Spin and Quadrupole Contributions
to the Motion of Astrophysical Binaries

Jan Steinhoff

Abstract Compact objects in general relativity approximately move along geodes-
ics of spacetime. It is shown that the corrections to geodesic motion due to spin
(dipole), quadrupole, and higher multipoles can be modeled by an extension of the
point mass action. The quadrupole contributions are discussed in detail for astrophys-
ical objects like neutron stars or black holes. Implications for binaries are analyzed
for a small mass ratio situation. There quadrupole effects can encode information
about the internal structure of the compact object, e.g., in principle they allow a dis-
tinction between black holes and neutron stars, and also different equations of state
for the latter. Furthermore, a connection between the relativistic oscillation modes
of the object and a dynamical quadrupole evolution is established.

1 Introduction

The problem of motion is among of the most fundamental ones in general relativity.
As a part of the present proceedings on “Equations of Motion in Relativistic Gravity”
this does probably not require any explanations. The problem is addressed using
multipolar approximation schemes, the most prominent are due to Mathisson [1, 2]
and Dixon [3], and another one is due to Papapetrou [4]. These particular methods
have in common that equations of motion for extended bodies are derived from
the conservation of energy-momentum. In the present contribution, the focus lies
on theoretical models for compact stars and black holes based on point-particle
actions. There equations of motions follow from a variational principle instead of
conservation of energy-momentum. These point-particle actions were probably first
discussed in general relativity by Westpfahl [5] for the case of a pole-dipole particle
and later generalized by Bailey and Israel [6] to generic multipoles.
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However, without further justification, it is not obvious how a point-particle action
relates to an actual extended body. Most important is the effacing principle [ 7], which
indicates that a nonrotating star can be represented by a point mass up to a high order
within the post-Newtonian approximation. (More details on the use of point-masses
for self-gravitating bodies within this approximation can be found in other contribu-
tions to these proceedings, see, e.g., the contribution by G. Schifer) This suggests
that extensions of the point-mass action can serve as models for extended bodies,
even in the self-gravitating case. A similar conclusion arises from the framework of
effective field theory applied to gravitating compact bodies [8]. Indeed, the effective
action belonging to a compact body naturally takes on the form of a point-particle
action, which puts previous works on similar actions [5, 6] into a different light. This
provides enough motivation for us to further elaborate the action approach of [6] in
Sect. 2, where it is combined with useful aspects of more recent literature [9-13]. An
application to the post-Newtonian approximation of self-gravitating extended bodies
is omitted, because various formalisms exist for it and the aim is to highlight aspects
that are independent of (and hopefully useful for) all of them.

It is worth mentioning that the effective field theory framework offers a machin-
ery which can be used, at least in principle, to compute the effective point-particle
action from a complete microphysical description of the extended body. In practice,
however, this procedure is not viable for realistic astrophysical objects and one must
be satisfied with a more phenomenological construction of the effective action. This
is in fact analogous to other situations in physics. For instance, it is usually admitted
that thermodynamic potentials can be derived from a microscopic description. Yet an
explicit calculation is often too complicated, or the microscopic description is even
unclear. But a phenomenological construction of thermodynamic potentials or equa-
tions of state is usually possible. This analogy is further elaborated in Sect. 5. There
an adiabatic quadrupole deformation due to spin [14] is discussed. An application
to a binary system in the extreme mass ratio case is given. Quadrupole deformation
due to an external gravitational fields is discussed in Sects.4, 5 and 6, both in an
adiabatic [15-17] and a dynamical situation [18, 19].

A main critique against point-particles arises from the fact that Dirac delta distri-
butions are ill-defined sources for the nonlinear Einstein equations. But the situation
changes once one softens the Dirac delta using regularization techniques. It is then
possible to solve the field equations iteratively within some approximation, like the
post Newtonian one. If one regards the chosen regularization prescription as a part of
the phenomenological model, then point-particles must be accepted as viable sources
in general relativity (at least for applications within approximation schemes). This
point is further stressed in Sect.6.4. It is important that a weak field approxima-
tion for the point-particle mimics the field of the actual self-gravitating extended
body away from the source. (This is precisely the criterion for the phenomenolog-
ical construction of the effective point-particle source.) Hence, though one applies
the effective source to weak field approximations, e.g., to compute predictions for a
binary, strong-field effects from the interior of the bodies are taken into account.
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The signature of spacetime is taken to be +2. Units are such that the speed of
light ¢ is equal to one. The gravitational constant is denoted by G. We are going
to utilize three different frames, denoted by different indices. Greek indices refer to
the coordinate frame, lower case Latin indices from the beginning of the alphabet
belong to a local Lorentz frame, and upper case Latin indices from the beginning
of the alphabet denote the so called body-fixed Lorentz frame. Round and square
brackets are used for index symmetrization and antisymmetrization, respectively,
eg, AW = %(A‘“’ + AY"). The convention for the Riemann tensor is

Rﬂuaﬂ = Fuvﬁ,a - F'uua,@ + Fpl/ﬁr'upa - Fpl/ar‘ﬂpﬁ“ (D

2 Point-Particle Actions

Action principles for spinning point particles have a long tradition, see, e.g., [5, 6,
9-13, 20-24]. In this section, the advantages from several of these references are
brought together. Our approach is most similar to [6]. Compared to the presentation
in [11], a simpler (manifestly covariant) variation technique is applied and the tran-
sition to tetrad gravity is discussed at a later stage. This makes the derivation more
transparent.

2.1 Manifestly Covariant Variation

Before we start to formulate the action principle, let us introduce a useful notation
due to DeWitt [25], see also [12, Appendix A]. One can define a linear operator G,
such that the covariant derivative V,, and the Lie derivative L, read

Vo =00+ T"0GYy,  Le =619, — (8,6GY,. 2)

For instance, G”, operates on a tensor 7,7 as GVMTaﬂ = =6l Tﬂﬂ + 55 T,”. That
is, G, is a linear operator that acts on the spacetime indices of a tensor. Notice that
G, does not act on indices of the body-fixed frame. Further, G”, obeys a product
rule like a differential operator. Similarly, we can construct a covariant differential
D and a covariant variation A of quantities defined along a worldline z* by

D :=d+T",,(dz2")G"y,  A:=08+T",,(62°)G",,. 3)

For scalars the contributions from the connection vanish. Notice that a variation of
the worldline §z¢ is not manifestly covariant if the component values of tensors
defined on the worldline are held fixed. The variation A instead parallel transports
to the varied worldline. When it is applied to a tensor field taken at the worldline,
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e.g., Taﬂ(z), then the variation ¢ splits into a part due to the shift of the worldline
0z” and a part coming from the variation of the field itself. Let us denote the latter
part by 6ZTQ5 = (6T.")(2), so we have

0 =0, + (6z")0,, A =0, + (0zY)V,, (for fields). 4
For instance, the metric compatibility of V,, then leads to

Agu = 519#% )

2.2 Action Principle

We envisage an action principle localized on a worldline z” (). Here A is an arbitrary
parameter, not necessarily identical to the proper time 7. (Let us require that the action
is invariant under reparametrizations of the worldline.) We further assume that the
action is varied with respect to a “body-fixed” frame defined by Lorentz-orthonormal
basis vectors A 4#(\) labeled by A,

AAPAB g = A, AalAp'ntE =g (6)

Now, stars are in general differentially rotating and it is difficult to interpret a body-
fixed frame. Such a frame is thus rather an abstract element of our theoretical model,
inspired by the Newtonian theory of rigid bodies (see, e.g., [11, Sect.3.1.1]).

