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Abstract A technique for extracting from the appropriate field equations the rel-
ativistic motion of Schwarzschild, Reissner-Nordström and Kerr particles moving
in external fields is motivated and illustrated. The key assumptions are that (a) the
particles are isolated and (b) near the particles the wave fronts of the radiation gen-
erated by their motion are smoothly deformed spheres. No divergent integrals arise
in this approach. The particles are not test particles. The formalism is used, however,
to derive the Mathisson–Papapetrou equations of motion of spinning test particles,
neglecting spin–spin terms.

1 Introduction

We describe a method for modeling the relativistic motion of (uncharged or charged)
particles moving in external gravitational and electromagnetic fields in general rel-
ativity. The particles modify the fields in which they move and thus are not test
particles. The modified fields near the particles are predominantly the Schwarschild,
Reissner–Nordström or Kerr fields and thus the particles will be referred to as
Schwarschild, Reissner–Nordström or Kerr particles respectively. The origin of the
approach described here is the seminal and challenging paper by Robinson and
Robinson [1], with the disconcertingly modest title of “Equations of Motion in the
Linear Approximation”, published in the festschrift in honor of Professor J.L. Synge.
This paper inspired early work involving space-times which are more special than
those required here and which can be found in a series of papers by Hogan and
Imaeda [2–4] (see also [5]). A line element, which is a byproduct of a study of grav-
itational radiation from bounded sources [6], plays a key role in the development of
our method. An early application can be found in [7]. The most up-to-date references
to our technique and applications are in the paper [8] and the books [9] and [10].
Further development of this work has also involved graduate students Takashi Fuku-
moto and Shinpei Ogawa in Tohoku University, Aishling Nic an Tuile in University
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College Dublin and Florian Bolgar in École Normale Supérieure, Paris and has taken
the form of M.Sc. and Ph.D. theses and an Internship Report.

To introduce our approach we begin with the Eddington–Finkelstein form of the
Schwarzschild line element:

ds2 = −r2 p−2
0 (dx2 + dy2) + 2 du dr +

(
1 − 2m

r

)
du2, (1)

with

p0 = 1 + 1

4
(x2 + y2). (2)

Here x, y are stereographic coordinates taking values in the ranges−∞ < x < +∞
and −∞ < y < +∞, u is a null coordinate (in the sense that the hypersurfaces u =
constant are null) with −∞ < u < +∞. The generators of these null hypersurfaces
are null geodesics labelled by (x, y) and r (with 0 ≤ r < +∞) is an affine parameter
along them. When the mass parameter m = 0 the space-time is Minkowskian with
line element

ds20 = −r2 p−2
0 (dx2 + dy2) + 2 du dr + du2 = ηi j d Xi d X j , (3)

with Xi = (X, Y, Z , T ) rectangular Cartesian coordinates and time and ηi j =
diag(−1,−1,−1,+1). In this background space-time with line element (3) the
hypersurfaces u = constant are future null cones with vertices on the time-like
geodesic r = 0. We can consider

γi j dxi dx j = −2m

r
du2, (4)

in coordinates xi = (x, y, r, u), as a perturbation of this backgroundwhich is singular
on the time-like geodesic r = 0 and which, when added to the line element (3)
produces the line element (1). Although we have no need to assume it now, we shall,
in the sequel, assume that m is small of first order and write m = O1 in order to
simplify the complicated calculations that develop.We shall consider the background
space-time a model of the external field in which the small mass is located. In the
example here the background space-time is Minkowskian space-time and thus there
is no external field present. Also in this example the time-like geodesic equations
(satisfied by r = 0 in (3)) are the equations of motion of the small mass.

In the space-time with line element (3) let Xi = wi (u) be an arbitrary time-like
world line with u proper time or arc length along it. Then vi (u) = dwi/du is the
unit tangent to this line and satisfies v jv

j = ηi jv
iv j = +1 along the world line.

Equivalently vi is the 4-velocity of the particle with world line Xi = wi (u). Thus
ai = dvi/du is the 4-acceleration and satisfies a jv

j = ηi j aiv j = 0 along the
world line. We shall lower and raise indices, referring to the coordinates Xi , using
ηi j and ηi j respectively, with the latter defined by ηi jη jk = δi

k . We note that vi and
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ai are the components of the 4-velocity and 4-acceleration of the particle expressed
in the coordinates Xi . These features of the world line can be incorporated in the
Minkowskian line element by replacing (3) by

ds20 = −r2P−2
0 (dx2 + dy2) + 2 du dr + (1 − 2h0r)du2, (5)

with

P0 = xv1(u)+yv2(u)+
{
1 − 1

4
(x2 + y2)

}
v3(u)+

{
1 + 1

4
(x2 + y2)

}
v4(u), (6)

and

h0 = ∂

∂u
(log P0) = a j k j , (7)

with

k j = P−1
0

[
−xδ

j
1 − yδ

j
2 −

{
1 − 1

4
(x2 + y2)

}
δ

j
3 +

{
1 + 1

4
(x2 + y2)

}
δ

j
4

]
. (8)

