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Abstract A longstanding approach to the dynamics of extended objects in curved
space-time is given by theMathisson-Papapetrou-Dixon (MPD) equations of motion
for the so-called “pole-dipole approximation.” This paper describes an analytic per-
turbation approach to the MPD equations via a power series expansion with respect
to the particle’s spin magnitude, in which the particle’s kinematic and dynamical
degrees of freedom are expressible in a completely general way to formally infinite
order in the expansion parameter, and without any reference to pre-existent space-
time symmetries in the background. An important consequence to emerge from the
formalism is that the particle’s squared mass and spin magnitudes can shift based
on a classical analogue of “radiative corrections” due to spin-curvature coupling,
whose implications are investigated. It is explicitly shown how to solve for the linear
momentum and spin angular momentum for the spinning particle, up to second order
in the expansion. As well, this paper outlines two distinct approaches to address the
study of many-body dynamics of spinning particles in curved space-time. The first
example is the spin modification of the Raychaudhuri equation for worldline con-
gruences, while the second example is the computation of neighbouring worldlines
with respect to an arbitrarily chosen reference worldline.

1 Introduction

It is an undeniable fact that, for all practical purposes, macroscopic astrophysical
objects in the Universe possess classical spin angular momentum during their for-
mation and long-term evolution. In addition, it has been known for a long time that
relativistic astrophysical objects, such as black holes and neutron stars with spin, also
theoretically exist within the theory of General Relativity, with strong observational
evidence to effectively confirm their presence within the Universe. Further to this, it
becomes very relevant to consider, for example, the physical consequences involving
the spin interaction of relativistic systems, such as the orbital dynamics of rapidly
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spinning neutron stars around supermassive black holes expected to exist in the
centres of most galaxies. Therefore, it is vital to properly understand the dynamics
of extended bodies in curved space-time that incorporates classical spin.

The first attempt to introduce classical spin within the framework of General
Relativity was presented by Mathisson [1], who demonstrated the existence of equa-
tions of motion involving an interaction due to the direct coupling of the Riemann
curvature tensor with the moving particle’s spin. Besides the so-called “pole-dipole
approximation” for the case of a spinning point dipole as the leading order spin-
dependent term alongside the mass monopole term, Mathisson’s formalism includes
a non-trivial set of higher-order multipole moment contributions that depend upon
prior knowledge of the object’s matter-energy tensor field. Several other contribu-
tions over the years also appear, most notably from Papapetrou [2] whose treatment
of the problem was to describe the spinning object confined to within a space-time
world tube that contains its centre-of-mass worldline, such that the associated matter
field is given compact support. Other contributions, such as from Pirani [3], Tulczy-
jew [4], Madore [5], and several more have adopted competing perspectives on the
treatment of higher-order multipole moments. Some years later, Dixon [6, 7] intro-
duced what is arguably the most complete treatment of this problem by providing
a fully self-consistent description of all multipole moment contributions to infinite
order for the dynamics of extended bodies in curved space-time.

When considering the inspiral orbital motion of an equal-mass spinning binary
neutron star system, for example, it is reasonable to demand an understanding of
the higher-order multipole moment contributions when strong tidal disruptions are
expected to occur to put stresses within the neutron stars’ internal structure. How-
ever, for situations involving extreme mass-ratio systems, such as neutron stars or
solar-mass black holes in orbit around supermassive black holes, it is justifiable to
truncate the multipole moment expansion of the full equations of motion and focus
exclusively on the pole-dipole approximation. Indeed, for most practical calcula-
tions involving an extreme mass ratio system, the essential physics of the dynamical
motion is well-captured, provided that the spinning object’s dimensions are suffi-
ciently small compared to the background space-time’s local radius of curvature in
order for this justification to be well-motivated. Taking such an approach leads to
what are commonly known as theMathisson-Papapetrou-Dixon (MPD) equations of
motion.

The application of the MPD equations for a variety of interesting astrophysical
situations is evident within the literature. For obvious reasons, it is very natural to
make use of the MPD equations to describe the dynamics of a spinning particle
around spinning black holes, as described by the Kerr metric [8–12] to showcase
the impact of spin-curvature interactions involving black hole spin on the spinning
particle’s long-term orbital motion. In so doing, the particle then becomes a sensitive
probe of space-time curvature due to the MPD equations, from which it becomes
possible to learn a great deal about the properties of the background source. From
numerical simulations in particular, it is possible to explore the limits of stability
for the MPD equations, such that deterministic chaos may result under extreme
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circumstances [12–15]. Furthermore, it is possible within this framework to derive
predictions of gravitational wave generation [16, 17] expected to occur from spin-
induced deviations away from geodesic motion.

Besides the numerically driven treatments of the MPD equations, there also exist
more formal analytic studies within the literature [18–20]. The direct precursor to
the analytic perturbative approach presented in this article was first developed by
Chicone,Mashhoon, and Punsly (CMP) [21], with a focus upon the study of spinning
clumps of plasma in the formation of astrophysical jets columnated along aKerr black
hole’s axis of symmetry. For future reference, this approach to the MPD equations
is hereafter known as the CMP approximation. This approach was then applied
by Mashhoon and Singh [22] to identify analytic expressions for the leading-order
perturbations for the circular orbit of a spinning particle around a Kerr black hole.
Given the somewhat basic assumptions within the CMP approximation, the analysis
is remarkably successful in reproducing the spinning particle’s kinematic properties
when comparedwith the fullMPDequations. This is self-evident for situationswhere,
for spin magnitude s and mass m, with radial distance r away from the background
source, the spinning particle’s Møller radius [22, 23] is confined to s/m < 10−3 r .
This agreement, however, begins to break down when s/(mr) ∼ 10−2 − 10−1 for
r = 10 M , where M is the Kerr black hole mass. It suggests strongly that higher-
order spin-curvature coupling terms are necessary tomore completely account for the
orbital motions when compared with the numerical treatment of the MPD equations.

