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Abstract “Almost all” seems to be known about isolated stationary black holes in
asymptotically flat space-times and about the behaviour of test matter and fields in
their backgrounds. The black holes likely present in galactic nuclei and in some
X-ray binaries are commonly being represented by the Kerr metric, but actually
they are not isolated (they are detected only thanks to a strong interaction with
the surroundings), they are not stationary (black-hole sources are rather strongly
variable) and they also probably do not live in an asymptotically flat universe. Such
“perturbations” may query the classical black-hole theorems (how robust are the
latter against them?) and certainly affect particles and fields around, which can have
observational consequences. In the present contributionweexaminehow thegeodesic
structure of the static and axially symmetric black-hole space-time responds to the
presence of an additional matter in the form of a thin disc or ring. We use several
different methods to show that geodesic motion may become chaotic, to reveal the
strength and type of this irregularity and its dependence on parameters. The relevance
of such an analysis for galactic nuclei is briefly commented on.

1 Introduction

Geodesic structure is a very comprehensive and demonstrative attribute of space
(-time). As traversing regions of all possible sizes, geodesics can unveil a local behav-
iour of a given system as well as tiny tendencies only discernible over an extensive
span of time. A default example of the latter areweak irregularities attending a lack of
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a complete set of integrals of the motion. Actually, the long-term geodesic dynamics
is a suitable tool how to detect, illustrate, evaluate, classify and compare different
deviations of a chosen system from a certain simple, “regular” ideal. In mathematics
and physic, such an ideal is represented by linear systems (the finite-dimensional in
particular). However, within the last 150years it has become clear that even in these
highly abstract fields the linear systems represent just marginal tips within a vast
non-linear tangle which is typically prone to “irregularities” and which can display
“chaotic” behaviour even in rather simple settings.

The modern theory of chaos was apparently inspired by Henri Poincaré’s treat-
ment of a three-body system, and our interest will also focus on systems driven by
gravitational interaction in this contribution. Specifically, we consider a simplest
possible gravitational centre, the Schwarzschild black hole, and study how the time-
like geodesics in its field respond on perturbation due to the presence of a very
simple additional source, namely a static and axially symmetric thin annular disc
or ring. Such a topic has an extra attraction in general relativity, due to the latter’s
non-linearity. Besides that, as reminded in [1], it is doubly apropos to seek for chaos
around black holes, because in ancient Greek chaosmeant a gaping bottomless void,
where everything falls endlessly…Amore sophisticated reasonwas articulated nicely
by [2]: “…even the most pristine black-hole space-time harbours the seeds of chaos
in the form of isolated unstable orbits. A small perturbation causes these unstable
orbits to break out and infect large regions of phase space. Note that the experience
with Newtonian systems is very misleading. For example, the Kepler problem has
more integrals of motion than are needed for integrability. Keplerian systems are
thus impervious to small perturbations. In contrast, black hole space-times are at the
edge of chaos, just waiting for the proverbial butterfly to flap its wings.”

However, the space-time of a black hole enclosed by a disc or ring has not been
chosen only for theoretical reasons: the black holes probably present in galactic nuclei
and in some X-ray binaries are supposed to be interacting with their surroundings
through disc accretion, and, besides that, galactic nuclei are also typically encircled,
at larger distance, by tori of colder molecular gas and dust (called circum-nuclear
rings). These structures (at least the inner accretion disc) are assumed to be rather
lightweightwith respect to the central black hole, and theoreticalmodels actually treat
them as test (not contributing to the gravitational field at all). Such an approximation
is certainly adequate concerning the potential (metric) and its gradient (field), but
may not hold for higher derivatives (curvature). However, the curvature terms are
important for stability of themotion, so one can expect that a gravitatingmatterwould
assume a different configuration than a test one. This could be important in the physics
of accretion discs, as the latter e.g. depends crucially on position of the disc inner
radius (approximated by the innermost stable circular orbit); this in turn plays a key
role in estimating the black-hole spin from observations. The issue was pointed out
already by [3] onNewtonian grounds and later confirmed in analysis of the sequences
of exact space-times describing the fields of a black hole with concentric thin discs
(e.g. [4, 5] and references therein). It turned out, in particular, that the properties of
circular motion in the disc plane are indeed altered due to the orbiting-matter own
gravity, for example, the frequencies of epicyclic oscillations indicate that the disc
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may remain stable closer to the horizon, whereas it rather inclines to instability at
larger (intermediate) radii (e.g. [6]).

It should be stressed right away that a test body orbiting in a black-hole field
has various other reasons why to behave in a chaotic way. Even if leaving aside the
most probable perturbation, namely due to amechanical interaction with the ambient
medium, and focusing only on gravitational effects, the dynamics depends on how
the body is described (whether it is point-like, i.e. without structure, or endowed
with more multipoles than just mass), on whether/how it is influenced by incident
gravitational and electromagnetic waves, and on whether/how the gravitational and
electromagnetic emissions of the body and corresponding reactions on itself are taken
into account. Besides that, in reality the body also feels back reaction due to its own
gravity (it is not strictly test). Finally, one has to take care of what kind and amount of
chaos is added by the numerical code alone: numerical truncations are easily under
control for regular orbits along which a sufficient number of quantities (a “complete
set of integrals”) remains constant, but for chaotic trajectories such a full check is not
at hand. It is really confirmed by experience that evenwith just slightlymodified code
it is almost impossible to reproduce accurately a given long-term chaotic evolution.
This urges caution in interpreting the results of chaotic-dynamics modelling and
suggests not to trust it uncritically down to quantitative details.

