional Requirements



related to 18 characteristics, which are then each related to seven critical design
attributes. The seven critical design attributes are shown in Table 3.10.
The critical design characteristics are related to 18 characteristics desirable in a
software system. This relationship is shown in Table 3.11.
The final relationship is between the 18 desired characteristics and the 39 measures
of quality, or ilities, which is related in Table 3.12.
The most intriguing feature of this model is relationship between the 39 non-
functional quality measures and the seven design attributes (cohesion, complexity,
coupling, data structure, intra-modular complexity, inter-modular complexity, and
token selection). The least appealing feature of the model is that the 39 non-
functional quality measures are neither organized nor related, leaving the user to
face a huge array of relationships.

Table 3.9 FURPS model
categories and attributes
(Grady 1992, p. 32)

Category Attribute

Functionality Feature set

Capabilities

Generality

Security

Usability Human factors

Aesthetics

Consistency

Documentation

Reliability Frequency/severity of failure

Recoverability

Predictability

Accuracy

Mean time to failure

Performance Speed

Efficiency

Resource consumption

Thruput [sic]

Response time

Supportability Testability

Extensibility

Adaptability

Maintainability

Compatibility

Configurability

Serviceability

Installability

Localizability

3.4 Classification Models for Non-functional Requirements 59



Table 3.11 Relationship between design attributes and desired characteristics (Blundell et al.
1997, p. 343)

# Characteristic COH COM COU DAS ITA ITE TOK

1 Conciseness ✓ ✓ ✓ ✓ ✓ ✓

2 Ease of change ✓ ✓ ✓ ✓ ✓ ✓

3 Ease of checking
conformance

✓ ✓ ✓

4 Ease of coupling to
other systems

✓ ✓ ✓

5 Ease of introduction of
new features

✓ ✓ ✓ ✓

6 Ease of testing ✓ ✓ ✓ ✓ ✓ ✓ ✓

7 Ease of understanding ✓ ✓ ✓ ✓ ✓ ✓ ✓

8 Freedom from error ✓ ✓ ✓ ✓ ✓ ✓

9 Functional
independence of
modules

✓ ✓ ✓ ✓

10 Precise computations ✓ ✓ ✓

11 Precise control ✓ ✓ ✓ ✓

12 Shortest loops ✓ ✓ ✓ ✓

13 Simplest arithmetic
operators

✓ ✓ ✓

14 Simplest data types ✓ ✓ ✓ ✓

15 Simplest logic ✓ ✓ ✓ ✓

16 Standard data types ✓ ✓

17 Ease of maintenance ✓ ✓ ✓ ✓ ✓ ✓ ✓

18 Functional specification
compliance

✓ ✓

Table 3.10 Critical design attributes (Blundell et al. 1997, pp. 244–245)

Design attribute Attribute description

Cohesion (COH) The singularity of function of a single module

Complexity (COM) The complexity within modules

Coupling (COU) The simplicity of the connection between modules

Data structures (DAS) Data types based upon functional requirements

Intra-modular complexity (ITA) The complexity within modules

Inter-modular complexity (ITE) The complexity between modules

Token selection (TOK) The number of distinct lexical tokens in the program code

60 3 Introduction to Non-functional Requirements



Table 3.12 Relationship
between desired
characteristics and quality
measures (Blundell et al.
1997, pp. 236–237)

# Measure of quality Associated desired
characteristics

1 Accuracy 8, 10, 11

2 Adaptability 5

3 Auditability 3

4 Availability None listed

5 Chang[e]ability 2

6 Completeness 18

7 Conciseness 10

8 Consistency None listed

9 Correctness 8, 18

10 Data commonality 14, 16

11 Dependability =reliability, 18

12 Efficiency 4, 9, 12, 13, 14, 15, 16

13 Error tolerance None listed

14 Expandability 2

15 Flexibility 2

16 Functionality 18

17 Generality 4, 9

18 Hardware independence None listed

19 Human factors None listed

20 Integrity None listed

21 Interoperability 4

22 Maintainability 2, 6, 7, 17

23 Modifiability 2

24 Modularity 9

25 Operability 7

26 Portability 17

27 Reliability 18

28 Reusability 4, 7, 9

29 Robustness 18

30 Security None listed

31 Self documentation 7

32 Simplicity 7

33 Supportability 2

34 Testability 6

35 Traceability 7

36 Transportability =portability, 17

37 Understandability 7

38 Usability None listed

39 Utility None listed

3.4 Classification Models for Non-functional Requirements 61



3.4.5 Somerville’s Classification Schema

Ian Somerville, the author of a major text on software engineering (Somerville
2007), has offered a classification schema for non-functional requirements that
places them in three general groups: (1) process considerations; (2) product con-
siderations; and (3) external considerations. This model is depicted in Fig. 3.4.

Somerville’s schema offers no insight into its development but provides the
following guidelines for its three top-levels.

• Product requirements. These requirements specify product behavior.
• Organizational requirements. These requirements are derived from policies and

procedures in the customer’s and developer’s organisations [sic].
• External Requirements. This broad heading covers all requirements that are

derived from factors external to the system and its development process.
(Somerville 2007, p. 123)

Somerville states that non-functional requirements can be difficult to verify and
“whenever possible, you should write requirements quantitatively so that they can
be objectively tested” (Somerville 2007, p. 124).

3.4.6 International Standards

Non-functional requirements have been addressed in international standards as part
of the software and systems quality initiative. Both the earlier ISO/IEC Standard

Non-functional
Requirements

Product
Requirements

Organizational
Requirements

External
Requirements

Usability requirements

Efficiency requirements

Reliability requirements

Portability requirements

Delivery requirements

Implementation requirements

Standards requirements

Interoperability requirements

Ethical requirements

Legislative requirementsPerformance requirements

Space requirements
Privacy requirements

Safety requirements

Fig. 3.4 Somerville’s NFR classification schema (Somerville 2007, p. 122)

62 3 Introduction to Non-functional Requirements



9126 (ISO/IEC 1991) and its replacement ISO/IEC Std 25010 (ISO/IEC 2011)
include non-functional requirements, definitions, and how to measure them as part
of a systems endeavor. Table 3.13 lists the non-functional requirements addressed
in the latest international standard for systems quality, ISO/IEC Standard 25010:
Systems and software engineering—Systems and software Quality Requirements
and Evaluation (SQuaRE)—System and software quality models. The standard has
eight main characteristics, each with a set of supporting sub-characteristics.

3.4.7 NFR Elicitation

Understanding non-functional requirements (NFR) requires the design team to
understand the system’s domain as part of the formal elicitation process. A formal
process for elicitation of non-functional requirements is provided in two sources:
(1) Non-functional Requirements in Software Engineering (Chung et al. 2000) and
(2) as a chapter in Perspectives on Software Requirements (Cysneiros and Yu
2004). Although they have titles with the word software, both of these sources
provide detailed techniques for understanding and dealing with non-functional
requirements as part of the larger systems design process.

The section that follows will recommend a notional model for understanding the
major non-functional requirements in systems design.

3.5 Notional Framework for Understanding Major NFR
in Systems Design

In this section a notional model for understanding the major non-functional
requirements in systems design, principally based upon the historical work pre-
sented in the previous section, will be developed. Because treatment of each of the
non-functional requirements previously presented is not practical in a single pre-
sentation, they will be reduced to a manageable number that adequately represents
the major non-functional requirements that will be required to be addressed in all
major systems design endeavors.

3.5.1 Rationalization of Non-functional Requirements
Classification Schemas

The first step is to rationalize the classification schemas for non-functional
requirements from the extant literature. Table 3.14 relates each of the eight clas-
sification schemas (or models) by comparing the number of categories or factors

3.4 Classification Models for Non-functional Requirements 63



and characteristics and lists the number of unique categories, factors, or criteria as
non-functional requirements to be considered for inclusion in the notional frame-
work. In this fashion the large body of non-functional requirements are reduced to
209.

By considering only the unique categories, factors, or criteria between the eight
models the total number of non-functional requirements treated in the extant lit-
erature is reduced from 209 to 96.

Table 3.13 Non-functional requirements in ISO/IEC Std 25010

Characteristic Sub-characteristics

1. Functional suitability—The degree to which the product provides
functions that meet stated and implied needs when the product is
used under specified conditions

• Appropriateness

• Completeness

• Correctness

2. Reliability—The degree to which a system or component performs
specified functions under specified conditions for a specified period
of time

• Availability

• Fault Tolerance

• Recoverability

• Maturity

3. Usability—The degree to which the product has attributes that
enable it to be understood, learned, used and attractive to the user,
when used under specified conditions

• Accessibility

• Appropriateness

• Learnability

• Operability

• User error protection

• User interface
aesthetics

4. Performance efficiency—The performance relative to the amount
of resources used under stated conditions

• Time Behaviour

• Resource Utilization

5. Security—The degree of protection of information and data so that
unauthorized persons or systems cannot read or modify them and
authorized persons or systems are not denied access to them

• Confidentiality

• Integrity

• Non-repudiation

• Accountability

• Authenticity

6. Compatibility—The degree to which two or more systems or
components can exchange information and/or perform their required
functions while sharing the same hardware or software environment

• Co-existence

• Interoperability

7. Maintainability—The degree of effectiveness and efficiency with
which the product can be modified

• Analyzability

• Modifiability

• Modularity

• Reusability

• Testability

8. Portability—The degree to which a system or component can be
effectively and efficiently transferred from one hardware, software or
other operational or usage environment to another

• Adaptability

• Installability

• Replaceability

64 3 Introduction to Non-functional Requirements



3.5.2 Unique Non-functional Requirements

An analysis of the criteria in each of the seven historical models shows that not all
of the criteria are universally applied. Table 3.15 reveals the frequency of criteria in
the eight models.

The decision about which of the criteria in Table 3.15 to consider for inclusion in
the notional framework is aided by one final task, reviewing the established formal
definitions for each of the 96 non-functional requirements criteria.

3.5.3 Formal Definitions for Most Frequent Non-functional
Requirements

Table 3.16 provides an alphabetical list and the formal definitions from IEEE
Standard 24765, Systems and Software Engineering—Vocabulary1 for 24 non-
functional requirements criteria that achieved a frequency of 3 or higher. Table 3.16
also includes definitions for three other non-functional requirements that achieved a
frequency of 2 and three that received a score of 1 (indicated by an asterisk). All six
of these criteria were deemed worthy of inclusion in the final list. Note that com-
pleteness and human factors/engineering were not defined in IEEE Standard 24765
and will be eliminated from the final list of non-functional requirements attributes
that will be considered.
A review of the definitions reveals that operability is not unique and is actually
contained within the definition for availability. Based upon this, operability is
removed from the list of most frequent NFRs, leaving the list with 27 unique NFRs.

Table 3.14 Functional requirements and major classification models

Model Category or factors Criteria Total

Boehm et al. (1976) 8 16 24

Cavano and McCall (1978) – 11 11

McCall and Masumoto (1980) 5 14 19

Bowen et al. (1985) 13 23 36

Grady and Caswell (1987); Grady (1992) 4 19 23

Blundell et al. (1997) 6 38 44

Somerville (2007) 14 14

ISO/IEC Std 25010 (2011) 8 30 38

Total 44 165 209

Unique items 96

1The on-line version of the IEEE standard was also used and is indicated by [SEVOCAB].

3.5 Notional Framework for Understanding Major NFR in Systems Design 65



3.5.4 Notional Taxonomy of Non-functional Requirements
for Systems

Twenty-seven (27) non-functional requirements have been selected for inclusion in
the notional taxonomy of non-functional requirements. While this is not a complete
list, it is representative of the major non-functional requirements and associated
criteria that should be considered during all system design endeavors.

The 27 non-functional requirements have been arranged in the notional taxon-
omy or framework based upon the definitions of the criteria and how the definitions
support relational concerns that are able to be represented by the collection of
criteria. For example, the concern adaptation can reasonably be expected to relate to
criteria such as extensibility, portability, and reusability. Similar relationships were
used to construct the final framework for the NFR Taxonomy.

The final framework for the NFR Taxonomy has four concerns: (1) System
Design Concerns; (2) System Adaptation Concerns; (3) System Viability Concerns;

Table 3.15 Criteria and frequency in non-functional requirements models

Model
frequency

Criteria

8 Reliability

7 Maintainability, usability,

6 Efficiency, inter-operability, portability

5 Accuracy, completeness, consistency, correctness, integrity, testability

4 Modularity, operability, reusability

3 Accessibility, adaptability, compatibility, conciseness, flexibility, human factors,
modifiability, self-descriptiveness, simplicity, traceability

2 Accountability, appropriateness, augmentability, availability, clarity,
communicativeness, data commonality, documentation, error tolerance,
expandability, functionality, generality, independence, performance,
recoverability, robustness, security, supportability, trainability, understandability

1 Aesthetics, analyzability, anomaly management, auditability, authenticity,
autonomy, changeability, coexistence, cohesiveness, commonality,
communications complexity, complexity, confidentiality, coupling, data
structures, delivery, dependability, device efficiency, device independence,
distributivity (i.e., distributedness), effectiveness, ethics, extensibility, fault-
tolerance, functional overlap, functional scope, implementation, installability,
learnability, legibility, legislative (i.e., legal), maturity, mean time to failure
(MTTF), non-repudiation, performance efficiency, predictability, privacy,
reconfigurability, replaceability, resource consumption, resource utilization,
response time, safety, self-containedness, self-documentation, severity of failure,
standardizability (i.e., standards), structuredness, survivability, throughput, time
behavior, time performance (i.e., speed), token selection, user error protection,
user interface aesthetics, verifiability, virtuality, visibility, space boundedness
(i.e., space), space performance (i.e., space)

66 3 Introduction to Non-functional Requirements



Table 3.16 Formal definitions for most frequent NFRs

Criteria (frequency) Formal definition

Accuracy (5) “1. A qualitative assessment of correctness, or freedom from error. 2.
A quantitative measure of the magnitude of error” IEEE and ISO/IEC
(2010, p. 6)

Adaptability (3) “Degree to which a product or system can effectively and efficiently
be adapted for different or evolving hardware, software or other
operational or usage environments” [SE VOCAB]

Availability (2)* “1. The degree to which a system or component is operational and
accessible when required for use. 2. Ability of a component or service
to perform its required function at a stated instant or over a stated
period of time” IEEE and ISO/IEC (2010, p. 29)

Compatibility (3) “1. The ability of two or more systems or components to perform
their required functions while sharing the same hardware or software
environment. 2. The ability of two or more systems or components to
exchange information” IEEE and ISO/IEC (2010, p. 62)

Completeness (5) No definition

Conciseness (3) “Software attributes that provide implementation of a function with a
minimum amount of code” IEEE and ISO/IEC (2010, p. 69)

Consistency (5) “1. The degree of uniformity, standardization, and freedom from
contradiction among the documents or parts of a system or component.
2. Software attributes that provide uniform design and implementation
techniques and notations” IEEE and ISO/IEC (2010, p. 73)

Correctness (5) “The degree to which a system or component is free from faults in its
specification, design, and implementation” IEEE and ISO/IEC (2010,
p. 81)

Efficiency (6) “1. The degree to which a system or component performs its
designated functions with minimum consumption of resources. 2.
Producing a result with a minimum of extraneous or redundant effort”
IEEE and ISO/IEC (2010, p. 120)

Extensibility (1)* “The ease with which a system or component can be modified to
increase its storage or functional capacity. Syn: expandability,
extensibility” IEEE and ISO/IEC (2010, p. 136)

Flexibility (3) “The ease with which a system or component can be modified for use
in applications or environments other than those for which it was
specifically designed. Syn: adaptability cf. extendability,
maintainability” IEEE and ISO/IEC (2010, p. 144)

Human factors (3) No definition

Integrity (5) “The degree to which a system or component prevents unauthorized
access to, or modification of, computer programs or data” IEEE and
ISO/IEC (2010, p. 181)

Interoperability (6) “The ability of two or more systems or components to exchange
information and to use the information that has been exchanged”
IEEE and ISO/IEC (2010, p. 186)

Maintainability (7) “The ease with which a hardware system or component can be
retained in, or restored to, a state in which it can perform its required
functions” IEEE and ISO/IEC (2010, p. 204)

(continued)

3.5 Notional Framework for Understanding Major NFR in Systems Design 67



Table 3.16 (continued)

Criteria (frequency) Formal definition

Modifiability (3) “The ease with which a system can be changed without introducing
defects cf. maintainability” IEEE and ISO/IEC (2010, p. 222)

Modularity (4) “1. The degree to which a system or computer program is composed
of discrete components such that a change to one component has
minimal impact on other components. 2. Software attributes that
provide a structure of highly independent components” IEEE and
ISO/IEC (2010, p. 223)

Operability (4) “The state of being able to perform the intended function” IEEE and
ISO/IEC (2010, p. 240)

Portability (6) “The ease with which a system or component can be transferred from
one hardware or software environment to another” IEEE and ISO/IEC
(2010, p. 261)

Reliability (8) “The ability of a system or component to perform its required
functions under stated conditions for a specified period of time” IEEE
and ISO/IEC (2010, p. 297)

Reusability (4) “The degree to which an asset can be used in more than one software
system, or in building other assets” IEEE and ISO/IEC (2010, p. 307)

Robustness (2)* “The degree to which a system or component can function correctly
in the presence of invalid inputs or stressful environmental conditions
cf. error tolerance, fault tolerance” IEEE and ISO/IEC (2010, p. 313)

Safety (1)* “The expectation that a system does not, under defined conditions,
lead to a state in which human life, health, property, or the
environment is endangered” IEEE and ISO/IEC (2010, p. 315)

Self-descriptiveness (3) “1. The degree to which a system or component contains enough
information to explain its objectives and properties. 2. Software
attributes that explain a function’s implementation. cf. maintainability,
testability, usability” IEEE and ISO/IEC (2010, p. 322)

Simplicity (3) “1. The degree to which a system or component has a design and
implementation that is straightforward and easy to understand. 2.
Software attributes that provide implementation offunctions in themost
understandable manner cf. complexity” IEEE and ISO/IEC (2010,
p. 327)

Survivability (1)* “1. The degree to which a product or system continues to fulfill its
mission by providing essential services in a timely manner in spite of
the presence of attacks. cf. recoverability” [SE VOCAB]

Testability (4) “1. The extent to which an objective and feasible test can be designed
to determine whether a requirement is met. 2. The degree to which a
requirement is stated in terms that permit establishment of test criteria
and performance of tests to determine whether those criteria have
been met” IEEE and ISO/IEC (2010, p. 371)

Traceability (3) “1. The degree to which a relationship can be established between two
or more products of the development process, especially products
having a predecessor-successor or master-subordinate relationship to
one another. 2. The identification and documentation of derivation
paths (upward) and allocation or flowdown paths (downward) of work
products in the work product hierarchy” IEEE and ISO/IEC (2010,
p. 378)

(continued)

68 3 Introduction to Non-functional Requirements



and (4) System Sustainment Concerns. Figure 3.5 show the relationship between
the four system concerns and the 27 non-functional requirements selected for
consideration during a system’s life cycle.

3.5.5 Utilization of the NFR Taxonomy for Systems

Utilization of the NFR Taxonomy for Systems requires a process for measuring the
ability to achieve the non-functional requirement. By following the metrics concept
articulated by Fenton and Pfleeger (1997), specific information about each attribute
must be captured. A set of structural mappings that relate and individual NFR
attribute from Fig. 3.5 to a specific metric and measurement entity are required. The
framework for the structural mappings is based upon that described by Budgen
(2003). A requisite four-level construct and example is presented in Table 3.17.

Table 3.16 (continued)

Criteria (frequency) Formal definition

Understandability (2)* “The ease with which a system can be comprehended at both the
system-organizational and detailed-statement levels. NOTE
Understandability has to do with the system’s coherence at a more
general level than readability does” IEEE and ISO/IEC (2010, p. 385)

Usability (7) “The ease with which a user can learn to operate, prepare inputs for,
and interpret outputs of a system or component” IEEE and ISO/IEC
(2010, p. 388)

Taxonomy 
of NFR 

for Systems

Design
Concerns

Compatibility

Conciseness

Consistency

Adaptation
Concerns

Interoperability

Modularity

Safety

Simplicity

Traceability

Viability
Concerns

Sustainment
Concerns

Availability

Maintainability

Reliability

Testability

Adaptability

Extensibility

Flexibility

Modifiability

Portability

Reusability

Self-descriptiveness

Accuracy

Correctness

Efficiency

Integrity

Robustness

Survivability

Understandability

Usability

Fig. 3.5 Taxonomy of non-functional requirements for systems

3.5 Notional Framework for Understanding Major NFR in Systems Design 69



Each NFR attribute in Fig. 3.5 should have a structural map that clearly identifies
the measurement method or technique and the specific systems characteristic(s) that
will be used to measure the NFR.

3.6 Summary

This chapter has presented a seemingly endless array of non-functional require-
ments that purport to define one or more aspects of what a system should do. The
majority of the information presented has been directed toward limiting the number
of non-functional requirements a systems practitioner has to deal with during
systems endeavors. While each non-functional requirement has its proponents, the
discussion has to be limited in order to provide meaningful treatment of the major
non-functional requirements and their associated attributes. The material in the
previous sections has systematically and rationally reduced over 200 non-functional
requirements to 27. As stated earlier, this may not be a complete list, but it is
representative of the major non-functional requirements and associated criteria that
should be considered during all system design endeavors. Furthermore, the prin-
ciple of requisite parsimony (Miller 1956) has been invoked and the 27 non-
functional requirements are able to be represented by a Taxonomy of NFR for
Systems that is expressed as four concerns. Finally, a four-level framework for
addressing each of the 27 non-functional requirement attributes and a measurable
characteristic is presented.

Part II of the text will discuss, in two chapters, the technical details associated
with non-functional requirements that are associated with systems sustainment
concerns during design endeavors.

Table 3.17 Four-level structural map for Measuring NFR attributes

Level Role Example

Concern A construct that permits the systems practitioner to easily
group non-functional requirements based upon broad
concerns

Design

Attribute A non-functional requirement that defines one aspect of
what a system should do

Simplicity

Metric Measurement method or technique used to evaluate the
NFR

Variety

Measurable
characteristic

Specific systems characteristic that is to be measured Number of
system states

70 3 Introduction to Non-functional Requirements



References

Blundell, J. K., Hines, M. L., & Stach, J. (1997). The measurement of software design quality.
Annals of Software Engineering, 4(1), 235–255.

Boehm, B. W., Brown, J. R., & Lipow, M. (1976). Quantitative evaluation of software quality. In
R. T. Yeh & C. V. Ramamoorthy (Eds.), Proceedings of the 2nd International Conference on
Software Engineering (pp. 592–605). Los Alamitos, CA: IEEE Computer Society Press.

Bowen, T. P., Wigle, G. B., & Tsai, J. T. (1985). Specification of software quality attributes:
Software quality evaluation guidebook (RADC-TR-85-37, Vol. III). Griffiss Air Force Base,
NY: Rome Air Development Center.

Budgen, D. (2003). Software design (2nd ed.). New York: Pearson Education.
Buede, D. M. (2000). The engineering design of systems: Models and methods. New York: Wiley.
Cavano, J. P., & McCall, J. A. (1978). A framework for the measurement of software quality.

SIGSOFT Software Engineering Notes, 3(5), 133–139.
Chung, L., Nixon, B. A., Yu, E. S., & Mylopoulos, J. (2000). Non-functional requirements in

software engineering. Boston: Kluwer Academic Publishers.
Cleland-Huang, J., Settimi, R., Zou, X., & Solc, P. (2007). Automated classification of non-

functional requirements. Requirements Engineering, 12(2), 103–120.
Cysneiros, L. M., & do Prado Leite, J. C. S. (2004). Nonfunctional requirements: From elicitation

to conceptual models. IEEE Transactions on Software Engineering, 30(5), 328–350.
Cysneiros, L. M., & Yu, E. (2004). Non-functional requirements elicitation. In J. do Prado Leite &

J. Doorn (Eds.), Perspectives on Software Requirements (Vol. 753, pp. 115–138). Norwell:
Kluwer Academic.

de Weck, O. L., Roos, D., & Magee, C. L. (2011). Engineering systems: Meeting human needs in
a complex technological world. Cambridge: MIT Press.

Ebert, C. (1998). Putting requirement management into praxis: dealing with nonfunctional
requirements. Information and Software Technology, 40(3), 175–185.

Fenton, N. E., & Pfleeger, S. L. (1997). Software metrics: A rigorous & practical approach (2nd
ed.). Boston: PWS Publications.

Grady, R. B. (1992). Practical software metrics for project management and process
improvement. Englewood Cliffs, NJ: Prentice-Hall.

Grady, R. B., & Caswell, D. (1987). Software metrics: Establishing a company-wide program.
Englewood Cliffs: Prentice-Hall.

Gregoriades, A., & Sutcliffe, A. (2005). Scenario-based assessment of nonfunctional requirements.
IEEE Transactions on Software Engineering, 31(5), 392–409.

Gross, D., & Yu, E. (2001). From non-functional requirements to design through patterns.
Requirements Engineering, 6(1), 18–36.

IEEE. (1998a). IEEE Standard 830—IEEE recommended practice for software requirements
specifications. New York: Institute of Electrical and Electronics Engineers.

IEEE. (1998b). IEEE Standard 1233: IEEE guide for developing system requirements
specifications. New York: Institute of Electrical and Electronics Engineers.

IEEE, & ISO/IEC. (2008). IEEE and ISO/IEC Standard 15288: Systems and software engineering
—system life cycle processes. New York and Geneva: Institute of Electrical and Electronics
Engineers and the International Organization for Standardization and the International
Electrotechnical Commission.

IEEE, & ISO/IEC. (2010). IEEE and ISO/IEC Standard 24765: Systems and software engineering
—vocabulary. New York and Geneva: Institute of Electrical and Electronics Engineers and the
International Organization for Standardization and the International Electrotechnical
Commission.

ISO/IEC. (1991). ISO/IEC Standard 9126: Software product evaluation—quality characteristics
and guidelines for their use. Geneva: International Organization for Standardization and the
International Electrotechnical Commission.

References 71



ISO/IEC. (2011). ISO/IEC Standard 25010: Systems and software engineering—Systems and
software quality requirements and evaluation (SQuaRE)—system and software quality models.
Geneva: International Organization for Standardization and the International Electrotechnical
Commission.

Kossiakoff, A., Sweet, W. N., Seymour, S. J., & Biemer, S. M. (2011). Systems engineering
principles and practice (2nd ed.). Hoboken: Wiley.

Mairiza, D., Zowghi, D., & Nurmuliani, N. (2010). An investigation into the notion of non-
functional requirements. In Proceedings of the 2010 ACM Symposium on Applied Computing
(pp. 311–317). New York: ACM.

McCall, J. A., & Matsumoto, M. T. (1980). Software quality measurement manual (RADC-TR-80-
109-Vol-2). Griffiss Air Force Base, NY: Rome Air Development Center.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capability
for processing information. Psychological Review, 63(2), 81–97.

Nuseibeh, B. (2001). Weaving together requirements and architectures. Computer, 34(3),
115–119.

Pfleeger, S. L. (1998). Software engineering: Theory and practice. Upper Saddle River, NJ:
Prentice-Hall.

Robertson, S., & Robertson, J. (2005). Requirements-led project management. Boston: Pearson
Education.

Somerville, I. (2007). Software engineering (8th ed.). Boston: Pearson Education.
Suh, N. P. (2005). Complexity in engineering. CIRP Annals—Manufacturing Technology, 54(2),

46–63.
Sun, L., & Park, J. (2014). A process-oriented conceptual framework on non-functional

requirements. In D. Zowghi & Z. Jin (Eds.), Requirements Engineering (Vol. 432, pp. 1–15)
Berlin: Springer.

Wiegers, K. E. (2003). Software requirements (2nd ed.). Redmond: Microsoft Press.

72 3 Introduction to Non-functional Requirements



Part II
Sustainment Concerns



Chapter 4
Reliability and Maintainability

Abstract Effective sustainment of systems and components during the operation
and maintenance stages of the system life cycle require specific purposeful actions
during the design stages of the system life cycle. The reliability and maintainability
of the system and its constituent components are established as part of the system
design process. Reliability and maintainability are non-functional requirements that
exists at both the component- and system-level and are intertwined and interrelated.
Improper reliability and maintainability designs in any level of the system’s hier-
archy may have far reaching affects. The ability to understand how reliability and
maintainability are treated in the design process and formal metrics and measure-
ment processes for each non-functional requirements are essential during all system
design endeavors.

4.1 Introduction to Reliability and Maintainability

This chapter will address two major topics. The first topic is reliability and the
second is maintainability. The first topic will review reliability and the basic theory,
equations and concepts that underlie its utilization. It will then address how reli-
ability is applied in engineering design and as a technique for determining com-
ponent reliability. The section on reliability will conclude with a metric and
measurable characteristic for reliability.

The second major topic of this chapter will define maintainability and discuss
how it is used in engineering design. The terms used in the maintenance cycle are
defined and applied to specific maintainability equations. The maintenance and
support concept is introduced as an important element of the conceptual design
stage of the systems life cycle. The chapter concludes with a metric and measurable
characteristic for maintainability.

The chapter has a specific learning goal and associated objectives. The learning
goal of this chapter is to be able to identify how the attributes of reliability and
maintainability affect sustainment in systems endeavors. This chapter’s goal is
supported by the following objectives:

© Springer International Publishing Switzerland 2015
K.M. Adams, Non-functional Requirements in Systems Analysis and Design,
Topics in Safety, Risk, Reliability and Quality 28,
DOI 10.1007/978-3-319-18344-2_4

75



• Define reliability.
• Describe the reliability function and its associated probability distributions.
• Explain failure rate and the bathtub failure rate curve.
• Identify the component reliability models and their application in calculating

system reliability.
• Describe the reliability processes that take place in each of the systems design

phases.
• Describe how reliability is achieved in system design.
• Describe the 12 steps in a FMECA.
• Construct a structural map that relates reliability to a specific metric and mea-

surable characteristic.
• Define maintainability.
• Identify how the maintenance and support concept is included during conceptual

design.
• Describe the terminology used in the maintenance cycle.
• Construct a structural map that relates maintainability to a specific metric and

measurable characteristic.
• Explain the relationship between reliability and maintainability.

The ability to achieve these objectives may be fulfilled by reviewing the materials
in the chapter topics which include the following.

4.2 Reliability

Reliability is an essential characteristic of every system. Its importance is such that
it is an important sub-discipline practiced within just about every major engineering
discipline and is included in all engineering and system and component production
endeavors. Engineers who specialize in reliability are labeled reliability engineers
and Table 4.1 lists some of the scholarly journals dedicated to fundamental research
in the area of reliability.

The sections that follow will not attempt to cover all aspects of reliability, but
will discuss how, at a very basic level, the attributes of reliability affect sustainment
in systems endeavors.

Table 4.1 Scholarly journals for reliability

Journal title ISSN

International journal of reliability, quality, and safety engineering 0218-5393

Reliability engineering and system safety 0951-8320

Reliability—theory and applications 1932-2321

Quality and reliability engineering international 1099-1638

76 4 Reliability and Maintainability



4.2.1 Reliability Definitions

Reliability, from a systems engineering perspective, is defined as:

The ability of a system or component to perform its required functions under stated con-
ditions for a specified period of time. (IEEE and ISO/IEC 2010, p. 297)

There are other definitions, presented in Table 4.2 that may contribute to improved
understanding.

Dissecting these definitions, the major elements are:

• Probability—Fraction or a percentage specifying the number of times that one
can expect an event to occur in a total number of trials.

• Satisfactory performance—Set of criteria to be met by a component or system.
• Time—A measure against which the degree of system or component perfor-

mance can be related (reliability span?).
• Specified operating conditions—Environment in which the system or compo-

nent functions.

Having a definition for and understanding the constituent elements of reliability is
fine. However, what does the application of reliability engineering add to a system or
component design? Simply stated, the objectives of reliability, in order of priority are:

1. To apply engineering knowledge and specialist techniques to prevent or reduce
the likelihood or frequency of failures.

2. To identify and correct the causes of failures that do occur, despite the efforts to
prevent them.

3. To determine ways of coping with failures that do occur, if their causes have not
been corrected.

Table 4.2 Definitions for reliability

Definition Source

“The ability or capability of the product to perform the specified
functions in the designated environment for a minimum length of
time or minimum number of cycles or events”

Ireson et al. (1996, p. 1.2)

“The probability that a product will operate or a service will be
provided properly for a specified period of time (design life) under
the design operating conditions (such as temperature, load, volt
…) without failure”

Elsayed (2012, p. 3)

“The probability that an item will perform a required function
without failure under stated conditions for a stated period of time”

O’Connor and Kleyner
(2012, p. 1)

“The probability that the system will perform its functions
correctly for a specified period of time under specified conditions”

Kossiakoff et al. (2011,
p. 424)

“… The probability that a system or product will accomplish its
designated mission in a satisfactory manner or, specifically, the
probability that the entity will perform in a satisfactory manner for
a given period when used under specified operating conditions”

Blanchard and Fabrycky
(2011, p. 363)

4.2 Reliability 77



4. To apply methods for estimating the likely reliability of new designs, and for
analyzing reliability data (O’Connor and Kleyner 2012, p. 2).

Armed with a meaningful definition for reliability, and a basic set of objectives for
reliability engineering, the following sections will discuss how reliability is
approached during systems endeavors.

4.2.2 The Reliability Function

Reliability is related using the mathematics of probability. The basic reliability
function can be related to a simple coin toss. When a coin is tossed, there are two
potential outcomes, the coin lands heads up (H) or the coin lands tails up (T). The
equation for this, as a function of time, t, is shown in Eq. 4.1.

Equation for Coin Toss

H tð Þ þ T tð Þ ¼ 1:0 ð4:1Þ

The reliability function is related similarly, with the chance of having a reliable
outcome being R(t) and the chance of a failed outcome being F(t) and is shown in
Eq. 4.2.

Reliability and Failure Equation

R tð Þ þ F tð Þ ¼ 1:0 ð4:2Þ

Equation 4.2 may be re-written as Eq. 4.3 to show that reliability is a function of the
failure rate F(t):

General Reliability Equation

R tð Þ ¼ 1�F tð Þ ð4:3Þ

The failure rate F(t) for a component may be represented as a probability density
function (p.d.f.). By using the area under the curve for the p.d.f. By using the area
under the curve for the p.d.f. Eq. 4.3 is re-written as Eq. 4.4 to show reliability
using the p.d.f.

Reliability Equation with Probability Density Function

R tð Þ ¼ 1� Zt

0

ðp:d:f Þ dt ð4:4Þ

A number of unique probability density functions (p.d.f.) are commonly used in
reliability calculations and are presented in Table 4.3.

78 4 Reliability and Maintainability



The expressions for each of the probability density functions may be obtained
from any number of statistical handbooks. For example, an exponential p.d.f. is
inserted into Eq. 4.4 the reliability equation is represented as the expression in Eq. 4.5.

Reliability Equation with Mean Life and Time Interval

R tð Þ ¼ 1� Zt

0

ð1
h
e�t=hÞdt ð4:5Þ

where θ = mean life of the component and t = evaluation time period. To solve
Eq. 4.5 two new terms are introduced: (1) failure rate (λ) which will be defined as
λ = 1/θ; and (2) mean time between failure (MTBF), defined in Table 4.4.

The solution of Eq. 4.5, using the new terms, is shown in Eq. 4.6.

Reliability Equation with MTBF and Failure Rate

R tð Þ ¼ e�t=MTBF ¼ e�kt ð4:6Þ

When the reliability function is used to calculate the failure rate for a large pop-
ulation of identical components over a period of time the following behavior is
observed.

The sample experiences a high failure rate at the beginning of the operations time due to
weak or substandard components, manufacturing imperfections, design errors, and instal-
lation defects. As the failed components are removed, the time between failures increases
which results in a reduction in the failure rate. The period of decreasing failure rate (DFR)

Table 4.3 Primary probability density function types used in reliability calculations

Probability density
function type

Utilization

Poisson The likelihood of failure is very low in a large sample size

Normal (Gaussian
distribution)

The likelihood of failure is distributed equally on either side of the
median failure rate

Lognormal (Galton
distribution)

The likelihood of failure is expressed as the multiplicative product of
many independent random variables

Weibull The probability of failure increases over time. Use to model life data
where wear out due to aging is present

Exponential Failure rate is an exponential distribution

Table 4.4 Definitions for MTBF and MTTF

Term Definition

Mean time between
failure (MTBF)

“The expected or observed time between consecutive failures in a
system or component” IEEE and ISO/IEC (2010, p. 209)

Mean time to failure
(MTTF)

“The expected time between two successive failures … when the
system is nonrepairable.” Elsayed (2012, p. 67)

4.2 Reliability 79



is referred to as the “infant mortality region”, the “shakedown” region, the “debugging”
region, or the “early failure” region. (Elsayed 2012, pp. 15–16)

The curve associated with this phenomenon is labeled the bathtub curve and is
depicted in Fig. 4.1.

4.2.3 Component Reliability Models

As the design process moves through the conceptual and preliminary design stages
the next stage is detailed design. Detailed design is where the subsystems are
broken down into the required assemblies, subassemblies, components, and parts.
The specific relationships and configurations of the components directly affects the
reliability of the system.

Three basic relationships between components may be chosen. Components may
be combined in series, in parallel, or in a combination of series and parallel rela-
tions. The sections that follow will address how reliability is calculated for each of
these relationships.

4.2.3.1 Series Relationships

When components are arranged in a serial relationship, as depicted in Fig. 4.2, all
components must operate satisfactorily if the system is to function as designed.

The basic reliability for the components in Fig. 4.2 is shown in Eq. 4.7.

Reliability Equation for Three Components in Series

Rsys ¼ RaRbRc ð4:7Þ

Debugging 
Phase 

Failure 
Rate
(λ)

Time (t)

Chance Failure
Phase 

Wear-out 
Phase 

Fig. 4.1 Generic bathtub curve

80 4 Reliability and Maintainability



By inserting Eq. 4.6 into Eq. 4.7 the failure rate is introduced into the reliability
equation as depicted in Eq. 4.8.

Reliability Equation Using Failure Rate for Three Components in Series

Rsys ¼ ðe�katÞðe�kbtÞðe�kctÞ ð4:8Þ

As an example, imagine that Component A is a radio frequency receiver,
Component B is an amplifier, and Component C is a radio frequency transmitter.
The receiver reliability is 0.9512 and has an MTBF of 6000 h, the amplifier reli-
ability is 0.9821 and has an MTBF of 4500 h, and the transmitter reliability is
0.9357 with an MTBF of 10,000 h. The system is expected to operate for 1000 h.

The overall reliability of the system is calculated using Eq. 4.8.

Rsys ¼ 0:9512ð Þ 0:9821ð Þ 0:9357ð Þ ¼ 0:8741

The failure rate for a component is the inverse of the MTBF, as shown in Eq. 4.9.

Failure Rate and MTBF

kx ¼ 1
MTBFx

ð4:9Þ

The failure rate for each of the components is as follows:

kA ¼ 1
6000

¼ 0:000167 failures per hour

kB ¼ 1
4500

¼ 0:000222 failures per hour

kB ¼ 1
10000

¼ 0:000100 failures per hour

By using Eq. 4.8 the overall reliability of the system over a period of 1000 h is:

Rsys ¼ ðe�katÞðe�kbtÞðe�kctÞ

Rsys ¼ e�ð0:000167Þð1000Þ
� �

e�ð0:000222Þð1000Þ
� �

e�ð0:000100Þð1000Þ
� �

A
Input Output

B
ComponentComponentComponent

C

Fig. 4.2 Serial relationship between system components

4.2 Reliability 81



Rsys ¼ e� 0:167ð Þ
� �

e� 0:222ð Þ
� �

e� 0:01ð Þ
� �

Rsys ¼ e� 0:399ð Þ
� �

Rsys ¼ 0:601

This shows that the system, as configured, has a 60.1 % probability of surviving to
1000 h.

4.2.3.2 Parallel Relationships

When components are arranged in a parallel relationship, as depicted in Fig. 4.3, all
components must fail to cause a total system failure.

The basic reliability for the components A and B in Fig. 4.3 is shown in
Eq. 4.10.

Reliability Equation for Two Components in Parallel

Rsys ¼ Ra þ Rb � ðRaÞðRbÞ ð4:10Þ

And the reliability for components A, B and C is shown in Eq. 4.11.

Reliability Equation for Three Components in Parallel

Rsys ¼ 1� ½ð1� RaÞð1� RbÞð1� RcÞ� ð4:11Þ

As an example, imagine a system constructed where components A, B, and C are
identical power supplies with a reliability of 0.975. If only two components are in

Component
A

Component
B

Component
C

OutputInput

Fig. 4.3 Parallel relationship
between system components

82 4 Reliability and Maintainability



the design, A and B, which is a system with two identical power supplies, the
corresponding system reliability is calculated as:

Rsys ¼ 0:975þ 0:975� 0:975ð Þ 0:975ð Þ½ � ¼ 0:99375

If a third identical power supply is added in parallel to this system design, then the
reliability of the system increases:

Rsys ¼ 1� 1� 0:975ð Þ 1� 0:975ð Þð1� 0:975Þ½ � ¼ 0:999984

4.2.3.3 Combined Series-Parallel Relationships

When components are arranged in relationships that combine both series and
parallel relations, as depicted in Fig. 4.4, a variety of failure combinations may
cause the system to fail.

The basic reliability for the components A, B, C and D in Fig. 4.4 is shown in
Eq. 4.12.

Reliability Equation for Components in a Combined Series-Parallel
Relationship

Rsys ¼ ½1� ½ð1� RaÞð1� RbÞ�½1� ½ð1� RcÞð1� RdÞ� ð4:12Þ

The number of possible combinations of components in a system is endless.
However, the system’s configuration for reliability is a purposeful element of the
design process aimed at achieving required reliability requirements. More detailed
treatment of reliability may be found in focused texts on Reliability Engineering by
Elsayed (2012) and O’Connor and Kleyner (2012).

The next section will discuss how reliability is addressed during systems design
efforts.

A
Component

B
Component

C
Component

D
Component

Input Output

Fig. 4.4 A combined series-parallel relationship between system components

4.2 Reliability 83



4.2.4 Reliability in System Design Efforts

Reliability is a major factor in determining system effectiveness. Reliability is most
often defined within: (1) operational requirements (i.e., availability) and mainte-
nance concepts (i.e., maintainability); (2) system requirements; and (3) performance
factors.

IEEE Standard 1220—Systems engineering—Application and management of
the systems engineering process (IEEE 2005) specifically addresses reliability in
three areas.

• As an element of the requirements analysis task in Section 6.1.5
During the requirements analysis task, system effectiveness measures are
identified that reflect the overall stakeholder expectations. Reliability is a key
Measure of Effectiveness (MOE) that should be identified in this task.

• As an element of the design synthesis task in Section 6.5.2
Design solution alternatives are evaluated and the non-functional requirement
attribute reliability is a distinct measure used in discrimination of the
alternatives.

• As an element of the design synthesis task in Section 6.5.12.

… assesses failure modes, the effects, and the criticality of failure for design alternatives.
The hardware, software, and human elements of the design alternatives should be analyzed,
and historical or test data should be applied, to refine an estimate of the probability of
successful performance of each alternative. A failure modes and effects analysis (FMEA)
should be used to identify the strengths and weaknesses of the design solution. For critical
failures, the project conducts a criticality analysis to prioritize each alternative by its crit-
icality rating. The results of this analysis are used to direct further design efforts to
accommodate redundancy and to support graceful system degradation. (IEEE 2005, p. 52)

The section that follows will discuss the Failure Mode and Effect Analysis (FMEA)
mentioned in IEEE Standard 1220.

4.2.5 FMEA and FEMCA

Failure Mode and Effect Analysis (FMEA) is defined as:

An analytical procedure in which each potential failure mode in every component of a
product is analyzed to determine its effect on the reliability of that component and, by itself
or in combination with other possible failure modes, on the reliability of the product or
system and on the required function of the component; or the examination of a product (at
the system and/or lower levels) for all ways that a failure may occur. For each potential
failure, an estimate is made of its effect on the total system and of its impact. In addition, a
review is undertaken of the action planned to minimize the probability of failure and to
minimize its effects. (IEEE and ISO/IEC 2010, p. 139)

84 4 Reliability and Maintainability



FMEA is also known as FMECA or Failure Modes, Effects, and Criticality Analysis
and is a popular and widely used reliability design technique. FMEA may be
applied to functional or physical entities and may start as early as the conceptual
design stage in the systems life cycle. The FMEA/FMECA goals are to:

• Design process to improve inherent system reliability.
• Identifies potential system weaknesses.

The process uses a bottom-up approach where the analysis considers failures at the
lowest level of the system’s hierarchy and moves upward to determine effects at the
higher levels in the hierarchy. The process traditionally uses 12 steps:

1. Define the system, outcomes, and technical performance measures
2. Define the system in functional terms
3. Do a top-down breakout of system level requirements
4. Identify failure modes, element by element
5. Determine causes of failure
6. Determine effects of failure
7. Identify failure/defect detection means
8. Rate failure mode severity
9. Rate failure mode frequency

10. Rate failure mode detection probability (based on item #7)
11. Analyze failure mode criticality where criticality is a function of severity (#8),

frequency (#9), and probability of detection (#10) as expressed in a Risk
Priority Number (RPN)

12. Initiate recommendations for improvement.

Bernstein (1985) provides an example of a FMECA for a mechanical system that
should be reviewed for understanding. Finally, there is an established international
standard for conducting a FMEA/FMECA which is contained in IEC Standard
60812 Analysis Techniques for System Reliability—Procedure for Failure Mode
and Effects Analysis (FMEA) (IEC 2006).

The next section will discuss how to measure reliability.

4.2.6 Measuring Reliability

At the end of Chap. 3 the importance of being able to measure each non-functional
attribute was stressed. A structural mapping that relates reliability to a specific
metric and measurement entity are required. The four-level construct for reliability
is presented in Table 4.5.

The section that follows will discuss the non-functional attribute for
maintainability.

4.2 Reliability 85

http://dx.doi.org/10.1007/978-3-319-18344-2_3


4.3 Maintainability

This section will review the basics of maintainability and how it is applied during
systems endeavors. Maintainability is closely related to reliability and is a central
element of sustainment.

4.3.1 Maintainability Definitions

Maintainability, from a systems engineering perspective, is defined as:

The ease with which a hardware system or component can be retained in, or restored to, a
state in which it can perform its required functions. (IEEE and ISO/IEC 2010, p. 204)

There are other definitions, presented in Table 4.6 that may contribute to improved
understanding.

Dissecting these definitions, the major elements are:

• Maintain—The ability to take the actions necessary to keep the system in a fully
operable condition.

• Maintenance—“the process of retaining a hardware system or component in, or
restoring it to, a state in which it can perform its required functions” (IEEE and
ISO/IEC 2010, p. 205).

Table 4.5 Four-level
structural map for measuring
reliability

Level Role

Concern Systems sustainment

Attribute Reliability

Metric Component reliability

Measurable
characteristic

Mean time between failure (MTBF) or
mean time to failure (MTTF)

Table 4.6 Definitions for maintainability

Definition Source

“A measure of the ease of accomplishing the functions required
to maintain the system in a fully operable condition”

Kossiakoff et al. (2011,
p. 428)

“That characteristic of design and installation that reflects the
ease, accuracy, safety, and economy of performing maintenance
actions”

Blanchard and Fabrycky
(2011, p. 112)

“The ability of a system to be maintained” Blanchard and Fabrycky
(2011, p. 411)

86 4 Reliability and Maintainability



Having a definition for and understanding the constituent elements of main-
tainability is an essential step in understanding how maintainability can be
measured.

The next section will discuss the element of maintainability.

4.3.2 Terminology Associated with Maintainability

The first element of maintainability to understand is maintenance. Maintenance is
generally classified as either corrective or preventive.

• Corrective: unscheduled, caused by failure, required to restore system level of
performance.

• Preventive: scheduled, designed to prevent failure, required to retain system
level of performance.

Both of the maintenance types involve a number of specific actions in order to affect
the actual maintenance of the system and its components. The basic elements of a
corrective maintenance cycle for a component or system are depicted in Fig. 4.5.

The terms associated with the corrective maintenance cycle are defined in
Table 4.7.

From the relationships depicted in Fig. 4.5 the maintenance terms are related by
Eq. 4.13.

Basic Maintenance Downtime Equation

MDT ¼ M þ LDT þ ADT ð4:13Þ

Detection Preparation Isolation
Disassembly for 

Access

Removal of 
Faulty 

Component

Receive
Replacement 
Component

Repair of Faulty 
Component

Reassembly
Alignment & 
Adjustment

Testing

Maintenance Downtime 
(MDT)

Mean Active Maintenance Time (M)

Order 
Replacment 
Component

Logistics Delay Time
(LDT)

Administrative Delay Time 
(ADT)

Fig. 4.5 Corrective maintenance cycle

4.3 Maintainability 87



Knowing that the Mean Active Maintenance Time (M) is the sum of the mean
corrective and mean preventive maintenance times, Eq. 4.13 may be expressed as
Eq. 4.14:

Expanded Maintenance Downtime Equation

MDT ¼ Mct þMpt þ LDT þ ADT ð4:14Þ

4.3.3 Maintainability Calculations

Each component has a measure of maintainability designated as the Mean Time
Between Maintenance (MTBM), which is the mean or average time between all
maintenance actions knowing that there are both unscheduled corrective (MTBMu)
and scheduled preventive (MTBMs) maintenance actions. The formula for MTBM
is shown in Eq. 4.15.

