
Self-force: Computational Strategies

Barry Wardell

Abstract Building on substantial foundational progress in understanding the effect
of a small body’s self-field on its ownmotion, the past 15years has seen the emergence
of several strategies for explicitly computing self-field corrections to the equations
of motion of a small, point-like charge. These approaches broadly fall into three
categories: (i) mode-sum regularization, (ii) effective source approaches and (iii)
worldline convolution methods. This paper reviews the various approaches and gives
details of how each one is implemented in practice, highlighting some of the key
features in each case.

1 Introduction

Compact-object binaries are amongst the most compelling sources of gravitational
waves. In particular, the ubiquity of supermassive black holes residing in galactic
centres [1] has made the extreme mass ratio regime a prime target for the eLISA
mission [2–6]. Meanwhile, the comparable and intermediate mass ratio regimes are
an intriguing target for study by the imminent Advanced LIGO detector [7]. In order
to maximise the scientific gain realised from gravitational-wave observations, highly
accurate models of gravitational-wave sources are essential. For the case of extreme
mass ratio inspirals (EMRIs)—binary systems in which a compact, solar mass object
inspirals into an approximately million solar mass black hole—the demands of grav-
itational wave astronomy are particularly stringent; the promise of groundbreaking
scientific advances—including precision tests of general relativity in the strong-field
regime [8–10] and a better census of black hole populations—hinges on our ability
to track the phase of their gravitational waveforms throughout the long inspiral, with
an accuracy of better than 1 part in 10,000 [2]. This, in turn requires highly accurate,
long time models of the orbital motion.
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For the past two decades, these demands have stimulated an intense period of
EMRI research among the gravitational physics community. Despite of the impres-
sive progress made by numerical relativists towards tackling the two-body problem
in general relativity (for reviews see Refs. [11–13]), the disparity of length scales
characterising the EMRI regime is a significant roadblock for existing numerical rel-
ativity techniques. Indeed, to this day EMRIs remain intractable by current numerical
relativity methods, and successful approaches have instead tackled the problem per-
turbatively or through post-Newtonian approximations (see Ref. [14] for a review).
This article will focus on the first of these; by treating the smaller object as a per-
turbation to the larger mass, the so-called “self-force approach” reviewed here has
been a resoundingly successful tool for EMRI research.

Within the self-force approach, the smaller mass, μ � M , is assumed to be
sufficiently small that it may be used as a perturbative expansion parameter in the
background of the larger mass, M . Expanding the Einstein equation in μ, we see
the smaller object as an effective point particle generating a perturbation about the
background of the largermass. At zeroth order inμ, the smaller objectmerely follows
a geodesic of the background. At first order in μ, it deviates from this geodesic due
to its interaction with its self-field. Viewing this deviation as a force acting on the
smaller object, the calculation of this self-force is critical to the accuratemodelling of
the evolution of the system. For the purposes of producing an accurate waveform for
space-based detectors, and for producing accurate intermediate mass ratio inspiral
(IMRI)models, itwill be necessary to include further effects up to secondperturbative
order [15, 16]. Indeed, recent compelling work [17, 18] suggests that IMRIs—and
even comparable mass binaries—may be modelled using self-force techniques.

A naïve calculation of the first order perturbation due to a point particle leads
to a retarded field which diverges at the location of the particle. The self-force,
being the derivative of the field, also diverges at the location of the particle and one
obtains equations of motion which are not well-defined and must be regularized. A
series of formal derivations of the regularized first order equations of motion (now
commonly referred to as the MiSaTaQuWa equations, named after Mino et al. [19]
and Quinn and Wald [20] who first derived them) for a point particle in curved
spacetime have been developed [19–30], culminating in a rigorous work by Gralla
and Wald [31] and Pound [32] in the gravitational case and by Gralla et al. [33]
in the electromagnetic case. This was subsequently extended to second perturbative
order by Rosenthal [34–37], Pound [38–40], Gralla [41] and Detweiler [42]. These
derivations eliminate the ambiguities associated with the divergent self-field of a
point particle and provide a well-defined, finite equation of motion. Building upon
this foundational progress, several practical computational strategies have emerged
from these formal derivations:

