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Abstract We consider the motion of charged point particles on Minkowski
spacetime. The questions of whether the self-force is finite and whether mass renor-
malisation is necessary are discussed within three theories: In the standard Maxwell
vacuum theory, in the non-linear Born-Infeld theory and in the higher-order Bopp-
Podolsky theory. In a final section we comment on possible implications for the
theory of the self-force in gravity.

1 Introduction

The problem of the electromagnetic self-force has a long history. It began in the
late 19th century when Lorentz, Abraham and others tried to formulate a classical
theory of the electron. The idea was to model the electron as an extended, at least
approximately spherical, charged body and to determine the equations of motion
for the electron. Based on earlier results by Lorentz, Abraham succeeded in writing
the equation of motion in terms of a power series with respect to the radius of the
electron. If the radius tended to zero, i.e., for a point charge, an infinity occurred.
The reason for this infinity is in the fact that, in the point-particle limit, the electric
field strength diverges so strongly at the position of the charge that the field energy
in an arbitrarily small sphere becomes infinitely large. To get rid of this infinity, it
was necessary to “renormalise the mass” of the particle by assuming that it carries a
negative infinite “bare mass”. After this mass renormalisation, one got a differential
equation of third order for the motion of the particle which is known as the Abraham-
Lorentz equation. It is a non-relativistic equation in the sense that, on the basis of
special relativity, it can hold only if the particle’s speed is small in comparison to the
speed of light.

A fully relativistic treatment of the problem had to wait until Dirac’s work [1] of
1938. The resulting equation of motion is known as the Lorentz-Dirac equation or
as the Abraham-Lorentz-Dirac equation. Clearly, everyone would call it the Dirac
equation except for the fact that this name was already occupied by another, even
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more famous equation. Neither Lorentz nor Abraham has ever seen the (Abraham-)
Lorentz-Dirac equation, because both had passed away in the 1920s. In particular
in the case of Abraham it is rather clear that he would not have liked this equation
because he was an ardent opponent of relativity. Therefore, it seems appropriate
to omit his name and call it the Lorentz-Dirac equation. For the derivation of the
Lorentz-Dirac equation, again mass renormalisation was necessary and one arrived
at a third-order equation of motion. The latter fact means that, in contrast to other
equations of motion, not only the position and the velocity but also the acceleration
of the particle has to be prescribed at an initial instant for fixing a unique solution.
Moreover, the Lorentz-Dirac equation is notorious for showing unphysical behaviour
such as run-away solutions and pre-acceleration. For a detailed discussion of the
Lorentz-Dirac equation, including historical issues, we refer to Rohrlich [2] and to
Spohn [3].

The trouble with the Lorentz-Dirac equation clearly has its origin in the fact that
the electric field strength of a point charge becomes infinite at the position of the
charge, and that this singularity is so strong that the field energy in an arbitrarily small
ball around the charge is infinite. A possible way out is to modify the underlying
vacuumMaxwell theory in such a way that this field energy becomes finite. Two such
modified vacuumMaxwell theories have been suggested in the course of history, the
non-linear Born-Infeld theory [4] and the linear but higher-order Bopp-Podolsky
theory [5, 6]. It is the main purpose of this article to discuss to what extent these
theories have succeeded in providing a theory of classical charged point particles
with a finite self-force and a finite field energy.

Some people are of the opinion that there is no need for a consistent theory of
classical charged point particles. They say that either one should deal with extended
classical charge distributions or with quantum particles. However, this is not convinc-
ing. E.g. in accelerator physics it is common to describe beams in terms of classical
point particles; neither a description in terms of extended charge distributions nor
in terms of quantum matter seems to be appropriate or even feasible. Therefore, a
consistent and conceptually well-founded theory of classical charged point particles
is actually needed.

The problem of the electromagnetic self-force of a charged particle has a coun-
terpart in the gravitational self-force of a massive particle. In comparison with the
electromagnetic self-force, the gravitational self-force is plaguedwith additional con-
ceptual issues. The latter are related to the facts that Einstein’s field equation does not
admit solutions for sources concentrated on aworldline, seeGeroch andTraschen [7],
and that an extendedmassive particle becomes a black hole if it is compressed beyond
its Schwarzschild radius. However, by considering the self-interacting massive par-
ticle as a perturbation of a fixed background spacetime one arrives at a formalism
which is similar to the electromagnetic case, see the comprehensive review by Pois-
son et al. [8]. At this level of approximation it is reasonable to ask if modifications
of the vacuum Maxwell theory can be mimicked by modifying Einstein’s theory in
such a way that the (approximated) gravitational self-force becomes finite. We will
come back to this question at the end of this article, after a detailed discussion of the
electromagnetic case.
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2 Maxwell’s Equations and the Constitutive
Law for Vacuum

Maxwell’s equations are universal and they do not involve a metric or a connection.
They read

d F = 0, d H = j, (1)

where F is an untwisted two-form, H is a twisted two-form and j is a twisted three-
form. (A differential form is twisted if its sign depends on the choice of an orientation.
The difference between twisted and untwisted differential forms becomes irrelevant
if the underlying manifold is oriented.) F gives the electromagnetic field strength,
H gives the electromagnetic excitation and j gives the electromagnetic current. Our
notation follows Hehl and Obukhov [9].

