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Abstract Before the 1970s, precision tests for gravity theories were constrained to
the weak-field environment of the Solar System. In terms of relativistic equations
of motion, the Solar System gave access to the first order corrections to Newtonian
dynamics. Testing anything beyond the first post-Newtonian contributions was for
a long time out of reach. The discovery of the first binary pulsar by Russell Hulse
and Joseph Taylor in the summer of 1974 initiated a completely new field for testing
the relativistic dynamics of gravitationally interacting bodies. For the first time the
back reaction of gravitational wave emission on the binary motion could be stud-
ied. Furthermore, the Hulse-Taylor pulsar provided the first test bed for the orbital
dynamics of strongly self-gravitating bodies. To date, there are a number of binary
pulsars known which can be utilized to test different aspects of relativistic dynamics.
So far GR has passed these tests with flying colors, while many alternative theories,
like scalar-tensor gravity, are tightly constraint by now. This article gives an intro-
duction to gravity tests with pulsars, and summarizes some of the most important
results. Furthermore, it gives a brief outlook into the future of this exciting field of
experimental gravity.

1 Introduction

In about two years from now we will be celebrating the centenary of Einstein’s
general theory of relativity. On November 25th 1915 Einstein presented his field
equations of gravitation (without cosmological term) to the Prussian Academy of
Science [1]. With this publication, general relativity (GR) was finally completed as
a logically consistent physical theory (“Damit ist endlich die allgemeine Relativität-
stheorie als logisches Gebäude abgeschlossen.”). Already one week before, based
on the vacuum form of his field equations, Einstein was able to show that his the-
ory of gravitation naturally explains the anomalous perihelion advance of the planet
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Mercury [2]. While in hindsight this can be seen as the first experimental test for GR,
back in 1915 astronomers were still searching for a Newtonian explanation [3]. In
his 1916 comprehensive summary of GR [4], Einstein proposed three experimental
tests:

• Gravitational redshift.
• Light deflection.
• Perihelion precession of planetary orbits.

Gravitational redshift, a consequence of the equivalence principle, is common to all
metric theories of gravity, and therefore in some respect its measurement has less
discriminating power than the other two tests [5]. Thefirst verification of gravitational
light bending during the total eclipse on May 29th 1919 was far from being a high
precision test, but clearly decided in favor of GR, against the Newtonian prediction,
which is only half the GR value [6]. In the meantime this test has been greatly
improved, in the optical with the astrometric satellite HIPPARCOS [7], and in the
radio with very long baseline interferometry [8, 9]. The deflection predicted by GR
has been verified with a precision of 1.5×10−4. An even better test for the curvature
of spacetime in the vicinity of the Sun is based on the Shapiro delay, the so-called
“fourth test of GR” [10]. A measurement of the frequency shift of radio signals
exchanged with the Cassini spacecraft lead to a 10−5 confirmation of GR [11]. Apart
from the four “classical” tests, GR has passed many other tests in the Solar system
with flying colors: Lunar Laser Ranging tests for the strong equivalence principle and
the de-Sitter precession of the Moon’s orbit [12], the Gravity Probe B experiment for
the relativistic spin precession of a gyroscope (geodetic and frame dragging) [13],
and the Lense-Thirring effect in satellite orbits [14], just to name a few.

GR, being a theory where fields travel with finite speed, predicts the existence of
gravitational waves that propagate with the speed of light [15] and extract energy
from (non-axisymmetric) material systems with accelerated masses [16]. This is also
true for a self-gravitating system, where the acceleration of the masses is driven by
gravity itself, a question which was settled in a fully satisfactory manner only several
decades after Einstein’s pioneering papers (see [17] for an excellent review). This
fundamental property of GR could not be tested in the slow-motion environment
of the Solar system, and the verification of the existence of gravitational waves
had to wait until the discovery of the first binary pulsar in 1974 [18]. Also, all the
experiments in the Solar system can only test the weak-field aspects of gravity. The
spacetime of the Solar system is close to Minkowski space everywhere: To first
order (in standard coordinates) the spatial components of the spacetime metric can
be written as gij = (1 − 2�/c2)δij, where � denotes the Newtonian gravitational
potential. At the surface of the Sun one finds �/c2 ∼ −2 × 10−6, while at the
surface of a neutron star �/c2 ∼ −0.2. Consequently, gravity experiments with
binary pulsars, not only yielded the first tests of the radiative properties of gravity,
they also took our gravity tests into a new regime of gravity.

To categorize gravity tests with pulsars and to put them into context with other
gravity tests it is useful to introduce the following four gravity regimes:
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G1 G2 G3 GW

Fig. 1 Illustration of the different gravity regimes used in this article

G1 Quasi-stationary weak-field regime: Themotion of themasses is slowcompared
to the speed of light (v � c) and spacetime is only veryweakly curved, i.e. close
to Minkowski spacetime everywhere. This is, for instance, the case in the Solar
system.

G2 Quasi-stationary strong-field regime: The motion of the masses is slow com-
pared to the speed of light (v � c), but one or more bodies of the system are
strongly self-gravitating, i.e. spacetime in their vicinity deviates significantly
from Minkowski space. Prime examples here are binary pulsars, consisting of
two well-separated neutron stars.

G3 Highly-dynamical strong-field regime: Masses move at a significant fraction
of the speed of light (v ∼ c) and spacetime is strongly curved and highly
dynamical in the vicinity of the masses. This is the regime of merging neutron
stars and black holes.

GW Radiation regime: Synonym for the collection of the radiative properties of
gravity, most notably the generation of gravitational waves by material sources,
the propagation speed of gravitational waves, and their polarization properties.

Figure1 illustrates the different regimes. Gravity regimeG1 is well tested in the Solar
system. Binary pulsar experiments are presently our only precision experiments for
gravity regime G2, and the best tests for the radiative properties of gravity (regime
GW).1 In the near future, gravitational wave detectors will allow a direct detection
of gravitational waves (regime GW) and probe the strong and highly dynamical
spacetime of merging compact objects (regime G3). As we will discuss at the end
of this article, pulsar timing arrays soon should give us direct access to the nano-
Hz gravitational wave band and probe the properties of these ultra-low-frequency
gravitational waves (regime GW).

1.1 Radio Pulsars and Pulsar Timing

Radio pulsars, i.e. rotating neutron stars with coherent radio emission along their
magnetic poles, were discovered in 1967 by Jocelyn Bell and Antony Hewish [20].
Seven years later, Russell Hulse and Joseph Taylor discovered the first binary pulsar,
a pulsar in orbit with a companion star [18]. This discovery marked the beginning of

1 Gravitational wave damping has also been observed in a double white-dwarf system, which
has an orbital period of just 13min [19]. This experiment combines gravity regimes G1 (note,
v/c ∼ 3 × 10−3) and GW of Fig. 1.
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Fig. 2 The P-Ṗ diagram for
radio pulsars. Binary pulsars
are indicated by a red circle.
Pulsars that play a particular
role in this article are marked
with a green dot and have
their name as a label. The
data are taken from the
ATNF Pulsar Catalogue [21]

gravity tests with radio pulsars. Presently, more than 2000 radio pulsars are known,
out ofwhich about 10% reside in binary systems [21]. The population of radio pulsars
can be nicely presented in a diagram that gives the two main characteristics of a
pulsar: the rotational period P and its temporal change Ṗ due to the loss of rotational
energy (see Fig. 2). Fast rotating pulsars with small Ṗ (millisecond pulsars) appear
to be particularly stable in their rotation. On long time-scales, some of them rival
the best atomic clocks in terms of stability [22, 23]. This property makes them ideal
tools for precision astrometry, and hence (most) gravity tests with pulsars are simply
clock comparison experiments to probe the spacetime of the binary pulsar, where the
“pulsar clock” is read off by counting the pulses in the pulsar signal (see Fig. 3). As
a result, a wide range of relativistic effects related to orbital binary dynamics, time
dilation and delays in the signal propagation can be tested. The technique used is
the so-called pulsar timing, which basically consists of measuring the exact arrival
time of pulses at the radio telescope on Earth, and fitting an appropriate timing model
to these arrival times, to obtain a phase-connected solution. In the phase-connected
approach lies the true strength of pulsar timing: the timing model has to account for
every (observed) pulse over a time scale of several years, in some cases even several
decades. This makes pulsar timing extremely sensitive to even tiny deviations in the
model parameters, and therefore vastly superior to a simplemeasurement ofDoppler-
shifts in the pulse period. Table1 illustrates the current precision capabilities of pulsar
timing for various experiments, likemass determination, astrometry and gravity tests.
We will not go into the details of pulsar observations and pulsar timing here, since
there are numerous excellent reviews on these topics, for instance [24, 25], just to
mention two. In this article we focus on the relativistic effects that play a role in
pulsar-timing observations, and how pulsar timing can be used to test gravitational
phenomena in generic as well as theory-based frameworks.
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Fig. 3 Spacetime diagram illustration of pulsar timing. Pulsar timing connects the proper time of
emission τpsr , defined by the pulsar’s intrinsic rotation, and the proper time of the observer on Earth
τobs, measured by the atomic clock at the location of the radio telescope. The timing model, which
expresses τobs as a function of τpsr , accounts for various “relativistic effects” associated with the
metric properties of the spacetime, i.e. the world line of the pulsar and the null-geodesic of the
radio signal. In addition, it contains a number of terms related to the Earth motion and relativistic
corrections in the Solar system, like time dilation and signal propagation delays (see [26] for details)

Table 1 Examples of precision measurements using pulsar timing

Rotational period 5.757451924362137(2)ms [27]

Orbital period 0.102251562479(8)d [*]

Small eccentricity (3.5 ± 1.1) × 10−7 [28]

Distance 157(1)pc [27]

Proper motion 140.915(1)masyr−1 [27]

Masses of neutron stars m p = 1.4398(2) M� [29]

mc = 1.3886(2) M� [29]

Mass of millisecond pulsar 1.667(7) M� [30]

Mass of white-dwarf companion 0.207(2) M� [31]

Mass of Jupiter and moons 9.547921(2) × 10−4 M� [32]

Relativistic periastron advance 4.226598(5)degyr−1 [29]

Gravitational wave damping 0.504(3)pico-Hzyr−1 [*]

GR validity (observed/GR) 1.0000(5) [*]

A number in bracket indicates the (one-sigma) uncertainty in the last digit of each value. The symbol
M� stands for the Solar mass. (cf. Table1 in [33])
[*] Kramer et al., in prep.
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1.2 Binary Pulsar Motion in Gravity Theories

While in Newtonian gravity there is an exact solution to the equations of motion
of two point masses that interact gravitationally, no such exact analytic solution is
known in GR. In GR, the two-body problem has to be solved numerically or on
the basis of approximation methods. A particularly well established and successful
approximation scheme, to tackle the problem ofmotion of a system of well-separated
bodies, is the post-Newtonian approximation, which is based on the weak-field slow-
motion assumption.However, to describe themotion and gravitationalwave emission
of binary pulsars, there are twomain limitations of the post-Newtonian approximation
that have to be overcome (cf. [34]):

(A) Near and inside the pulsar (and its companion, if it is also a neutron star) the
gravitational field is strong and the weak-field assumption no longer holds.