On the basis of this observation, a full generalization of the CMP approximation
was introduced by Singh [24] to account for the need to have higher-order analytic
contributions within the perturbation treatment. As will be shown within this paper,
several attractive features emerge with the additional terms incorporated. First, the
formalism in terms of a power series expansion with respect to the particle’s spin
magnitude is extended to formally infinite order. Second, it is background indepen-
dent and accommodates for arbitrary motion of the particle without any recourse to
space-time symmetrieswithin themetric.As such, it follows that this generalization is
very robust and can be applied to a wide variety of astrophysical situations, examples
of which are the modelling of globular clusters and other many-body dynamical sys-
tems in curved space-time. Explicit applications of this perturbation approach were
presented by Singh to model the circular motion of a spinning test particle around a
Kerr black hole [25] and that of a radially accreting or radiating Schwarzschild black
hole, as described by the Vaidya metric [26]. Third, the formalism allows for the
existence of a classical analogue for “radiative corrections” that shift the particle’s
overall squaredmass and spin magnitude with respect to some “bare mass” and “bare
spin,” respectively. Such an observation under extreme conditions may well yield the
ability to analytically determine the transition from stable to chaotic motion, which
can be compared to existing studies [12–15] that involve numerical methods.

This paper presents the analytic perturbation treatment of the MPD equations
based on the following outline. It begins in Sect. 2 with a general presentation of the
MPD equations and its properties. Following that, Sect. 3 presents the perturbation
approach based upon the CMP approximation. Afterwards, Sect. 4 gives a descrip-
tion of how to explicitly obtain the linear momentum and spin angular momentum
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terms for a spinning test particle, up to second order in the perturbation expansion.
Prior to the concluding remarks, Sect. 5 presents two lines of study for a many-
body extension of the MPD equations that can incorporate the analytic perturbation
approach. The first one concerns spin-induced modifications of the Raychaudhuri
equation for a congruence of worldlines, while the second one involves the compu-
tation of neighbouring worldlines for spinning particles determined with respect to
a reference spinning particle. In order to account for the anticipated spin-spin inter-
actions to appear within this many-body extension, a novel approach is employed in
the form of introducing a spin-induced torsion field satisfying the Riemann-Cartan
U4 geometry along the reference particle’s worldline, details of which are explained
in due course.

Throughout this paper, the metric convention is +2 signature with geometric
units of G = c = 1 utilized. The Riemann tensor and its contractions are defined in
accordance with Misner et al. [27].

2 The MPD Equations in General Form

2.1 Equations of Motion

Assuming the pole-dipole approximation for a spinning pointlike object, the MPD
equations for its linear four-momentum Pμ(τ ) and spin tensor Sαβ(τ ) are described
by

DPμ

dτ
= −1

2
Rμ

ναβ uν Sαβ , (1)

DSαβ

dτ
= Pα uβ − Pβ uα , (2)

where (1) is the spin-curvature force equation due to the coupling of the Riemann
curvature tensor Rμναβ with Sαβ(τ ), plus the particle’s four-velocity vector uμ(τ ) =
dxμ(τ )/dτ with affine parametrization τ , while (2) is the wedge product of the four-
velocity with the four-momentum. An important consequence of the MPD equations
is that the particle’s four-momentum necessarily precesses around the centre-of-mass
worldline. The affine parameter τ is formally left unspecified, but it is always possible
to have it identified with proper time, such that uμ uμ = −1. When going beyond the
pole-dipole approximation, (1) and (2) each have additional terms of the formFμ and
T αβ [18, 22], respectively. These contributions in turn require detailed knowledge of
the spinning object’s energy-momentum tensor T μν [6–8, 22], satisfying covariant
conservation ∇ν T μν = 0. For the purposes of this paper, however, the expressions
for (1) and (2) are sufficient.
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2.2 Constraint Equations

By themselves, the MPD equations (1) and (2) are underdetermined. They require
additional equations to specify the system, up to a parametrization constraint for τ .
Specifically, it is necessary to determine some type of relationship involving the
spin tensor that allows for the spinning particle’s evolution to be understandable.
Arguably, the most “reasonable” spin condition to be utilized, following Tulczyjew
[4] and Dixon [6, 7] is to enforce orthogonality between the spin tensor and the linear
four-momentum, such that

Sαβ Pβ = 0 . (3)

It follows from use of both (3) and the MPD equations that the mass and spin
magnitudes m and s, defined according to

m2 = −Pμ Pμ , (4)

s2 = 1

2
Sμν Sμν , (5)

are both constants of the motion [21].
In addition to this fact, use of (3) gives rise to determining the four-velocity uμ

with respect to Pμ and Sαβ according to Tod et al. [10], such that

uμ = − P · u

m2

[
Pμ + 1

2

Sμν Rνγαβ Pγ Sαβ

m2 + 1
4 Rαβρσ Sαβ Sρσ

]
. (6)

As noted above, the only remaining undetermined quantity is P · u, which relates
the particle’s internal clock with respect to τ . While solving for P · u in terms of
the normalization equation uμ uμ = −1 is obviously possible, it is also possible to
impose a different constraint on τ , since the choice for P ·u has no effect on the locus
of the particle’s worldline. For example, if it is desirable to measure time evolution
in terms of a distant observer’s clock, then letting u0 = dt/dτ = 1 and solving for
P · u is a perfectly valid procedure to follow.

All these equations presented above will become useful for deriving the analytic
perturbative approach to the MPD equations, based upon the CMP approximations
to be presented next [24].