In such an area, it is of particular importance to use several independent methods
(and, if possible, also different basic codes for integration of the equations of motion)
and compare their outcomes. The rapid progress that the field of chaotic dynamics
have been experiencing since the middle of the 20th century has indeed yielded a
number of techniques which, starting from the beginning of 1990s, have been also
applied to general relativistic systems. One can roughly divide them into two groups:
those which require the knowledge of the system’s dynamics (evolution equations)
and those which can manage with just series of values (time series of experimental
data, for example). Of the first group, we employed the Poincaré surfaces of section,
the Lyapunov exponents and two other similar indicators (abbreviated as FLI and
MEGNO) and also followed the evolution of the so called latitudinal action (given by
the component of four-momentum which is not bound by any constant of motion).
Concerning the second group of methods, we drew the power spectrum of a certain
dynamical variable (“vertical” position of the particle in our case) and subjected the
motion to two variants of recurrence analysis, one focused on directions in which
the orbits recurrently traverse “pixels” of a prescribed phase-space grid and the other
based on recurrences to the chosen cells themselves.

Belowwe first describe our system in more detail. Then, in Sect. 3, we briefly out-
line methods we have used to analyse the regime of geodesic dynamics in the chosen
black-hole–disc/ring field, and review basic observations they provide. Comments
concerning astrophysical relevance of the results and possible further extensions of
the work are given in Concluding remarks. We will not go into details, especially
not concerning the theory of chaos itself and the diagnostic methods used, focusing
mainly on results and their interpretation. For a thorough account, please, see the
papers [1, 7, 8] and references therein. Let us add that we use geometrized units in
which c = 1 and G = 1 and the metric (gμν) signature (−+ + +).
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2 Static and Axially Symmetric Metrics for a Black Hole
Surrounded by Discs or Rings

Due to the non-linearity of Einstein equations, the fields of multiple sources are very
difficult to find in general. In some situations, however, the equations simplify to a
form which permits to solve at least a certain part of the problem in a Newtonian
manner (namely, certain metric components superpose linearly). One very impor-
tant example of such a setting is a static and axially symmetric case. Choosing the
parameters of these symmetries as the time and azimuthal coordinates, t and φ, the
vacuum metric can always be written then in the Weyl form

ds2 = −e2νdt2 + ρ2e−2νdφ2 + e2λ−2ν(dρ2 + dz2) (1)

involving just two unknown functions ν and λ depending only on coordinates ρ
and z (cylindrical-type radius and “vertical” axis) which cover the meridional sur-
faces. The ν function represents Newtonian gravitational potential and is given by
Laplace equation, hence it superposes linearly. The other function λ represents non-
Newtonian part of the problem. It is given by line integration of the derivatives of ν,
reducing to zero along the vacuum parts of the axis; it does not superpose linearly
and except some special cases it has to be found numerically.

In general relativity, themotion has 3 degrees of freedom in general, because four-
velocity uμ is always constrained by normalization gμνuμuν = −1. In the above
space-times, we have two independent constants of geodesic motion thanks to the
stationarity and axial symmetry, namely energy and angular momentumwith respect
to infinity per unit particlemass, E = −gtt ut and � = gφφuφ. In contrast to the space-
times of isolated stationary black holes, there is no irreducible Killing tensor and
consequently no other independent conserved quantity (the so-called Carter constant
quadratic in four-velocity), which implies that the geodesic motion may become
chaotic.

We have been interested in time-like geodesic dynamics in the field of a Schwarz-
schild black hole surrounded, in a concentric way, by an annular thin disc or ring.
Specifically, we considered one of the discs (mainly the first one) of the counter-
rotating Morgan-Morgan family, inverted (Kelvin-transformed) with respect to their
rim (see e.g. [4, 9]),1 and also theBach-Weyl solution for a circular ring (e.g. [10, 11]).
The Newtonian surface densities of the inverted Morgan-Morgan (iMM) discs are

w
(m)
iMM = 22m(m!)2

(2m)! π2

Mb

ρ3

(
1 − b2

ρ2

)m−1/2

(2)

1We also checked that the results are similar for discs of the family with power-law density profile
[5] which are however more demanding computationally.
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and their fields are described by the potentials

ν
(m)
iMM = −22m+1(m!)2

π

M
b

m∑
n=0

C (m)
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i|y|√

x2+1−y2

)
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(
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)
√
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where the coefficients read

C (m)
2n = (−1)n(4n + 1)(2n)!(m + n)!