The Eqs. (1) are referred to as the premetric form of Maxwell’s equations. These
equations immediately imply that on simply connected domains F can be represented
in terms of a potential,

F = d A, (2)

and that charge conservation is guaranteed,

d j = 0. (3)

If j is given, Maxwell’s equations must be supplemented with a constitutive law
relating F and H to specify the dynamics of the electromagnetic field. There is a
particular constitutive law for vacuum, and there is a particular constitutive law for
each type of medium. In any case, the constitutive law will involve some background
geometry. In the following we consider vacuum electrodynamics on Minkowski
spacetime. Then the constitutive law should involve the Minkowski metric tensor
and no other background fields.

On Minkowski spacetime, we may choose an orthonormal coframe, i.e., four
linearly independent covector fields θ0, θ1, θ2, θ3 such that the Minkowski metric is
represented as

g = ηabθ
a ⊗ θb (4)

where (ηab) = diag(−1, 1, 1, 1). Here and in the following we use the summation
convention for latin indices that take values 0, 1, 2, 3 and for greek indices that
take values 1, 2, 3. Latin indices will be lowered and raised with ηab and its inverse
ηab, respectively, while greek indices will be lowered and raised with the Kronecker
symbol δμν and its inverse δμν , respectively.
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With respect to the chosenorthonormal coframe, the electromagnetic field strength
can be decomposed into electric and magnetic parts,

F = Eμθμ ∧ θ0 + 1

2
Bρερμνθ

μ ∧ θν . (5)

Here the wedge denotes the antisymmetrised tensor product and ερμν is the Levi-
Civita symbol, defined by the properties that it is totally antisymmetric and satisfies
ε123 = 1. The electromagnetic excitation can be decomposed in a similar fashion,

H = −Hμθμ ∧ θ0 + 1

2
Dρερμνθ

μ ∧ θν . (6)

If we apply the Hodge star operator of the Minkowski metric to F and H , we find

∗F = −Bμθμ ∧ θ0 + 1

2
Eρερμνθ

μ ∧ θν, (7)

∗H = −Dμθμ ∧ θ0 − 1

2
Hρερμνθ

μ ∧ θν . (8)

The field energy density measured by an observer whose 4-velocity V satisfies
θμ(V ) = 0 for μ = 1, 2, 3 is given by

ε = 1

2

(
EμDμ + HμBμ

)
. (9)

With the help of the Hodge star operator we can form out of F the untwisted
scalar invariant

∗(F ∧ ∗F) = BμBμ − EμEμ (10)

and the twisted scalar invariant

∗(F ∧ F) = −2Eμ Bμ. (11)

All these equations are valid with respect to any orthonormal coframe. In partic-
ular, we may choose a holonomic coframe, i.e., we may choose inertial coordinates
on Minkowski spacetimes,

g = ηabdxa ⊗ dxb (12)

and then write θa = dxa . In the following we will see that it is sometimes convenient
to work with an anholonomic orthonormal coframe on Minkowski spacetime.

We will now discuss the vacuum constitutive law in three different theories.
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2.1 Standard Maxwell Vacuum Theory

In the standard Maxwell theory, the constitutive law of vacuum reads

H = ∗F. (13)

By comparison of (6) and (7) we see that this implies

Dρ = Eρ, Hμ = Bμ. (14)

Here and in the following, we use units making the permittivity of vacuum, ε0, the
permeability of vacuum, μ0, and thus the vacuum speed of light, c = (ε0μ0)

−1/2,
equal to one.

2.2 Born-Infeld Theory

In 1934, Born and Infeld [4] suggested a non-linear modification of the vacuum
constitutive law,

H =
∗F −

∗(F ∧ F)

2b2
F

√

1 +
∗(F ∧ ∗F)

b2
−

(∗
(F ∧ F)

)2

4b4

(15)

where b is a new hypothetical constant of nature with the dimension of a (magnetic
or electric) field strength. The idea behind this modified constitutive law is to find a
theory where the field energy of a point charge remains bounded. We will discuss in
the following sections to what extent this goal was achieved.

Maxwell’s equations with the Born-Infeld constitutive law (15) can be derived
from a Lagrangian that depends only on the invariants (10) and (11). This demon-
strates that the theory is not only gauge invariant but also Lorentz invariant. However,
we will not need the Lagrangian formulation in the following.