Equation for Mean Time between Maintenance

MTBM ¼ 1
1

MTBMu
þ 1

MTBMs

ð4:15Þ

Both of these measures are primary measures for maintainability and will be
required to address the non-functional requirement attribute for availability in the
next chapter.

Table 4.7 Terms in corrective maintenance cycle

Term Definition

Administrative delay time
(ADT)

That portion of the downtime during which maintenance is
delayed due to planning, personnel assignment, labor issues,
constraints, etc

Logistics delay time (LDT) That portion of the downtime waiting for material, a piece of
special test equipment, tool, facility, or transportation

Maintenance downtime
(MDT)

The total period of time required, during which the system is
non-operational, to repair and restore a system to full operating
status

Mean active maintenance
time (M)

The total period of time required, during which the system is
non-operational, to repair and restore a system to full operating
status. Is expressed as a function of both Mct, Mpt, and fpt
(frequency of preventive maintenance action)

Mean corrective
maintenance time (Mct)

Average elapsed time for unscheduled maintenance

Mean preventive
maintenance time (Mpt)

Average elapsed time for preventive or scheduled maintenance

88 4 Reliability and Maintainability



4.3.4 Maintenance Support Concept

Because maintenance is an important element of during system operation, it must be
addressed early in the system design process. During conceptual design the design
team will be tasked with considering specific concepts that support the full range of
activities that will occur during the systems life cycle. IEEE Standard 1220 requires
the definition of life cycle process concepts, which includes the maintenance sup-
port concept:

Develop, produce, test, distribute, operate, support, train, and dispose of system products
under development. (IEEE 2005, p. 40)

Much of the design team’s focus should be on the cost drivers and higher risk
elements that are anticipated to impact the system throughout its life cycle. Because
system operations and maintenance activities consume large portions of a systems
total life cycle costs, the maintenance support concept is particularly important. A
maintenance concept may be defined as:

The set of various maintenance interventions (corrective, preventive, condition based, etc.)
and the general structure in which these interventions are foreseen. (Waeyenbergh and
Pintelon 2002, p. 299)

Figure 4.6 depicts some of the major elements in a systems maintenance and
support concept.

Depot Maintenance 
Provider

Original Equipment Manufacturer’s (OEM)

Intermediate 
Maintenance 

Provider

System of Record

Intermediate Maintenance
Field Facility
Corrective maintenance of subsystems
Preventive maintenance of subsystems
Supply support for repair items
Medium level skills

Depot Maintenance
Fixed facility
Detailed maintenance of systems
Overhaul of systems
Supply support for overhaul items
Detailed skills

OEM Maintenance
Original Manufacturer
Build parts, components, and subsystems
Complete rebuild of parts, components and subsystems
Supply support for all items
Design and manufacturing skills

Operational Unit Maintenance
Operational environment
On-site corrective maintenance
Planned preventive maintenance
Supply support for critical items
Low level skills

Fig. 4.6 Maintenance and support concept

4.3 Maintainability 89



Areas that should be addressed are presented in Table 4.8.
The next section will address how maintainability is addressed during systems

design efforts.

4.3.5 Maintainability in Systems Design Efforts

Maintainability is a major factor in determining system effectiveness. Maintainability
is most often defined within: (1) operational requirements (i.e., availability) and
maintenance concepts (i.e., maintainability); (2) system requirements; and (3) per-
formance factors.

IEEE Standard 1220—Systems engineering—Application and management of
the systems engineering process (IEEE 2005) specifically addresses reliability in
three areas.

• As an element of the requirements analysis task in Section 6.1.5
During the requirements analysis task system effectiveness measures are iden-
tified that reflect the overall stakeholder expectations. Maintainability is a key
Measure of Effectiveness (MOE) identified in this task.

• As an element of the requirements analysis task in Section 6.1.9
The design team must define life cycle process concepts, which includes the
maintenance support concept.

• As an element of the design synthesis task in Section 6.5.2
Design solution alternatives are evaluated and the non-functional requirement
attribute maintainability is a distinct measure used in the discriminating of the
alternatives.

The next section will discuss how to measure maintainability.

Table 4.8 Maintenance and support considerations

Support item Support item considerations

1. Levels of
maintenance

How many levels are included in the maintenance concept is a function of
the anticipated frequency of the maintenance, the task complexity, skill
level requirements, and facility needs

2. Repair policies Part and component failure policies should specify whether the item is
non-repairable, partially repairable, or fully repairable and the
organizational level-of-repair

3. Organizational
responsibilities

Maintenance may be assigned to the operational facility or to any of the
supporting organizations shown on the previous page

4. Maintenance support
elements

Inventory levels for maintenance parts, repair parts, overhaul parts and
provisioning. Special support equipment (facilities, equipment, tools).
Training requirements

5. Effectiveness
requirements

Predicted part and component failure rates will drive the spare-part demand
rate

6. Environment The environment that surrounds the system. This includes understanding
vibration, shock, temperature, humidity, noise, pressures, cycles, etc

90 4 Reliability and Maintainability



4.3.6 Measuring Maintainability

At the end of Chap. 3 the importance of being able to measure each non-functional
attribute was stressed. To support this, a structural mapping that relates maintain-
ability to a specific metric and measurement entity are required. The four-level
construct for maintainability is presented in Table 4.9.

4.4 Summary

In this chapter the non-functional requirements for reliability and maintainability
have been reviewed. In each case a formal definition has been provided along with
additional explanatory definitions, terms, and equations. The ability to purposefully
account for the non-functional requirement during the design process has also been
addressed. Finally, a formal metric and measurement characteristic have been
proposed for evaluating each non-functional requirement attribute.

The chapter that follows will discuss additional sustainment concerns and
address the non-functional attributes for availability and operability, and testability.

References

Bernstein, N. (1985). Reliability analysis techniques for mechanical systems. Quality and
Reliability Engineering International, 1(4), 235–248.

Blanchard, B. S., & Fabrycky, W. J. (2011). Systems engineering and analysis (5th ed.). Upper
Saddle River: Prentice-Hall.

Elsayed, E. A. (2012). Reliability engineering (2nd ed.). Hoboken: Wiley.
IEC. (2006). IEC Standard 60812: Analysis techniques for system reliability—procedure for

failure mode and effects analysis (FMEA). Geneva: International Electrotechnical Commission.
IEEE. (2005). IEEE Standard 1220: Systems engineering—application and management of the

systems engineering process. New York: Institute of Electrical and Electronics Engineers.
IEEE, & ISO/IEC. (2010). IEEE and ISO/IEC Standard 24765: Systems and Software Engineering

—Vocabulary. New York and Geneva: Institute of Electrical and Electronics Engineers and the
International Organization for Standardization and the International Electrotechnical
Commission.

Table 4.9 Four-level structural map for measuring maintainability

Level Role

Concern Systems sustainment

Attribute Maintainability

Metric Component maintainability

Measurable
characteristic

Mean time between unscheduled corrective maintenance (MTBMu) or
mean time between scheduled preventive maintenance (MTBMs)

4.3 Maintainability 91

http://dx.doi.org/10.1007/978-3-319-18344-2_3


Ireson, W. G., Coombs, C. F., & Moss, R. Y. (1996). Handbook of reliability engineering and
management (2nd ed.). New York: McGraw-Hill.

Kossiakoff, A., Sweet, W. N., Seymour, S. J., & Biemer, S. M. (2011). Systems engineering
principles and practice (2nd ed.). Hoboken: Wiley.

O’Connor, P. D. T., & Kleyner, A. (2012). Practical reliability engineering (5th ed.). West
Sussex: Wiley.

Waeyenbergh, G., & Pintelon, L. (2002). A framework for maintenance concept development.
International Journal of Production Economics, 77(3), 299–313.

92 4 Reliability and Maintainability



Chapter 5
Availability, Operability, and Testability

Abstract Effective sustainment of systems and components during the operation
and maintenance stages of the system life cycle require specific purposeful actions
during the design stages of the system life cycle. The availability and testability of
the system and its constituent components are essential to ensure that the systems
continues to provide the required functions to its stakeholders. Availability and
testability are non-functional requirements that exists at both the component- and
system-level and are intertwined and interrelated. Inattention to testability concerns
may lead to decreased availability having far reaching affects that include the
systems own viability. The ability to understand how availability and testability are
implemented in the design process and formal metrics and measurement processes
for each non-functional requirements ensure that they are adequately addressed
during all system design endeavors.

5.1 Introduction to Availability and Testability

This chapter will address two major topics. The first topic is availability and the
second is testability. The first topic will review availability and the basic theory,
equations and concepts that underlie its utilization. A section will address how
availability is applied in engineering design and conclude with a metric and mea-
sureable characteristic for reliability.

The second major topic of this chapter will define testability and discuss how it
is used in engineering design. The relationship to availability is reviewed and
applied to the availability equation. The section concludes with a metric and
measureable characteristic for testability.

The chapter has a specific learning goal and associated objectives. The learning
goal of this chapter is to be able to identify how the attributes of availability and
testability affect sustainment in systems endeavors. This chapter’s goal is supported
by the following objectives:

© Springer International Publishing Switzerland 2015
K.M. Adams, Non-functional Requirements in Systems Analysis and Design,
Topics in Safety, Risk, Reliability and Quality 28,
DOI 10.1007/978-3-319-18344-2_5

93



• Define availability.
• Describe the terminology used to calculate availability.
• Describe the relationship between maintainability and availability.
• Construct a structural map that relates availability to a specific metric and

measurable characteristic.
• Define testability.
• Describe the relationship between testability and operational availability.
• Construct a structural map that relates testability to a specific metric and mea-

surable characteristic.
• Explain the relationship between testability and availability.

The ability to achieve these objectives may be fulfilled by reviewing the materials
in the sections that follow.

5.2 Availability and Operability

This section will review the basics of availability and how it is applied during
systems endeavors. Availability is an important measure utilized in assessing a
systems’ ability to provide the required functions and services to its stakeholders.

5.2.1 Availability and Operability Definitions

Operability, from a systems engineering perspective, is defined as

The state of being able to perform the intended function (IEEE and ISO/IEC 2010, p. 240).

Availability, from a systems engineering perspective, is defined as:

1. The degree to which a system or component is operational and accessible when required
for use. 2. Ability of a component or service to perform its required function at a stated
instant or over a stated period of time (IEEE and ISO/IEC 2010, p. 29).

From these definitions it should be clear that the non-functional requirement for
operability is easily satisfied within the definition for availability. As a result, the
rest of this chapter will treat operability as part of the non-functional requirement
for availability.

Availability is usually simply stated as the ratio of the system uptime over the
sum of system uptime and system downtime. Availability as a general concept is
“the period of time for which an asset is capable of performing its specified
function, expressed as a percentage” (Campbell 1995, p. 174).

However, availability has a number of unique definitions, characterized by either
(1) the time interval being considered, or (2) the type of downtime (i.e., either
corrective repairs or scheduled maintenance). There are other definitions presented
in Table 5.1 that may contribute to improved understanding.

94 5 Availability, Operability, and Testability



Operational availability (Ao) is the most appropriate measure of system or
component availability since it includes systems and their components in their real-
world operational environments. The next section will address operational avail-
ability (Ao) mathematically.

5.2.2 Equations for Operational Availability (Ao)

Operational availability may be simply expressed as shown in Eq. 5.1.

Basic Availability Equation

Ao ¼ System uptime
System total time ðuptimeþ downtimeÞ ð5:1Þ

Equation 5.1 may be expanded by including the maintainability terms mean time
between failure (MTBF) and mean time to repair (MTTR) that were discussed in
Chap. 4 and by introducing a new term mean logistics delay time (MLDT). The
equation for operational availability is expanded and shown in Eq. 5.2.

Expanded Availability Equation

A0 ¼ MTBF
MTBF þMTTRþMLDT

ð5:2Þ

MLDT includes both mean supply delay time (MSDT), mean outside assistance
delay time (MOADT) and mean administrative delay time (MADT). The terms are
defined as follows:

• MSDT includes delays during the acquisition of spare parts, test equipment, and
special tooling required to accomplish the maintenance.

• MOADT includes delays due to the arrival of specialized maintenance personnel
during travel to the systems’ operational location to perform maintenance.

Table 5.1 Key elements that differentiate the definitions for availability

Definition Source

Inherent Availability (Ai): “Includes only the corrective
maintenance of the system (the time to repair or replace the failed
component), and excludes ready time, preventive maintenance
downtime, logistics (supply) time, and waiting administrative time”

Elsayed (2012, p. 202)

Achieved Availability (Aa): “Includes corrective and preventive
maintenance downtime. It is expressed as a function of the
frequency of maintenance, and the mean maintenance time”

Elsayed (2012, p. 202)

Operational Availability (Ao): “The repair time includes many
elements: the direct time of maintenance and repair and the indirect
time which includes ready time, logistics time, and waiting or
administrative downtime”

Elsayed (2012, p. 203)

5.2 Availability and Operability 95

http://dx.doi.org/10.1007/978-3-319-18344-2_4


• MADT includes delays due to the development of procedures, permission to
restrict system operation during maintenance, system isolation, and preparation
for and the setting conditions (i.e., draining fluids, de-energizing circuits, etc.)
within the system that permit maintenance actions to be accomplished.

Using these terms the MLDT is expanded and shown in Eq. 5.3.

Mean Logistics Delay Time Equation

MLDT ¼ MSDT þMOADT þMADT ð5:3Þ

The operational availability (Ao) equation may now be re-written to include the
additional terms from MLDT and is shown in Eq. 5.4.

Fully Expanded Availability Equation

A0 ¼ MTBF
MTBF þMTTRþMSDT þMOADT þMADT

ð5:4Þ

5.2.3 Availability in Systems Design Efforts

Availability, like reliability and maintainability, is a major factor in determining
system effectiveness. Availability is addressed in IEEE Standard 1220—Systems
engineering—Application and management of the systems engineering process
(IEEE 2005) and is specifically addressed in three areas.

• As an element of the requirements analysis task in Sect. 6.1.1
Stakeholder expectations are defined and balanced in terms that address specific
non-functional requirements such as availability.

• As an element of the requirements analysis task in Sect. 6.1.9
The design team must define life cycle process concepts, which includes the
maintenance support concept which will have a direct effect on availability.

• As an element of the design synthesis task in Sect. 6.5.2
Design solution alternatives are evaluated and the non-functional requirement
attribute availability is a distinct measure used in the discriminating of the
alternatives.

A typical stakeholder requirement may state that the system must be available at
least 99.5 percent of the time. By stating the required uptime the stakeholders are
constraining the amount of downtime and the variables that contribute to downtime
(i.e., MTBF, MTTR, and MLDT (i.e., MSDT, MOADT, and MADT)).

The next section will discuss how to measure availability.

96 5 Availability, Operability, and Testability



5.2.4 Measuring Operational Availability (Ao)

At the end of Chap. 3 we stressed the importance of being able to measure each
non-functional attribute. A structural mapping that relates availability to a specific
metric and measurement entity are required. The four-level construct for availability
is presented in Table 5.2.

The section that follows will discuss an additional sustainment concern by
addressing the non-functional attribute for testability.

5.3 Testability

In this section the basics of testability and how it is applied during systems
endeavors will be reviewed. Testability is an emerging measure that could be
utilized as a means for improving the ability to properly assess a system’s con-
formance with the functions and services required by its stakeholders.

5.3.1 Testability Definitions

Testability, from a systems engineering perspective, is defined as

1. The extent to which an objective and feasible test can be designed to determine whether a
requirement is met. 2. The degree to which a requirement is stated in terms that permit
establishment of test criteria and performance of tests to determine whether those criteria
have been met (IEEE and ISO/IEC 2010, p. 371).

Testability, as a non-functional requirement, has additional definitions shown in
Table 5.3 that may provide improved understanding of the term and its use in
systems design endeavors.

Using the oldest definition for testability, Valstar (1965) posits that testability is
an element of the inherent availability (Ai) and can be related by the formula in
Eq. 5.5.

Table 5.2 Four-level structural map for measuring availability

Level Role

Concern Systems Sustainment

Attribute Availability

Metric Component availability

Measurable
characteristic

Mean time between failure (MTBF), Mean time to repair (MTTR), and
mean logistic delay time (MLDT)

5.2 Availability and Operability 97

http://dx.doi.org/10.1007/978-3-319-18344-2_3


Inherent Availability Equation

Ai ¼ x
xþ sþ q

ð5:5Þ

where
ω Mean time to failure or MTTF.
τ Mean time to find a failure provided that test equipment, facilities, and

manpower are available.
ρ Repairability or mean time to repair or MTTR.

Re-written using the more familiar terms from the previous section, Eq. 5.5
becomes Eq. 5.6.

Inherent Availability Equation with MTTF and MTTR

Ai ¼ MTTF
MTTF þ sþMTTR

ð5:6Þ

Because inherent availability considers only corrective maintenance, that is, faults
that are caused by failure, testability (τ) also has a role in the prediction of the
operational availability of a system. The operational availability Eq. 5.5 may be re-
written as shown in Eq. 5.7.

Expanded Availability Equation with Testability

A0 ¼ MTBF
MTBF þ sþMTTRþMSDT þMOADT þMADT

ð5:7Þ

In summary, testability directly affects system availability.

Table 5.3 Additional definitions for testability

Definition Source

“Testability, symbolized by τ, the mean-time-to-test or to find a failure
provided that test equipment, facilities and manpower are available”

Valstar (1965, p. 54)

“The capability of a system that allows effective fault detection and
diagnosis”

Kelley et al.
(1990, p. 22)

“The tendency for failures to be observed during testing when faults
are present. Software has high testability if it tends to expose faults
during testing, producing failures for many inputs that execute a fault.
Software had low testability if it tends to hide faults during testing,
producing almost no failures even through at least one fault is present”

Voas and Miller
(1993, p. 207)

“Testability can suggest places where faults can hide from testing,
which testing cannot do. Testability complements formal verification
by providing empirical evidence of behavior, which formal
verification cannot do”

Voas and Miller
(1995, p. 18)

98 5 Availability, Operability, and Testability



Availability is dependent on how well the operator can assess the condition of the system,
how quickly he/she can detect and locate the cause of degraded or failed units, and how
efficiently he/she can rectify the malfunction (Kelley et al. 1990, p. 22).

5.3.2 Testability in Systems Design

Testability may be categorized in two ways:

1. Architectural testability—“an evaluation of the characteristics of a system based
on its design features and the specified intent of the design” (Kelley et al. 1990,
p. 22).

2. Modal testability—“an evaluation of the testability of a system’s design while
configured to perform one or more specific functions. This type of analysis is
based on the system’s design features, its functional flow characteristics, and its
performance specifications” (Kelley et al. 1990, p. 22).

Formal measures for testability attributes have been proposed for a number of
design tasks and are presented in Table 5.4.

Design for testability is a technique whereby designers proactively ensure that
their design decisions support the development of a robust test program throughout
the systems life cycle (Buschmann 2011). For both cases in Table 5.4 the tasks and
measures describe correlated testing criterion that brings a basis for evaluating
design as part of a broader design for testability approach. By having a defined
testability metric and associated characteristic that are measureable, design alter-
natives may be afforded another measure with which they may be discriminated.

Testability, like availability, is a major factor in determining system effective-
ness. Availability is addressed in IEEE Standard 1220—Systems engineering—
Application and management of the systems engineering process (IEEE 2005)
specifically addresses testability in three areas.

• As an element of the synthesis task in Sects. 6.5.4 and 6.5.13
Determine the degree to which testability has been included in the solutions.
Assess the testability of design alternatives to determine built-in test (BIT) and/
or fault isolation test (FIT) requirements.

Table 5.4 Examples of testability measures in design tasks

Design task Measure Source

Architecture
development

Measures of the relative controllability and observability of
signals in the system architecture. The testability
information is derived from reachability graph analysis of
the corresponding Petri Net representation of the system
architecture

Jiang et al.
(2000)

UML Class
Diagram

Measure the number and complexity of the interactions due
to polymorphic uses

Baudry
et al. (2002)

5.3 Testability 99



5.3.3 Measuring Testability

At the end of Chap. 3 the importance of being able to measure each non-functional
attribute was stressed. In support of this importance, a structural mapping that
relates testability to a specific metric and measurement entity are required. The four-
level construct for testability is presented in Table 5.5.

5.4 Summary

In this chapter the non-functional requirements for availability and testability have
been reviewed. In each case a formal definition has been provided along with
additional explanatory definitions, terms, and equations. The ability to effect the
non-functional requirement during the design process has also been addressed.
Finally, a formal metric and measurement characteristic have been proposed for
evaluating each non-functional requirement attribute.

The next Part of the text will shift the focus to concerns that are directly related
to the design itself. The first chapter in the Part on Design Concerns will address the
non-functional attributes for conciseness, modularity, simplicity, and traceability.
The second chapter in Part III on Design Concerns will address the non-functional
attributes for compatibility, consistency, interoperability, and safety.

References

Baudry, B., Le Traon, Y., & Sunye, G. (2002). Testability analysis of a UML class diagram.
Proceedings of the Eighth IEEE Symposium on Software Metrics (pp. 54–63). Los Alamitos,
CA: IEEE Computer Society.

Buschmann, F. (2011). Tests: The Architect’s best friend. IEEE Software, 28(3), 7–9.
Campbell, J. D. (1995). Uptime: Strategies for excellence in maintenance management. Portland,

OR: Productivity Press.
Elsayed, E. A. (2012). Reliability engineering (2nd ed.). Hoboken, NJ: Wiley.
IEEE. (2005). IEEE Standard 1220: Systems engineering—Application and management of the

systems engineering process. New York: Institute of Electrical and Electronics Engineers.

Table 5.5 Four-level structural map for measuring testability

Level Role

Concern Systems Sustainment

Attribute Testability

Metric Component testability

Measurable
characteristic

τ, the Mean time to find a failure provided that test equipment, facilities,
and manpower are available

100 5 Availability, Operability, and Testability

http://dx.doi.org/10.1007/978-3-319-18344-2_3


IEEE, and ISO/IEC. (2010). IEEE and ISO/IEC Standard 24765: Systems and software
engineering—Vocabulary. New York and Geneva: Institute of Electrical and Electronics
Engineers and the International Organization for Standardization and the International
Electrotechnical Commission.

Jiang, T., Klenke, R. H., Aylor, J. H., & Gang, H. (2000). System level testability analysis using
Petri nets. Proceedings of the IEEE International High-Level Design Validation and Test
Workshop (pp. 112–117). Los Alamitos, CA: IEEE Computer Society.

Kelley, B. A., D’Urso, E., Reyes, R., & Treffner, T. (1990). System testability analyses in the
Space Station Freedom program. Proceedings of the IEEE/AIAA/NASA 9th Digital Avionics
Systems Conference (pp. 21–26). Los Alamitos, CA: IEEE Computer Society.

Valstar, J. E. (1965). The contribution of testability to the cost-effectiveness of a weapon system.
IEEE Transactions on Aerospace, AS-3(1), 52–59.

Voas, J. M., & Miller, K. W. (1993). Semantic metrics for software testability. Journal of Systems
and Software, 20(3), 207–216.

Voas, J. M., & Miller, K. W. (1995). Software testability: The new verification. IEEE Software,
12(3), 17–28.

References 101



Part III
Design Concerns



Chapter 6
Conciseness, Modularity, Simplicity
and Traceability

Abstract The design of systems and components during the design stage of the
systems life cycle requires specific purposeful actions to ensure effective designs
and viable systems. Designers are faced with a number of design concerns that they
must embed into the design in every instance of thinking and documentation. Four
of these concerns are addressed by the non-functional requirements for conciseness,
modularity, simplicity, and traceability. Formal understanding of each of these non-
functional requirements requires definitions, terms, and equations, as well as the
ability to understand how to control their effect and measure their outcomes during
system design endeavors.

6.1 Introduction to Conciseness, Modularity,
Simplicity and Traceability

This chapter will address four major topics: (1) conciseness; (2) modularity; (3)
simplicity or complexity; and (4) traceability in design endeavors. The chapter
begins with a section that reviews conciseness and the basic terminology, equations
and concepts that underlie its utilization. A metric for measuring and evaluating
conciseness is proposed.

Section 6.3 discusses the concept of modularity and how it affects systems
designs. A number of specific modularity measures from the extant literature are
presented. The section completes with the selection of a measure for modularity and
a structural map relating the metric and the measurement attributes for modularity.

Section 6.4 in this chapter addresses simplicity by contrasting it with com-
plexity. Relevant measures for complexity from the related literature are reviewed
and three are presented for understanding. The section concludes with a metric and
measurable characteristic for complexity.

Section 6.5 presents traceability and how it impacts system design endeavors.
The need for traceability expressed in the IEEE Standard for the Application and
Management of the Systems Engineering Process (IEEE 2005) is used to develop a
metric for evaluating traceability in systems designs. The section completes by

© Springer International Publishing Switzerland 2015
K.M. Adams, Non-functional Requirements in Systems Analysis and Design,
Topics in Safety, Risk, Reliability and Quality 28,
DOI 10.1007/978-3-319-18344-2_6

105



relating the proposed measure for traceability as a metric and includes a structural
map for traceability.

The chapter has a specific learning goal and associated objectives. The learning
goal of this chapter is to be able to identify how the attributes of conciseness,
modularity, simplicity and traceability that influence design in systems endeavors.
This chapter’s goal is supported by the following objectives:

• Define conciseness.
• Describe the terminology used to calculate conciseness.
• Construct a structural map that relates conciseness to a specific metric and

measurable characteristic.
• Define modularity.
• Describe the terminology used to represent modularity.
• Construct a structural map that relates modularity to a specific metric and

measurable characteristic.
• Describe the relationship between simplicity and complexity.
• Define complexity.
• Describe the terminology used to represent complexity.
• Construct a structural map that relate complexity to a specific metric and

measurable characteristic.
• Define traceability.
• Describe the terminology used to represent traceability.
• Construct a structural map that relate traceability to a specific metric and

measurable characteristic.
• Explain the significance of conciseness, modularity, simplicity and traceability

in systems design endeavors.

The ability to achieve these objectives may be fulfilled by reviewing the materials
in the sections that follow.

6.2 Conciseness

In this section the basics of conciseness and how it is applied during systems
endeavors is reviewed. Conciseness is not a well-known non-functional require-
ment and will not have attributes that are either obvious or universally recognized.
In order to understand this attribute the review will start with a basic definition.

6.2.1 Conciseness Definitions

Conciseness, from a software engineering perspective, is defined as:

Software attributes that provide implementation of a function with a minimum amount of
code (IEEE and ISO/IEC 2010, p. 69).

106 6 Conciseness, Modularity, Simplicity and Traceability



This term may be expanded to systems engineering endeavors by utilizing the
independence axiom from the theory of Axiomatic Design (Suh 1990, 2001). The
independence axiom, as utilized in axiomatic design, states:

Maintain the independence of the functional requirements (Suh 2005, p. 23).

Simply stated, each functional requirement should be satisfied without affecting any
other functional requirement.

During the conceptualization process of engineering design, each functional
requirement is transformed from the functional domain where they state what is
required, to the physical domain where they will be matched to a design parameter
that will define how the function will be accomplished. An ideal, or concise mapping,
should be one design parameter for each unique functional requirement. A system
that meets this requirement would be ideally concise. Mathematically, this rela-
tionship may expressed as the conciseness ratio (CR), which is expressed in Eq. 6.1.

The Conciseness Ratio

CR ¼
Pn

i¼1 DPiPn
j¼1 FRj

ð6:1Þ

where
i = the number of Design Parameters (DP)
j = the number of Functional Requirements (FR)

From the definition of conciseness and the associated conciseness ratio (CR) it
should be clear that designs with a higher conciseness ratio are more concise because
their design parameters and functional requirements are parsimonious. The next
section will address how conciseness is included in the design synthesis process.

6.2.2 Conciseness in Systems Design Efforts

Neither the term conciseness nor the word concise are directly addressed in IEEE
Standard 1220—Systems engineering—Application and management of the sys-
tems engineering process (IEEE 2005). However, requirements analysis (Sect. 6.1)
and functional analysis (Sect. 6.3) are serial inputs into the design synthesis process
(Sect. 6.5) where design solution alternatives are identified and evaluated.

• As an element of the synthesis task in Sect. 6.5.2 where

… alternatives and aggregates of alternatives are analyzed to determine which design
solution best satisfies allocated functional and performance requirements, interface
requirements, and design constraints and adds to the overall effectiveness of the system or
higher-level system (IEEE 2005, p. 51).

The conciseness ratio (CR) may be applied to design alternatives as a measure for
discrimination between competing alternatives.

6.2 Conciseness 107



6.2.3 Measuring Conciseness

At the end of Chap. 3 the importance of being able to measure each non-functional
attribute was stressed. A structural mapping that relates conciseness to a specific
metric and measurement entity are required. The four-level construct for concise-
ness is presented in Table 6.1.

The section that follows will address the non-functional requirement for mod-
ularity as a design concern.

6.3 Modularity

In this section the basics of modularity and how it is applied during systems
endeavors will be reviewed. Modularity is a well-established principle in many
forms of engineering (Budgen 2003), however, it is not universally applied as a
design discriminator. In order to understand this attribute the basic definition serves
as a logical starting point.

6.3.1 Modularity Definition

Modularity, from a systems engineering perspective, is defined as:

1. The degree to which a system or computer program is composed of discrete components
such that a change to one component has minimal impact on other components 2. Software
attributes that provide a structure of highly independent components (IEEE and ISO/IEC
2010, p. 223).

Modularity, as a non-functional requirement, has additional definitions, shown in
Table 6.2 that may provide improved understanding of the term.

Modularity is typically assessed using two measures: (1) coupling; and (2)
cohesion.

Table 6.1 Four-level structural map for measuring conciseness

Level Role

Concern Systems sustainment

Attribute Conciseness

Metric System and component conciseness

Measurable
characteristic

CR, the conciseness ration which is a measure of the ratio between the
number of design parameters (DP) and number of functional
requirements (FR) in a system or component

108 6 Conciseness, Modularity, Simplicity and Traceability

http://dx.doi.org/10.1007/978-3-319-18344-2_3


6.3.2 Definitions for Coupling and Cohesion

Table 6.3 provides definitions of these terms in a format that permits the reader to
easily contrast their differences.

There are a variety of specific types of both cohesion and coupling that are
factors to consider during the design of any system. However, systems designers are
interested in a higher level of abstraction, that of the system’s modularity, and will
use the notion of coupling in the development of metrics for modularity.

Table 6.2 Additional definitions for modularity

Definition Source

“The property of a system that has been decomposed into a set of cohesive
and loosely coupled modules”

Booch (1994,
p. 515)

“An encapsulated group of elements that can be manipulated as a unit” Hornby (2007,
p. 52)

Table 6.3 Definitions for coupling and cohesion

Coupling Cohesion

“1. The manner and degree of
interdependence between software modules.
2. The strength of the relationships between
modules. 3. A measure of how closely
connected two routines or modules are. 4. In
software design, a measure of the
interdependence among modules in a
computer program. cf. cohesion. NOTE
Types include common-environment
coupling, content coupling, control coupling,
data coupling, hybrid coupling, and
pathological coupling” IEEE and ISO/IEC
(2010, p. 83)

“1. The manner and degree to which the tasks
performed by a single software module are
related to one another. 2. in software design, a
measure of the strength of association of the
elements within a module. Syn: module
strength. cf. coupling. NOTE Types include
coincidental, communicational, functional,
logical, procedural, sequential, and temporal”
IEEE and ISO/IEC (2010, p. 57)

“The degree of interdependence between
modules” Yourdon and Constantine (1979,
p. 85)

“How tightly bound or related its [i.e., a
module] internal elements are” Yourdon and
Constantine (1979, p. 106)

“A measure of intermodule connectivity, and
is concerned with identifying the forms of
connection that exist between modules and
the ‘strength’ of these connections” Budgen
(2003, p. 77)

“Provides a measure of the extent to which
the components of a module can be
considered to be ‘functionally related. The
ideal module is one in which all of the
components can be considered as being solely
present for one purpose” Budgen (2003,
p. 78)

6.3 Modularity 109



6.3.3 Modularity Metrics

A review of the extant literature on modularity metrics reveals 9 unique studies
published in scholarly journals. The 9 studies are characterized by the metric type
used to develop an appropriate modularity metric. The metric types included the
following metric types: (1) similarity, (2) coupling, and (3) a combination of
similarity and coupling and are presented in Table 6.4.

While and in-depth review of each study is beyond the scope of this chapter,
readers are encouraged to consult the references for a more detailed description of
the development of each modularity metric. The sections that follow will offer a
brief glimpse into two of the more robust modularity metrics.

6.3.3.1 The Modularization Function

The study by Mikkola and Gassmann (2003) introduces a mathematical model,
termed the modularization function, that is used to analyze the degree of modularity
in a given product architecture. The modularization function depends on three
variables: (1) components (i.e., modules); (2) degree of module coupling; and (3)
substitutability of New-To-the-Firm (NTF) components (i.e., modules). The mod-
ularization function is presented in Eq. 6.2.

Modularization Function

MðuÞ ¼ e�u2=2Nsd ð6:2Þ

where:
M(u) the modularization function
u the number of New-To-Firm (NTF) components (i.e., modules)
N total number of components (i.e., modules)
s substitutability factor
δ degree of module coupling

Table 6.4 Modularity
metrics studies by metric type

Metric type Study reference

Similarity Newcomb et al. (1998)

Gershenson et al. (2003, 2004)

Combination Newcomb et al. (1998)

Coupling Newcomb et al. ( 1998)

Martin and Ishii (2002)

Mikkola and Gassmann (2003)

Sosa et al. (2007)

Hölttä-Otto and de Weck (2007)

Yu et al. (2007)

110 6 Conciseness, Modularity, Simplicity and Traceability



6.3.3.2 Minimum Description Length (MDL)

The Design Structure Matrix or DSM (Browning 2001; Eppinger and Browning
2012; Steward 1981) is a widely used design approach that has, as its roots, both the
simplified N2 diagram (Becker et al. 2000) and the House of Quality (Hauser and
Clausing 1988). The DSM is a graphical method for representing the relationships
between the components (i.e., modules) of a system. The DSM is a square matrix
with identical labels for both the rows and columns. In a static, component-based
DSM, the labels represent the system architecture by depicting the relevant rela-
tionships between the system’s constituent components or modules.

In order to illustrate a basic DSM, a simple refrigeration system is depicted in
Fig. 6.1.

Table 6.5 is a sample DSM for the simple refrigeration system depicted in
Fig. 6.1.

The type of interaction that occurs between the system components or modules
is characterized in Table 6.6.

The relationships between the components are coded based upon (1) the com-
ponent or module interaction type as described in Table 6.6, and (2) weighting the
interactions between components or modules relative to each other as presented in
Table 6.7.

The DSM structure for the system in Fig. 6.1 can be used to display any of the
interaction Types from Table 6.6. A completed DSM for the Energy interactions,
using the weighting schema from Table 6.7 is presented in Table 6.8.

HP Gas

HP LiquidHP Vapor

LP Gas

Cooling Fan

Compressor

CondenserEvaporator

Thermal 
Expa nsion 
Valve (TXV)

Cooling
Medium

Electrical
Power

Electrical
Power

Control 
Circuitry

Fig. 6.1 Simplified single-stage vapor compression refrigeration system

6.3 Modularity 111



The study by Yu et al. (2007) proposes a modularity metric termed the Minimum
Description Length (MDL), that is based upon an evaluation of a design as rep-
resented in a DSM. The MDL evaluates the system’s modularity (represented by the
DSM) using the terms presented in Eq. 6.3.

Minimum Description Length

MDL ¼ 1
3

nclognn þ lognn
Xnc
i¼1

cli

 !
þ 1
3
S1 þ 1

3
S2 ð6:3Þ

where
nc the number of components (i.e., modules)
nn the number of rows or columns in the DSM
cli the size of the module i
S1 the number of cells that are in a module, but are empty
S2 the number of cells that is 1 in between the modules

There are a number of methods for determining the degree of modularity in a
complex system. In this section, two methods have been presented that address
modularity as a function of coupling that may serve as useful measures of
modularity.

Table 6.5 DSM structure for system depicted in Fig. 6.1

A B C D E F G H

Compressor A A

Condenser B B

TXV C C

Evaporator D D

Cooling fan E E

Electrical power F F

Cooling medium G G

Control circuitry H H

Table 6.6 Module interaction types (Browning 2001, p. 294)

Interaction
type

Description

Spatial Association of physical space and alignment, needs for adjacency or
orientation between two elements

Energy The need for energy transfer/exchange between two elements (e.g., power
supply)

Information Need for data or signal exchange between two elements

Material Need for material exchange between two elements

112 6 Conciseness, Modularity, Simplicity and Traceability



6.3.4 Modularity in Systems Design Efforts

Neither the term modularity nor the word coupling are directly addressed in IEEE
Standard 1220—Systems engineering—Application and management of the sys-
tems engineering process (IEEE 2005). However, the reason that modularity is a
feature in the purposeful design of systems is because, from an engineering design
perspective modularity does many things:

• First, it makes the complexity of the system manageable by providing an
effective “division of cognitive labor.”

• Second, modularity organizes and enable parallel work.
• Finally, modularity in the ‘design’ of a complex system allows modules to be

changed and improved over time without undercutting the functionality of the
system as a whole (Baldwin and Clark 2006, p. 180).

However, modularity-in-design is not defined simply as a system with a defined
hierarchy of modules. “A complex engineering system is modular in design if (and
only if) the process of designing it can be split up and distributed across separate
modules, that are coordinated by design rules, not by ongoing consultations
amongst the designers” (Baldwin and Clark 2006, p. 181).

Table 6.7 Weighting schema for energy interaction between components (Browning 2001)

Label Weight Description

Required +2 Energy transfer/exchange is necessary for functionality

Desired +1 Energy transfer/exchange is beneficial, but not necessary for
functionality

Indifferent 0 Energy transfer/exchange does not affect functionality

Undesired −1 Energy transfer/exchange causes negative effects but does not
prevent functionality

Detrimental −2 Energy transfer/exchange must be prevented to achieve
functionality

Table 6.8 DSM for energy actions in the system depicted in Fig. 6.1

A B C D E F G H

Compressor A A +2

Condenser B B +2

TXV C C +2

Evaporator D D

Cooling fan E E +2

Electrical power F +2 +2 +2 F +2

Cooling medium G +2 G

Control circuitry H +2 +2 H

6.3 Modularity 113



The presence of design rules is mandatory for modularity-in-design. Having
design rules permits the system and module designers to create a wide variety of
design options that may be considered as elements of the overall system solution.
The design rules hold the system designers accountable for basic elements of
design, but do not overly constrain the potential solutions and independent options
possible for each module. The essence of this approach is that modularization
permits the final system to be changed and improved over its life cycle without
disabling the overall functionality of the system.

6.3.5 Measuring Modularity

At the end of Chap. 3 the importance of being able to measure each non-functional
attribute was stressed as an important element of the design process. A structural
mapping that relates modularity to a specific metric and measurement entity are
required. The four-level construct for modularity is presented in Table 6.9.

The section that follows will address the non-functional requirement for sim-
plicity as a design concern.

6.4 Simplicity

In this the basics of simplicity and how it is applied during systems endeavors will be
reviewed. “While simplicity cannot be assessed, one can at least seek measures for its
converse characteristic of complexity” (Budgen 2003, p. 75). In order to understand
simplicity and complexity it is best to once again start with their basic definitions.

6.4.1 Simplicity and Complexity Definitions

Simplicity and its converse characteristic complexity are defined, from a systems
engineering perspective, in Table 6.10. The definitions are provided side-by-side to
permit the reader to easily contrast their differences.

Table 6.9 Four-level structural map for measuring modularity

Level Role

Concern Systems design

Attribute Modularity

Metric System modularity

Measurable
characteristic

Number of modules and degree of coupling as represented by either the
modularization function (Mu) or the Minimum Description Length
(MDL)

114 6 Conciseness, Modularity, Simplicity and Traceability

http://dx.doi.org/10.1007/978-3-319-18344-2_3


Because simplicity cannot be directly measured it will be measured as the
inverse of complexity, which has some basic measures. However, before com-
plexity may be measured, additional understanding of the term and how it may be
characterized is in order.

6.4.2 Characteristics of Complexity

The definition for complexity in Table 6.10 does not provide sufficient level of
detail required to understand what complexity is and how it appears in systems. It is
often useful to characterize complexity by the features that would be present in a
system that is characterized as complex. Typically, these include:

1. The system contains a collection of many interacting objects or agents.
2. These objects’ behavior is affected by memory or feedback.
3. The objects can adapt their strategies according to their history.
4. The system is typically open.
5. The system appears to be alive.
6. The system exhibits phenomena which are generally surprising, and may be

extreme.
7. The emergent phenomena typically arise in the absence of any sort of invisible

hand or central controller.
8. The system shows a complicated mix of ordered and disordered behavior

(Johnson 2007, pp. 13–15).

Armed with this improved understanding of complexity, how is it measured?
The next section will address methods for measuring complexity in systems.

6.4.3 Methods for Measuring Complexity in Systems

Detailed methods for measuring complexity in software and generic non-software
systems have been addressed in the literature. Some of the prominent studies are
listed in Table 6.11.

Table 6.10 Definitions for simplicity and complexity

Simplicity Complexity

“1. The degree to which a system or
component has a design and
implementation that is straightforward
and easy to understand 2. Software
attributes that provide implementation of
functions in the most understandable
manner cf. complexity” IEEE and
ISO/IEC (2010, p. 327)

“1. The degree to which a system’s design or code is
difficult to understand because of numerous
components or relationships among components. 2.
Pertaining to any of a set of structure-based metrics
that measure the attribute in (1). 3. The degree to
which a system or component has a design or
implementation that is difficult to understand and
verify cf. simplicity” IEEE and ISO/IEC (2010, p. 63)

6.4 Simplicity 115



While an in-depth review of each approach to measuring complexity is beyond
this chapter, readers are encouraged to consult the references for a more detailed
description of the development of each complexity measurement approach. The
sections that follow will offer a brief glimpse into three of the more robust and
generalizable complexity metrics approaches for system design endeavors.

6.4.3.1 System Hierarchy Tree

One measure for system complexity that is particular useful during system design
has been proposed by Huberman and Hogg (1986). The authors report that their
physical measure for system complexity is based on “its diversity, while ignoring its
detailed specification. It applies to discrete hierarchical structures made up of ele-
mentary parts and provides a precise, readily computable quantitative measure”
(p. 376). Their method relies upon the concept of hierarchy, and utilizes a hierarchy
tree to represent the structure of a system.

A powerful concept for understanding these systems is that of a hierarchy. This can cor-
respond to the structural layout of a system or, more generally, to clustering pieces by
strength of interaction. In particular, if the most strongly interacting components are
grouped together at the first level, then the most strongly interacting clusters are combined
at the next level and so on, one ends up with a tree reflecting the resulting hierarchy
(Huberman and Hogg 1986, p. 377).

The structure for a notional system is depicted in the hierarchy tree in Fig. 6.2.

Table 6.11 Literature on measuring complexity in systems

Systems type Complexity
measurement approach

References

Software Control flows McCabe (1976), McCabe and Butler (1989)

Information flows Henry and Kafura (1984), Kitchenham et al.
(1990)

Comprehension Halstead (1977)

Elements Briand et al. (2000), Chidamber and Kemerer
(1994)

Generic systems Hierarchical structures Huberman and Hogg (1986)

Design effort Bashir and Thomson (1999)

Design problem, process
and product

Ameri et al. (2008), Summers and Shah
(2010)

Structural and functional
complexity in design

Braha and Maimon (1998)

Human performance Henneman and Rouse (1986)

Information theory and
entropy

Conant (1976), Jung and Cho (1996),
Koomen (1985), Min and Soon Heung (1991)

Variety Ashby (1958, 1968), Bar-Yam (2004)

116 6 Conciseness, Modularity, Simplicity and Traceability



The premise of hierarchy upon which this measure relies is that proposed by
Simon (1996).

To design such a complex structure, one powerful technique is to discover viable ways of
decomposing it into semi-independent components corresponding to its many functional
parts. The design of each component can then be carried out with some degree of inde-
pendence of the design of others, since each will affect the others largely through its
function and independently of the details of the mechanisms that accomplish the function
(p. 128).

The complexity of the system C(T), is a function of its tree-like hierarchical
structure and is related by Diversity D(T), in Eqs. 6.4 and 6.5.

Complexity as a Function of Diversity

C Tð Þ ¼ 1� DðTÞ ð6:4Þ

Complexity in a Hierarchical Tree

D Tð Þ ¼ ð2k � 1Þ
Yk
j¼1

DðTijÞ ð6:5Þ

where
C complexity measure
D diversity measure
T system hierarchy tree whose diversity is being evaluated
J number of non-isomorphic sub-trees with a range from 1 to k
k number of sub-trees in the system elements

Fig. 6.2 System structure depicted in a hierarchy tree

6.4 Simplicity 117



6.4.3.2 Information Theory and Entropy

A second measure for system complexity is based upon information theory.
Information theory has, at its roots, the groundbreaking work conducted by
Shannon (1948a, b; Shannon and Weaver 1998) on communications that related
entropy and information. Claude Shannon [1916–2001], the father of Information
Theory, adapted these concepts to the analysis of entropy in information, stating:

That information be measured by entropy is, after all, natural when we remember that
information, in communication theory, is associated with the amount of freedom of choice
we have in constructing a message (Shannon and Weaver 1998, p. 13).

Shannon’s conceptualization of information entropy is defined in Eq. 6.6.

Shannon’s Information Entropy

H ¼ �
X
i

pi log2 pi ð6:6Þ

where
H is the information entropy
B is the base 2 logarithm due to the use of binary logic in information theory
p is the probability associated with each the symbols
i the number of discrete messages

During the discussion of the Axiomatic Design Methodology in Chap. 2, Suh
(1990, 2001) reformulated Shannon’s information entropy in Eq. 6.6 such that the
reformulated equation for information content (I), as related to the probability (p) of a
design parameter (DPi) satisfying a functional requirement (FRi) is presented in
Eq. 6.7

System Information Content

Isys ¼ �
Xn
i¼1

log2½p DPið Þ� ð6:7Þ

The information axiom, when used in this context, states that the system design
with the smallest Isys (i.e., the design with the least amount of information) is the best
design. This is because this design requires the least amount of information to fulfill
the design parameters (DP). Once again, the Axiomatic Design Methodology’s
utilization of Shannon’s information entropy is remarkable because a system’s design
complexity, most often expressed as a qualitative assessment, may be represented as a
quantitative measure based on the information entropy required to satisfy the design
parameters.

118 6 Conciseness, Modularity, Simplicity and Traceability

http://dx.doi.org/10.1007/978-3-319-18344-2_2


6.4.3.3 System Variety

None of the previous measures are easily employed as a truly generalizable measure
of a system’s complexity. However, there is a highly generalizable measure termed
variety that may be used as a measure of the complexity of a system. Variety is “the
total number of possible states of a system, or of an element of a system” (Beer
1981, p. 307). As such, it is an excellent measure of the complexity of a system.

Variety, as a measure of system complexity, computes the number of different
possible system states that may exist and is calculated using the relations in Eq. 6.8
(Flood and Carson 1993, p. 26).

Variety

V ¼ Zn ð6:8Þ

where
V variety or potential number of system states
Z number of possible states of each system element
N number of system elements

The variety of a simple system can quickly become enormous. Take, for example,
a system that has 8 different subsystems with 8 possible channels capable of operating
simultaneously. This is a total of 64 different system elements. In this system each
element can only have 2 element states—working or not working. The variety gen-
erated from the system show that the system may have 18,446,744,073,710,000,000
states!

Of the three methods for measuring complexity, variety seems to be the easiest
to compute based upon a minimum of required characteristics for its calculation.

6.4.4 Measuring Complexity

As stated in each of the previous sections, the importance of being able to measure
each non-functional attribute is essential in systems design endeavors. A structural
mapping that relates complexity to a specific metric and measurement entity are
required. The four-level construct for complexity is presented in Table 6.12.

Table 6.12 Four-level structural map for measuring complexity

Level Role

Concern Systems design

Attribute Complexity

Metric System complexity

Measurable
characteristic

Number of system modules or components and the possible states of
each element or module (i.e., variety)

6.4 Simplicity 119



The section that follows will address the non-functional requirement for trace-
ability as a design concern.

6.5 Traceability

In this section the basics of traceability and how it is applied during systems
endeavors will be reviewed. In order to understand traceability its definition is
reviewed.