(n!)2(m − n)!(2m + 2n + 1)! (n ≤ m),

P2n(y) are Legendre polynomials and Q2n(ix) are Legendre functions of the second
kind,M andb are the discmass andWeyl inner radius and (x, y) are oblate spheroidal
coordinates related to the Weyl coordinates by

ρ2 = b2(x2 + 1)(1 − y2), z = bxy.

On the symmetry axis (ρ = 0) where x = |z|
b , y = sign z, |y|√

x2+1−y2
= 1

x and
x√

x2+1−y2
= 1, the disc potentials simplify to

ν(m)
iMM(ρ = 0) = −22m+1(m!)2

π

M
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(
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.

Our second external source, the Bach-Weyl ring (of mass M and Weyl radius b),
generates potential

νBW = −2MK (k)

πl2
, l1,2 =

√
(ρ ∓ b)2 + z2, (4)

where K (k) = ∫ π/2
0

dα√
1−k2 sin2 α

is the complete elliptic integral of the 1st kind, with

modulus and complementary modulus given by

k2 = 1 − (l1)2

(l2)2
= 4bρ

(l2)2
, k′2 = 1 − k2 = (l1)2

(l2)2
.

Especially on the axis ρ = 0, one has k = 0, K = π/2, so νBW = − M
z2+b2

.

Our main goal has been to analyse the behaviour of the geodesic flow in depen-
dence on parameters of the system, namely on the relative mass and radius of the
disc/ring and on energy and angular momentum of the particles. It should be admitted
that both sources are singular (the discs are 2D in space and the ring is even 1D) and
curvature scalars really diverge at the ring as well as at the inner edge of the first
iMM disc which we consider mostly (the higher-m is the disc, the less singular it
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is at the edge). Hence, it is desirable to exclude from study the orbits which would
approach the ring or the inner edge of the disc too closely, because there the space-
time hardly corresponds to the astrophysical fields wewant to approximate. Anyway,
we assume that the test particles do not interact with the external sourcemechanically
(in particular, they traverse the disc without collision).

3 Geodesic Chaos in the Black-Hole–Disc/Ring Fields

Turning first to Poincaré surfaces, we were recording transitions of suitably chosen
large sets of bound orbits through the equatorial plane (the plane of symmetry defined
by the disc or ring) and drew the passages in terms of a radial component of four-
velocity against radial coordinate. The results showed typical properties of a weakly
non-integrable dynamical system, well described by the KAM theory. They were
also confirmed by power spectra which we computed from vertical-coordinate time
series, and by evolution of the “latitudinal action” given by integral of the latitudinal
component of momentum over an orbital period. (The character of dynamics can be
well estimated from the time series itself, as well as from a spatial plot of the orbit.)
Without repeating details from [1], let us list our main observations:

• Geodesic flow tends to irregularity with increasing relative mass of the external
source. The strongest chaos typically occurs when the disc mass is comparable
to that of the black hole (for the ring it happens about 1/10 of the black-hole
mass). For still heavier external source, the system rather returns to a more regular
behaviour.

• Similarly with the dependence on particle energy: chaos first develops with E
increasing, but for very high values it rather reduces back.

• The above are just overall tendencies, however the change of the system with
parameters is by no means smooth. Indeed, one of the most typical and interesting
aspects of chaotic dynamics is its chaotic dependence on parameters, with abrupt
changes of the phase portrait occurring/disappearingwithin very narrow parameter
ranges.

• The dependence on angular momentum � is opposite: larger � means larger part
of energy allotted to azimuthal motion; and this component of motion is “held”
exactly by the conserved value of �, so its larger value favours regularity.

• The ring being stronger source than the disc, it also induces stronger perturba-
tion of the geodesic dynamics. In particular, the ring presence within the region
accessible to the particles generates so many higher-periodic regular islands (sur-
rounded by chaotic layers) that the resulting Poincaré diagrams can (also) be used
as sophisticated wallpapers. However, if close encounters of the particles with the
ring are prevented, the geodesic flow gets only moderately chaotic.

• On (equatorial) Poincaré sections, the geodesic dynamics rather tends to break
up from the boundaries of the accessible phase-space region (these boundaries
correspond to a zero vertical/latitudinal component of velocity, thus to a motion
within the equatorial plane), while a certain regular region often survives in the
interior.
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• Chaos is a “global” phenomenon and its notion is being used in connection with
sufficient time spans, yet it is possible (and practically even inevitable) to speak
of a degree of (ir)regularity of a certain restricted section of an orbit. Different
sections of the same orbit may display very different degrees of chaoticity and
the dynamics may switch between these modes quite suddenly. Orbits with such a
variable behaviour are typical for weakly perturbed systems and at the same time
they are most interesting for comparing different methods.

• Consistently with experience from the literature, such “weakly chaotic” (parts of
the) orbits which at times range over the chaotic “sea” but also linger for a consid-
erable intervals very close to regular regions of phase space (they “stick” to them,
hence sticky orbits) rather produce “1/frequency” spectrum (i.e. approximated by a
straight line in the log-log plot), whereas the “strongly chaotic” (parts of the) orbits
typically produce “cat-back” spectral profile with (say, 100-times) less power at
the low-frequency end, with less distinct peaks and more of tiny irregularities.