(B) When it comes to generation of gravitational waves (of wavelength λGW) and
their back-reaction on the orbit (of size r and period Pb), the post-Newtonian
approximation is only valid in the near zone (r � λGW = cPb/2), and breaks
down in the radiation zone (r > λGW) where gravitational waves propagate and
boundary conditions are defined, like the ‘no incoming radiation’ condition.

The discovery of the Hulse-Taylor pulsar was a particularly strong stimulus for the
development of consistent approaches to compute the equations ofmotion for a binary
systemwith strongly self-gravitating bodies (gravity regime G2). As a result, by now
there are fully self-consistent derivations for the gravitational wave emission and the
damping of the orbit due to gravitationalwave back-reaction for such systems. In fact,
in GR, there are several independent approaches that lead to the same result, giving
equations of motion for a binary system with non-rotating components that include
terms up to 3.5 post-Newtonian order (v7/c7) [35, 36]. For the relative acceleration
in the center-of-mass frame one finds the general form

r̈ = −GM

r2

[
(1 + A2 + A4 + A5 + A6 + A7)

r
r

+ (B2 + B4 + B5 + B6 + B7) ṙ
]
, (1)

where the coefficients Ak and Bk are of order c−k , and are functions of r ≡ |r|, ṙ ,
v ≡ |ṙ|, and the masses (see [35] for explicit expressions). The quantity M denotes
the total mass of the system. At this level of approximation, these equations of
motion are also applicable to binaries containing strongly self-gravitating bodies,
like neutron stars and black holes. This is a consequence of a remarkable property
of Einstein’s theory of gravity, the effacement of the internal structure [34, 37]: In
GR, strong-field contributions are absorbed into the definition of the body’s mass.

In GR’s post-Newtonian approximation scheme, gravitational wave damping
enters for the first time at the 2.5 post-Newtonian level (order v5/c5), as a term
in the equations of motion that is not invariant against time-reversal. The corre-
sponding loss of orbital energy is given by the quadrupole formula, derived for the
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first time by Einstein within the linear approximation, for a material system where
the gravitational interaction between the masses can be neglected [16]. As it turns
out, the quadrupole formula is also applicable for gravity regime G2 of Fig. 1, and
therefore valid for binary pulsars as well (cf. [34]).

In alternative gravity theories, the gravitational wave back-reaction, generally,
already enters at the 1.5 post-Newtonian level (order v3/c3). This is the result of the
emission of dipolar gravitational waves, and adds terms A3 and B3 to Eq. (1) [5, 38].
Furthermore, one does no longer have an effacement of the internal structure of a com-
pact body, meaning that the orbital dynamics, in addition to the mass, depends on the
“sensitivity” of the body, a quantity that depends on its structure/compactness. Such
modifications already enter at the “Newtonian” level, where the usual Newtonian
gravitational constant G is replaced by a (body-dependent) effective gravitational
constant G. For alternative gravity theories, it therefore generally makes an impor-
tant difference whether the pulsar companion is a compact neutron star or a much
less compact white dwarf. In sum, alternative theories of gravity generally predict
deviations fromGR in both the quasi-stationary and the radiative properties of binary
pulsars [39, 40].

At the first post-Newtonian level, for fully conservative gravity theories with-
out preferred location effects, one can construct a generic modified Einstein-Infeld-
Hoffmann Lagrangian for a system of two gravitationally interacting masses m p

(pulsar) and mc (companion) at relative (coordinate) separation r ≡ |xp − xc| and
velocities vp = ẋp and vc = ẋc:

LO = −m pc2
(
1 − v2p

2c2
− v4p

8c4

)
− mcc2

(
1 − v2c

2c2
− v4c

8c4

)

+ Gm pmc

r

[
1 − vp · vc

2c2
− (r · vp)(r · vc)

2c2r2
+ ε

(vp − vc)
2

2c2

]

− ξ
G2Mm pmc

2c2r2
, (2)

where M ≡ m p + mc. The body-dependent quantities G, ε and ξ account for devia-
tions fromGR associated with the self-energy of the individual masses [5, 39]. In GR
one simply finds G = G, ε = 3, and ξ = 1. There are various analytical solutions to
the dynamics of (2). Themost widely used in pulsar astronomy is the quasi-Keplerian
parametrization by Damour and Deruelle [41]. It forms the basis of pulsar-timing
models for relativistic binary pulsars, as we will discuss in more details in Sect. 1.4.

Beyond the first post-Newtonian level there is no fully generic framework for the
gravitational dynamics of a binary system.However, one can find equations ofmotion
valid for a general class of gravity theories, like in [42] where a framework based
on multi-scalar-tensor theories is introduced to discuss tests of relativistic gravity to
the second post-Newtonian level, or in [43] where the explicit equations of motion
for non-spinning compact objects to 2.5 post-Newtonian order for a general class of
scalar-tensor theories of gravity are given.
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1.3 Gravitational Spin Effects in Binary Pulsars

In relativistic gravity theories, in general, the proper rotation of the bodies of a
binary system directly affects their orbital and spin dynamics. Equations of motion
for spinning bodies in GR have been developed by numerous authors, and in the
meantime go way beyond the leading order contributions (for reviews and references
see, e.g., [34, 44–46]). For present day pulsar-timing experiments it is sufficient to
have a look at the post-Newtonian leading order contributions. There, one finds three
contributions: the spin-orbit (SO) interaction between the pulsar’s spin Sp and the
orbital angular momentum L, the SO interaction between the companion’s spin Sc

and the orbital angular momentum, and finally the spin-spin interaction between the
spin of the pulsar and the spin of the companion [44].

Spin-spin interaction will remain negligible in binary pulsar experiments for the
foreseeable future. They are many orders of magnitude below the second post-
Newtonian and spin-orbit effects [47], and many orders of magnitude below the
measurement precision of present timing experiments. For this reason, we will not
further discuss spin-spin effects here.

For a boost invariant gravity theory, the (acceleration-dependent) Lagrangian for
the spin-orbit interaction has the following general form (summation over spatial
indices i, j)

LSO(xA, vA, aA) = 1

c2
∑

A

Sij
A

⎡
⎣1

2
vi

Aa j
A +

∑
B �=A

�B
A m B

r3AB

(vi
A − vi

B)(x j
A − x j

B)

⎤
⎦ ,

(3)

where Sij
A ≡ εijk Sk

A is the antisymmetric spin tensor of body A [34, 39, 48]. The
coupling function �B

A can also account for strong-field effects in the spin-orbit
coupling. In GR �B

A = 2G. For bodies with negligible gravitational self-energy,
one finds in the framework of the parametrized post-Newtonian (PPN) formalism2

�B
A = (γPPN + 1)G, a quantity that is actually most tightly constrained by the light-

bending and Shapiro-delay experiments in the Solar system, which test γPPN [8, 9,
11, 49].

In binary pulsars, spin-orbit coupling has two effects. On the one hand, it adds
spin-dependent terms to the equations of motion (1), which cause a Lense-Thirring
precession of the orbit (for GR see [44, 50]). So far this contribution could not be
tested in binary pulsar experiments. Prospects of its measurement will be discussed
in the future outlook in Sect. 5. On the other hand it leads to secular changes in the
orientation of the spins of the two bodies (geodetic precession), most importantly
the observed pulsar in a pulsar binary [44, 51, 52]. As we discuss in more details in
Sect. 3, a change in the rotational axis of the pulsar causes changes in the observed

2The PPN formalism uses 10 parameters to parametrize in a generic way deviations from GR at the
post-Newtonian level, within the class of metric gravity theories (see [5] for details).
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emission properties of the pulsar, as the line-of-sight gradually cuts through different
regions of the magnetosphere.

As can be derived from (3), to first order in GR the geodetic precession of the
pulsar, averaged over one orbit, is given by (L̂ ≡ L/|L|)

�SO
p = nb

1 − e2

[
2 + 3mc

2m p

]
m pmc

M2

V 2
b

c2
L̂, (4)

where nb ≡ 2π/Pb and Vb ≡ (GMnb)
1/3.

It is expected that in alternative theories relativistic spin precession generally
depends on self-gravitational effects, meaning, the actual precession may depend on
the compactness of a self-gravitating body. For the class of theories that lead to the
Lagrangian (3), Eq. (4) modifies to

�SO
p = nb

1 − e2

[
�c

p

G +
(

�c
p

G − 1

2

)
mc

m p

]
m pmc

M2

V2
b

c2
L̂, (5)

where Vb ≡ (GMnb)
1/3 is the strong-field generalization of Vb.

Effects from spin-induced quadrupole moments are negligible as well. For double
neutron-star systems they are many orders of magnitude below the second post-
Newtonian and spin-orbit effects, due to the small extension of the bodies [47]. If
the companion is a more extended star, like a white dwarf or a main-sequence star,
the rotationally-induced quadrupole moment might become important. For all the
binary pulsars discussed here, the quadrupole moments of pulsar and companion are
(currently) negligible.