6.5.1 Traceability Definitions

Traceability, from a systems engineering perspective, is defined as

1. The degree to which a relationship can be established between two or more products of
the development process, especially products having a predecessor-successor or master-
subordinate relationship to one another. 2. The identification and documentation of deri-
vation paths (upward) and allocation or flowdown paths (downward) of work products in
the work product hierarchy (IEEE and ISO/IEC 2010, p. 378).

Traceability, as a non-functional requirement, has additional definitions in
Table 6.13 that may provide improved understanding of the term.

Based upon these definitions traceability is a non-functional requirements that
can be viewed from within the life cycle of the system with which it is associated.
As such, the concept of traceability starts with the system’s stakeholders, as
depicted in Fig. 6.3.

The concept depicted in Fig. 6.3 conforms to the traceability process proposed
by Jarke (1998) that has four traceability links:

• Forward from requirements. Responsibility for requirements achievement
must be assigned to system components, such that accountability is established
and the impact of requirements change can be evaluated.

• Backward to requirements. Compliance of the system with requirements must
be verified, and gold-plating (designs for which no requirements exist) must be
avoided.

Table 6.13 Definitions for traceability

Definition Source

“The process of defining logical links between one system element
(use case, functional requirements, business rule, design component,
code module, test case, and the like) and another”

Wiegers (2003,
p. 490)

“A discernable association among two or more logical entities such as
requirements, systems elements, verifications, or tasks”

Chrissis et al. (2007,
p. 636)

120 6 Conciseness, Modularity, Simplicity and Traceability



• Forward to requirements. Changes in stakeholder needs, as well as in technical
assumptions, may require a radical reassessment of requirements relevance.

• Backward from requirements. The contribution structures underlying require-
ments are crucial in validating requirements, especially in highly political settings
(p. 32).

The ability to trace stakeholder requirements to systems requirements and system
requirements to design artifacts and from design artifacts to systems elements and
functions (i.e., forward traceability) and the reverse (backward traceability) is an
essential feature of all properly documented system design endeavors. Forward
traceability ensures that the system is built to satisfy requirements specified and
endorsed by the stakeholders. Backward traceability ensures that requirements not
formally endorsed by the customer have not crept into the system design in what is
known as requirements creep.

System

Stakeholders

Requirements

System

System

Design

Artifacts

System

Elements

and Functions

Downward
traceability

Downward
traceability

Downward
traceability

Upward
tra ceability

Upward
traceability

Upward
tra ceability

Fig. 6.3 Design traceability
in the systems life cycle

6.5 Traceability 121



Requirements creep must be guarded against as additional unendorsed requirements ulti-
mately compete with endorsed requirements for valuable design space and may end up
reducing the performance of the system against the endorsed requirements. Unendorsed
requirements may also add significantly to the costs and schedule associated with the
system, development, without adding to the system’s ability to solve the original stake-
holder need (Faulconbridge and Ryan 2003, p. 41).

Now that traceability has been formally defined, how it is instantiated as part of the
formal design process may be reviewed.

6.5.2 Traceability in Systems Design Efforts

It is important to note that many important questions about the design of a system
can only be answered by understanding the relationships between the design layers
depicted in Fig. 6.3. “Documenting these relationships engenders greater reflection
and subjects your thinking to peer review” (Dick 2005, p. 14). The formal design
process is where the traceability relationships are developed.

Traceability, is a major factor in ensuring a robust system design that satisfies the
stakeholder’s identified needs. Traceability is addressed in IEEE Standard 1220—
Systems engineering—Application and management of the systems engineering
process (IEEE, 2005) which specifically addresses traceability in nine specific
areas.

1. As an element of the system definition stage described in Section 5.11.3.

System product functional and performance requirements should be allocated among the
subsystems so as to assure requirement traceability from the system products to their
respective subsystems, and from subsystems to their parent product (IEEE 2005, p. 22).

2. As an element of the preliminary design stage described in Section 5.2.1.1.

Subsystem performance requirements are allocated among the assemblies so as to assure
requirements traceability from subsystems to appropriate assemblies, and from assemblies
to the parent subsystem (IEEE 2005, p. 25).

3. As an element of the preliminary design stage described in Section 5.2.1.2.

Assembly performance requirements are allocated among the components so as to assure
requirement traceability from the assemblies to their respective components, and from
components to their parent assembly (IEEE 2005, p. 25).

4. As an element of the detailed design stage described in Section 5.3.1.1.

Component requirements should be allocated among the subcomponents in a manner that
ensures that requirements traceability is maintained in both directions (IEEE 2005, p. 29).

5. As an element of the functional analysis process described in Section 6.3.1.3.

The project documents the allocation of system performance requirements to functions to
provide traceability and to facilitate later changes (IEEE 2005, p. 46).

122 6 Conciseness, Modularity, Simplicity and Traceability



6. As an element of the design synthesis process described in Sect. 6.5.1.

Requirements traceability is established and recorded to ensure that all functions are
allocated to elements of the system; each system element performs at least one function
(IEEE 2005, p. 51).

7. As an element of the design synthesis process described in Section 6.5.18.

The design architecture includes the requirements traceability and allocation matrices,
which capture the allocation of functional and performance requirements among the system
elements (IEEE 2005, p. 53).

8. As an element of the design verification process described in Section 6.6.2.1.

Design elements descriptions are traceable to requirements of the functional architecture
(upward traceability) (IEEE 2005, p. 55).

9. As an element of the design verification process described in Section 6.6.8.

The project shall generate an SBS to depict the hierarchy of products and processes that
comprise the system architecture. The SBS can be used by the project for … traceability
(IEEE 2005, p. 17).

6.5.3 A Method for Evaluating Traceability

Now traceability has been defined within the processes used to design of systems,
how is it measured? This question is a tough one to answer because traceability is a
subjective, qualitative measure which differs from the objective, quantitative
measures developed for most of the non-functional requirements already addressed.
In order to understand how to approach a subjective, qualitative measure, a short
review of how to measure subjective, qualitative objects is required.

6.5.3.1 Development of Measurement Scales

In order to evaluate traceability, questions that address both the presence (yes or no)
and quality of the effort (how well) to provide traceability in the nine areas where
traceability is addressed in systems design. In this case each of the nine areas or
objects must be related to a specific measurable attribute. Measures are important
because they are the linkage between observable, real-world, empirical facts and the
construct (i.e., traceability) that are created as an evaluation point. In this case a
measure is defined as “… an observed score gathered through self-report, interview,
observation, or some other means” (Edwards and Bagozzi 2000, p. 156).

The selection of a measurement scale is an important element in the development
of an adequate measure for traceability. A scale is defined as “… a theoretical
variable in a model, and scaling or measurement is the attachment to empirical
events of values of the variable in a model” (Cliff 1993, p. 89). Because

6.5 Traceability 123



measurement “… concerns the assignment of numbers to objects to represent
amounts or degrees of a property possessed by all of the objects,” (Torgerson 1958,
p. 19) the type of scale is an important selection criteria. Stevens (1946), in his
seminal work on measurement states that “the type of scale achieved depends upon
the character of the basic empirical operations performed. These operations are
limited ordinarily by the nature of the thing being scaled and by our choice of
procedures” (p. 677). Scale selection falls into one or another of the four scale types
(Coombs et al. 1954). Because the nine measurement areas or objects we have
selected for traceability have no natural origin or empirically defined distance, the
ordinal scale was selected as an appropriate scale for measuring the traceability
attributes. Ordinal scales are those in which three criteria have been met:

(1) A set of objects is ordered from most to least with respect to an attribute, (2) there is no
indication of how much in an absolute sense any of the objects possess the attribute, and (3)
there is no indication of how far apart the objects are with respect to the attribute (Nunnally
1967, p. 12).

The numbers attached to the ordinal scale only provide a shorthand notation for
designating the relative positions of the measures on the scale. The use of a well-
known scale type, the Likert scale, is proposed for use in evaluating traceability.
Because Likert-type ordinal scales have been shown to have increased reliability (as
measured by Cronbach’s (1951) Coefficient alpha) up to the use of 5 points and “…
a definite leveling off in the increase in reliability after 5 scale points,” (Lissitz and
Green 1975, p. 13) the scales used for traceability in the next section have been
purposefully designed for increased reliability by using 5 points.

Before moving on to describing the measure for traceability two important points
must be made with respect to scale development. Scales are characterized as either a
proposed scale or a scale. “A proposed scale is one that some investigator(s) put
forward as having the requisite properties, and if it is indeed shown to have them,
then it is recognized as a scale” (Cliff 1993, p. 65). In this chapter the use of the
word scale is referring to proposed scales. This may seem to be an insignificant
point, but until the scale has been accepted and successfully utilized it remains
proposed. The second and final point is that the use of an ordinal scale limits the
measurement effort to but a few statistics such as “… rank order coefficient of
correlation, r, Kendall’s W, and rank order analysis of variance, medians, and
percentiles” (Kerlinger and Lee 2000, p. 363). Because the current evaluation
techniques for traceability use few if any measures, the statistical limitation
imposed by the use of ordinal scales may be evaluated as an acceptable one.

6.5.3.2 Proposed Measurement Scale for Traceability

Armed with a construct, measurement attributes and an appropriate scale type, the
traceability measure may be constructed. In order to evaluate traceability, we will
need to answer questions that address both the presence (yes or no) and quality of
the effort (how well) to provide traceability in the nine areas (i.e., our measurement

124 6 Conciseness, Modularity, Simplicity and Traceability



constructs) from Section 5.4.2. Table 6.14 has rearranged the nine constructs and
associated measurement concerns based upon the life cycle stage and systems
engineering process.

In order to evaluate the design’s ability to conform to the notion of traceability, a
specific question should be developed which will evaluate each of the nine design
traceability measurement concerns. The answers to the questions will be contained
in a 5 point-Likert scale. The measurement constructs and questions associated with
each of the measurements concerns are presented in Table 6.15.

The answer to each question in Table 6.15 will be scored using the 5-point Likert
measures in Table 6.16.

Table 6.14 Measurement constructs for traceability

Life cycle stage
or process

IEEE std
1220 section

Traceability concern for measurement

Conceptual
design

5.1.13 System product functional and performance requirements
should be allocated among the subsystems so as to assure
requirement traceability from the system products to their
respective subsystems, and from subsystems to their
parent product

Preliminary
design

5.2.1.1 Subsystem performance requirements are allocated among
the assemblies so as to assure requirements traceability
from subsystems to appropriate assemblies, and from
assemblies to the parent subsystem

5.2.1.2 Assembly performance requirements are allocated among
the components so as to assure requirement traceability
from the assemblies to their respective components, and
from components to their parent assembly

Detailed design 5.3.1.1 Component requirements should be allocated among the
subcomponents in a manner that ensures that requirements
traceability is maintained in both directions

Functional
analysis

6.3.1 The project documents the allocation of system
performance requirements to functions to provide
traceability and to facilitate later changes

Design
synthesis

6.5.1 Requirements traceability is established and recorded to
ensure that all functions are allocated to elements of the
system; each system element performs at least one
function

6.5.18 The design architecture includes the requirements
traceability and allocation matrices, which capture the
allocation of functional and performance requirements
among the system elements

Design
verification

6.6.2.1 Design elements descriptions are traceable to
requirements of the functional architecture (upward
traceability)

6.6.8 The project shall generate an SBS to depict the hierarchy
of products and processes that comprise the system
architecture. The SBS can be used by the project for ...
traceability

6.5 Traceability 125



Table 6.15 Measurement questions for design traceability

Measurement
construct

Traceability concern for measurement

Tcd Does the conceptual design provide objective quality evidence for
requirement traceability from the system products to their respective
subsystems, and from subsystems to their parent product?

Tpd1 Does the preliminary design provide objective quality evidence for
traceability from subsystems to appropriate assemblies, and from
assemblies to the parent subsystem?

Tpd2 Does the preliminary design provide objective quality evidence for
traceability from the assemblies to their respective components, and from
components to their parent assembly?

Tdd Does the detailed design provide objective quality evidence that ensures
that requirements traceability from component to subcomponent is
maintained in both directions?

Tfa Does the functional analysis process provide objective quality evidence
for the allocation of system performance requirements to functions to
provide traceability and to facilitate later changes?

Ts1 Does the design synthesis process provide objective quality evidence to
ensure that requirements traceability is established and recorded to ensure
that all functions are allocated to elements of the system and that each
system element performs at least one function?

Ts2 Does the design synthesis process provide objective quality evidence in
the design architecture includes the requirements traceability and
allocation matrices, which capture the allocation of functional and
performance requirements among the system elements?

Tv1 Does the verification process provide objective quality evidence that
demonstrates design elements descriptions are traceable to requirements
of the functional architecture (upward traceability)?

Tv2 Does the verification process provide objective quality evidence that a
system breakdown structure has been generated to depict the hierarchy of
products and processes that comprise the system architecture?

Table 6.16 Traceability measurement question Likert scale

Measure Descriptor Measurement criteria

0.0 None No objective quality evidence is present

0.5 Limited Limited objective quality evidence is present

1.0 Nominal Nominal objective quality evidence is present

1.5 Wide Wide objective quality evidence is present

2.0 Extensive Extensive objective quality evidence is present

126 6 Conciseness, Modularity, Simplicity and Traceability



The overall measure for system traceability is a sum of the scores from the nine
traceability metrics as shown in Eq. 6.9.

Generalized Equation for System Traceability

Tsys ¼
Xn
i¼1

Ti ð6:9Þ

Expanded Equation for System Traceability

Tsys ¼ Tcd þ Tpd1 þ Tpd2 þ Tdd þ Tfa þ Ts1 þ Ts2 þ Tv1 þ Tv2 ð6:10Þ

The summation of the nine (9) constructs in Eq. 6.10 will be the measure the
degree of traceability in a system design endeavor Table 6.16.

6.5.4 Measuring Traceability

As stated in each of the three previous sections, the importance of being able to
measure each non-functional attribute is essential in systems design endeavors. A
structural mapping that relates traceability to a specific metric and measurement
entity are required. The four-level construct for traceability is presented in
Table 6.17.

6.6 Summary

In this chapter the non-functional requirements for conciseness, modularity, sim-
plicity, and traceability have been reviewed. In each case a formal definition has
been provided along with additional explanatory definitions, terms, and equations.
The ability to effect the non-functional requirement during the design process has
also been addressed. Finally, a formal metric and measurement characteristic have
been proposed for evaluating each non-functional requirement attribute.

Table 6.17 Four-level structural map for measuring traceability

Level Role

Concern Systems design

Attribute Traceability

Metric System traceability

Measurable
characteristic

Traceability of (1) conceptual design (Tcd), (2) preliminary design (Tpd1,
Tpd2), (3) detailed design (Tdd), (4) functional analysis (Tfa), (5) design
synthesis (Ts1, Ts2), and (6) verification (Tv1, Tv2)

6.5 Traceability 127



The chapter that follows will address non-functional requirement for compati-
bility, consistency, interoperability, and safety as part of the concern for design in
systems endeavors.

References

Ameri, F., Summers, J. D., Mocko, G. M., & Porter, M. (2008). Engineering design complexity:
An investigation of methods and measures. Research in Engineering Design, 19(2–3),
161–179.

Ashby, W. R. (1958). Requisite variety and its implications for the control of complex systems.
Cybernetica, 1(2), 83–99.

Ashby, W. R. (1968). Variety, constraint, and the law of requisite variety. In W. Buckley (Ed.),
Modern systems research for the behavioral scientist (pp. 129–136). Chicago: Aldine
Publishing Company.

Baldwin, C. Y., & Clark, K. B. (2006). Modularity in the design of complex engineering systems.
In D. Braha, A. A. Minai, & Y. Bar-Yam (Eds.), Complex engineered systems (pp. 175–205).
Berlin: Springer.

Bar-Yam, Y. (2004). Multiscale variety in complex systems. Complexity, 9(4), 37–45.
Bashir, H. A., & Thomson, V. (1999). Estimating design complexity. Journal of Engineering

Design, 10(3), 247–257.
Becker, O., Asher, J. B., & Ackerman, I. (2000). A method for system interface reduction using

N2 charts. Systems Engineering, 3(1), 27–37.
Beer, S. (1981). Brain of the Firm. New York: Wiley.
Booch, G. (1994). Object-oriented analysis and design with applications (2nd ed.). Reading, MA:

Addison-Wesley.
Braha, D., & Maimon, O. (1998). The measurement of a design structural and functional

complexity. IEEE Transactions on Systems, Man and Cybernetics—Part A: Systems and
Humans, 28(4), 527–535.

Briand, L. C., Wüst, J., Daly, J. W., & Victor Porter, D. (2000). Exploring the relationships
between design measures and software quality in object-oriented systems. Journal of Systems
and Software, 51(3), 245–273.

Browning, T. R. (2001). Applying the design structure matrix to system decomposition and
integration problems: A review and new directions. IEEE Transactions on Engineering
Management, 48(3), 292–306.

Budgen, D. (2003). Software design (2nd ed.). New York: Pearson Education.
Chidamber, S. R., & Kemerer, C. F. (1994). A metrics suite for object oriented design. IEEE

Transactions on Software Engineering, 20(6), 476–493.
Chrissis, M. B., Konrad, M., & Shrum, S. (2007). CMMI: Guidelines for process integration and

product improvement (2nd ed.). Upper Saddle River, NJ: Addison-Wesley.
Cliff, N. (1993). What is and isn’t measurement. In G. Keren & C. Lewis (Eds.), A handbook for

data analysis in the behavioral sciences: Methodological issues (pp. 59–93). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Conant, R. C. (1976). Laws of information which govern systems. IEEE Transactions on Systems,
Man and Cybernetics, SMC, 6(4), 240–255.

Coombs, C. H., Raiffa, H., & Thrall, R. M. (1954). Some views on mathematical models and
measurement theory. Psychological Review, 61(2), 132–144.

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3),
297–334.

Dick, J. (2005). Design traceability. IEEE Software, 22(6), 14–16.

128 6 Conciseness, Modularity, Simplicity and Traceability



Edwards, J. R., & Bagozzi, R. P. (2000). On the nature and direction of relationships between
constructs and measures. Psychological Methods, 5(2), 155–174.

Eppinger, S. D., & Browning, T. R. (2012). Design structure matrix methods and applications.
Cambridge, MA: MIT Press.

Faulconbridge, R. I., & Ryan, M. J. (2003). Managing complex technical projects: A systems
engineering approach. Norwood, MA: Artech House.

Flood, R. L., & Carson, E. R. (1993). Dealing with complexity: An introduction to the theory and
application of systems science (2nd ed.). New York: Plenum Press.

Gershenson, J. K., Prasad, G. J., & Zhang, Y. (2003). Product modularity: Definitions and benefits.
Journal of Engineering Design, 14(3), 295.

Gershenson, J. K., Prasad, G. J., & Zhang, Y. (2004). Product modularity: Measures and design
methods. Journal of Engineering Design, 15(1), 33–51.

Halstead, M. H. (1977). Elements of Software Science. Elsevier North-Holland, Inc., Amsterdam.
Hauser, J. R., & Clausing, D. P. (1988). The house of quality. Harvard Business Review, 66(3),

63–73.
Henneman, R. L., & Rouse, W. B. (1986). On measuring the complexity of monitoring and

controlling large-scale systems. IEEE Transactions on Systems, Man and Cybernetics, 16(2),
193–207.

Henry, S., & Kafura, D. (1984). The evaluation of software systems’ structure using quantitative
software metrics. Software: Practice and Experience, 14(6), 561–573.

Hölttä-Otto, K., & de Weck, O. (2007). Degree of modularity in engineering systems and products
with technical and business constraints. Concurrent Engineering, 15(2), 113–126.

Hornby, G. S. (2007). Modularity, reuse, and hierarchy: Measuring complexity by measuring
structure and organization. Complexity, 13(2), 50–61.

Huberman, B. A., & Hogg, T. (1986). Complexity and adaptation. Physica D: Nonlinear
Phenomena, 22(1–3), 376–384.

IEEE. (2005). IEEE standard 1220: Systems engineering—application and management of the
systems engineering process. New York: Institute of Electrical and Electronics Engineers.

IEEE, & ISO/IEC (2010). IEEE and ISO/IEC standard 24765: Systems and software engineering—
vocabulary. New York and Geneva: Institute of Electrical and Electronics Engineers and the
International Organization for Standardization and the International Electrotechnical
Commission.

Jarke, M. (1998). Requirements tracing. Communications of the ACM, 41(12), 32–36.
Johnson, N. (2007). Simply complexity: A clear guide to complexity theory. Oxford: Oneworld

Publications.
Jung, W. S., & Cho, N. Z. (1996). Complexity measures of large systems and their efficient

algorithm based on the disjoint cut set method. IEEE Transactions on Nuclear Science, 43(4),
2365–2372.

Kerlinger, F. N., & Lee, H. B. (2000). Foundations of behavioral research. Fort Worth: Harcourt
College Publishers.

Kitchenham, B. A., Pickard, L. M., & Linkman, S. J. (1990). An evaluation of some design
metrics. Software Engineering Journal, 5(1), 50–58.

Koomen, C. J. (1985). The entropy of design: A study on the meaning of creativity. IEEE
Transactions on Systems, Man and Cybernetics, SMC, 15(1), 16–30.

Lissitz, R. W., & Green, S. B. (1975). Effect of the number of scale points on reliability: A Monte
Carlo approach. Journal of Applied Psychology, 60(1), 10–13.

Martin, M. V., & Ishii, K. (2002). Design for variety: Developing standardized and modularized
product platform architectures. Research in Engineering Design, 13(4), 213–235.

McCabe, T. J. (1976). A complexity measure. IEEE Transactions on Software Engineering, SE,
2(4), 308–320.

McCabe, T. J., & Butler, C. W. (1989). Design complexity measurement and testing.
Communications of the ACM, 32(12), 1415–1425.

Mikkola, J. H., & Gassmann, O. (2003). Managing modularity of product architectures: Toward an
integrated theory. IEEE Transactions on Engineering Management, 50(2), 204–218.

References 129



Min, B.-K., & Soon Heung, C. (1991). System complexity measure in the aspect of operational
difficulty. IEEE Transactions on Nuclear Science, 38(5), 1035–1039.

Newcomb, P. J., Bras, B., & Rosen, D. W. (1998). Implications of modularity on product design
for the life cycle. Journal of Mechanical Design, 120(3), 483–490.

Nunnally, J. C. (1967). Psychometric theory (3rd ed.). New York: McGraw-Hill.
Shannon, C. E. (1948a). A mathematical theory of communication, part 1. Bell System Technical

Journal, 27(3), 379–423.
Shannon, C. E. (1948b). A mathematical theory of communication, part 2. Bell System Technical

Journal, 27(4), 623–656.
Shannon, C. E., & Weaver, W. (1998). The mathematical theory of communication. Champaign,

IL: University of Illinois Press.
Simon, H. A. (1996). The sciences of the artificial (3rd ed.). Cambridge, MA: MIT Press.
Sosa, M. E., Eppinger, S. D., & Rowles, C. M. (2007). A network approach to define modularity of

components in complex products. Journal of Mechanical Design, 129(11), 1118–1129.
Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103(2684), 677–680.
Steward, D. V. (1981). The design structure system: A method for managing the design of

complex systems. IEEE Transactions on Engineering Management, EM, 28(3), 71–74.
Suh, N. P. (1990). The principles of design. New York: Oxford University Press.
Suh, N. P. (2001). Axiomatic design: Advances and applications. New York: Oxford University

Press.
Suh, N. P. (2005). Complexity: Theory and applications. New York: Oxford University Press.
Summers, J. D., & Shah, J. J. (2010). Mechanical engineering design complexity metrics: size,

coupling, and solvability. Journal of Mechanical Design, 132(2), 021004.
Torgerson, W. (1958). Theory and methods of scaling. New York: Wiley.
Wiegers, K. E. (2003). Software requirements (2nd ed.). Redmond, WA: Microsoft Press.
Yourdon, E., & Constantine, L. L. (1979). Structured design: Fundamentals of a discipline of

computer design and systems design. Englewood Cliffs, NJ: Prentice-Hall.
Yu, T.-L., Yassine, A. A., & Goldberg, D. E. (2007). An information theoretic method for

developing modular architectures using genetic algorithms. Research in Engineering Design,
18(2), 91–109.

130 6 Conciseness, Modularity, Simplicity and Traceability



Chapter 7
Compatibility, Consistency,
Interoperability

Abstract The design of systems and components during the design stage of the
systems life cycle requires specific purposeful actions to ensure effective designs
and viable systems. Designers are faced with a number of design concerns that they
must embed into the design in every instance of thinking and documentation. Three
of these concerns are addressed by the non-functional requirements for compati-
bility, consistency, and interoperability. Formal understanding of each of these non-
functional requirements requires definitions, terms, and equations, as well as the
ability to understand how to control their effect and measure their outcomes during
system design endeavors.

7.1 Introduction to Compatibility, Consistency,
and Interoperability

This chapter will address three major topics: (1) compatibility; (2) consistency; and
(3) interoperability in design endeavors. The chapter begins by reviewing com-
patibility and the basic terminology, equations and concepts that underlie its uti-
lization. Compatibility and its relation to standards is addressed and a measure for
evaluating compatibility in systems design is proposed.

Section 7.2 discusses the concept of consistency and how it affects systems
designs. Consistency is defined and reviewed with respect to design. The section
completes with a proposed measure for consistency that is based upon requirements
validation, functional verification, and design verification activities and provides a
structural map relating the metric and the measurement attributes for consistency.

Section 7.5 in this chapter addresses interoperability by providing a definition
and models of interoperability. A number of methods for evaluating interoperability
are discussed and a measurement method is proposed. The section concludes with a
metric and measurable characteristic for interoperability.

The chapter has a specific learning goal and associated objectives. The learning
goal of this chapter is to be able to identify how the attributes of compatibility,

© Springer International Publishing Switzerland 2015
K.M. Adams, Non-functional Requirements in Systems Analysis and Design,
Topics in Safety, Risk, Reliability and Quality 28,
DOI 10.1007/978-3-319-18344-2_7

131



consistency, and interoperability that influence design in systems endeavors. This
chapter’s goal is supported by the following objectives:

• Define compatibility.
• Describe the terminology associated with compatibility standards.
• Construct a structural map that relates compatibility to a specific metric and

measurable characteristic.
• Define consistency.
• Construct a structural map that relates consistency to a specific metric and

measurable characteristic.
• Define interoperability.
• Describe the types of interoperability.
• Construct a structural map that relate interoperability to a specific metric and

measurable characteristic.

The ability to achieve these objectives may be fulfilled by reviewing the materials
in the sections that follow.

7.2 Compatibility

This section will review the basics of compatibility and how it is applied during
systems endeavors. Compatibility is not a well-known non-functional requirement
and as such must be clearly defined and understood.

7.2.1 Compatibility Definition

Compatibility, from a systems engineering perspective, is defined as:

1. The ability of two or more systems or components to perform their required functions
while sharing the same hardware or software environment. 2. The ability of two or more
systems or components to exchange information (IEEE and ISO/IEC 2010, p. 62).

The 2nd definition of compatibility is very close to the definition for interoperability
which is:

The ability of two or more systems or components to exchange information and to use the
information that has been exchanged. (IEEE and ISO/IEC 2010, p. 186)

Interoperability will be discussed in the third section of this chapter, so the dis-
cussion of compatibility in this section will use only the 1st definition, where a
system’s ability to work with other systems without having to be altered to do so is
the focus. By restricting the definition in this manner a direct linkage with the
notion of standards, which are the primary means for ensuring compatibility in
systems endeavors, is established.

132 7 Compatibility, Consistency, Interoperability



7.2.2 Standards—the Means for Ensuring Compatibility
in Systems

The utilization of compatible components is a fundamental requirement for every
discrete system. The system must have compatible components that are able to
work together in support of the system and its goals. Those responsible for system
design efforts make every attempt to minimize the number of unique, one-of-a-kind
components in a design in order to satisfy both sustainment concerns and contain
costs. As a result, most systems are designed based on existing, commercially
available, off-the-shelf components. The ability to utilize these components in a
wide variety of designs is predicated upon compatibility standards. Compatibility
standards “… define the interface requirements that allow different products, often
from different producers, to use the same complementary goods and services, or to
be connected in networks” (Grindley 1995, p. 9).

Compatibility standards are established through widespread acceptance of
product specifications developed using one of the four methods described in
Table 7.1.

The need for compatibility standards exists in many sectors of the global
economy. It is safe to say that systems could not be affordably designed, con-
structed, and utilized without the existence of a large number of compatibility
standards. There are hundreds of formal standards issuing bodies that issue and
maintain formal standards that ensure compatibility. Very few of these bodies are
administered by the government, and most are voluntary, written by trade,

Table 7.1 Types and methods of establishment for standards

Type Method Description

Defacto standards—emerge
from market mediated forces

Unsponsored “Sets of specifications that have no identified
originator holding a proprietary interest, nor any
subsequent sponsoring agency, but nevertheless
exist in well-documented form in the public
domain” (David and Greenstein 1990, p. 4)

Sponsored “One or more sponsoring entities holding a
direct or indirect proprietary interest—suppliers
or users, and private cooperative venture into
which such firms may enter—creates
inducements for other firms to adopt particular
sets of technical specifications” (David and
Greenstein 1990, p. 4)

Committee standards—
emerge from political
process

Voluntary “Standards agreements arrived at within, and
published by voluntary standards-writing
organizations” (David and Greenstein 1990,
p. 4)

Mandated “Promulgated by governmental agencies that
have some regulatory authority” (David and
Greenstein 1990, p. 4)

7.2 Compatibility 133



professional, and technical organizations that support specific industries and asso-
ciated sectors in the economy. In the United States, the American National
Standards Institute’s (ANSI) stated mission is:

To enhance both the global competitiveness of U.S. business and the U.S. quality of life by
promoting and facilitating voluntary consensus standards and conformity assessment sys-
tems, and safeguarding their integrity.

Internationally, the International Organization for Standardization (ISO) and
International Electrotechnical Commission (IEC) foster voluntary, industry-wide
consensus for compatibility standards.

The impact that compatibility standards have is staggering. Imagine how the
absence of sufficient compatibility standards would impact the daily lives of mil-
lions of people by envisioning these simple system components without applicable
standards.

1. Electrical sockets
2. Electronic connectors
3. Screw threads
4. Battery sizes
5. Pipe sizes
6. Cable and wiring sizes
7. Wheel rims and tires
8. Spectrum frequency designations

In fact, systems practitioners and the engineering of systems are directly affected by
many ANSI and ISO/IEC standards, some of which are listed in Table 7.2.

The adoption and utilization of compatibility standards has three clearly iden-
tified benefits and costs (Shapiro 2001).

Table 7.2 ANSI and ISO/IEC systems standards

Standard Description

ANSI/EIA Standard 632: processes for
engineering a system

Defines “what to do” with respect to the
processes for engineering a system

ANSI/EIA-731, systems engineering
capability

Provides a capability model and assessment
method as a basis and means for determining
“how well” the processes in ANSI/EIA-632 are
defined and implemented”

IEEE and ISO/IEC Standard 15288: systems
and software engineering—system life cycle
processes.

Establishes a common process framework for
describing the life cycle of man-made systems.
It defines a set of processes and associated
terminology for the full life cycle, including
conception, development, production,
utilization, support and retirement

IEEE and ISO/IEC Standard 24765: systems
and software engineering—vocabulary

Provides a common vocabulary applicable to
all systems and software engineering work

134 7 Compatibility, Consistency, Interoperability



1. Buyers view product compatibility as a benefit because they feel they are pro-
tected from stranding, because the product has been designed and produced to
work according to an accepted and utilized standard, protecting the buyer from
the limitations associated with a one-of-a-kind product.

2. Systems designers view compatibility from the perspective that standards place
limits on their design decisions. Because design decisions are constrained there
are potential financial costs associated with static losses due to limited variety
and dynamic losses due to limited innovation.

3. Management may view compatibility standards as both a means for muting
competition during early development and extending product life by ensuring
compatibility with other products over the life of the product.

In summary “Standards are an inevitable outgrowth of systems, whereby com-
plementary products work in concert to meet users’ needs” (Shapiro 2001, p. 82).

7.2.3 Compatibility in Systems Design Efforts

In the traditional systems design process invoked by IEEE Standard 1220—
Systems engineering—Application and management of the systems engineering
process (IEEE 2005) compatibility is touched upon in two process areas.

• As an element of the design verification process in section 6.6.2

Verification evaluation where (1) methods to assure compatibility with other life
cycle support functions consistent with the system design, and (2) the design
element solutions satisfy the validated requirements baseline. The verification
results are evaluated to ensure that the behavior exhibited by the design element
solutions was anticipated and satisfies requirements.

• As an element of the control process in section 6.8.1.1.

Interface management where interface compatibility assessments are conducted.

The most important concept to take away from each of these process activities in
that the proposed design should be verified for compatibility with the prescribed
design requirements and constraints.

7.2.4 Evaluating Compatibility in Design

Design Compatibility Analysis (DCA) is the process that focuses on ensuring that
the proposed design is compatible with the specifications in the original design
requirements. While this may seem trivial, many proposed designs stray far from
the original requirements and associated specifications. The underlying goal for
DCA is:

7.2 Compatibility 135



One of the important tasks in engineering design is to ensure the compatibility of the
elements of the proposed design with each other and with the design specifications
(requirements and constraints). Major design decisions, such as selection of components,
determination of the system type, and sizing of components, must be made with the
compatibility issue in mind. Some design features make a good match while others may be
totally incompatible for the required design specifications (Ishii et al. 1988, p. 55).

The team that conducts the DCA should follow the concept depicted in Fig. 7.1
where the proposed design is compared with the requirements and specifications
while using the compatibility knowledge base as a guide. If the proposed design is
deemed to be non-compatible, then either a redesign or re-specification is required.

7.2.5 A Method for Measuring Compatibility in Design

The evaluation of compatibility may be accomplished using the theory of fuzzy
measures (Ishii and Sugeno 1985; Zadeh 1965). In this case the fuzzy measure will
be used to quantify the compatibility of the proposed design against the require-
ments and specifications, as depicted in Fig. 7.1. The fuzzy measure will provide a
degree of confidence or a match index (MI), to evaluate the utility of the proposed
design. The match index is described as follows:

Redesign Respecify

Proposed 
Design

Compatibility
Requirements

and 
Specifications

Design 
Verification

Compatibility
Knowledge

Base

Fig. 7.1 Concept for design compatibility analysis [based on figure in (Ishii et al. 1988)]

136 7 Compatibility, Consistency, Interoperability



The match index is a normalized scale between 0 and 1: An MI of 0 indicates an absolutely
incompatible design, an MI of 1 is a perfectly balanced design, and an MI of 0.5 indicates
that no compatibility information was available. For an acceptable design, MI has to be
greater than 0.5. While users may encounter MI = 0.5 if the compatibility knowledge is
scarce, a more mature knowledge-base should result in some positive or negative comments
about the design (Ishii et al. 1988, p. 57).

The match index is mathematically represented in Eq. 7.1.

Match Index

MI ¼
X

K

utility sð Þ �M sð Þ; s 2 K ð7:1Þ

where:
utility(s) weight of the evaluation of a design element where Σ utility(s) = 1.0.
M(s) compatibility of a design element s.
K entire set of design elements.

While a full discussion and derivation of the match-index (MI) is beyond the scope
of this chapter, the reader is encourage to review the literature on the use of the MI
as a measure of design compatibility (Ishii 1991; Ishii et al. 1988).

7.2.6 Measuring Compatibility

At the end of each Chap. 3 the importance of being able to measure each non-
functional attribute was cited as being essential in each and every system design
endeavor. A structural mapping that relates compatibility to a specific metric and
measurement entity are required. The four-level construct for compatibility is
presented in Table 7.3.

7.3 Consistency

In this section the basics of consistency and how it is applied during systems
endeavors will be discussed. Consistency is another non-functional requirements
that is not well-known and as such must be clearly defined and understood.

Table 7.3 Four-level
structural map for measuring
compatibility

Level Role

Concern Systems design

Attribute Compatibility

Metric Design compatibility

Measurable characteristic Design match index (MI)

7.2 Compatibility 137

http://dx.doi.org/10.1007/978-3-319-18344-2_3


7.3.1 Consistency Definition

Consistency, from a systems engineering perspective, is defined as:

1. The degree of uniformity, standardization, and freedom from contradiction among the
documents or parts of a system or component 2. Software attributes that provide uniform
design and implementation techniques and notations (IEEE and ISO/IEC 2010, p. 73).

Consistency may also be understood from its simplified philosophical
definition—“A semantic notion: two or more statements are called consistent if they
are simultaneously true under some interpretation” (Audi 1999, p. 177). In the
engineering sense, where the consistency of design artifacts (i.e., a specification) are
being compared and contrasted, consistency has two forms, defined in Table 7.4.

7.3.2 Consistency in Systems Design Efforts

The importance of consistency in a large system design effort cannot be overem-
phasized. Because elements of the design are interrelated and cascade hierarchically
from stakeholder requirements to each and every lower level design artifact, the
necessity for consistency arises. Consistent designs ensure that all elements of the
completed design are properly represented by ensuring they do not conflict with
each other or with higher level specifications or entities. A consistently designed
system, when assembled and implemented, can provide predictable behaviors and
improved usability for its users. In fact, recent research revealed that consistently
applied language in a website had a measurable effect on users’ satisfaction and
ability to use the site (Ozok and Salvendy 2000).

A predictable system is one where the user has some sort of instinctive notion of
what will happen as a result of their actions. A key design element that ensures that
a system is predictable is consistency. In his seminal book Designing the User
Interface: Strategies for Effective Human-computer Interaction, Ben Schneiderman
(1997) lists Eight Golden Rules of Dialogue Design. Rule number one is strive for
consistency. Schneiderman states that the following actions ensure consistency
when building human-machine interfaces.

• consistent sequences of actions should be required in similar situations;
• identical terminology should be used in prompts, menus, and help screens; and
• consistent commands should be employed throughout.

Table 7.4 Forms of consistency

Form of consistency Definition

Internal consistency “Items within the specification do not conflict with each other” (Boehm
1984, pp. 77–78)

External consistency “Items in the specification do not conflict with external specifications or
entities” (Boehm 1984, p. 78)

138 7 Compatibility, Consistency, Interoperability



Delivering a predictable systems is achieved through the use of common design
principles. The design principles are statements of policy which help systems
practitioners to make informed decisions during the design process. The design
principles contain high level guidance which requires comprehension before
application in real-world design scenarios.

Despite the obvious need for consistent designs, neither the term consistency nor
the word predictable are directly addressed in IEEE Standard 1220—Systems
engineering—Application and management of the systems engineering process
(IEEE 2005). However, the reason that consistency is a feature in the purposeful
design of systems is because, from an engineering design perspective consistency
has one major purpose—it ensures that each of the models that make up the overall
engineering design yield design artifacts that are simultaneously true and represent
the same design model. This is traditionally accomplished as part of the systems
validation and verification processes as described in the following.

• As an element of the requirements validation process in Sect. 6.2.4.
Variances and conflicts in the system’s requirements are identified and resolved
by iterating through requirements analysis to correct the requirements baseline.

• As an element of the functional verification process in Sect. 6.4.3.
Variances and conflicts in the system’s functions, functional architecture,
measures of performance, and constraints are identified and resolved by iterating
back through functional requirements and requirements analysis to correct the
verified functional architecture.

• As an element of the design verification process in section 6.6.3.
Variances and conflicts in the system’s design are identified and resolved by
iterating back through synthesis and functional analysis to correct the design
elements.

7.3.3 Methods for Evaluating Consistency in Design

“Assessing consistency is really a process for ensuring that the different viewpoint
models … form projections from the same overall design model” (Budgen 2003,
p. 384). There is a dearth of information in the literature on methods and techniques
for how to assess consistency. Completion of the requirements validation (6.2.4),
functional verification (6.4.3), and design verification (6.6.3) tasks in IEEE
Standard 1220 (IEEE 2005) ensure that consistency is addressed as a high level
task. Boehm (1984) recommended using the following:

• Manual cross-referencing: Cross referencing involves both reading and the
construction of cross-reference tables and diagrams to clarify interactions among
design entities. For many large systems this can be cumbersome, leading to the
suggested use of automated cross-referencing tools.

7.3 Consistency 139



• Automated Cross-referencing: Automated cross-referencing involves the use of
a machine to analyze the language contained in the design artifacts.

• Interviews: Discussing a design artifact with its designer is a logical way to
identify or clear up potential problems. Interviews are particularly good for
resolving understandings and addressing high-risk issues.

• Checklists: Specialized lists, based on the experience of the design verification
and validation team, can be used to ensure that significant issues are addressed
during the team’s review. Checklists are utilized by the design review team as a
guide and do not represent additional systems requirements.

• Simple Scenarios: Scenarios describe how the system will work once it is in
operation and are very good for clarifying misunderstandings or mismatches
between the specification and the design artifacts.

• Detailed Scenarios: Scenarios with more elaborate and expansive systems
operational descriptions are often more effective than simple scenarios.
However, the cost associated with detailed scenarios is often prohibitive during
design reviews and often recommended for inclusion as part of the post-pro-
duction test and evaluation stage.

• Prototypes: Some design artifacts are so abstract that their feasibility cannot be
commented on without the development of a working prototype. As with
detailed scenarios, the cost associated with detailed scenarios is highly pro-
hibitive during design reviews. Despite this, prototypes are necessary to elim-
inate design ambiguities and inconsistencies in the design and are required prior
to the production stage.

7.3.4 A Method for Measuring Consistency in Design

The previous sections defined consistency, indicated where it is addressed during
system design endeavors, and discussed some methods for evaluating consistency
in a design. The measurement goal is to ensure that consistency is treated as a
purposeful element of the design process. In order to ensure that the system design
process has invoked practices within the design effort that ensure consistency, the
design effort should include relevant measures. As with traceability, the criteria for
consistency will be subjective, qualitative measures that will need to answer
questions that address both the presence (yes or no) and quality of the effort (how
well) at ensuring consistency in each of the three design processes we have iden-
tified. In this case consistency methods will need to relate to a specific measurable
attribute that can be utilized as a measure. Once again, measures are important
because they are the linkage between observable, real-world, empirical facts and the
construct we create as an evaluation point.

140 7 Compatibility, Consistency, Interoperability



7.3.4.1 Scale for Design Consistency

As discussed during the development of the scales for traceability in the previous
chapter, the selection of a measurement scale is an important element in the
development of an adequate measure for design consistency. Because the three
design processes (i.e., requirements validation, functional verification, and design
verification) used to identify evaluation points have no natural origin or empirically
defined distance, the ordinal scale is selected as an appropriate scale for measuring
the consistency attributes. The well-known Likert scale is proposed for use in
evaluating design consistency. In order to improve its reliability a five point Likert
scale will be invoked (Lissitz and Green 1975).

Before moving on to describing the measure for design consistency two
important points must once again be made with respect to scale development.
Scales are characterized as either a proposed scale or a scale. “A proposed scale is
one that some investigator(s) put forward as having the requisite properties, and if it
is indeed shown to have them, then it is recognized as a scale” (Cliff 1993, p. 65).
As stated earlier, the use of the word scale is referring to proposed scales. This may
seem to be an insignificant point, but until the scale has been accepted and suc-
cessfully utilized it remains proposed.

7.3.4.2 Proposed Measurement Scale for Design Consistency

Armed with a construct, measurement attributes and an appropriate scale type, the
design consistency measure may be constructed. In order to evaluate design con-
sistency, questions that address both the presence (yes or no) and quality of the
effort (how well) must be answered in order to provide consistent systems design by
evaluating design processes for requirements validation, functional verification, and
design verification tasks. These measurement constructs are presented in Table 7.5.

Table 7.5 Measurement constructs for consistency

Life cycle stage or
process

IEEE Std
1220 section

Consistency concern for measurement

Requirements
validation process

6.2.4 Variances and conflicts in the system’s requirements are
identified and resolved by iterating through requirements
analysis to correct the requirements baseline

Functional
verification
process

6.4.3 Variances and conflicts in the system’s functions,
functional architecture, measures of performance, and
constraints are identified and resolved by iterating back
through functional requirements and requirements
analysis to correct the verified functional architecture

Design verification
process

6.6.3 Variances and conflicts in the system’s design are
identified and resolved by iterating back through
synthesis and functional analysis to correct the design
elements

7.3 Consistency 141



In order to evaluate the design’s ability to conform to the notion of consistency,
a specific question should be developed which will evaluate the appropriate areas in
each design process. The measurement constructs and questions associated with
each of the consistency measurements concerns are presented in Table 7.6.

The answer to each question in Table 7.6 will be scored using the 5-point Likert
measures in Table 7.7.

The overall measure for system consistency is a sum of the scores from the nine
traceability metrics as shown in Eqs. 7.2 and 7.3.

Generalized Equation for System Consistency

Csys ¼
Xn

i¼1

Ci ð7:2Þ

A generalized measure for system consistency is shown in Eq. 7.2.

Expanded Equation for Systems Consistency

Csys ¼ Crv þ Cfv þ Cdv ð7:3Þ

The summation of the three constructs in Eq. 7.3 will be the measure the degree
of consistency in a system design endeavor.

Table 7.6 Measurement questions for design consistency

Measurement
construct

Consistency concern for measurement

Crv Are variances and conflicts in the system’s requirements identified and
resolved by iterating through requirements analysis to correct the
requirements baseline?

Cfv Are variances and conflicts in the system’s functions, functional
architecture, measures of performance, and constraints are identified and
resolved by iterating back through functional requirements and
requirements analysis to correct the verified functional architecture?

Cdv Are variances and conflicts in the system’s design are identified and
resolved by iterating back through synthesis and functional analysis to
correct the design elements?

Table 7.7 Consistency measurement question Likert scale

Measure Descriptor Measurement criteria

0.0 None No objective quality evidence is present

0.5 Limited Limited objective quality evidence is present

1.0 Nominal Nominal objective quality evidence is present

1.5 Wide Wide objective quality evidence is present

2.0 Extensive Extensive objective quality evidence is present

142 7 Compatibility, Consistency, Interoperability



7.3.5 Measuring Consistency

At the end of Chap. 3 the importance of being able to measure each non-functional
attribute during systems design endeavors was stressed. A structural mapping that
relates consistency to a specific metric and measurement entity are required. The
four-level construct for consistency is presented in Table 7.8.

7.4 Interoperability

In this section the basics of interoperability and how it is applied during systems
endeavors will be addressed. Interoperability is a common term, but one without a
generally agreed upon definition. As such, it must be clearly defined and
understood.

7.4.1 Interoperability Definition

Interoperability, from a systems engineering perspective, is defined as.

The ability of two or more systems or components to exchange information and to use the
information that has been exchanged (IEEE and ISO/IEC 2010, p. 186).

Interoperability, as a non-functional requirement, has additional definitions, shown
in Table 7.9 that may provide improved understanding of the term.

The definition for interoperability can be further refined by reviewing the
characteristics for seven types of interoperability reported in the extant literature.

1. Technical interoperability: concerns the ability to exchange services or infor-
mation directly and satisfactorily between systems and their users (Kinder 2003).

2. Syntactic interoperability: addresses the includes the ability to deal with for-
matting and data exchange as supported by standards (Sheth 1999).

3. Semantic interoperability: ensures that data embedded within services or
information are interpreted by senders and receivers as representing the same

Table 7.8 Four-level structural map for measuring consistency

Level Role

Concern Systems design

Attribute Consistency

Metric Design consistency

Measurable characteristic Requirements validation consistency (Crv), Functional verification
consistency (Cfv)

Design verification consistency (Cdv)

7.3 Consistency 143

http://dx.doi.org/10.1007/978-3-319-18344-2_3


concepts, relations, or entities, in a suitable abstraction of the real-world (Vetere
and Lenzerini 2005).

4. Organizational interoperability: addresses the definition of authority and
responsibility for the exchange of services or information (Chiu et al. 2004).

5. Programmatic interoperability: concerns the relationships between the organi-
zational entities responsible for managing the systems that require interoperable
services or data (DiMario 2006).

6. Constructive interoperability: addresses the design elements that govern
development of the architecture, standards, and engineering for the systems that
require interoperable services or data (DiMario 2006).

7. Operational interoperability: addresses the technical ability of the systems to
interact with one another and the environment (DiMario 2006).

From the seven type descriptions it is clear that some of these types are both similar
and have overlapping elements. In the next section interoperability several models
for interoperability will be reviewed.

7.4.2 Models for Interoperability

Interoperability in systems may also be addressed by viewing how interoperability
concerns have shifted over time. Three distinct periods, or interoperability gener-
ations have occurred (Sheth 1999) and may be represented by some of the char-
acteristics in Table 7.10.