• Dissipative self-force approaches: While the full first-order self-force is divergent,
it turns out that the dissipative component is finite and requires no regularization.
This fact has prompted the development of methods for computing the dissipa-
tive component alone, sidestepping the issue of regularization altogether. These
dissipative approaches fall into two categories:
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1. Flux methods: By measuring the orbit-averaged flux of gravitational waves onto
the horizon of the larger black hole and out to infinity, the fact that the field is
evaluated far away from theworldlinemeans that no divergent quantities are ever
encountered. This approach yields the time-averaged1 dissipative component of
the self-force [43–50].

2. Local/instantaneous dissipative self-force: The time averaging element of flux
methods can be eliminated by instead computing the local, instantaneous dissi-
pative component of the self-force from the half-advanced-minus-half-retarded
field [43, 51–53].

Both methods, however, fundamentally rely on neglecting potentially important
conservative effects which can significantly alter the orbital phase of the system.

• The mode-sum approach: Introduced in Refs. [54, 55], and having since been
successfully used in many applications, the approach relies on the decomposition
of the retarded field into spherical harmonic modes (which are finite, but not
differentiable at the particle), numerically solving for each mode independently
and subtracting analytically-derived “regularization parameters”, then summing
over modes.

• The effective source approach: Proposed in [56, 57], the approach implements the
regularization before solving the wave equation. This has the advantage that all
quantities are finite throughout the calculation and one can directly solve a wave
equation for the regularized field.

• Theworldline convolution approach: First suggested in [58, 59], one computes the
regularized retarded field as a convolution of the retarded Green function along the
past worldline of the particle. Although the approach is the most closely related to
the early formal derivations, it is only recently that it has been successfully applied
to calculations in black hole spacetimes.

For a comprehensive reviewof the self-force problem, seeRefs. [60–63]. In this paper,
I will review the various approaches and give details of how each one is implemented
in practice, highlighting the advantages and disadvantages in each case.

This paper follows the conventions ofMisner et al. [64]; a “mostly positive”metric
signature, (−,+,+,+), is used for the spacetimemetric, the connection coefficients
are defined by �λ

μν = 1
2g

λσ(gσμ,ν + gσν,μ − gμν,σ), the Riemann tensor is Rα
λμν =

�α
λν,μ − �α

λμ,ν + �α
σμ�σ

λν − �α
σν�

σ
λμ, the Ricci tensor and scalar are Rαβ = Rμ

αμβ

and R = Rα
α, and the Einstein equations are Gαβ = Rαβ − 1

2gαβ R = 8πTαβ .
Standard geometrized units are used, with c = G = 1. Greek indices are used for
four-dimensional spacetime components, symmetrisation of indices is denoted using
parenthesis [e.g. (αβ)], anti-symmetrisation is denoted using square brackets (e.g.
[αβ]) and indices are excluded from symmetrisation by surrounding them by vertical
bars [e.g. (α|β|γ)]. Latin letters starting from i are used for indices summed only
over spatial dimensions and capital letters are used to denote the spinorial/tensorial
indices appropriate to the field being considered. Either x or xμ are used when

1For the case of inclined orbits in Kerr spacetime, this is more appropriately formulated as a
torus-average.
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referring to a spacetime field point and z(τ ) or zμ(τ ) are used when referring to a
point on a worldline parametrised by proper time τ. Finally, a retarded (or source)
point is denoted using a prime, i.e. z′.