In (5) r = 0 is the world line Xi = wi (u) with the 4-velocity components appearing
in (5) via the function P0 and the 4-acceleration appearing via h0. The future null
cones with vertices on this world line are the null hypersurfaces u = constant. The
generators of these null cones are the null geodesic integral curves of the vector field
k j , which satisfies k j k j = 0 and k jv

j = +1. On each future null cone the generators
are labeled by the stereographic coordinates x, y and r ≥ 0 is an affine parameter
along them. To see how Einstein’s vacuum field equations can lead to the equations
of motion as we have defined them in the paragraph above we consider a space-time
with line element

ds2 = −r2P−2
0 (dx2 + dy2) + 2 du dr +

(
1 − 2h0r − 2m

r

)
du2, (9)

which is a generalization of the Schwarzschild space-time with line element (1). The
Ricci tensor components in coordinates xi = (x, y, r, u) are now given exactly via

Ri j dxi dx j = 6m h0

r2
du2. (10)

With m �= 0 we see that the vacuum field equations Ri j = 0 require a j k j = h0 = 0
and this should hold for all possible k j . Hence we must have, as equations of motion,
the time-like geodesic equations

a j = 0, (11)

for the world line r = 0 in the Minkowskian background space-time. This sim-
ple example illustrates a connection between the equations of motion and the field
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equations. In general we shall find, however, that the field equations by themselves
will not be sufficient to determine the equations of motion. They will have to be sup-
plemented by a smoothness condition on the wave fronts of the possible radiation
produced by the motion of the particle. A singular point on a wave front translates in
space-time into a singularity along a generator, extending to future null infinity, of
the null hypersurface history of the wave front and thus violating the concept of an
isolated source. A useful example with which to illustrate this is to consider the rela-
tivistic motion of a Reissner–Nordström particle moving in external electromagnetic
and gravitational fields.

2 Reissner-Nordström Particle

We construct here a model of a Reissner–Nordström particle of small mass m = O1
and small charge e = O1 moving in external vacuum gravitational and electromag-
netic fields. In this case the background space-time is a general solution of the vacuum
Einstein–Maxwell field equations. We shall require a knowledge of this space-time,
and theMaxwell field, in the neighborhood of an arbitrary time-like world line r = 0
(say). The charged mass will then be introduced as a perturbation of this space-time,
which is singular on this world line in the background space-time (in similar fashion
to (4) in the space-time with line element (3)), in such a way that the perturbed space-
time is, for small values of r , predominantly the Reissner–Nordström space-time and
Maxwell field. Since we have indicated in Sect. 1 that we shall make use of the field
equations along with conditions on the wave fronts of possible radiation (electro-
magnetic and/or gravitational in the current example) produced by the motion of our
particle, and since the histories of wave fronts are null hypersurfaces in space-time,
we shall work in the background space-time and in the perturbed background space-
time in a coordinate system based on a family of null hypersurfaces. Thus we begin
by writing the line element of the background space-time as

ds2 = −(ϑ1)2 − (ϑ2)2 + 2ϑ3 ϑ4 = gabϑ
a ϑb, (12)

with the 1-forms ϑ1,ϑ2,ϑ3 and ϑ4 given by

ϑ1 = r p−1(eα cosh β dx + e−α sinh β dy + a du), (13)

ϑ2 = r p−1(eα sinh β dx + e−α cosh β dy + b du), (14)

ϑ3 = dr + c

2
du, (15)

ϑ4 = du. (16)

The constants gab = gba constitute the components of the metric tensor on the tetrad
defined by the basis 1-forms. Tetrad indices will be denoted by the early letters of the
alphabet a, b, c, . . . , and tetrad indices will be lowered with gab and raised with gab
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where gabgbc = δa
c . This line element is completely general in that it involves six

functions p,α,β, a, b, c each of the four coordinates x, y, r, u. It is thus equivalent
to line elements constructed by Sachs [11] and by Newman and Unti [12]. It was
constructed in [6] for the study of gravitational radiation from bounded sources and
was specifically designed to have the Robinson–Trautman [13, 14] line elements
appear as a convenient special case (got by simply putting α = β = 0). This latter
property also makes it convenient in the current context. We shall take r = 0 to be
the equation of an arbitrary time-like world line in the space-time with line element
(12). The space-time in the neighborhood of this world line has thewell-knownFermi
property (see, for example, [15, 16]) that there exist coordinates in terms of which
the metric tensor components satisfy

gi j = ηi j + O(r2). (17)

In view of the line element (5) we can implement this property in the context of the
line element (12) by expanding the six functions appearing there in powers of r as
follows:

p = P0(1 + q2r2 + q3r3 + · · · ), (18)

α = α2 r2 + α3 r3 + · · · , (19)

β = β2 r2 + β3 r3 + · · · , (20)

a = a1 r + a2 r2 + · · · , (21)

b = b1 r + b2 r2 + · · · , (22)

c = c0 + c1 r + c2 r2 + · · · , (23)

where the coefficients of the powers of r are functions of x, y, u. Following (5) the
function P0 here is given by (6) and

c0 = 1 = � log P0 with � = P2
0

(
∂2

∂x2
+ ∂2

∂y2

)
, (24)

and
c1 = −2h0, (25)

with h0 given by (7). The operator � is the Laplacian on the unit 2-sphere. The rela-
tionship between the rectangular Cartesian coordinates and time Xi and the coor-
dinates x, y, r, u near the arbitrary time-like world line r = 0 (⇔ Xi = wi (u),
introduced in Sect. 1) is given by (see, for example, [17])