The constraint (6) implies that A 4* and g,,,, are in general not independent and
one should take special care when both are varied at the same time. In order to address
this problem, we split the variation AA 4" as

1 1
AMAN Y = AFAN L + zA(AAMA”) =A@ — Egﬂ“g“*‘ﬂszgag. 7

where we used 6g"* = —g'g"%§ gap and (5). In the last step, we also introduced
the abbreviation

A = AAN LY, (8)

which is similar to the antisymmetric variation symbol used in [22], see also [13,
Eq.(2.7)]. The independence of A®"” from the metric variation d, g,g will be made
more manifest in Sect.2.4. For now let us just appeal to the fact that the 6 degrees
of freedom of the antisymmetric symbol A®* exactly matches the degrees of free-
dom of a Lorentz frame (3 boosts and 3 rotations). Thus A®*" corresponds to the
independent variation of the body-fixed Lorentz frame.
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Let us consider an action that is as generic as possible,

1
W=Wr+Wyu, Wrlgu,..]=—— [ d*xJ/=gR+..., ©)
167G

WM[g}Llh Zp9 AAlus .. ] = /d>\ LM(g/l.lh uuv AAllv Q/“” ¢1)7 (10)

Here ¢; collectively denotes other dependencies of the Lagrangian L, and the dots
denote other fields, like the electromagnetic one. (In this section [ is a multi-index
that may comprise any sort of spacetime, Lorentz, or label indices.) Notice that
fields like g,,,, are taken at the worldline position z” in Wy,. The 4-velocity u* and
the angular velocity Q" are defined by

dz DALY
= %, Q= AA"d—;, (11)

Notice that #” is antisymmetric due to (6) and Dg,,,/d\ = 0.

2.3 Variation

For the sake of deriving equations of motion, we may assume 6\ = 0. Then the
variation can be commuted with ordinary or partial A-derivatives. Furthermore, the
Lagrangian L, is a scalar and we can make use of 0 Ly = ALy to write its variation
in a manifestly covariant manner,

1 OLy OLy OLy
0Ly = p,Aut + =S, AQM AA AP+ ——A ——Ag¢;, (12
M = ppAu” + R + YN AT+ 89#1, Juv + 06, o1, (12)
where we have defined the linear momentum p,, and spin S,,, = —S,,, as generalized

momenta belonging to the velocities u/ and /",

. 6LM . 8LM
pﬂ = auﬂ s wy = 289/“"

13)

It should be noted that (12) can be checked using a usual variation § together with the
identity (21), but here it is a simple consequence of the chain rule for A. Obviously
this method nicely organizes the Christoffel symbols.

The 5 individual terms in (12) are transformed as follows:

e The 1st term of (12) is evaluated with the help of

DozH
)\ -’

Aut = u + T 5u”dz" = (14)
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e The 2nd term of (12) requires the most work. In order to evaluate AQ", we need
to commute A with the covariant differential D contained in /¥, Eq.(11). The
definitions in (3) lead to

[A, D] = [(5:T"0) — (62" R 1o 31 (d2™) G . 5)

Notice the analogy to the commutator of covariant derivatives, which also gives
rise to curvature. It is useful to derive intermediate commutators first, for instance

[G” . G’o] = 011GY o — 04G . (16)
Next, we express 6,I'*,,, in (15) with the help of
1
O g0 = 59" [Vs99ap + Vadgs = Vpigas] - (17)

Now it is straightforward to evaluate AQ"”. In the result, we replace A A 4# using
(7), make use of

D6
% = u® (Valgpo)(2), (18)
and finally arrive at
D(ABH
AQM = —( o ) + ZQQ[“AGV]O‘ + R’“’a‘gua&ﬁ
+ Qg5 g5 + ¢ g IPUC (V 56g0) (2). (19)

e Before proceeding to the 3rd term of (12), let us recall the transformation property
of a tensor under an infinitesimal coordinate transformation x* = x* — &H,

b1 — b1 = —(0EMG” ub1, ez, u' —ul = —u’9,E". (20)

The Lagrangian is a scalar and thus invariant, but it depends on tensors which
transform. As 0,&" is quite arbitrary, the invariance of the Lagrangian L, leads
to the identity

OLy
OApH

OL OL
putt” + S 27 + Ap” — 2ag—Mgm + anG“m =0. (@I
Vo

We eliminate the partial derivative of Ljs with respect to A 4 using this relation
and we replace AA 4* using (7) to arrive at
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OLy Ap _ 1 o i OLy OLy
— Qre m —2—— | 6.9
S 3| Pt = s+ 6 o~ 9
+ |:puu1/ = SauSey (Guuqbl) By i| AGH, (22)

e In the 4th term of (12) we use (5).
e The 5th term of (12) is not touched for now, as this requires a specialization of ¢;.
This is discussed in the Sect.3.1.

All these transformations are now applied to (12). Furthermore, we insert a unity in
the form of

= / dxbw. S = (" — 2, (23)

into the terms containing field variations of type ;. This allows one to rewrite these
variations at the spacetime point x* and perform partial integrations. Notice that d4)
has compact support for finite A-intervals, so these partial integrations do not require
assumptions on field variations at the spatial boundary. Finally, (12) turns into

5g,uu (x)
2

6Ly =/d4x[ "u” 54y + (G" ¢1) 54y — a(S““M”5(4>)}

5¢5

8 M LM 1 DS;JV
IEM A e AGH 24
+ a¢ ¢1 + [puul/ ( ,uu¢1) a¢] 2 N 24)
1 : D d 1
+ I:ES(YBROﬂPuMp — dI;\Hj|6 " ﬁ |:Pu52“ + ES;LVAG)/'”/:|.

Notice that the covariant and ordinary derivatives with respect to A are identical for
the last term.

2.4 Metric Versus Tetrad Gravity

The separation of metric and body-fixed-frame variations by means of (7) is an elegant
trick to derive equations of motion. However, if further calculations at the level of
the action are performed, one often needs an explicit split between gravitational and
body-fixed-frame degrees of freedom. This can be achieved by introducing a tetrad
gravitational field e, (x), that is, a field of Lorentz-orthonormal basis vectors labeled
by a and defined at every spacetime point x?,

eaer” gy = Nap,  eaen’n"’ = g (25)
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Tetrad gravity replaces the metric by virtue of the latter relation and regards e,* as
the fundamental gravitational field in the variation principle. This allows us to split
A a* as

Apt = Ap%e " (2), (26)
where A 4¢ is now just a usual (flat-spacetime) Lorentz matrix
Ap“AB"nap =nag. A ApDME =0 27)

Thus A 4¢ is independent of the gravitational field e,* and the announced manifest
split is indeed given by (26).

Based on this split, we can understand the meaning of A®*” in more detail. As
A 4% is a usual Lorentz matrix, we can follow Ref. [22] and describe its indepen-
dent variations by an antisymmetric symbol §6*” := A4 A ,”. Then A®" reads
explicitly

AOM = eauebu(;gab + (F[V“]a + e““‘@aeal’]) 0z + e“[ﬂézea”]. (28)

One can be even more explicit and write §6°? as a linear combination of six indepen-
dent variations of angle variables parameterizing A4%, see [22, Sect.3.A]. Anyway,
A®M is in fact a linear combination of the independent frame variations 6%” with
other variations. Now, it is legitimate to regard A®*”, §z%, and de,* as independent
variations instead of 509°, §z%, and de,*. This just corresponds to a linear recom-
bining of the equations of motion following from the variation. Equation (28) shows
that this recombination manifestly removes noncovariant terms related to the 6z%-
variation and an antisymmetric part of the energy-momentum tensor due to e?*§, ¢, "]
(the symmetric part arises from e?*de,”) = %5 g"” asusual). All of this is important
for the next section, where equations of motion are deduced from (24).

In the next step it is possible to return to metric gravity by a partial gauge fixing of
the tetrad. For instance, a possible gauge condition is to require that the matrix (eq,)
is symmetric (in spite of the different nature of its indices). Then e, " is given by the
matrix square-root of the metric. This gauge choice leads to the same conclusions
as in [9, Sect.IV.B], where a more direct construction was followed. In the end, the
partially gauge-fixed tetrad is a function of the metric, so we have obtained a metric
gravity theory. It might look like the introduction of a tetrad field accompanied by an
enlarged gauge group of gravity is just extra baggage. However, more gauge freedom
is important for applications, as gauges can and should be adopted to the problem at
hand. For instance, for an ADM-like canonical formulation of spinning particles, it
is a wise choice to adopt the Schwinger time-gauge for the tetrad [10]. Further, some
subtle aspects of the consistency of the theory can be analyzed more easily within
tetrad gravity (e.g., the algebra of gravitational constraints, because after reduction
to metric gravity the gravitational field momentum receives complicated corrections
[10]). Spinning particles should always be coupled to tetrad gravity in the first place.
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3 Equations of Motion

In order to draw conclusions from (24), one must further specialize the so far arbitrary
¢1. The assumptions we are going to introduce in the following are not the least
restrictive, but already allow important insights on the structure of the equations of
motion.