2 Equations of Motion

The formal equations ofmotion of a compact objectmoving in a curved spacetime are
nowwell established up to secondperturbative order.Writing the perturbed spacetime
in terms of a background plus perturbation, gαβ = g

(0)
αβ +hαβ , the equations ofmotion

essentially amount to those of an accelerated worldline in the background spacetime,
with the acceleration given by a well-defined regular field which is sourced by the
worldline. To order μ, this coupled system of equations for the worldline and its
self-field are commonly referred to as the MiSaTaQuWa equations and are given (in
Lorenz gauge, assuming a Ricci-flat background spacetime) by

�h̄ret
αβ + 2Cα

γ
β

δ h̄ret
γδ = −16πμ

∫
gα′(αuα′

gβ)β′uβ′
δ4(x, z(τ ′))dτ ′ (1a)

μ aα = μ kαβγδ h̄R
βγ;δ (1b)

with

kαβγδ = 1

2
gαδ
(0)u

βuγ − g
αβ
(0)u

γuδ − 1

2
uαuβuγuδ + 1

4
uαg

βγ
(0)u

δ + 1

4
gαδ
(0)g

βγ
(0).

Here, μ is mass of the object, gα′α is the bivector of parallel transport, Cαβγδ is
the Weyl tensor of the background spacetime, and we use the trace-reversed metric
perturbation h̄αβ = hαβ − 1

2g
(0)
αβh, h = hγ

γ .
One can also consider compact objects possessing other types of charge. For

example, a particularly simple case is that of a scalar charge q with mass m and
scalar field �, in which case the equations of motion are given by2,3

(� − ξR)�ret = −4πq
∫

δ4(x, z(τ ′))dτ ′ (2a)

maα = q
(
g

αβ
(0) + uαuβ

)
�R

,β (2b)

dm

dτ
= −q uα�R

,α. (2c)

2In the scalar case, it is important to distinguish between the self-force Fα = ∇α� and the
self-acceleration, which is given by projecting to self-force orthogonal to the worldline, aα =
(g

αβ
(0) + uαuβ)Fβ . In the electromagnetic and gravitational cases the self-force has no component

along the worldline and the two may be used interchangeably.
3We assume that the mass m is small and ignore its effect on the equations of motion.
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Here, R is the Ricci scalar of the background spacetime and ξ is the coupling to
scalar curvature. Similarly, for an electric charge, e, one obtains equations of motion
which are given in Lorenz gauge by

�Aret
α − Rβ

α Aret
β = −4πe

∫
gαα′uα′

δ4(x, z(τ ′))dτ ′ (3a)

maα = e
(
g

αβ
(0) + uαuβ

)
AR

[γ,β]u
γ, (3b)

where Rαβ is the Ricci tensor of the background spacetime and Aμ is the vector
potential.

The key component in all instances is the identification of the appropriate regu-
larized field on the worldline. Detweiler andWhiting identified a particularly elegant
choice for the regularized field,written in terms of the difference between the retarded
field and a locally-defined singular field,

�R = �ret − �S, AR
α = Aret

α − AS
α, hR

αβ = hret
αβ − hS

αβ . (4)

In addition to giving the physically-correct self-force, the Detweiler-Whiting regular
field has the appealing feature of being a solution of the homogeneous field equations
in the vicinity of the worldline. Most computational strategies essentially amount to
differing ways of representing this singular field4 and obtaining the regularized field
on the worldline.

3 Numerical Regularization Strategies

In a numerical implementation, it is essential to avoid the evaluation of divergent
quantities. In the case of self-force calculations, both the retarded and singular fields
diverge on the worldline so one must avoid evaluating them there. Several strategies
for doing so have emerged over the years (see Table1 for a summary).

One option is to only ever evaluate finite, dissipative quantities (e.g. the retarded
field far from the worldline or the half-advanced-minus-half-retarded field on the
worldline). This is the basis of the dissipative methods mentioned in the introduction.
Since these methods effectively avoid the problem of regularization, they will not be
discussed further here; we will return to them in Sect. 4. It is worth noting, however,
that the methods typically used by dissipative calculations are essentially the same as
those used by mode-sum regularization for computing the retarded field, but without
the additional regularization step.