Xi = wi (u) + r ki , (26)

neglecting O(r2)-terms.
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At this point in the discussion we should note some formulas associated with
Minkowskian space-time with line element (5) or, equivalently, with metric tensor
components ηi j in coordinates Xi . A useful basis of 1-forms suggested by (5) is

ω1 = r P−1
0 dx, ω2 = r P−1

0 dy, ω3 = dr +
(
1

2
− h0 r

)
du, ω4 = du. (27)

When expressed in terms of the coordinates Xi using the transformation (26) these
read

ω1 = −P0
∂ki

∂x
d Xi = −ω1, (28)

ω2 = −P0
∂ki

∂y
d Xi = −ω2, (29)

ω3 =
(

vi − 1

2
ki

)
d Xi = ω4, (30)

ω4 = ki d Xi = ω3. (31)

In coordinates Xi the vector fields with components vi , ki , ∂ki/∂x, ∂ki/∂y form a
basis and it is useful to express the metric tensor components ηi j on this basis as

ηi j = −P2
0

(
∂ki

∂x

∂k j

∂x
+ ∂ki

∂y

∂k j

∂y

)
+ kiv j + k jvi − ki k j . (32)

Also the second partial derivatives of ki play a key role in the calculations and when
they are expressed on this basis we have

∂2ki

∂x2
= P−2

0 (vi − ki ) − ∂

∂x
(log P0)

∂ki

∂x
+ ∂

∂y
(log P0)

∂ki

∂y
, (33)

∂2ki

∂y2
= P−2

0 (vi − ki ) + ∂

∂x
(log P0)

∂ki

∂x
− ∂

∂y
(log P0)

∂ki

∂y
, (34)

∂2ki

∂x∂y
= − ∂

∂y
(log P0)

∂ki

∂x
− ∂

∂x
(log P0)

∂ki

∂y
. (35)

As a simple indication of the usefulness of these formulas we notice that if we add
(33) and (34) we obtain

�ki + 2 ki = 2 vi , (36)

with the operator � defined in (24). Taking the scalar product, with respect to the
Minkowskian metric tensor ηi j , of this equation with the 4-acceleration ai yields

�h0 + 2 h0 = 0, (37)
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with h0 given by (7). This demonstrates that h0 is an l = 1 spherical harmonic. A
spherical harmonic Q of order l is a smooth solution, for −∞ < x, y < +∞, of the
equation �Q + l(l + 1)Q = 0 for l = 0, 1, 2, . . .

Returning now to the construction of the background Einstein–Maxwell field, the
potential 1-form leading to the background electromagnetic field is given by

A = L dx + M dy + K du, (38)

where L , M, K are functions of x, y, r, u. We have used the freedom to add an exact
differential (i.e. a gauge transformation) to remove one component of this 1-form
for convenience. The functions appearing in (38) will be expanded in powers of r
in such a way that the resulting Maxwell 2-form F = d A, the exterior derivative
of (38), is non-singular at r = 0, since this will be the external Maxwell field. The
simplest expansions to achieve this are:

L = r2 L2 + r3 L3 + · · · , (39)

M = r2 M2 + r3 M3 + · · · , (40)

K = r K1 + r2 K2 + · · · , (41)

with the coefficients of the powers of r functions of x, y, u. The Maxwell 2-form is
given by

F = d A = 1

2
Fab ϑa ∧ ϑb, (42)

where Fab = −Fba are the components of the 2-form on the tetrad defined by the
basis 1-forms (13)–(16). The leading terms, in powers of r , of the tetrad components
Fab which will interest us are, in light of the expansions (18)–(23) and (39)–(41),

F13 = −2P0 L2 + O(r), F23 = −2P0 M2 + O(r), F34 = K1 + O(r). (43)

Thus on r = 0 we can replace the basis (13)–(16) by the Minkowskian counterparts
(28)–(31) and the coordinates x, y, r, u by the coordinates Xi following (26) to arrive
at

L2 = 1

2
Fi j (u) ki ∂k j

∂x
, M2 = 1

2
Fi j (u) ki ∂k j

∂y
, K1 = Fi j (u) ki v j , (44)

where Fi j (u) = −Fji (u) are the components of the external Maxwell tensor on the
world line r = 0 calculated in the coordinates Xi . With ki given by (8) above we see
that now the dependence of the functions L2, M2, K1 on x, y is explicitly known.
We can therefore use the useful formulas (33)–(35) to verify that Maxwell’s vacuum
field equations, d∗F = 0, where the star denotes the Hodge dual of the 2-form F ,
are satisfied by L2, M2, K1. The relevant equations obtained from the leading terms,
in powers of r , in Maxwell’s equations are
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K1 = P2
0

(
∂L2

∂x
+ ∂M2

∂y

)
, �K1 + 2P2

0

(
∂L2

∂x
+ ∂M2

∂y

)
= 0, (45)

and
∂K1

∂x
+ 2 L2 − ∂

∂y

{
P2
0

(
∂M2

∂x
− ∂L2

∂y

)}
= 0, (46)

∂K1

∂y
+ 2 M2 + ∂

∂x

{
P2
0

(
∂M2

∂x
− ∂L2

∂y

)}
= 0. (47)

We see that the second equation in (45) is a consequence of (46) and (47) and the
two equations in (45) imply that K1 is an l = 1 spherical harmonic since

�K1 + 2 K1 = 0. (48)

This latter equation can, of course, be verified directly using the last of (44) and the
formulas (33)–(35).