In [7] we subjected the above dynamical system to two recurrence methods. The
first of them, abbreviated WADV (from “weighted average of directional vectors”),
was proposed by [12] as a way to distinguish between deterministic and random
systems. Employing it within general relativity for the first time (as far as we know),
we found it is even fairly sensitive to different degrees of (deterministic) chaos,
especially in the regime of very weak perturbations (which we are mainly interested
in). Briefly speaking, one takes a time series of some dynamical variable (we take
vertical coordinate z(τ ) as a function of the particle proper time τ ) and reconstructs
the (3D) phase space from z(τ ), z(τ − �τ ), z(τ − 2�τ ), where �τ is some time
delay; this space is then “rasterized” into a grid of boxes of some chosen size. The
main point is to add (unit) directions in which orbits recurrently cross the prescribed
boxes, average the length of the accumulated vector over the cells with respect to the
number of passages and analyse its dependence on�τ (and on the box size). Finally,
the result is evaluated against its counter-part obtained for unit-step random walk,
namely, one computes

�̄ = average

⎧⎪⎨
⎪⎩

(
Vj
n j

)2 −
(

R̄d
n j

)2

1 −
(

R̄d
n j

)2
⎫⎪⎬
⎪⎭

over cells (over j)

, (5)

where Vj is the norm of the vector accumulated after n j passages through the j th
box and

R̄d
n = �

( d+1
2

)
�

( d
2

)
√

2

nd
, in particular R̄3

n = 4√
6πn

denotes the average shift per step for random walk in d dimensions, obtained for
n steps (with particular value given for d = 3 which is relevant in our case). Now,
the �̄ realizes a normalized autocorrelation parameter: in theoretical limit (infinite
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evolution and infinitely fine grain), �̄ = 1 for a deterministic signal, whereas �̄ = 0
for random data; in practice, �̄(�τ ) more or less decreases from 1, the faster the
more chaotic (or even random) is the evolution.

The second recurrence method we applied rests on recurrences themselves of the
orbits to chosen neighbourhoods of their past points. Denoting by X(i) = X(τ(i)) the
N successive points of a phase-space trajectory,2 the recurrences are simply recorded
in the so called recurrence matrix

Ri, j (ε) = �
(
ε− ‖X(i) − X( j)‖

)
, i, j = 1, ..., N , (6)

where ε is the radius of a chosen neighbourhood (the selected threshold of “close
return”), ‖ · ‖ denotes the chosen norm (the picture of long-term dynamics only
slightly depends on which one is used) and � is the Heaviside step function. The
matrix thus contains only units and zeros and can be easily visualized by filling black
dots (units) or blank spaces (zeros) at the respective coordinates (i, j); such figures
are called recurrence plots and were introduced by [13]. For regular systems, the
recurrences (black points) arrange in distinct structures, in particular in long parallel
diagonal lines (their distance scales with period), and weak chaos brings checker-
board structures, whereas for random systems the recurrences are scattered without
order; chaotic (deterministic) systems yield the most interesting plots, consisting of
rectangular blocks of almost-diagonal patterns aswell as irregular ones, often looking
like placed one over another. The pattern of recurrences yields rich and credible data
which can be further processed in numerous ways (see [14] for a thorough survey).
Within general relativity, the method has been employed e.g. by [15, 16].

Finally, one of themost characteristic symptomsof chaos is a sensitive dependence
on initial conditions, following from the fast deviation of trajectories in the phase
space. This divergence can be quantified by various indicators, of which Lyapunov
characteristic exponents (λi ) are the most well known, but other useful suggestions
have also been given. The divergence quantifiers can be computed in two ways,
either by following two nearby trajectories and the evolution of their phase-space
separation, or by solving an appropriate variational equation (geodesic-deviation
equation in our case) along one trajectory. We have adhered to the first, two-particle
approach, using the procedure proposed—within general relativity—by [17, 18].
They argued, in particular, that it is sufficient to compute the orbital divergence in
configuration space only, without including themomenta. This claim seems plausible
and we have followed it, but a careful verification is still to be performed. Anyway,
of the Lyapunov exponents, each characterizing the rate of separation change in a
certain (i-th) independent direction, the most important is the maximal one (which
prevails automatically in a longer evolution),

2The series of just one variable (e.g. position) suffices actually, since the phase space can be
reconstructed from a sequence of its time-delayed copies as in the WADV method summarized
above.
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λmax = lim
τ→∞

1

τ
ln

|�	x(τ )|
|�	x(0)| , where |�	x(τ )| = √|gμν�xμ�xν |(τ ). (7)

We use small x for the position in configuration space, X ≡ (xμ, pα), so �	x is the
separation vector whose norm represents the momentary proper distance between
the two neighbouring orbits. If λmax > 0, than at least one direction exists in which
the nearby orbits deviate exponentially.3

Due to typically very slow convergence of the above limit, a number of related
quantifiers has been proposed whose computation converges faster and which thus
reveal the nature of orbits in a significantly shorter integration time. We have tried
two of them, often used in celestial and galactic mechanics, the fast Lyapunov indi-
cator (FLI) and the mean exponential growth of nearby orbits (MEGNO). The FLI,
suggested by [19], is given by