As the constitutive law (15) does not involve any derivatives, in the Born-Infeld
theory the vacuum Maxwell equations are still of first order with respect to the field
strength (i.e., of second order with respect to the potential), just as in the standard
Maxwell theory. However, they are now non-linear.

Obviously, the Born-Infeld constitutive law (15) approaches the standard vacuum
constitutive law (13) in the limit b → ∞. This implies that the Born-Infeld theory is
indistinguishable from the standard Maxwell vacuum theory if b is sufficiently big.
In this sense, any experiment that confirms the standard Maxwell vacuum theory is
in agreement with Born-Infeld theory as well, and it gives a lower bound for b. For
the purpose of this article, the specific value of b is irrelevant as long as it is finite.
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Decomposing the constitutive law (15) into electric and magnetic parts results in

Dρ =
Eρ + Eτ Bτ

b2
Bρ

√

1 + 1

b2
(
Bσ Bσ − Eσ Eσ

) −
(
Eν Bν

)2

b4

, (16)

Hμ =
Bμ − Eτ Bτ

b2
Eμ

√

1 + 1

b2
(
Bσ Bσ − Eσ Eσ

) −
(
Eν Bν

)2

b4

. (17)

2.3 Bopp-Podolsky Theory

Another modification of the vacuum constitutive law, again motivated by the wish
of having the field energy of a point charge finite, was brought forward in 1940
by Bopp [5]. The same theory was independently re-invented two years later by
Podolsky [6]. The Bopp-Podolsky theory is equivalent to another theory that was
suggested in 1941 by Landé and Thomas [10].

The Bopp-Podolsky vacuum constitutive law reads

H = ∗F − �2�∗F (18)

where

� = ∗d∗d + d∗d∗ (19)

is the wave operator onMinkowski spacetime and � is a new hypothetical constant of
nature with the dimension of a length. In contrast to the Born-Infeld constitutive law,
the Bopp-Podolsky constitutive law is linear. However, it involves second derivatives
of the field strength, so Maxwell’s equations give a system of fourth-order differen-
tial equations for the potential A. In the Landé-Thomas version of the theory one
splits the potential into two parts each of which satisfies a second-order differential
equation, see Sect. 4.3 below. Just as the Born-Infeld theory, the Bopp-Podolsky can
be derived from a gauge-invariant and Lorentz-invariant Lagrangian (see Bopp [5]
or Podolsky [6]) but we will not use the Lagrangian formulation in the following.

For � → 0, the Bopp-Podolsky constitutive law (18) approaches the standard
vacuum law (13). So any experiment that is in agreement with the standard Maxwell
theory is in agreement with the Bopp-Podolsky theory as long as � is sufficiently
small. However, dealing with the limit � → 0 requires some care because it is a
singular limit of Maxwell’s equations in the sense that it kills the highest-derivative
term.
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3 Field of a Static Point Charge

It is our goal to discuss the field of a point charge in arbitrary motion on Minkowski
spacetime (subluminal, of course) according to the standardMaxwell vacuum theory,
the Born-Infeld theory and the Bopp-Podolsky theory. As a preparation for that, it
is useful to consider first the simple case of a point charge that is at rest in the
spatial origin of an appropriately chosen inertial coordinate system. (Obviously, in
any other inertial system the charge is then in uniform and rectilinear motion.) In this
inertial system, the field produced by the charge must be spherically symmetric and
static because there are no background structures that could introduce a deviation
from these symmetries. Writing �r = (x1, x2, x3) for the coordinates and �E =
(E1, E2, E3) etc. for the fields in the chosen inertial system, Maxwell’s equations
(1) reduce to

∇ × �E = �0, ∇ · �B = 0, ∇ × �H = �0, ∇ · �D = qδ(3)(�r)
, (20)

where q is the charge and δ(3) is the three-dimensional Dirac delta distribution.While
the curl equations are satisfied by any spherically symmetric �E and �H fields, the
divergence equations determine the spherically symmetric �D and �B fields uniquely,

�D = q

4πr2
�er , �B = 0, (21)

where �er is the radial unit vector. Sowhatever the constitutive lawmay be, the electric
excitation �D always has its standard Coulomb form, i.e., it diverges like r−2 if the
position of the charge is approached, and the magnetic field strength �B vanishes
everywhere. The corresponding (spherically symmetric) electric field strength �E
and magnetic excitation �H are not restricted by Maxwell’s equations; they have to
be determined from the constitutive law.