The analogue, for the gravitational field, of the Maxwell 2-form with tetrad com-
ponents Fab given by (43) is the Weyl conformal curvature tensor with tetrad com-
ponents Cabcd . The components which will be of interest to us in the neighborhood
of the world line r = 0 are given by

C1313 + iC1323 = 6 (α2 + iβ2) + O(r), (49)

and

C3431 + iC3432 = 3

2
P−1
0

{
a1 + ib1 + 4P2

0
∂q2
∂ζ̄

}
+ O(r), (50)

where ζ = x +iy and a bar denotes complex conjugation. Thesemust be examined in
conjunction with the Einstein–Maxwell vacuum field equations for the background
space-time:

Rab = 2

{
Fca Fc

b − 1

4
gab Fcd Fcd

}
= 2 Eab, (51)

where Rab are the tetrad components of the Ricci tensor of the background space-
time, gab are the tetrad components of the metric tensor and, as indicated following
(16), tetrad indices are raised using the components gab of the inverse of the matrix
with components gab and Eab = Eba are the tetrad components of the electromag-
netic energy-momentum tensor. To satisfy the field equation R33 = 2E33 + O(r)we
find that

q2 = 2

3
P2
0

(
L2
2 + M2

2

)
. (52)

This can be rewritten, using L2 and M2 given by (44) and the expression (32) for the
components of the inverse of the Minkowskian metric tensor, simply as
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q2 = −1

6
F p

i (u) Fpj (u) ki k j . (53)

Here Fpj (u) are the components of the Maxwell tensor on the world line r = 0 in
coordinates Xi while F p

i (u) = η pj Fji (u). Using this expression for q2 in (50) and
the basis (28)–(31), in similar fashion to the passage from (43) to (44) above, we
conclude from (49) and (50) that

α2 = 1

6
P2
0 Ci jkl(u) ki ∂k j

∂x
kk ∂kl

∂x
, β2 = 1

6
P2
0 Ci jkl(u) ki ∂k j

∂x
kk ∂kl

∂y
, (54)

and

a1 = 2

3
P2
0

(
Ci jkl(u) ki v j kk ∂kl

∂x
+ F p

i (u) Fpj (u) ki ∂k j

∂x

)
, (55)

b1 = 2

3
P2
0

(
Ci jkl(u) ki v j kk ∂kl

∂y
+ F p

i (u) Fpj (u) ki ∂k j

∂y

)
, (56)

where Ci jkl(u) are the components of the Weyl tensor of the background space-time
calculated on the world line r = 0 in the coordinates Xi . With P0 given by (6) and
k j by (8), we see that the dependence of q2 in (53), α2 and β2 in (54), and a1 and b1
in (55) and (56) on the coordinates x, y is explicitly known. The Einstein–Maxwell
vacuum field equations R12 = 2E12 + O(r) and R11 − R22 = 2(E11 − E22)+ O(r)

yield the pair of real field equations incorporated in the single complex equation:

2(α2 + iβ2) = − ∂

∂ζ̄

{
a1 + ib1 + 4 P2

0
∂q2
∂ζ̄

}
. (57)

The pair of real field equations R13 = 2E13 + O(r) and R23 = 2E23 + O(r) can be
written as the complex equation:

a1 + ib1 + 4 P2
0

∂q2
∂ζ̄

= 2 P4
0

∂

∂ζ
{P−2

0 (α2 + iβ2)}. (58)

Thefield equations (57) and (58)must be satisfied byq2,α2,β2, a1, b1 given by (53)–
(56). This important check can be carried out using the useful formulas (33)–(35).
We are now ready to introduce the Reissner–Nordström particle as a perturbation of
this background space-time and Maxwell field.

The line element of the perturbed space-time is given by

ds2 = −(ϑ̂1)2 − (ϑ̂2)2 + 2 ϑ̂3 ϑ̂4 = gabϑ̂
a ϑ̂b, (59)
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with the 1-forms ϑ̂1, ϑ̂2, ϑ̂3 and ϑ̂4 given by

ϑ̂1 = r p̂−1(eα̂ cosh β̂ dx + e−α̂ sinh β̂ dy + â du), (60)

ϑ̂2 = r p̂−1(eα̂ sinh β̂ dx + e−α̂ cosh β̂ dy + b̂ du), (61)

ϑ̂3 = dr + ĉ

2
du, (62)

ϑ̂4 = du. (63)

To achieve our aim of having a predominantly Reissner–Nordström field for small
values of r we take the functions appearing here to have the following expansions in
powers of r :

p̂ = P̂0 (1 + q̂2 r2 + q̂3 r3 + · · · ), (64)

α̂ = α̂2 r2 + α̂3 r3 + · · · , (65)