3 Analytic Perturbation Approach to the MPD Equations

3.1 CMP Approximation

The approximation of the MPD equations first introduced by Chicone et al. [21, 22]
is based upon the assumption that Pμ − m uμ = Eμ is small, where Eμ is the spin-
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curvature force. Further to this, the Møller radius ρ [21–23] is chosen to be a small
quantity, in terms of ρ = s/m � r , where r is the distance from the particle to the
source of the gravitational background.When taken together, theCMPapproximation
emerges as a series expansion to first-order in s, in the form

DPμ

dτ
≈ −1

2
Rμ

ναβ uν Sαβ , (7)

DSαβ

dτ
≈ 0 . (8)

According to (8), the spin tensor is parallel transported and the spin condition (3)
becomes

Sαβ uβ ≈ 0 , (9)

which agrees with the Pirani condition [3] for orthogonality between the spin tensor
and the particle’s four-velocity.

It is surprising to note that the CMP approximation is remarkably accurate for
modelling the motion of a spinning test particle in curved space-time, with spin
orientation as given in Fig. 1. This is illustrated very well when applied to circular
motion around a Kerr black hole [22] and compared to the full MPD equations for
s/(mr) ∼ 10−3 and r = 10 M . However, when pushed to the more extreme situation
of s/(mr) ∼ 10−2−10−1 for the samechoice of r , a breakdownappears, as evidenced
by Fig. 2 with the lack of any spin-induced modulation of the particle’s τ -dependent
radial position using the CMP approximation compared to the full MPD equations.
This observation justifies the need for a generalization of the CMP approximation to
be given below [24].

x

y

z

θ̂

φ̂

Fig. 1 Initial spin orientation (θ̂, φ̂) for a spinning particle in circular motion around a black hole.
The observer is located along the x-axis
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Fig. 2 The orbital radial co-ordinate rs(τ ) for s/(mr) = 10−1, where m = 10−2 M , r = 10 M ,
θ̂ = φ̂ = π/4, and a = 0.50. a s/(mr) = 10−1 (MPD). b s/(mr) = 10−1 (Linear)

3.2 Generalization of the CMP Approximation

To develop the generalization of the CMP approximation [24, 25], the linear momen-
tum and spin angular momentum are expressed in terms of a power series expansion
in the form

Pμ(ε) ≡
∞∑
j=0

ε j Pμ
( j) , (10)

Sμν(ε) ≡ ε

∞∑
j=0

ε j Sμν
( j) =

∞∑
j=1

ε j Sμν
( j−1) . (11)

For (10) and (11), ε is an expansion parameter that is identified with s, with Pμ
( j) and

Sμν
( j−1) as the respective jth-order contributions in ε of the linear momentum and spin

angular momentum. For the zeroth-order expressions in ε, they correspond to the
dynamics of a spineless particle in geodesic motion. In addition, it is also assumed
that the four-velocity is described as

uμ(ε) ≡
∞∑
j=0

ε j uμ
( j) . (12)

When substituting (10), (11), and (12) into the MPD equations expressed as

DPμ(ε)

dτ
= −1

2
Rμ

ναβ uν(ε) Sαβ(ε) , (13)

DSαβ(ε)

dτ
= 2 ε P [α(ε) uβ](ε) , (14)
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where for consistency an extra factor of ε is introduced in (14), the jth-order expres-
sions of the MPD equations become

DPμ
( j)

dτ
= −1

2
Rμ

ναβ

j−1∑
k=0

uν
( j−1−k) Sαβ

(k) , (15)

DSαβ
( j−1)

dτ
= 2

j−1∑
k=0

P [α
( j−1−k) uβ]

(k) . (16)

For Pμ
(0) = m0 uμ

(0), where

m2
0 ≡ −P(0)

μ Pμ
(0) , (17)

it follows that the zeroth-order term in ε is

DPμ
(0)

dτ
= 0 , (18)

while the respective first-order terms for the linear momentum and spin are then the
CMP approximation, since

DPμ
(1)

dτ
= −1

2
Rμ

ναβ uν
(0) Sαβ

(0) , (19)

DSαβ
(0)

dτ
= 0 . (20)

To complete the generalization, it is necessary to determine uμ
( j) as a function of

the linear and spin angular momentum expansion terms. To do this requires use of
the supplementary equations (3)–(6), with important consequences to follow. From
the spin condition (3), it is straightforward to show in terms of (10) and (11) that

P(0)
μ Sμν

( j) = −
j∑

k=1

P(k)
μ Sμν

( j−k) , j ≥ 1 (21)

for the (j + 1)th-order contribution in ε, where the first-order perturbation in ε is

P(0)
μ Sμν

(0) = 0 . (22)

It is possible to identify a classical analogue for a bare mass m0 defined by (17) and
a bare spin s0, according to

s20 ≡ 1

2
S(0)
μν Sμν

(0) , (23)
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in analogy with the radiative corrections identified with the bare mass of quantum
field theory, given that the m and s are dependent upon Pμ and Sμν , which are
represented by (10) and (11), respectively. Therefore, it follows that the total mass
and spin magnitudes can be identified as “radiative corrections” to m0 and s0, such
that

m2(ε) = m2
0

⎛
⎝1 +

∞∑
j=1

ε j m̄2
j

⎞
⎠ , (24)

s2(ε) = ε2 s20

⎛
⎝1 +

∞∑
j=1

ε j s̄2j

⎞
⎠ , (25)

where

m̄2
j = − 1

m2
0

j∑
k=0

P( j−k)
μ Pμ

(k) , (26)

s̄2j = 1

s20

j∑
k=0

S( j−k)
μν Sμν

(k) , (27)

are dimensionless jth-order corrections to m2
0 and s20 , respectively. Since the m2 and

s2 are already constant within the exact set of MPD equations, it follows that m̄2
j and

s̄2j must be individually constant for each order of ε.
With the four-velocity parametrized by ε in the form

uμ(ε) = − P · u

m2(ε)