Table 7.9 Additional definitions for interoperability

Definition Source

“The ability to exchange services and data with one another” Heiler (1995, p. 271)

“Interoperability is the ability of systems, units, or forces to
provide services to and accept services from other systems, units,
or forces and to use the services exchanged to enable them to
operate effectively together”

Kasunic and Anderson
(2004, p. vii)

“The ability by which the elements of a system can exchange and
understand the required information with each other”

Rezaei et al. (2014,
p. 22)

Table 7.10 Characteristics of interoperability generations

Characteristic Generation I Generation II Generation III

Major concern Data Information Knowledge

Interoperability emphasis Structural Syntax Semantic

Interoperability scope Applications Small numbers of
system

Enterprise-wide

Interoperability techniques Data relationships Single ontology Multiple ontologies

Types of data Files Structured databases Multi-media

144 7 Compatibility, Consistency, Interoperability



An extensive model of interoperability has been developed to support modeling
and simulation efforts that shows promise for supporting higher levels of interop-
erability. The Levels of Conceptual Interoperability Model (LCIM) introduces
technical, syntactic, semantic, pragmatic, dynamic, and conceptual layers of inter-
operation and shows how they are related to the increasing capability represented
by integratability, interoperability, and composability (Tolk et al. 2007). Table 7.11
describes the levels and increasing capabilities in the LCIM.

A holistic perspective for interoperability in systems may be represented as the
locus of the three generations and the LCIM. The holistic perspective is termed
systemic interoperability and it moves beyond the traditional, mechanistic or hard
interoperability represented by structure, syntax, and semantics. The new per-
spective for systemic interoperability “… is a holistic view of interoperability and
requires compatibility in worldview and conceptual, contextual, and cultural
interoperability…” (Adams and Meyers 2011, p. 172) as depicted in Fig. 7.2.

7.4.3 Interoperability in Systems Design Efforts

Interoperability is not directly addressed in IEEE Standard 1220—Systems engi-
neering—Application and management of the systems engineering process (IEEE
2005). However, it is indirectly addressed by the sustainment concern operability. If
interoperability is included where operability is mentioned, then interoperability is
addressed in two areas.

Table 7.11 LCIM levels and capability concepts

Capability Interoperability
level and title

Description

Composability 6—Conceptual The assumptions and constraints of the meaningful
abstraction of reality—are aligned between
participating systems

5—Dynamic Participating systems are able to comprehend the state
changes that occur in the assumptions and constraints
that each other is making over time

Interoperability 4—Pragmatic The context in which the information is exchanged is
unambiguously defined

3—Semantic The meaning of the data is shared; the content of the
information exchange requests are unambiguously
defined

2—Syntactic A common protocol to structure the data is used; the
format of the information exchange is unambiguously
defined

Integratability 1—Technical A communication protocol exists for exchanging data
between participating systems

0—None Stand-alone systems with no interoperability

7.4 Interoperability 145



• As an element of the modeling and prototyping task in Sect. 4.5.

Suitable models, simulations, or prototypes should be developed and utilized to
evaluate interoperability.

• As an element of the define measures of effectiveness task in Sect. 6.1.5.

Define system effectiveness measures that reflect overall stakeholder expecta-
tions and satisfaction which may include interoperability.

7.4.4 Methods for Evaluating Interoperability

Evaluation of interoperability and development of an appropriate metric and sup-
porting measurement criteria is a non-trivial task. Early efforts within the United
States Department of Defense summarized the situation as:

Interoperability is a broad and complex subject. Developing and applying precise mea-
surements in an area as multidimensional and complex as interoperability is difficult.
However, measuring, assessing, and reporting interoperability in a visible way is essential
to setting the right priorities (Kasunic and Anderson 2004, p. vii).

During the period between 1980 and 2014 sixteen separate models for evaluating
interoperability in systems have appeared in the general literature. However only
eight of these are either major enterprise reports or have been published in peer-
reviewed scholarly journals. Table 7.12 presents the eight formal models.

Holistic 
Worldviews

Structural

Syntactic

Semantic

Systemic
Interoperability

Conceptual
Constructs

Contextual
Frame

Cultural
Conditions

Hard
Characteristics

Fig. 7.2 Movement from hard to systemic interoperability

146 7 Compatibility, Consistency, Interoperability



While an in-depth review of each model is beyond this chapter, readers are
encouraged to consult the references in Table 7.12 for a more detailed description of
the development of each interoperability evaluation model. The next section will
describe one of these measures as an appropriate technique for measuring and
evaluating interoperability in systems.

7.4.5 i-Score Model for Evaluating System Interoperability

The i-Score Model for evaluating system interoperability compares the similarity of
system interoperability characteristics and is based upon the following assumption:

If a pair of systems is instantiated only with system interoperability characters, then the
measure of their similarity is also a measure of their interoperability (Ford 2008, p. 52).

The interoperability example utilized to describe this technique includes the macro-
system S which is made up of the set of systems si, which includes the macro-
characteristics of interoperability X, which are made up of the individual system
interoperability characteristics xi. For two systems s1 and s2, we can have the
interoperability relationships X(s) as shown in Fig. 7.3.

Table 7.12 Peer-reviewed models for evaluating systems interoperability

Model and brief description Reference

Spectrum of Interoperability Model (SoIM)—A simple two element
model that evaluates interoperability in terms of technical possibility
and management/control possibility

LaVean (1980)

Quantification of Interoperability Methodology (QoIM)—A model that
associates interoperability with measures of effectiveness

Mensh et al.
(1989)

Levels of Information Systems Interoperability (LISI)—A maturity
model that considers five levels of increasing sophistication with respect
to exchanging and sharing information and services

DoD (1998)

Stop Light Model—A simple, readiness reporting style method of
measuring interoperability

Hamilton et al.
(2002)

Net Centric Warfare Maturity Model (NCW)—A five-level maturity
model that models the maturity of situational awareness and command
and control in the context of five interoperability levels

Alberts and Hayes
(2003)

Levels of Conceptual Interoperability Model (LCIM)—A seven level
model that evaluates interoperability in terms of integration,
interoperability and the ultimate goal of composability

Tolk et al. (2007)

i-Score—A complex model that evaluates systems according to their
interoperability-related features in the context of an operational process

Ford et al. (2009)

Ultra large scale systems interoperability maturity model—A five-level
maturity model for evaluating ultra large scale systems that utilizes
technical, syntactic, semantic, and organizational interoperability
domains

Rezaei et al.
(2014)

7.4 Interoperability 147



The symbols used in Fig. 7.3 are defined as follows:

• S = A set of n systems si, where i = 1 to n and si ∈ S
• si = An individual system si, where i = 1 to n
• X = A set of n system characteristics Xi, where i = 1 to n and xi ∈ X
• xi = A system characteristic xi, where i = 1 to n.
• C = A set of n character states ci, where i = 1 to n and ci ∈ C
• ci = The character states ci, where i = 1 to n

The character states are the actual states that the measurable interoperability
characteristics may have. For the system depicted in Fig. 7.3 there are four possible
character states: (1) no interoperation; (2) send left-to-right; (3) send right-to-left;
and (4) send both ways.

These system characteristics (xi) represent measurable attributes which may be used
to describe an important interoperability feature of the system. The individual system
characteristics combine to create an overall representation of the characteristics of the
system. The systems interoperability characteristics include four generalized types
shown in Table 7.13 (Ford 2008).

S1 S2

No interoperation
X(s) = x1 = 0

S1 S2

Uni-directional interoperation
X(s) = x2 = 1

S1 S2

Uni-directional interoperation
X(s) = x3 = 2

S1 S2

Bi-directional interoperation
X(s) = x4 = 4

S = {s1, s2}
X = {x1, x2, x3, x4}

Fig. 7.3 Directional
interoperability types

148 7 Compatibility, Consistency, Interoperability



Most importantly, the interoperability characteristic must have a natural measure
that ensures the characteristic is unique, reliable (e.g., able to be repeatedly mea-
sured), unambiguous, and representational.

7.4.5.1 i-Score System Interoperability Evaluation Equation

Once the set (S) of systems (si), their interoperability characters (xi), and the possible
states of those characters (ci) are identified, modeling of the interoperability rela-
tionships for the larger system (S) may commence. The individual systems (si) are
modeled, or instantiated, as a sequence that is representative of the states of each
system’s interoperability characteristics. The lower-case Greek character sigma (σ) is
used to denote the instantiation of the individual system (si), as depicted in Eq. 7.4.

Instantiation of si

r sið Þ ¼ x1ðs1Þ; x2 s1ð Þ; . . .xnðs1Þf g ð7:4Þ

In order to support meaningful system comparisons the larger system (S) is modeled
by aligning the instantiations (σi) of all of the member systems (si ∈ S). The upper-
case Greek characters sigma (Σ) is used to denote the instantiation alignment as
depicted in Eq. 7.5.

Instantiation Alignment of S

Xn

i¼1

XiðSiÞ ¼ r1; r2; . . .rnf g ð7:5Þ

The result of Eq. 7.5 is a matrix of the following form.

x1 s1ð Þ; x2ðs1Þ; . . .xn s1ð Þ
x1 s2ð Þ; x2ðs2Þ; . . .xnðs2Þ
x1 snð Þ; x2ðsnÞ; . . .xn snð Þ

An interoperability function (I), shown in Eq. 7.6, has been proposed by Ford
(2008) that uses the modified Minkowski similarity function to derive a weighted,
normalized measure of the similarity of two system instantiations (σ′) and (σ″).

Table 7.13 Types and examples of interoperability characteristics

Type of characteristic Examples

Morphological Size, shape, color, structure, number of components, etc

Physiological Function, behavior, etc

Ecological Context, environment, resource consumption, etc

Distributional Geographic location, domain, etc

7.4 Interoperability 149



Interoperability Function

I ¼
Pn

i¼1 r
0 ið Þ þPn

i¼1 r
00ðiÞ

2ncmax

� �
1� 1ffiffiffi

nr
p

� � Xn

i¼1

bi
r0 ið Þ � r00ðiÞ

cmax

� �r" #1
r

2
4

3
5 ð7:6Þ

where:
r is the Minkowski parameter (usually set to r = 2).
n the number of interoperability characters in each system.
b 0, if σ’(i) = 0 or σ”(i) = 0, else b = 1.
cmax maximum value of any interoperability character.

7.4.5.2 i-Score Example of System Interoperability Evaluation

Three systems s1, s2, and s3 where (s1, s2, s3 ∈ S) have interoperability character-
istics x1, x2, x3, and x4 where (x1, x2, x3, x4∈ X) and the characteristics have a
maximum value of 9 where C ∈ {R ∩ [0,9]} with r = 2) can be represented as
follows:

S ¼ s1;s2; s3
� �

X ¼ x1;x2; x3; x4
� �

fr1; r2; r3g ¼ x1 s1ð Þ; x2 s1ð Þ; x3 s1ð Þ; x4 s1ð Þ; x1 s2ð Þ; x2 s2ð Þ; x3 s2ð Þ; x4 s2ð Þ; x1 s3ð Þ; x2 s3ð Þ; x3 s3ð Þ; x4 s3ð Þf g

Σ is the aligned instantiation where Σ = X(S) and is represented by the matrix:

X
¼ X Sð Þ ¼

x1ðs1Þ x2ðs1Þ x3ðs1Þ x4ðs1Þ
x1ðs2Þ x2ðs2Þ x3ð32Þ x4ðs2Þ
x1ðs3Þ x2ðs3Þ x3ðs3Þ x4ðs3Þ

Our example involves the system X(S) represented by Σ

X
¼

1 2 3 0
4 5 6 0
7 8 9 0

						

						

The interoperability function I may be calculated by inserting the values from Σ into
Eq. 7.6. The resulting interoperability matrix M is:

M ¼
0 0:207 0:162

0:207 0 0:276
0:162 0:276 0

						

						

150 7 Compatibility, Consistency, Interoperability



The system interoperability matrix M is used as a measure of the interoperability
between systems in S where (s1, s2 … sn ∈ S) which have interoperability charac-
teristics x where (x1, x2…xn∈ X).

7.4.6 Measuring Interoperability

Chapter 3 stressed the importance: of being able to measure each non-functional
attribute. A structural mapping that relates interoperability to a specific metric and
measurement entity are required. The four-level construct for interoperability is
presented in Table 7.14.

7.5 Summary

In this chapter the non-functional requirements for compatibility, consistency, and
interoperability have been reviewed. A formal definition for each non-functional
requirement has been provided along with additional explanatory definitions, terms,
and equations. The ability to effect the non-functional requirement during the
design process has also been addressed. Finally, a formal metric and measurement
characteristic have been proposed for evaluating each non-functional requirement
attribute.

The chapter that follows will address non-functional requirement for safety as
the final element in design concerns in systems endeavors.

References

Adams, K. M., & Meyers, T. J. (2011). Perspective 1 of the SoSE methodology: Framing the
system under study. International Journal of System of Systems Engineering, 2(2/3), 163–192.

Alberts, D. S., & Hayes, R. E. (2003). Power to the edge: Command and control in the
information age. Washington, DC: DoD Command and Control Research Program.

Audi, R. (Ed.). (1999). Cambridge dictionary of philosophy (2nd ed.). New York: Cambridge
University Press.

Table 7.14 Four-level
structural map for measuring
interoperability

Level Role

Concern Systems design

Attribute Interoperability

Metric System interoperability function, I

Measurable characteristic System interoperability matrix, M

7.4 Interoperability 151

http://dx.doi.org/10.1007/978-3-319-18344-2_3


Boehm, B. W. (1984). Verifying and validating software requirements and design specifications.
IEEE Software, 1(1), 75–88.

Budgen, D. (2003). Software design (2nd ed.). New York: Pearson Education.
Chiu, D. K. W., Cheung, S. C., Till, S., Karlapalem, K., Li, Q., & Kafeza, E. (2004). Workflow

view driven cross-organizational interoperability in a web service environment. Information
Technology and Management, 5(3–4), 221–250.

Cliff, N. (1993). What is and isn’t measurement. In G. Keren & C. Lewis (Eds.), A handbook for
data analysis in the behavioral sciences: Methodological issues (pp. 59–93). Hillsdale, NJ:
Lawrence Erlbaum Associates.

David, P. A., & Greenstein, S. (1990). The economics of compatibility standards: An introduction
to recent research. Economics of Innovation and New Technology, 1(1–2), 3–41.

DiMario, M. J. (2006). System of systems interoperability types and characteristics in joint
command and control. In Proceedings of the 2006 IEEE/SMC International Conference on
System of Systems Engineering (pp. 236–241). Piscataway, NJ: Institute of Electrical and
Electronics Engineers.

DoD. (1998). C4ISR Architecture working group final report—levels of information system
interoperability (LISI). Washington, DC: Department of Defense.

Ford, T. C. (2008). Interoperability measurement. Air force institute of technology. Fairborn, OH:
Wright Patterson Air Force Base.

Ford, T. C., Colombi, J. M., Jacques, D. R., & Graham, S. R. (2009). A general method of
measuring interoperability and describing its impact on operational effectiveness. The Journal
of Defense Modeling and Simulation: Applications, Methodology, Technology, 6(1), 17–32.

Grindley, P. (1995). Standards, strategy, and policy: Cases and stories. New York: Oxford
University Press.

Hamilton, J. A., Rosen, J. D., & Summers, P. A. (2002). An interoperability roadmap for C4ISR
legacy systems. Acquisition Review Quarterly, 28, 17–31.

Heiler, S. (1995). Semantic interoperability. ACM Computing Surveys, 27(2), 271–273.
IEEE. (2005). IEEE Standard 1220: Systems engineering—application and management of the

systems engineering process. New York: Institute of Electrical and Electronics Engineers.
IEEE, & ISO/IEC. (2010). IEEE and ISO/IEC Standard 24765: Systems and software engineering

—vocabulary. New York and Geneva: Institute of Electrical and Electronics Engineers and the
International Organization for Standardization and the International Electrotechnical
Commission.

Ishii, K. (1991). Life-cycle engineering using design compatibility analysis. In Proceedings of the
1991 NSF Design and Manufacturing Systems Conference (pp. 1059–1065). Dearborn, MI:
Society of Manufacturing Engineers.

Ishii, K., Adler, R., & Barkan, P. (1988). Application of design compatibility analysis to
simultaneous engineering. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, 2(1), 53–65.

Ishii, K., & Sugeno, M. (1985). A model of human evaluation process using fuzzy measure.
International Journal of Man-Machine Studies, 22(1), 19–38.

Kasunic, M., & Anderson, W. (2004). Measuring systems interoperability: Challenges and
opportunities (CMU/SEI-2004-TN-003). Pittsburgh, PA: Carnegie Mellon University.

Kinder, T. (2003). Mrs Miller moves house: The interoperability of local public services in europe.
Journal of European Social Policy, 13(2), 141–157.

LaVean, G. E. (1980). Interoperability in defense communications. IEEE Transactions on
Communications, 28(9), 1445–1455.

Lissitz, R. W., & Green, S. B. (1975). Effect of the number of scale points on reliability: A Monte
Carlo approach. Journal of Applied Psychology, 60(1), 10–13.

Mensh, D., Kite, R., & Darby, P. (1989). A methodology for quantifying interoperability. Naval
Engineers Journal, 101(3), 251–259.

Ozok, A. A., & Salvendy, G. (2000). Measuring consistency of web page design and its effects on
performance and satisfaction. Ergonomics, 43(4), 443–460.

152 7 Compatibility, Consistency, Interoperability



Rezaei, R., Chiew, T. K., & Lee, S. P. (2014). An interoperability model for ultra large scale
systems. Advances in Engineering Software, 67, 22–46.

Shapiro, C. (2001). Setting compatibility standards: Cooperation or collusion? In R. C. Dreyfuss,
D. L. Zimmerman, & H. First (Eds.), Expanding the boundaries of intellectual property:
Innovation policy for the knowledge society (pp. 81–101). New York: Oxford University Press.

Sheth, A. P. (1999). Changing focus on interoperability in information systems: From system,
syntax, structure to semantics. In M. Goodchild, M. Egenhofer, R. Fegeas, & C. Kottman
(Eds.), Interoperating geographic information systems (pp. 5–29). New York: Springer.

Shneiderman, B. (1997). Designing the user interface: Strategies for effective human-computer
interaction (3rd ed.). Boston: Addison-Wesley.

Tolk, A., Diallo, S. Y., & Turnitsa, C. D. (2007). Applying the levels of conceptual interoperability
model in support of integratability, interoperability, and composability for system-of-systems
engineering. Journal of Systemics, Cybernetics and Informatics, 5(5), 65–74.

Vetere, G., & Lenzerini, M. (2005). Models for semantic interoperability in service-oriented
architectures. IBM Systems Journal, 44(4), 887–903.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.

References 153



Chapter 8
System Safety

Abstract The design of systems and components during the design stage of the
systems life cycle requires specific purposeful actions to ensure effective designs
and viable systems. Designers are faced with a number of design concerns that they
must embed into the design in every instance of thinking and documentation. Safety
is one of these concerns and is addressed by the non-functional requirement for
safety which is composed of seven attributes. The development of the seven safety
attributes were developed using Leveson’s Systems-Theoretic Accident Model and
Processes (STAMP). Because STAMP is a system-theoretic approach appropriate
for evaluating safety in complex, systems-age engineering systems, the safety
attributes provide the ability to understand how to control safety and measure its
outcomes during system design endeavors.

8.1 Introduction to Safety

This chapter will address system safety and how it is incorporated into system
design endeavors. Machine age systems safety is contrasted with systems-age
concerns. The need for safety expressed in the IEEE Standard for the Application
and Management of the Systems Engineering Process (IEEE 2005) is used to
develop a metric for evaluating safety in systems designs. The chapter completes by
relating the proposed measure for evaluating systems safety as a metric and includes
a structural map for systems safety.

The chapter has a specific learning goal and associated objectives. The learning
goal of this chapter is to be able to identify how the attributes of safety are ensured
through purposeful design efforts during systems endeavors. This chapter’s goal is
supported by the following objectives:

• Define safety in terms of emergence.
• Describe the relationship between systems safety and hazards.

© Springer International Publishing Switzerland 2015
K.M. Adams, Non-functional Requirements in Systems Analysis and Design,
Topics in Safety, Risk, Reliability and Quality 28,
DOI 10.1007/978-3-319-18344-2_8

155



• Describe the difference between machine-age and systems-age safety concerns.
• Construct a structural map that relate systems safety to a specific metric and

measurable characteristic.

The ability to achieve these objectives may be fulfilled by reviewing the materials
in the sections that follow.

8.2 Safety Definition

Safety is a widely used term, but one which we will need to define clearly if we are
to apply it as a valid design concern during systems endeavors. Safety, from a
systems engineering perspective, is defined as:

The expectation that a system does not, under defined conditions, lead to a state in which
human life, health, property, or the environment is endangered. (IEEE and ISO/IEC 2010,
p. 315)

Safety has additional definitions, shown in Table 8.1 that may provide improved
understanding of the term when used as a non-functional requirement for a system.
The definitions for safety can be further improved by reviewing how safety has
been addressed in the literature on systems.

8.3 Safety in Systems

Safety is like motherhood and apple pie, who does not want it? However, under-
taking systems endeavors and ensuring that the associated system is safe is not an
abstract idea but a concrete requirement, most often satisfied by the inclusion of a
non-functional requirement for safety.

Most of the traditional literature on systems safety has focused on assumptions
that worked well for simple systems (i.e., the machine age), but no longer work for
complex systems (i.e., the systems age). In her seminal work Engineering a Safer
World: Systems Thinking Applied to Safety, Leveson (2011) of the Massachusetts
Institute of Technology, discusses the need to move away from the assumptions of

Table 8.1 Additional definitions for safety

Definition Source

“Freedom from accidents (loss events)” Leveson (2011, p. 467)

“An emergent property that arises when the system components
interact within an environment. Emergent properties like safety are
controlled or enforced by a set of constraints (control laws) related
to the behavior of the system components”

Leveson (2011, p. 67)

“Methods and techniques of avoiding accident or disease” Parker (1994, p. 431)

156 8 System Safety



the machine age and to a new series of improved assumptions that can be suc-
cessfully applied as a new model of systems safety appropriate for the systems age.1

Table 8.2 contrasts the machine age assumptions with those required in the new
systems age.

The foundation for systems engineering is systems theory and its series of
supporting axioms and principles (Adams et al. 2014). Leveson’s new model for
system safety makes use of system theory’s centrality axiom and its pair of sup-
porting principles—hierarchy and emergence and communications and control.
Specifically, safety can be viewed as a control problem:

Table 8.2 Machine age and systems age safety model assumptions (Leveson 2011, p. 57)

Machine age assumption Improved systems age assumption

1 “Safety is increased by increasing system or
component reliability. If components or
systems do not fail, then accidents will not
occur”

“High reliability is neither necessary nor
sufficient for safety”

2 “Accidents are caused by chains of directly
related events. We can understand accidents
and assess risk by looking at the chain of
events leading to the loss”

“Accidents are complex processes involving
the entire socio-technical system. Traditional
event-chain models cannot describe this
process adequately”

3 “Probabilistic risk analysis based on event
chains is the best way to assess and
communicate safety and risk information”

“Risk and safety may be best understood
and communicated in ways other than
probabilistic risk analysis”

4 “Most accidents are caused by operator
error. Rewarding safe behavior and
punishing unsafe behavior will eliminate or
reduce accidents significantly”

“Operator behavior is a product of the
environment in which it occurs. To reduce
operator ‘error’ we must change the
environment in which the operator works”

5 “Highly reliable software is safe” “Highly reliable software is not necessarily
safe. Increasing software reliability or
reducing implementation errors will little
impact on safety”

6 “Major accidents occur from the chance
simultaneous occurrence of random events”

“System will tend to migrate toward states
of higher risk. Such migration is predictable
and can be prevented by appropriate system
design or detected during operations using
leading indicators of increasing risk”

7 “Assigning blame is necessary to learn from
and prevent accidents or incidents”

“Blame is the enemy of safety. Focus should
be on understanding how the system
behavior as a whole contributed to the loss
and not on who or what to blame for it”

1The reader is encouraged to read Chap. 2—Questioning the Foundations of Traditional Safety
Engineering in Leveson (2011). Engineering a Safer World: Systems Thinking Applied to Safety.
Cambridge, MA: MIT Press for a thorough discussion of the rationale associated with each of the
seven assumptions.

8.3 Safety in Systems 157

http://dx.doi.org/10.1007/978-3-319-18344-2_2


Emergent properties like safety are controlled or enforced by a set of constraints (control
laws) related to the behavior of the system components. (Leveson 2011, p. 67)

Accidents in systems occur when component failures, environmental disturbances,
and malfunctions among system components are not adequately controlled. In
systems-age, complex systems (i.e., tightly coupled with interactive complexity)
accidents are a result of inadequate control and are labeled normal accidents.

The odd term normal accident is meant to signal that, given the system characteristics,
multiple and unexplained interactions of failures are inevitable. This is an expression of an
integral characteristic of the system, not a statement of frequency. (Perrow 1999, p. 5)

The interactive complexity and tight coupling in modern complex systems requires
the new systems-age model of systems safety to approach safety by incorporating
both the social and technical elements of the system. The socio-technical system’s
context will dictate the non-functional requirements for safety that are invoked
during the systems design process.

8.4 Safety in System Design Efforts

In the system design process safety requirements are derived from accident hazards.

A safety requirement is a constraint derived from identified hazards. (Penzenstadler et al.
2014, p. 42)

The definition of hazards is based upon the system design. The major elements of
the design that give insight into potential hazards include the (1) system compo-
nents, (2) component interconnections, (3) human interactions with the system, (4)
connections to the environment, and (5) potential environmental disturbances. The
formal design process should address each of these hazards and the constraint that
may prevent their occurrence.

In the traditional systems design process invoked by IEEE Standard 1220—
Systems engineering—Application and management of the systems engineering
process (IEEE 2005) safety is touched upon in four process areas.

• As an element of the requirements analysis process in the following sections:
6.1.1—Stakeholder expectations are balanced with an analysis of the effects on
the overall system design and safety.
6.1.4—Measures of effectiveness are defined reflect overall stakeholder
expectations and satisfaction that include safety.
6.1.9.5—The design team accounts for the system design features that create
significant hazards.

• As an element of the functional analysis process in the following sections:
6.3.2.5 (1)—The design team analyzes and prioritizes potential functional fail-
ure modes to define failure effects and identify the need for fault detection and
recovery functions.

158 8 System Safety



6.3.2.5 (2)—Functional reliability models are established to support the analysis
of system effectiveness for each operational scenario.
6.3.2.5 (3)—Failures, which represent significant safety hazards, are modeled to
completely understand system impacts.
6.3.2.6 (1)—The design team analyzes subfunctions to identify operational
hazards.
6.3.2.6 (2)—Additional functional requirements are derived and defined for
monitoring dangerous operational conditions, or notifying or warning operators
of impending hazards.

• As an element of the synthesis process in the following sections:
6.5.3—The design team analyzes all design to identify potential hazards to the
system, humans involved in the system and supporting the system life cycle
processes, or the environment.

• As an element of the systems analysis process in the following section:
6.7.6.3—The design team identifies safety impacts associated with system
implementation. Safety laws and regulations should be identified, and the design
team should ensure that these are complied with by each solution alternative.

The most important concept to take away from each of these traditional activities in
that the formal design process should be focused upon potential hazards and the
constraint that may prevent their occurrence.

It is important to note that a number formal standards for systems safety exist
(Alberico et al. 1999; DoD 2000; IEEE 1994; NASA 2011). However, most of
these standards and processes operate from the machine age perspective and have
not shifted to the more holistic, systems-age model of system safety. A system-
based accident model that invokes a systems-theoretic view of causality called
STAMP is worthy of review.

8.5 A Systems Based Accident Model

The Systems-Theoretic Accident Model and Processes (STAMP) changes the
machine-age emphasis from preventing failures to the systems-age concept of
enforcing safety constraints (Leveson 2004; Leveson et al. 2009). The next two
sections will review the principles that support STAMP and how it intersects with
systems design endeavors.

8.5.1 Systems-Theoretic Principles of STAMP

STAMP is a systems-theoretic accident model because it invokes system theory’s
centrality axiom and its pair of supporting principles—hierarchy and emergence
and communications and control to enforce safety constraints in both systems
designs and subsequent operations.

8.4 Safety in System Design Efforts 159



• “Safety is an emergent property of systems that arises from the interaction of
system components” (Leveson 2004, p. 249).

• A hierarchy of control structures are assembled purposefully. “Control processes
operate between levels to control to control the processes at lower levels in the
hierarchy. These control processes enforce the safety constraints for which the
control process is responsible” (Leveson 2011, p. 81).

• Control is how system safety constraints are enforced and may be either passive
or active.

• Communication through the use of control feedback loops keeps the system in a
state of dynamic equilibrium.

STAMP uses an accident scenario identification technique that includes hazards
caused by: (1) design errors; (2) component interaction accidents; (3) cognitively
complex human decision-making errors; and (4) social, organizational, and man-
agement factors contributing to accidents (Leveson 2011). The technique is called
System-Theoretic Process Analysis (STPA).

STPA is integrated with the system design process in what is termed safety-
guided design, depicted in Fig. 8.1.

The next section will discuss how STAMP is integrated within the system design
process.

8.5.2 Intersection of STAMP Criteria and Systems Design

The development of adequate criteria for evaluating systems safety requires an
evaluation of the systems-theoretic principles of STAMP against the safety related
design activities and tasks from IEEE Standard 1220—Systems engineering—
Application and management of the systems engineering process (IEEE 2005) that
were described in the section on safety in system design efforts. The criteria
intersection is presented in Table 8.3.
In summary, STAMP may be described as a systems-theoretic model for safety that:

Hazard 
Analysis

Technique
(STPA)

Design 
Decisions

Fig. 8.1 Safety-guided design [based on Fig. 9.1 in Leveson (2011)]

160 8 System Safety



Table 8.3 Intersection of STAMP criteria and systems design

Design
process

IEEE Standard 1220 section and
task

STAMP criteria

Requirements
analysis

6.1.1—Stakeholder expectations are
balanced with an analysis of the
effects on the overall system design
and safety

System-level safety constraints

6.1.4—Measures of effectiveness
are defined to reflect overall
stakeholder expectations and
satisfaction that include safety

System-level safety constraints

6.1.9.5—The design team accounts
for the system design features that
create significant hazards

System-theoretic process analysis
(STPA)

Functional
analysis

6.3.2.5 (1)—The design team
analyzes and prioritizes potential
functional failure modes to define
failure effects and identify the need
for fault detection and recovery
functions

System control structure responsible
for enforcing safety constraints
identified by the STPA

6.3.2.5 (2)—Functional reliability
models are established to support
the analysis of system effectiveness
for each operational scenario

6.3.2.5 (3)—Failures, which
represent significant safety hazards,
are modeled to completely
understand system impacts

6.3.2.6 (1)—The design team
analyzes subfunctions to identify
operational hazards

(1) System-theoretic process
analysis (STPA)

6.3.2.6 (2)—Additional functional
requirements are derived and
defined for monitoring dangerous
operational conditions, or notifying
or warning operators of impending
hazards

(2) System control structure
responsible for enforcing safety
constraints identified by the STPA

Synthesis 6.5.3—The design team analyzes all
design to identify potential hazards
to the system, humans involved in
the system and supporting the
system life cycle processes, or the
environment

System-theoretic process analysis
(STPA)

Systems
analysis

6.7.6.3—The design team identifies
safety impacts associated with
system implementation. Safety laws
and regulations should be identified,
and the design team should ensure
that these are complied with by each
solution alternative

System-theoretic process analysis
(STPA)

8.5 A Systems Based Accident Model 161



STAMP focuses particular attention on the role of constraints in safety management.
Instead of defining safety in terms of preventing component failure events, it is defined as a
continuous control task to impose the constraints necessary to limit system behavior to safe
changes and adaptations. Accidents are seen as resulting from inadequate control or
enforcement of constraints on safety-related behavior at each level of the system devel-
opment and system operations control structures. Accidents can be understood, therefore, in
terms of why the controls that were in place did not prevent or detect maladaptive changes,
that is, by identifying the safety constraints that were violated at each level of the control
structure as well as why the constraints were inadequate or, if they were potentially ade-
quate, why the system was unable to exert appropriate control over their enforcement. The
process leading to an accident (loss event) can be described in terms of an adaptive
feedback function that fails to maintain safety as performance changes over time to meet a
complex set of goals and values. The adaptive feedback mechanism allows the model to
incorporate adaptation as a fundamental property. (Leveson 2004, pp. 265–266)

While an in-depth review of each STAMP is beyond this chapter, readers are
encouraged to consult Part III—Using STAMP in Leveson’s (2011) text
Engineering a Safer World: Systems Thinking Applied to Safety.

The next section will discuss a measure for evaluating system safety.

8.6 A Measure for Evaluating System Safety

In the previous sections the use of a systems-based model for ensuring that system
safety was advocated and emerges as a purposeful result of the design process. In
order to ensure that the system design process has invoked a holistic, socio-tech-
nical perspective the design effort should be evaluated using the essential criteria of
such a model. As with traceability, the criteria will be subjective, qualitative
measures that will need to answer questions that address both the presence (yes or
no) and quality of the effort (how well) to provide a sufficiently robust systems-
based model as an element of the system design process. In this case the STAMP
criteria will need to be related to a specific measurable attribute that can be utilized
as a measure. Once again, measures are important because they are the linkage
between observable, real-world, empirical facts and the construct (i.e., system
safety model) that we create as an evaluation point.

8.6.1 Scale for System Safety

As discussed during the development of scales for previous non-functional
requirements, the selection of a measurement scale is an important element in the
development of an adequate measure for system safety. Because the STAMP criteria
selected for safety have no natural origin or empirically defined distance, the ordinal
scale was selected as an appropriate scale for measuring the safety attributes.
The well-known Likert scale is proposed for use in evaluating system safety. In order

162 8 System Safety



to improve reliability a five point Likert scale will be invoked (Lissitz and
Green 1975).

Before moving on to describing the measure for system safety two important
points must once again be made with respect to scale development. Scales are
characterized as either a proposed scale or a scale. “A proposed scale is one that
some investigator(s) put forward as having the requisite properties, and if it is
indeed shown to have them, then it is recognized as a scale” (Cliff 1993, p. 65). In
this chapter use of the word scale is referring to proposed scales. As stated before,
this may seem to be an insignificant point, but until the scale has been accepted and
successfully utilized it remains proposed.

8.6.2 Proposed Measurement Scale for System Safety

Armed with a construct, measurement attributes and an appropriate scale type, the
system safety measure may be constructed. In order to evaluate system safety, the
need to answer questions that address both the presence (yes or no) and quality of
the effort (how well) to provide system safety by invoking the principal elements of
a systems-based model during systems design endeavors must be answered. The
seven STAMP criteria (i.e., our measurement constructs) from Table 8.3 have been
rearranged in Table 8.4 and in order to evaluate the design’s ability to conform to
the STAMP criteria for system safety, a specific question has been developed which
may be used to evaluate each of the seven system safety measurement concerns.
The answers to the questions will be contained in a 5 point-Likert scale. The
measurement constructs and questions associated with each of the measurements
concerns are presented in Table 8.5.
The answer to each question will be scored using the 5-point Likert measures in
Table 8.6
A generalized measure for system safety is shown in Eq. 8.1.

Generalized Equation for Systems Safety

Ssys ¼
Xn

i¼1

Si ð8:1Þ

The overall measure for system safety is a sum of the scores from the seven system
safety metrics as shown in Eq. 8.2 and will be the measure the degree of system
safety in a system design endeavor.

Expanded Equation for System Safety

Ssys ¼ Sra1 þ Sra2 þ Sfa1 þ Sfa2 þ Sfa3 þ Ssyn þ Ssa ð8:2Þ

The next section will discuss how to measure safety.

8.6 A Measure for Evaluating System Safety 163



8.7 Measuring System Safety

At the end of Chap. 3 the importance of being able to measure each non-functional
attribute was stressed as an essential element in systems design endeavors. A
structural mapping that relates system safety to a specific metric and measurement
entity are required. The four-level construct for system safety is presented in
Table 8.7.

Table 8.4 Measurement constructs for system safety

Design process and
IEEE Standard 1220
section

STAMP criteria System safety measurement
concern

Requirements
analysis

6.1.1 System-level safety constraints 1. Does the requirements
analysis process include an
analysis of system-level safety
constraints?

6.1.4 System-level safety constraints

6.1.9.5 System-theoretic process
analysis (STPA)

2. Does the requirements
analysis process include system-
theoretic process analysis
(STPA)?

Functional
analysis

6.3.2.5 System control structure
responsible for enforcing safety
constraints identified by the
STPA

3. Does the functional analysis
process develop control
structures responsible for
enforcing safety constraints
identified by the STPA?

6.3.2.6
(1)

(1) System-theoretic process
analysis (STPA)

4. Does the functional analysis
process include system-theoretic
process analysis (STPA)?

6.3.2.6
(2)

(2) System control structure
responsible for enforcing safety
constraints identified by the
STPA

5. Does the functional analysis
process develop control
structures responsible for
enforcing safety constraints
identified by the STPA?

Synthesis 6.5.3 System-theoretic process
analysis (STPA)

6. Does the synthesis process
include system-theoretic process
analysis (STPA)?

Systems
analysis

6.7.6.3 System-theoretic process
analysis (STPA)

7. Does the systems analysis
process include system-theoretic
process analysis (STPA)?

164 8 System Safety

http://dx.doi.org/10.1007/978-3-319-18344-2_3


8.8 Summary

In this chapter the non-functional requirement for safety has been reviewed. A formal
definition for safety has been provided along with additional explanatory definitions,
terms, and equations. The ability to effect safety during the design process has also
been addressed. Finally, a formal metric and measurement characteristic have been
proposed for evaluating the non-functional requirement for safety.

Table 8.5 Measurement questions for design traceability

Measurement
construct

Traceability concern for measurement

Sra1 Does the requirements analysis process include an analysis of system-
level safety constraints?

Sra2 Does the requirements analysis process include system-theoretic process
analysis (STPA)?

Sfa1 Does the functional analysis process develop control structures
responsible for enforcing safety constraints identified by the STPA?

Sfa2 Does the functional analysis process include system-theoretic process
analysis (STPA)?

Sfa3 Does the functional analysis process develop control structures
responsible for enforcing safety constraints identified by the STPA?

Ssyn Does the synthesis process include system-theoretic process analysis
(STPA)?

Ssa Does the systems analysis process include system-theoretic process
analysis (STPA)?

Table 8.6 Traceability measurement question Likert scale

Measure Descriptor Measurement criteria

0.0 None No objective quality evidence is present

0.5 Limited Limited objective quality evidence is present

1.0 Nominal Nominal objective quality evidence is present

1.5 Wide Wide objective quality evidence is present

2.0 Extensive Extensive objective quality evidence is present

Table 8.7 Four-level structural map for measuring system safety

Level Role

Concern System safety

Attribute Safety

Metric System safety

Measurable
characteristic

Safety of (1) requirements analysis process (Sra1, Sra2), (2) functional
analysis process (Sfa1, Sfa2, Sfa3), (3) synthesis process (Ssyn), and (4)
systems analysis (Ssa)

8.8 Summary 165



The next Part of the text will shift the focus to adaptation concerns. Adaptation
concerns address the system’s ability to change and adapt in order to remain viable
and continue to address the requirements of its stakeholders. The first chapter in the
Part on Adaptation Concerns will address the non-functional attributes for adapt-
ability, flexibility, modifiability and flexibility, and robustness. The second chapter
in Part III on Adaptation Concerns will address the non-functional attributes for
extensibility, portability, reusability, and self-descriptiveness.

References

Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems
theory: The foundation for understanding systems. Systems Engineering, 17(1), 112–123.

Alberico, D., Bozarth, J., Brown, M., Gill, J., Mattern, S., & McKinlay, A. (1999). Software
system safety handbook: A technical and managerial team approach. Washington: Joint
Services Software Safety Committee.

Cliff, N. (1993). What is and isn’t measurement. In G. Keren & C. Lewis (Eds.), A handbook for
data analysis in the behavioral sciences: Methodological issues (pp. 59–93). Hillsdale:
Lawrence Erlbaum Associates.

DoD. (2000). Military Standard (MIL-STD-882D): Standard practice for system safety.
Washington: Department of Defense.

IEEE. (1994). IEEE Standard 1228: Software safety plans. New York: Institute of Electrical and
Electronics Engineers.

IEEE. (2005). IEEE Standard 1220: Systems engineering—application and management of the
systems engineering process. New York: Institute of Electrical and Electronics Engineers.

IEEE, & ISO/IEC. (2010). IEEE and ISO/IEC Standard 24765: Systems and software engineering—
vocabulary. New York, Geneva: Institute of Electrical and Electronics Engineers and the
International Organization for Standardization and the International Electrotechnical
Commission.

Leveson, N. G. (2004). A new accident model for engineering safer systems. Safety Science, 42(4),
237–270.

Leveson, N. G. (2011). Engineering a safer world: Systems thinking applied to safety. Cambridge:
MIT Press.

Leveson, N. G., Dulac, N., Marais, K., & Carroll, J. (2009). Moving beyond normal accidents and
high reliability organizations: A systems approach to safety in complex systems. Organization
Studies, 30(2–3), 227–249.

Lissitz, R. W., & Green, S. B. (1975). Effect of the number of scale points on reliability: A Monte
Carlo approach. Journal of Applied Psychology, 60(1), 10–13.

NASA. (2011). NASA System Safety Handbook (NASA/SP-2010-580). In System Safety
Framework and Concepts for Implementation (Vol. 1). Washington: National Aeronautics
and Space Administration.

Parker, S. (Ed.). (1994). McGraw-Hill dictionary of engineering. New York: McGraw-Hill.
Penzenstadler, B., Raturi, A., Richardson, D., & Tomlinson, B. (2014). Safety, security, now

sustainability: The nonfunctional requirement for the 21st century. IEEE Software, 31(3), 40–47.
Perrow, C. (1999). Normal accidents: Living with high-risk technologies. Princeton: Princeton

University Press.

166 8 System Safety



Part IV
Adaptation Concerns



Chapter 9
Adaptability, Flexibility, Modifiability
and Scalability, and Robustness

Abstract The design of systems and components during the design stage of the
systems life cycle requires specific purposeful actions to ensure effective designs
and viable systems. Designers are faced with a number of adaptation concerns that
they must embed into the design in every instance of thinking and documentation.
The ability for a systems to change is essential to its continued survival and ability
to provide requisite functions for its stakeholders. Changeability includes the non-
functional requirements for adaptability, flexibility, modifiability and robustness.
Purposeful design requires an understanding of each of these requirements and how
to measure and evaluate each as part of an integrated systems design.

9.1 Introduction to Changeability

This chapter will address four major topics: (1) adaptability; (2) flexibility;
(3) modifiability and scalability; and (4) robustness in design endeavors. The
chapter begins with a section that reviews the concept of changeability, its three
unique elements, and a method for representing systems change using a state-
transition-diagram.

Section 9.2 defines adaptability and flexibility and provides a clear method for
distinguishing between these two non-functional properties.

Section 9.3 in this chapter addresses modifiability by providing a clear definition
and a distinction between it and both scalability and maintainability.

Section 9.4 defines robustness and discusses the design considerations related to
robust systems.

Section 9.5 defines a measure and a means for measuring changeability that is a
function of (1) adaptability; (2) flexibility; (3) modifiability; and (4) robustness. The
chapter completes by relating the proposed measure for changeability as a metric
and includes a structural map for traceability.

The chapter has a specific learning goal and associated objectives. The learning
goal of this chapter is to be able to identify how the attributes of adaptability,

© Springer International Publishing Switzerland 2015
K.M. Adams, Non-functional Requirements in Systems Analysis and Design,
Topics in Safety, Risk, Reliability and Quality 28,
DOI 10.1007/978-3-319-18344-2_9

169



flexibility, modifiability and scalability, and robustness that influence design in
systems endeavors. This chapter’s goal is supported by the following objectives:

• Describe changeability using a state-transition-diagram.
• Define adaptability.
• Define flexibility.
• Describe the difference between adaptability and flexibility.
• Define modifiability.
• Describe the difference between modifiability and maintainability.
• Define robustness.
• Describe the design factors that determine robustness.
• Construct a structural map that relate changeability to a specific metric and

measureable characteristic.
• Explain the significance of adaptability, flexibility. Modifiability, and robustness

in systems design endeavors.

The ability to achieve these objectives may be fulfilled by reviewing the materials
in the sections that follow.

9.2 The Concept of Changeability

The motivation for change in existing systems is based upon three major factors:
(1) marketplace forces; (2) technological evolution; and (3) environmental shifts
(Fricke and Schulz 2005). These drivers of change must be addressed by systems
practitioners throughout the system lifecycle. Because real-world systems exist in a
constantly changing domain, they too are subject to change. The ability for a system
to change is termed changeability. Changeability is a term that is not formally
defined in the systems engineering vocabulary, but it encompasses a number of
defined terms that include adaptability, flexibility, modifiability, scalability, and
robustness. Each of these terms will be fully addressed in later sections.

Right now, the most important point is that changeability addresses differences
in a system over time. Change can be thought of simply as the differences in a
system between and initial or zero time to and time tf where f = some future time.
During the time transition between to and tf, either the system or environment or
both the systems and environment may have been altered. A systems’ life cycle is
filled with changes to both the system and its related environment. The constant
stream of changes that occur during the systems life cycle require the system’s
designers and maintainers to plan for, recognize, and control changes to ensure the
system remains both viable and functionally effective. Changes that occur in a
system are characterized by a change event that contains three unique elements:
(1) the cause or impetus for the change; (2) the mechanism that affects the change,
and (3) the overall effect of change on both the system and its environment. These
events will be discussed in the sections that follow.

170 9 Adaptability, Flexibility, Modifiability …



9.2.1 Agent for Change

The impetus for change originates as a result of one or more of three change factors
described in the previous section: (1) marketplace forces; (2) technological evo-
lution; and (3) environmental shifts (Fricke and Schulz 2005). The source, which is
the instigator, force, or impetus that affects the change is labeled the change agent.
The change agent is responsible for transforming the change factor into action
(Ross et al. 2008).

9.2.2 Mechanism of Change

The mechanism of change describes the path taken between time to and time tf
while the system and or its environment is being transformed from its initial state to
the new altered state (Ross et al. 2008). The pathway is the action that includes all
of the mechanistic resources (i.e., material, manpower, money, minutes (time),
methods, and information) required to affect the change.

9.2.3 Effects of Change on Systems and Their Environment

The effects of change are the actual differences between the system and or the
environment at to and time tf (Ross et al. 2008). The difference between the system
at to and tf is described in terms of the changed or newly added characteristics (yi)
which are the results of a series of discrete events put into motion by the change
agent and accomplished by specific mechanisms (mi). Each mechanism may be
depicted as a transition arc with a discrete event and subsequent action that cause a
change in system characteristics (Y where yi ∈ Y).

9.2.4 Depicting Change Events

The time-dependent behavior of the system and its environment, as a function of the
three change elements just described, may be modeled in a state transition diagram
(Hatley and Pirbhai 1988). The state-transition-diagram (STD) accounts for the
impetus, agent, pathways, and effects during the change event. Figure 9.1 is an STD
that defines change as a function of the change agent, events and actions, mecha-
nisms and effects where:

• Y = A set of n system characteristics Yi, where i = 1 to n and yi ∈ Y.
• yi = A system characteristic yi, where i = 1 to n.

9.2 The Concept of Changeability 171



• M = A set of n mechanisms mi, where i = 1 to n and mi ∈ M.
• mi = The mechanisms mi, where i = 1 to n.

The transition arcs and arrows that connect the state boxes show the event or events
required to cause the change of state, and the resultant action when the imposed
change agent is applied.

Armed with a basic understanding of change and the concepts that surround
changeability a discussion about the five non-functional properties: (1) adaptability;
(2) flexibility; (3) modifiability; (4) scalability; and (5) robustness and how they are
applied during systems endeavors.

Time = to State 1

State 2Time = tf

M1 M2 Mn. . . . . .

Event 1

Action 1

Event 2

Action 2

Event n

Action n

Change agent

System characteristics at to
Y= { y1, y2, . . .yn}

System characteristics at tf
Y’= { y1, y2, . . .yn}

Effect = Y’-Y

Marketplace Technological
evolution Environmental

shifts

Change Factors

Fig. 9.1 State transition diagram for system change

172 9 Adaptability, Flexibility, Modifiability …



9.3 Adaptability and Flexibility

In this section the basics of adaptability and flexibility and how they are applied
during systems endeavors are discussed. Adaptability and flexibility have many
interpretations and as such must be clearly defined and understood.

9.3.1 Adaptability Definition

Adaptability, from a systems engineering perspective, is defined as:

Degree to which a product or system can effectively and efficiently be adapted for different
or evolving hardware, software or other operational or usage environments [SE VOCAB].

Adaptability has additional definitions, shown in Table 9.1 that may provide
improved understanding of the term when used as a non-functional requirement for
a system.

The section that follows will provide the definition for flexibility.

9.3.2 Flexibility Definition

Flexibility, from a systems engineering perspective, is defined as:

The ease with which a system or component can be modified for use in applications or
environments other than those for which it was specifically designed. Syn: adaptability cf.
extendability, maintainability (IEEE & ISO/IEC 2010, p. 144).