β̂ = β̂2 r2 + β̂3 r3 + · · · , (66)

â = â−1

r
+ â0 + â1 r + â2 r2 + · · · , (67)

b̂ = b̂−1

r
+ b̂0 + b̂1 r + b̂2 r2 + · · · , (68)

ĉ = e2

r2
− 2 (m + 2 f̂−1)

r
+ ĉ0 + ĉ1 r + ĉ2 r2 + · · · (69)

The coefficients of the various powers of r here are functions of x, y, u. The hatted
functions differ from their background values by O1-terms. Thus in particular â−1 =
O1, â0 = O1, b̂−1 = O1, b̂0 = O1, but f̂−1 = O2. The perturbed potential 1-form

A = L̂ dx + M̂ dy + K̂ du, (70)

is predominantly the Liénard–Wiechert 1-form (= e (r−1 − h0) du) up to a gauge
term so that

L̂ = r2 L̂2 + r3 L̂3 + · · · , (71)

M̂ = r2 M̂2 + r3 M̂3 + · · · , (72)

K̂ = (e + K̂−1)

r
− e h0 + r K̂1 + r2 K̂2 + · · · , (73)

where again the coefficients of the powers of r here are functions of x, y, u which
differ from their background values by O1-terms and K̂−1 = O2. The expansions
(64)–(69) and (71)–(73) appear to us to be theminimal assumptions necessary to have
a small charged mass with gravitational and electromagnetic fields predominantly
those of a Reissner–Nordström particle for small values of r . They certainly restrict
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the model of such a particle moving in external gravitational and electromagnetic
fields and their generalization or otherwise is a topic for further study.

When the metric tensor given by (59)–(63) and the potential 1-form (70), together
with the expansions (64)–(69) and (71)–(73), are substituted into Maxwell’s vacuum
field equations and the Einstein–Maxwell vacuum field equations, and all terms are
gathered on the left hand side of each equation with zero on the right hand side, we
find a finite number of terms involving inverse powers of r and an infinite number of
terms involving positive (or zero) powers of r . In an ideal world we would equate the
coefficients of each of these powers to zero and from the resulting equations derive
the coefficients in the expansions (64)–(69) and (71)–(73). However the reality is
that we can at best make the coefficients small in terms of m and e. How small
depends upon how accurately we require the equations of motion. Also the number
of coefficients we require in the expansions (64)–(69) and (71)–(73) depends upon
how accurately we require the equations of motion. For the purpose of the present
illustration we shall calculate the equations of motion in first approximation and thus
with an O2-error. The null hypersurfaces u = constant in the space-time with line
element (59) are the histories of possible wave fronts of radiation (electromagnetic
and/or gravitational) produced by the motion of the Reissner–Nordström particle.
For small values of r the degenerate metric on these hypersurfaces is given by the
line element

ds20 = −r2 P̂−2
0 (dx2 + dy2), (74)

where P̂0 differs from its background value P0 given in (6) by O1-terms and thus
can be written

P̂0 = P0 (1 + Q1 + O2), (75)

with Q1(x, y, u) = O1. We will assume that the line elements (74) are smooth
deformations of the line element of a 2-sphere. This means that Q1 is a well behaved
function for −∞ < x, y < +∞ and thus free of singularities in x, y. Now the field
equations yield

â−1 = −4 e P2
0 L2 + O2 = O2, (76)

b̂−1 = −4 e P2
0 M2 + O2 = O1, (77)

ĉ0 = 1 + �Q1 + 2Q1 + 8eFi j k
iv j + O2, (78)

and

− 1

2
�(�Q1 + 2Q1) = 6mai k

i − 6eFi j k
iv j + O2. (79)

Both terms on the right hand side of (79) are l = 1 spherical harmonics and thus
(79) can be easily integrated (discarding the solution of the l = 0 spherical harmonic
equation which is singular for infinite values of x and y) to read

�Q1 + 2Q1 = 6mai k
i − 6eFi j k

iv j + A(u) + O2, (80)
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where A(u) = O1 is arbitrary (an l = 0 spherical harmonic). We note that spherical
harmonics corresponding to l = 0 or l = 1 in the perturbation Q1 in (75) are trivial,
in the sense that the 2-sphere remains a 2-sphere under these perturbations, and can
be neglected. Since the first two terms in (80) are both l = 1 spherical harmonics
the solution Q1 will necessarily have a singularity in x, y (a directional singularity)
unless they combine to vanish or be at most small of second order. Thus we must
have

mai k
i = 6eFi j k

iv j + O2, (81)

for all possible values of ki and thus

mai = eFi jv
j + O2. (82)

We have arrived at the Lorentz equations of motion in first approximation.
The example above serves to illustrate our approach. If it is continued to the next

order of approximation the equations of motion which emerge are [8]

mai = eFi jv
j + 4

3
e2hk

i F p
k Fpjv

j + 2

3
e2hk

i ȧk + e2Ti + O3, (83)

where hi
j = δi

j − vi v j is the projection tensor and the dot denotes differentiation
with respect to proper time u. The second term on the right hand side here is an
O2-correction to the external 4-force. The third term on the right hand side is the
electromagnetic radiation reaction 4-force. The fourth term on the right hand side is
a tail term given by an integral with respect to proper time u from −∞ to the current
proper time u of a vector whose components are proportional to the externalMaxwell
field Fi j (u) and involve functions of u of integration and a pair of space-like vectors,
which occur naturally, defined along the world line r = 0 in the background space-
time. When e = 0 we obtain the equations of motion of a Schwarzschild particle in
second approximation given by the approximate time-like geodesic equations

m ai = O3. (84)