[
Pμ(ε) + 1

2

Sμν(ε) Rνγαβ Pγ(ε) Sαβ(ε)

m2(ε)�(ε)

]
, (28)

�(ε) ≡ 1 + 1

4m2(ε)
Rμναβ Sμν(ε) Sαβ(ε) , (29)

it can be expanded out once the yet undetermined scalar product P · u is specified.
A particularly useful choice is

P · u ≡ −m(ε), (30)

which leads to

uμ(ε) uμ(ε) = −1 + 1

4m6(ε)�2(ε)
R̃μ(ε) R̃μ(ε)

= −1 + O(ε4) , (31)
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where

R̃μ(ε) ≡ Sμν(ε)Rνγαβ Pγ(ε) Sαβ(ε) . (32)

Therefore, to at least third-order in ε, it is shown from (31) that τ is the proper
time for parameterization of the particle’s centre-of-mass worldline in accordance
with (30). A resulting tedious but otherwise straightforward calculation shows from
substituting (10), (11), and (24) into (28) that the spinning particle’s four-velocity is

uμ(ε) =
∞∑
j=0

ε j uμ
( j) = Pμ

(0)

m0
+ ε

[
1

m0

(
Pμ

(1) − 1

2
m̄2

1 Pμ
(0)

)]

+ ε2
{

1

m0

[
Pμ

(2) − 1

2
m̄2

1 Pμ
(1) − 1

2

(
m̄2

2 − 3

4
m̄4

1

)
Pμ

(0)

]

+ 1

2m3
0

Sμν
(0) Rνγαβ Pγ

(0) Sαβ
(0)

}

+ ε3
{

1

m0

[
Pμ

(3) − 1

2
m̄2

1 Pμ
(2) − 1

2

(
m̄2

2 − 3

4
m̄4

1

)
Pμ

(1)

− 1

2

(
m̄2

3 − 3

2
m̄2

1 m̄2
2 + 5

8
m̄6

1

)
Pμ

(0)

]

+ 1

2m3
0

Rνγαβ

[
1∑

n=0

Sμν
(1−n)

n∑
k=0

Pγ
(n−k) Sαβ

(k) − 3

2
m̄2

1 Sμν
(0) Pγ

(0) Sαβ
(0)

]}

+ O(ε4) , (33)

which satisfies (31) to third order in ε.
At this point, theworldline of the spinning particle can be explicitly determined by

simple integration of (33), since it provides an iterative means to explicitly evaluate
uμ(ε) order by order in ε, based upon solving (15) and (16) in terms of quantities
defined for lower orders of ε.

3.3 Perturbations of the Møller Radius and Stability
Implications for Particle Motion

An important study with regard to the analytic perturbative approach to the MPD
equations involves the study of transitions from stable to chaotic motion for spinning
particles in curved space-time. From strictly numerical considerations [12–15], there
is ample evidence to expect that there exists a critical point when, for sufficiently
large s, the motion becomes chaotic. Indeed, when considering many-body particle
dynamics for astrophysical systems, the importance of detecting chaotic dynamics is



The MPD Equations in Analytic Perturbative Form 201

very relevant. The pertinent question then concerns how to identify from presumably
knowable and independent astrophysical parameters, such as the mass and spin of
each constituent particle, the precise combination of factors that can trigger the
transition from stable to chaotic motion.

It is understood from, for example, studying the case of a single MPD particle in
circular orbit around aKerr blackhole [22] that the relevant parameter for determining
the relative strength of the spin-curvature interaction to deviate from strictly geodesic
motion is the Møller radius ρ = s/m. When ρ � r for the particle orbit’s radius of
curvature, the capacity for entering an unstable region of phase space is minimized.
For the choice of astrophysically realistic spins for MPD particles under numerical
simulations [14, 15], it is shown that the particle motion never approaches instability.

Until now within this formalism, it is unclear how to extract useful analytic infor-
mation about stability properties of MPD particle motion. Given the fact that the
mass and spin parameters can shift in magnitude according to (24) and (25), this
will have an impact upon the strength of the Møller radius, which in turn impacts
upon the capacity for the spin-curvature interaction to induce unstable motion under
potentially realistic physical situations. Therefore, determining the perturbations in
ρ in analytic form may provide useful insight in determining the precise conditions
to generate the transition from stable to chaotic motion for a single MPD particle.

It is straightforward to show from using (24) and (25) that

ρ(ε) = s(ε)

m(ε)

= s0
m0

{
ε + ε2

[
1

2

(
s̄21 − m̄2

1

)]

+ ε3
[
1

2

(
s̄22 − m̄2

2

)
− 1

4
s̄21 m̄2

1 − 1

8

(
s̄41 − 3 m̄4

1

)]
+ O(ε4)

}
, (34)

where the “radiative corrections” due to the second- and third-order contributions
in ε cause a shift away from the zeroth-order Møller radius ρ0 = s0/m0 defined
by the “bare mass” m0 and “bare spin” s0. What is important to note—perhaps
not surprisingly—is that the corrections m̄2

j and s̄2j counteract each other’s effects,
at least on a formal level. The precise nature of the shift from ρ0 to ρ requires
determining (34) in reference to a specific background and appropriately defined
initial conditions. However, it is clearly evident that variations in the Møller radius
are precisely identifiable, which can then be correlated with the computation of
Lyapunov exponents and Poincaré maps, for example, while performing stability
analysis studies using standard techniques available.
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4 Evaluation of the Linear Momentum and Spin
Angular Momentum Terms

4.1 Local Fermi Co-ordinate Frame

With the formalism behind the analytic perturbative approach to the MPD equations
now established, it is possible to explicitly evaluate the linear momentum and spin
angular momentum expansion terms [25] in (10) and (11). As noted earlier, this is
accomplished in an iterative fashion by solving the first-order perturbation terms
with respect to zeroth-order quantities, followed by solving the second-order and
higher terms with respect to lower-order quantities. It becomes a very straightfor-
ward process to achieve this by framing the problem in terms of the tetrad formalism
and Fermi normal co-ordinates [22], with the obvious benefit of expressing all con-
tributions with respect to a freely falling worldline in a locally flat background. The
metric deviations in Fermi normal co-ordinates to leading order are then proportional
to the projected Riemann curvature tensor evaluated on the worldline.