This leaves three regularization strategies which allow the regularized field to be
computed on the worldline without encountering numerical divergences: worldline
convolution, mode-sum regularization, and the effective source approach.

4Some methods [65, 66] rely on alternative prescriptions for the singular field than that proposed
by Detweiler and Whiting.
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Table 1 Summary of regularization methods employed by self-force calculations in black hole
spacetimes

Case Worldline Mode-sum Effective source

Scalar

Schwarzschild Circular (apprx) [59];
generic (quasilocal)
[67, 68];
generic [69–71];
static [72];
accelerated [73]

Radial [74];
circular [75–78];
eccentric [79–83];
static [72]

Circular [56, 57, 65,
84–86]; eccentric [87];
evolving [88]

Kerr Generic [68];
accelerated [73]

Circular [89];
equatorial [90, 91];
inclined circular [92];
accelerated [93];
static [94, 95]

Circular [96];
eccentric [97]

EM

Schwarzschild Static [72] Static [72];
eccentric [82, 98];
static (Schwarzschild-
de Sitter) [99];
radial (Reissner-
Nordström) [100]

–

Kerr – Equatorial [90];
accelerated [93]

–

Gravity

Schwarzschild Generic
(quasilocal) [101]

Radial [102];
circular [103–111];
eccentric [82,
112–120];
osculating [121]

Circular [122]

Kerr Circular
(quasilocal) [59];
branch cut [123]

Equatorial [90];
accelerated [93];
circular [119, 124]

Circular [125];
generic [126]

3.1 Worldline Convolution

The worldline convolution method relies on a split of the regularized self-force into
an “instantaneous” piece and a history-dependent term. The instantaneous piece is
easily calculated from local quantities evaluated at the particle’s position,

�inst
,α = q

[
1

2

(
ξ − 1

6

)
Ruα +

(
g

(0)
αβ + uαuβ

)(1
3

ȧβ + 1

6
Rβ

γuγ
)]

, (5a)

Ainst
[β;α]u

β = e
(
g

(0)
αβ + uαuβ

)(1
3

ȧβ + 1

6
Rβ

γuγ
)
, (5b)

h̄inst
αβ;γuβuγ = h̄inst

αβ;γuαuβ = 0. (5c)
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Fig. 1 Schematic
representation of the
worldline convolution
method. The equations
shown are for the case of the
self-force on a scalar charge,
but are representative of
similar equations in the
electromagnetic and
gravitational cases.
Reproduced from Ref. [69]

∫ τm

−∞
∇aGret(z(τ),z (τ ))dτ

∫ τ−

τm

∇νGret(z z(τ ), (τ ))dτ

τ

τ

The history-dependent term is much more difficult to calculate, as it is given in terms
of a convolution of the derivative of the retardedGreen function along the worldline’s
entire past-history (see Fig. 1),

�hist
,α = q

∫ τ−

−∞
∇αGret[x, z(τ ′)] dτ ′, (6a)

Ahist
α;β = e

∫ τ−

−∞
∇βGret

αα′ [x, z(τ ′)]uα′
dτ ′, (6b)

h̄hist
αβ;γ = 4μ

∫ τ−

−∞
∇γGret

αβα′β′ [x, z(τ ′)]uα′
uβ′

dτ ′. (6c)

The covariant derivatives here are taken with respect to the first argument of the
retarded Green function. Likewise, the regularized self-field can be obtained from
a worldline convolution of the retarded Green function itself; similar formulae can
also be derived for higher derivatives. The retardedGreen function appearing in these
equations is a solution of the wave equation with a delta-function source,

(� − ξR)Gret = −4π δ4(x, x ′), (7a)

�Gret
αα′ − Rα

βGret
βα′ = −4π gαα′δ4(x, x ′), (7b)

�Gret
αβα′β′ + 2Rα

γ
β

δGret
γδα′β′ = −4π gαα′gββ′δ4(x, x ′), (7c)
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with boundary conditions such that the solutions correspond to purely outgoing
radiation at infinity and no radiation emerging from the horizon.