There is a formal similarity between the equations of motion (83) and equations
of motion derived by DeWitt and Brehme [18]. However DeWitt and Brehme have
removed an infinite term from their equations of motion and have considered a
scenario (the world line of a charged test particle in a curved space-time, and hence
utilize only Maxwell’s equations on a curved space-time) which is different to that
constructed here.

Finally, so that the reader is left in no doubt as to the procedure involved in
the passage from (80) to (82), we can give a simplified example of the procedure.
If λ = cos θ for 0 ≤ θ ≤ π (or equivalently for −1 ≤ λ ≤ +1) consider a
function f = f (λ) satisfying the inhomogeneous l = 1 Legendre equation (i.e.
the inhomogeneous l = 1 spherical harmonic equation satisfied by a function of the
single variable λ) with an l = 1 Legendre polynomial on the right hand side:



Equations of Motion of Schwarzschild, Reissner-Nordström and Kerr Particles 277

� f + 2 f ≡ d

dλ

{
(1 − λ2)

d f

dλ

}
+ 2 f = t1P1(λ), (85)

where t1 is a constant. For this equation to have a solution which is non-singular at
λ = ±1 (which are directional singularities) we must have t1 = 0 (analogous to
(81)). This easily follows from consideration of the general solution

f (λ) = −1

6
t1 λ log(1 − λ2) + t2 P1(λ) + t3 Q1(λ), (86)

where t2, t3 are constants and Q1(λ) is the Legendre function corresponding to l = 1.
Of course the required directional singularity-free solution also requires us to take
t3 = 0 here.

3 Kerr Particle

We outline here the application of our technique to the construction of a model of
a spinning particle, or Kerr particle, moving in an external vacuum gravitational
field, and the derivation of its equations of motion. This work, carried out by Shinpei
Ogawa and the author, is reported in [10]. Although we consider only the equations
of motion in first approximation here, the calculations are more intricate than those
necessary for the study of the Reissner–Nordström particle. Consequently we must
refer the interested reader to [10] for further details.

The fundamental aspects of our technique are the construction of a background
space-time with an arbitrary time-like world line in the neighborhood of which the
space-time is flat, following from the Fermi property, and then the introduction of
the particle of interest as a perturbation of this space-time. In the flat neighborhood
of the world line in the background space-time we wrote the line element in the
form (5) which introduces the 4-velocity and 4-acceleration of the world line into
the line element. To consider a particle with spin in this context we introduce the
spin variables (what will become the three independent components of the angular
momentum per unit mass of the particle) into the line element of Minkowskian
space-time to accompany the 4-velocity and 4-acceleration already present. We do
this in such a way that if ai = 0 then the form of the line-element of Minkowskian
space-time coincides with the Kerr line element, with three components of angular
momentumper unitmass, in the special case inwhich themassm = 0. The latter form
of the Kerr line element can be found in ([19], p. 37). Let si (u) be the components
of the spin vector in coordinates Xi , defined along the arbitrary time-like world
line Xi = wi (u) to be everywhere orthogonal to the 4-velocity vi (u) and Fermi
transported, thus,

si vi = 0 and
dsi

du
= −(a j s j ) si , (87)
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respectively. The equivalent spin tensor is defined by

si j = εi jkl vk sl = −s ji , (88)

where εi jkl are the components of the Levi–Cività permutation tensor in coordinates
Xi . We introduce si into the Minkowskian line element by replacing (26) by

Xi = wi (u) + r ki + P2
0

(
∂ki

∂x
Fy − ∂ki

∂y
Fx

)
, (89)

where
F = si ki , (90)

and the subscripts on F denote partial differentiation with respect to x and y. We note
that P0 and ki are given by (6) and (8). By (87) and the useful formulas (33)–(35)
we easily find that F is an l = 1 spherical harmonic. Also we can rewrite (89) in the
general form of (26) as

Xi = wi (u) + r K i with K i =
(

ηi j + 1

r
si j

)
k j , (91)

showing that for large r in Minkowskian space-time K i only differs from ki by an
infinitesimal Lorentz transformation generated by the spin tensor. The Minkowskian
line element is given by ds20 = ηi j d Xi d X j with Xi given now by (89). When
Xi = wi (u) (no longer corresponding to r = 0) is a geodesic we can choose vi = δi

4
and the resulting line element is

ds20 = −(r2 + F2)p−2
0 (dx2 + dy2) + 2d�

{
dr + 1

2
(du − Fydx + Fx dy)

}
,

(92)

with p0 given by (2) and

d� = du − Fydx + Fx dy. (93)

We note that the latter is not an exact differential unless the spin vanishes. The Kerr
solution with the three components of angular momentum (ms1, ms2, ms3) (since
now s4 = 0) is

ds2 = ds20 − 2mr

r2 + F2 d�2. (94)