FLI(τ ) = log10
|�	x(τ )|
|	x(0)| (8)

(restricting only to the configuration-space separation again). FLI(τ ) grows consid-
erably faster for chaotic than for regular trajectories and this trend is evident much
earlier than λmax(τ ) approaches its limit value. In general relativity (motion in black-
hole fields), the FLI has been employed by [20, 21]. The second indicator, MEGNO,
was proposed by [22] as

Y (T ) = 2

T

T∫
0

1

|�	x(τ )|
d|�	x(τ )|

dτ
τ dτ . (9)

The content of this quantity is simply its value (rather than rate of growth or even
“irregularity of behaviour”), whichmakes it suitable for automatic surveys over large
areas of phase space. Importantly, the MEGNO distinguishes between regular and
chaotic evolutions securely, because for regular orbits it tends to 2 (with an additional
bounded oscillating term), whereas for chaotic orbits it grows linearly, with a slope
corresponding to the value of the maximal Lyapunov exponent (Y ≈ λmaxT for large
enough proper time). A few years ago, [23] found an analytic relation between FLI
and MEGNO,

Y (T ) = 2 [FLI(T ) − FLI(T )] ln(10), (10)

where FLI(T ) is the FLI time averaged over the period 〈0, T 〉,

3The exponents should reveal the nature of the flow in the vicinity of the reference world-line, hence,
while time is running, the separation vector has to be renormalized whenever it reaches a certain
“too large” value; the velocity deviation vector, given by difference between four-velocities of the
neighbouring world-lines, has to be renormalized by the same factor.
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FLI(T ) = 1

T

T∫
0

FLI(τ ) dτ .

Note that one can in turn average the MEGNO over some period in a similar manner
(cf. the last part of Fig. 8).

We presented the results obtained using Lyapunov exponents, FLI and MEGNO
in paper [8], together with more details and remarks e.g. on often queried (non-)
invariance of the world-line deviation indicators. A thorough comparison of these
quantities with other similar indicators has recently been given by [24] using the
variational approach.

3.1 Relations Between Chaotic Indicators—An Example

Besides relations like that between the FLI and MEGNO indicators (which are of
similar nature), yet more interesting are relations between quantities whose origins
are more independent. One illustration is an estimate of the maximal Lyapunov
exponent which can be obtained from theMEGNO slope as indicated above, but also
(for instance) from the 2nd-order Rényi’s entropy (also called correlation entropy),
one of the indicators derived from the recurrence analysis. Namely, [14] showed that
this quantity yields a lower estimate of the sum of positive Lyapunov exponents, and
they also suggested that it can be approximated by

K2(ε, l) ≈ − 1

l�τ
ln pc(ε, l), (11)

where �τ is the sampling time step and pc(ε, l) is the probability of finding a
diagonal line whose length is at least l in the recurrence matrix (ε is the radius of a
chosen “close neighbourhood”). This means that K2 is estimated from a slope of the
cumulative histogram of diagonal lines (of diagonals at least l points long), plotted in
logarithmic scale against the length l. We computed both estimates (from MEGNO
slope and from Rényi’s entropy) and confirmed that they are in line with the values
of λmax obtained by direct computation.

Let us make a remark concerning the “value/price ratio” of the above indicators.
Whereas MEGNO was introduced as a handy “condensate” of Lyapunov exponents
which can be quite easily implemented in automated scans, the Rényi’s entropy is
more sophisticated, but also less accessible for routine computer evaluation, mainly
because it has to be determined from a proper part of the histogram. Namely, only
a certain middle section of the histogram, reasonably following a straight line, is
relevant, since the short-length end typically diverges due to increasing number of
“sojourn” points (successive points between which the orbit does not leave the given
ε-neighbourhood4), while the long-length end typically falls off quickly due to a

4These points does not represent true recurrences and are usually discarded from the statistics.
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finite length of the trajectory. One should stress that the histogram is theoretically
to be computed in the limit l → ∞, so the short-length end has actually no sense,
while the long-length end is of course determined by the fact that practically the
trajectories cannot be infinitely long. We are depicting this to point out the benefits
of some simpler recurrence quantifiers, especially of the one called DIV, given by
inverse of the length of the longest diagonal. We compared the K2 entropy with the
DIV, in particular, we coloured several Poincaré diagrams according to the values of
K2 and DIV obtained for the orbits followed in a given run, and observed that both
the quantifiers provide virtually the same information (cf. Fig. 7).