The regularization (i.e. subtraction of the Detweiler-Whiting singular field) is
formally achieved by the limiting procedure in the upper limit of integration, i.e.
by cutting off the integration at τ−, slightly before the coincidence point z = x .
In practice, this is done by taking the integration all the way up to coincidence, but
excluding the direct contribution to the Green function at coincidence (i.e. the term
proportional to δ(σ) in the Hadamard form for the Green function). Although the
retarded Green function also diverges at certain other points along the past worldline
(in particular at null-geodesic intersections where the particle sees null rays emitted
from its past), it turns out that these are all integrable singularities (of the form 1/σ
and δ(σ)) and the integral may be accurately evaluated to give a finite and accurate
value for the regularized self-force.

Despite having been proposed in the early days of EMRI self-force calculations
[58], theworldline convolutionmethodwas largely ignored for a long time by numer-
ical implementations (the notable exception being investigative studies [59, 127]
which did not complete a full calculation of the self-force). A likely reason is that
the method relies on knowledge of the retarded Green function for all points on the
particle’s past worldline. While methods have existed for decades for computing
portions of the retarded Green function, it turns out to be very difficult to obtain it
accurately everywhere that it is needed for the worldline convolution.

Thankfully, recent progress has led to two practical computational strategies,
both of which have been successfully applied to compute the self-force in black
hole spacetimes. The first of these is based on a frequency-domain decomposition of
the Green function, and builds on the rich history of black hole perturbation theory
developed over the past several decades. The second, a time-domain approach, has
been a very recent development and shows a great deal of promise for the future.

Independently of whether a frequency-domain or a time-domain scheme is used,
a common problem with both is that they fail at early times when source and field
points are close together; in the frequency-domain case the convergence is poor at
early times,while in the time-domain case features from the numerical approximation
pollute the data at early times. A relatively straightforward solution which has been
successfully applied in both scenarios is to only rely on their results at late times
and to supplement them at early times with a quasilocal Taylor series expansion.
Provided a sufficiently early time can be chosen where both the distant past and
quasilocal calculations converge, this yields a global approximation for the Green
function which is sufficient for producing an accurate result for the self-force. To
date this has been shown to be possible in the case of a scalar charge in Nariai [128],
Schwarzschild [69, 70] and Kerr [129] spacetimes.

Given an approximation for the Green function valid throughout the past world-
line, it is then trivial to numerically integrate Eq. (6) to obtain the self-force (see
Fig. 1). As mentioned previously, the divergences in the retarded Green function at
null-geodesic intersections on the past worldline are all integrable singularities and
do not pose a significant obstacle to accurate numerical evaluation of the integrals.
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3.1.1 Quasilocal Expansion

In order to obtain an approximation to the retarded Green function which is valid at
early times, it is convenient to start with the Hadamard form for the Green function
(in Lorenz gauge)

Gret
AB′(x, x ′) = �−

[
UAB′δ(σ) − VAB′�(−σ)

]
, (8)

where�− is analogous to theHeaviside step-function, being 1when x ′ is in the causal
past of x , and 0 otherwise, δ(σ) is the covariant form of the Dirac delta function,
UAB′ and VAB′ are symmetric bi-spinors/tensors and are regular for x ′ → x . The bi-
scalar σ

(
x, x ′) is the Synge world function, which is equal to one half of the squared

geodesic distance between x and x ′. In particular, σ(x, x) = 0 and σ(x, z) < 0
when x and z are timelike separated. Because of the limiting procedure in the history
integral, Eq. (6), only the term involving VAB′ is non-zero, and at all required points
along the worldline �− = 1 = �(−σ). The problem of determining the retarded
Green function at early times therefore reduces to finding an approximation for
VAB′(x, x ′) which is valid for x and x ′ close together.