3.1 Standard Maxwell Vacuum Theory

In the standard Maxwell vacuum theory the constitutive law simply requires �E = �D
and �B = �H. Hence, (21) says that �E is the standard Coulomb field and that �H
vanishes,

�E = q

4πr2
�er , �H = �0. (22)

Clearly,
∣∣ �E∣∣ becomes infinite at the origin, i.e., at the position of the charge. The

direction of �E is always radial, so in the limit r → 0 the direction may be any unit
vector depending on how the origin is approached. As these direction vectors average
to zero, the Lorentz force (∼ �E) exerted by the static particle onto itself vanishes. Here
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we follow the widely accepted hypothesis that the self-force results from averaging
over directions, cf. e.g. Poisson et al. [8]. This hypothesis is very natural if one thinks
of the point particle as being the limiting case of an extended (spherical) body.

The field energy in a ball K R of radius R around the origin is

W (R) =
∫

K R

1

2
�D · �Er2sinϑdrdϑdϕ = q2

8π

∫ R

0

dr

r2
. (23)

Clearly, this expression is infinite, for arbitrarily small R. Both �E and �D throw in a
factor of r−2; one of them is killed by a factor of r2 from the volume element but
the other one makes the integral diverge. We see that we can cure this infinity by
introducing a modified constitutive law that leaves �E bounded if the position of the
charge is approached. We will now verify that both the Born-Infeld theory and the
Bopp-Podolsky theory have this desired property.

3.2 Born-Infeld Theory

As �B = �0 by (21), in the Born-Infeld theory the constitutive law requires

�D = �E
√

1 − 1

b2
∣∣ �E∣∣2

, �H = �0. (24)

With �D given by (21), we have to solve the equation

�E
√

1 − 1

b2
∣
∣ �E∣

∣2
= q

4πr2
�er (25)

for �E to determine the electric field strength. The result is (Born and Infeld [4])

�E = q

4π
√

r40 + r4
�er , r20 = q

4πb
. (26)

Hence | �E | → b for r → 0, see Fig. 1. Note that the limit of �E for r → 0 does
not exist because the direction of the limit vector depends on how the position of
the point charge is approached. One may say that the electric field strength stays
bounded but has a directional singularity at the origin. By averaging over directions,
the self-force (∼ �E) of the static particle vanishes.
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Fig. 1 Modulus of the
electric field strength for a
static charge in the
Born-Infeld theory (solid)
and in the standard Maxwell
vacuum theory (dashed)

r

E

b

The field energy in a ball K R of radius R around the origin is

W (R) =
∫

K R

1

2
�D · �Er2sinϑdrdϑdϕ = q2

8π

∫ R

0

dr
√

r40 + r4
. (27)

This is an elliptic integral which is finite as long as r0 > 0, i.e., as long as b is finite.
Even the field energy in the whole space is finite,

lim
R→∞W (R) = q2�(5/4)2

2r0π3/2 , (28)

where � is the Euler gamma function.

3.3 Bopp-Podolsky Theory

In this case the constitutive law requires

�D = �E − �2� �E, �H = �0. (29)

With �D given by (21), we have to solve the second-order differential equation

�E − �2� �E = q

4πr2
�er (30)

to determine �E . For a spherically symmetric field, �E(�r) = E(r)�er
(�r)

, this reduces
to

E − �2

r2

(
d

dr

(
r2

d E

dr

)
− 2E

)
= q

4πr2
. (31)
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The general solution is

�E = q

4πr2

{
1 + C1�(r − �)er/� − C2�(r + �)e−r/�

}
�er (32)

with two integration constants C1 and C2. The first integration constant is fixed if
we require �E to fall off towards infinity; this yields C1 = 0. The second integration
constant is fixed if we require �E to stay bounded if the position of the charge is
approached; this yields C2 = �−2. This gives us the Bopp-Podolsky analogue of the
Coulomb �E field (Bopp [5]; Podolsky [6])

�E = q

4πr2

{
1 −

(r

�
+ 1

)
e−r/�

}
�er (33)

which satisfies
∣∣ �E∣∣ → q/(8π�2) for r → 0, see Fig. 2. Just as in the Born-Infeld

case, the electric field strength stays bounded but has a directional singularity at the
origin.

The field energy in a ball K R of radius R around the origin is

W (R) =
∫

K R

1

2
�D · �Er2sinϑdrdϑdϕ (34)

= q2

8π

∫ R

0

(
1

r2
− e−r/�

r2
− e−r/�

r�

)
dr = q2

8π

(
1

�
+ e−R/� − 1

R

)

which is finite as long as � > 0. As in the Born-Infeld theory, even the field energy
in the whole space is finite,

lim
R→∞W (R) = q2

8π�
. (35)

Fig. 2 Modulus of the
electric field strength for a
static charge in the
Bopp-Podolsky theory
(solid) and in the standard
Maxwell vacuum theory
(dashed)

r

E

q

8π 2
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4 Field of an Accelerated Point Charge

We have seen that both the Born-Infeld theory and the Bopp-Podolsky theory modify
the Coulomb �E field of a point charge at rest in such a way that | �E | is bounded and
that the field energy in a ball around the charge is finite. Of course, what one is really
interested in is the field produced by an accelerated charge. We will now try to find
out what can be said about this case.