3.1 Further Assumptions

Let us assume from now on that the ¢; can be split into two groups. We denote by
¢flield the part that contains spacetime fields (functions of x), so its variation A(bf}eld
can be evaluated using (4). The second group ¢}” contains variables defined on the
worldline only (functions of \) and its first order derivatives ¢%!, where " := D/d \.
Most importantly, we assume that the 6(;5‘1”1 correspond to independent variational
degrees of freedom, like Lagrange multipliers or the dynamical multipoles introduced
in Sect. 6. Without loss of generality, one can then assume that the ¢*! carry indices
of the body-fixed frame instead of spacetime indices, so that G” qSW‘

Notice that our assumptions do not allow time (i.e., A) derivatives of u“ and Q"
as part of the d)}”. If such accelerations would appear in subleading contributions
of the Lagrangian (within some approximation scheme), then one can often remove
them by a redefinition of variables [26]. Further, acceleration-dependent Lagrangians
are often problematic due to Ostrogradsky instability. For these reasons, we also
assumed that at most first-order time derivatives of the ¢}Vl appear in L. However,
our assumptions here are not entirely exhaustive. For instance, a concrete situation
for which our assumptions should be relaxed in the future is discussed at the end of
Sect.5.1.

3.2 Equations of Motion for Linear Momentum and Spin

With these assumptions, we have

oL OL
3¢M Ay = d)ﬁgd [5 ¢ﬂeld T (629, ﬁeld]
aLM - d¢wl i 1 wl
* {aqﬁyl d\ ]5 +ax Lvader'] @)

where we used that the worldline variables do not carry spacetime indices and we
introduced their canonical generalized momenta,

/0L

L T (30)
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The second line leads to the usual Euler-Lagrange equations for the worldline degrees
of freedom ¢%!, which are discussed in Sect. 6.4. Let us focus on the other terms for
now. Using the arbitrariness and independence of dz# and A®*”, we can read off
the equations of motion for the linear momentum and the spin from (24) and (29),

Dp 1 fietdy, OLm
d)\u = E aﬁRaﬁpuup + (vlt¢le )8¢ﬁeld’ (31)
1
DS, feld. OLum
I = 2P[uuu] - Z(G[uu]d)le )a(b?eld . 32)

The total A-derivative in the last line of (24) was ignored here. (Here we assume that
the variation vanishes at the end points of the worldline). The energy-momentum
tensor density /—g7T“" is simply given by the coefficient in front of &g, /2 in
(24). However, an explicit determination requires yet another specialization of (b?eld,
because the fields can dependent on the metric. In the absence of qﬁ?eld, one imme-
diately recovers the result of Tulczyjew [27].

3.3 Quadrupole

Let us now explore the case that qﬁ?dd = {R,vap}. It is useful to introduce an
abbreviation for the corresponding partial derivative of the Lagrangian,

oL
Jhvab . g “=M (33)
aR,uVaﬁ
The conventional factor of —6 is motivated by comparing (31), now reading
= ESM;RW oult” — gVuRVpgaJ’ pBor (34)

with the corresponding result of Dixon at the quadrupolar approximation level. An
identification of J#**” with Dixon’s reduced quadrupole moment is tempting, as this
makes (34) formally identical to Dixon’s result. It is important that J#**? inherits
the symmetries of the Riemann tensor. From these symmetries and the properties of
the operator G*,,, we obtain

JOPBGH, Ry oy = —4J TP PSR, s = —4T PR, 5. (35)
This simplifies (32) to

DS,
d\

4
= 2]’[#”1/] + gRaﬂp[u]u]pﬁa’ (36)
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and formally agrees with Dixon’s spin equation of motion, too. Finally, the energy-
momentum tensor agrees with the explicit result in [28] (in the present conventions,
see (5.3) in [11]). This derives from

6RNI/(YH = Va(sr‘uuﬂ - VH(SFHVQ’» (37)
which must be further expanded using (17) and then leads to

0Ly

! 2 39w
—— 0. R0 = d4 — _J/‘f/’agRV Sy — =V3V J/I,aﬂlld i .
ORwap e Fpwal / x|: 3 pafBO@) = 3V o 4)) —~

(38)

This is the contribution coming from the first term in (29). Another contribution
arises from the second term in the first row of (24), which is evaluated using (35).
Collecting all terms in front of dg,,, in (24), we can read off the energy momentum
tensor density as

—gTH = /d)\l:u(ﬂpy)5(4) — Va(Sa(#uV)(S@))

1 2
+ gRﬁa,,(#J")Paﬁa@) — gvﬂva(ﬂ(am”am)]. (39)

3.4 Other Multipoles

Dixon’s moments are essentially defined as integrals over the energy-momentum ten-
sor of the extended body. Though these definitions can be applied to self-gravitating
bodies, the derivation of the equations of motions based on these definitions only
succeeds for test-bodies [3]. It was shown in [29] (see also the corresponding contri-
bution by A. Harte in these proceedings) using methods for self-force calculations
that for self-gravitating objects the equations of motions are still of the same form,
but the multipole moments must be renormalized. The multipoles arising from the
effective action should therefore be related to these renormalized moments. For self-
gravitating bodies, one can not in general calculate the moments in the equations of
motion using Dixon’s integral formulas any more. In the language of effective field
theory, the multipoles are calculated through a “matching” procedure instead, which
will be explained in Sect. 5.

Other gravitational multipoles can be incorporated by including symmetrized
covariant derivatives of the curvature in (i)‘}eld. Similarly, electromagnetic multipoles
arise from an analogous construction based on the Faraday tensor F),. A quite
exhaustive case is therefore

¢f[ield = {Ruuuﬁa VpRul/(yﬂa V(ovp)Ruyaﬁ, cee F/w, V(pF/,L)Ily V(O'V/)F[,L)I/’ N
(40)
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Notice that the commutation of covariant derivatives results in curvature terms
and that, e.g., 3VoFw = 2V F) — 2V(oFy),, which can be checked using
ViaFw1 = 0. Again the partial derivatives of Ly, with respect to the (;St}eld can
be called multipole moments. However, these multipoles and also p,, are probably
not unique, because Ly in not unique. For instance, contractions of covariant deriv-
atives with u* can be written as A-derivatives and one can partially integrate them.
Notice that Dixon’s multipole moments have the same symmetries as ours, but satisfy
additional orthogonality relations to a timelike vector defined on the worldline.

It is also possible to include a term proportional to A,u* in the Lagrangian, as
this combination transforms into a total A-derivative under a gauge transformation
of the electromagnetic potential A,,. It just leads to the well-known Lorentz force.
However, in the present approach a part of the Lorentz force is hidden in the definition
of p,, making the equations of motion not manifestly gauge-invariant.

4 Symmetries, Transformations, and Conditions

In this section we discuss symmetries, conservations laws, various transformations
of the action, and conditions it must fulfill.

4.1 Symmetries and Conserved Quantities

Action principles have the advantage that one can easily derive conserved quantities
from the Noether theorem [30]. Here we are going to consider only symmetry trans-
formations where the fields are not transformed. Further, we assume d\ = 0, so the
variational formula (24) together with (29) is still valid.

On the one hand, we require that the Lagrangian transforms under such a symmetry
into a total derivative

dK
0Ly = e 41)
without making use of the equations of motion. On the other hand, if we assume that
the equations of motion hold, then only the total time derivatives from (24) with (29)
inserted contribute to § L js. These total derivatives are located in the last lines of (24)
and (29). (The first lines of (24) and (29) vanishes because fields are not transformed
here.) We therefore have the conservation law

d 1
ﬁ[p,,,cszﬂ + 5S,j,,A@“” + L o3 — Ki| =0. (42)

A simple example is given by the global symmetry under a change of the body-
fixed frame. In order to make things even more simple, we assume that L j; does not
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depend on A 4* and on the &M, so that ¢\{v1 = 0. But L, still implicitly depends on
A A" through Q. A constant infinitesimal Lorentz transformation of the body-fixed
frame then reads

57 =0, OSAM = wABARH, (43)

AB

where w”” is a constant infinitesimal antisymmetric matrix. Obviously Q" is invari-

ant under this transformation, so (41) is fulfilled with K = 0. Further, we have
AOD = A 42 A gPwAB and (42) reads

1 AB d
— —1 S ” A M A vl —= 0. 44
ZW ’)\|: I A B i| ( )

As wAB is arbitrary, we see that the components of the spin in the body-fixed frame
SaB = SuvAa" A" are constant. A corollary of this fact is that the spin length S is
constant, where 252 = S45 S48 = 5, S".