Several methods have been developed for computing approximations to VAB′ .
Fundamentally, they rely on either the use of a series expansion, or on the use
of numerically evolved transport equations (ordinary differential equations defined
along a worldline). The series expansion approach has been the most fruitful to date
with results including: leading-order coordinate expansions in Schwarzschild and
Kerr spacetimes for scalar [68, 73] and gravitational cases [101], high-order coor-
dinate expansions in spherically symmetric spacetimes (including Schwarzschild)
[67], formal covariant expansions in generic spacetimes [130–133], and moderately
high-order coordinate expansions in Schwarzschild [82] and Kerr [90] spacetimes.
The only numerical calculation I am aware of was done in [133] for generic space-
times (with an example application in Schwarzschild spacetime).

The series expansion method produces an expression for V (x, x ′) as a power
series in the coordinate distance between x and x ′. For example, for the scalar case
in Schwarzschild spacetime it takes the form

V (x, x ′) =
∞∑

i, j,k=0

vi jk(r) (t − t ′)2i (1 − cos γ) j (r − r ′)k, (9)

where γ is the angular separation of the points and the vi jk are analytic functions
of r and M . It is straightforward to take partial derivatives of these expressions at
either spacetime point to obtain the derivative of the Green function. Although this
series on its own may be sufficient for use in the quasilocal component of a world-
line convolution, it turns out that some simple tricks allow for a vast improvement in
accuracy. It turns out that, because V (x, x ′) diverges at the edge of the normal neigh-
bourhood, the series approximation benefits significantly from Padé resummation
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which incorporates information about the form of the divergence [67]. One minor
caveat is that since Padé re-summation is only well defined for series expansions in
a single variable, it is necessary to first expand r ′ and γ in a Taylor series in t − t ′,
using the equations of motion to determine the higher derivatives appearing in the
series coefficients. Then, with V (x, x ′) written as a power series in t − t ′ alone,
a standard diagonal Padé approximant provides an accurate representation of the
Green function in the quasi-local region.

3.1.2 Frequency Domain Methods

Frequency domain methods for computing the retarded Green function rely crucially
on the separability of the wave equation. In the scalar, Schwarzschild case that rep-
resents the current state-of-the art5 [69] (also see [128] for a related calculation in
Nariai spacetime), this can be achieved by writing the Green function as a sum of
spherical harmonic and Fourier modes

Gret(x, x ′) = 1

r r ′
∞∑

�=0

P�(cos γ)
1

2π

∫ ∞+iε

−∞+iε
ĝ�(r, r ′;ω)e−iω(t−t ′)dω. (10)

Here, ε > 0 is a formal parameter to ensure the correct boundary conditions are satis-
fied for a retarded Green function. Substituting this into the wave equation, Eq. (7a),
one obtains an independent set of ordinary differential equations for ĝ�(r, r ′;ω), one
equation for each � and ω,

[
d2

dr2∗
+ ω2 − V�(r)

]
ĝ�(r, r ′;ω) = −δ(r∗ − r ′∗), (11)

with

V�(r) ≡
(
1 − 2M

r

) [
�(� + 1)

r2
+ 2M

r3

]
. (12)

Here, r∗ ≡ r + 2M ln
( r
2M − 1

)
is the radial tortoise coordinate.

5More generally, Teukolsky [134, 135] showed that the field equations may be separated in Kerr
spacetime in the gravitational case bymaking use of the spin-weighted spheroidal harmonics in place
of the spherical harmonics.A series ofworks—pioneered byRegge andWheeler [136] and improved
upon by others [137–143]—achieved a similar separation in the Schwarzschild gravitational case
by making use of tensor spherical harmonics. However, separability alone is not sufficient and
there remain some technical issues which have yet to be solved before solutions of the Teukolsky
or Regge-Wheeler equations could be used in a worldline convolution approach. Most important
is the issue of gauge; the MiSaTaQuWa equations, Eqs. (5) and (6), were derived in the Lorenz
gauge, whereas solutions of the Teukolsky and Regge-Wheeler equations are in a gauge different
from Lorenz gauge. Fortunately, recent work [119] has resolved many of the conceptual issues
associated with gauge choice.
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Given two linearly-independent solutions, p(r;ω) and q(r;ω), of the homoge-
neous version of (11), ĝ�(r, r ′;ω) is given by