4 Numerical Illustrations

Let us give several examples of how the varying degrees of chaoticity are revealed
by the methods we have mentioned above. The passages through a suitably chosen
plane, plotted in a suitably chosen variables (called Poincaré maps), provide a direct,
reliable and indicative picture of a studied motion. We naturally start with them,
showing how the nature of geodesic flow around a black hole changes when a more
and more massive thin disc (Fig. 1) or ring (Fig. 2) are placed around in a concentric
manner. In both cases, the passages are recorded of some bunch of bound time-
like geodesics through the equatorial plane of the system, and plotted in terms of the
Schwarzschild-type radius r and of the corresponding component of four-velocity ur .
Figure3 compares a regular geodesic with a chaotic one, using four representations:
their spatial tracks, equatorial Poincaré sections, time dependence of the “vertical”
(z) position and the corresponding power spectra. Figure4 compares two different
parts of the same geodesic, one “sticking” to a regular island and the other filling a
chaotic sea. Four plots are shown—equatorial Poincaré sections, time series of the
ur four-velocity component, the power spectra of z(t) and, in the second part of the
figure, recurrence plots; the difference between the two orbital phases is clearly seen
in all of them. Four different parts of the same orbit are also shown in Fig. 5 and
their increasing chaoticity revealed on the ur (t) evolution and on the power spectra
of z(t).

The above representations are illustrative for a human eye, but less suitable for a
quantitative judgement about the “degree of chaoticity” of the system, mainly if such
a judgement should be entrusted to a computer. The recurrence methods we tested
offer several “quantifiers” that are more suitable in this respect and which assign
to every single orbit a single number or a single dependence on some parameter.
In the first method, the character of the orbit is recognized from the average of
directions in which the orbit recurrently crosses the prescribed phase-space cells (the
Kaplan-Glass WADVmethod described in previous section). In Fig. 6, this averaged
autocorrelation parameter is compared for a geodesic lying deep in a primary regular
island and for a one inhabiting a large chaotic region; also added are the respective
Poincaré diagramsand z(t) evolutions. Figure7presents several quantifiers computed
from the recurrence matrix and requires some commentary. The quantifiers shown
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Fig. 1 Passages of geodesics with � = 3.75M and E = 0.955 through the equatorial plane of a
Schwarzschild black hole (with mass M) surrounded by the inverted 1st Morgan-Morgan disc (with
inner Schwarzschild radius rdisc=20M), drawn for different relative disc massesM/M (indicated
in the plots). Red line bounds the accessible region. Adopted from [1]
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Fig. 2 Passages of geodesics with � = 3.75M and E = 0.977 through the equatorial plane of a
Schwarzschild black hole (with mass M) surrounded by a Bach-Weyl ring (with Schwarzschild
radius rring=20M), drawn for different relative ring massesM/M (indicated in the plots). Red line
bounds the accessible region. With growing mass of the ring, the phase space apparently becomes
very complex, containing many islands formed by higher-periodic regular orbits, interwoven with
chaotic layers. For very high relative masses, the primary regular island restores and dominates the
plot again. However, if the particles could not get close to the ring (if the latter did not lie within
their accessible region), their motion would be considerably less irregular. The figure is adopted
from [1]

are called RR, DET, DIV and VENTROPY (see [14]). The recurrence rate RR is
given by ratio of the recurrence points (black ones) within all points of the recurrence
matrix,

RR(ε) = 1

N 2

N∑
i, j=1

Ri, j (ε).
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Fig. 2 (continued)

The DIV (“divergence”) quantifier is just reciprocal of the length of the recurrence-
matrix longest diagonal. The DET (“determinism”) is a ratio of the points which
form a diagonal line longer than a certain lmin within all recurrence points,

DET(ε) =
∑N

l=lmin
l P(ε, l)∑N

l=1 l P(ε, l)
,

where P(ε, l) denotes histogram of lengths of the diagonal lines (length spectrum
of the diagonals). Finally, the VENTROPY represents the Shannon entropy of the
probability p(v) that a vertical line has length v,
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Fig. 3 Example of a regular (left) and chaotic (right) geodesic, both with E=0.955 and �=3.75M ,
in the field of a Schwarzschild black hole surrounded by the inverted 1st Morgan-Morgan disc with
M=0.5M , rdisc=20M . From top to bottom, the rows show their spatial tracks, Poincaré sections
z =0 (r ,ur ), time series of the z position and corresponding power spectra. Coordinates are in [M],
frequencies in [1/M]. Adopted from [1]
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Fig. 4 Example of a “sticky” (left column) and strongly chaotic (right column) phases of one and
the same geodesic (having E =0.956 and �=4M) in the field of a black hole plus an inverted 1st
Morgan-Morgan disc (with M= 1.3M , rdisc = 20M): Poincaré sections z = 0 (r ,ur ), time series
of ur and power spectra of the z position. Adopted from [7]. Recurrence plots for the same two
orbital sections. Considering the recurrence-matrix symmetry, we give just halves of the plots in
one square: the weakly chaotic section is above the main diagonal, while the strongly chaotic one
is below the main diagonal. The axis values indicate proper time in units of M . Adopted from [7]

V ENTROPY = −
N∑

v=vmin

p(ε, v) ln p(ε, v) , p(ε, v) = P(ε, v)∑N
v=vmin

P(ε, v)
.