The next important example is a symmetry of the spacetime described by a Killing
vector field £#, L¢g,,, = 0. (Notice that also L¢ Rypeq = 0 etc.) Other fields entering
Ly are assumed to be invariant under this symmetry, too, e.g., L¢F,,, = 0. We
consider an infinitesimal shift of the worldline coordinate

07 = efh,  AALY = —eLeAa” = eAp"V,EY, SV =0,  (45)

where € is an infinitesimal constant and we assume parallel transport of A 4# along
& 1e., £"V, A 4# = 0. Notice that the fields are not transformed, but their symmetry
along £ is important. Recall that —eL¢ generates an infinitesimal coordinate trans-
formation. Therefore, L ;7 is invariant under this transformation if all the variables it
depends on, including the fields, would be transformed by —eL¢. But the shift (45)
only applies to z/, A4*, and ¢%', so the result of (45) on L is exactly opposite to
the case when all variables except z/, A 4*, and QS;” are transformed. These variables
are all the fields, so the § L produced by (45) can be obtained by transforming all
the fields using +eL¢. But the fields were assumed to be invariant under this trans-
formation. Hence we have argued that (45) is a symmetry of the action, L = 0,
and K = 0. Combining (42) and (45), we find the conserved quantity

1
E¢ = pﬂfl‘ + ES’WV#&, = const, (46)

where AO" = eVIHeV] was used. It is interesting that this covers to all multipole
orders. This was also shown in [31, p.210] based on the equations of motion.

A special kind of conserved quantities that is not covered by the Noether theorem
here are mass-like quantities. We will see later on that masses enter the action as
parameters and are therefore constant by assumption.
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4.2 Legendre Transformations

Before proceeding, it is worth to point out that of course not every conceivable
Lagrangian Ly, is acceptable. Some choices are mathematically inconsistent or phys-
ically unacceptable for other reasons. Some Lagrangians Ly are technically more
difficult to handle and it makes sense to assume simplifying conditions for L s for
a first study. One such assumption we make here is that the relation between spin
and angular velocity is a bijection. Notice that this relation is fixed by L, through
our definition of S, in (13). A violation of our assumption can have the interesting
implication that the spin supplementary condition follows from (13), see [22], but we
will not considering this scenario here. The supplementary conditions are discussed
in the next section.

With this assumption on the relation between spin and angular velocity, we can
solve for Q" in terms of S*¥ (and probably other variables). This allows a Legendre
transformation in Q*” | i.e.,

1
Wum [eau, Zp’ AA“, S,uu, .. ] = /d/\ [ES/,LVQM” + Ry (g,uua u/l7 AA”: S;n/, ¢1):| .

(47)

It is important that the spin is varied independently now. Notice that this notion of
Legendre transformation is unusual in mechanics, as Q”” is not a time derivative,
but a combination of time derivatives. Still Legendre transformations are applicable
in much more generic situations, which is heavily used, i.e., in thermodynamics.
The function R, establishes the connection to Routhian approaches [32—-34]. The
Routhian is a mixture of a Hamiltonian and a Lagrangian. Here it is essentially the
sum of Ry and the connection part in %S;w QM Notice that therefore the Routhian
is not manifestly covariant and covariance only becomes apparent at the level of the
equations of motion. In contrast, in our construction Ry is manifestly covariant.

A consequence of reparametrization invariance is that Lj; must be a homoge-
neous function of degree one in all (first-order) A-derivatives. For our assumptions in
Sect. 3.1 this applies only to u*, Q"", and ¥, so Eulers theorem on homogeneous
functions reads

_ 8LMMM+ OL y Qv 4 OLy

L :
M= gun QI a1

. 1 .
O = putt + 2 S + eyl (48)

This is a consequence of reparametrization-gauge invariance, so in this sense it is
analogous to (21), which follows from coordinate-gauge invariance. Let us proceed
with a Legendre transformation in u*. This is more subtle, as the relation between
u” and p,, can not be a bijection. To see this, first notice that (48) can be interpreted
as a constraint on the component p,u* of p,. This can be formulated as the famous
mass-shell constraint

pup’ + M? =0, (49)
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where M is called dynamical mass and usually depends on the dynamical variables.
Thus the momentum only has three independent components. On the other hand, u*
has four independent components: three physical and one gauge degree of freedom
due to reparametrization invariance in \. (If we would choose A to be the proper time,
then just 3 components are independent. But the constraint u*u,, = —1 makes the
variational principle more subtle.) That is, the constraint (49) produces a mismatch in
degrees of freedom between u/ and p,,, so they can not be connected by a bijection.
However, the Legendre transformation can in fact be generalized to the case where
constraints appear. One can perform the Legendre transformation ““as usual” if all
constraints are added to the action using Lagrange multipliers [35, 36]. Here we
need one Lagrange multiplier « for (49), which together with the three independent
components of p,, provides a total of four independent variables. This exactly matches
the four independent degrees of freedom of u*. The Lagrange multiplier « isolates
the reparametrization-gauge degree of freedom, while p,, represents the physical
degrees of freedom. Again we require Lj; to be such that no pathologies for this
“constraint” Legendre transformation arise.
Finally, the result of the transformation is

1,1
Wu I:eaua z°, Pu> &, S/I,l/a Aat, \[)V s Pwls - - :I

1 o}
= /d)\[puuu + 2SMVQMV + ql)wl [ - E(pp,pu + Mz)},
(50)

where
_ m field
M _M (guz/, p;nAA 9Sll,l/’ ¢] W]a¢ ) (51)

We assume that we can also Legendre transform in the q'SWI without giving rise to

further constraints or pathologies. From the variations of p,,, S, and wwl, we obtain
8/\/12 OM? OM?
W= aph + = QY =a =2 (52)
20 Pu 0Suw 2 81/)

These are just the inverses to variable transformations used in the Legendre trans-
formations. Because we did not touch the variables g,,,, qﬁ}”l, A 4* and d)?eld, it is
clear that

OLy :_ga/\/ﬂ My _ adM* IM? 53)
ag/w 2 69;11/ ' OA M -2 OA 4 w’

L 2 L 2
Oy _ _a M OLy _ _adM
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The Lagrange multiplier « is determined by choosing a normalization for u*, which
corresponds to a gauge choice for A. For a given dynamical mass function M, one
can then evaluate the equations of motion (31) and (32).

Coming back to the plan outlined in the introduction, we have the option to
construct either Lz, Ry, or M in a phenomenological manner. Let us explore the
last option here, e.g., because it promotes both p, and S,,,, to dynamical variables,
which are probably easier to identify in realistic situations compared to u* and
QM. Further, it is suggestive that the mass M of the object as a function of the
dynamical variables completely determines the macroscopic dynamics of the body.
This situation is analogous to a thermodynamic potential (like the internal energy)
describing the large-scale behavior of a thermodynamic system. This is the first
indication that thinking in terms of thermodynamic analogies is very useful here.

4.3 Supplementary Conditions

The model for spinning bodies developed up to now comprises too many degrees
of freedom. We expect three rotational degrees of freedom instead of six provided
by the Lorentz frame A 4*. Similarly, the spin should only have three independent
components, too. It is suggestive to impose that the time direction of the body-fixed
frame is aligned to a (to be defined) rest frame described by a unit time-like vector
r#, and that the spin only has spatial components in this rest frame,

Aot =rt, Sur’” =0. (55)

One can also envision different time-like vectors in each of these conditions. How-
ever, using the same vector seems to fit well to the interpretation of 7# as a rest frame.
The condition on the spin is usually called spin supplementary condition. Two spe-
cific options are r* = u*//—u,u” or r** = p*//—p,p”. The latter condition is
usually considered as the best choice, as it uniquely fixes the representative worldline
of the extended object [37-39] (if Dixon’s definitions for the multipoles are used). A
more detailed discussion of supplementary conditions is given in the contributions
by D. Giulini, L.F. Costa and J. Natdrio. But notice that in flat space the choice of
this condition can be related to the choice of the representative worldline for the
extended body. In curved spacetime this relation could not be established yet. From
a careful perspective one should therefore reckon that different spin supplementary
conditions may lead to inequivalent models. As long as the relation to the choice
of center is not clarified for curved spacetimes, one must regard this condition as a
constitutive relation of the model. For this reason, one should also avoid conditions
which are not manifestly covariant.