To proceed, first start with an orthonormal tetrad frameλμ
α̂ with the orthogonality

condition

ηα̂β̂ = gμν λμ
α̂ λν

β̂ , (35)

such that the tetrad satisfies parallel transport in the general space-time background
described by co-ordinates xμ, with

Dλμ
α̂

dτ
= 0 , (36)

and where α̂ denote indices for the Fermi co-ordinates X α̂ on a locally flat tangent
space. The Riemann curvature tensor in the Fermi frame is then described by

F Rα̂β̂γ̂δ̂ = Rμνρσ λμ
α̂ λν

β̂ λρ
γ̂ λσ

δ̂ . (37)

4.2 Zeroth-Order Contributions to the Linear
Momentum and Spin Angular Momentum

By ensuring that λμ
0̂ = uμ

(0) in the usual fashion and making use of (35) along with

the leading-order spin condition P(0)
μ Sμν

(0) = 0, it becomes evident that

Pμ
(0) = λμ

α̂ P α̂
(0) = m0 λμ

0̂ , (38)

Sμν
(0) = λμ

ı̂ λν
ĵ Sı̂ ĵ

(0) , (39)
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where P α̂
(0) = m0 δα̂

0̂ and Sı̂ ĵ
(0) is a constant-valued spatial antisymmetric tensor, with

components to be determined from initial conditions.

4.3 First-Order Perturbation Terms

For the linear momentum, the first-order perturbation in ε is very straightforward

to evaluate. With (19) and (36), it is obvious that DPμ
(1)/dτ = λμ

α̂

(
dP α̂

(1)/dτ
)
,

resulting in

dP α̂
(1)

dτ
= −1

2
F Rα̂

0̂ı̂ ĵ Sı̂ ĵ
(0) . (40)

This is immediately integrable, leading to

Pμ
(1) = −1

2
λμ

k̂

∫ (
F Rk̂

0̂ı̂ ĵ Sı̂ ĵ
(0)

)
dτ . (41)

Because of the tetrad formalism employed within this evaluation, it follows imme-
diately upon contracting (41) with P(0)

μ that

m̄2
1 = 0 (42)

for a general space-time background. This immediately leads to simplified expres-
sions for (33) and (34), expressed as

uμ(ε) =
∞∑
j=0

ε j uμ
( j) = 1

m0

[
Pμ

(0) + ε Pμ
(1)

]

+ ε2

{
1

m0

[
Pμ

(2) − 1

2
m̄2

2 Pμ
(0)

]
+ 1

2m3
0

Sμν
(0) Rνγαβ Pγ

(0) Sαβ
(0)

}

+ ε3
{

1

m0

[
Pμ

(3) − 1

2
m̄2

2 Pμ
(1) − 1

2
m̄2

3 Pμ
(0)

]

+ 1

2m3
0

Rνγαβ

1∑
n=0

Sμν
(1−n)

n∑
k=0

Pγ
(n−k) Sαβ

(k)

}
+ O(ε4) (43)

and

ρ(ε) = s0
m0

{
ε + ε2

[
1

2
s̄21

]
+ ε3

[
1

2

(
s̄22 − m̄2

2

)
− 1

8
s̄41

]
+ O(ε4)

}
. (44)
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In contrast to the linear momentum to first-order, the corresponding expression
for the spin tensor is considerably more complicated to evaluate. It is important first
to note that, following (16) for j = 2,

DSμν
(1)

dτ
= 0 . (45)

When Sμν
(1) is described in terms of its tetrad projection, it is determined that

Sμν
(1) = λμ

α̂ λν
β̂ Sα̂β̂

(1)

= 2λ[μ
0̂ λν]

ĵ S0̂ĵ
(1) + λμ

ı̂ λν
ĵ Sı̂ ĵ

(1) . (46)

By using the spin condition relation (21) for j = 1 and the tetrad projection for (41),
it is shown that

S0̂ĵ
(1) = − 1

m0
P(1)

ı̂ Sı̂ ĵ
(0) . (47)

Regarding the components Sı̂ ĵ
(1) in (46), they can be formally determined with respect

to the “radiative correction” term s̄21 according to (27), such that

Sı̂ ĵ
(1) = 1

4
s̄21 Sı̂ ĵ

(0) . (48)

At this point, a problem emerges with this approach, in that (46) still depends upon
s̄21 , which remains an undetermined parameter to be computed. Given the discovery
that m̄2

1 = 0 for the first-order mass shift correction, it would be tempting to simply
make the same assumption about the corresponding spin shift correction. However,
since s̄21 only needs to be covariantly constant, such an assumption is not well justi-
fied. This leads to the requirement of explicitly evaluating (45) independently of the
tetrad in terms of the six-dimensional matrix differential equation1

DS(1)
μν

dτ
= dS(1)

μν

dτ
+ 2 uα

(0) �β
α[μ S(1)

ν]β = 0 (49)

for a column vector of
(

S(1)
μν

)
≡

(
S(1)
01 , S(1)

02 , S(1)
03 , S(1)

12 , S(1)
23 , S(1)

31

)
. The solution to

(49) is then used to evaluate the tetrad projected spin tensor Sα̂β̂
(1) and s̄21 .