In Fig. 7 we went along the ur = 0 axis of the Poincaré diagrams and plotted the
value of the above quantifiers for geodesics starting tangentially from the respective
radii; it represents 470 geodesics in total, starting from radii between 5M and 24M .
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Fig. 4 (continued)

As already noted at the end of previous section, the colouring of the Poincaré maps
by the values of the “rough” quantity DIV and its “sophisticated” relative K2 shows
that both bring practically the same information. It is also obvious that the quantifiers
(includingDIV) are quite sensitive and can uncover even tiny features of phase space.

In the last two figures, the quantifiers of geodesic deviation are illustrated and
their message compared with that provided by previous methods. Three orbits of
different degrees of chaoticity are analyzed in Fig. 8, first on Poincaré sections and
by computing the maximal Lyapunov exponents, then on power spectra of z(t) and
on behaviour of the Kaplan-Glass directional autocorrelation in dependence on time
shift applied to z(t), and finally by computing the FLI and MEGNO indicators.
All the methods clearly distinguish between the orbits and yield consistent results.
Figure 9 presents Poincaré maps of three different phase-space situations, coloured
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Fig. 5 The ur (t) behaviour (left column) and power spectra of z(t) evolution (right column) of
four different sections of the same orbit as in Fig. 4. Chaoticity clearly grows from top to bottom.
Adopted from [7]
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Fig. 6 Difference between a geodesic lying deep in a primary regular island (left column) and the
one living in a chaotic sea (right column), as seen on Poincaré diagram (top), z(t) evolution (middle)
and the Kaplan-Glass averaged autocorrelation parameter �̄(�τ ) (bottom). Both geodesics have
E = 0.93 and � = 3.75M and the background is determined by a black hole surrounded by a
Bach-Weyl ring with M=0.5M and rring=20M . Adopted from [7]

by FLI(τmax) andMEGNO(τmax). The quantities apparently provide almost the same
message, but MEGNO is somewhat more helpful, because, due to its definite value
of 2 for regular orbits, it is more precise in distinguishing them from the chaotic
ones (whose MEGNO value is bigger); to benefit from this graphically, one can, for
example, increase all the values of MEGNO indicating chaotic evolution by some
constant (we did it with all values above 4, in order to be on the safe side).
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ur ur

r/M r/M

RR DET

DIV V ENTROPY

r/M

Fig. 7 Examples of quantifiers extracted from the recurrencematrix, as computed for 470 geodesics
launched with E =0.9532, �=3.75M tangentially (with ur =0) from radii between 5M and 24M
from equatorial plane of a black hole (M) surrounded by the inverted 1st MM disc (M= 0.5M ,
rdisc = 18M). The orbits were followed for about 250,000M of proper time with “sampling”
�τ = 45M . In Poincaré diagram (top), they are coloured according to their DIV (left) and K2
(right) values (log scale). The quantifiers shown (see text for description) are clearly sensitive to
tiny phase-space features (behaviour along the top-diagram r -axis). Adopted from [7]
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ur

r/M

λmax(τ)

τ/M

Fig. 8 Poincaré sections (left) andmaximal Lyapunov exponents (right) for three orbits (D, E, F) of
different degrees of irregularity, with parametersM=0.94M , rdisc=20M , E=0.947, �=4M in the
upper row (D);M=1.3M , rdisc=20M , E=0.9365, �=4M in the middle row (E); andM=1.3M ,
rdisc=20M , E=0.941, �=4M in the bottom row (F). The orbits fill phase-space layers of different
volumes, in agreementwith the obtained valuesλmax(τmax)

.=9.88·10−5M−1 (top), 4.28·10−4M−1

(middle) and 2.25 ·10−3M−1 (bottom). The Poincaré-surface passages are coloured by proper time
(it increases in the order blue → green → yellow → red). Power spectra of z(t) (left column)
and the Kaplan-Glass average of the recursion directions �̄ (right column), plotted for the same
three orbits D, E, F (for their parts up to τmax=106M). The �̄(�τ ) dependence is drawn for three
separate time-shift (�τ ) intervals, (2500–3300)M , (25,000–25,800)M and (100,000–100,800)M .
Note that vertical-axes ranges are different on the right, 0.5–1.0 for the top orbit whereas 0.1–0.6
for the remaining two. FLI(τ ) on the left and Y (τ ) (MEGNO) on the right, computed for the same
three orbits (D, E, F). The average MEGNO 2Y (τ ) is drawn in blue and its linear fit is in red. The
maximal-Lyapunov-exponent values inferred from the average-MEGNO slope are 9.172·10−5M−1

for orbit D (bottom), 4.192 · 10−4M−1 for orbit E (middle) and 2.278 · 10−3M−1 for orbit F (top).
All three plots are adopted from [8]
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ω

Pω(z)

Pω(z)

Pω(z)

−→ Δτ [M ]