The most straightforward way to implement (55) into a given action is to add these
conditions using Lagrange multipliers. In general, this will modify the dynamics by
constraint forces. As in classical mechanics, one requires that (55) is preserved in
time, which should fix the Lagrange multipliers. This can lead to inconsistencies,



Spin and Quadrupole Contributions to the Motion of Astrophysical Binaries 631

in which case one should revise the action or the choice for r#. It can also lead
to further constraints, which we regard as unphysical here as they further reduces
the number of independent variables (we want exactly three rotational degrees of
freedom). Similarly, if some of the Lagrange multipliers remain undetermined, then
the degrees of freedom are increased, which we also regard as unphysical. The last
possibility is that the Lagrange multipliers are uniquely fixed by requiring that (55)
is preserved. In the end, we can insert this solution for the Lagrange multipliers
into the action. In this way we obtain an action without Lagrange multipliers which
preserves (55).

4.4 Conditions on the Dynamical Mass

Having this said, we can try to directly construct an action which preserves (55).
This approach is in fact very natural here. For instance, one can make an ansatz for
M? and use this requirement to fix some of the coefficients. The first condition in
(55) can be written as 704 = A 4, r" and is preserved in time if

Dr# OM?
0= N +Q"r,,  where Q" =« 25, (56)
Using (21) and (53), we can write the spin equation of motion (32) in the form
DS oMm?
d;‘” = 2801, 2" + VT SEA 4 (57)

With the help of this equation, we see that the spin supplementary condition is
preserved in time if it holds (56) and additionally

oOM?
0= SIEA APr,,. 58
DA 0 AT (58)

This condition is often trivially fulfilled, namely when M? does not explicitly depend
on A4". We are going to construct a simple example now, in order to show that
functions M exist which are consistent with all of our requirements.

4.5 A Simple Construction of the Dynamical Mass

Instead of constructing an action which fulfills (56) and (58) for a specific choice of
r#, one can look at a specific action and construct a r# such that the requirements (56)
and (58) are fulfilled. Let us consider a simple example where M? is a nonconstant
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analytic function f depending only on S? := SHS/2, ie., M? = f(5?). Itis
clear that (58) is fulfilled, because there is no explicit dependence on the body-fixed
frame. We still need to satisfy (56), which reads explicitly

Dr# Dr#

0= Ty, = 2T
oy TalSt="

(59)

That is, the vector »* must be parallel transported along the worldline. This does
indeed characterize a suitable spin supplementary condition, which was first dis-
cussed in [40, Sect. 3.4]. Although, with this condition, r* lacks an immediate inter-
pretation as a rest frame, the numerical results in [40] show that it leads to similar
predictions as the choice r* = p#/./—p, p”. Further discussions on this supple-
mentary condition are given in other contributions to these proceedings.

For the case of a black hole, the laws of black hole dynamics [41, Box 33.4]
suggests that

S2

2 2y 2
MBH = f(S ) =m + —(2Gm0)2

(60)

where m is the constant irreducible mass related to the horizon area. We can now
have a look at the angular velocity with respect to asymptotic time, so we have
a = M~ (for a body at rest). Evaluating (52), we find agreement with what is
usually identified as the angular velocity of the horizon. This is a nice check for
the consistency of the interpretation of our variables. Notice that the laws of black
hole dynamics owe their name to their similarity to the laws of thermodynamics.
Further, an action principle similar to the one presented here can be used to derive
the so called first law of black hole binary dynamics [13]. Again we encounter the
thermodynamic character of the approach.

For objects other than black holes, we can derive M from the moment of inertia.
One usually defines the moment of inertia I (S2) as the proportionality factor between
spin and angular velocity, which can be read off from (52). Again we have o =
M~ = £=1/2 50(52) leads to the differential equation 7 ~! = f~1/2 f/_Its solution
reads

5 5 s? dx :
M =f(S)=[mo+/0 21(x)i| , 61)

where the irreducible mass m( enters as an integration constant. For neutron stars,
the function 7 (S?) can be obtained numerically, e.g., using the RNS code [42, 43].
Alternatively, one can numerically compute the gravitating mass M directly as a
function of S for a fixed number of baryons in the star. It would be interesting to see
if both methods lead to compatible results. It should be noted that both black holes
and neutron stars posses a quadrupole (and other multipoles) when they are spinning,
which was neglected here. It will be included in the next section.
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Interestingly, it is implied by [44] that for the pole-dipole case one can construct a
M? such that (56) and (58) are fulfilled for r* = p*/./—p, p” without the need for
approximations or truncations of M?2. Then, however, M? is not solely dependent
on S. The details on this are left for a future work.

S Spin-Induced Quadrupole

In this section, we are going to develop a simple phenomenological model for M?
describing the spin-induced quadrupole of a star. This is the quadrupole of a star
arising from a deformation away from spherical symmetry due to rotation. We start
with a reasonable ansatz for M?2. The main idea for this ansatz is to include all
possible covariant (general coordinate invariant) terms up to a certain power in spin
and curvature. The unknown coefficients in this ansatz are then fixed by comparing
to the Kerr metric and to numerical solutions for the gravitational field of a rotating
neutron star. One should emphasize that a truncation of M? requires negligibly small
interaction energies, not small multipoles.

5.1 Construction of the Action

We are going to include in our ansatz the quadratic order in spin and second order
derivatives of the metric. This means that we include terms linear in the curvature and
covariant derivatives of the curvature are not allowed. This implies that we exclude
A-derivatives of the curvature for now, but this restriction will be loosened below.
Symbolically we have ¢>f}eld = {Ryvap}, which according to Sect.3.4 implies that
we neglect interaction terms involving octupole and higher multipoles. Finally, let
us assume the absence of further worldline degrees of freedom in this section, or
qb‘l”] = (), so we have no need for a dependence of M?2on A " [Then (58) is already
fulfilled.]

The main task is to collect all possible interaction terms. One must take care of
including only independent terms, which can by tricky due to the symmetries of
the Riemann tensor. A procedure for this was applied to the construction of effec-
tive Lagrangians or Routhians in [8, 34, 45]. Instead, we are going to construct
M? directly, but the arguments are essentially the same. We will follow a different
approach to implement the spin supplementary condition, too, by making an ansatz
for r# around the case

e OR ) (62)
= —— pvaf)-

As a first simplification, one can replace R);,qg by its tracefree version, the Weyl
tensor Cyq3. The traces are given by Ry, 1= g”ﬂ Ruavp and R := g"" R, which
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are related to the energy momentum tensor 7+ through Einstein’s gravitational field
equations

1
R = 8nG (TW/ — ETaang) . (63)

The energy momentum tensor can contain contributions from fields penetrating the
compact object, like electromagnetic or dark matter fields. We assume that these can
be neglected, i.e., the bodies are mainly interacting via the gravitational field. But
in the case of self-gravitating bodies, the energy momentum tensor also includes
a singular contribution from the point-particle (39) itself. Let us assume that these
singular self-interactions can be dropped. Then we can effectively make use of the
vacuum field equations R*” = 0 at the particle location, so we have R ;03 = Cvag-
However, in general one is not allowed to use field equations at the level of the action.
But in the current context this is essentially a valid procedure, as it is equivalent to
a field redefinition in the action, see [8, 26], or [46, Appendix A]. Without loss of
generality, we can therefore restrict to ¢?eld = {CLvap} in the quadrupole case.
The most important and most obvious requirement on the allowed interaction
terms in M? is general coordinate invariance. Further restrictions on the terms and
transformations identifying equivalent terms (equivalent within our truncation) are:

1. In four spacetime dimensions, the Weyl tensor can be split into an electric £,
and a magnetic part By, with respect to a time-like unit vector. Choosing this
vector to be r#, it holds

o) I}
Eul/ = C/ma/ﬂrar% s B;w = Enuapacuﬁporar s (64)

where 17,43 is the volume form. These tensors have the properties

E/w = Ey/u E/J,l/gl“/ =0, E/er =0, (65)
Bu = By, Bug" =0, Bur’=0.  (66)

These properties make E,,,, and By, much easier to handle compared to C;,03.