Finally, certain gravitational phenomena, not present in GR, can even lead to a
spin precession of isolated pulsars, for instance, a violation of the local Lorentz
invariance in the gravitational sector, as we will discuss in more details in Sect. 4.

1.4 Phenomenological Approach to Relativistic Effects
in Binary Pulsar Observations

For binary pulsar experiments that test the quasi-stationary strong-field regime (G2)
and the gravitational wave damping (GW), a phenomenological parametrization,
the so-called ‘parametrized post-Keplerian’ (PPK) formalism, has been introduced
by Damour [53] and extended by Damour and Taylor [39]. The PPK formalism
parametrizes all the observable effects that can be extracted independently from
binary pulsar timing and pulse-structure data. Consequently, the PPK formalism
allows to obtain theory-independent information from binary pulsar observations by
fitting for a set of Keplerian and post-Keplerian parameters.
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The description of the orbital motion is based on the quasi-Keplerian parame-
trization of Damour and Deruelle, which is a solution to the first post-Newtonian
equations of motion [41, 54]. The corresponding Roemer delay in the arrival time of
the pulsar signals is

�R = x sinω [cosU − e(1 + δr )] + x cosω
[
1 − e2(1 + δθ)

2
]1/2

sinU, (6)

where the eccentric anomaly U is linked to the proper time of the pulsar T via the
Kepler equation

U − e sinU = 2π

[(
T − T0

Pb

)
− Ṗb

2

(
T − T0

Pb

)2
]

. (7)

The five Keplerian parameters Pb, e, x , ω, and T0 denote the orbital period, the
orbital eccentricity, the projected semi-major axis of the pulsar orbit, the longitude
of periastron, and the time of periastron passage, respectively. The post-Keplerian
parameter δr is not separately measurable, i.e. it can be absorbed into other timing
parameters, and the post-Keplerian parameter δθ has not been measured up to now
in any of the binary pulsar systems. The relativistic precession of periastron changes
the the longitude of periastron ω according to

ω = ω0 + ω̇
Pb

π
arctan

[(
1 + e

1 − e

)1/2

tan
U

2

]
, (8)

meaning, that averaged over a full orbit, the location of periastron shifts by an angle
ω̇Pb. The parameter ω̇ is the corresponding post-Keplerian parameter. A change in
the orbital period, due to the emission of gravitational waves, is parametrized by the
post-Keplerian parameter Ṗb.

Besides the Roemer delay�R, there are two purely relativistic effects that play an
important role in pulsar timing experiments. In an eccentric orbit, one has a changing
time dilation of the “pulsar clock” due to a variation in the orbital velocity of the
pulsar and a change of the gravitational redshift caused by the gravitational field of
the companion. This so-called Einstein delay is a periodic effect, whose amplitude
is given by the post-Keplerian parameter γ, and to first oder can be written as

�E = γ sinU. (9)

For sufficiently edge-on and/or eccentric orbits the propagation delay suffered by the
pulsar signals in the gravitational field of the companion becomes important. This
so-called Shapiro delay, to first order, reads

�S = −2r ln
[
1 − e cosU − s sinω(cosU − e) − s cosω(1 − e2)1/2 sinU

]
,

(10)
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where the two post-Keplerian parameters r and s are called range and shape of the
Shapiro delay. The latter is linked to the inclination of the orbit with respect to the
line of sight, i , by s = sin i . It is important to note, that for i → 90◦ Eq. (10) breaks
down and higher order corrections are needed. But so far, Eq. (10) is fully sufficient
for the timing observations of known pulsars [55].

Concerning the post-Keplerian parameters related to quasi-stationary effects, for
the wide class of boost-invariant gravity theories one finds that they can be expressed
as functions of the Keplerian parameters, the masses, and parameters generically
accounting for gravitational self-field effects (cf. Eq. (2)) [5, 39]:

ω̇ = nb

1 − e2

[
ε − ξ

2
+ 1

2

] V2
b

c2
, (11)

γ = e

nb

[
G0c

G + Kc
p + mc

M

]
mc

M

V2
b

c2
, (12)

r = 1 + ε0c

4

G0cmc

c3
, (13)

s = x nb
M

mc

c

Vb
, (14)

plus �SO from Eq. (5). Here we have listed only those parameters that play a role in
this article. For a complete list and a more detailed discussion, the reader is referred
to [39]. The quantities G0c and ε0c are related to the interaction of the companion
with a test particle or a photon. The parameter Kc

p accounts for a possible change in
the moment of inertia of the pulsar due to a change in the local gravitational constant.
In GR one finds G = G0c = G, ε = ε0c = 3, ξ = 1 and Kc

p = 0. Consequently

ω̇GR = 3nb

1 − e2
V 2

b

c2
, (15)

γGR = e

nb

[
1 + mc

M

] mc

M

V 2
b

c2
, (16)

rGR = Gmc

c3
, (17)

sGR = x nb
M

mc

c

Vb
. (18)

These parameters are independent of the internal structure of the neutron star(s),
due to the effacement of the internal structure, a property of GR [34, 37]. For most
alternative gravity theories this is not the case. For instance, in themono-scalar-tensor
theories T1(α0,β0) of [56, 57], one finds3

3Themono-scalar-tensor theories T1(α0,β0)of [56, 57] have a conformal coupling function A(ϕ) =
α0(ϕ − ϕ0) + β0(ϕ − ϕ0)

2/2. The Jordan-Fierz-Brans-Dicke gravity is the sub-class with β0 = 0,
and α2

0 = (2ωBD + 3)−1.
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ω̇T1 = nb

1 − e2

[
3 − αpαc

1 + αpαc
− m pα

2
pβc + mcα

2
cβp

2M(1 + αpαc)2

]
V2

b

c2
, (19)

γT1 = e

nb

[
1 + kpαc

1 + αpαc
+ mc

M

]
mc

M

V2
b

c2
, (20)

r T1 = G∗mc

c3
, (21)

sT1 = x nb
M

mc

c

Vb
, (22)

where Vb = [G∗(1 + αpαc)Mnb]1/3. The body-dependent quantities αp and αc

denote the effective scalar coupling of pulsar and companion respectively, and
βA ≡ ∂αA/∂ϕ0 where ϕ0 denotes the asymptotic value of the scalar field at spa-
tial infinity. The quantity kp is related to the moment of inertia Ip of the pulsar via
kp ≡ −∂ ln Ip/∂ϕ0. For a given equation of state, the parameters αA, βA, and kA

depend on the fundamental constants of the theory, e.g. α0 and β0 in T1(α0,β0),
and the mass of the body. As we will demonstrate later, these “gravitational form
factors” can assume large values in the strong gravitational fields of neutron stars.
Depending on the value of β0, this is even the case for a vanishingly small α0, where
there are practically no measurable deviations from GR in the Solar system. In fact,
even for α0 = 0, a neutron star, above a certain β0-dependent critical mass, can have
an effective scalar coupling αA of order unity. This non-perturbative strong-field
behavior, the so-called “spontaneous scalarization” of a neutron star, was discovered
20years ago by Damour and Esposito-Farèse [56].

Finally, there is the post-Keplerian parameter Ṗb, related to the damping of the
orbit due to the emission of gravitationalwaves.Wehave seen above that in alternative
gravity theories the back reaction from the gravitational wave emission might enter
the equations of motion already at the 1.5 post-Newtonian level, giving rise to a
Ṗb ∝ V3

b /c3. To leading order one finds in mono-scalar-tensor gravity the dipolar
contribution from the scalar field [57–59]:

Ṗb = −2π
m pmc

M2

1 + e2/2

(1 − e2)5/2
V3

b

c3
(αp − αc)

2

1 + αpαc
+ O(V5

b /c5). (23)

As one can see, the change in the orbital period due to dipolar radiation depends
strongly on the difference in the effective scalar coupling αA. Binary pulsar systems
with a high degree of asymmetry in the compactness of their components are therefore
ideal to test for dipolar radiation. An order unity difference in the effective scalar
coupling would lead to a change in the binary orbit, which is several orders of
magnitude (∼c2/V2

b ) stronger than the quadrupolar damping predicted by GR. For
GR one finds from the well-known quadrupole formula [60]:

ṖGR
b = −192π

5

m pmc

M2

1 + 73e2/24 + 37e4/96

(1 − e2)7/2
V 5

b

c5
. (24)
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Apart from a change in the orbital period, gravitational wave damping will also
affect other post-Keplerian parameters. While gravitational waves carry away orbital
energy and angular momentum, Keplerian parameters like the eccentricity and the
semi-major axis of the pulsar orbit change as well. The corresponding post-Keplerian
parameters are ė and ẋ respectively. However, these changes affect the arrival times
of the pulsar signals much less than the Ṗb, and therefore do (so far) not play a role
in the radiative tests with binary pulsars.

As already mentioned in Sect. 1.2, there is no generic connection between the
higher-order gravitational wave damping effects and the parameters G, ε, and ξ of the
modified Einstein-Infeld-Hoffmann formalism. Such higher order, mixed radiative
and strong-field effects depend in a complicated way on the structure of the gravity
theory [39].

The post-Keplerian parameters are at the foundation of many of the gravity tests
conducted with binary pulsars. As shown above, the exact functional dependence
differs for given theories of gravity. A priori, the masses of the pulsar and the com-
panion are undetermined, but they represent the only unknowns in this set of equa-
tions. Hence, once two post-Keplerian parameters are measured, the corresponding
equations can be solved for the two masses, and the values for other post-Keplerian
parameters can be predicted for an assumed theory of gravity. Any further post-
Keplerian measurement must therefore be consistent with that prediction, otherwise
the assumed theory has to be rejected. In other words, if N ≥ 3 post-Keplerian para-
meters can be measured, a total of N − 2 independent tests can be performed. The
method is very powerful, as any additionally measured post-Keplerian parameter is
potentially able to fail the prediction and hence to falsify the tested theory of gravity.
The standard graphical representation of such tests, as will become clear below, is
themass-mass diagram. Everymeasured post-Keplerian parameter defines a curve of
certain width (given by the measurement uncertainty of the post-Keplerian parame-
ter) in a m p-mc diagram. A theory has passed a binary pulsar test, if there is a region
in the mass-mass diagram that agrees with all post-Keplerian parameter curves.