Table 9.1 Additional definitions for adaptability

Definition Source

“A characteristic of a system amenable to change to fit altered
circumstances, where “circumstances” include both the context of
a system’s use and its stakeholders’ desires”

Engel and Browning
(2008, p. 126)

“The ability to change (e.g., to improve performance over a period
of time) within a given state”

Bordoloi et al. (1999,
p. 135)

“Characterizes a system’s ability to adapt itself towards changing
environments. Adaptable systems deliver their intended
functionality under varying operating conditions through changing
themselves. That is no changes from external have to be
implemented into such systems to cope with changing
environments”

Fricke and Schulz
(2005, p. 347)

“The degree to which adjustments in practices, processes, or
structures of systems are possible to projected or actual changes of
its environment”

Andrzejak et al. (2006,
p. 30)

9.3 Adaptability and Flexibility 173



Flexibility has additional definitions, shown in Table 9.2 that may provide
improved understanding of the term when used as a non-functional requirement for
a system.

The section that follows will show how adaptability and flexibility are related.

9.3.3 Relationship Between Adaptability and Flexibility

A taxonomic distinction between adaptability and flexibility may be made based
upon the location of the source causing the system to change. The source (e.g.,
instigator, force, or impetus) of the change has been termed the change agent and
the location vis-à-vis the system serves to make the distinction between adaptability
and flexibility (Ross et al. 2008). Figure 9.2 depicts both an internal and an external
change agent acting on a system and the resulting classification as either adapt-
ability or flexibility.

Based upon the definitions for adaptability and flexibility provided in Tables 9.1
and 9.2, and the relationship depicted in Fig. 9.2, the relationship between adapt-
ability and flexibility is as follows:

• Adaptability An internal impetus for change causes a system to change within a
given state, which is termed adaptable change.

• Flexibility An external impetus for changes causes a system to change states,
which is termed flexible change. A system S is said to changes states to system
S’ when S’, as a result of change is now able “… to produce new goods or
services, or to produce the present array of goods and services in ways or
volumes that are not possible in the former state” (Bordoloi et al. 1999, p. 135).

The next section will discuss modifiability.

9.4 Modifiability and Scalability

In this section the basics of modifiability and how it is applied during systems
endeavors are reviewed. Modifiability has been interpreted in many ways and as
such must be clearly defined and understood.

Table 9.2 Additional definitions for flexibility

Definition Source

“The ability to change “states” Bordoloi et al. (1999,
p. 135)

“Characterizes a system’s ability to be changed easily. Changes
from external have to be implemented to cope with changing
environments”

Fricke and Schulz
(2005, p. 347)

174 9 Adaptability, Flexibility, Modifiability …



9.4.1 Modifiability Definition

Modifiability, from a systems engineering perspective, is defined as:

The ease with which a system can be changed without introducing defects cf. maintain-
ability (IEEE & ISO/IEC 2010, p. 222).

Modifiability has additional definitions, shown in Table 9.3 that may provide
improved understanding of the term when used as a non-functional requirement for
a system.

It is important to note that modifiability is interested in the set of system char-
acteristics where:

• Y = A set of n system characteristics Yi, where i = 1 to n and yi ∈ Y.
• yi = A system characteristic yi, where i = 1 to n.

SYSTEM

⇒
Adaptability

Internal impetus 
for change

adaptable-type 
change

⇒
Flexibility

External impetus 
for change

flexible-type 
change

System Boundary

ENVIRONMENT

Fig. 9.2 Change agent location in distinguishing between adaptability and flexibility

Table 9.3 Additional definitions for modifiability

Definition Source

“The ability to change the membership of the parameter set” Ross et al. (2008,
p. 249)

“The ease with which it can be modified to changes in the
environment, requirements or functional specification”

Bengtsson et al. (2004,
p. 130)

9.4 Modifiability and Scalability 175



There are two important distinctions to make when considering the definition for
modifiability.

1. The magnitude or level of the individual characteristics is addressed by scalability
and is not a concern for modifiability since no new characteristics are being
introduced into the set of system characteristics (Y). [NOTE: Scalability will no
longer be discussed]

2. The essential difference between maintainability and modifiability, is that main-
tainability is concerned with the correction of bugs whereas modifiability is not.

9.4.2 Modifiability in Systems

Modifiability, from a systems design perspectives is related to modularity. In
review, modularity was defined as “the degree to which a system or computer
program is composed of discrete components such that a change to one component
has minimal impact on other components” (IEEE & ISO/IEC 2010, p. 223). Based
upon this definition for modularity, it is reasonable to assume that a system that has
a high degree of modularity (i.e., independent system components) would be more
easily modified. This is because a change in an independent module is easier to
accomplish than one that is closely or tightly coupled to many other modules.

Modularity is a characteristics of a good system design. By designing system
components with a single purpose and clearly defined functions, inputs, and outputs
change is more easily affected. As stated earlier, engineering designs with high
modularity accomplish many things, which include:

• First, it makes the complexity of the system manageable by providing an
effective “division of cognitive labor.”

• Second, modularity organizes and enable parallel work.
• Finally, modularity in the ‘design’ of a complex system allows modules to be

changed and improved over time without undercutting the functionality of the
system as a whole (Baldwin and Clark 2006, p. 180).

In summary, a highly modular system with have improved modifiability.
The next section will discuss robustness.

9.5 Robustness

In this section the basics of robustness and how it is applied during systems
endeavors is reviewed. As with most of the non-functional requirements, robustness
has been interpreted in many ways and as such must be clearly defined and
understood.

176 9 Adaptability, Flexibility, Modifiability …



9.5.1 Robustness Definition

Robustness, from a systems engineering perspective, is defined as:

The degree to which a system or component can function correctly in the presence of
invalid inputs or stressful environmental conditions cf. error tolerance, fault tolerance
(IEEE & ISO/IEC 2010, p. 313).

Robustness has additional definitions, shown in Table 9.4 that may provide
improved understanding of the term when used as a non-functional requirement for
a system.

9.5.2 Robustness in Systems

It is important to note that robustness is often referring to the larger system, without
addressing any particular system characteristic, individual component, subsystem,
or environmental perturbation. In fact, robustness is thought to be a function of a
system’s internal structure and fragility.

Because robustness is achieved by very specific internal structures, when any of these
systems is disassembled, there is very little latitude in reassembly if a working system is
expected. Although large variations or even failures in components can be tolerated if they
are designed for through redundancy and feedback regulation, what is rarely tolerated,
because it is rarely a design requirement, is nontrivial rearrangements of the interconnection
of internal parts (Carlson and Doyle 2002, p. 2539).

The study of complex systems has provided a framework titled Highly Optimized
Tolerance (HOT) that seeks to focus attention on robustness through both tolerance
and configuration.

‘Tolerance’ emphasizes that robustness in complex systems is a constrained and limited
quantity that must be carefully managed and protected. ‘Highly optimized’ emphasizes that
this is achieved by highly structured, rare, non-generic configurations that are products
either of deliberate design or evolution. The characteristics of HOT systems are high

Table 9.4 Additional definitions for robustness

Definition Source

“The maintenance of some desired system characteristic despite
fluctuations in the behavior of its component parts or its
environment”

Carlson and Doyle
(2002, p. 2539)

“The ability to remain “constant” in parameters in spite of system
internal and external changes”

Ross et al. (2008,
p. 249)

“Characterizes a systems ability to be insensitive towards changing
environments. Robust systems deliver their intended functionality
under varying operating conditions without being changed”

Fricke and Schulz
(2005, p. 347)

9.5 Robustness 177



performance, highly structured internal complexity, and apparently simple and robust
external behavior, with the risk of hopefully rare but potentially catastrophic cascading
failure events initiated by possibly quite small perturbations (Carlson and Doyle 2002,
p. 2540).

Robustness as a non-functional requirement for a system is used to evaluate a
system’s ability to maintain constant design parameters in the face of either indi-
vidual or simultaneous internal or external perturbations. Systems designers are able
to influence robustness by carefully constructing complex systems with purposeful
internal component configuration and redundancy that accomplish both function
and provide high levels of performance.

9.6 Changeability in Systems Design Efforts

The ability to understand, measure, and evaluate the changeability of a system
would seem to be a valuable capability. Understanding changeability and its con-
stituent non-functional properties (adaptability, flexibility, modifiability, and
robustness) and having the ability to measure and evaluate it provides additional
perspectives and insight into the future performance and viability of all elements of
the system being designed. The formal design process should address each of
element of changeability.

In the traditional systems design process invoked by IEEE Standard 1220—
Systems engineering—Application and management of the systems engineering
process (IEEE 2005) neither changeability nor any of its component non-functional
characteristics (adaptability, flexibility, modifiability, and robustness) are men-
tioned. Despite this, changeability is an important aspect to be considered in the
conceptual, preliminary, and detailed design stages of the systems lifecycle.

The section that follows will discuss changeability may be evaluated as a
function of its four non-functional requirements: (1) adaptability; (2) flexibility; (3)
modifiability; and (4) robustness.

9.6.1 A Method for Evaluating Changeability

Based on the understanding developed with respect to understanding changeability
presented in the previous sections and how it may be used to evaluate systems
characteristics it is time to develop an appropriate measure. Measuring something
like changeability is tough, because changeability is a subjective, qualitative
measure which differs from most of the objective, quantitative measures developed
for the non-functional requirements addressed so far. In order to understand how to
approach a subjective, qualitative measure, a review of how to construct and
measure subjective, qualitative objects is in order.

178 9 Adaptability, Flexibility, Modifiability …



9.6.1.1 Development of Measurement Scales

In order to evaluate changeability, questions that address both the presence (yes or
no) and quality of the effort (how well) to provide changeability as a purposeful
effort during a system design endeavor must be developed and answered. In this case
each of the four non-functional requirements identified as constituting the measure
termed changeability must be addressed. The goal is to frame each of the four
non-functional requirements as an object with a specific measureable attribute.
The establishment of measures is important because they are the linkage between the
observable, real-world, empirical facts about the system and the construct
(i.e., changeability) devised as an evaluation point. In this case a measure is defined
as “... an observed score gathered through self-report, interview, observation, or
some other means” (Edwards and Bagozzi 2000, p. 156).

9.6.1.2 Scale for Changeability

As we discussed during the development of the scales for both traceability (see
Sect. 5.4) and system safety (see Sect. 6.4.5), the selection of a measurement scale
is an important element in the development of an adequate measure for change-
ability. Because none of the non-functional requirements we have selected as cri-
teria for changeability have a natural origin or empirically defined distance, an
ordinal scale should be selected as an appropriate scale for measuring system
changeability. The well-known Likert scale is proposed for use in evaluating
changeability. In order to ensure improved reliability a five point Likert scale will
be invoked (Lissitz and Green 1975).

9.6.1.3 Proposed Scales

Before moving on to describing the measure for changeability an important point
with respect to scale development must be stated once again. Scales are charac-
terized as either a proposed scale or a scale. “A proposed scale is one that some
investigator(s) put forward as having the requisite properties, and if it is indeed
shown to have them, then it is recognized as a scale” (Cliff 1993, p. 65). As
previously stated, the use of the word scale is referring to proposed scales. This
may seem to be an insignificant point, but until the scale has been accepted and
successfully utilized it remains proposed.

9.6.1.4 Proposed Measurement Scale for Changeability

Armed with a construct, measurement attributes and an appropriate scale type, the
changeability measure may be constructed. In order to evaluate changeability,
questions that address both the presence (yes or no) and quality of the effort (how

9.6 Changeability in Systems Design Efforts 179

http://dx.doi.org/10.1007/978-3-319-18344-2_5
http://dx.doi.org/10.1007/978-3-319-18344-2_6


well) must be answered to provide a measure for changeability. This is accom-
plished by invoking each of the four non-functional requirements for changeability:
(1) adaptability; (2) flexibility; (3) modifiability; and (4) robustness. Each of the
four changeability criteria (i.e., the measurement constructs) have a specific ques-
tion, shown in Table 9.5, which may be used to evaluate their contribution to
changeability.

The answer to each question in Table 9.5 will be scored using the 5-point Likert
measures in Table 9.6.

The summation of the four (4) constructs in Eq. 9.1 will be the measure the
degree of changeability in a system design endeavor.

Expanded Equation for System Changeability

Chsys ¼ Chadapt þ Chflex þ Chmodif þ Chrobust ð9:1Þ

9.6.2 Measuring Changeability

At the end of chapter 3 the importance of being able to measure each non-functional
attribute was highlighted as being an important element of systems design.
A structural mapping that relates changeability to a specific metric and measurement
entity are required. The four-level construct for changeability is presented in
Table 9.7.

Table 9.5 Measurement questions for changeability

Measurement
construct

Changeability concern for measurement

Chadapt Is the system able to adapt itself as a result of states changes caused by
internal impetus?

Chflex Is the system flexible enough to change as a result of state changes caused
by external environmental impetus?

Chmodif Can the system be modified as a result of changes in the environment,
requirements or functional specification?

Chrobust Can the system’s parameters remain “constant” in spite of system internal
or external environmental changes?

Table 9.6 Changeability measurement question Likert scale

Measure Descriptor Measurement criteria

0.0 None No objective quality evidence is present

0.5 Limited Limited objective quality evidence is present

1.0 Nominal Nominal objective quality evidence is present

1.5 Wide Wide objective quality evidence is present

2.0 Extensive Extensive objective quality evidence is present

180 9 Adaptability, Flexibility, Modifiability …

http://dx.doi.org/10.1007/978-3-319-18344-2_3


9.7 Summary

This chapter has addressed the adaptation concern for changeability and reviewed
its four non-functional requirements: (1) adaptability; (2) flexibility; (3) modifi-
ability; and (4) robustness. In each case a formal definition has been provided along
with additional explanatory definitions and terms. The ability to effect the non-
functional requirement during the design process has also been addressed. Finally, a
formal metric and measurement characteristic have been proposed for evaluating
changeability.

The chapter that follows will address non-functional requirement for extensi-
bility, portability, reusability, and self-descriptiveness as part of the concern for
adaptation in systems endeavors.

References

Andrzejak, A., Reinefeld, A., Schintke, F., & Schütt, T. (2006). On adaptability in grid systems. In
V. Getov, D. Laforenza, & A. Reinefeld (Eds.), Future generation grids (pp. 29–46). New
York, US: Springer.

Baldwin, C. Y., & Clark, K. B. (2006). Modularity in the design of complex engineering systems.
In D. Braha, A. A. Minai, & Y. Bar-Yam (Eds.), Complex engineered systems (pp. 175–205).
Berlin: Springer.

Bengtsson, P., Lassing, N., Bosch, J., & van Vliet, H. (2004). Architecture-level modifiability
analysis (ALMA). Journal of Systems and Software, 69(1–2), 129–147.

Bordoloi, S. K., Cooper, W. W., & Matsuo, H. (1999). Flexibility, adaptability, and efficiency in
manufacturing systems. Production and Operations Management, 8(2), 133–150.

Carlson, J. M., & Doyle, J. (2002). Complexity and robustness. Proceedings of the National
Academy of Sciences of the United States of America, 99(3), 2538–2545.

Cliff, N. (1993). What Is and Isn’t Measurement. In G. Keren & C. Lewis (Eds.), A handbook for
data analysis in the behavioral sciences: Methodological issues (pp. 59–93). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Edwards, J. R., & Bagozzi, R. P. (2000). On the nature and direction of relationships between
constructs and measures. Psychological Methods, 5(2), 155–174.

Engel, A., & Browning, T. R. (2008). Designing systems for adaptability by means of architecture
options. Systems Engineering, 11(2), 125–146.

Fricke, E., & Schulz, A. P. (2005). Design for changeability (DfC): Principles to enable changes in
systems throughout their entire lifecycle. Systems Engineering, 8(4), 342–359.

Table 9.7 Four-level structural map for measuring changeability

Level Role

Concern Systems adaptation

Attribute Changeability

Metric System changeability

Measurable
characteristic

Changeability of (1) adaptability (Chadapt), (2) flexibility (Chflex), (3)
modifiability (Cmodif), and (4) robustness (Chrobust)

9.7 Summary 181



Hatley, D. J., & Pirbhai, I. A. (1988). Strategies for real-time system specification. New York:
Dorset House.

IEEE. (2005). IEEE Standard 1220: Systems engineering—Application and management of the
systems engineering process. New York: Institute of Electrical and Electronics Engineers.

IEEE, & ISO/IEC. (2010). IEEE and ISO/IEC Standard 24765: Systems and software engineering
—Vocabulary. New York and Geneva: Institute of Electrical and Electronics Engineers and the
International Organization for Standardization and the International Electrotechnical
Commission.

Lissitz, R. W., & Green, S. B. (1975). Effect of the number of scale points on reliability: A Monte
Carlo approach. Journal of Applied Psychology, 60(1), 10–13.

Ross, A. M., Rhodes, D. H., & Hastings, D. E. (2008). Defining changeability: Reconciling
flexibility, adaptability, scalability, modifiability, and robustness for maintaining system
lifecycle value. Systems Engineering, 11(3), 246–262.

182 9 Adaptability, Flexibility, Modifiability …



Chapter 10
Extensibility, Portability, Reusability
and Self-descriptiveness

Abstract The design of systems and components during the design stage of the
systems life cycle requires specific purposeful actions to ensure effective designs
and viable systems. Designers are faced with a number of adaptation concerns that
they must embed into the design in every instance of thinking and documentation.
The ability for a system to adapt is essential to its continued survival and ability to
provide requisite functions for its stakeholders. Adaptation concerns includes the
non-functional requirements for extensibility, portability, reusability, and self-
descriptiveness. Purposeful design requires an understanding of each of these
requirements and how to measure and evaluate each as part of an integrated systems
design.

10.1 Introduction to Extensibility, Portability, Reusability
and Self-descriptiveness

This chapter will address four major topics (1) extensibility, (2) portability,
(3) reusability, and (4) self-descriptiveness. Each of these topics are associated with
adaptation concerns in design endeavors. The chapter begins by reviewing exten-
sibility, its definitions, and how it is approached as an aspect of purposeful systems
design.

The second section defines portability, provides a perspective on why portability
is a desired characteristic, and four factors designers must consider in order to
achieve portable designs.

The third section in this chapter addresses reusability by providing a clear
definition and an addressing reusability in systems designs. Design for reuse can be
achieved by using either a top-down or bottom-up approach and three unique
techniques. The section concludes by recommending 2 strategies and 10 heuristics
that support reusability in systems designs.

The fourth section defines self-descriptiveness and discusses the types of
problems associated with poor self-descriptiveness. The section also discusses how

© Springer International Publishing Switzerland 2015
K.M. Adams, Non-functional Requirements in Systems Analysis and Design,
Topics in Safety, Risk, Reliability and Quality 28,
DOI 10.1007/978-3-319-18344-2_10

183



utilization of the seven design principles for user-systems dialogue and adoption
and application of an appropriate standard for user-system dialogue can decrease
errors and improve system self-descriptiveness.

The final section defines a measure and a means for measuring adaptation
concerns that is a function of extensibility, portability, reusability, and self-
descriptiveness. The section completes by relating the proposed measure for
adaptation concerns as a metric and includes a structural map for extensibility,
portability, reusability, and self-descriptiveness.

The chapter has a specific learning goal and associated objectives. The learning
goal of this chapter is to be able to identify how the attributes of adaptability,
flexibility, modifiability and scalability, and robustness that influence design in
systems endeavors. This chapter’s goal is supported by the following objectives:

• Define extensibility.
• Discuss how extensibility is achieved during purposeful systems design.
• Define portability.
• Describe the four factors that affect portability in systems designs.
• Define reusability.
• Describe the two approaches to reusability that may be used during design

endeavors.
• Define self-descriptiveness.
• Describe the three levels of problems associated with poor self-descriptiveness.
• Construct a structural map that relate adaptation concerns to a specific metric

and measureable characteristic.
• Explain the significance of extensibility, portability, reusability, and self-

descriptiveness in systems design endeavors.

The ability to achieve these objectives may be fulfilled by reviewing the materials
in the sections that follow.

10.2 Extensibility

In this section the basics of extensibility and how it is applied during systems
endeavors will be reviewed. As with many of the other non-functional require-
ments, extensibility is not well understood or used in ordinary discussions about
systems requirements. To validate this assertion, take a minute and review the index
of a systems engineering or software engineering text and look for the word
extensibility. Is it missing? It would not be surprising to hear that the word is
missing from just about every major text. Therefore, extensibility and its charac-
teristics must be carefully reviewed in order to provide a common base for both
learning and application during systems design endeavors.

184 10 Extensibility, Portability, Reusability and Self-descriptiveness



10.2.1 Definition for Extensibility

Extensibility or extendability, from a systems engineering perspective, is defined as:

The ease with which a system or component can be modified to increase its storage or
functional capacity. Syn: expandability, extensibility (IEEE and ISO/IEC 2010 p. 136).

Extensibility (which is preferred over the word extendability) has additional defi-
nitions, shown in Table 10.1 that may provide further meaning for the term when
applied as a non-functional requirement for a system.

Additional meaning for extensibility may be obtained by reviewing the defini-
tion for its synonym, expandability, which is shown in Table 10.2.

From these definitions extensibility may be defined as the ability to extend a
system, while minimizing the level of effort required for implementing extensions
and the impact to existing system functions. Having settled on this basic definition,
the next section will discuss how extensibility may be used as a purposeful element
during systems design endeavors.

10.2.2 Extensibility in Systems Design

Extensibility considerations during systems design endeavors may be achieved by
employing two broad, complementary methods: (1) product-line architectures and,
(2) domain-specific languages. Some examples of each approach, for both hardware
and software, will be provided.

Table 10.1 Additional definitions for extensibility

Definition Source

“The property that simple changes to the design of a software artifact
require a proportionally simple effort to modify its source code.
Extensibility is a result of premeditated engineering, whereby
anticipated variabilities in a domain are made simple by design”

Batory et al. (2002,
p. 211)

“A system design principle that takes into consideration future growth
by providing the ability to extend a system, while minimizing the level
of effort required for implementing extensions and the impact to
existing system functions”

Lopes et al. (2005,
p. 368)

“The ability to extend a software system with new features and
components without loss of functionality or qualities specified as
requirements”

Henttonen et al.
(2007, p. 3)

Table 10.2 Definitions for expandability (synonym of extensibility)

Definition Source

Expandability is “the degree of effort required to improve or
modify software functions’ efficiency”

IEEE and ISO/IEC
(2010, p. 135)

10.2 Extensibility 185



Extensibility has been practiced in the design of most hardware products for
many years. For instance, imagine purchasing a car that has a design that would
prohibit the addition of optional accessories. The dealers would be required to roll-
the-dice when they made their selection of stock for their lots and customers would
have to make trade-offs that they were not comfortable with. Instead, local dealers
are able to add factory options because the design included the ability to add
components. The ability to add components to a design is enabled by common
interfaces and established standards. Designs that include established standards for
common interfaces for component connections are able to accept new technology in
a manner that permits seamless integration. One-of-a-kind designs with a lack of
standardization are notoriously unable to accept new technological improvements.
The electronics industry includes extensibility as a major non-functional require-
ment that permits components to be interconnected based on designs that routinely
include interface points based on accepted industry standards.

The same can be said for most modern software products. Vendors that provide
large enterprise resource planning (ERP) suites have modular designs for their
products that permit consumers to select any number of individual software mod-
ules that perform specific business functions (e.g., financial accounting, human
resource management, etc.). The vendor’s architecture includes interfaces points
between their own functional modules and other 3rd party vendors that provide
unique support applications (e.g., customer resource management, scheduling, etc.).
Modern software frameworks also include the ability to incorporate extensibility.
For instance, Microsoft has developed the Managed Extensibility Framework
(MEF) as a library within its .NET development framework for creating light-
weight, extensible applications. MEF’s components, called parts, declaratively
specifies both the part’s dependencies or imports and what capabilities or exports it
makes available. When a programmer creates a part, the MEF composition engine
satisfies its imports with what is available from other parts. Similarly, Oracle’s
Enterprise Manager has an Extensibility Exchange which is a library where pro-
grammers are able to find plug-ins and connectors they may utilize.

In conclusion, extensibility is a purposeful design function that permits systems
to be extended—added to or modified—during their design life with a minimum of
effort and subsequent disruption to the system and its users. The eminent software
pioneer David Lorge Parnas makes the point about how engineers must account for
change during the design stages when he states “One of the clearest morals in the
earlier discussion about design for change as it is taught in other areas of engi-
neering is that one must anticipate changes before one begins the design” (Parnas
1979, p. 130).

The section that follows will address the non-functional requirement for
portability.

186 10 Extensibility, Portability, Reusability and Self-descriptiveness



10.3 Portability

In this section the basics of portability and how it is applied during systems
endeavors will be addressed. As with many of the other non-functional require-
ments, portability is not well understood or used in ordinary discussions about
systems requirements. Once again, take a minute and review the index of a favorite
systems engineering or software engineering text and look for the word portability.
Is it missing? It would not be surprising to hear that the word is missing from just
about every major text. Therefore, a careful review of portability and its charac-
teristics is in order to provide a common base for both learning and its application
during systems design endeavors.

10.3.1 Definition for Portability

Portability, from a systems engineering perspective, is defined as:

The ease with which a system or component can be transferred from one hardware or
software environment to another. (IEEE and ISO/IEC 2010, p. 261)

Portability has additional definitions, from the literature, that are listed in Table 10.3
that may provide further help in understanding the term when applied as a non-
functional requirement for a system.

From these definitions portability is the degree to which a system can be
transported or adapted to operate in a new environment. Having settled on this
basic definition, the next section will discuss how portability may be used as a
purposeful element during systems design endeavors.

10.3.2 Portability in Systems Design

In Chap. 9 it was stated that changes occur in systems based upon one or more of
the following major factors: (1) marketplace forces; (2) technological evolution; and
(3) environmental shifts (Fricke and Schulz 2005). Because real-world systems
exist in a constantly changing domain, they too are subject to change and these

Table 10.3 Additional definitions for portability

Definition Source

“An application is portable across a class of environments to the degree
that the effort required to transport and adapt it to a new environment in
the class is less than the effort of redevelopment”

Mooney (1990,
p. 59)

“Effort required to transfer the program from one hardware and/or
software system environment to another”

Pressman (2004,
p. 510)

10.3 Portability 187

http://dx.doi.org/10.1007/978-3-319-18344-2_9


drivers of change must be addressed by systems designers as a practical, ever-
present element of the system’s lifecycle. As a result, designing a system that has
contains some degree of portability that is, an ability to be transported or adapted to
operate in a new environment, seems to make eminent sense.

The primary goal of portability is to facilitate the activity of porting an application from an
environment in which it currently operates to a new or target environment. This activity has
two major aspects: (1) transportation—physical movement of the program’s instructions
and data to the new environment, and (2) adaptation—modification of the information as
necessary to work satisfactorily in the new environment. (Mooney 1990, p. 59)

In order to achieve systems that are portable, designers are required to address four
major factors: (1) impediment factors; (2) human factors; (3) environmental, and (4)
cost factors (Hakuta and Ohminami 1997).

• Impediment factors include all of the technical issues that cloud, restrict, or
prohibit the movement of the system from its current environment to the new or
target environment. Some examples of technical issues include reusability of
hardware and software, compatibility of hardware, software, and standards,
interfaces between hardware and software, data structures, size, and restruc-
turing effort, compatibility of design tools as well as development and testing
environments.

• Human factors address the knowledge and experience of the design team and
their ability to address the tasks required to transport or adapt the system to
operate in the new or target environment.

• Environmental factors address the target environment. Specifically, the “set of
elements and their relevant properties, which elements are not part of the sys-
tem, but a change in any of which can cause or produce a change in the state of
the system” (Ackoff and Emery 2006, p. 19). New target environments are often
a significant challenge to design teams unfamiliar with the elements in the new
environment.

• Cost factors address the aggregate the individual costs attributed to the
impediment, human, and environmental factors associated with the transporta-
tion and adaptation of the existing system required for it to operate in the new or
target environment.

All of these factors must be addressed by the systems designer when evaluating the
decision to incorporate portability requirements as part of the purposeful design
during systems endeavors. The section that follows will address system reusability.

10.4 Reusability

In this section the basics of reusability and how it is applied during systems
endeavors will be reviewed. Compared to the other non-functional requirements
addressed so far, reusability is a term that is used frequently during discussions

188 10 Extensibility, Portability, Reusability and Self-descriptiveness



about systems requirements. Despite its frequent use, we will review its formal
systems vocabulary definition as well as some definitions from the literature in
order to solidify a common usage for the term during systems design endeavors.

10.4.1 Definition for Reusability

Reusability, from a systems engineering perspective, is defined as:

The degree to which an asset can be used in more than one software system, or in building
other assets. (IEEE and ISO/IEC 2010, p. 307)

Reusability has additional definitions, from the literature, that are listed in
Table 10.4 that may provide further help in understanding the term when applied as
a non-functional requirement for a system.

From these definitions reusability is the degree to which a system repeats the use
of any part of an existing system in a new system. Having settled on this basic
definition, the next section will discuss how reusability may be used as a purposeful
element during systems design endeavors.

10.4.2 Reusability as an Element of Systems Design

Reusability, from a systems engineering and design perspective, is generally
viewed as a positive requirements that can directly reduce the costs associated with
the design and development of a new system.

On the other hand, enabling reuse across all activities of the development process, levels of
the solution structure, and different engineering disciplines is regarded [as] an effective but
challenging means for reducing costs and development time and to increase solution
quality. (Stallinger et al. 2011, p. 121)

The challenges associated with reusability are based upon two important char-
acteristics required in order to effect reuse in a design. Every designer must

Table 10.4 Additional definitions for reusability

Definition Source

“The repeated use of any part of a [software] system: documentation,
code, design, requirements, test cases, test data, and more”

Pfleeger (1998,
p. 477)

“Reuse is a repetition or similarity in a design” Hornby (2007, p. 52)

“The idea to reuse previously developed engineering artifacts in the
engineering of a solution. Reuse in engineering is not limited to
solution components. It pervades all engineering phases and also
applies to engineering artifacts like requirements specifications, use
cases, architectures, documentation, etc”

Stallinger et al.
(2010, p. 308)

10.4 Reusability 189



carefully analyze the ability of an existing systems element’s ability to satisfy both
(1) functionality and (2) required interfaces. As a result, designers of system ele-
ments will be required to make tradeoffs between the functionality and interface
requirements in their design, and the functionality and interfaces requirements of
potentially reusable systems elements. Few existing system’s elements provide both
identical functionality and interfaces, so tradeoffs take on additional importance
when purposefully including reusability as a non-functional requirement in a sys-
tem’s design.

An additional design consideration must be made when invoking reusability as a
non-functional requirement for a system. The design team must decide on a reus-
ability approach: Will the reuse design be top-down (often labeled generative) or
bottom-up (often termed compositional)?

Component-oriented reuse as the major bottom-up concept is based on the idea to build a
system from smaller, less complex parts by reusing or adapting existing components; top-
down reuse approaches—in contrast—are more challenging, as they require a thorough
understanding of the overall structure of the engineered solution (Stallinger et al. 2011,
p. 121).

Reuse is viewed from two high-level perspectives—that of the producer of reusable
systems elements or that of the consumer of reusable elements (Bollinger and
Pfleeger 1990). Table 10.5 provides a taxonomy of consumer reuse techniques that
may be used when deciding on how a consumer will use the reusable element.

Finally, reuse is an organizational issue and is not limited to the designer and
design team (Lim 1998; Lynex and Layzell 1998). Organizations typically adopt
one of two strategic positions shown in Table 10.6 when approaching reuse in
systems endeavors.

Table 10.5 Reuse techniques for consumers of reusable elements

Reuse technique Description

Black-box reuse The consumer will utilize the reusable element without modification

White box reuse The consumer will evaluate whether modification to the reusable element
will require more resources that to build a new component

Clear box reuse The consumer will modify the reusable element to fit their particular
requirements

Table 10.6 Organizational reuse strategies

Reuse strategy Description

Opportunistic “Attempting to obtain savings through reuse, but without an overarching
plan for how this will be accomplished” Fortune and Valerdi (2013, p. 306)

Strategic “Reuse is more deliberate and process-oriented; candidate products for
reuse are identified upfront, and an investment in making a product more
reusable may be made” Fortune and Valerdi (2013, p. 306)

190 10 Extensibility, Portability, Reusability and Self-descriptiveness



In order to successfully execute reusability in systems, organizations must adopt
formal reuse processes and supporting technologies if they are to effectively
implement reusability practices as part of larger systems design endeavors. There
are ten heuristics that describe why certain reuse properties exist and all ten may be
adopted as a means of ensuring that organizations make decisions that support
reusability as an organizational strategy (Fortune and Valerdi 2013).

• Heuristic #1: Reuse is not free, upfront investment is required (i.e., there is a
cost associated with design for reusability).

• Heuristic #2: Reuse needs to be planned from the conceptualization phase of
programs.

• Heuristic #3: Most project related products can be reused.
• Heuristic #4: Reuse is more successful when level of service requirements are

equivalent across applications.
• Heuristic #5: Reuse is as much of an organizational issue as it is a technical one.
• Heuristic #6: The benefits of reuse are nonlinear with regard to project size (i.e.,

small-scale systems have been shown to not enjoy the same benefit from reuse
as large-scale systems).

• Heuristic #7: Higher reuse opportunities exist when there is a match between the
diversity and volatility of a product line and its associated supply chain.

• Heuristic #8: Bottom-up (individual elements where make or buy decisions are
made) and top-down (where product line reuse is made) reuse require funda-
mentally different strategies.

• Heuristic #9: Reuse applicability is often time dependent; rapidly evolving
domains offer fewer reuse opportunities than static domains (i.e., products may
have a “reuse” shelf life).

• Heuristic #10: The economic benefits of reuse can be described either in terms
of improvement (quality, risk identification) or reduction (defects, cost/effort,
time to market) (pp. 305–306).

All of these factors must be addressed by the systems designer when evaluating the
decision to incorporate reusability requirements as part of a purposeful design
during systems endeavors. The section that follows will address system self-
descriptiveness.

10.5 Self-descriptiveness

In this section the basics of self-descriptiveness and how it is applied during systems
endeavors will be addressed. Self-descriptiveness, when compared to the other non-
functional requirements addressed so far, is a term that is rarely used during discus-
sions about systems requirements. Because of its infrequent use in ordinary conver-
sation, a review of both its formal systems vocabulary definition as well as some
definitions from the literature are required. This will solidify a common meaning for
the term during our discussions of its use during systems design endeavors.

10.4 Reusability 191



10.5.1 Definition for Self-descriptiveness

Self-descriptiveness, from a systems engineering perspective, is defined as:

1. The degree to which a system or component contains enough information to explain its
objectives and properties. 2. Software attributes that explain a function’s implementation.
cf. maintainability, testability, usability. (IEEE and ISO/IEC 2010, p. 322)

Self-descriptiveness has additional definitions, from the literature, that are listed in
Table 10.7 that may be used to understand the term when applied as a non-func-
tional requirement for a system.

From these definitions self-descriptiveness is the characteristic of a system that
permits an observer to determine or verify how its functions are achieved. Having
settled on this basic definition, the next section will discuss how self-descriptive-
ness is achieved during systems design endeavors.

10.5.2 Self-descriptiveness in Systems Design

The concept that underlies self-descriptiveness is related to the dialogue the user
has with the system under consideration. In this context dialogue is defined as the
“interaction between a user and an interactive system as a sequence of user actions
(inputs) and system responses (outputs) in order to achieve a goal” (ISO 2006,
p. vi). More simply stated, dialogue is the interaction between a user and the
system of interest required to achieve a desired goal. As part of this dialogue a
system designer must strive to understand how the system and its user (be that the

Table 10.7 Additional definitions for self-descriptiveness

Definition Source

“It contains enough information for a reader to determine or verify
its objectives, assumptions, constraints, inputs, outputs,
components, and revision status”

Boehm et al. (1976,
p. 600)

“Those characteristics [of software] which provide explanation of
the implementation of functions”

Bowen et al. (1985,
p. 3–12)

“Information feedback, user guidance and support” Park and Lim (1999,
p. 312)

“If every single dialogue step can immediately be understood by the
user based on the information displayed by the system or if there is a
mechanism to obtain any other explanatory information on request
of the user”

ISO (2006, p. 6)

(For a model) “The ability of the model concepts to embed enough
information to explain the model objectives and properties”

Ben Ahmed et al.
(2010, p. 110)

“A dialog is self-descriptive if every single dialog step can
immediately be understood by the user based on the information
displayed by the system”

Frey et al. (2011,
p. 268)

192 10 Extensibility, Portability, Reusability and Self-descriptiveness



designer or the person utilizing the system to complete its intended functions)
communicate. International Standard 9241, Part 110—Dialogue Principles (ISO
2006) lists seven principles, the second of which is self-descriptiveness, which
define how usable designs should behave. Research has demonstrated “that among
the dialogue principles, self-descriptiveness is the most important” (Watanabe et al.
2009, p. 825).

Table 10.8 describes three levels of problems that are associated with self-
descriptiveness.

By adopting the seven design principles for user-system dialogue, designers can
greatly reduce (1) generalized dialogue errors, (2) the specific self-descriptiveness
errors described in Table 10.8, and (3) the broader range of seven systems errors
(Adams and Hester 2012, 2013). Inclusion of the non-functional requirement for
self-descriptiveness in a design requires the design team to formally adopt and
apply an appropriate standard for user-system dialogue (ISO 2006).

Self-descriptiveness’ importance moves beyond the system design and directly
impacts the system’s implementation and continued viability during the operation
and maintenance stage and through retirement and disposal. It is precisely because
the user-system dialogue has such lasting effects that it gains importance in systems
design endeavors. “Self-descriptiveness is necessary for both testability and
understandability” (Boehm et al. 1976, p. 606) and can be extrapolated to other
requirements as well.

The next section will discuss how the four non-functional requirements for
extensibility, portability, reusability, and self-descriptiveness can be measured and
evaluated.

10.6 A Method for Evaluating Extensibility, Portability,
Reusability and Self-descriptiveness

The ability to understand, measure, and evaluate the non-functional requirements
for extensibility, portability, reusability, and self-descriptiveness when included as
requirements in a system is a valuable capability. Having the ability to measure and

Table 10.8 Problems associated with self-descriptiveness

Problem Description

Lack of self-descriptiveness The information about the system presented to the user was
missing

Perceptual problems with
self-descriptiveness

The information about the system presented to the user offered
some form of self-descriptiveness but was inadequate to
establish understanding

Conceptual problems of self-
descriptiveness

The information about the system presented to the user is
clearly displayed to the user but there is some sort of cognitive
barrier preventing understanding

10.5 Self-descriptiveness 193



evaluate each of these non-functional requirements provides additional perspectives
and insight into the future performance and viability of all elements of the system
being designed.

Having established a basic understanding about extensibility, portability, reus-
ability, and self-descriptiveness and how they are used in systems design endeavors,
a method to measure them must be developed. Development of a satisfactory
measure is problematic because each of these non-functional requirements are
subjective, qualitative measures which differ greatly from most of the objective,
quantitative measures developed for many of the other non-functional requirements
that have been addressed. In order to understand how to approach a subjective,
qualitative measure, as done in the previous chapter, a review of how to construct
and measure subjective, qualitative objects is required.

10.6.1 Development of Measurement Scales

In order to evaluate extensibility, portability, reusability, and self-descriptiveness,
questions that address both the presence (yes or no) and quality of the effort (how
well) to provide each of the non-functional requirements as a purposeful effort
during a system design endeavor must be addressed. The goal is to frame each non-
functional requirements as an object with a specific measureable attribute. The
establishment of effective and appropriate measures is important because they are
the linkage between the observable, real-world, empirical facts about the system
and the construct (i.e., extensibility, portability, reusability, and self-descriptive-
ness) devised to act as evaluation points. In this case, a measure is defined as “… an
observed score gathered through self-report, interview, observation, or some other
means” (Edwards and Bagozzi 2000, p. 156).

10.6.1.1 Scales for Extensibility, Portability, Reusability,
and Self-descriptiveness

As discussed during the development of the scales for traceability (see Chap. 6),
system safety (see Chap. 8), and changeability (see Chap. 9) the selection of a
measurement scale is an important element in the development of an adequate
measure. Because none of the non-functional requirements selected as criteria has a
natural origin or empirically defined distance, an ordinal scale should be selected as
an appropriate scale for measuring system extensibility, portability, reusability, and
self-descriptiveness. In order to ensure improved reliability, a five-point Likert scale
will be invoked (Lissitz and Green 1975).

194 10 Extensibility, Portability, Reusability and Self-descriptiveness

http://dx.doi.org/10.1007/978-3-319-18344-2_6
http://dx.doi.org/10.1007/978-3-319-18344-2_8
http://dx.doi.org/10.1007/978-3-319-18344-2_9


10.6.1.2 Proposed Scales

As mentioned in previous chapters, scales are characterized as either a proposed
scale or a scale. “A proposed scale is one that some investigator(s) put forward as
having the requisite properties, and if it is indeed shown to have them, then it is
recognized as a scale” (Cliff 1993, p. 65). In this chapter, the use of the word scale
is referring to proposed scales. This may seem to be an insignificant point, but until
the scale has been accepted and successfully utilized, it remains proposed.

10.6.1.3 Proposed Measurement Scale for Extensibility, Portability,
Reusability, and Self-descriptiveness

Armed with a construct, measurement attributes, and an appropriate scale type, the
measures for extensibility, portability, reusability, and self-descriptiveness may be
constructed. In order to evaluate these, questions that address both the presence (yes
or no) and quality of the effort (how well) to provide effective and meaningful
levels of extensibility, portability, reusability, and self-descriptiveness as part of the
system’s design must be addressed. Each of the four criteria (i.e., the measurement
constructs) has a specific question, shown in Table 10.9, which may be used to
evaluate each one’s contribution to system adaptation concerns.

The answer to each question in Table 10.9 will be scored using the five-point
Likert measures in Table 10.10.

The summation of the four constructs in Eq. 10.1 will be the measure of the
degree of adaptation in a system design endeavor.

Expanded Equation for System Adaptability Concerns

Asys ¼ Aexten þ Aport þ Areuse þ Aselfdes ð10:1Þ

Table 10.9 Measurement questions for adaptation concerns

Measurement
construct

Adaptation concern for measurement

Aextens Does the ability to extend the system, while minimizing the level of effort
required for implementing extensions and the impact to existing system
functions exist?

Aport Can the system be transported or adapted to operate in a new
environment?

Areuse Does the system repeat the use of any part of an existing system in its
design or construction?

Aselfdes Does the system have characteristic that permits an observer to determine
or verify how its functions are achieved?

10.6 A Method for Evaluating Extensibility, Portability … 195



10.6.2 Measuring Extensibility, Portability, Reusability
and Self-descriptiveness

At the end of Chap. 3 the importance of being able to measure each non-functional
attribute was emphasized. A structural mapping that relates adaptation concerns to
four specific metrics and measurement entities is required. The four-level construct
for adaptation concerns is presented in Table 10.11.

10.7 Summary

In this chapter, the adaptation concerns contained in the four non-functional
requirements: extensibility, portability, reusability, and self-descriptiveness have
been addressed. In each case, a formal definition has been provided along with
additional explanatory definitions and terms. The ability to effect each of the four
the non-functional requirements during the design process has also been addressed.
Finally, a formal metric and measurement characteristic have been proposed for
evaluating design concerns through metrics for extensibility, portability, reusability,
and self-descriptiveness.

The chapter that follows will address non-functional requirements associated
with system viability concerns.

Table 10.10 Adaptation measurement question Likert scale

Measure Descriptor Measurement criteria

0.0 None No objective quality evidence is present

0.5 Limited Limited objective quality evidence is present

1.0 Nominal Nominal objective quality evidence is present

1.5 Wide Wide objective quality evidence is present

2.0 Extensive Extensive objective quality evidence is present

Table 10.11 Four-level structural map for measuring adaptation concerns

Level Role

Concern Systems adaptation

Attribute Adaptation concerns

Metrics Extensibility, portability, reusability, and self-descriptiveness

Measurable
characteristics

Sum of (1) extensibility (Aexten), (2) portability (Aport), (3) reusability
(Areuse), and (4) self-descriptiveness (Aselfdes)

196 10 Extensibility, Portability, Reusability and Self-descriptiveness

http://dx.doi.org/10.1007/978-3-319-18344-2_3


References

Ackoff, R. L., & Emery, F. E. (2006). On Purposeful Systems—An Interdisciplinary Analysis of
Individual and Social Behavior as a System of Purposeful Events. Piscataway, NJ: Aldine.

Adams, K. M., & Hester, P. T. (2012). Errors in Systems Approaches. International Journal of
System of Systems Engineering, 3(3/4), 233–242.

Adams, K. M., & Hester, P. T. (2013). Accounting for errors when using systems approaches.
Procedia Computer Science, 20, 318–324.

Batory, D., Johnson, C., MacDonald, B., & von Heeder, D. (2002). Achieving extensibility
through product-lines and domain-specific languages: A case study. ACM Transactions on
Software Engineering Methodology, 11(2), 191–214.

Ben Ahmed, W., Mekhilef, M., Yannou, B., & Bigand, M. (2010). Evaluation framework for the
design of an engineering model. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, 24(Special Issue 01), 107–125.

Boehm, B. W., Brown, J. R., & Lipow, M. (1976). Quantitative evaluation of software quality. In
R. T. Yeh & C. V. Ramamoorthy (Eds.), Proceedings of the 2nd International Conference on
Software Engineering (pp. 592–605). Los Alamitos, CA: IEEE Computer Society Press.

Bollinger, T. B., & Pfleeger, S. L. (1990). Economics of reuse: issues and alternatives. Information
and Software Technology, 32(10), 643–652.

Bowen, T. P., Wigle, G. B., & Tsai, J. T. (1985). Specification of software quality attributes:
Software quality evaluation guidebook (RADC-TR-85–37, Vol III). Griffiss Air Force Base,
NY: Rome Air Development Center.

Cliff, N. (1993). What is and isn’t measurement. In G. Keren & C. Lewis (Eds.), A Handbook for
Data Analysis in the Behavioral Sciences: Methodological Issues (pp. 59–93). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Edwards, J. R., & Bagozzi, R. P. (2000). On the nature and direction of relationships between
constructs and measures. Psychological Methods, 5(2), 155–174.

Fortune, J., & Valerdi, R. (2013). A framework for reusing systems engineering products. Systems
Engineering, 16(3), 304–312.

Frey, A. G., Céret, E., Dupuy-Chessa, S., & Calvary, G. (2011). QUIMERA: A quality metamodel
to improve design rationale, Proceedings of the 3rd ACM SIGCHI symposium on Engineering
interactive computing systems (pp. 265–270). New York: Association for Computing
Machinery.

Fricke, E., & Schulz, A. P. (2005). Design for changeability (DfC): Principles to enable changes in
systems throughout their entire lifecycle. Systems Engineering, 8(4), 342–359.

Hakuta, M., & Ohminami, M. (1997). A study of software portability evaluation. Journal of
Systems and Software, 38(2), 145–154.

Henttonen, K., Matinlassi, M., Niemelä, E., & Kanstrén, T. (2007). Integrability and extensibility
evaluation from software architectural models—a case study. Open Software Engineering
Journal, 1, 1–20.

Hornby, G. S. (2007). Modularity, reuse, and hierarchy: Measuring complexity by measuring
structure and organization. Complexity, 13(2), 50–61.

IEEE, & ISO/IEC (2010). IEEE and ISO/IEC Standard 24765: Systems and software engineering
—vocabulary. New York and Geneva: Institute of Electrical and Electronics Engineers and the
International Organization for Standardization and the International Electrotechnical
Commission.

ISO. (2006). ISO standard 9241-110: Ergonomics of human-system interaction—part 110:
Dialogue principles. Geneva: International Organization for Standardization.

Lim, W. C. (1998). Strategy-driven reuse: Bringing reuse from the engineering department to the
executive boardroom. Annals of Software Engineering, 5(1), 85–103.

Lissitz, R. W., & Green, S. B. (1975). Effect of the number of scale points on reliability: A Monte
Carlo approach. Journal of Applied Psychology, 60(1), 10–13.

References 197



Lopes, T. P., Neag, I. A., & Ralph, J. E. (2005). The role of extensibility in software standards for
automatic test systems, Proceedings of AUTOTESTCON—The IEEE systems readiness
technology conference (pp. 367–373). Piscataway, NJ: Institute of Electrical and Electronics
Engineers.

Lynex, A., & Layzell, P. J. (1998). Organisational considerations for software reuse. Annals of
Software Engineering, 5(1), 105–124.

Mooney, J. D. (1990). Strategies for supporting application portability. Computer, 23(11), 59–70.
Park, K. S., & Lim, C. H. (1999). A structured methodology for comparative evaluation of user

interface designs using usability criteria and measures. International Journal of Industrial
Ergonomics, 23(5–6), 379–389.

Parnas, D. L. (1979). Designing software for ease of extension and contraction. IEEE Transactions
on Software Engineering, SE-5(2), 128–138.

Pfleeger, S. L. (1998). Software engineering: Theory and practice. Upper Saddle River, NJ:
Prentice-Hall.

Pressman, R. S. (2004). Software engineering: A practitioner’s approach (5th ed.). New York:
McGraw-Hill.