2. We include only terms invariant under parity transformations. In this respect it is
important to notice that By, is of odd parity. We conclude that any terms with an
odd number of magnetic Weyl tensors must also include an odd number of volume
forms 7),,,,43. Due to the antisymmetry of 7),,,,3, it will always be contracted with
both indices of the spin at the current level of truncation. Then we can rewrite all
terms involving 7)., in terms of the dual of the spin tensor

1

*Sog 1= >

Suynm/aﬂ- (67)
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Notice that we have the identity [22, Eq. (A.7)]
Sy #5 = — 1475, w500 (68)
Jes =4 af .

As a consequence, it holds B, ", * 5% = 0. It is customary to define a spin
vector S* :=r, xSVH.

3. It should be noticed that one is in general not allowed to neglect terms involving
the combination S,,, 7", though these numerically vanish due to the spin sup-
plementary condition (55): A variation of these terms can lead to nonvanishing
contributions to the equations of motion. Instead, terms in the action which are at
least quadratic in S,,r” can be neglected, as their contributions to the equations
of motion are at least linear in the spin supplementary condition and thus always
vanish.

4. The quadrupole interaction terms can be simplified using the leading order trun-
cation of the mass-shell constraint p, p" + M? = 0. (For the ansatz in (70)
given below, this implies that we can set p, p" ~ — 42 in the higher order terms
of M?.) This transformation does in fact just correspond to a redefinition of the
Lagrange multiplicator o, and the idea is therefore similar to the field redefinitions
mentioned above [26].

5. Time derivatives of p, and S,,,, can also be removed by redefinitions of variables,
which follows from the ideas in [26] and is again analogous to the mentioned
field redefinitions. Besides that, the absence of higher order time derivatives was
already assumed in Sect.3.1.

The last point also shows that our ansatz will automatically cover time derivatives
of E,,, and By, of arbitrary order. As we work at linear level in the curvature, the time
derivatives can always be removed from the curvature through partial integration.
After this transformation, all time derivatives finally apply to p,, and S,,,, only, which
can be removed by virtue of the argument 5 above. This suggests that these terms
belong to the quadrupole level, too, although time derivatives of the fields are in
fact covariant derivatives D/d\ = u"V,,. This is of course related to the ambiguity
of the multipoles pointed out in Sect.3.4. At linear level in the curvature, one can
assume that the covariant derivatives are projected orthogonal to r#, because 'V, ~
u"V,, = D/d ) up to higher order terms, which can be partially integrated.

The first point mentioned above suggests to include just £, and B, in qb?eld.
However, this is currently not possible, because we assumed in Sect.3.1 that the
gi)f}eld contain just fields, but ## in (64) is only defined on the worldline. For instance,
one would have to clarify the meaning of V,r# arising from V,E,,, in (31). For
simplicity, let us stick to qS?eld = {Clvap} here, but have in mind that M? depends
on Cyap only through the combinations E,,;, and B,,;,. The equations of motion are
initially expressed in terms the quadrupole moment related to Cpa3,

OLy

jovoss . g OLkm_
acuyaﬁ

(69)
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see (33), but these are at once related to the moments belonging to £, and B,
through the chain rule. The interpretation of the latter moments as quadrupoles is
much more obvious than for (69), as E;,,, and B,,, are symmetric tracefree spatial
tensors in the rest frame defined by r#. These moments can be called electric and
magnetic quadrupoles, respectively. They match the quadrupole degrees of freedom
of the gravitational field outside the body [47], in contrast to (33), which in general is
not tracefree. This approach to define electric and magnetic quadrupoles was briefly
discussed in [11]. An explicit split into electric and magnetic quadrupoles at the level
of the equations of motion was performed in [48].

5.2 Ansatz

The most general ansatz for M? now reads
M? = pi* + Cyg2 ), By S"S" po + Cpg By SPS” o + O(E?, B2, §%),  (70)

where we introduced the abbreviation p, = p,//. We assume that yi, Cpg2 p» and
Cpy are constants. Remember that within the curvature terms we can set r¥ ~
p*, which is due to (62) and point 4 of the last section. Notice that p must be a
function of the constant spin length, u? = £(52), cf. (61). Otherwise the Legendre
transformation would be problematic. Consistent with our truncation, we may write

m
i =m0 87+ O(sh, (71)
0

where Iy = I(0) is the moment of inertia in a slow rotation limit S — 0. Furthermore,
the constants Cpg2 ), and Cpg will in general depend on y and S. This is further
discussed below.

Next, we want to check if (56) is fulfilled. Notice that (56) is required to hold at
linear order in spin only. For this purpose, let us make an ansatz for 7 to linear order
in S,

"= Crpp! + GCrpsB"S, + O(E*, B*, §*). (72)

The normalization r#r;, = —1leads to C;, = 1. Inspecting (56), we see that most of
the contributions from the C, pg-term are shifted to higher orders, namely quadratic
level in spin: This is due to 2 = O(S) and S, = O(S?). The only C,ps-term linear
in spin contains B*”. Though this is a derivative of the curvature, it is not of higher
order, because we realized that our ansatz effectively also covers A-derivatives of the
curvature. We conclude that C,gg = 0, or r* ~ p*. For calculating 7* in (56), it is
useful to rewrite (31) as

IM?
Opy

D
ﬂ = Q(EQ[MSD]OL — Ba[p,ry]Sa) |:2PV +

= field
d\ i| - ( /t¢ )
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Fig. 1 The coefficient Cq> as a function of the dimensionless spin a = § /G2, where i is
identified with the gravitating mass and is given by ;1 = 1.4M( here. The data points were
generated using the RNS code [42, 43], where a multipole extraction according to [49] was used.
The labels SLy, APR, FPS, and AU refer to equations of state considered in [50]

Finally, the condition (56) is fulfilled to linear order in spin if Cgg2,, = 2 in our
ansatz (70). The condition (58) is of course also fulfilled. In summary, we must have

Cp=1 GCs=0, Cpg,=2, (74)

while C¢ is not determined by basic principles, but depends on the specific object.
Instead of fixing r* algebraically like in (72), it would be interesting to view (56) as
an evolution equation for * in the future, analogous to (59) in the pole-dipole case.

In Fig. 1 the numerical value of Cp2 is shown as a function of the spin length for
fixed mass p but different neutron star models. It is apparent from the plot that Cr2
is approximately independent of the spin length. However, one should be careful and
check this assumption for the specific case of interest. This determination of Cp is
actually a simple example of a matching procedure. The quadrupole moment J of
the effective point particle is parametrized through the ansatz (70) as J ~ Crp2 S 2,
This is compared (or matched) to the quadrupole moment of a numeric neutron star
spacetime computed with the RNS code [42, 43]. Here the quadrupole moment is
identified through the exterior spacetime. This means that the effective point particle
mimics the exterior spacetime of a numerically constructed neutron star model, which
depends crucially on strong field effects in the interior. This makes C2 an interesting
indicator for both the neutron star equation of state and strong-field modifications of
gravity. For black holes, a comparison with the Kerr metric leads to Cp2 = 1.

Finally, we come back to the thermodynamic analogy to our approach. The quadru-
pole relation J ~ Cpq 52 can be viewed as a simple (idealized) “equation of state”
relating the macroscopic variables J and S. As in the case of the ideal gas, this model
can be improved to meet the required accuracy. This can be done systematically here
by extending the ansatz (70) to higher orders.
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5.3 Application

As an application for the spin-induced quadrupole constructed in the last section, we
consider the case of a test particle moving in a Kerr spacetime. This test particle can
be characterized as a pole-dipole-quadrupole particle. We aim at an estimate for the
relevance of the spin-squared contributions, so we may consider a specific orbital
configuration that simplifies the discussion. This is obviously a circular orbit in the
equatorial plane of the Kerr geometry. Let us further assume that the spin of the test
body is aligned with the rotation axis of the background spacetime.

In the absence of a quadrupole, these orbits can be constructed in a simple manner,
which was first used in [51]. This method is in fact still applicable for the considered
quadrupole model [52]. It requires that conserved quantities, spin supplementary
condition, and constraints on the orbital configuration are enough to uniquely fix the
10 dynamic variables contained in p,, and S#”. This is just an algebraic calculation,
in contrast to solving the differential equations of motion. A numeric study for
Schwarzschild spacetime is given in [53].