2 Gravitational Wave Damping

2.1 The Hulse-Taylor Pulsar

The first binary pulsar to ever be observed happened to be a rare double neutron star
system. It was discovered by Russell Hulse and Joseph Taylor in summer 1974
[18]. The pulsar, PSR B1913+16, has a rotational period of 59ms and is in a
highly eccentric (e = 0.62) 7.75-h orbit around an unseen companion. Shortly
after the discovery of PSR B1913+16, it has been realized that this system may
allow the observation of gravitational wave damping within a time span of a few
years [61, 62].
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Table 2 Observed orbital timing parameters of PSR B1913+16, based on the Damour-Deruelle
timing model (taken from [29])

T0 Time of periastron passage (MJD) 52144.90097841(4)

x Projected semi-major axis of the pulsar orbit (s) 2.341782(3)

e Orbital eccentricity 0.6171334(5)

Pb Orbital period at T0 (d) 0.322997448911(4)

ω0 Longitude of periastron at T0 (deg) 292.54472(6)

ω̇ Secular advance of periastron (deg/yr) 4.226598(5)

γ Amplitude of Einstein delay (ms) 4.2992(8)

Ṗb Secular change of orbital period −2.423(1) × 10−12

Figures in parentheses represent estimated uncertainties in the last quoted digit

The first relativistic effect seen in the timing observations of the Hulse-Taylor
pulsar was the secular advance of periastron ω̇. Thanks to its large value of 4.2deg/yr,
this effect was well measured already one year after the discovery [63]. Due to the,
a priori, unknown masses of the system, this measurement could not be converted
into a quantitative gravity test. However, assuming GR is correct, Eq. (15) gives
the total mass M of the system. From the modern value given in Table2 one finds
M = m p + mc = 2.828378 ± 0.000007 M� [29].4

It took a few more years to measure the Einstein delay (9) with good precision.
In a single orbit this effect is exactly degenerate with the Roemer delay, and only
due to the relativistic precession of the orbit these two delays become separable [61,
65]. By the end of 1978, the timing of PSR B1913+16 yielded a measurement of
the post-Keplerian parameter γ, which is the amplitude of the Einstein delay [66].
Together with the total mass from ω̇GR, Eq. (16) can now be used to calculate the
individual masses. With the modern value for γ from Table2, and the total mass
given above, one finds the individual masses m p = 1.4398 ± 0.0002 M� and mc =
1.3886 ± 0.0002 M� for pulsar and companion respectively [29].

With the knowledge of the two masses, m p and mc, the binary system is fully
determined, and further GR effects can be calculated and comparedwith the observed
values, providing an intrinsic consistency check of the theory. In fact, Taylor et al.
[66] reported the measurement of a decrease in the orbital period Ṗb, consistent with
the quadrupole formula (24). This was the first proof for the existence of gravitational
waves as predicted by GR. In the meantime the Ṗb is measured with a precision of
0.04% (see Table2). However, this is not the precision with which the validity of the
quadrupole formula is verified in the PSRB1913+16 system. The observed Ṗb needs
to be corrected for extrinsic effects,most notably the differentialGalactic acceleration
and the Shklovskii effect, to obtain the intrinsic value caused by gravitational wave

4Strictly speaking, this is the total mass of the system scaled with an unknown Doppler factor D,
i.e. Mobserved = D−1M intrinsic [39]. For typical velocities, D − 1 is expected to be of order 10−4,
see for instance [64]. In gravity tests based on post-Keplerian parameters, the factor D drops out
and is therefore irrelevant [54].
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damping [67, 68]. The extrinsic contribution due to the Galactic gravitational field
(acceleration g) and the proper motion (transverse angular velocity in the sky μ) are
given by

δ Ṗext
b = Pb

c

[
K̂0 · (gPSR − g�) + μ2d

]
, (25)

where K̂0 is the unit vector pointing towards the pulsar, which is at a distance d
from the Solar system. For PSR B1913+16, Pb and K̂0 are measured with very
high precision, and also μ is known with good precision (∼8%). However, there is
a large uncertainty in the distance d, which is also needed to calculate the Galactic
acceleration of thePSRB1913+16 system,gPSR, inEq. (25).Due to its large distance,
there is no direct parallax measurement for d, and estimates of d are based on model-
dependent methods, like the measured column density of free electrons between
PSR B1913+16 and the Earth. Such methods are known to have large systematic
uncertainties, and for this reason the distance to PSR B1913+16 is not well known:
d = 9.9 ± 3.1kpc [29, 69]. In addition, there are further uncertainties, e.g. in the
Galactic gravitational potential and the distance of the Earth to the Galactic center.
Accounting for all these uncertainties leads to an agreement between Ṗb − δ Ṗext

b
and ṖGR

b at the level of about 0.3% [29]. The corresponding mass-mass diagram is
given in Fig. 4. As the precision of the radiative test with PSR B1913+16 is limited
by the model-dependent uncertainties in Eq. (25), it is not expected that this test can
be significantly improved in the near future.

Fig. 4 Mass-mass diagram
for PSR B1913+16 based on
GR and the three observed
post-Keplerian parameters ω̇
(black), γ (red) and Ṗb
(blue). The dashed Ṗb curve
is based on the observed Ṗb,
without corrections for
Galactic and Shklovskii
effects. The solid Ṗb curve is
based on the corrected
(intrinsic) Ṗb, where the thin
lines indicate the one-sigma
boundaries. Values are taken
from Table2
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Fig. 5 Shift in the time of
periastron passage of
PSR B1913+16 due to
gravitational wave damping.
The parabola represents the
GR prediction and the data
points the timing
measurements, with
(vertical) error bars mostly
too small to be resolved. The
observed shift in periastron
time is a direct measurement
of the change in the
world-line of the pulsar due
to the back-reaction of the
emitted gravitational waves
(cf. Figure3). The
corresponding spatial shift
amounts to about 20,000km.
Figure is taken from [29]

Finally, besides the mass-mass diagram, there is a different way to illustrate the
test of gravitational wave damping in PSR B1913+16. According to Eq. (7), the
change in the orbital period, i.e. the post-Keplerian parameter Ṗb, is measured from
a shift in the time of periastron passage, where U is a multiple of 2π. One finds for
the shift in periastron time, as compared to an orbit with zero decay

�T = 1

2
Pb Ṗbn2 + O(Pb Ṗ2

b n3), (26)

where n = 0, 1, 2, . . . denotes the number of the periastron passage, and is given
by n � (T − T0)/Pb. Equation (26) represents a parabola in time, which can be
calculated with high precision using the masses that come from ω̇GR and γGR (see
above).On the other hand, the observed cumulative shift in periastron canbe extracted
from the timing observations with high precision. A comparison of observed and
predicted cumulative shift in the time of the periastron passage is given in Fig. 5.

2.2 The Double Pulsar—The Best Test for Einstein’s
Quadrupole Formula, and More

In 2003 a binary systemwas discovered where, at first, one member was identified as
a pulsar with a 23ms period [70], before about half a year later, the companion was
also recognized as a radio pulsar with a period of 2.8 s [71]. Both pulsars, known as
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PSRs J0737−3039A and J0737−3039B, respectively, (or A and B hereafter), orbit
each other in less than 2.5h in a mildly eccentric (e = 0.088) orbit. As a result, the
system is not only the first and only double neutron star system where both neutron
stars are visible as active radio pulsars, but it is also the most relativistic binary pulsar
laboratory for gravity known to date [72]. Just to give an example for the strength
of relativistic effects, the advance of periastron, ω̇, is 17 degrees per year, meaning
that the eccentric orbit does a full rotation in just 21years. In this subsection, we
briefly discuss the properties of this unique system, commonly referred to as the
Double Pulsar, and highlight some of the gravity tests that are based on the radio
observations of this system. For detailed reviews of the Double Pulsar see [72, 73].

In the Double Pulsar system a total of six post-Keplerian parameters have been
measured by now. Five arise from four different relativistic effects visible in pulsar
timing [74], while a sixth one can be determined from the effects of geodetic preces-
sion, which will be discussed in detail below. The relativistic precession of the orbit,
ω̇, was measured within a few days after timing of the system commenced, and by
2006 it was already knownwith a precision of 0.004% (see Table3). At the same time
the measurement of the amplitude of Einstein delay, γ, reached 0.7% (see Table3).
Due to the periastron precession of 17 degrees per year, the Einstein delay was soon
well separable from the Roemer delay. Two further post-Keplerian parameters came
from the detection of the Shapiro delay: the shape and range parameters s and r .
They were measured with a precision of 0.04 and 5%, respectively (see Table3).
From the measured value s = sin i = 0.99974+0.00016

−0.00039 (i = 88.7◦+0.5◦
−0.8◦) one can

already see how exceptionally edge-on this system is. Finally, the decrease of the
orbital period due to gravitational wave damping was measured with a precision of
1.4% just three years after the discovery of the system (see Table3).

A unique feature of the Double Pulsar is its nature as a “dual-line source”, i.e. we
measure the orbits of both neutron stars at the same time. Obviously, the sizes of
the two orbits are not independent from each other as they orbit a common center

Table 3 A selection of observed orbital timing parameters of the Double Pulsar, based on the
Damour-Deruelle timing model (taken from [74])

xA ≡ aA sin i/c Projected semi-major axis of A (s) 1.415032(1)

xB ≡ aB sin i/c projected semi-major axis of B (s) 1.5161(16)

e Orbital eccentricity 0.0877775(9)

Pb Orbital period (d) 0.10225156248(5)

ω̇ Secular advance of periastron (deg/yr) 16.89947(68)

γ amplitude of Einstein delay for A (ms) 0.3856(26)

Ṗb Secular change of orbital period −1.252(17) × 10−12

s Shape of Shapiro delay for A 0.99974(−39,+16)

r Range of Shapiro delay for A (μs) 6.21(33)

All post-Keplerian parameters below are obtained from the timing of pulsar A. The timing precision
for pulsar B is considerably lower, and allows only for a, in comparison, low precisionmeasurement
(∼0.3%) of ω̇ [74]. Figures in parentheses represent estimated uncertainties in the last quoted digit
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of mass. In GR, up to first post-Newtonian order the relative size of the orbits is
identical to the inverse ratio of masses. Hence, by measuring the orbits of the two
pulsars (relative to the centre of mass), we obtain a precise measurement of the mass
ratio. This ratio is directly observable, as the orbital inclination angle is obviously
identical for both pulsars, i.e.