We choose an inertial coordinate system onMinkowski spacetime, g = ηabdxa ⊗
dxb. We fix a timelike C∞ curve za(τ ) parametrised by proper time,

ηabża żb = −1. (36)

We assume that this timelike curve is inextendible. As an accelerated worldline may
reach (past or future) infinity in a finite proper time, this does not necessarily mean
that the parameter τ ranges over all ofR.We denote the interval on which τ is defined
by ]τmin, τmax[ where −∞ ≤ τmin < τmax ≤ ∞.

We want to determine the electromagnetic field of a point charge that moves
on the worldline za(τ ). For convenience, we introduce an orthonormal tetrad(
e0(τ ), e1(τ ), e2(τ ), e3(τ )

)
along the worldline of the charged particle such that

ea
0(τ ) = ża(τ ), a(τ )eb

3(τ ) = z̈b(τ ), (37)

see Fig. 3. Along the worldline, this fixes the timelike vector e0(τ ) everywhere and
the spacelike vector e3(τ ), up to sign, at all events where the acceleration z̈(τ ) is

Fig. 3 Retarded light-cone
coordinates and orthonormal
coframe

x

z(τ)

e0(τ)

eµ(τ)

θ0

θµ
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non-zero. e1(τ ) and e2(τ ) are then fixed up to a rotation in the plane perpendicular
to e3(τ ). At points where the acceleration is zero, e3(τ ) is ambiguous; there are
pathological cases where it is not possible to extend it into such points such that the
resulting vector field e3 is continuously differentiable. We exclude such cases in the
following and assume that the tetrad is smoothly dependent on τ and satisfies (37)
along the entire worldline.

With respect to this tetrad, we can introduce retarded light-cone coordinates
(τ , r,ϑ,ϕ) which are related to the inertial coordinates (x0, x1, x2, x3) by

xa = za(τ ) + r
(

ża(τ ) + na(τ ,ϑ,ϕ)
)

(38)

where

na(τ ,ϑ,ϕ) = cosϕ sinϑea
1(τ ) + sinϕ sinϑea

2(τ ) + cosϑea
3(τ ). (39)

Retarded light-cone coordinates are routinely used nowadays when treating self-
force problems, cf. e.g. Poisson et al. [8]. These coordinates have a long history. In
connection with electrodynamics on Minkowski spacetime, they were introduced by
Newman and Unti [11] in 1963. In particular, Newman and Unti demonstrated that
in these coordinates the Liénard-Wiechert potential takes a surprisingly simple form.
In general relativity the history of light-cone coordinates is even older. They made
their first appearance in a 1938 paper by Temple [12] who called the time-reversed
version (i.e., the advanced light-cone coordinates) “optical coordinates”. Advanced
light-cone coordinates are used in gravitational lensing and in cosmology where the
wordline is interpreted as an observer who receives light (rather than as a source that
emits radiation).

In retarded light-cone coordinates, the “temporal” coordinate τ labels the future
light-cones with vertex on the chosen worldline; r is a radius coordinate along each
light-cone and (ϑ,ϕ) are standard spherical coordinates that parametrise the spheres
(τ , r) = constant. Of course, there are the usual coordinate singularities of the
spherical coordinates at the poles sinϑ = 0 and ϕ is defined only modulo 2π. If these
coordinate singularities are understood, the system of retarded light-cone coordinates
is well-defined on an open subset, U , which equals the causal future of the worldline
with the worldline itself being omitted. Figure4 shows a worldline that approaches
the speed of light in the past. In this case the causal future of the worldline is bounded
by a lightlike hyperplane to which the worldline is asymptotic. For a worldline that
does not approach the speed of light in the past, the causal future is all of Minkowski
spacetime. (Recall that we consider only wordlines that are inextendible.)

With the retarded light-cone coordinates (τ , r,ϑ,ϕ) we can associate an ortho-
normal coframe (θ0, θ1, θ2, θ3) defined by
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Fig. 4 Domain of definition,
U , of the retarded light-cone
coordinates x

z(τ)

θ0 = dτ + dr + ra(τ )cosϑdτ (40)

θ1 = dr + ra(τ )cosϑdτ

θ2 = rdϑ − ra(τ )sinϑdτ

θ3 = rsinϑdϕ,

see Fig. 3.
The electromagnetic field of the point charge is to be determined by solving the

Maxwell equations (1) with

∗j (x) = q

(∫ τmax

τmin

δ(4)(x − z(τ )
)
ża(τ )dτ

)
ηabdxb (41)

where δ(4) is the 4-dimensional Dirac delta distribution. The solution has to satisfy
the vacuum constitutive law on the open domain U and it should be retarded. By
the latter requirement we mean that the field strength at an event x ∈ U should be
completely determined by what the point charge did in the causal past of the event x .