1A previous approach was reported in [25, 26] using a three-dimensional column vector of purely
spatial components of S(1)

μν in combination with the spin condition to algebraically evaluate the
remaining three components. In retrospect, this previous treatment is not viable in comparison to
the approach presented in this paper. Therefore, this newperspective replaces the older one presented
in [25, 26].
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4.4 Second-Order Perturbation Terms

Once the challenge of evaluating the first-order perturbation term for the spin tensor
is overcome, the second-order perturbation terms are easily determined. For example,
from solving (15) for j = 2, the second-order linear momentum term is

Pμ
(2) = −1

2
λμ

α̂

∫ (
1

m0

F Rα̂
ĵ k̂l̂ P ĵ

(1) Sk̂l̂
(0) + F Rα̂

0̂γ̂β̂ Sγ̂β̂
(1)

)
dτ , (50)

which is the sum of terms with tetrad projections in both along the worldline and
orthogonal to it. Therefore, it follows from (26) for j = 2 that m̄2

2 	= 0 in general.
Similarly, for the spin angular momentum, the corresponding second-order expres-
sion for (16) is

DSμν
(2)

dτ
= 1

m3
0

P [μ
(0) Sν]σ

(0) Rσγαβ Pγ
(0) Sαβ

(0) , (51)

which when integrated leads to

Sμν
(2) = 1

m0
λ[μ

0̂ λν]
ı̂

∫
Sı̂ ĵ
(0)

F R
ĵ 0̂k̂l̂ Sk̂l̂

(0) dτ . (52)

As well, s̄22 	= 0 in general. Further evaluation to higher orders in ε also suggests
no obvious challenges to overcome, so the procedure can be extended indefinitely to
any desired order.

5 Moving Towards an MPD Many-Body Description
of Classical Spinning Particle Dynamics

5.1 Research Motivations

It would be very interesting to develop an extension of the analytic perturbative
approach for theMPDequations that can be applied towards amany-body description
of classical spinning particle dynamics. This is important to understand because
virtually every composite astrophysical system, such as spiral galaxies, globular
clusters, galactic superclusters, accretion disks around black holes, and so forth are
all built in terms of components with spin angular momentum incorporated. These
systems are often modelled using only many-body Newtonian gravitation, which
may be a reasonable assumption under certain predetermined circumstances, but
seems inadequate to address the full range of physical consequences that may be
experienced due to relativistic effects that are necessarily excluded.
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The essential intent for investigating a many-body description of classical spin-
ning particles in curved space-time is to better understand the interaction dynamics
between two ormore spinning particles in relativemotionwith respect to one another.
Given the interest shown in understanding the transition from stable to chaoticmotion
for a single particle, this consideration becomes evenmore relevant than before when
dealing with a many-body system in curved space-time, in which the possibility of
instabilities may emerge under astrophysically realistic conditions. As well, by com-
pressing the many-body system into a very small volume of space, it seems possible
to investigate the continuum limit for spinning matter subject to the MPD equations
as applied to each unit cell endowed with spin.

This section presents the first stage of some long-term research [28] on under-
standing the extension of the MPD equations to incorporate many-body spinning
particle systems. For now, it involves understanding the evolution of a single neigh-
bouring worldline due to spin, determined with respect to some reference worldline
in the following two contexts:

1. Raychaudhuri Equation:

dθ

dτ
= −1

3
θ2 − σαβ σαβ + ωαβ ωαβ − Rαβ uα uβ , (53)

2. Generalized Jacobi Equation for tidal dynamics:

D2ξμ

dτ2
+ Rμ

αβγ uα ξβ uγ + · · · = 0 , (54)

where θ is the expansion, σαβ is the shear, and ωαβ is the vorticity associated with a
congruence of worldlines in (53), and where the unspecified extra terms in (54) refer
to higher-order contributions involving the covariant time derivative of the separation
vector ξμ between neighbouring worldlines.

In both contexts, there lies an important physical challenge to understand, which
concerns the fact that the spinning particles moving along separate worldlines must
necessarily interact with each other, which then significantly impacts upon their
evolution in space-time. To put it another way, it is not reasonable to expect that
one can just make multiple copies of MPD particles that are distributed throughout
a given curved space-time background and have their worldlines determined solely
by the background curvature. This issue can be best appreciated by appealing to the
analogy of magnetostatics involving the attractive force felt by two parallel currents
in a steady state, or conversely the repulsive force felt by two anti-parallel currents.
Therefore, it is necessary to find an avenue that allows for the individual spinning
particles to have non-trivial interactions.
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5.2 Locally Induced Einstein-Cartan Interaction

In order to address the challenge of incorporating the interactions between two spin-
ning particles that are separately subject to forces and torques as described by the
MPD equations, it is useful to consider the situation in terms of the overall kinematics
first without necessarily modifying the equations themselves.2

To this end, recall (28) and (29) with parametrization constraint (30) for the four-
velocity uμ(ε). Then the corresponding acceleration aμ(ε) for the spinning particle,
expanded out in ε, would formally read as

aμ(ε) = Duμ(ε)

dτ

= ε
[
uα

(0)∇α uμ
(1) + uα

(1)∇α uμ
(0)

]
+ ε2

[
uα

(0)∇α uμ
(2) + uα

(1)∇α uμ
(1) + uα

(2)∇α uμ
(0)

]
+ O(ε3) . (55)

Consider now a situation involving two spinning particles propagating in a curved
space-time background. Because both particles are subject to forces and torques
generated by the MPD equations, their worldlines are not geodesics. At the same
time, because they are independent particles with distinct physical properties to
them, their responses to the spin-curvature interaction are obviously expected to be
distinct.