R ≡ mA

mB
= aB

aA
= aB sin i/c

aA sin i/c
≡ xB

xA
. (27)

This expression is not just limited to GR. In fact, it is valid up to first post-Newtonian
order and free of any explicit strong-field effects in any Lorentz-invariant theory of
gravity (see [40] for a detailed discussion). Using the parameter values of Table3, one
finds that in theDouble Pulsar themasses are nearly equalwith R = 1.0714±0.0011.

As it turns out, all the post-Keplerian parameters measured from timing are con-
sistent with GR. In addition, the region of allowed masses agrees well with the
measured mass ratio R (see Fig. 6). One has to keep in mind, that the test presented
here is based on data published in 2006 [74]. In the meantime continued timing lead
to a significant decrease in the uncertainties of the post-Keplerian parameters of the
Double pulsar. This is especially the case for Ṗb, for which the uncertainty typically
decreases with T −2.5

obs [75], Tobs being the total time span of timing observations. The
new results will be published in an upcoming publication (Kramer et al., in prep.).

Fig. 6 GR mass-mass diagram based on timing observations of the Double Pulsar. The orange
areas are excluded simply by the fact that sin i ≤ 1. The figure is taken from [72] (�SO lines
removed) and based on the timing solution published in [74]
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As reported in [33], presently the Double Pulsar provides the best test for the GR
quadrupole formalism for gravitational wave generation, with an uncertainty well
below the 0.1% level. As discussed above, the Hulse-Taylor pulsar is presently lim-
ited by uncertainties in its distance. This raises the valid question, at which level such
uncertainties will start to limit the radiative test with the Double Pulsar as well. Com-
pared to the Hulse-Taylor pulsar, the Double Pulsar is much closer to Earth. Because
of this, a direct distance estimate of 1.15+0.22

−0.16 kpc based on a parallax measurement
with long-baseline interferometry was obtained [76]. Thus, with the current accuracy
in the measurement of distance and transverse velocity, GR tests based on Ṗb can be
taken to the 0.01% level.

With the large number of post-Keplerian parameters and the knownmass ratio, the
Double Pulsar is the most over-constrained binary pulsar system. For this reason, one
can do more than just testing specific gravity theories. The Double Pulsar allows for
certain generic tests on the orbital dynamics, time dilation, and photon propagation
of a spacetime with two strongly self-gravitating bodies [72]. First, the fact that the
Double Pulsar gives access to the mass ratio, R, in any Lorentz-invariant theory of
gravity, allows us to determine mA/M = R/(1 + R) = 0.51724 ± 0.00026 and
mB/M = 1/(1 + R) = 0.48276 ± 0.00026. With this information at hand, the
measurement of the shape of the Shapiro delay s can be used to determine Vb via
Eq. (14): Vb/c = (2.0854 ± 0.0014) × 10−3. At this point, the measurement of
the post-Keplerian parameters ω̇, γ, and r (Eqs. (11)–(13)) can be used to impose
restrictions on the “strong-field” parameters of Lagrangian (2) [72]:

2ε − ξ

5
= 0.9995 ± 0.0016, (28)

G0B

G + KB
A = 1.005 ± 0.010, (29)

ε0B + 1

4

G0B

G = 1.009 ± 0.054. (30)

This is in full agreement with GR, which predicts one for all three of these expres-
sions. Consequently, nature cannot deviate much from GR in the quasi-stationary
strong-field regime of gravity (G2 in Fig. 1).

2.3 PSR J1738+0333—The Best Test for Scalar-Tensor
Gravity

The best “pulsar clocks” are found amongst the fully recycled millisecond pulsars,
which have rotational periods less than about 10ms (see e.g. [77]). A result of the
stable mass transfer between companion and pulsar in the past—responsible for the
recycling of the pulsar—is a very efficient circularization of the binary orbit, that
leads to a pulsar-white dwarf system with very small residual eccentricity [78]. For
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such systems, the post-Keplerian parameters ω̇ and γ are generally not observable.
There are a few cases where the orbit is seen sufficiently edge-on, so that a measure-
ment of the Shapiro delay gives access to the two post-Keplerian parameters r and s
with good precision (see e.g. [79], which was the first detection of a Shapiro delay in
a binary pulsar). With these two parameters the system is then fully determined, and
in principle can be used for a gravity test in combination with a third measured (or
constrained) post-Keplerian parameter (e.g. Ṗb). Besides the Shapiro delay parame-
ters, some of the circular binary pulsar systems offer a completely different access
to their masses, which is not solely based on the timing observations in the radio
frequencies. If the companion star is bright enough for optical spectroscopy, then
we have a dual-line system, where the Doppler shifts in the spectral lines can be
used, together with the timing observations of the pulsar, to determine the mass ratio
R. Furthermore, if the companion is a white dwarf, the spectroscopic information
in combination with models of the white dwarf and its atmosphere can be used to
determine the mass of the white dwarf mc, ultimately giving the mass of the pulsar
via m p = R mc. As we will see in this and the following subsection, two of the best
binary pulsar systems for gravity tests have their masses determined through such a
combination of radio and optical astronomy.

PSR J1738+0333 was discovered in 2001 [80]. It has a spin period P of 5.85ms
and is a member of a low-eccentricity (e < 4× 10−7) binary system with an orbital
period Pb of just 8.5h. The companion is an optically bright low-mass white dwarf.
Extensive timing observation over a period of 10years allowed a determination of
astrometric, spin and orbital parameters with high precision [28], most notably

• A change in the orbital period of (−17.0 ± 3.1) × 10−15.
• A timing parallax, which gives a model independent distance estimate of d =
1.47 ± 0.10kpc.

The latter is important to correct for the Shklovskii effect and the differential Galactic
acceleration to obtain the intrinsic Ṗb (cf. Eq. (25)). Additional spectroscopic obser-
vations of the white dwarf gave the mass ratio R = 8.1 ± 0.2 and the companion
mass mc = 0.181+0.007

−0.005 M�, and consequently the pulsar mass m p = 1.47+0.07
−0.06 M�

[81]. It is important to note, that the mass determination for PSR B1738+0333 is
free of any explicit strong-field contributions, since this is the case for the mass ratio
[40], and certainly for the mass of the white dwarf, which is a weakly self-gravitating
body, i.e. a gravity regime that has been well tested in the Solar system (G1 in Fig. 1).

After using Eq. (25) to correct for the Shklovskii contribution, δ Ṗb = Pbμ
2d/c =

(8.3+0.6
−0.5) × 10−15, and the contribution from the Galactic differential acceleration,

δ Ṗb = (0.58+0.16
−0.14) × 10−15, one finds an intrinsic orbital period change due to

gravitational wave damping of Ṗ intr
b = (−25.9 ± 3.2) × 10−15. This value agrees

well with the prediction of GR, as can be seen in Fig. 7.
The radiative test with PSR J1738+0333 represents a ∼15% verification of GR’s

quadrupole formula. A comparison with the<0.1% test from the Double Pulsar (see
Sect. 2.2) raises the valid question of whether the PSR J1738+0333 experiment is
teaching us something new about the nature of gravity and the validity of GR. To
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Fig. 7 GR mass-mass
diagram based on the timing
observations of
PSR J1738+0333 and the
optical observations of its
white-dwarf companion
respectively. The thin lines
indicate the one-sigma errors
of the measured parameters.
The grey area is excluded by
the condition sin i ≤ 1

address this question, let’s have a look at Eq. (23). Dipolar radiation can be a strong
source of gravitational wave damping, if there is a sufficient difference between the
effective coupling parameters αp and αc of pulsar and companion respectively. For
the Double Pulsar, where we have two neutron stars with m p ≈ mc, one generally
expects that αp ≈ αc, and therefore the effect of dipolar radiation would be strongly
suppressed. On the other hand, in the PSR J1738+0333 system there is a large
difference in the compactness of the two bodies. For the weakly self-gravitating
white-dwarf companion αc � α0, i.e. it assumes the weak-field value,5 while the
strongly self-gravitating pulsar can have an αp that significantly deviates from α0. In
fact, as discussed in Sect. 1.4, αp can even be of oder unity in the presence of effects
like strong-field scalarization. In the absence of non-perturbative strong-field effects
one can do a first order estimation (αp − αc) ∝ (εp − εc) + O(ε2). For the Double
Pulsar one finds (εp − εc)

2 ≈ 6 × 10−5, which is significantly smaller than for the
PSR J1738+0333 system, which has (εp − εc)

2 ≈ 0.012.6 As a consequence, the
orbital decay of asymmetric systems like PSR J1738+0333 could still be dominated
by dipolar radiation, even if the Double Pulsar agrees with GR. For this reason,
PSR J1738+0333 is particularly useful to test gravity theories that violate the strong
equivalence principle and therefore predict the emission of dipolar radiation. A well
known class of gravity theories, where this is the case, are scalar-tensor theories. As
it turns out, PSR J1738+0333 is currently the best test system for these alternatives
to GR (see Fig. 8). In terms of Eq. (23), one finds

|αp − αc| < 2 × 10−3 (95% confidence), (31)

5From the Cassini experiment [11] one obtains |α0| < 3 × 10−3 (95% confidence).
6These numbers are based on the equation of stateMPA1 in [82].Within GR,MPA1 has amaximum
neutron-star mass of 2.46 M�, which can also account for the high-mass candidates of [83–85].
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Fig. 8 Constraints on the class of T1(α0,β0) scalar-tensor theories of [56, 57], fromdifferent binary
pulsar and Solar system (Cassini and Lunar Laser Ranging) experiments. The grey area indicates
the still allowed T1 theories, and includes GR (α0 = β0 = 0). It is obvious that PSR J1738+0333 is
the most constraining experiment for most of the β0 range, and is even competitive with Cassini in
testing the Jordan-Fierz-Brans-Dicke theory (β0 = 0). As can be clearly seen, the double neutron-
star systems PSRB1534+12 [86], PSRB1913+16 (Hulse-Taylor pulsar) and PSR J0737−3039A/B
(Double Pulsar) are considerably less constraining, as explained in the text. Figure is taken from [28]

where for the weakly self-gravitating white dwarf companion αc � α0. This limit
can be interpreted as a generic limit on dipolar radiation, where αp − αc is the
difference of some hypothetical (scalar- or vector-like) “gravitational charges” [38].