4.1 Standard Maxwell Vacuum Theory

In the case of the standard Maxwell vacuum theory, finding the field of a point
charge on Minkowski spacetime is a standard text-book matter. The solution is F =
d A, H = ∗F , where

A = − qθ0

4πr
= − q

4π

(dτ + dr

r
+ a(τ )cosϑdτ

)
(42)
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is the (retarded) Liénard-Wiechert potential. At an event x ∈ U , the potential is
determined by the 4-velocity and the 4-acceleration of the point charge at the retarded
time which is given by the coordinate τ . There are no “tail terms”, i.e., there is no
dependence on the earlier history of the point charge.

For deriving the Liénard-Wiechert potential in a systematic way, one introduces
the potential, F = d A, and imposes the Lorenz gauge condition, d∗A = 0. Then the
first Maxwell equation, d F = 0, is automatically satisfied and the second Maxwell
equation, d H = j , becomes an inhomogeneous wave equation for A,

�A = (∗d∗d + d∗d∗)A = ∗d∗F = ∗d H = ∗j. (43)

With thewell-known (retarded)Green function of thewave operator�, the (retarded)
solution can be written as an integral over ∗j . Inserting the current from (41) gives
the desired result.

From the Liénard-Wiechert potential we find that the field strength F = d A and
the excitation H = ∗d A are given by

F = q

4π

(
θ1 ∧ θ0

r2
+ a(τ )

r
sinϑθ2 ∧ (θ0 − θ1)

)

= q

4π

(
dr ∧ dτ

r2
+ a(τ )sinϑdϑ ∧ dτ

)
(44)

and

H = q

4π

(
θ2 ∧ θ3

r2
− a(τ )

r
sinϑθ3 ∧ (θ0 − θ1)

)

= q

4π
sinϑdϑ ∧ dϕ, (45)

respectively. Decomposing into electric and magnetic parts yields

Eμθμ = Dμθμ = q

4π

{θ1

r2
+ a(τ )sinϑ

θ2

r

}
, (46)

Bμθμ = Hμθμ = q

4π
a(τ )sinϑ

θ3

r
. (47)

In addition to the “Coulomb part”, which goes with 1/r2, we have in the case of a
non-vanishing acceleration a “radiation part” which goes with 1/r . The self-force,
i.e. the Lorentz force exterted onto the point charge by its own field, is given as
the limit of q Eμθμ if the position of the point charge is approached. The Coulomb
part averages to zero, as in the case of a static charge. The radiation part, however,
does not average to zero; it gives an infinite self-force whenever the acceleration
a(τ ) is non-zero. As in the static case, the field energy in an arbitrarily small sphere
around the point charge is infinite. It is this infinite amount of energy carried by
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the point charge with itself that makes mass renormalisation necessary if one wants
to formulate an equation of motion for the point charge taking the self-force into
account.

4.2 Born-Infeld Theory

If one wants to find the field of an accelerated point charge in the Born-Infeld theory,
one would try to mimic the derivation of the Liénard-Wiechert potential as far as
possible. As in the standard Maxwell theory, one can satisfy the first Maxwell equa-
tion by introducing the potential and one can impose the Lorenz gauge condition (or
any other gauge condition if this appears to be more appropriate). However, with H
given in terms of F = d A by the Born-Infeld constitutive law, the second Maxwell
equation now becomes a non-linear inhomogeneous wave equation for A. There
are no standard methods for solving such an equation; in particular, Green function
methods are not applicable. Therefore, we cannot write down a Born-Infeld analogue
of the Liénard-Wiechert potential. In the Born-Infeld theory, no explicit solution of
the electromagnetic field of a point charge with non-vanishing acceleration seems to
be known.

One might say that it is not actually necessary to write down a solution explicitly.
It would be sufficient if one could verify some properties of the solution. Firstly, it
would be highly desirable to prove that, for a point charge moving on an arbitrary
worldline or on a worldline subject to some conditions, the retarded electromagnetic
field is unique and regular on U . Secondly, it would be highly desirable to know if
for this solution the self-force and the energy in a ball around the charge are finite.
However, very little is known about these issues in the Born-Infeld theory beyond
the case of an unaccelerated point charge.

As to regularity, it seems worthwile to point out that even for a time-independent
and smooth j the question of regularity is highly non-trivial. It was shown only
recently by Kiessling [13] that in this case the electromagnetic field is, indeed, free
of singularities or discontinuities. Although this result seems to be intuitively quite
obvious, the proof is difficult and very technical. It is based on series expansions
with respect to 1/b2, where b is the Born-Infeld constant, and the hard part is in the
proof of convergence. For the field of an accelerated point charge, it is very well
conceivable that infinities or discontinuities (“shocks”) are formed. It is true that
Boillat [14] has shown the non-existence of some kind of shocks in the Born-Infeld
theory, but these results do not apply to the case at hand where the equations become
singular along a worldline.