Stallinger, F., Neumann, R., Vollmar, J., & Plösch, R. (2011). Reuse and product-orientation as
key elements for systems engineering: aligning a reference model for the industrial solutions
business with ISO/IEC 15288, Proceedings of the 2011 International Conference on Software
and Systems Process (pp. 120–128). New York: ACM.

Stallinger, F., Plösch, R., Pomberger, G., & Vollmar, J. (2010). Integrating ISO/IEC 15504
conformant process assessment and organizational reuse enhancement. Journal of Software
Maintenance and Evolution: Research and Practice, 22(4), 307–324.

Watanabe, M., Yonemura, S., & Asano, Y. (2009). Investigation of web usability based on the
dialogue principles. In M. Kurosu (Ed.), Human Centered Design (pp. 825–832). Berlin:
Springer.

198 10 Extensibility, Portability, Reusability and Self-descriptiveness



Part V
Viability Concerns



Chapter 11
Understandability, Usability, Robustness
and Survivability

Abstract The design of systems and components during the design stage of the
systems life cycle requires specific purposeful actions to ensure effective designs
and viable systems. Designers are faced with a number of core viability concerns
that they must embed into the design to ensure the system remains viable. The
ability for a system to remain viable is critical if it is to continue to provide required
functionality for its stakeholders. Core viability concerns includes the non-func-
tional requirements for understandability, usability, robustness, and survivability.
Purposeful design requires an understanding of each of these requirements and how
to measure and evaluate each as part of an integrated systems design.

11.1 Introduction to Understandability, Usability,
Robustness and Survivability

This chapter will address four major topics (1) understandability, (2) usability, (3)
robustness, and (4) survivability. Each of these topics are associated with core
viability concerns in design endeavors. The chapter begins by reviewing under-
standability, its definitions, and how it is approached as an aspect of purposeful
systems design.

Section 11.3 defines usability, provides a perspective on why usability is a
desired characteristic, and describes the four attributes traditionally associated with
usability.

Section 11.4 in this chapter addresses robustness by providing a clear definition
and addressing robustness as an element of systems designs. Design and the con-
cepts associated with robustness conclude the section.

Section 11.5 defines survivability and its three major contributing elements. The
section also discusses 17 design principles that may be invoked when designing for
survivability.

Section 11.6 defines a measure and a means for measuring core viability con-
cerns that is a function of understandability, usability, robustness, and survivability.

© Springer International Publishing Switzerland 2015
K.M. Adams, Non-functional Requirements in Systems Analysis and Design,
Topics in Safety, Risk, Reliability and Quality 28,
DOI 10.1007/978-3-319-18344-2_11

201



The section completes by relating the proposed measure for core viability concerns
as a metric and includes a structural map for understandability, usability, robust-
ness, and survivability.

The chapter has a specific learning goal and associated objectives. The learning
goal of this chapter is to be able to identify how the attributes of adaptability,
flexibility, modifiability and scalability, and robustness that influence design in
systems endeavors. This chapter’s goal is supported by the following objectives:

• Define understandability.
• Discuss how understandability is achieved during purposeful systems design.
• Define usability.
• Describe the four attributes traditionally associated with usability.
• Define robustness.
• Discuss the element associated with designing for robustness.
• Define survivability.
• Describe the three elements of survivability.
• Discuss some of the design principles associated with survivability.
• Construct a structural map that relate core viability concerns to a specific metric

and measurable characteristic.
• Explain the significance of understandability, usability, robustness, and sur-

vivability in systems design endeavors.

The ability to achieve these objectives may be fulfilled by reviewing the materials
in the sections that follow.

11.2 Understandability

In this section the basics of understandability and how it is applied during systems
endeavors will be reviewed. The definition for the non-functional requirement for
understandability would seem to be a clear cut one and a topic of discussion when
developing systems. However, when a search of the many texts and scholarly articles
on design is conducted, little mention of understandability is revealed. In order to
improve upon this situation, and to be precise and to develop an appropriate measure
for usability, a common definition and associated terminology for understandability
must be constructed in order to describe its use in systems design endeavors.

11.2.1 Definition for Understandability

Understandability, from a systems engineering perspective, is defined as:

The ease with which a system can be comprehended at both the system-organizational and
detailed-statement levels. NOTE Understandability has to do with the system’s coherence at
a more general level than readability does. (IEEE and ISO/IEC 2010, p. 385)

202 11 Understandability, Usability, Robustness and Survivability



Understandability has additional definitions, shown in Table 11.1 that may provide
further meaning for the term when applied as a non-functional requirement for a
system.

Additional meaning for understandability may be obtained by reviewing the
definition for a closely related word, unambiguity. It is important to note that
“unambiguity and understandability are interrelated (according to some, they would
be even the same property), since, if a requirement is ambiguous, then it cannot be
properly understood” (Génova et al. 2013, p. 28). Two formal definitions for un-
ambiguity are presented in Table 11.2.

From these definitions, from a systems user’s perspective, understandability is
the ability to comprehend any portion of a system without difficulty. Having settled
on this basic definition, the next section will discuss the elements that contribute to
human understandability in systems.

11.2.2 Elements of Understandability

Empirical research has demonstrated that understandability in systems is the sum of
three components: (1) domain knowledge, (2) contribution from the system being
considered, and (3) chance. When understandability is evaluated using the sum of

Table 11.1 Additional definitions for understandability

Definition Source

“Code possesses the characteristic understandability to the extent that
its purpose is clear to the inspector. This implies that variable names
or symbols are used consistently, modules of code are self-descriptive,
and the control structure is simple or in accordance with a prescribed
standard, etc”

Boehm et al. (1976,
p. 605)

“Ease of understanding the function of a program and its functional
implementation.”

Blundell et al. (1997,
p. 237)

“It is related to the ease of use, respectively the effort for reading and
correctly interpreting a conceptual model, which is a cognitive process
of assigning meaning to the different parts of a conceptual model”

Houy et al. (2012,
p. 66)

“The requirements are correctly understood without difficulty” Génova et al. (2013,
p. 27)

Table 11.2 Definitions for unambiguity

Definition Source

“Described in terms that only allow a single interpretation, aided, if
necessary, by a definition”

IEEE and ISO/IEC
(2010, p. 384)

“There exists only one interpretation for each requirement” Génova et al. (2013,
p. 27)

11.2 Understandability 203



the three measures it is referred to as “absolute understandability” and when the
measure of understandability includes only the contribution made by the system and
its associated design artifacts, it is referred to as “relative understandability”
(Ottensooser et al. 2012, p. 600).

Knowing the three components that contribute to systems understandability, and
that relative understandability is a function of the system’s designers and their
ability to create comprehendible design artifacts, the next section will discuss how
understandability may be used as a purposeful element during systems design
endeavors. Each time the term understandability is mentioned in the remainder of
this chapter, it is referring to relative understandability, over which the system’s
designers have ultimate control.

11.2.3 Understandability in Systems Design

Knowing that the system’s designers are directly responsible for the understand-
ability of the system and that this is a function of readily comprehendible design
artifacts (e.g., user documentation, help screens, the functional flow of information;
application of business rules, etc.), the design must adopt formal approaches to
ensure understandability. Failure to adopt such an approach may lead to the fol-
lowing scenario for both users and the system’s maintainers.

If we can’t learn something, we won’t understand it. If we can’t understand something, we
can’t use it—at least not well enough to avoid creating a money pit. We can’t maintain a
system that we don’t understand—at least not easily. And we can’t make changes to our
system if we can’t understand how the system as a whole will work once the changes are
made. (Nazir and Khan 2012, p. 773)

In order to avoid this type of pitfall, systems designs must adopt and implement
a clear conceptual model for understandability. “To me, the most important part of a
successful design is the underlying conceptual model. This is the hard part of
design: formulating an appropriate conceptual model and then assuring that
everything else be consistent with it” (Norman 1999, p. 39).

In simple terms a conceptual model of a system is a mental model that people
use to represent their individual understanding of how the system works. The
conceptual or mental model is just that, it is a perceived structure for the real-world
system that they are encountering. The utility of the conceptual model includes both
(1) prediction—how things will behave and (2) functional understanding—rela-
tionships between the system’s components and the functions they perform. A
conceptual model “specifies both the static and the dynamic aspects of the appli-
cation domain. The static aspect describes the real world entities and their rela-
tionships and attributes. The dynamic aspect is modeled by processes and their
interfaces and behavior” (Kung 1989, p. 1177). The static portion of conceptual
models include things and their associated properties while the dynamic aspect
addresses events and their supporting processes. The static and dynamic perspec-
tives of conceptual models have four purposes (Kung and Solvberg 1986):

204 11 Understandability, Usability, Robustness and Survivability



1. supporting communication between systems designers and users,
2. helping analysts understand a domain,
3. providing input for the design process, and
4. documenting the original requirements for future reference.

A principle that is particularly useful in the construction of conceptual models is
The Metaphor Principle, which states:

People develop new cognitive structures by using metaphors to cognitive structures they
have already learned. (Carroll and Thomas 1982, p. 109)

A metaphor is defined as “a figure of speech (or a trope) in which a word of phrase
that literally denote one thing is used to denote another, thereby implicitly com-
paring the two things” (Audi 1999, p. 562). The metaphor is a powerful aid in the
development of conceptual models. The Metaphor Principle underlies the use of
metaphors as a powerful technique for accessing and using existing knowledge to
create a relationship that may be used to develop new knowledge structures. “To the
extent that a system can be explained to new users in terms of things that the user is
already familiar with, the system will be more readily comprehended” (Branscomb
and Thomas 1984, p. 233).

The development of a conceptual model is a design technique that allows the
system’s designers to clarify and consistently express the meaning of terms and
associated concepts for the system during the design processes and the equally
important operations and maintenance stages of the systems life cycle.
“Completeness, consistency, understandability and unambiguity depend on preci-
sion: a more precise language helps to write requirements that are more complete,
consistent, understandable and unambiguous” (Génova et al. 2013, p. 28).

Figure 11.1 shows the interrelationship of the designer’s and users’ conceptual
models and the real-world system image. The system image is how the system’s
designers communicate with the users of the system.

The designer’s conceptual model of the system, plus documentation, instruc-
tions, web-sites, help-screens, and signifiers (i.e., an indicator of system behavior
provided to a user) is what constitutes the system image. The system image is the
physical structure and information about the system from which the users construct
their own conceptual model of the system. Deviations between the designer’s
conceptual model and the user’s conceptual model are design faults and not only
reduce understandability, but ultimately, the next topic, system usability.

In conclusion, understandability is a purposeful design function that permits
systems to be comprehended by their users, with a minimum of effort, throughout
the entire systems’ life cycle. Norman, author of The Design of Everyday Things
(2013) and expert on human information processing states “The most important
design tool is that of coherence and understandability, which comes through an
explicit, perceivable conceptual model” (Norman 1999, p. 41).

The section that follows will address the non-functional requirement for
usability.

11.2 Understandability 205



11.3 Usability

In this section, the basics of usability and how it is applied during systems
endeavors will be addressed. As with many of the other non-functional require-
ments, usability sounds like a very clear concept. However, arriving at a common
definition and understanding for the term is problematic. Once again, take a minute
and review the index of a favorite systems engineering or software engineering text
and look for the word usability. Is it missing? It would not be surprising to hear that
the word is missing from just about every major text. Therefore, a careful review of
usability and its characteristics is in order to provide a common base for both
learning and its application during systems design endeavors.

11.3.1 Definition for Usability

Usability, from a systems engineering perspective, is defined as:

The ease with which a user can learn to operate, prepare inputs for, and interpret outputs of
a system or component. (IEEE and ISO/IEC 2010, p. 388)

Usability has additional definitions, from the literature, that are listed in Table 11.3
that may provide further help in understanding the term when applied as a non-
functional requirement for a system.

Conceptual
Model
plus

Information

Designer’s
Conceptual

Model

User’s
Conceptual

Model

SYSTEM
IMAGE

Physical structure and 
information about system

Documentation
Instructions
Web-sites
Help screens
Signifiers

Information

System Image = How the system’s 
designers communicate with the 

user’s of the system

Fig. 11.1 System image and the user’s and designer’s conceptual models

206 11 Understandability, Usability, Robustness and Survivability



From these definitions, usability is the degree of effort required to learn,
interpret, and effectively and efficiently operate a system. Having settled on this
basic definition, the next section will discuss how usability may be used as a
purposeful element during systems design endeavors.

11.3.2 Usability in Systems Design

As presented in the previous section, the system image is the physical structure and
information about the system from which the users construct their own conceptual
model of the system. When deviations exist between the intentions represented in
the designer’s conceptual model and the actual understanding encapsulated in the
user’s conceptual model (which is a direct result of the system image), under-
standability and system usability are diminished.

When usability in a system’s design is discussed, it is including design
parameters such as ease of use, ease of learning, error protection, error recovery,
and efficiency of performance (Maxwell 2001). Jakob Nielsen, one of the pioneers
of human centered design, points out the importance of usability and that “usability
has multiple components and is traditionally associated with these five attributes:

• Learnability: The system should be easy to learn so that the user can rapidly
start getting some work done with the system.

• Efficiency: The systems should be efficient to use, so that once the learner has
learned the system, a high level of productivity is possible.

Table 11.3 Additional definitions for usability

Definition Source

“Effort required to learn, operate, prepare input, and interpret
output of a program”

Cavano and McCall
(1978, p. 136)

“The rating is in terms of effort required to improve human
factors to acceptable level”

McCall and Matsumoto
(1980, p. 28)

“How easy is it to use.” “For example, operability arid training
are criteria for usability”

Bowen et al. (1985, pp. 2-
17 and 3-1)

“A set of attributes that bear on the effort needed for use, and on
the individual assessment of such use, by a stated or implied set
of users”

Bevan (2001, p. 537);
ISO/IEC (1991)

“Effort to learn, operate, prepare input and interpret output” Blundell et al. (1997,
p. 237)

“Degree to which a product or system can be used by specified
users to achieve specified goals with effectiveness, efficiency and
satisfaction in a specified context of use”

ISO/IEC (2011, 4.2.4)

“The characteristic usability subsumes the aspects of how easy
the system can be used. This includes how fast using it can be
learned but also if the interface is attractive and if challenged
persons are able to use it”

Wagner (2013, p. 62)

11.3 Usability 207



• Memorability: The system should be easy to remember, so that the casual user is
able to return to the system after some period of not using it, without having to
learn everything all over again.

• Errors: The system should have a low error rate, so that users make few errors
during the use of the system, and so that if they do make errors they can easily
recover from them. Further, catastrophic errors must not occur.

• Satisfaction: The system should be pleasant to use, so that users are subjectively
satisfied with using it; they like it.” (Nielsen 1993, p. 26)

During the engineering design stages of the systems life cycle, specific processes
that address usability elements are invoked. The processes are labeled usability
engineering or human centered design and provide formal methods for ensuring
that usability characteristics are specified early in the design stages and that they
continue to be measured throughout all of the subsequent life cycle stages.
Table 11.4 is a listing of some of the concerns during human-computer-interactions
(HCI) and associated sample measures.

As with understandability, usability involves a strong cognitive component
because users need to comprehend the system to some extent in order to utilize it.
The relationship between data and information is an important element of human
cognition.

Most data is of limited value until it is processed into a useable form. Processing data into a
useable form requires human intervention, most often accomplished with the use of an
information system. The output of this process is information. Information is contained in
descriptions, answers to questions that begin with such words as who, what, where, when,
and how many. These functional operations are performed on data and transform it into
information. (Hester and Adams 2014, p. 161)

During the data-information processing effort, the data must be presented in a
usable form (i.e., represented) before it becomes meaningful information. The
choice of representation directly affects the usability of the information. For
instance, “diagrams are famously better than text for some problems, worse for
others. One school of thought maintains that the difference lies in the cognitive
processes of locating and indexing the components of information” (Green and
Petre 1996, p. 134).

Designers must also be keenly aware of both the system domain and the user’s
functional requirements within that domain. Knowledge of the functional require-
ments and user domain assists the designer in selecting the attributes the system
should include in support of positive usability. “Usable products can be designed by
incorporating product features and attributes known to benefit users in particular
contexts of use” (Bevan 2001, p. 542).

In summary, systems designers have a number of methods and techniques at
their disposal that support the engineering of usable systems designs.

208 11 Understandability, Usability, Robustness and Survivability



We have many tactics to follow to help people understand how to use our designs. It is
important to be clear about the distinctions among them, for they have very different
functions and implications. Sloppy thinking about the concepts and tactics often leads to
sloppiness in design. And sloppiness in design translates into confusion for users. (Norman
1999, p. 41)

All of these factors discussed in this section must be addressed by the systems
designer when evaluating the decision to incorporate usability requirements as part
of the purposeful design during systems endeavors. The section that follows will
address system robustness.

11.4 Robustness

In this section, robustness and how it may be applied during systems endeavors will
be reviewed. As with many of the other non-functional requirements addressed so
far, robustness is a term that is infrequently used during discussions about systems
requirements. Based upon its infrequent use, a thorough review of both the formal

Table 11.4 Concerns during HCI [adapted from (Zhang et al. 2005, p. 522)]

HCI concern Attribute
area

Description Sample measure items

Physical Ergonomic System fits our physical
strengths and limitations
and does not cause harm
to our health

• Legible
• Audible
• Safe to use

Cognitive Usability System fits our cognitive
strengths and limitations
and functions as the
cognitive extension of our
brain

• Fewer errors and
easy recovery
• Easy to use
• Easy to remember
how to use
• Easy to learn

Affective, emotional,
and intrinsically
motivational

Satisfaction System satisfies our
aesthetic and emotional
needs, and is attractive for
its own sake

• Aesthetically
pleasing
• Engaging
• Trustworthy
• Satisfying and
enjoyable
• Entertaining and fun

Extrinsically
motivational

Usefulness Using the system would
provide rewording
consequences

• Support individual’s
tasks
• Can do some tasks
that would not so
without the system
• Extend one’s
capability
• Rewarding

11.3 Usability 209



definition from the systems vocabulary as well as some definitions from the liter-
ature is in order to solidify a common usage for the term in the sections that follow.

11.4.1 Definition for Robustness

Robustness, from a systems engineering perspective, is defined as:

The degree to which a system or component can function correctly in the presence of
invalid inputs or stressful environmental conditions cf. error tolerance, fault tolerance.
(IEEE and ISO/IEC 2010, p. 313)

Robustness has additional definitions, from the literature, that are listed in
Table 11.5 that may provide further help in understanding the term when applied as
a non-functional requirement for a system.

From these definitions, robustness is the ability of a system to maintain a desired
characteristic despite fluctuations caused by either internal changes or its envi-
ronment. Armed with this composite definition, robustness and how it may be used
as a purposeful element during systems design endeavors may be reviewed.

11.4.2 Robustness as an Element of Systems Design

Robustness, from an engineering perspective, is generally viewed as an operational
characteristic that must be achieved through a purposeful design in order to permit
the system to remain viable in real-world environments. Operation in real-world
environments requires the system to absorb perturbations caused by both its
intended users and the larger environment of which it is a part.

Table 11.5 Additional definitions for robustness

Definition Source

“Insensitivity to variation.” Box and Fung (1993, p. 503)

“The maintenance of some desired system characteristic
despite fluctuations in the behavior of its component parts
or its environment”

Carlson and Doyle (2002,
p. 2539)

“Characterizes a systems ability to be insensitive towards
changing environments. Robust systems deliver their
intended functionality under varying operating conditions
without being changed”

Fricke and Schulz (2005, p. 347)

“The state that is insensitive to variation” Hwang and Park (2005, p. 231)

“The ability to remain “constant” in parameters in spite of
system internal and external changes”

Ross et al. (2008, p. 249)

210 11 Understandability, Usability, Robustness and Survivability



In order to adequately ensure viability, the design process must account for both
the system’s users and the environments in which it will operate. It is important to
note that both users and environments are plural. This is because systems must be
designed to accommodate not only the currently required user base and defined
environment, but changes that will add new users and which will then position the
system within an ever-changing environment. Failure to do so will restrict the
system’s ability to operate and require expensive modification or changes to its
structure. The range of operating conditions specified for the system should be
broad enough to permit changes in users and environment without a significant loss
of system functionality. “A product with a wide range of permissible operating
conditions is more robust than a product that is more restrictive” (Schach 2002,
p. 148).

11.4.2.1 Robustness Concepts

The principle method used to achieve robustness in systems has been redundancy.
Redundancy “is key to flexibility and robustness since it enables capacity, func-
tionality, and performance options as well as fault-tolerance” (Fricke and Schulz
2005, p. 355). Traditional design methods ensure that a system’s elements (i.e., the
components of which it is constituted) have sufficient redundancy to permit oper-
ations when some number of systems elements fail or malfunction. This is the
traditional role of reliability during systems design and includes a purposeful
configuration and interconnection of systems elements.

Because robustness is achieved by very specific internal structures, when any of these
systems is disassembled, there is very little latitude in reassembly if a working system is
expected. Although large variations or even failures in components can be tolerated if they
are designed for through redundancy and feedback regulation, what is rarely tolerated,
because it is rarely a design requirement is nontrivial rearrangements of the interconnection
of internal parts. (Carlson and Doyle 2002, p. 2539)

During system design endeavors, the system’s designers purposefully engineer
subsystems and lower level components in the system’s hierarchy based on func-
tional and non-functional requirements in the design specifications. The design is
engineered module by module and the overall system reliability and robustness is a
function of the system’s architectural design. However, modular design and con-
struction often weakens robustness due to the emphasis on reduced coupling in
systems designs.

The robustness of the system is embedded in its modular design; each module employs
robust design principles and together the overall system maintains robustness. Robustness
obtained through redundancy may suffer through modularization due to the reduction of
interconnections inherent in modular design. (Ross et al. 2008, p. 258)

11.4 Robustness 211



11.4.2.2 Designing for Robustness

Clausing (2004) advocates the use of an operating window (OW) to define the
range within which a specific system characteristic is expected operate successfully.

The OW is the range in at least one critical functional variable of the system within which
the failure rate is less than some selected value. The range is bounded by thresholds (or a
threshold) beyond which the performance is degraded to some selected bad level. (Clausing
2004, p. 26)

The operating window (OW) is determined by perturbing the system through
introduction of a stress factor (typically termed noise) during operation. The stress
factor is used to degrade the performance of the system. In the earliest stages of the
system’s design, the initial configuration of the system is challenged by a stress test.
By challenging the system’s operation early in the design process, the design team
is able to verify initial failure rates and establish an operating window. The oper-
ating window is normally set between failure rates of 0.1 and 0.5 (Clausing 2004).
As the system’s design progresses and moves through the later stages of the design
process and into the early development stage, the system is once again challenged
by the stress test. The achievement of robustness may be evaluated by reviewing the
amount of expansion (or contraction) of the OW that resulted from efforts to
improve robustness during the final design and early development stages.

There is no one universally accepted method for assessing robustness in systems
design endeavors. Robustness assessment (Huang and Du 2007) and feasibility
robustness (Du and Chen 2000) are two methods that show promise when evalu-
ating robustness.

In summary, “the desire for robustness stems from the fact that change is
inevitable, both in reality and perception” (Ross et al. 2008, p. 247). Robustness is a
non-functional requirement that permits systems to remain viable in the presence of
both disturbances from within the system itself as well as those from its environ-
ment. Each of the factors mentioned in this section must be addressed by the
systems designer when evaluating the decision to ensure robustness as part of a
purposeful design during systems endeavors. The section that follows will address
system survivability.

11.5 Survivability

In this section the basics of system survivability and how it is applied during
systems endeavors will be addressed. Survivability, as a non-functional require-
ment, is a term that is very rarely used during discussions about systems require-
ments. Because of its infrequent use in ordinary conversation, a review the formal
systems vocabulary definition and some definitions from the literature is required.
This will solidify a common meaning for the term during discussions of its use and
application during systems design endeavors.

212 11 Understandability, Usability, Robustness and Survivability



11.5.1 Definition for Survivability

Survivability, from a systems engineering perspective, is defined as:

The degree to which a product or system continues to fulfill its mission by providing
essential services in a timely manner in spite of the presence of attacks. cf. recoverability.
[SE VOCAB]

Survivability’s additional definitions are taken from the literature and are listed in
Table 11.6. All of these definitions may be used to better understand the term when
applied as a non-functional requirement for a system.

From these definitions survivability is the ability of a system to continue to
operate in the face of attacks or accidental failures or errors. Having settled on this
basic definition, the next section will discuss how survivability is achieved during
systems design endeavors.

11.5.2 Survivability Concepts

Generally, systems must remain survivable at all times. However, there are specific
times when system survivability requirements may be relaxed. This includes times
when the system is removed from operation (e.g., for upgrade, repair, or overhaul)
or is placed in a reduced state of readiness (e.g., standby mode or training). The
systems stakeholders should be queried about these types of situations as part of the
requirements analysis process. Knowledge of limited periods during which the
system does not have to remain survivable are important elements of the conceptual
design for the system.

During the conceptual design of the system a number of additional items must be
considered as part of the survivability approach. “Survivability requires more than
simply a technical solution, but rather an integrated collaboration of technical
aspects, business considerations and analysis techniques” (Redman et al. 2005,
p. 187).

Table 11.6 Additional definitions for survivability

Definition Source

“The capability of a system to fulfill its mission, in a timely
manner, in the presence of attacks, failures, or accidents”

Ellison et al. (1997, p. 2)

“The capability of a system to fulfill its mission, in a timely
manner and in the presence of attacks and failures”

Redman et al. (2005,
p. 184)

“The ability of a system to tolerate intentional attacks or
accidental failures or errors”

Korczaka and Levitin
(2007, p. 269)

“The ability of a system to minimize the impact of a finite-
duration disturbance on value delivery”

Mekdeci et al. (2011,
p. 565)

11.5 Survivability 213



The purposeful design of highly survivable systems requires specialized
knowledge. Individuals who practice survivability engineering are focused on
minimizing the impact of external disturbances (i.e. from the environment) on the
system’s ability to operate satisfactorily in the presence of attacks or accidental
failures or errors. Conceptually, designers may achieve survivability by addressing
one of three types of event (Westrum 2006):

• Type I Event—Reducing Susceptibility: reducing the probability that an actual
disturbance may impact the system.

• Type II Event—Reducing Vulnerability: reducing the amount of value lost by
the system or its stakeholders as a direct result of an actual disturbance.

• Type III Event—Improving Resilience or Recoverability: increasing the ability
to return the system to service in a timely manner after an actual disturbance.

The section that follows will discuss how specific design principles may be used to
enhance system survivability by addressing the three survivability event elements:
(1) susceptibility, (2) vulnerability, and (3) resilience.

11.5.3 Survivability in Systems Design

In order to successfully incorporate considerations that will address susceptibility,
vulnerability, and resilience during a systems design a review of how each surviv-
ability element may be addressed as an element of a purposeful design is required.
There are several design approaches that propose frameworks for addressing system
survivability that include both (1) the integrated engineering framework (Ellison
et al. 1997) and (2) the bio-networking architecture (Nakano and Suda 2007).
However, the most impressive work has been done by Mathew Richards and his
colleagues at the Massachusetts Institute of Technology (Richards et al. 2008, 2009)
in which they focus on the development of design principles that address each of the
three survivability elements. Table 11.7 displays the three survivability elements and
the associated design principles that may be invoked when addressing survivability
as a purposeful activity during system design endeavors.

By focusing on the three elements of survivability and their associated design
principles, the design team has an improved ability to address systems concepts
based on foundational principles. By basing understanding on established design
principles the designers are able to expand their range of alternatives throughout the
design process.

In summary, “Survivability is particularly concerned with the successful delivery
of system essential services, to ultimately fulfill mission objectives” (Redman et al.
2005, p. 185). As a non-functional requirement, survivability addresses the
requirement to provide the capability to continue systems operations in the face of
attacks or accidental failures or errors. The next section will discuss how the non-
functional requirements for understandability, usability, robustness, and surviv-
ability may be measured and evaluated.

214 11 Understandability, Usability, Robustness and Survivability



11.6 A Method for Evaluating Understandability, Usability,
Robustness and Survivability

The ability to understand, measure, and evaluate the non-functional requirements for
understandability, usability, robustness, and survivability when included as require-
ments in a system is a valuable capability. Having the ability to measure and evaluate
each of these non-functional requirements provides additional perspectives and insight
into the future performance and viability of all elements of the system being designed.

Based upon the understanding developed in the previous sections on under-
standability, usability, robustness, and survivability and how they are used in systems
design endeavors, a technique for measure may be developed. Once again, this is a
tough assignment because each of these non-functional requirements are subjective,
qualitative measures which differ greatly from most of the objective, quantitative

Table 11.7 Survivability elements and associated design principles

Survivability
element

Design
principle

Design principle definition

Susceptibility Prevention Suppression of a future or potential future disturbance

Mobility Relocation to avoid detection by an external change agent

Concealment Reduction of the visibility of a system from an external
change agent

Deterrence Dissuasion of a rational external change agent from
committing a disturbance

Preemption Suppression of an imminent disturbance

Avoidance Maneuverability away from an ongoing disturbance

Vulnerability Hardness Resistance of a system to deformation

Redundancy Duplication of critical system functions to increase
reliability

Margin Allowance of extra capability for maintaining value
delivery despite losses

Heterogeneity Variation in system elements to mitigate homogeneous
disturbances

Distribution Separation of critical system elements to mitigate local
disturbances

Failure mode
reduction

Elimination of system hazards through intrinsic design:
substitution, simplification, decoupling, and reduction of
hazardous materials

Fail-safe Prevention or delay of degradation via physics of incipient
failure

Evolution Alteration of system elements to reduce disturbance
effectiveness

Containment Isolation or minimization of the propagation of failure

Resilience Replacement Substitution of system elements to improve value delivery

Repair Restoration of system to improve value delivery

11.6 A Method for Evaluating Understandability, Usability, … 215



measures have developed for many of the other non-functional requirements. In order
to understand how to approach a subjective, qualitative measure, a review of how to
construct and measure subjective, qualitative objects will be presented.

11.6.1 Development of Measurement Scales

As with the other qualitative non-functional requirements, in order to satisfactorily
evaluate understandability, usability, robustness, and survivability, questions that
address both the presence (yes or no) and quality of the effort (how well) to provide
each of the non-functional requirements during system design endeavors will need
to be addressed. To support this goal objects with a specific measureable attribute
will be developed. The establishment of the measures is important because they are
the link between what is observed in the real-world, and as such represent the
empirical facts about the system and the constructs for understandability, usability,
robustness, and survivability devised as evaluation points.

11.6.1.1 Scales for Understandability, Usability, Robustness
and Survivability

As discussed during the development of the scales for traceability (see Chap. 6),
system safety (see Chap. 8), changeability (see Chap. 9), and adaptation concerns (see
Chap. 10), the selection of a measurement scale is an important element in the
development of an adequate measure. Because none of the non-functional require-
ments selected as criteria has a natural origin or empirically defined distance, an
ordinal scale should be selected as an appropriate scale for measuring system exten-
sibility, portability, reusability, and self-descriptiveness. In order to ensure improved
reliability, a five-point Likert scale will be invoked (Lissitz and Green 1975).

11.6.1.2 Proposed Scales

As mentioned in previous chapters, scales are characterized as either a proposed
scale or a scale. “A proposed scale is one that some investigator(s) put forward as
having the requisite properties, and if it is indeed shown to have them, then it is
recognized as a scale” (Cliff 1993, p. 65). In this chapter, the use of the word scale
is referring to proposed scales.

11.6.1.3 Proposed Measurement Scale for Understandability, Usability,
Robustness and Survivability

Armed with a construct, measurement attributes, and an appropriate scale type, the
measures for understandability, usability, robustness, and survivability are

216 11 Understandability, Usability, Robustness and Survivability

http://dx.doi.org/10.1007/978-3-319-18344-2_6
http://dx.doi.org/10.1007/978-3-319-18344-2_8
http://dx.doi.org/10.1007/978-3-319-18344-2_9
http://dx.doi.org/10.1007/978-3-319-18344-2_10


constructed. In order to evaluate these, questions that address both the presence (yes
or no) and quality of the effort (how well) to provide effective and meaningful
levels of understandability, usability, robustness, and survivability as an element of
the system’s design must be answered. Each of the four criteria (i.e., the mea-
surement constructs) has a specific question, shown in Table 11.8, which may be
used to evaluate each one’s contribution to system adaptation concerns.

The answer to each question in Table 11.8 will be scored using the five-point
Likert measures in Table 11.9.

The summation of the four constructs in Eq. 11.1 will be the measure of the
degree of core viability in a system design endeavor.

Expanded Equation for System Viablity Concerns

Vcore ¼ Vunder þ Vuse þ Vrobust þ Vsurviv ð11:1Þ

11.6.2 Measuring Understandability, Usability, Robustness
and Survivability

At the end of Chap. 3, the importance of being able to measure each non-functional
attribute was stressed as an important feature. A structural mapping that relates core
viability concerns to four specific metrics and measurement entities is required. The
four-level construct for core viability concerns is presented in Table 11.10.

Table 11.9 Viability measurement question Likert scale

Measure Descriptor Measurement criteria

0.0 None No objective quality evidence is present

0.5 Limited Limited objective quality evidence is present

1.0 Nominal Nominal objective quality evidence is present

1.5 Wide Wide objective quality evidence is present

2.0 Extensive Extensive objective quality evidence is present

Table 11.8 Measurement questions for viability

Measurement
construct

Adaptation concern for measurement

Vunder Can a person comprehend any portion of a system without difficulty?

Vuse What is the degree of effort required to learn, interpret, and effectively and
efficiently operate a system?

Vrobust Does the system demonstrate the ability to maintain a desired
characteristic despite fluctuations caused by either internal changes or its
environment?

Vsurviv Does the system demonstrate the ability to continue to operate in the face
of attacks or accidental failures or errors?

11.6 A Method for Evaluating Understandability, Usability, … 217

http://dx.doi.org/10.1007/978-3-319-18344-2_3


11.7 Summary

In this chapter, the core adaptation concerns contained in the four non-functional
requirements: understandability, usability, robustness, and survivability have been
addressed. In each case, a formal definition has been provided along with additional
explanatory definitions and terms. The ability to effect each of the four the non-
functional requirements during the design process has also been addressed. Finally,
a formal metric and measurement characteristic have been proposed for evaluating
design concerns through metrics for understandability, usability, robustness, and
survivability.

The chapter that follows will address additional non-functional requirements
associated with system viability.

References

Audi, R. (Ed.). (1999). Cambridge dictionary of philosophy (2nd ed.). New York: Cambridge
University Press.

Bevan, N. (2001). International standards for HCI and usability. International Journal of Human-
Computer Studies, 55(4), 533–552.

Blundell, J. K., Hines, M. L., & Stach, J. (1997). The measurement of software design quality.
Annals of Software Engineering, 4(1), 235–255.

Boehm, B. W., Brown, J. R., & Lipow, M. (1976). Quantitative evaluation of software quality. In
R. T. Yeh & C. V. Ramamoorthy (Eds.), Proceedings of the 2nd International Conference on
Software Engineering (pp. 592–605). Los Alamitos, CA: IEEE Computer Society Press.

Bowen, T. P., Wigle, G. B., & Tsai, J. T. (1985). Specification of software quality attributes:
Software quality evaluation guidebook (RADC-TR-85-37, Vol. III). Griffiss Air Force Base,
NY: Rome Air Development Center.

Box, G. E. P., & Fung, C. A. (1993). Quality quandries: Is your robust design procedure robust?
Quality Engineering, 6(3), 503–514.

Branscomb, L. M., & Thomas, J. C. (1984). Ease of use: A system design challenge. IBM Systems
Journal, 23(3), 224–235.

Carlson, J. M., & Doyle, J. (2002). Complexity and robustness. Proceedings of the National
Academy of Sciences of the United States of America, 99(3), 2538–2545.

Carroll, J. M., & Thomas, J. C. (1982). Metaphor and the cognitive representation of computing
systems. IEEE Transactions on Systems, Man and Cybernetics, 12(2), 107–116.

Cavano, J. P., & McCall, J. A. (1978). A framework for the measurement of software quality.
SIGSOFT Software Engineering Notes, 3(5), 133–139.

Table 11.10 Four-level structural map for measuring core viability concerns

Level Role

Concern Systems viability

Attribute Core viability concerns

Metrics Understandability, usability, robustness and survivability

Measurable
characteristics

Sum of (1) understandability (Vunder), (2) usability (Vuse), (3)
robustness (Vrobust), and (4) survivability (Vsurviv)

218 11 Understandability, Usability, Robustness and Survivability



Clausing, D. P. (2004). Operating window: An engineering measure for robustness.
Technometrics, 46(1), 25–29.

Cliff, N. (1993). What is and isn’t measurement. In G. Keren & C. Lewis (Eds.), A Handbook for
Data Analysis in the Behavioral Sciences: Methodological Issues (pp. 59–93). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Du, X., & Chen, W. (2000). Towards a better understanding of modeling feasibility robustness in
engineering design. Journal of Mechanical Design, 122(4), 385–394.

Ellison, R., Fisher, D., Linger, R., Lipson, H., Longstaff, T., & Mead, N. (1997). Survivable
network systems: An emerging discipline (CMU/SEI-97-TR-013). Pittsburgh: Carnegie Mellon
University.

Fricke, E., & Schulz, A. P. (2005). Design for changeability (DfC): Principles to enable changes in
systems throughout their entire lifecycle. Systems Engineering, 8(4), 342–359.

Génova, G., Fuentes, J., Llorens, J., Hurtado, O., & Moreno, V. (2013). A framework to measure
and improve the quality of textual requirements. Requirements Engineering, 18(1), 25–41.

Green, T. R. G., & Petre, M. (1996). Usability analysis of visual programming environments: A
‘cognitive dimensions’ framework. Journal of Visual Languages & Computing, 7(2), 131–174.

Hester, P. T., & Adams, K. M. (2014). Systemic thinking—fundamentals for understanding
problems and messes. New York: Springer.

Houy, C., Fettke, P., & Loos, P. (2012). Understanding understandability of conceptual models—
What are we actually talking about? In P. Atzeni, D. Cheung, & S. Ram (Eds.), Conceptual
modeling (pp. 64–77). Berlin: Springer.

Huang, B., & Du, X. (2007). Analytical robustness assessment for robust design. Structural and
Multidisciplinary Optimization, 34(2), 123–137.

Hwang, K. H., & Park, G. J. (2005). Development of a robust design process using a new
robustness index. In Proceedings of the ASME 2005 International Design Engineering
Technical Conferences and Computers and Information in Engineering Conference (Vol. 2:
31st Design Automation Conference, Parts A and B, pp. 231–241). New York: American
Society of Mechanical Engineers.

IEEE, & ISO/IEC. (2010). IEEE and ISO/IEC Standard 24765: Systems and software engineering
—Vocabulary. New York and Geneva: Institute of Electrical and Electronics Engineers and the
International Organization for Standardization and the International Electrotechnical
Commission.

ISO/IEC. (1991). ISO/IEC Standard 9126: Software product evaluation—Quality characteristics
and guidelines for their use. Geneva: International Organization for Standardization and the
International Electrotechnical Commission.

ISO/IEC. (2011). ISO/IEC Standard 25010: Systems and software engineering—Systems and
software quality requirements and evaluation (SQuaRE)—System and software quality models.
Geneva: International Organization for Standardization and the International Electrotechnical
Commission.

Korczaka, E., & Levitin, G. (2007). Survivability of systems under multiple factor impact.
Reliability Engineering & System Safety, 92(2), 269–274.

Kung, C. H. (1989). Conceptual modeling in the context of development. IEEE Transactions on
Software Engineering, 15(10), 1176–1187.

Kung, C. H., & Solvberg, A. (1986). Activity modeling and behavior modeling of information
systems. In T. W. Olle, H. G. Sol, & A. A. Verrijn-Stuart (Eds.), Information system design
methodologies: Improving the practice (pp. 145–172). North Holland: Elsevier.

Lissitz, R. W., & Green, S. B. (1975). Effect of the number of scale points on reliability: A Monte
Carlo approach. Journal of Applied Psychology, 60(1), 10–13.

Maxwell, K. (2001). The maturation of HCI: Moving beyond usability toward holistic interaction.
In J. M. Carroll (Ed.), Human-computer interaction in the new millennium (pp. 191–209). New
York: Addison-Wesley.

McCall, J. A., & Matsumoto, M. T. (1980). Software quality measurement manual (RADC-TR-80-
109-Vol-2). Griffiss Air Force Base, NY: Rome Air Development Center.

References 219



Mekdeci, B., Ross, A. M., Rhodes, D. H., & Hastings, D. E. (2011). Examining survivability of
systems of systems. In Proceedings of the 21st Annual International Symposium of the
International Council on Systems Engineering (Vol. 1, pp. 564–576). San Diego, CA:
INCOSE-International Council on Systems Engineering.

Nakano, T., & Suda, T. (2007). Applying biological principles to designs of network services.
Applied Soft Computing, 7(3), 870–878.

Nazir, M., & Khan, R. A. (2012). An empirical validation of understandability quantification
model. Procedia Technology, 4, 772–777.

Nielsen, J. (1993). Usability engineering. Cambridge: Academic Press Professional.
Norman, D. A. (1999). Affordance, conventions, and design. Interactions, 6(3), 38–43.
Norman, D. A. (2013). The design of everyday things (Revised and expanded ed.). New York:

Basic Books.
Ottensooser, A., Fekete, A., Reijers, H. A., Mendling, J., & Menictas, C. (2012). Making sense of

business process descriptions: An experimental comparison of graphical and textual notations.
Journal of Systems and Software, 85(3), 596–606.

Redman, J., Warren, M., & Hutchinson, W. (2005). System survivability: A critical security
problem. Information Management & Computer Security, 13(3), 182–188.

Richards, M. G., Ross, A. M., Hastings, D. E., & Rhodes, D. H. (2008). Empirical validation of
design principles for survivable system architecture. In Proceedings of the 2nd Annual IEEE
Systems Conference (pp. 1–8).

Richards, M. G., Ross, A. M., Hastings, D. E., & Rhodes, D. H. (2009). Survivability design
principles for enhanced concept generation and evaluation. In Proceedings of the 19th Annual
INCOSE International Symposium (Vol. 2, pp. 1055–1070). San Diego, CA: INCOSE-
International Council on Systems Engineering.

Ross, A. M., Rhodes, D. H., & Hastings, D. E. (2008). Defining changeability: Reconciling
flexibility, adaptability, scalability, modifiability, and robustness for maintaining system
lifecycle value. Systems Engineering, 11(3), 246–262.

Schach, S. R. (2002). Object-oriented and classical software engineering (5th ed.). New York:
McGraw-Hill.

Wagner, S. (2013). Quality models software product quality control (pp. 29–89). Berlin: Springer.
Westrum, R. (2006). A typology of resilience situations. In E. Hollnagel, D. D. Woods, & N.

Leveson (Eds.), Resilience engineering: Concepts and precepts (pp. 55–65). Burlington:
Ashgate.

Zhang, P., Carey, J., Te’eni, D., & Tremaine, M. (2005). Integrating human-computer interaction
development into the systems development life cycle: A methodology. Communications of the
Association for Information Systems, 15, 512–543.

220 11 Understandability, Usability, Robustness and Survivability



Chapter 12
Accuracy, Correctness, Efficiency,
and Integrity

Abstract The design of systems and components during the design stage of the
systems life cycle requires specific purposeful actions to ensure effective designs
and viable systems. Designers are faced with a number of other viability concerns
that they must embed into the design to ensure the system remains viable. The
ability for a system to remain viable is critical if it is to continue to provide required
functionality for its stakeholders. Other viability concerns includes the non-func-
tional requirements for accuracy, correctness, efficiency, and integrity. Purposeful
design requires an understanding of each of these requirements and how to measure
and evaluate each as part of an integrated systems design.

12.1 Introduction to Accuracy, Correctness, Efficiency,
and Integrity

This chapter will address four major topics (1) accuracy, (2) correctness, (3) effi-
ciency, and (4) integrity. Each of these topics are associated with other viability
concerns in design endeavors. The chapter begins by reviewing accuracy, its def-
initions, and concepts related to the reference value, precision, and trueness. The
section will conclude with a discussion of how accuracy is approached as an aspect
of purposeful systems design.

Section 12.2 will define correctness and demonstrate how both verification and
validation activities provide evaluation opportunities to ensure correctness. The
section will also include four design principles that support the development of
systems that correctly represent the specified requirements for the system being
addressed by the design team.

Section 12.3 in this lecture will address efficiency by providing a clear definition
for efficiency and establishes a proxy for system efficiency. The section will con-
clude by detailing a generic attribute and method for evaluating efficiency in sys-
tems design endeavors.

© Springer International Publishing Switzerland 2015
K.M. Adams, Non-functional Requirements in Systems Analysis and Design,
Topics in Safety, Risk, Reliability and Quality 28,
DOI 10.1007/978-3-319-18344-2_12

221



Section 12.4 will define integrity and the concept that underlies its use as a non-
functional requirements in systems designs. The section will also discuss 33
security design principles, and the life cycle stages where they should be invoked
when designing for systems for integrity.

Section 12.7 will define a measure and a means for measuring other viability
concerns that is a function of accuracy, correctness, efficiency, and integrity. The
section will conclude by relating the proposed measure for other viability concerns
as a metric and will include a structural map for accuracy, correctness, efficiency,
and integrity.

The chapter has a specific learning goal and associated objectives. The learning
goal of this chapter is to be able to understand the other viability concerns and to
identify how the non-functional requirements of accuracy, correctness, efficiency,
and integrity affect design in systems endeavors. This chapter’s goal is supported by
the following objectives:

• Define accuracy.
• Discuss how accuracy is achieved during purposeful systems design.
• Define correctness.
• Describe how verification and validation are related to correctness.
• Describe the design principles that may be used to support correctness in design

endeavors.
• Define efficiency.
• Discuss how resources may be used as a proxy for efficiency in systems design

endeavors.
• Define integrity.
• Discuss some of the 33 security design principles associated with integrity is

systems design endeavors.
• Construct a structural map that relate other viability concerns to a specific metric

and measureable characteristic.
• Explain the significance of accuracy, correctness, efficiency, and integrity in

systems design endeavors.

The ability to achieve these objectives may be fulfilled by reviewing the materials
in the sections that follow.

12.2 Accuracy

In this section the basics of accuracy and how it is applied during systems
endeavors will be discussed. The definition for the non-functional requirement
termed accuracy would, on the surface, seem to be straight forward. However, this
very common term is routinely used incorrectly and is often misrepresented as
precision. To improve understanding of accuracy and to use this term as it was
intended, both a common definition and associated terminology will be constructed

222 12 Accuracy, Correctness, Efficiency, and Integrity



and a detailed graphic will be used to represent a concept for accuracy. This is an
important first step if accuracy is to be understood as an element of systems design
endeavors.

12.2.1 Definition for Accuracy

Accuracy, from a systems engineering perspective, is defined as:

1. A qualitative assessment of correctness, or freedom from error. 2. A quantitative measure
of the magnitude of error. (IEEE and ISO/IEC 2010, p. 6)

Accuracy has additional definitions, shown in Table 12.1. that may provide further
meaning for the term when applied as a non-functional requirement for a system.

Table 12.1 Additional definitions for accuracy

Definition Source

“The measurement of the degree to which a given measurement
may deviate from the truth”

Churchman and Ratoosh
(1959, p. 92)

“Accuracy is a characteristic of the measurement result itself” De Bièvre (2006, p. 645)

“A qualitative performance characteristic expressing the
closeness of agreement between a measurement result and the
value of the measurand”

Menditto et al. (2007,
p. 46)

“The general meaning of accuracy is the proximity of a value or a
statistic to a reference value. More specifically, it measures the
proximity of the estimator T of the unknown parameter θ to the
true value of θ. The accuracy of an estimator can be measured by
the expected value of the squared deviation between T and θ, in
other words: E[(T − θ)2]”
Accuracy should not be confused with the term precision, which
indicates the degree of exactness of a measure and is usually
indicated by the number of decimals after the comma

Dodge (2008, p. 1–1)

“Closeness of agreement between a measured quantity value and
a true quantity value of a measurand
NOTE 1 The concept ‘measurement accuracy’ is not a quantity
and is not given a numerical quantity value. A measurement is
said to be more accurate when it offers a smaller measurement
error
NOTE 2 The term “measurement accuracy” should not be used
for measurement trueness and the term “measurement precision”
should not be used for ‘measurement accuracy’, which, however,
is related to both these concepts
NOTE 3 ‘Measurement accuracy’ is sometimes understood as
closeness of agreement between measured quantity values that
are being attributed to the measurand”

JCGM (2012, p. 21)

“Reflects the closeness between the measurement result and the
true value of the measurand”

Rabinovich (2013, p. 2)

12.2 Accuracy 223



These definitions may be adequate for metrologists and scientists who engage in
measurement activities on a daily basis. However, for those engaged in engineering
and design activities, the definitions in Table 12.1 require additional description if
accuracy is to be properly invoked as a meaningful non-functional requirement in a
design endeavor. The next section will provide additional context for the term
accuracy in support of a common meaning.