If the world line Xi = wi (u) is not a time-like geodesic then the Minkowskian
line element is algebraically more complicated than (92). For simplicity we shall
henceforth neglect spin–spin terms and assume that the 4-acceleration is proportional
to the spin on the basis that we expect geodesic motion if the spin vanishes. Now the
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Minkowskian part of the background line element, when the world-line Xi = wi (u)

is not necessarily a time-like geodesic, is given by

ds20 = −r2 P−2
0

{
dx2 + dy2 + 2P2

0 Fy

r2
dx du − 2P2

0 Fx

r2
dy du

}
+ 2 dr d�

+ 2 Fy du dx − 2 Fx du dy + (1 − 2 h0 r) du2. (95)

With this preparation wewrite the line element of the general background space-time
as

ds2 = −r2 p−2
{
(eα cosh β dx + e−α sinh β dy + a d�)2

+ (eα sinh β dx + e−α cosh β dy + b d�)2
}

+ 2 dr d� + c d�2,

(96)

with

p = P0 (1 + q2 r2 + q3 r3 + · · · ), (97)

α = α1 r + α2 r2 + · · · , (98)

β = β1 r + β2 r2 + · · · , (99)

a = P2
0 Fy

r2
+ a−1

r
+ a0 + a1 r + · · · , (100)

b = − P2
0 Fx

r2
+ b−1

r
+ b0 + b1 r + · · · , (101)

c = c0 + c1 r + · · · (102)

We now require this background line element to be a solution of Einstein’s vacuum
field equations

Rab = 0. (103)

Equating to zero the powers of r in the Ricci tensor components Rab we find the
following expressions for the coefficients of the powers of r in the expansions (97)–
(102):

q1 = 0 = q2, α1 = 4Fβ2, β1 = −4Fα2, (104)

α2 = 1

6
P2
0 Ri jkl(u)

∂ki

∂x
k j ∂kk

∂x
kl + O(F), (105)

β2 = 1

6
P2
0 Ri jkl(u)

∂ki

∂x
k j ∂kk

∂y
kl + O(F). (106)
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Also a−1 = 0 = b−1 and

a0 = −7P2
0 (α2Fy − β2Fx ), b0 = −7P2

0 (α2Fx + β2Fy), (107)

a1 = 2

3
P2
0 Ri jkl(u) ki v j kk ∂kl

∂x
+ O(F), (108)

b1 = 2

3
P2
0 Ri jkl(u) ki v j kk ∂kl

∂y
+ O(F), (109)

and c0 = 1 while

c1 = −2 h0 − F P2
0

(
∂

∂y
(P−2

0 a1) − ∂

∂x
(P−2

0 b1)

)
+ 5(a1Fy − b1Fx ). (110)

The O(F)-terms not calculated here will get multiplied by F , as in (104), (107) and
(110) and will therefore not contribute to the end result since we are systematically
neglecting spin-spin terms. In these formulas Ri jkl(u) are the components of the
Riemann curvature tensor in coordinates Xi calculated on theworld-line Xi = wi (u).
As well as satisfying the algebraic symmetries of the Riemann tensor they satisfy
Einstein’s vacuum field equations ηik Ri jkl(u) = 0 on the world-line Xi = wi (u).

We introduce the Kerr particle of small mass m = O1 as a perturbation, which is
predominantly the Kerr field for small values of r , of this background vacuum space-
time. The simplest way to achieve this appears to be the expansions (remembering
that we make no claim to uniqueness; see the comments following (73) above):

dŝ2 = −r2 p̂−2
{
(eα̂ cosh β̂ dx + e−α̂ sinh β̂ dy + â d�)2

+(eα̂ sinh β̂ dx + e−α̂ cosh β̂ dy + b̂ d�)2
}

+ 2 dr d� + ĉ d�2,

(111)

with

p̂ = P̂0 (1 + q̂2 r2 + q̂3 r3 + · · · ), (112)

α̂ = α̂1 r + α̂2 r2 + · · · , (113)

β̂ = β̂1 r + β̂2 r2 + · · · , (114)

â = P2
0 Fy

r2
+ â−1

r
+ â0 + â1 r + · · · , (115)
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b̂ = − P2
0 Fx

r2
+ b̂−1

r
+ b̂0 + b̂1 r + · · · , (116)

ĉ = −2m

r
+ ĉ0 + ĉ1 r + · · · (117)

As always the hatted functions of x, y, u differ from their background values by
O1-terms. In addition P̂0 again has the form (75) involving the first order function
Q1(x, y, u). Now we must impose the vacuum field equations to be satisfied by the
metric given via the line element (111) with sufficient accuracy to enable us to derive
the equations of motion for the world line Xi = wi (u) in the background space-
time, in first approximation. The vacuum field equations provide us with a set of
equations which parallel (79)–(81) in the Reissner–Nordström example. In addition
to q̂1 = O2, q̂2 = O2 we find that

â0 = −7P2
0 (α2Fy − β2Fx ) − 2ma1 + O(m F) + O2, (118)

b̂0 = −7P2
0 (α2Fx + β2Fy) − 2mb1 + O(m F) + O2, (119)