Even if it is possible to show that the electromagnetic field of a point charge is
regular on U , either for all worldlines or for a special class of worldlines, it is far
from obvious that the field has the same behaviour as in the static case if the position
of the point charge is approached. A discussion of related issues can be found in a
paper by Chruściński [15]; this, however, is based on the assumption that the electric
field strength remains bounded and that the electric excitation diverges like r−2 if
the position of the point charge is approached. In contrast to the retarded light-cone
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coordinates used here, Chruściński used Fermi coordinates in a similar fashion as
they had been used already earlier by Kijowski [16] in the context of the standard
Maxwell vacuum theory.

Something can be said, at least, for the case of a point charge that is initially at
rest and then starts accelerating. In this case, conservation of energy guarantees that
the total field energy must be finite for all times. However, even in this case it is not
clear if shocks are excluded.

For approaching the problem in a systematic way, one may write the electromag-
netic field strength as a power series with respect to 1/b2,

F =
∞∑

N=0

FN

b2N
= F0 + F1

b2
+ . . . , FN = d AN . (48)

Inserting this expression into the Born-Infeld constitutive law (15) and collecting
terms of equal powers of 1/b2 gives

H =
∞∑

N=0

HN

b2N
=

∞∑

N=0

1

b2N

(∗FN + WN
(
F0, . . . , FN−1

))
(49)

where WN
(
F0, . . . , FN−1

)
stands for an expression depending on F0, . . . , FN−1

that can be explicitly calculated for every N . We have to determine the FN = d AN

such that d H = j with the current given by (41). This can be done by requiring

d H0 = j, d HN = 0 for N = 1, 2, . . . (50)

and solving these equations iteratively. We may impose the Lorenz gauge condition
on each AN . Then the zeroth order retarded solution is known to be the standard
Liénard-Wiechert field, F0 = d A0 with A0 given by the right-hand side of (42). The
higher-order FN = d AN are determined by

d
(∗d AN + WN

(
d A0, . . . , d AN−1

)) = 0. (51)

In the Lorenz gauge, this is the standard inhomogeneous wave equation for AN , with
the inhomogeneity given in terms of the lower-order solutions A0, . . . , AN−1,

�AN = ∗ j̃ N , j̃ N = −dWN
(
d A0, . . . , d AN−1

)
. (52)

The retarded solution of this equation is known from classical electrodynamics: It is
the retarded potential of the “current” three-form j̃ N . In this way, we can iteratively
determine the AN and write the solution F = d A as a formal power series.

The big question, unanswered so far, is whether or not this series converges. We
do know that it does converge in the case of vanishing acceleration; then we get
the field of a static point charge discussed in Sect. 3.2. For non-zero acceleration,
however, no convergence results are known.
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4.3 Bopp-Podolsky Theory

In the case of the Bopp-Podolsky theory the situation is much better than in the
case of the Born-Infeld theory. The Bopp-Podolsky theory is linear, so it allows for
applications of the Green function method.

With F = d A and choosing the Lorenz gauge, d∗A = 0, the remaining field
equation reads

�A − �2�2A = ∗j . (53)

This fourth-order equation for A can be reduced to a pair of second-order equations

� Â = ∗j, � Ã − �−2 Ã = j, (54)

if we write

A = Â − Ã (55)

Â := A − �2�A, Ã := −�2�A. (56)

If rewritten in this way, a quantised version of the theory would predict the existence
of a massless photon, described by Â, and a massive photon with Compton wave-
length �, described by Ã. Both Bopp [5] and Podolsky [6] had realised that their
higher-order theory can be rewritten in this way as a two-field theory. This two-field
theory is precisely what Landé and Thomas [10] independently suggested one year
after Bopp and one year before Podolsky.

One can thus construct the (retarded) solution to the fourth-order equation (53)
from the (retarded) Green functions of the wave equations (54). The latter are well
known, see e.g. the original paper by Landé and Thomas [10]. This gives the retarded
solution to (53) for the current (41) of a point charge as

A(x) =
(∫ τ

−∞
J1

(
s(x, τ ′)/�

)

�s(x, τ ′))
ża(τ ′)dτ ′

)

ηabdxb (57)

where

s(x, τ ′)2 = −(
xa − za(τ ′)

)(
xa − za(τ ′)

)
(58)

and J1 is the Bessel function of the first kind. The geometric meaning of s(x, τ ′) is
illustrated in Fig. 5.