The spin supplementary condition ($*” p,, = 0) contains three independent equa-
tions. The constraint on the orbit provides three further independent conditions: one
due to equatorial orbits (p? = 0) and two due to spin alignment (§" = 0). So we
need to identify 10 — 3 — 3 = 4 conserved quantities in order to solve for p, and
S algebraically. Three conserved quantities were already identified in Sect.4.1.

These are the spin-length S := , /% »S4? and the quantities derived from the two
Killing vectors of Kerr spacetime (0; and 0p) through (46). Well call the latter two
the energy E := Ej, and total angular momentum J, := E_j, of the particle. The
last remaining conserved quantity is just the mass-like parameter p, which in the
action approach is constant by assumption. However, one should remember that (70)
is truncated and thus only approximately valid. One can equivalently say that p is
only conserved approximately, corresponding to the truncation of (70). This point of
view was taken in [52].

Now we are in a position to solve for p, and S°. Most important is the equation
for p”. After some algebra [52], one finds that (p”)? is given by a polynomial of
second order in E. We denote the roots of this polynomial by U4 and U_, i.e.,

(P")? o (E = U)(E - U-). (75)

For p” to be a real number, we need to have both E < Uy and E < U_, or both
E > U; and E > U_. It turns out that the important relation is just E > U, for the
most relevant part of the parameter space. This justifies to call U effective potential:
The test body can only move in the region where £ > U and its turning points are
given by E = U, because then p” = 0 (which implies u” = 0, see [52]). Therefore
the minimum of U, as a function of r defines circular orbits. This completes our
construction.

The various contributions to the dimensionless binding energy ¢ := E/u — 1
are plotted in Fig.2 for the case of a very rapidly rotating (small) black hole in a
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Fig. 2 Various corrections to the binding energy e for a maximally spinning (small) black hole in
a Schwarzschild background. Here /. := J, — S is the orbital angular momentum. The mass ratio
is formally taken to be ¢ = 1 in the plot, though the result are only valid for ¢ < 1. The curves
can be scaled to the case of interest (¢ < 1072): self-force and linear spin effects scale as o ¢, the
others as x g2

Schwarzschild background. A comparison with recent results for the conservative
part of the self-force [54] is also included. In a Kerr background, the last stable
circular orbit can be very close to the horizon, so that the discussed effects can be
some orders of magnitude stronger. The reader is referred to [52] for a more complete
discussion.

6 Dynamical Quadrupole and Tidal Forces

For the model developed in the last section, the quadrupole adiabatically follows the
spin evolution. Thus, the quadrupole is not an independent dynamical variable. In
this section, we are going to investigate dynamical quadrupoles, but restrict to the
nonspinning case for simplicity.

6.1 Basic Idea

We have already discovered that the dynamical mass M plays a role similar to a
thermodynamic potential. From this perspective, one can compare the variables it
depends on, like p,, and S, to thermodynamic state variables. Noticing that p,, and
S, are the monopole and dipole moment, a natural extension is to introduce dynam-
ical “state” variables for other multipoles, too. A possible motivation arises from the
realization that stars have oscillation modes and that these modes can be excited by
tidal forces from an external time-dependent gravitational field. This phenomenon is
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well understood in Newtonian gravity [55], see also [56—58] and references therein.
If one wants to capture it by our approach, one obviously must introduce dynamical
worldline variables corresponding to these oscillation modes. Suitable point-particle
actions were already discussed in [45, 59], though with applications to absorption
or binary systems in mind.

The key to find a model for dynamical multipoles is to understand the reaction of
the multipoles to external fields. We focus here on the response of the quadrupole
to external tidal fields. In fact, we will encode the quadrupole dynamics in terms
of a response function. This function can equivalently be called the propagator of
the quadrupole [45], which better highlights the fact that it is a necessary ingredient
for deriving predictions using perturbative calculations, e.g., in the post-Newtonian
approximation. A third possible naming is correlation function between quadrupole
and external field. This better accentuates the parallels to statistical mechanics or
thermodynamics. The idea is that if one would be able to model the correlations of
the most important multipoles among each other and with external fields, then one
can in principle predict the motion of extended objects (with complicated internal
structure) to any desired precision.

It is important to notice that the multipole moments of a compact object can
be defined through their exterior field. The response functions of the multipoles to
externally applied tidal fields can therefore be obtained by analyzing the gravitational
field outside of the body. The final goal is to extract these functions from numerical
simulations of a single compact object. However, for a first simpler investigation one
can restrict to linear perturbations of nonrotating compact objects. The unperturbed
metric in the exterior is then just the Schwarzschild one. Because this metric is static
and spherically symmetric, its linear perturbations can then be decomposed into
Fourier basis in the time direction and spherical harmonic basis Y (), ¢) in angular
directions. Then their radial dependence is described by the famous Zerilli [60] or
Regge-Wheeler [61] equations for electric- or magnetic-parity-type perturbations,
respectively. The Zerilli equation can be transformed into the simpler Regge-Wheeler
form [62], so we can focus just on the latter one. It reads

d>X Rs\ 11+ 1) — s
+[(1 ——S)*wz}xzo, (76)

dr? r r
where w is the frequency of the perturbation, / is the angular momentum quantum
number, r is radial coordinate in the Regge-Wheeler gauge, Ry is the Schwarzschild
radius (representing the mass of the body), . = r + Rs log(r/Rs — 1) is the tortoise
radial coordinate, and X denotes the Regge-Wheeler master function. Given some
boundary values for X at the surface of the body (which result from a solution to the
more complicated interior perturbation equations), it is straightforward to integrate
this equation numerically. The question is how one can decompose X into external
(applied) tidal field and multipolar field generated by the body in response to the
external field. This is a complicated problem in the general relativistic case. Let us
therefore start with the Newtonian theory in order to get a better understanding of
the problem [19].
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6.2 Newtonian Case

The Newtonian case can be obtained as a weak field and slow motion approxima-
tion of general relativity. That is, we have to set Rg = 0 (weak field) and w = 0
(slow motion) in (76). The perturbation of the Newtonian potential ®pe¢ can be
reconstructed as

1 ) 1Td I0+1)
® - d lu.}len‘L_ - X , 77
pert 271'/ W%:€ > |:dr + > ] Imw (77

where the Xy, are solutions to the Newtonian limit of (76) for all values of the
parameters /, m, and w.
The generic solution to the Newtonian limit of (76) reads

X =Cir't 4 Cor (78)

where C; and C; are integration constants. The /! part diverges asymptotically,
which means that its source is located at infinity. Therefore, C is the strength of the
external field. Similarly, the »— part is singular at the origin and emanates from the
compact body, so C, describes the /-polar field of the body. The frequency-domain
response F; of the multipoles to external fields is then proportional to the ratio of C5
and Cy. In the conventions used in [18, 19], it holds

1-1 C

bW =i natoa—nic

(79)

This response must in general be computed numerically. The first step is to numer-
ically solve the interior problem of a perturbed body, including the interior grav-
itational field perturbation. Then the gravitational field is matched to (78) at the
surface, which leads to numeric values for the integration constants and thus for the
response (79). This response can in general acquire a complicated frequency depen-
dence through the internal dynamics. Usually one defines normal oscillation modes
by requiring that the body keeps up a multipolar field without external excitation,
i.e., for C1 = 0. Therefore the response (79) has a pole at normal mode frequencies.

In the case of linear perturbations of a nonrotating barotropic star, the response
turns out to be quite simple. For the quadrupolar case / = 2, the outcome is shown
in Fig.3. In fact, the form of the response can even be computed analytically and
reads [19]

F=> " (80)

Wy — W

This is just the sum of response functions of harmonic oscillators with resonance fre-
quencies (poles) at w,,;. Here n labels the type and overtone number of the oscillation
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Fig. 3 Response function of 06k ]

the quadrupole, / = 2, for a I ) —

one solar mass star. The 04F - GR b

equation of state is a F -~ Newton

polytrope with index 1 and & 0.2 F ]

such that the radius R is T 00f N

17.7km in the Newtonian N v

case or 15.7km in the © —02f >

relativistic case —04l $
0.6} : =

0.00 0.05 0.10 0.15 0.20 0.25
wR /27w

modes. The constants /,,; are the so called overlap integrals, which here simply take
the role of coupling constants between the oscillators and the external driving forces.
As a consequence, the internal dynamics can be captured by an effective action
through just a set of harmonic oscillators, which are coupled to the tidal force of the
gravitational field [19] (with coupling constants /,,;). By fitting the numeric result
for 1:"1 to (80), one can extract the constants w,; and I,,;.