â−1 = −4m F b1 + O2, b̂−1 = 4m F a1 + O2, (120)

and

ĉ0 = 1 + �Q1 + 2 Q1 − 10m F P2
0

(
∂

∂y
(P−2

0 a1) − ∂

∂x
(P−2

0 b1)

)

−8m (a1Fy − b1Fx ) + O2. (121)

In the remaining field equation, which yields the analogue of (79) and thence the
analogue of (80), the functions â0 and b̂0 are multiplied by m and so the uncalculated
terms O(m F) in (118) and (119) will not contribute to the equations of motion in
first approximation (i.e. neglecting O2-terms). The equation we obtain, which is the
analogue of (80), is

(�+2)(Q1+2m J1+m J2) = 6mai k
i −6m Ri jkl(u)kiv j skl + A(u)+ O2, (122)

where A(u) = O1 is a function of integration as in (80) and J1 and J2 are spin-
curvature terms given by

J1 = P2
0 F Ri jkl(u)kiv j ∂kk

∂y

∂kl

∂x
+ 1

5
Ri jkl(u)kiv j skl , (123)

which is an l = 3 spherical harmonic and

J2 = P2
0 Ri jkl(u)smvi k jvk

(
∂kl

∂x

∂km

∂y
− ∂kl

∂y

∂km

∂x

)
, (124)
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which is an l = 2 spherical harmonic, results which are obtained using the useful
formulas (33)–(35). The first two terms on the right hand side of (122) are l = 1
spherical harmonics and so, just as in the case of (80), the solution Q1 will be free
of directional singularities provided the sum of these terms is zero or at most small
of second order, i.e.

m ai ki = m Ri jkl(u) ki v j skl + O2, (125)

for all possible ki and thus we arrive at the equations of motion of the Kerr particle
in first approximation:

m ai = m Ri jkl(u) v j skl + O2. (126)

The algebraic form of the right hand side of these equations is, perhaps, what one
would expect. The numerical factor of unity distinguishes these equations of motion
from those of Mathisson–Papapetrou for a spinning test particle. We have here a
model of a Kerr particle and it is manifestly not a test particle. The rest mass m is
already small and making it smaller does not make it a test particle since so long as
m �= 0 its presence perturbs the background space-time (96). However in the present
context we can say something about spinning test particles and this is the topic we
turn to now.

4 Spinning Test Particle

Since we are now concerned with test particles moving in vacuum gravitational
fields we will concentrate on what we called background space-times above. We first
consider the non-spinning test particle whose world line, according to the geodesic
hypothesis, is a time-like geodesic. With the geodesic hypothesis accepted for a non-
spinning test particle it is relatively easy to devise a strategy, using the formalism of
this paper, which will lead us to the equations of motion of a spinning test particle.
As in Sect. 3 we will neglect spin-spin terms, but this restriction can be relaxed (and
indeed has been by Florian Bolgar in his Internship Report to the École Normale
Supérieure (2012)). The background vacuum space-time with the spin vector si = 0
has line element given by (96)–(102) with F = 0 and the coefficients of the powers
of r are given by (104)–(110) with F = 0. Thus in coordinates xi = (x, y, r, u),
with i = 1, 2, 3, 4, the only coordinate component of the metric tensor involving the
4-acceleration ai of the world line Xi = wi (u) is

g44 = 1 − 2r h0 + O(r2). (127)
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The coefficient of −2r on the right hand side here is the l = 1 spherical harmonic
h0, which vanishes if and only if ai = 0. In this case the world line Xi = wi (u) is
a time-like geodesic and is thus the history of a test particle moving in the vacuum
gravitational field modeled by the space-time with line element (96) with F = 0.
Now we consider a particle with spin si �= 0 having world line Xi = wi (u) in the
space-time with line element (96) with F �= 0. Now (127) is replaced by

g44 = 1 − 2r

(
h0 − 1

2
Ri jkl(u)kiv j skl + J2

)
+ O(r2), (128)

with J2 given by (124). The first two terms in the coefficient of −2r here are l = 1
spherical harmonics while the third term J2 is an l = 2 spherical harmonic. If the
equations of motion of a spinning test particle are obtained in the same way as those
of a non-spinning test particle then equating to zero the l = 1 terms in the coefficient
of −2r in (128) results in

ai ki = h0 = 1

2
Ri jkl(u) ki v j skl , (129)

for all possible values of ki and thus the equations of motion of a spinning test
particle, neglecting spin-spin terms, are

ai = 1

2
Ri jkl(u)v j skl , (130)

in agreement with Mathisson [20] and Papapetrou [21].

5 Discussion

Perhaps the most striking aspect of the technique presented here for extracting equa-
tions of motion from field equations is the absence of infinities arising in the cal-
culations, either in the form of infinite self energy of the Dirac type [18] or in the
form of divergent integrals. We have already indicated following (84) above that
in the case of the DeWitt and Brehme [18] work this may be due to the fact that
they have considered a different problem to the one we have described in Sect. 2.
Much work in recent years has been done under the general heading of “the self
force problem” and, fortunately, this work is well represented in the current volume,
offering the interested student a direct comparison with our work and the challenge
of connecting the different points of view.
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