Now choose one of these two worldlines to act as a reference with respect to the
other one. For the particle on that reference worldline, its propagation with respect
to the background space-time can be determined in accordance with Fermi-Walker
transport [29], such that

D(FW )uμ

dτ
= uα ∇(FW )

α uμ = 0 , (56)

where

�
μ
(FW )αβ = �

μ
(0)αβ + Cμ

(FW )αβ , (57)

Cμ
(FW )αβ = aμ g

(0)
αβ − δμ

β aα , (58)

and �
μ
(0)αβ is the metric connection for the space-time background.

At this point, it is important to make the following observation. From the per-
spective of an observer co-moving with the reference particle, it would appear from

2As presented, theMPD equations implicitly assume that all interactions are “local” in their descrip-
tion, at least within the context of General Relativity. If evidence emerges to show that gravitational
interactions are necessarily “non-local” by some defining criterion, then it would follow that many-
body spinning particle interactions as described here must incorporate non-locality. By implication,
an appropriate modification of the MPD equations would then be well-motivated.
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(56) that the particle is propagating along a geodesic in a perturbed space-time
background due to particle acceleration generated by the MPD equations. Further to
this perspective, it is self-evident from (58) that the Fermi-Walker connection (57)
is not symmetric in its lower two indices, yielding an antisymmetric contribution.
Therefore, it follows that Cμ

(FW )αβ is interpreted as the contortion tensor, with an
induced torsion field generated by the reference particle that gets encoded within a
new curvature tensor determined by (57).

The significance of this approach is that, in the instant of proper time as determined
for the reference particle, the neighbouring particle is now subject to an MPD spin-
curvature interaction involving this new curvature tensor with induced torsion due
to the reference particle’s acceleration. Furthermore, the geometry is now an instan-
taneous Riemann-Cartan U4 [30], with the acceleration-dependent terms giving rise
to what will now be called a locally induced Einstein-Cartan (EC) interaction.

Further details about the locally induced EC interaction and its subsequent appli-
cation for the rest of this paper are deferred to a future publication [28]. However,
it is worthwhile to show its presence in terms of the metric tensor of space-time in
local Fermi normal co-ordinates (T, X).3 To linear order in the reference particle’s
acceleration, with a j = a j from the induced EC interaction labelled with boldface
to distinguish these acceleration terms from others that arise elsewhere, it is shown
that

g
(FW )
00 = −1 − 2 ak Xk −

[
R(FW )

l0m0 (T ) + d

dT

(
a(l,m)�T

)]
Xl Xm , (59)

g
(FW )
(0 j) = 2

3
R(FW )
0(kl) j (T ) Xk Xl , (60)

g
(FW )
(i j) = δi j + 1

3
R(FW )

i(kl) j (T ) Xk Xl , (61)

g
(FW )
[0 j] = a j �T , (62)

g
(FW )
[i j] = ai X j − a j X i , (63)

with the metric tensor having now both symmetric and antisymmetric components,
in which the latter set are dependent upon a j .

It is very important to point out that, while the induced EC interaction is a purely
frame-dependent effect akin to a fictitious force, the new curvature tensor based upon
(57) is perfectly well-defined because (58) is a tensor. For this reason, the explicit
time-dependent contributions in (59) and especially (62) are labelled with �T , to
symbolize that these contributions are ephemeral and can only persist within a limited
time scale. In terms of the physical interpretations that can be ascribed to the EC
interaction, it can be understood as something analogous to the Lense-Thirring effect
that causes the precession of a nearby gyroscope due to the spin rotation of a massive
body. This also fits well with an interpretation of Einstein-Cartan theory in terms of
defects within space-time in like manner to that of classical defect theory concerning

3For ease of notation, the indices are left unhatted.
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internal stresses within an elastic medium [31]. From such an interpretation, the
induced torsion due to the reference particle causes a space-time defect that then has
to be restored to its original state once the particle leaves that space-time region.

5.3 Spin Modifications of the Raychaudhuri Equation

When using the spin-perturbed space-time background to compute the Raychaudhuri
equation, it takes the form

dθ(FW )

dτ
= −1

3
θ2 − σαβ σαβ + ωαβ ωαβ − R(FW )

αβ uα uβ

− 2 aα uβ
(
σαβ − ωαβ

)
, (64)

where

θ(FW ) = θ = ∇α uα , (65)

σ
(FW )
αβ = σαβ + a(α uβ) =

[
∇(β uα) − 1

3
θ hαβ

]
+ a(α uβ) , (66)

ω
(FW )
αβ = ωαβ + a[α uβ] = ∇[β uα] + a[α uβ] . (67)

are themodified formsof the expansion, shear, andvorticitywith hαβ = g
(0)
αβ + uα uβ ,

such that uα hαβ = 0 and hα
α = 3, while

R(FW)
αβ uα uβ = R(0)

αβ uα uβ − 3

2
aα aα (68)

shows that the modified gravitational term includes the spin-dependent acceleration
with opposite sign compared to the backgroundRicci term.This is interesting because
it shows that the spin-curvature interaction causes a defocussing of the congruences.
In particular, such a result may have relevance for cosmology as a way to account
for a small repulsion that is currently attributed to dark energy, assuming that a
sufficiently large MPD spin-curvature force can be generated due to the coupling of
galactic spin with the cosmological space-time background. More details need to be
examined to determine whether this possibility is physically realistic.

5.4 Generalized Jacobi Equation and Computation
of Neighbouring Worldlines

The other approach towards finding a many-body description of spinning particles
is to use the generalized Jacobi equation as a computational tool for determining a
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neighbouring worldline with respect to a reference worldline. Since this approach
[32, 33] specifically computes neighbouring geodesics with respect to a reference
geodesic in a general space-time background, it can also be applied for the case of
the perturbed space-time background as described by (57).