2.4 PSR J0348+0432—A Massive Pulsar
in a Relativistic Orbit

PSR J0348+0432 was discovered in 2007 in a drift scan survey using the Green
Bank radio telescope (GBT) [87, 88]. PSR J0348+0432 is a mildly recycled radio-
pulsar with a spin period of 39ms. Soon it was found to be in a 2.46-h orbit with a
low-mass white-dwarf companion. In fact, the orbital period is only 15s longer than
that of the Double Pulsar, which by itself makes this already an interesting system
for gravity. Initial timing observations of the binary yielded an accurate astrometric
position, which allowed for an optical identification of its companion [89]. As it
turned out, the companion is a relatively bright white dwarf with a spectrum that
shows deep Balmer lines. Like in the case of PSR J1738+0333, one could use
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high-resolution optical spectroscopy to determine the mass ratio R = 11.70 ± 0.13
and the companionmassmc = 0.172±0.003 M�. For themass of the pulsar one then
findsm p = R mc = 2.01±0.04 M�, which is presently the highest, well determined
neutron starmass, and only the second neutron star with awell determinedmass close
to 2 M�.7

Since the discovery of PSR J0348+0432 there have been regular timing obser-
vations with three of the major radio telescopes in the world, the 100-m Green
Bank Telescope, the 305-m radio telescope at the Arecibo Observatory, and the
100-m Effelsberg radio telescope. Based on the timing data, in 2013 Antoniadis
et al. [89] reported the detection of a decrease in the orbital period of Ṗb =
(−2.73 ± 0.45) ± 10−13 that is in full agreement with GR. In numbers:

Ṗb/ṖGR
b = 1.05 ± 0.18. (32)

As it turns out, using the distance inferred from the photometry of the white dwarf
(d ∼ 2.1kpc) corrections due to the Shklovskii effect and differential acceleration
in the Galactic potential (see Eq. (25)) are negligible compared to the measurement
uncertainty in Ṗb.

Like PSR1738+0333, PSR J0348+0432 is a systemwith a large asymmetry in the
compactness of the components, and therefore well suited for a dipolar radiation test.
Using Eq. (23), the limit (32) can be converted into a limit on additional gravitational
scalar or vector charges:

|αp − α0| < 5 × 10−3 (95% confidence). (33)

This limit is certainly weaker than the limit (32), but it has a new quality as it tests a
gravity regime in neutron stars that has not been tested before. Gravity tests before
[89]were confined to “canonical” neutron starmasses of∼1.4 M�. PSRJ0348+0432
for the first time allows a test of the relativistic motion of a massive neutron star,
which in terms of gravitational self-energy lies clearly outside the tested region (see
Fig. 9).

Although an increase in fractional binding energy of about 50% does not seem
much, in the highly non-linear gravity regime of neutron stars it could make a signif-
icant difference. To demonstrate this, [89] used the scalar-tensor gravity T1(α0,β0)

of [56, 57], which is known to behave strongly non-linear in the gravitational fields
of neutron stars, in particular for β0 < −4.0. As shown in Fig. 10, PSR J0348+0432
excludes a family of scalar-tensor theories that predict significant deviations from
GR in massive neutron stars and were not excluded by previous experiments, most
notably the test done with PSR J1738+0333.

With PSR J0348+0432, gravity tests now cover a range of neutron star masses
from 1.25 M� (PSR J0737−3039B) to 2 M�. No significant deviation from GR in
the orbital motion of these neutron stars was found. These findings have interesting

7The first well determined two Solar mass neutron star is PSR J1614−2230 [90], which is in a wide
orbit and therefore does not provide any gravity test.
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Fig. 9 Fractional gravitational binding energy of a neutron star as a function of its (inertial)
mass, based on equation of state MPA1 [82]. The plot clearly shows the prominent position of
PSR J0348+0432. The other dots indicate the neutron star masses of the individual test systems in
Fig. 8

implications for the upcoming ground-based gravitational wave experiments, as a
significant amount of dipolar radiationwould drive the phase evolution of themerging
binarymany cycles away from theGR template and, consequently, degrade the ability
to accurately determine the parameters of the merging system or even prevent the
detection of the signal. A detailed discussion can be found in [89].

3 Geodetic Precession

A few months after the discovery of the Hulse-Taylor pulsar, Damour and Ruffini
[51] proposed a test for geodetic precession in that system. If the pulsar spin is
sufficiently tilted with respect to the orbital angular momentum, the spin direction
should gradually change over time (see Sect. 1.3). A change in the orientation of the
spin-axis of the pulsar with respect to the line-of-sight should lead to changes in the
observed pulse profile. These pulse-profile changes manifest themselves in various
forms [92], such as changes in the amplitude ratio or separation of pulse components
[93, 94], the shape of the characteristic swing of the linear polarization [95], or the
absolute value of the position angle of the polarization in the sky [72]. In principle,
such changes could allow for a measurement of the precession rate and by this yield
a test of GR. In practice, it turned out to be rather difficult to convert changes in the
pulse profile into a quantitative test for the precession rate. Indeed, the Hulse-Taylor
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Fig. 10 Effective scalar coupling as a function of the neutron-star mass, in the T1(α0,β0) mono-
scalar-tensor gravity theory of [56, 57]. For the linear coupling of matter to the scalar field we have
chosen α0 = 10−4, a value well below the sensitivity of any near-future Solar system experiment,
likeGAIA [91]. The blue curves correspond to stable neutron-star configurations for different values
of the quadratic coupling β0: −5 to −4 (top to bottom) in steps of 0.1. The yellow area indicates
the parameter space still allowed by the limit (31) [label ‘J1738’], whereas only the green area is
in agreement with the limit (33) [label ‘J0348’]. The plot shows clearly how the massive pulsar
PSR J0348+0432 probes deep into a new gravity regime. Neutron-star calculations are based on
equation of state MPA1 [82] (see [89] for a different equation-of-state)

pulsar, in spite of prominent profile changes due to geodetic precession [93, 94],
does not (yet) allow for a quantitative test of geodetic precession. This is mostly
due to uncertainties in the orientation of the magnetic axis and the intrinsic beam
shape [96].

Profile and polarization changes due to geodetic precession have been observed in
other binary pulsars as well [97, 98], but again did not lead to a quantitative gravity
test. A complete list of binary pulsars that up to date show signs of geodetic precession
can be found in [33]. Out of the six pulsars listed in [33], so far only two allowed
for quantitative constraints on their rate of geodetic precession: PSR B1534+12 [95]
and pulsar B of the Double Pulsar [99]. In the following we will discuss the latter
in more details, as it currently provides the best test for the geodetic precession of a
binary pulsar.

In Sect. 2.2, we have seen the Double Pulsar as one of the most exciting “labora-
tories” for relativistic gravity, with a wealth of relativistic effects measured, allowing
the determination of 5 post-Keplerian parameters from timing observations: ω̇, γ,
Ṗb, r , s. Calculating the inclination angle of the orbit i from s = sin i , one finds
that the line-of-sight is inclined with respect to the plane of the binary orbit by just
about 1.3◦ [74]. As a consequence, during the superior conjunction the signals of
pulsar A pass pulsar B at a distance of only 20,000km. This is small compared to



676 N. Wex

the extension of pulsar B’s magnetosphere, which is roughly given by the radius
of the light-cylinder8 rlc ≡ cP/2π ∼ 130,000km. And indeed, at every superior
conjunction pulsar A gets eclipsed for about 30 s due to absorption by the plasma in
the magnetosphere of pulsar B [71]. A detailed analysis revealed that during every
eclipse the light curve of pulsar A shows flux modulations that are spaced by half or
integer numbers of pulsar B’s rotational period [100]. This pattern can be understood
by absorbing plasma that co-rotates with pulsar B and is confined within the closed
field lines of the magnetic dipole of pulsar B. As such, the orientation of pulsar B’s
spin is encoded in the observed light curve of pulsar A [99]. Over the course of
several years, Breton et al. [99] observed characteristic shifts in the eclipse pattern,
that can be directly related to a precession of the spin of pulsar B. From this analysis,
Breton et al. were able to derive a precession rate of

�SO = 4.77+0.66
−0.65 deg/yr. (34)

The measured rate of precession is consistent with that predicted by GR (�SO
GR =

5.07 deg/yr) within its one-sigma uncertainty. This is the sixth(!) post-Keplerian
parameter measured in the Double-Pulsar system. Furthermore, for the coupling
function�A

B , which parametrizes strong-field deviation in alternative gravity theories
(see Eq. (5)), one finds

�A
B/G = 1.90 ± 0.22, (35)

which agrees with the GR value �A
B/G = 2. Although the geodetic precession of

a gyroscope was confirmed to better than 0.3% by the Gravity Probe B experiment
[13], the clearly less precise test with Double Pulsar B (13%) for the first time gives
a good measurement of this effect for a strongly self-gravitating “gyroscope”, and
by this represents a qualitatively different test.

The geodetic precession of pulsar B not only changes the pattern of the flux
modulations observed during the eclipse of pulsar A, it also changes the orientation
of pulsar B’s emission beam with respect to our line-of-sight. As a result of this,
geodetic precession has by now turned pulsar B in such a way, that since 2009
it is no longer seen by radio telescopes on Earth [101]. From their model, Perera
et al. [101] predicted that the reappearance of pulsar A is expected to happen around
2035 with the same part of the beam, but could be as early as 2014 if one assumes a
symmetric beam shape.