↑ Λ̄

FLI MEGNO
black: megno Y (τ)
blue: averaged megno 2Ȳ (τ)
red: linear fit

τ/M τ/M

Fig. 8 (continued)
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FLI ← colouring → MEGNO
ur

r/M

Fig. 9 Equatorial Poincaré maps of three phase portraits, coloured according to FLI(τmax) (left
column) and Ȳ (τmax) (right column) values, where τmax = 250,000M . Parameters: M = M/2,
rdisc=18M , E=0.9532, �=3.75M in the 1st row;M=1.3M , rdisc=20M , E=0.9365, �=4M in
the 2nd row; andM=1.3M , rdisc=20M , E=0.941, �=4M in the 3rd row.Whenever Ȳ (τmax)>4,
we add another 200 to it in order to enhance distinction between regular and weakly chaotic regions.
The colours going from blue to red in the visible-spectrum order correspond to FLI increasing from
0 to 350 (left) and to MEGNO increasing from 0 to 500. Adopted from [8]
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5 Concluding Remarks

In the Introduction, we indicated black-hole dominated cores of galactic nuclei as a
natural astrophysical motivation. Indeed, the individual stars there can be approxi-
mated as point test particles and if the environment is sufficiently sparse, their motion
is close to a geodesic one. In our Galaxy, for instance, there is a black hole of mass
M

.= 4.3 · 106 M�, probably surrounded by a rather tiny accretion structure and by
two much larger circum-nuclear rings, one with radius 2 parsecs and mass M/10
and the other around the 80 parsec radius with mass 10M . (These are average values
learned from literature, see [8] for references.) There is also a considerable nuclear
star cluster which could be incorporated by adding a suitable spherical term in our
potential ν. Of the above structures, only the smaller circum-nuclear ring has been
observed to be able to partially destabilize the motion of stars, and only if their orbits
can get sufficiently close to it.

The dynamics of astrophysical systems clearly has observable consequences con-
veyed by electromagnetic as well as gravitational radiation. The character of dynam-
ics is crucial for the long-term evolution of these systems, although examples like
the motion of stars in galactic nuclei are happening over too long intervals to provide
well detectable signatures of chaos in “real time”. The characteristic periods are of
course the shorter the closer to the horizon themotion takes place and [25] argued that
it could be possible to recognize whether the central object is Kerr-like or different
from the radiation of an inspiralling captured geodesic orbiter. Without doubt, the
astrophysical black holes should differ from the Kerr ideal for other reasons (than
considered here) as well: they must be interacting (if only to be “observable”), so not
only they are not isolated, but also not stationary; and probably they do not live in an
asymptotically flat universe. In any case, the study of motion in deformed black-hole
fields can lead to fundamental questions concerning the nature of objects supposed
to play a key role in the most engaging cosmic systems.

Let us conclude by several suggestions of further possible work. One could cer-
tainly subject the system to still another methods and codes in order to check the
results, but also to evaluate the methods/codes themselves and their practical features
within general relativity; such analyses like [24] (on the usage of several indicators of
orbital deviation in GR) will be helpful. For example, the Melnikov-integral method
has already been employed several times in general relativity, as well as the study
of the dimension of “basin boundaries” (boundaries between initial-condition sets
which evolve to distinct end states), which are of particular appeal due to their
coordinate-independent message. It would be interesting to perform a similar analy-
sis for the “corresponding” (pseudo-)Newtonian or post-Newtonian systems, at least
to infer how good approximations they provide. Also, for better insight, one should
study in detail the unstable periodic orbits and their asymptotic orbits whose behav-
iour under perturbation is crucial for the system properties.

The other direction is to make the model of the astrophysical system more real-
istic. Speaking about the galactic nucleus, one could include the central star cluster
(at least in terms of a spherical potential), replace the thin ring by a toroid of finite
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cross-section, or/and possibly try to account formechanical interaction of the orbiters
with the putative gaseous medium. From the point of view of general relativity,
it would however be most interesting to include rotation (which generates drag-
ging effects, no longer compatible with static solution). Actually, rotation is almost
omnipresent in astrophysics and mainly expected in the case of very compact bodies
like black holes, and certainly in the case of orbitingmatter like that of accretion discs.
Unfortunately, it has proved very difficult to extend the scope from static to station-
ary axisymmetric exact setting. It is well known that under such symmetries Einstein
equations reduce to the Ernst equation which is completely integrable, but explicit
solutions of the corresponding boundary-value problem are rather involved [26–28]
and not friendly as backgrounds for further extensive numerical studies. Although
several related algorithms called generating techniques have been recognized which
can in principle provide any solution with given (two commuting) symmetries (e.g.
[29]), none of those actually considered in more detail turned out to have satisfac-
tory properties (besides basic ones already familiar before, like the Kerr metric). In
particular, simple attempts to “generate” a physically reasonable metric for a black
hole surrounded by an additional matter or field have not been very successful (e.g.
[30–34] and references therein).

To concludewith themain topic of this seminar, let us also notice that in reality the
body whose motion is studied differs from the point-test-particle ideal (and thus the
motion from a geodesic one): it is likely endowed with spin or even higher moments;
the radiation reaction due to its gravitational emission could be taken into account as
well as back reaction due to its non-zero effect on space-time geometry; and, needless
to say, if the orbiter was charged, it would also be affected by electromagnetic field,
if there was any around. It would be sensible to employ the methods used in the
theory of chaos in order to estimate and compare the significance of various such
“perturbations” which affect the motion in real astrophysical situations.
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