Suppose that σ is the parameter identifying a family of worldlines xμ(τ ;σ) in
a given space-time background, with the reference worldline as xμ(τ ; 0) = xμ(τ ).
Then the neighbouring worldline is related to the reference in terms of a Taylor
expansion with respect to σ = 0, such that

xμ(τ ;σ) = xμ(τ ) + ∂xμ(τ )

∂σ
σ + 1

2

∂2xμ(τ )

∂σ2 σ2 + O(σ3)

= xμ(τ ) + ξμ(τ )σ

+ 1

2

[
kμ(τ ) − �

μ
(FW)αβ ξα(τ ) ξβ(τ )

]
σ2 + O(σ3) , (69)

where

ξμ(τ ) = ∂xμ(τ )

∂σ
(70)

is the separation vector between the neighbouring worldlines and

kμ(τ ) = D(FW)ξ
μ(τ )

dσ
. (71)

The challenge is to solve for (70) and (71) for determining (69) to the desired order
of the expansion in σ.

This study is currently a work in progress [28]. Nonetheless, it is still possible to
outline the basic approach to solve for (70) and (71) necessary to obtain (69). This
first point is to assume, just as in (10) and (11), that (70) and (71) can be written in
the form

ξμ(ε) ≡
∞∑
j=0

ε j ξ
μ
( j) , (72)

kμ(ε) ≡
∞∑
j=0

ε j kμ
( j) . (73)

Focussing only on the first-order contribution in (69), the next step is to deter-
mine the generalized Jacobi equation (54) in order to determine the proper time-
dependence of ξμ. This is best accomplished by solving the equation of motion
for a test particle in a local Fermi frame [34, 35], in which the right-hand side is
the acceleration of the neighbouring particle, denoted by the subscript “[1]” in what
follows below. By again describing the background space-time in terms of the Fermi-
Walker connection (57) and the locally induce EC interaction, it can be shown that
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the generalized Jacobi equation is

D2
(FW)ξ

μ

dτ2
+ Rμ

(FW)αβγ uα ξβ uγ

+ 2

[(
δμ

ν + uμ uν

) + D(FW)ξ
μ

dτ
uν

]
Rν

(FW)αβγ

D(FW)ξ
α

dτ
ξβ

×
(

uγ + 1

3

D(FW)ξ
γ

dτ

)
+ �

μ
accel. + �

μ
EC = 0 , (74)

where

�
μ
accel. =(

δμ
ν + uμ uν

) {(
aν − aν[1]

) + D(FW)aν[1]
dσ

+ D(FW)ξ
ν

dτ

[
ξα

D(FW)aα

dτ
+ D(FW)ξα

dτ

(
aα[1] − 2 aα + D(FW)aα

dσ

)

+
(

a[1]
α + D(FW)a[1]

α

dσ

)
D(FW)ξ

α

dτ

D(FW)ξβ

dτ

D(FW)ξ
β

dτ

− 2 ξα ∇(FW)
(α aβ)

D(FW)ξ
β

dτ

]

+
(

aν[1] + D(FW)ξ
ν

dσ

)
D(FW)ξα

dτ

D(FW)ξ
α

dτ

}

− 2 g
μσ
(0)

(
R(FW)

αβγσ − R(FW)
γσαβ

) D(FW)ξ
α

dτ
ξβ uγ

− 8 ξγ
[
δμ

α ∇(FW)
[β aγ] − g

μσ
(0) g(0)

γα ∇(FW)
[β aσ]

] D(FW)

dτ

(
ξ(α uβ)

)
(75)

and

�
μ
EC =(

δμ
ν + uμ uν

) {
ξα ∇[α

(FW) aν] −
(
1 + �τ

D(FW)

dτ

) (
aν − D(FW)aν

dσ

)

+ D(FW)ξ
ν

dτ

[(
2 ξβ ∇(FW)

[α aβ]

− aα − 2�τ
D(FW)

dτ
ξβ ∇(FW)

(α aβ)

)
D(FW)ξ

α

dτ

]

+
(

aν D(FW)ξα

dτ
− ξν D(FW)aα

dτ

)
D(FW)ξ

α

dτ

}
, (76)
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with the neighbouring particle’s acceleration already Lie transported for immediate
evaluation. It is worth recalling that the neighbouring particle’s acceleration is deter-
mined by use of the MPD equations, but with use of the modified Riemann curvature
tensor R(FW)

μναβ instead of R(0)
μναβ for the background space-time.

The final step required is to substitute (72) and all other expansions of ε into
(74), to then solve for each order of ε. The difficult part of the task is to evaluate the
zeroth-order contribution for ξμ, which applies for geodesics, but once that contri-
bution is determined, all the others can be obtained without difficulty through simple
integration, at least in principle. It remains to be seen [28] whether there are any
further technical challenges in determining (69), but it appears that the conceptual
difficulties are overcome.

6 Conclusion

This paper illustrates the foundations and possible applications for the analytic per-
turbative approach to the MPD equations. It should be apparent that the approach is
powerful, in that it is both background independent and applicable to any conceivable
type of motion for the spinning particle. Furthermore, the outline of future work on
many-body particle dynamics shows its potential to model many-body astrophysi-
cal systems that can be compared with observations. Nonetheless, it should also be
noted that the formalism is always subject to refinements. For example, it would
be useful to expand upon this perturbative approach to incorporate the quadrupole
moment interaction of these otherwise pointlike particles, which would undoubt-
edly contribute to non-trivial motion under more extreme physical situations, such
as orbital dynamics near the event horizon of a black hole. As well, the formalism
does not take into account backreaction effects due to the gravitational self-force,
which seems relevant for addressing more sophisticated considerations than outlined
in this paper. These modifications do not seem very difficult to incorporate within the
existing formalism. In its present form, however, there is already a lot of possibilities
for useful applications to follow.
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