Finally, for pulsar A GR predicts a precession rate of 4.78deg/yr, which is com-
parable to that of pulsar B. However, since the light-cylinder radius of pulsar A
(∼1000 km) is considerably smaller than that of pulsar B, there are no eclipses that
could give insight into the orientation of its spin. Moreover, long-term pulse pro-
file observations indicate that the misalignment between the spin of pulsar A and the
orbital angular momentum is less than 3.2◦ (95% confidence) [102]. For such a close
alignment, geodetic precession is not expected to cause any significant changes in

8The light-cylinder is defined as the surface where the co-rotating frame reaches the speed of light.
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the spin direction (cf. Eqs. (4) and (5)). This, on the other hand, is good news for tests
based on timing observations. One does not expect a complication in the analysis of
the pulse arrival times due to additional modeling of a changing pulse profile.

4 Local Lorentz Invariance of Gravity

Some alternative gravity theories allow the Universal matter distribution to single
out the existence of a preferred frame, which breaks the symmetry of local Lorentz
invariance (LLI) for the gravitational interaction. In the post-Newtonian parame-
trization of semi-conservative gravity theories, LLI violation is characterized by two
parameters, α1 and α2 [5]. Non-vanishing α1 and α2 modify the dynamics of self-
gravitating systems that move with respect to the preferred frame (preferred-frame
effects). In GR one finds α1 = α2 = 0.

As the most natural preferred frame, generally one chooses the frame associated
with the isotropic cosmic microwave background (CMB), meaning that the preferred
frame is assumed to be fixed by the global matter distribution of the Universe. From
the five-yearWilkinsonMicrowave Anisotropy Probe (WMAP) satellite experiment,
aCMBdipolemeasurementwith high precisionwas obtained [103]. TheCMBdipole
corresponds to a motion of the Solar system with respect to the CMB with a velocity
of 369.0±0.9km/s in direction ofGalactic longitude and latitude (l, b) = (263.99◦±
0.14◦, 48.26◦ ± 0.03◦). The numbers quoted in the next two sub-sections, will be
with respect to the CMB frame. A generalization to other frames is straightforward,
and was done in some of the references cited below.

The most important (weak-field) constraints on preferred-frame effects do come
form Lunar Laser Ranging (LLR) [104],

α1 = (−0.7 ± 1.8) × 10−4 (95%CL), (36)

and the alignment of the Sun’s spin with the total angular momentum of the planets
in the Solar system [105],

|α2| < 2.4 × 10−7. (37)

4.1 Constraints on α̂1 from Binary Pulsars

In binary pulsars, the isotropic violation of Lorentz invariance in the gravitational
sector should lead to characteristic preferred frame effects in the binary dynamics, if
the barycenter of the binary ismoving relative to the preferred framewith a velocityw.
For small-eccentricity binaries, the effects induced by α̂1 and α̂2 (the hat indicates
possible modifications by strong-field effects) decouple, and can therefore be tested
independently [106, 107].
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In case of a non-vanishing α̂1, the observed eccentricity vector e of a small-
eccentricity binary pulsar is a vectorial superposition of a ‘rotating eccentricity’
eR(t) and a fixed ‘forced eccentricity’ eF : e(t) = eF + eR(t) [106]. The rotating
eccentricity has a constant length eR , and rotates with the relativistic precession of
periastron, ω̇, in the orbital plane. This is identical to the dynamics caused by a
violation of the strong equivalence principle [106, 108], with the forced eccentricity
pointing into the direction of L̂ × w. As a consequence, the binary orbit changes
from a less to a more eccentric configuration and back on a time scale of

Tω̇ ≡ 2π

ω̇
� (1140 yr)

(
Pb

1 day

)5/3 (
M

2M�

)−2/3

, (38)

where we have assumed that the true ω̇ does not deviate significantly from the one
predicted byGR (Eq. (15)), an assumption that is well justified by other binary-pulsar
experiments, like the generic tests in the Double Pulsar (cf. Sect. 2.2).

The forced eccentricity eF is determined by the strength of the preferred frame
effect. Its magnitude is approximately given by

eF � 0.093 α̂1
m p − mc

M

(
M

2M�

)−1/3 (
Pb

1 day

)1/3 (
w sinψ

300 km/s

)
, (39)

whereψ is the angle betweenw and L̂ (see [106] for a detailed expression). The obser-
vation of small eccentricities in binary pulsars, like e ∼ 10−7 for PSR J1738+0333
does not directly constrain α̂1. The orientation of the a priory unknown intrinsic eR

could be such, that it compensates for a large eF . If the system is sufficiently old,
one can assume a uniform probability distribution in [0◦, 360◦) for θ(t). Like in the
Damour-Schäfer test for SEP, one can now set a probabilistic upper limit on eF , and
by this on α̂1, by excluding θ values close to alignment of eR and eF . Based on this
method, [106] found a limit of |α̂1| < 5 × 10−4 with 90% confidence.

But even if θ happens to be close to 0◦, due to the relativistic precession it will not
remain there, and a large eF cannot remain hidden for ever. In fact, if ω̇ is sufficiently
large (greater than ∼1◦ per year) a significant change in the orbital eccentricity
should become observable over time scales of a few years, even if at the start of
the observation there was a complete cancellation between eR and eF . This can be
used to constrain α̂1 [107]. The best such test comes from PSR J1738+0333 (see
Sect. 2.3). This binary pulsar is ideal for this test for several reasons:

• The orbit has an extremely small, well constrained eccentricity of ∼10−7 [28].
• The (calculated) relativistic precession of periastron is about 1.6deg/yr, and the
binary has been observed by now for about 10years [28]. Hence, θ(t) has covered
an angle of 16◦ in that time.

• The 3D velocity with respect to the Solar system is known with good precision
from timing and optical observations, meaning that one can compute w [28, 81].
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• The orientation of the system is such, that the unknown angle of the ascending
node � has little influence on the α̂1 limit, hence there is no need for probabilistic
considerations to exclude certain values of � [107].

Consequently, PSR J1738+0333 leads to the best constraints of α1-like violations
of the local Lorentz invariance of gravity, giving [107]

α̂1 = −0.4+3.7
−3.1 × 10−5 (95% confidence). (40)

This limit is not only five times better than the current most stringent limit on α1
obtained in the Solar system (cf. Eq. (36)), it is also sensitive to potential deviations
related to the strong self-gravity of the pulsar. For non-perturbative deviations one
can, for illustration purposes, do an expansion with respect to the fractional binding
energy ε of the neutron star,

α̂1 = α1 + C1ε + O(ε2). (41)

Since ε ∼ −0.1 for PSR J1738+0333, we get tight constraints for C1, a parameter
that is virtually unconstraint by the LLR experiment, since ε ∼ −5 × 10−10 for the
Earth.

4.2 Constraints on α̂2 from Binary and Solitary Pulsars

In the presence of a non-vanishing α̂2, a small-eccentricity binary system experiences
a precession of the orbital angular momentum around the fixed direction w with an
angular frequency

�
prec
α̂2

= −α̂2
π

Pb

(w

c

)2
cosψ, (42)

where ψ is the angle between the orbital angular momentum and w [107]. In binary
pulsars, such a precession should become visible as a secular change in the projected
semi-major axis of the pulsar orbit, ẋ , which is an observable timing parameter. The
two binary pulsars PSRs J1012+5307 and J1738+0333 turn out to be particularly
useful for such a test, since both of them have optically bright white dwarf com-
panions, which allowed the determination of the masses in the system, and the 3D
systemic velocity with respect to the preferred frame [81, 109, 110].

Unfortunately, in general, the orientation of a binary pulsar orbit with respect to
w and the line-of-sight cannot be fully determined from timing observations. As a
consequence, one cannot directly test α̂2 fromobserved constraints for ẋ . In fact, since
the longitude of the ascending node� is not measured, neither for PSR J1012+5307
nor for PSR J1738+0333, the orientation of these systems could in principle be such,
that an α̂2-induced precession would not lead to a significant ẋ . Assuming a random
distribution of � in the interval [0◦, 360◦), one can use probabilistic considerations
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to exclude such unfavorable orientations. A detailed discussion of this test can be
found in [107], where the following 95% confidence limits are derived

|α̂2| < 3.6 × 10−4 from PSR J1012+5307,

|α̂2| < 2.9 × 10−4 from PSR J1738+0333, (43)

|α̂2| < 1.8 × 10−4 from PSRs J1012+5307 and J1738+0333 combined.

It is important to note, that for the last limit, based on the statistical combination of
the two systems, one has to assume that α̂2 has only a weak functional dependence
on the neutron-star mass in the range of 1.3 – 2.0 M�.

The limit for α̂2 obtained from binary pulsars are still several orders of magnitude
weaker than the α2 limit which Nordtvedt derived in 1987 from the alignment of the
Sun’s spin with the orbital planes of the planets [105]. In the same paper, Nordtvedt
pointed out that solitary fast-rotating pulsars could be used in a similar way to obtain
tight constraints for α2. This can be directly seen from Eq. (42), which holds for a
rotating self-gravitating star if Pb is replaced by the rotational period P of the star.
While the five-billion-year base-line for the Solar experiment is typically a factor
of ∼109 longer than the observational time-span Tobs of pulsars, for millisecond
pulsars P is ∼109 shorter than the rotational period of the Sun. In fact, the first
millisecond pulsar PSR B1937+21, discovered in 1982 [111], by now has a figure
of merit Tobs/P that is ∼10 times larger than that of the Sun.

The precession of a solitary pulsar due to a non-vanishing α̂2 would lead to char-
acteristic changes in the observed pulse profile over time-scales of years, just like
in the case of binary pulsars that experience geodetic precession (cf. Sect. 3). Con-
sequently, a non-detection of such changes can be converted into constraints for α̂2.
Recently, Shao et al. [112] used the two solitarymillisecond pulsars PSRsB1937+21
and J1744−1134 for such an experiment. For both pulsars they utilized a consistent
set of data, taken over a time span of approximately 15years with the same observing
system at the 100-m Effelsberg radio telescope. The continuity in the observing sys-
tem was key for an optimal comparison of the high signal-to-noise ratio profiles over
time. As it turns out, both pulsars, PSRs B1937+21 and J1744−1134, do not show
any detectable profile evolution in the last 15years. As an example of such a non-
detection see Fig. 11, which shows two pulse profiles of PSR B1937+21 obtained at
different epochs.