12.2.2 Accuracy in Measurement

The discussion of accuracy must be placed in context. The context in which
accuracy will be addressed is that of testing and the associated elements which
include the measurement method and the larger measurement process.

12.2.2.1 Measurement Method

A measurement method “consists of a prescription or written procedure by which
one can go about the business of taking measurements on the properties of some
physical material” (Murphy 1969, p. 357). The measurement or test method is a
formal element specified in the systems design.

12.2.2.2 Measurement Process

The measurement process includes a number of elements that include the: “(a)
measurement method, (b) a system of causes, (c) repetition, and (d) capability of
control” (Murphy 1969, p. 357). The measurement process is how the measurement
method is implemented. The system of causes includes the resources required to
execute the test (i.e., materials, test personnel, instruments, test environment, and
specific time). An important element is the notion of control. The test must be
capable of statistical control if it is included as part of a formal measurement
process. Without the presence of statistical control the process cannot use the
routine statistical measures that permit us to discuss both accuracy and precision.

12.2.2.3 Accuracy as a Qualitative Performance Characteristic

All measurement and testing occurs with respect to a reference level or target value.
The target value is most often established as either (1) a property of a material or (2)
a physical characteristic of a system component. The target value serves as the
design value against which we will measure during the conduct of a test. Accuracy
connotes the agreement between the long-run average of the actual measurements
and the target value. Accuracy is “a qualitative performance characteristic

224 12 Accuracy, Correctness, Efficiency, and Integrity



expressing the closeness of agreement between a measurement result and the value
of the measurand” (Menditto et al. 2007). The qualitative performance characteristic
of the measurement, which is accuracy, includes both precision and trueness.

12.2.2.4 Accuracy: Precision and Trueness

Accuracy is described by both precision and trueness. The definitions for each term
are as follows:

• Precision: “Closeness of agreement between indications or measured quantity
values obtained by replicate measurements on the same or similar objects under
specified conditions” (JCGM 2012, p. 22)

• Trueness: “Closeness of agreement between the average of an infinite number of
replicate measured quantity values and a reference quantity value” (JCGM
2012, p. 21).

Figure 12.1 is a depiction of how precision and trueness are used to describe the
accuracy of a measurement context. From both the depiction in Fig. 12.1 and a
knowledge of basic statistics, it is clear that the “standard deviation is an index of
precision” (Murphy 1969, p. 360). The process improvement notion of Six Sigma,
popularized by efforts at Motorola (Hahn et al. 1999) is based upon a precision that
is a multiple of six standard deviations (6σ) which signifies a process which is said
to be under control, having a minuscule rejection rate of 0.00034 % with an
associated yield of 99.99966 %.

Reference
Value

Probability
Density

Measurement
Value

Trueness

Precision

Fig. 12.1 Precision and trueness in a measurement context

12.2 Accuracy 225



12.2.2.5 Accuracy, Precision, Trueness and Error

There is a relationship between the types of errors present during measurement and
testing endeavors and the associated performance characteristics represented by
accuracy, precision, and trueness.

• Trueness Errors: The difference between the mean of the measurement process
and the reference value is termed a systematic error and is expressed by a
quantitative value we term bias.

• Precision Errors: The measurements that contribute to the mean and exist
within some index of precision are caused by random errors and are expressed
by a quantitative value we term the standard deviation.

• Accuracy Errors: The total error encountered during the measurement process,
attributable to both systematic and random errors and is expressed as mea-
surement uncertainty.

The relationship between these types of errors, performance characteristics, and the
quantitative expression is depicted in Fig. 12.2. It is important to recognize that the
accuracy in a measurement is a parameter that expresses the measurement uncer-
tainty or more precisely, “the dispersion of the values that could reasonably be
attributed to the measurand” (i.e. the quantity to be measured) (Menditto et al. 2007,
p. 46).

Measurement uncertainty conveys more correctly the slight doubt which is attached to any
measurement result. Thus a doubtful meaning of ‘accuracy’ (doubtful because tied to ‘true
value’) is replaced by a practical one: ‘measurement uncertainty’. (De Bièvre 2006, p. 645)

TYPE OF 
ERROR

Systematic
Error

Bias

TOTAL
ERROR

Random
Error

Measurement
Uncertainty

Standard
Deviation

Trueness PrecisionAccuracy
PERFORMANCE

CHARACTERISTIC

QUANTITATIVE
EXPRESSION

Fig. 12.2 Relationships between type of error, performance characteristic and quantitative
expression

226 12 Accuracy, Correctness, Efficiency, and Integrity



Finally, it is important to note that the precision of a measurement process is related
to both repeatability and reproducibility. Repeatability addresses short-time repe-
tition of the measurement method by the same test personnel while reproducibility
addresses the measurement process by a different group of test personnel that
applies the same measurement method.

12.2.3 Accuracy in Systems Design

In this section the specific tasks and activities accomplished during the design stage
of the systems life cycle that require accuracy as an element of the performance
specification will be identified. Accuracy is an important non-functional require-
ment where measures of effectiveness (MOE), measures of performance (MOP),
and technical performance measures (TPM) are required. Accuracy is a factor in
determining system performance requirements and is addressed in IEEE Standard
1220—Systems engineering—Application and management of the systems engi-
neering process (IEEE 2005) specifically in the following areas.

12.2.3.1 Conceptual Design Stage Activities Where Accuracy
is a Consideration

Section 5.1.1.3 in IEEE Standard 1220 (IEEE 2005) requires the following:

Identify the subsystems of each product and define the design and functional interface
requirements among the subsystems and their corresponding performance requirements and
design constraints. System product functional and performance requirements should be
allocated among the subsystems so as to assure requirement traceability from the system
products to their respective subsystems, and from subsystems to their parent product. (IEEE
2005, pp. 21–22)

The design team develops top-level performance measures that are labeled
Measures of Effectiveness (MOE). MOEs are defined as:

Standards against which the capability of a solution to meet the needs of a problem may be
judged. The standards are specific properties that any potential solution must exhibit to
some extent. MOEs are independent of any solution and do not specify performance of
criteria. (Sproles 2001, p. 146)

MOEs have two key characteristics: (1) the ability to be tested, and (2) that they can
be quantified in some manner. For example, if a team is tasked with designing an
electric vehicle a valid MOE may be stated as: The electric vehicle must be able to
drive fully loaded from Norfolk, VA to Washington, DC without recharging. This
MOE is clearly measurable and quantifiable. MOEs are typically supported by a
supporting lower-level hierarchy of Measures of Performance (MOP).

12.2 Accuracy 227



12.2.3.2 Preliminary Design Stage Activities Where Accuracy
is a Consideration

Section 5.2.1.1 in IEEE Standard 1220 (IEEE 2005) requires the following:

Subsystem performance requirements are allocated among the assemblies so as to assure
requirements traceability from subsystems to appropriate assemblies, and from assemblies
to the parent subsystem. (IEEE 2005, p. 25)

Section 5.2.1.2 in IEEE Standard 1220 (IEEE 2005) requires the following:

Assembly performance requirements are allocated among the components so as to assure
requirement traceability from the assemblies to their respective components, and from
components to their parent assembly. (IEEE 2005, p. 25)

The design team develops mid-level performance measures that are labeled
Measures of Performance (MOP). MOPs are defined as:

Performance requirements describe how well functional requirements must be performed to
satisfy the MOEs. These performance requirements are the MOPs that are allocated to
subfunctions during functional decomposition analysis and that are the criteria against which
design solutions [derived from synthesis (see 6.5)] are measured. There are typically several
MOPs for each MOE, which bind the acceptable performance envelope. (IEEE 2005, p. 41)

In this case the performance requirement for the electric vehicle that was used as an
example during the establishment of the type of MOE in the earlier conceptual
design phase can be clearly traced. In the example the MOE stated that the electric
vehicle must be able to drive fully loaded from Norfolk, VA to Washington, DC
without recharging. In support of this requirement, more than one MOP may be
developed. An example of a supporting MOP is: the vehicle range must be equal to
or greater than 250 miles. This establishes a more precise requirement than the
distance from Norfolk, VA to Washington, DC. MOPs are supported by any
number of specific Technical Performance Measures (TPMs).

12.2.3.3 Detailed Design Stage Activities Where Accuracy
is a Consideration

Section 5.3.4.1 in IEEE Standard 1220 (IEEE 2005) requires the following:

Component reviews should be completed for each component at the completion of the
detailed design stage. The purpose of this review is to ensure that each detailed component
definition is sufficiently mature to meet measure of effectiveness/measure of performance
(MOE/MOP) criteria. (IEEE 2005, p. 31)

Section 6.1.13 in IEEE Standard 1220 (IEEE 2005) requires the following:

Identify the technical performance measures (TPMs), which are key indicators of system
performance. Selection of TPMs are usually limited to critical MOPs that, if not met, put
the project at cost, schedule, or performance risk. Specific TPM activities are integrated into
the SEMS [Systems Engineering Master Schedule] to periodically determine achievement
to date and to measure progress against a planned value profile. (IEEE 2005, p. 42)

228 12 Accuracy, Correctness, Efficiency, and Integrity



The design team defines detailed Technical Performance Measures (TPMs) for all of
the MOPs associated with the systems requirements. TPMs are quantitative in nature
and are derived directly from and support the mid-level MOPs. The TPMs are used
to assess compliance with requirements in the system’s requirements breakdown
structure (RBS) and also assist in monitoring and tracking technical risk.

In the previous example for an electric vehicle the MOE stated that the electric
vehicle must be able to drive fully loaded from Norfolk, VA to Washington, DC
without recharging. In support of this MOE an MOP was developed and stated the
vehicle range must be equal to or greater than 250 miles. This established a more
precise requirement than the distance from Norfolk, VA to Washington, DC. In
support of this a series of specific Technical Performance Measures (TPMs) are
invoked. The TPMs for this example may include performance measures such as:
battery capacity, vehicle weight, drag, power train friction, etc. Each of the TPMs
must have a measurement accuracy—which requires specification for a reference
value, precision, and trueness for each and every measure.

In conclusion, accuracy is a purposeful design function that permits systems to
be tested and evaluated against standard reference values throughout the entire
systems’ life.

The section that follows will address the non-functional requirement for
correctness.

12.3 Correctness

In this section, the basics of correctness and how it is applied during systems
endeavors will be reviewed. As with many of the other non-functional require-
ments, correctness sounds like a very clear concept. However, arriving at a common
definition and understanding for how correctness is invoked during requirements
deliberations in systems design endeavors may turn out to be problematic. Once
again, take a minute and review the index of a favorite systems engineering or
software engineering text and look for the word correctness. Is it missing? Once
again, it would not be surprising to hear that the word is missing from just about
every major text. Therefore, a careful review of correctness and its characteristics is
in order to provide a common base for both learning and application during systems
design endeavors.

12.3.1 Definition for Correctness

Correctness, from a systems engineering perspective, is defined as:

The degree to which a system or component is free from faults in its specification, design,
and implementation. (IEEE and ISO/IEC 2010, p. 81)

12.2 Accuracy 229



Correctness has additional definitions, from the literature, that are listed in
Table 12.2 that may provide further help in understanding the term when applied as
a non-functional requirement for a system.

From these definitions, correctness is the degree to which a system satisfies its
specified design requirements. Having settled on this basic definition, the next
section will discuss how correctness is evaluated during systems design endeavors.

12.3.2 Evaluating Correctness in Systems Designs

The definition chosen for correctness, the degree to which a system satisfies its
specified design requirements, seems to sound very much like the process
requirements for verification and validation activities that are performed throughout
the systems life cycle. As a result, a review of the definitions for both verification
and validation will be conducted.

12.3.2.1 Verification

Three definitions for verification are presented in Table 12.3.
From the definitions in Table 12.3 verification is concerned with ensuring that

requirements have been satisfactorily met. In all of the design stages and in the

Table 12.2 Additional definitions for correctness

Definition Source

“Extent to which a program satisfies its specifications
and fulfills the user’s mission objectives”

Cavano and McCall (1978, p. 136)

“Extent to which a program satisfies its specifications
and fulfills the user’s mission objectives”

McCall and Matsumoto (1980, p. 12)

“How well does it conform to the design
requirements?”

Bowen et al. (1985, pp. 2–1)

“1. Program satisfies specification; 2. Meets user
expectations; 3. Fault-free”

Blundell et al. (1997, p. 236)

Table 12.3 Definitions for verification

Definition Source

“The process of evaluating a system or component to determine
whether the products of a given development phase satisfy the
conditions imposed at the start of that phase”

IEEE (2012, p. 9)

“Confirmation, through the provision of objective evidence, that
specified requirements have been fulfilled”

IEEE and ISO/IEC
(2008, p. 8)

“Confirmation by examination and provision of objective evidence
that the specified requirements to which an end product is built,
coded, or assembled have been fulfilled”

ANSI/EIA (1998,
p. 64)

230 12 Accuracy, Correctness, Efficiency, and Integrity



construction stage, verification examines the result of a given process or activity to
determine conformity with the stated requirement. During the design stages this is
conformance to the functional, technical, or interface requirements. During the
construction stage this may include conformance with specific physical or opera-
tional parameters such as length, voltage, resistance, strength, etc. Now that veri-
fication is defined, a review of validation will be conducted.

12.3.2.2 Validation

Three definitions for validation are presented in Table 12.4.
From the definitions in Table 12.4 validation is concerned with ensuring that the

intended end-use for the system has been met.
For many, the difference between the terms verification and validation, and in

this case the activities performed, is hard to differentiate based on the formal
definitions contained in Tables 12.3 and 12.4. So, it may be easier to think of these
terms using the following:

• Validation—Is the system doing the right job? Here the concern is with ensuring
that the system that was designed or constructed is doing what it was intended to
do.

• Verification—Is the system doing the job right? Here the concern is with
ensuring that the design or constructed item meets the specified requirements.

The activity that assures the system’s requirements capture the stakeholder’s
intentions is referred to as validation while the activity of assuring that the system
meets its specified requirements is referred to as verification. In other words, val-
idation tasks are the activities that link the system’s requirements to the intention,
while verification tasks link the system’s requirements to the actual design and its
implementation. In the next section a review of how designers purposefully address
correctness as part of the design process will be presented.

Table 12.4 Definitions for validation

Definition Source

“The process of evaluating a system or component during or at the
end of the development process to determine whether it satisfies
specified requirements”

IEEE (2012, p. 9)

“Confirmation, through the provision of objective evidence, that the
requirements for a specific intended use or application have been
fulfilled”

IEEE and ISO/IEC
(2008, p. 8)

“Confirmation by examination and provision of objective evidence
that the specific intended use of an end product (developed or
purchased), or an aggregation of end products, is accomplished in an
intended usage environment”

ANSI/EIA (1998,
p. 64)

12.3 Correctness 231



12.3.3 Methods for Ensuring Correctness
During System Design

Now that correctness, verification, and validation are defined and an understanding
of the activities used to analyze correctness as part of the design effort have been
established, how designers ensure correctness during design activities will be
addressed.

Systems design activities must satisfy the specified requirements for the system.
Correctness of design means that the design is sufficient. A sufficient design is one
that satisfactorily incorporates the elements of the System Theory’s Design Axiom
(Adams et al. 2014). This is accomplished by integrating the Design Axiom’s
supporting principles into the design rules used by the design team. The four
supporting principles from the Design Axiom are addressed in the following
sections.

12.3.3.1 Law of Requisite Parsimony

The Law of Requisite Parsimony states that human beings can only deal simulta-
neously with between five and nine observations at one time. This is based on
George Miller’s seminal paper The Magical Number Seven, Plus or Minus Two:
Some Limits on Our Capacity for Processing Information (1956). Miller makes
three points, based on empirical experimentation, in this paper.

1. Span of attention: Experiments showed that when more than seven objects were
presented, the subjects were said to estimate and for less than seven objects they
were said to subitize. The break point was at the number seven.

2. Span of immediate memory: He reports the fact that the span of immediate
memory, for a variety of test materials, is about seven items in length.

3. Span of absolute judgment: This is the clear and definite limit based on the
accuracy with which we can identify absolutely the magnitude. This is also in
the neighborhood of seven.

Nobel Laureate Herbert A. Simon [1916–2001] followed Miller’s work with a
paper (Simon 1974) that questioned Miller’s vagueness with respect to the size of a
chunk used in memory and is a worthy companion to Miller’s work. Application of
the Law of Principle of Requisite Parsimony during systems design endeavors is
clear.

No matter how complex our models, designs, or plans may be, we should avoid subjecting
people to more than nine concepts simultaneously, and should as a matter of routine,
involve fewer. Parsimony should be invoked in systems engineering in order to make sure
that the artefacts and methods we use in designing systems does not inherently try to force
people to make judgments that exceed their short term cognitive capacities. (Adams 2011,
p. 149)

232 12 Accuracy, Correctness, Efficiency, and Integrity



The ability to conceptualize, design-to, or implement ideas that have more than 9
individual elements strains normal human memory and recall. Design artifacts,
systems hierarchies, and organizations should adopt structures that utilize spans of
less than 9. This application of parsimony improves the ability to conceptualize,
design, and implement systems that are correct.

12.3.3.2 Law of Requisite Saliency

Economist Kenneth Boulding [1910–1993], identified three reasons for poor
intellectual productivity (1966):

1. Spurious saliency: emphasizing the wrong things out of proportion to what they
deserve.

2. Unproductive emulation: behaving like those who help create rather than resolve
problems.

3. Cultural lag: not using established knowledge with dispatch.

The significance of Boulding’s impact on design is that not all design elements have
the same level of importance.

The design process must incorporate specific provision for uncovering the relative saliency
of the factors in the Design Situation and the factors that characterize the Target, in order to
achieve the kind of understanding that is needed to put the design factors in proper per-
spective. (Warfield 1999, p. 34)

The design team must make numerous decisions and in doing so some elements of
the design will take priority over others. Requisite saliency has particular impor-
tance to the design team because as they conduct trade-off analyses, solve problems,
and process data and information into knowledge, requisite saliency provides the
means for making these rational decisions. As a result, all design “processes must
include a specific provision for uncovering relative saliency for all the factors in a
system as a critical element in the overall system design” (Adams 2011, p. 149).

12.3.3.3 Minimum Critical Specification

The father of modern socio-technical systems design, Albert Cherns, has spent a
major portion of his career emphasizing the need to limit the scope of the design
process to that which is required, no more and no less. Failure to limit the process in
this manner leads to terms such as brass-plating and polishing-the-cannonball,
which serve to indicate that objects or systems have been far over designed and
include elements never envisioned by the system’s stakeholders. Cherns’ principle
of minimum critical specification states:

This principle has two aspects, negative and positive. The negative simply states that no
more should be specified than is absolutely essential; the positive requires that we identify
what is essential. (Cherns 1987, p. 155)

12.3 Correctness 233



The basic utility of this principle is clear—design as little as possible and only
specify what is essential. However, all design require redundancy to effect many of
the non-functional requirements described in this book. The design becomes a
balance between all of the system’s requirements and the resources (i.e., primarily
financial) allocated to implement the design. Cherns expressed concern over the
tendency for design teams to focus on a potential solution too early in the design
process, thereby closing options before the team could rationally evaluate all
alternatives.

This premature closing of options is a pervasive fault in design; it arises, not only because
of the desire to reduce uncertainty, but also because it helps the designer to get his own
way. We measure our success and effectiveness less by the quality of the ultimate design
than by the quantity of our ideas and preferences that have been incorporated into it.
(Cherns 1987, p. 155)

The ability to balance the specifications for the design against the known
requirements is most often a function of incomplete knowledge of the system (i.e.,
the principle of darkness), which only improves as we improve our understanding
of the system during analysis.

Whatever benefits we plan to achieve through specification become obsolete (often at a
rapid pace) as the contextual elements surrounding the design become better defined. In
many cases, early over specification may have a crippling effect on the ability of the design
team to adapt to evolving changes in context. (Adams 2011, p. 150)

12.3.3.4 Pareto Principle

The Pareto Principle was named after the 19th century Italian economist Vilfredo
Pareto [1848–1923], who noticed that in Italy about 80 % of wealth was in the
hands of 20 % of the population. Since that time a variety of sociological,
economic, and political phenomena have been shown to have the same pattern.
The well-known statistical quality control expert Joseph M. Juran [1904–2008]
“ … claims credit for giving the Pareto Principle its name. Juran’s Pareto Principle
is sometimes known as the Rule of 80/20” (Sanders 1987, p. 37).

The Pareto Principle states that in any large complex system 80 % of the output will be
produced by only 20 % of the system. The corollary to this is that 20 % of the results absorb
80 % of the resources or productive efforts. (Adams 2011, p. 147)

This fairly simple principle can be utilized during the design process by under-
standing that some system-level requirements will consume more design resources
(e.g., time, manpower, methods, etc.) than others. Similarly, elements or compo-
nents of the system may consume more power, require more information, process
more data, or fail more often than others. By using the Pareto principle, and its
accompanying ratios, the design team may be able to better understand the rela-
tionships and between the system and its constituent elements.

234 12 Accuracy, Correctness, Efficiency, and Integrity



12.3.4 Summary for Correctness

In summary, systems designers have a number of methods and techniques at their
disposal that support the engineering of systems that correctly represent the spec-
ified requirements. Table 12.5 provides a list of the four supporting principles from
the System’s Theory Design Axiom (Adams et al. 2014) that can be implemented by
the design team, as specific design rules, that can help ensure that designs are
correct. At the completion of specific tasks and activities in the design stages both
verification and validation activities ensure that the system’s design is satisfactory
through comparison with the system’s specified requirements. All of the factors
discussed in this section must be addressed by the systems designer to ensure
correctness of requirements as part of the purposeful design during systems
endeavors. The section that follows will address system efficiency.

12.4 Efficiency

In this section, the non-functional requirement for efficiency will be reviewed as an
additional viability concern to be considered during systems design endeavors. As
the last non-functional requirement to be considered, efficiency is a requirement
closely related to system performance. Efficiency, like productivity, is a primary
measure used in the determination of performance and includes both economic and
production perspectives. Because efficiency is such an important viability concern,

Table 12.5 Design principles invoked to support correctness

Design principle Description Source

Law of requisite
parsimony

Human short-term memory is incapable
of recalling more than seven plus or
minus two items

Miller (1956) and Simon
(1974)

Law of requisite
saliency

The factors that will be considered in a
system design are seldom of equal
importance. Instead, there is an
underlying logic awaiting discovery in
each system design that will reveal the
saliency of these factors

Boulding (1966) and
Warfield (1999)

Principle of
Minimum critical
specification

This principle has two aspects, negative
and positive. The negative simply states
that no more should be specified than is
absolutely essential; the positive requires
that we identify what is essential

Cherns (1976, 1987)

Pareto principle 80 % of the objectives or outcomes are
achieved with 20 % of the means

Bresciani-Turroni (1937),
Creedy (1977) and
Sanders (1987)

12.3 Correctness 235



this requirement will be approached in the sections that follow by reviewing its
formal definition, discussing concepts that surround its utilization, and how it is
treated during systems design endeavors.

12.4.1 Definition for Efficiency

Efficiency, from a systems engineering perspective, is defined as:

1. The degree to which a system or component performs its designated functions with
minimum consumption of resources. 2. Producing a result with a minimum of extraneous or
redundant effort. (IEEE and ISO/IEC 2010, p. 120)

Efficiency has additional definitions, from the literature, that are listed in Table 12.6
that may provide further help in understanding the term when applied as a non-
functional requirement for a system.

Table 12.6 Additional definitions for efficiency

Definition Source

“The extent that it fulfills its purpose without waste of resources” Boehm et al. (1976,
p. 604)

“The amount of computing resources and code required by a
program to perform a function”

Cavano and McCall
(1978, p. 136)

“The software does not meet performance (speed, storage)
requirements. The rating is in terms of effort required to modify
software to meet performance requirements”

McCall and Matsumoto
(1980, p. 28)

“Efficiency is a concept based on the physical and engineering
sciences and concerns the relationship between inputs and
outputs”

Szilagyi (1984, p. 30)

“Efficiency is a measure of the use of effective capacity in
producing a particular result such as a part or a product”

Del Mar (1985, p. 128)

“Efficiency deals with utilization of a resource. The rating formula
for efficiency is in terms of actual utilization of a resource and
budgeted allocation for utilization. For example, if a unit is
budgeted for 10 % available memory and actually uses 7 %, the
rating formula shows an efficiency level of 0.3 (1 − 0.07/
0.10 = 0.3)”

Bowen et al. (1985,
pp. 3–5)

“On the first level is physical efficiency expressed as output
divided by inputs of such physical units as Btu’s, kilowatts, and
foot-pounds. On the second level are economic efficiencies. These
are expressed in term s of economic units of output divided by
economic units of input, each expressed in terms of medium of
exchange such as money”

Thuesen and Fabrycky
(1989, p. 6)

“Efficiency, that is, the ability to do things right, rather than the
ability to get the right things done”

Drucker (2001, p. 192)

236 12 Accuracy, Correctness, Efficiency, and Integrity



From these definitions, efficiency is a measure of a systems utilization of
resources. It is important to note that resources include six categories represented by
the acronym M5I: (1) material, (2) manpower, (3) money, (4) minutes or time, (5)
methods, and (6) information. Armed with this comprehensive definition, a review
of efficiency and the concepts that surround both its utilization and how it is may be
used as a purposeful element during systems design endeavors will be conducted.

12.4.2 Addressing System Efficiency During Design
Endeavors

In the section that follows a proxy for system efficiency and a detailed generic
attribute for evaluating efficiency in systems design endeavors are presented.

12.4.2.1 System Efficiency in Engineering

Efficiency, from an engineering perspective, is generally viewed as a performance
characteristic where the outputs are evaluated against the inputs. “The engineer
must be concerned with two levels of efficiency … physical efficiency and eco-
nomic efficiency” (Thuesen and Fabrycky 1989, p. 6). These concerns are related
by the simple relationships in Eqs. 12.1 and 12.2.

Physical Efficiency (Thuesen and Fabrycky 1989, p. 6)

Efficiency physicalð Þ ¼ output
input

ð12:1Þ

Economic Efficiency (Thuesen and Fabrycky 1989, p. 6)

Efficiency economicð Þ ¼ worth
cost

ð12:2Þ

When efficiency is viewed from the perspective of an engineering design team, it is
clear that they are faced with the need to clearly address efficiency using design
principles related to the problem at hand. The design team develops heuristics,
analogies, and metaphors that help them during the development and evaluation of
a series of design options.

The design problem characteristics are used to actively seek and exploit appropriate anal-
ogies and metaphors to generate new options and facilitate and simplify systems architecting
and implementation. Thereafter, the candidate design options are evaluated using proxies for
elegance metrics (i.e., effectiveness, robustness, efficiency, predictability, and implementa-
tion ease). The proxies for effectiveness are usability/operability and perceived utility. The
proxies for robustness are physical and functional redundancy. The proxies for efficiency are
number of steps to complete task and resource utilization. (Madni 2012, p. 352)

12.4 Efficiency 237



The proxy for efficiency—the number of steps to complete task and resource
utilization, is a valid method to evaluate efficiency in a systems design. Systems
expert Russell Ackoff [1919–2009] also related efficiency to resources (M5I)
stating:

Information, knowledge, and understanding enable us to increase efficiency, not effec-
tiveness. The efficiency of behavior or an act is measured relative to an objective by
determining either the amount of resources required to obtain that objective with a specified
probability, or the probability or obtaining that objective with a specified amount of
resources. (Ackoff 1999, p. 171)

In a formally defined engineering design process (which is a system), the process that
is clearly defined and orderly requires less energy to execute than one that is poorly
defined and disorganized. A poorly defined and disorganized process inefficiently
utilizes resources and ends up “diverting energy to exploring new paths (thereby
wasting energy and reducing efficiency)” (Colbert 2004, p. 353). Based upon this
analysis, resource efficiency may serve as a valid proxy for systems design efficiency.

12.4.2.2 Evaluating Efficiency in System Design Endeavors

In 1999 the Electronic Industries Association (EIA) issued interim standard 731-1,
the Systems Engineering Capability Model or SECM (EIA 1999).

The SECM was a merger of two previous widely used systems engineering models: the
Systems Engineering Capability Maturity Model® (SE-CMM®) and the Systems
Engineering Capability Assessment Model (SECAM). The EIA completed this effort and
published the SECM version 1.0 as an Interim Standard in January 1999. This document
was then used as the main systems engineering source document for the CMMISM

development. (Minnich 2002, p. 62)

The SECM contains general attributes (GA) for both usefulness and cost effec-
tiveness. The cost effectiveness GA is defined as “the extent to which the benefits
received are worth the resources invested. Cost effectiveness is determined through
the use of an intermediate parameter—resource efficiency” (Wells et al. 2003,
p. 304). The GA for cost effectiveness turns out to be a useful measure for the
efficiency of the design process. The resource efficiency calculation is a ratio of the
actual resources required to produce results against the benchmarked standard, as
depicted in Eq. 12.3.

Resource Efficiency

Resource Efficiency ¼ actual resources
benchmarked standard

ð12:3Þ

A five-point Likert scale may be utilized to evaluate efficiency as depicted in
Table 12.7 (Wells et al. 2003).

The next section will discuss how integrity is addressed in systems design
endeavors.

238 12 Accuracy, Correctness, Efficiency, and Integrity



12.5 Integrity

In this section the basics of system integrity and how it is applied during systems
endeavors is reviewed Integrity, as a non-functional requirement, is a term that is
very rarely used during discussions about systems requirements. Because of its
infrequent use in ordinary conversation, the formal systems vocabulary definition as
well as some definitions from the literature will be reviewed. This will solidify a
common meaning for the term during discussions of its use during systems design
endeavors.

12.5.1 Definition for Integrity

Integrity, from a systems engineering perspective, is defined as:

The degree to which a system or component prevents unauthorized access to, or modifi-
cation of, computer programs or data. (IEEE and ISO/IEC 2010, p. 181)

Integrity’s additional definitions are taken from the literature and are listed in
Table 12.8. All of these definitions may be used to better understand the term when
applied as a non-functional requirement for a system.

When the definitions in Table 12.8 are reviewed it is clear that, over time, the
definition for integrity has taken on new meaning. From these shifts and interpre-
tations the integrity of a system can be taken to mean the systems’ ability to ensure
program correctness, noninterference, and information assurance. Integrity is
concerned with information modification rather than information disclosure or
availability. That is, integrity is something different from confidentiality or denial of
service.

Table 12.7 Resource Efficiency Likert Scale [Adapted from Wells et al. (2003, Table II)]

Measure Descriptor Measurement criteria

0.0 E−− (E minus,
minus)

Resources required to produce the work product(s) or result(s)
exceeded the expected (benchmarked) values by more than
50 %

0.5 E− (E minus) Resources required to produce the work product(s) or result(s)
were more than the expected (benchmarked) values by 5–50 %

1.0 E Resources required to produce the work product(s) or result(s)
were within 5 % of the expected (benchmarked) values

1.5 E+ (E plus) Resources required to produce the work product(s) or result(s)
were less than the expected (benchmarked) values by 5–50 %

2.0 E++ (E plus,
plus)

Resources required to produce the work product(s) or result(s)
were less than the expected (benchmarked) values by more
than 50 %

12.5 Integrity 239



Table 12.8 Additional definitions for integrity

Definition Source

“The maintenance of information validity” Biba (1975, p. 55)

“Ensuring that data are altered only in an approved fashion” Jacob (1991, p. 90)

“Is concerned with improper modification of information or
processes”

Sandhu and Jajodia
(1993, p. 482)

“An object has integrity if its quality meets expectations which
were determined before the fact”

Courtney and Ware
(1994, p. 208)

“Being concerned with the improper modification of information
(much as confidentiality is concerned with improper disclosure).
We understand modification to include insertion of new
information and deletion of existing information, as well as
changes to existing information”

Sandhu and Jajodia
(1994, p. 617)

“A system’s ability to avoid undesirable alteration due to the
presence of errors”

Bowen and Hinchey
(1998, p. 661)

“One attribute of dependability, that is, integrity is defined as
dependability with respect to absence of improper alterations.
Another interpretation of integrity is that the system concerned
provides external consistency, that is, the correct correspondence
between data objects and the real world”

Foley (2003, pp. 37–38)

“(i) Protecting against unauthorized modification of information,
(ii) protecting against unintentional modification of information
caused by system failures or user errors”

Georg et al.
(2003, p. 42)

“Integrity has an important difference from confidentiality: a
computing system can damage integrity without any external
interaction, simply by computing data incorrectly. Thus, strong
enforcement of integrity requires proving program correctness”

Sabelfeld and Myers
(2003, p. 7)

“Program correctness, noninterference, and data invariant
conditions, which yields the following categorization:
– Program correctness: program output is precise, accurate,
meaningful and correct with respect to a specification
– Noninterference: data is modified only by authorized people or
processes either directly, or indirectly by means of information
flow
– Data invariants: data is precise or accurate, consistent,
unmodified, or modified only in acceptable ways under program
execution”

Li et al. (2003, p. 48)

“The security goal that generates the requirement for protection
against either intentional or accidental attempts to violate data
integrity (the property that data has not been altered in an
unauthorized manner) or system integrity (the quality that a system
has when it performs its intended function in an unimpaired
manner, free from unauthorized manipulation)”

Stoneburner et al.
(2004, p. A-2)

240 12 Accuracy, Correctness, Efficiency, and Integrity



12.5.2 Integrity Concepts

In order to remain viable, systems must maintain integrity at all times. The system’s
stakeholders must have a high degree of trust that their system and its attendant data
and information are correct (i.e., precise, accurate, and meaningful), valid (created,
modified and deleted only by authorized users), and invariant (i.e., consistent and
unmodified).

The National Institute for Standards and Technology (NIST) has issued its
Engineering Principles for Information Technology Security (Stoneburner et al.
2004) and in this publication they define system security as “The quality that a
system has when it performs its intended function in an unimpaired manner, free
from unauthorized manipulation of the system, whether intentional or accidental”
(p. A-4). During the engineering stages of the systems life cycle the design team is
tasked with ensuring that the system’s design includes both requirements and means
to ensure adequate system integrity. There are 33 security principles that may be
used to enhance system integrity during system design endeavors. The section that
follows will discuss how each of these security principles may be applied to deliver
integrity as a purposeful element of the system design process.

12.5.3 Integrity in Systems Design

In order to successfully, incorporate considerations that will sufficiently address
system integrity, six categories of security-related design principles will be
addressed as an element of purposeful system design. Table 12.9 displays the six
categories, the 33 security design principles, and the five major systems life cycle
stages where the principles may be applied. The major system life cycle stages are:
(1) conceptual design [C], (2) design and construction [D&C], (3) test and evalu-
ation [T&E], (4) operations and maintenance [O&M], and (5) retirement and dis-
posal [R&D].

A discussion of each of the 33 security principles, is contained in the NIST
Special Publication 800-27—Engineering Principles for Information Technology
Security (Stoneburner et al. 2004).

By focusing on the appropriate security principle during the temporal design
stage, the system’s designers ensure that integrity considerations are invoked as a
purposeful element of the system’s design. By basing understanding on the 33
established security principles the designers are able to create designs that meet the
requirements for systems integrity during the appropriate design stage. By adopting
this approach integrity is baked-into the design.

In summary, ISO/IEC Standard 17799: Information technology—Security
Techniques—Code of Practice for Information Security Management (ISO/IEC
2000) states that integrity is “one of the three central pillars of securing corporate
information assets along with confidentiality and availability” (Flowerday and von

12.5 Integrity 241



T
ab

le
12

.9
D
es
ig
n
ca
te
go

ri
es
,
de
si
gn

pr
in
ci
pl
es

an
d
lif
e
cy
cl
e
st
ag
es

D
es
ig
n

ca
te
go

ry
D
es
ig
n
pr
in
ci
pl
e

C
D
&
C

T
&
E

O
&
M

R
&
D

Se
cu
ri
ty

Fo
un

da
tio

n
1.

E
st
ab
lis
h
a
so
un

d
se
cu
ri
ty

po
lic
y
as

th
e
“f
ou

nd
at
io
n”

fo
r
de
si
gn

2.
T
re
at

se
cu
ri
ty

as
an

in
te
gr
al

pa
rt
of

th
e
ov

er
al
l
sy
st
em

de
si
gn

3.
C
le
ar
ly

de
lin

ea
te

th
e
ph

ys
ic
al

an
d
lo
gi
ca
l
se
cu
ri
ty

bo
un

da
ri
es

go
ve
rn
ed

by
as
so
ci
at
ed

se
cu
ri
ty

po
lic
ie
s

4.
E
ns
ur
e
th
at

de
ve
lo
pe
rs

ar
e
tr
ai
ne
d
in

ho
w

to
de
ve
lo
p
se
cu
re

so
ft
w
ar
e

R
is
k

ba
se
d

5.
R
ed
uc
e
ri
sk

to
an

ac
ce
pt
ab
le

le
ve
l

6.
A
ss
um

e
th
at

ex
te
rn
al

sy
st
em

s
ar
e
in
se
cu
re

7.
Id
en
tif
y
po

te
nt
ia
l
tr
ad
e-
of
fs

be
tw
ee
n
re
du

ci
ng

ri
sk

an
d
in
cr
ea
se
d

co
st
s
an
d
de
cr
ea
se

in
ot
he
r
as
pe
ct
s
of

op
er
at
io
na
l
ef
fe
ct
iv
en
es
s

8.
Im

pl
em

en
tt
ai
lo
re
d
sy
st
em

se
cu
ri
ty

m
ea
su
re
s
to

m
ee
to

rg
an
iz
at
io
na
l

se
cu
ri
ty

go
al
s

9.
Pr
ot
ec
ti
nf
or
m
at
io
n
w
hi
le
be
in
g
pr
oc
es
se
d,

in
tr
an
si
t,
an
d
in

st
or
ag
e

10
.
C
on

si
de
r
cu
st
om

pr
od

uc
ts
to

ac
hi
ev
e
ad
eq
ua
te

se
cu
ri
ty

11
.
Pr
ot
ec
t
ag
ai
ns
t
al
l
lik

el
y
cl
as
se
s
of

“a
tta
ck
s”

E
as
e
of

us
e

12
.
W
he
re

po
ss
ib
le
,
ba
se

se
cu
ri
ty

on
op

en
st
an
da
rd
s
fo
r
po

rt
ab
ili
ty

an
d
in
te
ro
pe
ra
bi
lit
y

13
.
U
se

co
m
m
on

la
ng

ua
ge

in
de
ve
lo
pi
ng

se
cu
ri
ty

re
qu

ir
em

en
ts

14
.D

es
ig
n
se
cu
ri
ty

to
al
lo
w

fo
r
re
gu

la
r
ad
op

tio
n
of

ne
w

te
ch
no

lo
gy

,
in
cl
ud

in
g
a
se
cu
re

an
d
lo
gi
ca
l
te
ch
no

lo
gy

up
gr
ad
e
pr
oc
es
s

15
.
St
ri
ve

fo
r
op

er
at
io
na
l
ea
se

of
us
e

(c
on

tin
ue
d)

242 12 Accuracy, Correctness, Efficiency, and Integrity



T
ab

le
12

.9
(c
on

tin
ue
d)

D
es
ig
n

ca
te
go

ry
D
es
ig
n
pr
in
ci
pl
e

C
D
&
C

T
&
E

O
&
M

R
&
D

In
cr
ea
se

re
si
lie
nc
e

16
.
Im

pl
em

en
t
la
ye
re
d
se
cu
ri
ty

(e
ns
ur
e
no

si
ng

le
po

in
t
of

vu
ln
er
ab
ili
ty
)

17
.
D
es
ig
n
an
d
op

er
at
e
an

IT
sy
st
em

to
lim

it
da
m
ag
e
an
d
to

be
re
si
lie
nt

in
re
sp
on

se

18
.P

ro
vi
de

as
su
ra
nc
e
th
at
th
e
sy
st
em

is
,a
nd

co
nt
in
ue
s
to

be
,r
es
ili
en
t

in
th
e
fa
ce

of
ex
pe
ct
ed

th
re
at
s

19
.
L
im

it
or

co
nt
ai
n
vu

ln
er
ab
ili
tie
s

20
.I
so
la
te
pu

bl
ic
ac
ce
ss

sy
st
em

s
fr
om

m
is
si
on

cr
iti
ca
lr
es
ou

rc
es

(e
.g
.,

da
ta
,
pr
oc
es
se
s,
et
c.
)

21
.
U
se

bo
un

da
ry

m
ec
ha
ni
sm

s
to

se
pa
ra
te

co
m
pu

tin
g
sy
st
em

s
an
d

ne
tw
or
k
in
fr
as
tr
uc
tu
re
s

22
.
D
es
ig
n
an
d
im

pl
em

en
t
au
di
t
m
ec
ha
ni
sm

s
to

de
te
ct

un
au
th
or
iz
ed

us
e
an
d
to

su
pp

or
t
in
ci
de
nt

in
ve
st
ig
at
io
ns

23
.D

ev
el
op

an
d
ex
er
ci
se

co
nt
in
ge
nc
y
or

di
sa
st
er

re
co
ve
ry

pr
oc
ed
ur
es

to
en
su
re

ap
pr
op

ri
at
e
av
ai
la
bi
lit
y

R
ed
uc
e

vu
ln
er
ab
ili
tie
s

24
.
St
ri
ve

fo
r
si
m
pl
ic
ity

25
.
M
in
im

iz
e
th
e
sy
st
em

el
em

en
ts
to

be
tr
us
te
d

26
.
Im

pl
em

en
t
le
as
t
pr
iv
ile
ge

27
.
D
o
no

t
im

pl
em

en
t
un

ne
ce
ss
ar
y
se
cu
ri
ty

m
ec
ha
ni
sm

s

28
.
E
ns
ur
e
pr
op

er
se
cu
ri
ty

in
th
e
sh
ut
do

w
n
or

di
sp
os
al

of
a
sy
st
em

29
.
Id
en
tif
y
an
d
pr
ev
en
t
co
m
m
on

er
ro
rs

an
d
vu

ln
er
ab
ili
tie
s

(c
on

tin
ue
d)

12.5 Integrity 243



T
ab

le
12

.9
(c
on

tin
ue
d)

D
es
ig
n

ca
te
go

ry
D
es
ig
n
pr
in
ci
pl
e

C
D
&
C

T
&
E

O
&
M

R
&
D

D
es
ig
n
w
ith

ne
tw
or
k
in

m
in
d

30
.I
m
pl
em

en
ts
ec
ur
ity

th
ro
ug

h
a
co
m
bi
na
tio

n
of

m
ea
su
re
s
di
st
ri
bu

te
d

ph
ys
ic
al
ly

an
d
lo
gi
ca
lly

31
.
Fo

rm
ul
at
e
se
cu
ri
ty

m
ea
su
re
s
to

ad
dr
es
s
m
ul
tip

le
ov

er
la
pp

in
g

in
fo
rm

at
io
n
do

m
ai
ns

32
.
A
ut
he
nt
ic
at
e
us
er
s
an
d
pr
oc
es
se
s
to

en
su
re

ap
pr
op

ri
at
e
ac
ce
ss

co
nt
ro
l
de
ci
si
on

s
bo

th
w
ith

in
an
d
ac
ro
ss

do
m
ai
ns

33
.
U
se

un
iq
ue

id
en
tit
ie
s
to

en
su
re

ac
co
un

ta
bi
lit
y

244 12 Accuracy, Correctness, Efficiency, and Integrity



Solms 2005, p. 606). Integrity is particularly concerned with the preserving the
confidentiality and integrity of the information contained within the system. The
next section will discuss how the non-functional requirements for accuracy, cor-
rectness, efficiency, and integrity may be measured and evaluated.

12.6 A Method for Evaluating Accuracy, Correctness,
Efficiency, and Integrity

The ability to understand, measure, and evaluate the non-functional requirements
for accuracy, correctness, efficiency, and integrity when included as requirements in
a system is an important element of systems design. Having the ability to measure
and evaluate each of these non-functional requirements provides additional per-
spectives and insight into the future performance and viability of all elements of the
system being designed.

With a basic understanding of accuracy, correctness, efficiency, and integrity and
how they are used in systems design endeavors, measurement may be addressed. As
stated in other chapters, measurement is challenging because each of these non-
functional requirements are subjective, qualitative measures which differ greatly
from objective, quantitative measures. How to approach a subjective, qualitative
measure will be reviewed.

12.6.1 Development of Measurement Scales

As with the other qualitative non-functional requirements, in order to satisfactorily
evaluate accuracy, correctness, efficiency, and integrity, both the presence (yes or
no) and quality of the effort (how well) to provide each of the non-functional
requirements during system design endeavors must be addressed. To support this
goal objects with a specific measureable attribute will be developed. The estab-
lishment of the measures is important because they are the link between what is
observed in the real-world, and as such represent the empirical facts about the
system and the construct for accuracy, correctness, efficiency, and integrity devised
as evaluation points.

12.6.1.1 Scales for Accuracy, Correctness, Efficiency, and Integrity

As discussed during the development of the scales for in Chaps. 7 through 11, the
selection of a measurement scale is an important element. Because the non-func-
tional requirements for accuracy, correctness, efficiency, and integrity have no
natural origin or empirically defined distance, an ordinal scale is an appropriate

12.5 Integrity 245

http://dx.doi.org/10.1007/978-3-319-18344-2_7
http://dx.doi.org/10.1007/978-3-319-18344-2_11


scale for measuring these criteria. As discussed in Chaps. 7 through 11, a five-point
Likert scale will be invoked (Lissitz and Green 1975) in order to ensure improved
reliability.

12.6.1.2 Proposed Scales

Scales are characterized as either a proposed scale or a scale. “A proposed scale is
one that some investigator(s) put forward as having the requisite properties, and if it
is indeed shown to have them, then it is recognized as a scale” (Cliff 1993, p. 65).
As in the previous chapters, the use of the word scale is referring to proposed
scales.

12.6.1.3 Proposed Measurement Scale for Accuracy, Correctness,
Efficiency, and Integrity

Armed with a construct, measurement attributes, and an appropriate scale type, the
measures for accuracy, correctness, efficiency, and integrity are constructed. In
order to evaluate these, two essential questions must be answered. One addresses
the presence (yes or no) and the other addresses the quality of the effort (how well)
to provide effective and meaningful levels of accuracy, correctness, efficiency, and
integrity during the system’s design. Each of the four criteria are measurement
constructs and have a specific question, shown in Table 12.10, which may be used
to evaluate each one’s contribution to a system’s other viability concerns.

The answer to each question in Table 12.10 will be scored using the five-point
Likert measures in Table 12.11.

The summation of the four constructs in Eq. 12.4 will be the measure of the
degree of other viability in a system design endeavor.

Table 12.10 Measurement questions for other viability concerns

Measurement
construct

Adaptation concern for measurement

Vaccuracy Does the system include a formal relationship for performance
characteristics that is represented by accuracy, precision, and trueness?

Vcorrectness Does the system include formal verification and validation activities that
ensure that the system is correctly designed and operating through
comparison with the system’s specified requirements?

Vefficiency Does the system evaluate efficiency using a calculation that is a ratio of
the actual resources required to produce results against the benchmarked
standard?

Vintegrity Does the system evaluate integrity by measuring its ability to ensure
program correctness, noninterference, and information assurance?

246 12 Accuracy, Correctness, Efficiency, and Integrity

http://dx.doi.org/10.1007/978-3-319-18344-2_7
http://dx.doi.org/10.1007/978-3-319-18344-2_11


Expanded Equation for Other Viability Concerns

Vother ¼ Vaccuracy þ Vcorrectness þ Vefficiency þ Vintegrity ð12:4Þ

12.6.2 Measuring Accuracy, Correctness, Efficiency,
and Integrity

In each of the previous chapters the importance of being able to measure each non-
functional attribute was stressed. A structural mapping that relates core viability
concerns to four specific metrics and measurement entities is required. The four-
level construct for other viability concerns is presented in Table 12.12.

12.7 Summary

In this chapter, the non-core or other viability concerns have been addressed. These
include four non-functional requirements: (1) accuracy, (2) correctness, (3) effi-
ciency, and (4) integrity. In each case, a formal definition has been provided along
with additional explanatory definitions and terms. The ability to effect each of the
four the non-functional requirements during the design process has also been
addressed. Finally, a formal metric and measurement characteristic have been

Table 12.11 Other viability measurement question Likert scale

Measure Descriptor Measurement criteria

0.0 None No objective quality evidence is present

0.5 Limited Limited objective quality evidence is present

1.0 Nominal Nominal objective quality evidence is present

1.5 Wide Wide objective quality evidence is present

2.0 Extensive Extensive objective quality evidence is present

Table 12.12 Four-level structural map for measuring other viability concerns

Level Role

Concern Systems viability

Attribute Other viability concerns

Metrics Accuracy, correctness, efficiency, and integrity

Measurable
characteristics

Sum of (1) accuracy (Vaccuracy), (2) correctness (Vcorrectness), (3)
efficiency (Vefficiency), and (4) integrity (Vintegrity)

12.6 A Method for Evaluating Accuracy, Correctness, Efficiency, and Integrity 247



proposed for evaluating other viability concerns through metrics for accuracy,
correctness, efficiency, and integrity.