It is worth to point out that the presented Newtonian setup is simple enough to
perform explicitly the effective field theory procedure of integrating out small scales,
see [19]. This turns a compact fluid configuration into a point particle on macroscopic
scales.

6.3 Relativistic Case at Zero Frequency

Let us now return to the relativistic case, but restrict to even parity and the adiabatic
case w = 0. The connection between the relativistic tidal constants defined in [15-17,
63] and the response function is given by a Taylor-expansion,

F)
ll(‘w) =y + iNw + pjw? + OW?), (81)

see [19]. Here the constants y; are named after the astronomer A.E.H. Love, who
introduced them for tidal effects in the Earth-Moon system. A dimensionless version
of the Love numbers 1 is often defined as

@ -

1= Zparr Ot (82)

where R is the radius of the star. The \;-term in (81) is related to absorption [45] and
15 was introduced in [63].
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It remains to define how the response should be computed in the adiabatic rel-
ativistic case. First, we again solve (76), this time for w = 0, and find an analytic
result in terms of the Gauss hypergeometric function , Fj,

X =Cir't o F (=1 —=2,2—1,-2I; Rs/r)
+ Cor™ o Fi(l — 1,14 3,20 + 1); Rs/7), (83)

see, e.g., [64]. Again we can obtain numeric values for the integration constants by
solving the perturbation equations inside the body and then match the gravitational
field to (83) at the surface. In the limit of 1/r — 0 the hypergeometric functions
are equal to 1, so (83) turns into (78). This implies that the interpretation of the
integration constants as magnitudes of external field and response is still valid. The
even-parity response in the adiabatic case w = 0 then follows from (79) as before. A
plot of the outcome in terms of the dimensionless Love number k> is given in Fig. 4.
An extension of the application from Sect. 5.3 to adiabatic tidal deformations can be
found in [52].

For integer values of /, the hypergeometric functions in (83) turn into polynomials
(which possibly contain logarithms). Then one might worry that the exponents on r
from the two independent solutions in (83) can overlap and spoil an unique identifi-
cation of external field and response. However, this is avoided by examining X for
generic values of /, in the sense of an analytic continuation. This is in spirit similar
to working in generic dimension, as done in [64].

6.4 Relativistic Case for Generic Frequency

We now turn our attention to the case of generic frequency in the even parity sector
[18]. One can still solve (76) analytically [65], this time in terms of a series involving
hypergeometric functions. We write the generic solution schematically as
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X = A1 XNt + A2 Xysr s (84)

where we denote the solution from [65] by a subscript MST.

Note here that X{\/IST ~ rl and XI\_,IIS_Tl ~ r~!, which means that (79) essentially
still works. Of course, one has to take into account the normalization of the XusT
in order to rewrite the C; in (79) in terms of the A;. This introduces complicated
w-dependent corrections into (79). These are computed through a matching of the
asymptotic field of the extended body to the field of the point-particle model. The
details of this procedure can be found in [18]. The basic steps are as follows:

e The field of the effective theory is obtained from an inhomogeneous version of (76)
with a point particle source. It is understood that the post-Minkowskian approxi-
mation is applied, as this removes the singular point of (76) at the Schwarzschild
radius. The explicit form of the source term derives from (39).

e The solution to the inhomogeneous equation is constructed from the homogeneous
solution (84) using the method of variation of parameters. This method involves
integrals over products of singular source and the XpisT. The integration constants
just represent a generic solution to the homogeneous solution that can always be
added.

e Here the integration constants must be restricted further. Due to the singular behav-
ior of the differential equation at r = 0, the homogeneous solution might actually
not be homogeneous at r = 0. But the externally applied field is homogeneous
everywhere, including r = 0. The restriction of the integration constants is there-
fore equivalent to the identification of the external part of the field and the part
generated by the particle.

e Notice that an /-pole source involves / partial derivatives of a delta distribution.
This suggests to identify the self-field by X 1\_415}1 ~ r~! and the external field by
X {\AST ~ r! for dimensional reasons. Here the idea of analytic continuation in [ is
again crucial.

e The integrals arising in the variation of parameters are actually singular. This is not
surprising, as the self-field of point-particles always leads to this kind of problem.
A regularization method must be introduced.

These steps lead to a refined (frequency dependent) version of (79) expressing the
response function in terms of A and A,. The final step is again to obtain numeric
values for A| and A, for an actual (extended) neutron star.

The result for the general relativistic response function is shown in Fig.3. It
can still be fitted by (80) very well. This implies that the internal dynamics can be
approximated by a set of harmonic oscillators. Restricting to the quadrupolar level
I = 2 for simplicity, this translates to a dynamical mass of the form

M2 ~ ,UJZ + u z (wnABwnAB + W%d)nAB(bnAB + 2InEAB¢nAB) s (85)
n

where the internal dynamical variables ¢, 4 g and 15,22 only have spatial components
in the body-fixed frame (¢,0p = 0 = z/;HOB ) and are symmetric tracefree in the
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indices A and B. The dynamical equations for the quadrupolar worldline variables
can be extracted from (52), (29), and (54),

. ap o OM? . a OM?
B =0 ap ==
2 awnAB 2 a¢n

(86)

In the linear perturbation regime, the contributions of the internal dynamical variables
are small compared to z2. The index n still labels the type of the oscillation mode.
The mass quadrupole is the coefficient in front of EAB je., Oap = Zn L,dnaB.
Now the frame enters through E48 = )\A/L)\BVE‘”’, so we need to check if (58) is
fulfilled. Using Ao = r* and E,,,r” = 0 it is easy to see that this is the case. In
fact, (58) is always fulfilled if the time direction of the body-fixed frame Ag* drops
out of the action.

Some final remarks on the problem of regularization of point particles are in order.
It was shown already in [59] that the quadrupole diverges at order w? in dimensional
regularization. It is therefore not surprising that poles appear in the generalization
of (79) at order w?, which must be subtracted within some renormalization scheme.
At the same time, the poles give rise to an explicit appearance of a renormalization
scale parameter, which in a sense parametrizes the ambiguity in the choice of the
renormalization scheme. An important point is that this scale parameter is in fact
fixed by the requirement that the response function has an asymptotic behavior for
w — oo compatible with (80). Different regularization and renormalization schemes
will in general lead to slightly different numeric values for this scale parameter.
However, within a given scheme its value can be uniquely matched and is therefore
not ambiguous. In this sense, the regularization and renormalization scheme is a part
of the phenomenological model.

7 Conclusions

We considered point-particle models for extended bodies in gravity, in particular for
black holes and neutron stars. The multipoles of the point particles are adjusted such
that their field predicted from a weak field approximation matches an exact/numerical
solution for the extended object in question. This incorporates strong field effects
from the interior of the extended object in the model. This is of particular impor-
tance when binary systems are considered using weak field approximations, e.g., for
gravitational wave source modeling or pulsar timing.

Therefore, point-particle actions are far more powerful than what was probably
envisioned when they were first investigated [5, 6]. The resulting equations of motion
are similar to Dixon’s results. Here we developed astrophysical realistic models
for the multipoles in these equations. The latest development is the inclusion of
oscillation modes in relativistic tidal interaction of neutron stars.
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An interesting topic not discussed here are universal relations for various neutron
star properties. Here “universal” refers to an approximate independence among var-
ious proposed realistic equations of state. In [66, 67] universal relations between the
dimensionless moment of inertia I/ G* 1.3, the quadrupolar Love number 112/ G*12°,
and the quadrupole constant Cg were found and coined I-Love-Q relations. Fur-
ther investigations, also including higher multipoles, followed shortly afterwards
[68—73]. This indicates that coefficients in (70) arising at higher orders are actually
not independent, but are (approximately) fixed by universality. (For black holes, in
fact all coefficients are fixed, which is guaranteed by the no hair theorem.) This
makes the expansion (70) a meaningful tool to study the impact of the equation of
state on observations, as predictions of the effective model are then parametrized by
only a small set of constants.

The most interesting development for the future is probably the description of
oscillation modes for rotating bodies, which can be tried in a slow rotation approxima-
tion. It is also interesting to investigate if universal properties hold for the ingredients
of the response function, e.g., for the overlap integrals.
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