Similarly to the α̂2 test with the binary pulsars, there are unknown angles in the
orientation of the pulsar spin, for which certain values have to be excluded based
on probabilistic considerations. From extensive Monte-Carlo simulations Shao et al.
found with 95% confidence

|α̂2| < 2.5 × 10−8 from PSR B1937+21,

|α̂2| < 1.5 × 10−8 from PSR J1744−1134, (44)

|α̂2| < 1.6 × 10−9 from PSRs B1937+21 and J1744−1134 combined.
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Fig. 11 Comparison of two pulse profiles of PSR B1937+21 obtained at two different epochs. The
blue one was obtained on September 2, 1997, while the red one was obtained on June 6, 2009. The
main peak is aligned and scaled to have the same intensity. There exists no visible difference within
the noise level. Profiles were taken from [112]

These limits are significantly tighter than theα2 limit from the Sun’s spin orientation.
Like in the case of the α̂1 test (previous subsection), this test also covers potential
deviations related to the strong self-gravity of the pulsar, and in the combination of the
two pulsars, makes the assumption that α̂2 depends only weakly on the neutron-star
mass.

An important difference to the aforementioned tests with binary pulsars is, that for
solitary pulsars one cannot determine the radial velocity. It enters the determination of
w as a free parameter. However, as shown in [112], the unknown radial velocities for
PSRs B1937+21 and J1744−1134 only have a marginal effect on the limits. For the
limits above it was assumed that both pulsars are gravitationally bound in theGalactic
potential. But even if one relaxes this assumption and allows for unphysically large
radial velocities, exceeding 1000 km/s, the limits get weaker by at most ∼40%.

5 Summary and Outlook

With their discovery of the first binary pulsar four decades ago, Joseph Taylor and
Russell Hulse opened a new field of experimental gravity, which has been an active
field of research ever since. Besides theHulse-Taylor pulsar,which led to the first con-
firmation of the existence of gravitational waves, astronomy has seen the discovery of
many new binary pulsars suitable for precision gravity tests. Arguably, the most exit-
ing discovery was the Double Pulsar in 2003, which by now provides the best test for
GR’s quadrupole formalism of gravitational wave generation (<0.1% uncertainty),
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and the best test for the relativistic spin precession of a strongly self-gravitating body.
In addition to this, it is the binary pulsar with the most post-Keplerian parameters
measured, allowing for a number of generic constraints on strong-field deviations
fromGR. For certain aspects of gravity, binary pulsars with white dwarf companions
have proven to be even better “test laboratories” than the Double Pulsar. These are
gravitational phenomena, predicted by alternatives to GR, that depend on the differ-
ence in the compactness/binding energy of the two components, like gravitational
dipolar radiation. By now, pulsar-white dwarf systems, like PSR J1738+0333, set
quite stringent limits (coupling strength less than about 10−3) on the existence of any
additional “gravitational charges” associated with light or massless fields. The recent
discovery of a massive pulsar in a relativistic binary system (PSR J0348+0432), for
the first time allowed to test the orbital motion of a neutron star that is significantly
more compact than pulsars of previous gravity tests. For certain aspects of gravity,
solitary pulsars turned out to be ideal probes. The current best limit on the PPN
parameters α2, related to the existence of a preferred frame for gravity, does come
from pulse-profile observations of two solitary millisecond pulsars. In all these tests,
pulsars go beyond Solar system tests, since they are also sensitive to deviations that
occur only in the strong-field environment of neutron stars.

So far, GR has passed all these tests with flying colors.Will this continue for ever?
Is GR our final answer to the macroscopic description of gravity? Pulsar astronomy
will certainly continue to investigate this question. Many of the tests mentioned here
will simply improve by continued timing observations of the known pulsars. In fact,
the measurement precision for some of the post-Keplerian parameters increases fast
with time. For instance, in regular observations (with the same hardware) the uncer-
tainty in the change of the orbital period Ṗb decreases with T −2.5

obs , Tobs denoting the
observing time span. Improvements in the hardware, like new broad-band receivers
(e.g. [113]), will further boost the timing precision. For pulsars like PSR J1738+0333
and PSR J0348+0432 soon the modeling of the white dwarf will be the limiting fac-
tor, while for theDouble Pulsar the corrections of the external contributions to Ṗb will
be the challenging bit, in particular if one wants to reach the ∼10−5 level at which
higher oder contributions to Ṗb [114, 115] and the Lense-Thirring contribution to the
orbital dynamics [44, 50] become relevant (see [72] for a detailed discussion). The
upcoming next generation of radio telescopes, like the Five-hundred-meter Aperture
Spherical radio Telescope (FAST) [116] and the The Square Kilometre Array (SKA)
[117], certainly promise a big step towards this goal. With SKA, for many pulsars
one can hope for a factor of 100 improvement in timing precision [118]. The SKA
also promises to provide excellent direct distance measurements to pulsars, either
directly by utilizing the long baselines of the SKA to form high angular resolution
images, or by fitting for the timing parallax in the arrival times of the pulsar signals
[119]. In combination with new models for the gravitational potential of our Galaxy,
in particular after new missions like GAIA [120], one will be able to accurately
determine the extrinsic “contaminations” of Ṗb via Eq. (25), and by this know the
intrinsic Ṗb. This is key for any high precision gravitational wave test with binary
pulsars, but also crucial to measure the Lense-Thirring drag in the Double Pulsar
[72].



Testing the Motion of Strongly Self-Gravitating Bodies with Radio Pulsars 683

Reducing the parameter uncertainties for known pulsars is oneway to push gravity
tests forward, finding new, more relativistic systems is the other. Presently there are a
number of pulsar surveys underway that promise the discovery of many new pulsars.
New techniques, like acceleration searches [121] and high performance computing,
e.g. Einstein@Home [122], promise the detection of pulsars in tight orbits, which
generally cannot be found with traditional methods. There is considerable hope
among pulsar astronomers, that this will finally also lead to the discovery of a pulsar-
black hole system, occasionally called the “holy grail” of pulsar astronomy. Such a
system is expected to provide a superb new probe of relativistic gravity and black
hole properties, like the dragging of spacetime by the rotation of the black hole
[123–125]. According to GR, for an astrophysical black hole (Kerr solution) there
is an upper limit for its spin, given by Smax = G M2/c. It would pose an interesting
challenge toGR, if the timing of a pulsar-black hole system indicates a spin S > Smax.
But even for gravity theories that predict the same properties for black holes as in
GR, a pulsar-black hole system would constitute an excellent test system, due to the
high grade of asymmetry in the strong-field properties of these two components (see
[125] for simulations based on T1(α0,β0) scalar-tensor theories). A pulsar in a close
orbit (Pb < 1yr) around the super-massive black hole (mBH ≈ 4 × 106 M�) in the
center of our Galaxy would be the ultimate test system, in that context. According
to the mock data analysis in [126], for such a system a precise measurement of the
quadrupole moment of the black hole, and therefore a test of the no-hair theorem,
should be possible, provided that the environment of the pulsar orbit is sufficiently
clean. Finding and timing a pulsar in the center of ourGalaxy is certainly challenging.
A promising result in that direction is the very recent detection of radio signals from
a magnetar near the Galactic center black hole [127], even if this pulsar is still too
far away from the super-massive black hole (∼0.1pc) to probe its spacetime.

Until now, all gravitational wave tests are based on probing the near-zone of a
binary spacetime by measuring how the back reaction of the gravitational radiation
changes the world lines of the source masses. As outlined above, with the Double
Pulsar this test has reached a precision of better than 0.1%. Presently there are
considerable efforts to achieve a direct detection of gravitational waves, i.e. measure
the far-field properties of such radiative spacetimes by using appropriate test masses.
Ground based laser interferometric gravitational wave observatories, like LIGO and
VIRGO, have mirrors with separations of a few kilometers. Their sensitivity is in the
range from10Hz to few103 Hz. Planned space-based detectors, like eLISA,will have
three drag-free satellites as test masses with a typical separation of ∼106 km, and
should be sensitive to gravitationalwaves fromabout 10−4 to 0.1Hz. For the ultra-low
frequency band (few nano-Hz) pulsar timing arrays are currently the most promising
detectors [128]. In these experiments the Earth/Solar system and a collection of very
stable pulsars act as the testmasses.Agravitationalwavebecomes apparent in a pulsar
timing array by the changes it causes in the arrival times of the pulsar signals. Due to
the fitting of the rotational frequency ν and its time derivative ν̇ for every pulsar, such
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a detector is only sensitive to wavelengths up to ∼c Tobs.9 This leads to the special
situation that the length of the “detector arms” is much larger than the wavelength.
As a consequence, the observed timing signal contains two contributions, the so-
called pulsar term, related to the impact of the gravitational wave on the pulsar when
the radio signal is emitted, and the Earth term corresponding to the impact of the
gravitational wave on the Earth during the arrival of the radio signal at the telescope
[131, 132]. The most promising source in the nano-Hz frequency band is a stochastic
gravitational wave background, as a result of many mergers of super-massive black
hole binaries in the past history of the Universe [133, 134]. With the large number
of “detector arms”, pulsar timing arrays have enough information to explore the
properties of the nano-Hz gravitational wave background in details, once its signal
is clearly detected in the data. Are there more than the two Einsteinian polarization
modes (alternative metric theories can have up to six)? Is the propagation speed
of nano-Hz gravitational waves frequency depended? Does the graviton carry mass?
These are some of the main questions that can be addressed with pulsar timing arrays
[135, 136]. The isolation of a single source in the pulsar timing array data would
give us a unique opportunity to study the merger evolution of a super-massive black
hole binary, since the signal in the Earth term and the signal in the pulsar term show
two different states of the system, which are typically several thousand years apart
[137]. For these kind of gravity experiments, however, we might have to wait till the
full SKA has collected a few years of data, which probably brings us close to the
year 2030.
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