The next chapter will discuss the use of the complete taxonomy of non-func-
tional requirements as part of the purposeful design of complex systems during
systems design endeavors.

References

Ackoff, R. L. (1999). Ackoff’s best: His classic writings on management. New York: Wiley.
Adams, K. M. (2011). Systems principles: foundation for the SoSE methodology. International

Journal of System of Systems Engineering, 2(2/3), 120–155.
Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating, C. B. (2014). Systems

theory: The foundation for understanding systems. Systems Engineering, 17(1), 112–123.
ANSI/EIA. (1998). ANSI/EIA standard 632: Processes for engineering a system. Arlington, VA:

Electronic Industries Alliance.
Biba, M. J. (1975). Integrity considerations for secure computer systems (MTR 3153). Bedford,

MA: MITRE.
Blundell, J. K., Hines, M. L., & Stach, J. (1997). The measurement of software design quality.

Annals of Software Engineering, 4(1), 235–255.
Boehm, B. W., Brown, J. R., & Lipow, M. (1976). Quantitative evaluation of software quality. In

R. T. Yeh & C. V. Ramamoorthy (Eds.), Proceedings of the 2nd international conference on
software engineering (pp. 592–605). Los Alamitos, CA: IEEE Computer Society Press.

Boulding, K. E. (1966). The impact of social sciences. New Brunswick, NJ: Rutgers University
Press.

Bowen, J. P., & Hinchey, M. G. (1998). High-integrity system specification and design. London:
Springer.

Bowen, T. P., Wigle, G. B., & Tsai, J. T. (1985). Specification of software quality attributes:
Software quality evaluation guidebook (RADC-TR-85-37) (Vol. III). Griffiss Air Force Base,
NY: Rome Air Development Center.

Bresciani-Turroni, C. (1937). On Pareto’s law. Journal of the Royal Statistical Society, 100(3),
421–432.

Cavano, J. P., & McCall, J. A. (1978). A framework for the measurement of software quality.
SIGSOFT Software Engineering Notes, 3(5), 133–139.

Cherns, A. (1976). The principles of sociotechnical design. Human Relations, 29(8), 783–792.
Cherns, A. (1987). The principles of sociotechnical design revisited. Human Relations, 40(3),

153–161.
Churchman, C. W., & Ratoosh, P. (Eds.). (1959). Measurement: Definitions and theories. New

York: Wiley.
Cliff, N. (1993). What is and isn’t measurement. In G. Keren & C. Lewis (Eds.), A Handbook for

Data Analysis in the Behavioral Sciences: Methodological Issues (pp. 59–93). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Colbert, B. A. (2004). The complex resource-based view: Implications for theory and practice in
strategic human resource management. Academy of Management Review, 29(3), 341–358.

Courtney, R. H., & Ware, W. H. (1994). What do we mean by integrity? Computers & Security, 13
(3), 206–208.

Creedy, J. (1977). Pareto and the distribution of income. Review of Income and Wealth, 23(4),
405–411.

De Bièvre, P. (2006). Accuracy versus uncertainty. Accreditation and Quality Assurance, 10(12),
645–646.

Del Mar, D. (1985). Operations and industrial management. New York: McGraw-Hill.

248 12 Accuracy, Correctness, Efficiency, and Integrity



Dodge, Y. (2008). The concise Encyclopedia of statistics. New York: Springer.
Drucker, P. F. (2001). The essential Drucker: The best of 60 years of Peter Drucker’s essential

writings on management. New York: Harper Collins Publishers.
EIA. (1999). Electronic Industries Association (EIA) Interim Standard (IS) 731: The systems

engineering capability model. Arlington, VA: Electronic Industries Association.
Flowerday, S., & von Solms, R. (2005). Real-time information integrity = system integrity + data

integrity + continuous assurances. Computers & Security, 24(8), 604–613.
Foley, S. N. (2003). A nonfunctional approach to system integrity. IEEE Journal on Selected

Areas in Communications, 21(1), 36–43.
Georg, G., France, R., & Ray, I. (2003). Designing high integrity systems using aspects. In

M. Gertz (Ed.), Integrity and internal control in information systems V (Vol. 124, pp. 37–57).
New York: Springer.

Hahn, G. J., Hill, W. J., Hoerl, R. W., & Zinkgraf, S. A. (1999). The impact of six sigma
improvement—a glimpse into the future of statistics. The American Statistician, 53(3), 208–215.

IEEE. (2005). IEEE Standard 1220: Systems engineering—application and management of the
systems engineering process. New York: Institute of Electrical and Electronics Engineers.

IEEE. (2012). IEEE Standard 1012: IEEE standard for system and software verification and
validation. New York: The Institute of Electrical and Electronics Engineers.

IEEE, & ISO/IEC. (2008). IEEE and ISO/IEC Standard 12207: Systems and software engineering
—software life cycle processes. New York and Geneva: Institute of Electrical and Electronics
Engineers and the International Organization for Standardization and the International
Electrotechnical Commission.

IEEE, & ISO/IEC. (2010). IEEE and ISO/IEC Standard 24765: Systems and software engineering
—vocabulary. New York and Geneva: Institute of Electrical and Electronics Engineers and the
International Organization for Standardization and the International Electrotechnical
Commission.

ISO/IEC. (2000). ISO/IEC Standard 17799: Information technology—security techniques—code
of practice for information security management. Geneva: International Organization for
Standardization and the International Electrotechnical Commission.

Jacob, J. (1991). The basic integrity theorem. In Proceedings of the Computer Security
Foundations Workshop IV (pp. 89–97). Los Alamitos, CA: IEEE Computer Society Press.

JCGM. (2012). JCGM Standard 200: International vocabulary of metrology—basic and general
concepts and associated terms (VIM) Sèvres, France: Joint Committee for Guides in
Metrology, International Bureau of Weights and Measures (BIPM).

Li, P., Mao, Y., & Zdancewic, S. (2003). Information integrity policies. In Proceedings of the 1st
International Workshop on Formal Aspects in Security and Trust (FAST’03) (pp. 39–51). Pisa,
Italy.

Lissitz, R. W., & Green, S. B. (1975). Effect of the number of scale points on reliability: A Monte
Carlo approach. Journal of Applied Psychology, 60(1), 10–13.

Madni, A. M. (2012). Elegant systems design: Creative fusion of simplicity and power. Systems
Engineering, 15(3), 347–354.

McCall, J. A., & Matsumoto, M. T. (1980). Software quality measurement manual (RADC-TR-80-
109-Vol-2). Griffiss Air Force Base, NY: Rome Air Development Center.

Menditto, A., Patriarca, M., & Magnusson, B. (2007). Understanding the meaning of accuracy,
trueness and precision. Accreditation and Quality Assurance, 12(1), 45–47.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capability
for processing information. Psychological Review, 63(2), 81–97.

Minnich, I. (2002). EIA IS 731 compared to CMMISM-SE/SW. Systems Engineering, 5(1), 62–72.
Murphy, R. B. (1969). On the meaning of precision and accuracy. In H. H. Ku (Ed.), Precision

measurement and calibration: Selected NBS papers on statistical concepts and procedures
(NBS special publication 300) (pp. 357–360). Washington, DC: Government Printing Office.

Rabinovich, S. G. (2013). Evaluating measurement accuracy. New York: Springer.
Sabelfeld, A., & Myers, A. C. (2003). Language-based information-flow security. IEEE Journal

on Selected Areas in Communications, 21(1), 5–19.

References 249



Sanders, R. E. (1987). The Pareto principle: Its use and abuse. The Journal of Services Marketing,
1(2), 37–40.

Sandhu, R. S., & Jajodia, S. (1993). Data and database security and controls. In H. F. Tipton &
Z. G. Ruthbert (Eds.), Handbook of information security management (pp. 481–499). Boston:
Auerbach.

Sandhu, R. S., & Jajodia, S. (1994). Integrity mechanisms in database management systems. In
M. D. Abrams, S. Jajodia, & H. J. Podell (Eds.), Information security: An integrated collection
of essays (pp. 617–635). Los Alamitos, CA: IEEE Computer Society Press.

Simon, H. A. (1974). How big is a chunk? Science, 183(4124), 482–488.
Sproles, N. (2001). The difficult problem of establishing measures of effectiveness for command

and control: A systems engineering perspective. Systems Engineering, 4(2), 145–155.
Stoneburner, G., Hayden, C., & Feringa, A. (2004). Engineering principles for information

technology security (A baseline for achieving security), [NIST special publication 800-27 Rev
A]. Gaithersburg, MD: National Institute of Standards and Technology.

Szilagyi, A. D. (1984). Management and performance (2nd ed.). Glenview, IL: Scotts, Foresman
and Company.

Thuesen, G. J., & Fabrycky, W. J. (1989). Engineering economy. Englewood Cliffs, NJ: Prentice-
Hall.

Warfield, J. N. (1999). Twenty laws of complexity: Science applicable in organizations. Systems
Research and Behavioral Science, 16(1), 3–40.

Wells, C., Ibrahim, L., & LaBruyere, L. (2003). A new approach to generic attributes. Systems
Engineering, 6(4), 301–308.

250 12 Accuracy, Correctness, Efficiency, and Integrity



Part VI
Conclusion



Chapter 13
Conclusion

Abstract The design of systems and components is a crucial element that affects
both the cost and efficacy of products produced for the world economy. Design is a
characteristic function of engineering. The structure of engineering education
underwent a major shift after WWII. The nationwide shift toward a more science-
based curricula for all levels of education led to design type courses being devalued
and even omitted in engineering education. Recent efforts to re-invigorate design in
both undergraduate and graduate engineering programs in the United States have
re-emphasized the role of design in the engineering curricula. The current text has
been developed to address a unique topic in engineering design—non-functional
requirements in systems analysis and design endeavors, thereby seeking to fill a
perceived void in the existing engineering literature.

13.1 Position and Importance of Engineering Design

The competitive difficulties in the world market that are faced by products manu-
factured in the United States has been attributed to a variety of causes. The MIT
Commission on Industrial Productivity addressed the recurring weaknesses of
American industry that continue to threaten the country’s standard of living and its
position in the world economy (Dertouzos et al. 1989). “To regain world manu-
facturing leadership, we need to take a more strategic approach by also improving
our engineering design practices” (Dixon and Duffey 1990, p. 9).

“Market loss by U.S. companies is due to design deficiencies more than man-
ufacturing deficiencies” (Dixon and Duffey 1990, p. 13). The importance of
engineering design and its associated activities, especially when compared to more
glamorous activities such as marketing and sales, directly affects the cost and long-
term efficacy of products produced for the world market.

Engineering design is a crucial component of the industrial product realization process. It is
estimated that 70 % or more of the life cycle cost of a product is determined during design.
(NRC 1991, p. 1)

© Springer International Publishing Switzerland 2015
K.M. Adams, Non-functional Requirements in Systems Analysis and Design,
Topics in Safety, Risk, Reliability and Quality 28,
DOI 10.1007/978-3-319-18344-2_13

253



According to General Motors executives, 70 % of the cost of manufacturing truck trans-
missions is determined in the design stage. (Whitney 1988, p. 83)
A study at Rolls-Royce revealed that design activities account for 80 % (i.e., design
schemes 50 % and detail drawings 30 %) of the final production costs of 2000 components.
(Corbett and Crookall 1986)

Clearly, design activities and the engineers tasked with implementing them are
important elements of the global economy. Design is a characteristic function
within the field of engineering. Although not all engineers are directly involved in
design, a 1982 study of the primary activities of engineers displayed in Table 13.1,
reported that 28 % were working in development and design related activities.

13.2 Education in Engineering Design

Nobel Laureate Herbert A. Simon [1916–2001] recounted how major universities
and colleges, after World War II, shifted their curriculums to reflect their movement
toward the natural sciences and away from the sciences of the artificial. Simon
(1996) uses the term sciences of the artificial to refer to the tasks associated with
how to “teach about artificial things: how to make artifacts that have desired
properties and how to design” (p. 111). There were deleterious effects as a result of
the shift to a science-based foundation.

• It is now widely believed that U.S. industry’s extended period of world domi-
nance in product design, manufacturing innovation, process engineering, pro-
ductivity, and market share has ended (NRC 1986, p. 5).

• These changes include restructuring to emphasize the engineering sciences as a
coherent body of knowledge, the introduction of new disciplines, the creation of
an extensive system of research and graduate programs, and the partial inte-
gration of computers into curricula. While these improvements were taking
place, the state of engineering design education was steadily deteriorating with
the result that today’s engineering graduates are poorly equipped to utilize their
scientific, mathematical, and analytical knowledge in the design of components,
processes, and systems (NRC 1991, p. 35).

• Engineering schools gradually became schools of physics and mathematics
(Simon 1996, p. 111).

Table 13.1 Primary
activities of engineers in 1982
[adapted from Table 3 in
(NRC 1985, p. 91)]

Activity Percentage

Research 4.7

Development, including design 27.9

R&D management 8.7

Other management 19.3

Teaching 2.1

Production/inspection 16.6

Unreported 20.7

254 13 Conclusion



• An inevitable by-product of the science revolution was that engineering design,
because it did not have a formalized, quantitative, teachable core body of
knowledge, was largely eliminated from engineering curricula. Instead, engi-
neers were expected to learn design on the job. Indeed, the development of a
formalized approach to engineering design remains an open challenge to the
engineering professoriate (Tadmor 2006, p. 34).

As a result, most engineering curricula have insufficient levels of instruction and
practical applications in design. The deficiencies exist at both the undergraduate and
graduate levels. At the undergraduate level of engineering, design education
weaknesses include “weak requirements for design content in engineering curricula
(many institutions do not meet even existing accreditation criteria); lack of truly
interdisciplinary teams in design courses; and fragmented, discipline-specific, and
uncoordinated teaching” (NRC 1991, p. 2). At the graduate level, “there are simply
too few strong graduate programs focusing on modern design methodologies and
research to produce the qualified graduates needed by both industry and academe”
(NRC 1991, p. 3). In addition, the deficiencies present in the undergraduate cur-
ricula directly affect the ability to teach design at the graduate level. This is because
the inadequate undergraduate design experience ill prepares students to take
graduate design courses and forces graduate courses to become remedial in nature.
Finally, the monetary incentives are forcing graduate programs in engineering to
admit students with non-engineering degrees. These students, like the ill-prepared
undergraduate engineers, have no formal training in design, adding additional
pressure to structure graduate courses in design to address topics at the remedial
level.

In response, The Committee on Engineering Design Theory and Methodology of
the National Research Council, recommended the following actions:

• Undergraduate engineering design education must (NRC 1991, p. 36):

1. Show how the fundamental engineering science background is relevant to
effective design;

2. Teach students what the design process entails and familiarize them with the
basic tools of the process;

3. Demonstrate that design involves not just function but also producibility,
cost, customer preference, and a variety of life cycle issues; and

4. Convey the importance of other subjects such as mathematics, economics,
and manufacturing.

• Graduate design education should be directed toward (NRC 1991, p. 37):

1. Developing competence in advanced design theory and methodology;
2. Familiarizing graduate students with state-of-the-art ideas in design, both

from academic research and from worldwide industrial experience and
research;

3. Providing students with working experience in design;

13.2 Education in Engineering Design 255



4. Immersing students in the entire spectrum of design considerations, prefer-
ably during industrial internships; and

5. Having students perform research in engineering design.

Finally, it is important to note that the Accreditation Board for Engineering and
Technology (ABET), the organization responsible for the accreditation of all
engineering programs in the United States, requires all undergraduate engineering
curricula, in its general requirements for baccalaureate level programs to satisfy
three criterion associated with design (ABET 2013):

1. Criterion 3—Student outcomes: (c) an ability to design a system, component, or
process to meet desired needs within realistic constraints such as economic,
environmental, social, political, ethical, health and safety, manufacturability,
and sustainability; and (d) an ability to function on multidisciplinary teams.

2. Criterion 5—Curriculum: (b) one and one-half years of engineering topics,
consisting of engineering sciences and engineering design appropriate to the
student’s field of study. The engineering sciences have their roots in mathe-
matics and basic sciences but carry knowledge further toward creative appli-
cation. These studies provide a bridge between mathematics and basic sciences
on the one hand and engineering practice on the other. Engineering design is the
process of devising a system, component, or process to meet desired needs. It is
a decision-making process (often iterative), in which the basic sciences, math-
ematics, and the engineering sciences are applied to convert resources optimally
to meet these stated needs. Note: One year is the lesser of 32 semester hours (or
equivalent) or one-fourth of the total credits required for graduation.

3. Criterion 5—Curriculum: Students must be prepared for engineering practice
through a curriculum culminating in a major design experience based on the
knowledge and skills acquired in earlier course work and incorporating appro-
priate engineering standards and multiple realistic constraints.

The ABET expectation is that design topics are taught throughout the undergrad-
uate curricula. Specific design related tasks are addressed in the associated engi-
neering topics and that, when combined, these courses will contain all the design
information necessary to complete the major design experience (e.g., a capstone
course or senior design project). Furthermore, the major design experience focused
on a design and will not introduce new topics or materials about the design process.
Despite the ABET requirements and expectations, the capstone design course or
senior design project often lacks focus as the culminating engineering experience.

Often, too much is expected of these senior design courses when prior courses have failed
to provide sound preparation for them. When, for example, a senior design course is a
student’s only exposure to integrated design activities such as concurrent design, detailed
consideration of alternatives and constraints, significant economic analyses, and working as
part of a team, the experience is likely to be shallow. (NRC 1991, p. 40)

256 13 Conclusion



13.3 Position of This Text Within Engineering Design

This text is positioned as a guide for a course in engineering design that focuses on
the elements of the design that do not provide a direct function in support of the
stakeholder’s processes. The non-functional requirements addressed in the text are
elements of the design that affect performance of the entire system, and are not
attributable to any one specific function or process mandated by the system’s
stakeholders. In fact, the system’s stakeholders may not recognize terms such as
survivability, robustness, and self-descriptiveness. It is the job of the engineer
conducting the design to ensure that appropriate system-wide, non-functional
requirements are addressed and invoked in order to effectively treat sustainment,
design, adaptation and viability concerns.

As such, this text is satisfying a subset of the goals established for engineering
design that were addressed in the previous section. Specifically:

• Undergraduate engineering design education actions to:

1. Teach students what the design process entails and familiarize them with the
basic tools of the process;

2. Demonstrate that design involves not just function but also producibility,
cost, customer preference, and a variety of life cycle issues; and

• Graduate design education actions to:

3. Developing competence in advanced design theory and methodology;
4. Familiarizing graduate students with state-of-the-art ideas in design, both

from academic research and from worldwide industrial experience and
research;

• ABET Accreditation Criteria:

5. Criterion 3—Student outcomes: (c) an ability to design a system, compo-
nent, or process to meet desired needs within realistic constraints such as
economic, environmental, social, political, ethical, health and safety,
manufacturability, and sustainability; and (d) an ability to function on
multidisciplinary teams.

6. Criterion 5—Curriculum: (b) Engineering design is the process of devising a
system, component, or process to meet desired needs. It is a decision-making
process (often iterative), in which the basic sciences, mathematics, and the
engineering sciences are applied to convert resources optimally to meet these
stated needs.

13.3 Position of This Text Within Engineering Design 257



13.4 Summary

Undergraduate and graduate education in engineering is the foundation upon which
all engineering graduates base their professional activities. As a result, the academic
community, and in particular those who use their own training and education to lead
courses of instruction in design must provide clearly articulated scholarly materials
that directly support these courses of instruction. This text has been developed to
address a unique topic in engineering design. To date, non-functional requirements
have only been addressed within highly focused sub-disciplines of engineering (i.e.,
reliability, maintainability, availability; traceability; testability; survivability; etc.).
The wider engineering community has not had access to materials that permit them
to develop a holistic, systemic perspective for non-functional requirements that
regularly affect the entire system. Generally, engineers participate on transdisci-
plinary teams where experts in this or that non-functional requirement (e.g., the
dreaded ilities) come in and assess the system’s ability to satisfy the particular non-
functional requirement. When the experts produce the list of deficiencies they leave
and the component and sub-system level engineers scratch their heads and are faced
with changing the design to ensure compliance with this or that non-functional
requirement. Having a basic understanding of how the principal non-functional
requirements affect the sustainment, design, adaptability, and viability concerns of a
system, at a high-level, will fill help a void in the existing engineering literature.

References

ABET. (2013). Criteria for accrediting engineering programs: Effective for reviews during the
2014–2015 accreditation cycle (E001 of 24 Feb 2014). Baltimore, MD: Accreditation Board
for Engineering and Technology.

Corbett, J., & Crookall, J. R. (1986). Design for economic manufacture. CIRP Annals—
Manufacturing Technology, 35(1), 93–97.

Dertouzos, M. L., Solow, R. M., & Lester, R. K. (1989). Made in America: Regaining the
productive edge. Cambridge, MA: MIT Press.

Dixon, J. R., & Duffey, M. R. (1990). The neglect of engineering design. California Management
Review, 32(2), 9–23.

NRC. (1985). Engineering education and practice in the United States: Foundations of our
techno-economic future. Washington, DC: National Academies Press.

NRC. (1986). Toward a new era in U.S. manufacturing: The need for a national vision
Washington, DC: National Academies Press.

NRC. (1991). Improving engineering design: Designing for competitive advantage. Washington,
DC: National Academy Press.

Simon, H. A. (1996). The sciences of the artificial (3rd ed.). Cambridge, MA: MIT Press.
Tadmor, Z. (2006). Redefining engineering disciplines for the twenty-first century. The Bridge, 36

(2), 33–37.
Whitney, D. E. (1988). Manufacturing by design. Harvard Business Review, 66(4), 83–91.

258 13 Conclusion



Index

A
ABET, see Accreditation Board for

Engineering and Technology
Abilities, 7
Accident model, systems-based, 159
Accreditation Board for Engineering and

Technology, 256
Accreditation, criterion, 255
Accuracy

defined, 221–223
errors, 226
as function of precision and trueness, 225
measure of, 224
as performance characteristic, 224
in systems design, 227
as viability concern, 66, 221

Adaptability
defined, 173
and flexibility, 173
sustainment concern, 69

Adaptation concerns, see Adaptability,
extensibility, flexibility, modifiability,
portability, reusability, and self-
descriptiveness

Administrative Delay Time (ADT), 88
Aegis, xiv
Architectural design process, 11
Architectural testability, 99
Asimow, Morris, 26
Association of German Engineers (VDI), 34
Attribute

customer, 38
structural map, 6, 36, 37, 48, 59, 60, 69–93,

100, 143, 209
Availability

achieved, 95
adaptation concern, 181
defined, 94
inherent, 95

inherent and testability, 93
measure of, 96, 97
operational, 95
operational and testability, 91

Axiomatic Design Methodology, 15, 16, 36–38

B
Ballistic missile, xiii
Bathtub curve, 80
Beitz, Wolfgang, 36
Blundell, Hines and Stach's Quality Measures,

58
Blundell, James, 58
Boehm, Barry

quality initiative, 54
Boulding, Kenneth, 233

C
Capstone course, 256
Caswell, Deborah, 56
Cavano and McCall’s Model, 55
Cavano, James, 55
Change

agent of, 171
mechanism of, 171
transition model for, 170

Changeability
defined, 169, 170
in design, 178
measure of, 179

Cherns, Albert, 233
Cohesion, defined, 109
Combined series-parallel reliability model, 83
Compatibility

defined, 132
as design concern, 132, 135
in design, 135
measure of, 136

Completeness, 52, 61, 65, 66, 205

© Springer International Publishing Switzerland 2015
K.M. Adams, Non-functional Requirements in Systems Analysis and Design,
Topics in Safety, Risk, Reliability and Quality 28,
DOI 10.1007/978-3-319-18344-2

259



Complexity
characteristics of, 114, 115
defined, 106
measure of, 115
measurement approaches, 118

Concept design stage
technical processes for, 38

Concept phase, 36
Conceptual models, of users and designers, 204
Concern

structural map, 46, 137, 196
Conciseness

ratio, 107
defined, 106
design concern, 105
measure of, 106

Consistency
as design concern, 139–142
defined, 132
external, 138
in design, 138
internal, 138
measure of, 132
methods for evaluation, 139

Constraint, 6, 36, 38, 41, 158–161, 257
Convergence, mode of thought, 19
Corrective maintenance

maintenance cycle, 75, 87
Correctness

defined, 229–230
evaluation of, 245
measure of, 222, 245
in systems design, 222
as viability concern, 222, 235

Coupling, defined, 109
Creative, desirable features, 5
Critical attributes, of a methodology, 36
Cross, Nigel, 28
Customer

attributes (CA), 5
domain, 38

D
Decision-making, desirable features, 19
Design

theory, 15, 16
characteristic of engineering, 3
cost attributed to, 45
defined, 4
engineers employed in, 5
systematic, 3
Methodology, see Design Methodology

Design compatibility analysis, 135
Design deficiencies, 253

Design issues, scholarly journal, 16
Design matrix, 39
Design methodology

axiomatic, 15, 16, 36–38
of Asimow, 28
of cross, 139
of French, 29
of Hubka and Eder, 30
of Pahl, Beitz, Feldhusen & Grote, 36
of Pugh, 30
of Suh, 38
of VDI, 34

Design parameters (DP), 16, 38, 40, 107, 178,
207

Design phase, 11, 28, 228
Design science, 8, 30
Design stage

processes of, 17
Design studies, scholarly journal, 17
Design concerns, see Compatibility,

conciseness, consistency,
interoperability, modularity, safety,
simplicity, and traceability

Desirable features
in engineering design, 16
ERICOIDITI, 18

Divergence, mode of thought, 19
Domain

customer, 38
functional, 39
physical, 38
process, 38

Double-diamond model of design, 16, 19

E
Eder, W. Ernst, 30
Effectiveness requirements, 90
Efficiency

defined, 222, 236
evaluating during system design, 237
measure of, 237
in systems design, 238
viability concern, 235

Elicitation, non-functional requirements, 63
Engineering

central activity of, 7
defined, 6
and design, 4, 5, 7, 8, 12, 15–18, 21–23, 25,

26, 30, 33, 42, 75, 93, 107, 139, 237,
238

Engineering design
education, recommendations for, 255–256
defined, 4
education in, 7

260 Index



process of, 7
Engineering systems, 3, 15, 50
Entropy, Shannon, 118
Environment, 77, 90, 144, 171, 210, 212, 214
ERICOIDITI, see Desirable features
Error types, relationship between, 226
Expandability

defined, 185
synonym for extensibility, 185

Exploratory, desirable features, 19
Extensibility

adaptation concern, 184
defined, 185
in systems design, 185
measure of, 193

F
Failure mode and effect analysis, 84
Failure modes, effects, and criticality analysis,

85
Feldhusen, Jörg, 36
Flexibility

adaptation concern, 166
and adaptability, 173
defined, 173

Framework, for understanding non-functional
requirements, 45

FMEA, see Failure Mode and Effect Analysis
FMECA, see Failure Modes, Effects, and

Criticality Analysis
French, Michael, 29
Functional

domain, 38
requirement (FR), 38
requirement, defined, 46

FURPS and FURPS+Models, 56

G
Grady, Robert, 56
Grote, Karl, 36

H
Hines, Mary Lou, 58
Hubka, Vladimir, 30
Human computer interactions, concerns during,

208
Human factors, 15, 65, 188

I
Ilities, 50, 59
Implementation process, 11, 18
Incremental, desirable features, 19
Independence axiom, 38, 39, 107
Information axiom, 38, 40, 41, 118

Information content, 41, 118
Information entropy (H), 118
Information theory and entropy, 118
Integration process, 11
Integrity

concepts, 241
defined, 239
measure of, 247
security principles for, 241
in systems design, 241
viability concern, 247

Interactive, desirable features, 19
Interoperability

defined, 143
design, 145–146
design concern, 146–151
measure of, 151
models for evaluation in systems, 147
models of, 144
types of, 143
i-Score model, 147

Investigative, desirable features, 19
I-Score model, see Interoperability, i-Score

Model
Iterative, desirable features, 19

J
Journal of Engineering Design, scholarly

journal, 17
Journal of Mechanical Engineering Design,

scholarly journal, 17
Journal of Research Design, scholarly journal,

17

K
Knowledge, 5–7, 9, 25, 213, 256
KSA, 7, 8

L
Law of Requisite Parsimony, 232
Levels of maintenance, 90
Life cycle models, 4, 10, 12
Logistics delay Time (LDT), 88, 95

M
MADT, see Mean administrative delay time
Maintain, 3, 10, 39, 86, 107, 133, 178
Maintainability

defined, 75, 76, 86
measure of, 75
sustainment concern, 86

Maintenance
downtime (MDT), 88
support concept, 75

Index 261



support elements, 90
Masumoto, Mike, 55
McCall, James

McCall's and Masumoto's Factor Model
Tree, 55

MDL, see Minimum description length
Mean active maintenance time, 88
Mean administrative delay time, 95
Mean corrective maintenance time, 88
Mean logistics delay time, 95
Mean outside assistance delay time, 95
Mean preventive maintenance time, 88
Mean supply delay time, 95
Mean time between failures, 59
Mean Time between Maintenance (MTBM), 88
Mean Time Between scheduled preventive

(MTBMs) maintenance, 91
Mean Time Between unscheduled corrective

(MTBMu) maintenance, 91
Mean time to failure, 66, 79, 98
Mean time to repair, 95, 98
Measureable characteristic

structural map, 70
See metric

Measurement process in accuracy, 226
Measurement, method in accuracy, 131
Messes, 3
Metaphor principle, 205
Method, defined, 16
Methodology

critical attributes of, 36
defined, 8
for engineering design, 26

Metric
structural map, 69

Meyer, Wayne E., v, xiv
Miller, George, 70
Minimum critical specification, 233, 235
Minimum description length, 111
MLDT, see Mean logistics delay time
MOADT, see Mean outside assistance delay

time
Modal testability, 99
Modifiability

adaptation concern, 195
defined, 175
in systems, 176

Modularity
defined, 106, 108
design concern, 105
measure of, 105

Modularization function, 110, 114
MSDT, see Mean supply delay time

MTBM, see Mean Time between
Maintenance

MTBMs, see Mean Time Between
scheduled preventive maintenance

MTBMu, see Mean Time Between
unscheduled corrective maintenance

MTBT, see Mean time between failures
MTTF, see Mean time to failure
MTTR, see Mean time to repair

N
Non-functional requirement (NFR)

defined, 70
classification models, 51
identification, 45
organization of, 23
structure for, 50
Notional Taxonomy of, 66

Nuclear propulsion, xiii

O
Operability, 65, 68, 94
Operations and maintenance phase, 11
Opportunistic, desirable features, 19
Organizational responsibilities, 90

P
Pahl, Gerhard, 9, 10
Paradigm

defined, 22
for engineering, 25

Parallel reliability model, 80
Pareto principle, 234, 235
Pareto, Vilfredo, 234
Philosophy

defined, 22
for engineering, 25

Physical domain, 39, 47, 107
Polaris, xiii
Portability

adaptation concern, 183
defined, 184
measure of, 184
in systems design, 187–188

Poseidon, xiii
Precision

errors, 226
defined, 225
depiction of, 225

Preventive maintenance, 88
Probability density function, types of, 78
Problems, 3, 9, 28, 140
Process

262 Index



domain, 37
variables (PV), 37

Production phase, 9
Pugh, Stuart, 30

R
Radio Corporation of America (RCA), xiv
Rational, desirable features, 19
Reliability

defined, 77–78
equation, general, 78
failure equation, 78
and failure rate, 78
function of operating conditions, 76
function of probability, 41
function of time, 78
function of performance, 49
measure of, 84
and MTBF, 79
and pdf, 78
sustainment concern, 76

Reliability function, 76–79
Repair policies, 90
Requirements analysis process, 158
Research in Engineering design, scholarly

journal, 17
Resilience, as element of survivability, 214
Resource efficiency, 238
Retirement and disposal phase, 3, 11, 193, 241
Reusability

adaptation concern, 183
defined, 189
in systems design, 183, 189
measure of, 193

Rickover, Hyman G., v, xiii
Robustness

concepts, 211
defined, 177, 210
designing for, 212
measure of, 217, 218
in systems, 177
in systems design, 178, 210
viability concern, 201

Rome Air Development Center Quality
Models, 54, 133

S
Safety

Safety guided design, 160
defined, 156
design concern, 164–166
in design, 158–159, 160–162
machine age model assumptions for, 155
measure of, 158

in systems, 156, 158
systems age model assumptions for, 157

Scalability, defined, 170
Scholarly journals, for engineering design, 17
Scientific terms, relationship between, 24
Security, design principle for, 222
Self-descriptiveness

adaptation concern, 183
defined, 183
measure of, 184
in systems design, 183

Senior design project, 256
Series reliability model, 83
Shannon information entropy, 118
Shannon, Claude, 40
Shannon entropy, 41
Simon, Herbert, 4
Simplicity

defined, 114
design concern, 114

Skills, 7, 256
Smith, Levering, v, xiii
Socio-technical systems (STS), 3
Software Quality Evaluation Guide, 56
Somerville, Ian, 49
Somerville's classification schema, 62
Stach, Jerrold, 58
Stakeholder requirements definition process, 11
STAMP, and design, 155, 160

STAMP, see Systems-Theoretic Accident
Model and Processes

Standards
and compatibility, 64
ANSI, 134
committee, 133
de facto, 133
international, 134
ISO/IEC, 134
for systems, 134

State transition model, for change, 171
Submarine force, xiv
Suh, Nam, 38
Survivability

concepts, 201
defined, 201
element of, 201
measure of, 201
in systems design, 201, 202
viability concern, 202

Susceptibility, as element of survivability, 215
Sustainment Concerns

see availability, maintainability, reliability,
and testability

Synthesis, of thought, 21

Index 263



System adaptation concerns, 66
System budgets, xiv
System hierarchy tree, 116
System image, 205
System variety, 119
Systems and software Quality Requirements

and Evaluation (Square), 63
Systems-based accident model, 159
Systems life cycle

phases, 10, 16
stages of, 17

Systems-Theoretic Accident Model and
Processes, 155

Systems theory, 37, 38

T
Taxonomy, notional for non-functional

requirements, 42
Technical processes, 4
Technique, defined, 23
Testability

defined, 97, 98
and operational availability, 94
and inherent availability, 97
sustainment concern, 100

Thought
convergence, 19
divergence, 19
modes of, 15, 19, 33, 42
synthesis of, 21

Traceability
defined, 68, 120
design concern, 100, 120
in design, 105, 122
measure of, 123–125, 127
in systems life cycle, 121, 124

Transdisciplinary, desirable features, 19

Transition process, 11, 18
Triad of trilogies, 6
Trident, xiii
Trueness, 221, 225, 226, 229

errors, 226
defined, 225
depiction of, 225

U
Understandability

defined, 69, 202
elements of, 203
measure of, 204
in systems design, 202, 204
viability concern, 201

Usability
attributes of, 64
defined, 69, 206
measure of, 202, 215
in systems design, 207
viability concern, 202, 217

V
Validation

defined, 231
process, 11, 18, 141, 231

VDI, see Association of German engineers
Verification

process, 18, 123, 126, 135, 139, 141
defined, 230, 231

Viability Concerns, see Accuracy, correctness,
efficiency, integrity, robustness,
survivability, understandability, and
usability

Von Kármán, Theodore, 5
Vulnerability, as element of survivability, 214

264 Index


	Preface
	Acknowledgments
	Contents
	Part ISystems Design and Non-functionalRequirements
	1 Introduction to the Design of Engineering Systems
	Abstract
	1.1 Introduction to the Design of Engineering Systems
	1.2 Engineering Design
	1.3 Engineers and Engineering in Design
	1.4 Design in the System Life Cycle Model
	1.5 Summary
	References

	2 Design Methodologies
	Abstract
	2.1 Introduction to Design Methodologies
	2.2 Introduction to the Discipline of Engineering Design
	2.2.1 Features that Support Design Methodologies
	2.2.2 Thought in a Design Methodology
	2.2.3 Synthesis of Thought and Features that Support All Engineering Design Methodologies

	2.3 Methodological Terms and Relationships
	2.3.1 Paradigm
	2.3.2 Philosophy
	2.3.3 Methodology
	2.3.4 Method or Technique
	2.3.5 Relationship Between Scientific Terms

	2.4 Hierarchical Structure for Engineering Design
	2.4.1 Paradigm for Engineering as a Field of Science
	2.4.2 Philosophy for Engineering
	2.4.3 Methodology for Engineering Design

	2.5 Engineering Design Methodologies
	2.5.1 Methodology by Morris Asimov
	2.5.2 Methodology by Nigel Cross
	2.5.3 Methodology by Michael J. French
	2.5.4 Methodology by Vladimir Hubka and W. Ernst Eder
	2.5.5 Methodology by Stuart Pugh
	2.5.6 Methodology by the Association of German Engineers (VDI)
	2.5.7 Methodology by Pahl, Beitz, Feldhusen, and Grote

	2.6 The Axiomatic Design Methodology
	2.6.1 Introduction to the Axiomatic Design Methodology
	2.6.2 Domains in the Axiomatic Design Methodology
	2.6.3 Independence Axiom
	2.6.4 The Information Axiom
	2.6.5 Constraints or Non-functional Requirements

	2.7 Summary
	References

	3 Introduction to Non-functional Requirements
	Abstract
	3.1 Introduction to Non-functional Requirements
	3.2 Definitions for Functional and Non-functional Requirements
	3.2.1 Functional Requirements
	3.2.2 Non-functional Requirements
	3.2.3 A Structure for Non-functional Requirements

	3.3 Identification and Organization of Non-functional Requirements
	3.4 Classification Models for Non-functional Requirements
	3.4.1 Boehm's Software Quality Initiative
	3.4.2 Rome Air Development Center Quality Models
	3.4.2.1 Cavano and McCall's Model
	3.4.2.2 McCall's and Masumoto's Factor Model Tree
	3.4.2.3 Software Quality Evaluation Guide

	3.4.3 FURPS and FURPS+ Models
	3.4.4 Blundell, Hines and Stach's Quality Measures
	3.4.5 Somerville's Classification Schema
	3.4.6 International Standards
	3.4.7 NFR Elicitation

	3.5 Notional Framework for Understanding Major NFR in Systems Design
	3.5.1 Rationalization of Non-functional Requirements Classification Schemas
	3.5.2 Unique Non-functional Requirements
	3.5.3 Formal Definitions for Most Frequent Non-functional Requirements
	3.5.4 Notional Taxonomy of Non-functional Requirements for Systems
	3.5.5 Utilization of the NFR Taxonomy for Systems

	3.6 Summary
	References

	Part IISustainment Concerns
	4 Reliability and Maintainability
	Abstract
	4.1 Introduction to Reliability and Maintainability
	4.2 Reliability
	4.2.1 Reliability Definitions
	4.2.2 The Reliability Function
	4.2.3 Component Reliability Models
	4.2.3.1 Series Relationships
	4.2.3.2 Parallel Relationships
	4.2.3.3 Combined Series-Parallel Relationships

	4.2.4 Reliability in System Design Efforts
	4.2.5 FMEA and FEMCA
	4.2.6 Measuring Reliability

	4.3 Maintainability
	4.3.1 Maintainability Definitions
	4.3.2 Terminology Associated with Maintainability
	4.3.3 Maintainability Calculations
	4.3.4 Maintenance Support Concept
	4.3.5 Maintainability in Systems Design Efforts
	4.3.6 Measuring Maintainability

	4.4 Summary
	References

	5 Availability, Operability, and Testability
	Abstract
	5.1 Introduction to Availability and Testability
	5.2 Availability and Operability
	5.2.1 Availability and Operability Definitions
	5.2.2 Equations for Operational Availability (Ao)
	5.2.3 Availability in Systems Design Efforts
	5.2.4 Measuring Operational Availability (Ao)

	5.3 Testability
	5.3.1 Testability Definitions
	5.3.2 Testability in Systems Design
	5.3.3 Measuring Testability

	5.4 Summary
	References

	Part IIIDesign Concerns
	6 Conciseness, Modularity, Simplicity and Traceability
	Abstract
	6.1 Introduction to Conciseness, Modularity, Simplicity and Traceability
	6.2 Conciseness
	6.2.1 Conciseness Definitions
	6.2.2 Conciseness in Systems Design Efforts
	6.2.3 Measuring Conciseness

	6.3 Modularity
	6.3.1 Modularity Definition
	6.3.2 Definitions for Coupling and Cohesion
	6.3.3 Modularity Metrics
	6.3.3.1 The Modularization Function
	6.3.3.2 Minimum Description Length (MDLminimum description length)

	6.3.4 Modularity in Systems Design Efforts
	6.3.5 Measuring Modularity

	6.4 Simplicity
	6.4.1 Simplicity and Complexity Definitions
	6.4.2 Characteristics of Complexity
	6.4.3 Methods for Measuring Complexity in Systems
	6.4.3.1 System Hierarchy Tree
	6.4.3.2 Information Theory and Entropy
	6.4.3.3 System Variety

	6.4.4 Measuring Complexity

	6.5 Traceability
	6.5.1 Traceability Definitions
	6.5.2 Traceability in Systems Design Efforts
	6.5.3 A Method for Evaluating Traceability
	6.5.3.1 Development of Measurement Scales
	6.5.3.2 Proposed Measurement Scale for Traceability

	6.5.4 Measuring Traceability

	6.6 Summary
	References

	7 Compatibility, Consistency, Interoperability
	Abstract
	7.1 Introduction to Compatibility, Consistency, and Interoperability
	7.2 Compatibility
	7.2.1 Compatibility Definition
	7.2.2 Standards---the Means for Ensuring Compatibility in Systems
	7.2.3 Compatibility in Systems Design Efforts
	7.2.4 Evaluating Compatibility in Design
	7.2.5 A Method for Measuring Compatibility in Design
	7.2.6 Measuring Compatibility

	7.3 Consistency
	7.3.1 Consistency Definition
	7.3.2 Consistency in Systems Design Efforts
	7.3.3 Methods for Evaluating Consistency in Design
	7.3.4 A Method for Measuring Consistency in Design
	7.3.4.1 Scale for Design Consistency
	7.3.4.2 Proposed Measurement Scale for Design Consistency

	7.3.5 Measuring Consistency

	7.4 Interoperability
	7.4.1 Interoperability Definition
	7.4.2 Models for Interoperability
	7.4.3 Interoperability in Systems Design Efforts
	7.4.4 Methods for Evaluating Interoperability
	7.4.5 i-Score Model for Evaluating System Interoperability
	7.4.5.1 i-Score System Interoperability Evaluation Equation
	7.4.5.2 i-Score Example of System Interoperability Evaluation

	7.4.6 Measuring Interoperability

	7.5 Summary
	References

	8 System Safety
	Abstract
	8.1 Introduction to Safety
	8.2 Safety Definition
	8.3 Safety in Systems
	8.4 Safety in System Design Efforts
	8.5 A Systems Based Accident Model
	8.5.1 Systems-Theoretic Principles of STAMP
	8.5.2 Intersection of STAMP Criteria and Systems Design

	8.6 A Measure for Evaluating System Safety
	8.6.1 Scale for System Safety
	8.6.2 Proposed Measurement Scale for System Safety

	8.7 Measuring System Safety
	8.8 Summary
	References

	Part IVAdaptation Concerns
	9 Adaptability, Flexibility, Modifiability and Scalability, and Robustness
	Abstract
	9.1 Introduction to Changeability
	9.2 The Concept of Changeability
	9.2.1 Agent for Change
	9.2.2 Mechanism of Change
	9.2.3 Effects of Change on Systems and Their Environment
	9.2.4 Depicting Change Events

	9.3 Adaptability and Flexibility
	9.3.1 Adaptability Definition
	9.3.2 Flexibility Definition
	9.3.3 Relationship Between Adaptability and Flexibility

	9.4 Modifiability and Scalability
	9.4.1 Modifiability Definition
	9.4.2 Modifiability in Systems

	9.5 Robustness
	9.5.1 Robustness Definition
	9.5.2 Robustness in Systems

	9.6 Changeability in Systems Design Efforts
	9.6.1 A Method for Evaluating Changeability
	9.6.1.1 Development of Measurement Scales
	9.6.1.2 Scale for Changeability
	9.6.1.3 Proposed Scales
	9.6.1.4 Proposed Measurement Scale for Changeability

	9.6.2 Measuring Changeability

	9.7 Summary
	References

	10 Extensibility, Portability, Reusability and Self-descriptiveness
	Abstract
	10.1 Introduction to Extensibility, Portability, Reusability and Self-descriptiveness
	10.2 Extensibility
	10.2.1 Definition for Extensibility
	10.2.2 Extensibility in Systems Design

	10.3 Portability
	10.3.1 Definition for Portability
	10.3.2 Portability in Systems Design

	10.4 Reusability
	10.4.1 Definition for Reusability
	10.4.2 Reusability as an Element of Systems Design

	10.5 Self-descriptiveness
	10.5.1 Definition for Self-descriptiveness
	10.5.2 Self-descriptiveness in Systems Design

	10.6 A Method for Evaluating Extensibility, Portability, Reusability and Self-descriptiveness
	10.6.1 Development of Measurement Scales
	10.6.1.1 Scales for Extensibility, Portability, Reusability, and Self-descriptiveness
	10.6.1.2 Proposed Scales
	10.6.1.3 Proposed Measurement Scale for Extensibility, Portability, Reusability, and Self-descriptiveness

	10.6.2 Measuring Extensibility, Portability, Reusability and Self-descriptiveness

	10.7 Summary
	References

	Part VViability Concerns
	11 Understandability, Usability, Robustness and Survivability
	Abstract
	11.1 Introduction to Understandability, Usability, Robustness and Survivability
	11.2 Understandability
	11.2.1 Definition for Understandability
	11.2.2 Elements of Understandability
	11.2.3 Understandability in Systems Design

	11.3 Usability
	11.3.1 Definition for Usability
	11.3.2 Usability in Systems Design

	11.4 Robustness
	11.4.1 Definition for Robustness
	11.4.2 Robustness as an Element of Systems Design
	11.4.2.1 Robustness Concepts
	11.4.2.2 Designing for Robustness


	11.5 Survivability
	11.5.1 Definition for Survivability
	11.5.2 Survivability Concepts
	11.5.3 Survivability in Systems Design

	11.6 A Method for Evaluating Understandability, Usability, Robustness and Survivability
	11.6.1 Development of Measurement Scales
	11.6.1.1 Scales for Understandability, Usability, Robustness and Survivability
	11.6.1.2 Proposed Scales
	11.6.1.3 Proposed Measurement Scale for Understandability, Usability, Robustness and Survivability

	11.6.2 Measuring Understandability, Usability, Robustness and Survivability

	11.7 Summary
	References

	12 Accuracy, Correctness, Efficiency, and Integrity
	Abstract
	12.1 Introduction to Accuracy, Correctness, Efficiency, and Integrity
	12.2 Accuracy
	12.2.1 Definition for Accuracy
	12.2.2 Accuracy in Measurement
	12.2.2.1 Measurement Method
	12.2.2.2 Measurement Process
	12.2.2.3 Accuracy as a Qualitative Performance Characteristic
	12.2.2.4 Accuracy: Precision and Trueness
	12.2.2.5 Accuracy, Precision, Trueness and Error

	12.2.3 Accuracy in Systems Design
	12.2.3.1 Conceptual Design Stage Activities Where Accuracy is a Consideration
	12.2.3.2 Preliminary Design Stage Activities Where Accuracy is a Consideration
	12.2.3.3 Detailed Design Stage Activities Where Accuracy is a Consideration


	12.3 Correctness
	12.3.1 Definition for Correctness
	12.3.2 Evaluating Correctness in Systems Designs
	12.3.2.1 Verification
	12.3.2.2 Validation

	12.3.3 Methods for Ensuring Correctness During System Design
	12.3.3.1 Law of Requisite Parsimony
	12.3.3.2 Law of Requisite Saliency
	12.3.3.3 Minimum Critical Specification
	12.3.3.4 Pareto Principle

	12.3.4 Summary for Correctness

	12.4 Efficiency
	12.4.1 Definition for Efficiency
	12.4.2 Addressing System Efficiency During Design Endeavors
	12.4.2.1 System Efficiency in Engineering
	12.4.2.2 Evaluating Efficiency in System Design Endeavors


	12.5 Integrity
	12.5.1 Definition for Integrity
	12.5.2 Integrity Concepts
	12.5.3 Integrity in Systems Design

	12.6 A Method for Evaluating Accuracy, Correctness, Efficiency, and Integrity
	12.6.1 Development of Measurement Scales
	12.6.1.1 Scales for Accuracy, Correctness, Efficiency, and Integrity
	12.6.1.2 Proposed Scales
	12.6.1.3 Proposed Measurement Scale for Accuracy, Correctness, Efficiency, and Integrity

	12.6.2 Measuring Accuracy, Correctness, Efficiency, and Integrity

	12.7 Summary
	References

	Part VIConclusion
	13 Conclusion
	Abstract
	13.1 Position and Importance of Engineering Design
	13.2 Education in Engineering Design
	13.3 Position of This Text Within Engineering Design
	13.4 Summary
	References

	Index