The potential (57) is the Bopp-Podolsky analogue of the Liénard-Wiechert poten-
tial. In contrast to the standard Liénard-Wiechert potential, it depends on the entire
earlier history of the point charge up to the retarded time τ . Such “tail terms” are
nothing peculiar; they also occur in the standard vacuumMaxwell theory on a curved
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Fig. 5 s(x, τ ′) is the
Lorentz length of the
timelike line segment that
connects x with z(τ ′) x

z(τ)

z(τ )

e0(τ)

eµ(τ)

background, see e.g. Poisson et al. [8]. The integral in (57) and in the correspond-
ing expression for the field strength can be expanded in a formal power series with
respect to �. For the self-force, after averaging over directions this results in a series
with terms of order �−1, �0, �, �2 . . . , see Zayats [17] (also cf. McManus [18],
Frenkel [19] and Frenkel and Santos [20]). However, these series are non-convergent
and, therefore, of limited use.

So in contrast to the Born-Infeld theory, in the Bopp-Podolsky theory the electro-
magnetic potential (and, thereupon, the electromagnetic field strength) produced by
an arbitrarily accelerated point charge can be explicitly written down, albeit in terms
of an integral over the particle’s earlier history. A detailed discussion of the class of
worldlines for which this integral absolutely converges will be given elsewhere [21].
This demonstrates that, for a large class of worldlines, the electric field stays bounded
and there is no need formass renormalisation.As an important example, the self-force
of a uniformly accelerated point charge was calculated by Zayats [17].

Because of the tail terms, the equation ofmotion is no longer a differential equation
but rather an integro-differential equation for the worldline. It is unknown if the
equation of motion admits run-away solutions. For some partial results, indicating
that run-away solutions cannot exist if � is bigger than a certain critical value, see
Frenkel and Santos [20].

5 Implications for Gravity

The preceding discussion can be summarised in the following way. In the standard
Maxwell vacuum theory, the self-force is infinite and mass renormalisation is neces-
sary. Postulating a negative infinite bare mass is conceptually not satisfactory and the
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resulting equation of motion, the Lorentz-Dirac equation, is highly pathological. In
the Born-Infeld theory, the properties of the field of a static charge look promising,
but for an accelerated charge very little can be calculated and the properties of the
field are largely unknown. For the Bopp-Podolsky theory, the field of an accelerated
point charge can be calculated, in terms of an integral over the history of the particle
which is manageable to a certain extent, and it can be shown for a large class of
accelerated worldlines that the field is, actually, finite. No negative infinite bare mass
needs to be postulated, and the equation of motion can be assumed to be the usual
Lorentz-force equation with the (finite) self-field included after averaging over direc-
tions. The explicit expression of the electromagnetic field, given by the analogue of
the Liénard-Wiechert potential, is more complicated than in the standard vacuum
Maxwell theory on Minkowski spacetime, because of the tail terms. However, such
tail terms are familiar from the standard vacuumMaxwell theory on a curved space-
time and should not be viewed as a reason for discarding the theory. Although there
are still several open issues—most notably the absence or non-absence of run-away
solutions has to be clarified—it seems fair to say that in the Bopp-Podolsky theory
the infinities associated with point charges are cured to a large extent. We may there-
fore view it as the best candidate for a conceptually satisfactory theory of classical
charged point particles. (This does not necessarily mean that the Bopp-Podolsky
theory is “the correct theory of electromagnetism” at a fundamental, quantum field
theoretical, level).

Do these observations teach a lesson with respect to the gravitational self-force?
In the approximation where the self-gravitating particle is viewed as a perturbation
of a fixed background spacetime, the theory is very similar to the electromagnetic
case in the standard Maxwell vacuum theory. Modifying the theory along the lines
of the Born-Infeld theory seems to be of no use: Firstly, it is largely unclear if the
Born-Infeld theory really cures the infinities in the field of an accelerated point
charge. Secondly, the original Einstein theory was already a non-linear theory whose
non-linearities had been killed by setting up the approximation formalism for the
self-gravitating point mass. Therefore, it seems rather meaningless to re-introduce
non-linear terms. The situation is quite different for the Bopp-Podolsky theory. Here
linearity is kept but higher-order terms are added. It seemsnot unreasonable to assume
that Einstein’s theory can be modified by adding higher-order terms in such a way
that they survive the approximation, giving rise to a regularising term of the same
kind as it occurs in the Bopp-Podolsky theory. Higher-order theories of gravity have
been investigated intensively. They are mainly motivated by the observation that
quantum corrections to Einstein’s theory are expected to give a Lagrangian that is
of quadratic or higher order in the curvature, resulting in field equations that involve
fourth derivatives of the metric. (The simplest class of such theories is the class
of f (R) theories which are reviewed, e.g., in the Living Review by de Felice and
Tsujikawa [22]). Looking for a version that gives rise to a Bopp-Podolsky-like term
seems to be a promising programme that might give a new theoretical framework for
getting a finite gravitational self-force.
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