ĝ�(r, r ′;ω) = p�(r<,ω)q�(r>,ω)

W (p, q)
, (13)

where r> ≡ max(r, r ′), r< ≡ min(r, r ′) and W (p, q) is the Wronskian. One is then
faced with the integral over frequencies in the inverse Fourier transform appearing
in (10). This may be achieved through straightforward integration along the real-ω
axis (see Fig. 2); the only caveat is that the formally-infinite integral over frequencies
should be cut off at somefinitemaximum frequency using a smoothwindow function,
for example

g�(r, r ′; t − t ′) = 1

2π

∫ ∞+iε

−∞+iε
ĝ�(r, r ′;ω)e−iω(t−t ′)(1 − erf[2(ω − ωmax)]

)
/2 dω.

(14)

Alternatively, as was done in [69], the integration contour can be deformed
into the complex frequency plane following a proposal by Leaver [144, 145]. In
Schwarzschild spacetime, ĝ�(r, r ′;ω) has simple poles in the lower semi-plane at

ω

ω

ω
ω

ω

ω

ω

ω

ω

ω

Fig. 2 Spherical harmonic modes of the Schwarzschild scalar Green function. Left the frequency
domain Green function, ĝ�(r, r ′; ω), as a function of real frequency for r = r ′ = 10M , � = 0
(top) and � = 10 (bottom). Right the corresponding time domain Green function, g�(r, r ′; t − t ′)
computed by Fourier transforming the frequency domainGreen function using Eq. (14)withωmax =
8.5 (blue, solid line), and by using the time domain methods described in Sect. 3.1.3 (orange,
dashed line)
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ω

ω

Fig. 3 Contour deformation in the complex-frequency plane. The residue theorem of complex
analysis allows one to re-express the integral over (just above) the real line of the Fourier modes,
ĝ�(r, r ′; ω), as an integral over a high-frequency arc plus an integral around a branch cut and a sum
over the residues at the poles. Reproduced from Ref. [69]

the quasinormal mode frequencies, along with a branch cut starting at ω = 0 and
continuing along the negative imaginary axis (see Fig. 3). The deformed frequency
integral is therefore given by an integral over a high-frequency arc, an integral around
a branch cut, and an integral over the residues at the poles.6

The high-frequency arcs can be disregarded as they are likely to only contribute
at very early times, where the quasilocal approximation can be used. There are
well-established methods for accurately computing the location of the poles (qua-
sinormal mode frequencies) and the residues at the poles. The biggest difficulty in
the frequency-domain approach is in evaluating the branch cut integral, about which
very little was known until recently (other than asymptotic approximations for e.g.
large radius or late times). Substantial recent progress has established methods for
calculating this branch cut contribution [146]; these methods were used in [69] to
compute the self-force in Schwarzschild spacetime.

The final step in the frequency domain approach is to sum over spherical harmonic
modes to produce the full Green function. Here, the distributional parts of the full
Green function can cause poor convergence in the mode-sum. Fortunately, there is
a straightforward solution to this problem: by smoothly cutting off the mode sum at
large �,

Gret(x, x ′) = 1

r r ′
�max∑
�=0

P�(cos γ)g�(r, r ′; t − t ′)e−�2/2�2cut (15)

one obtains a mollified retarded Green which is appropriate for use in a self-force
calculation, and whose sum over � converges. Empirically, it has been found that
choosing �cut ≈ �max/5 gives good results.

6In the Kerr spacetime there are indications that there may be additional branch cuts to consider
[123].
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3.1.3 Time Domain Approaches

The frequency domain approach to computing the retardedGreen function has several
shortcomings. It relies on relatively difficult technical calculations and has poor
convergence properties at early times and in scenarios where the worldline is not
well-represented by a discrete spectrum of frequencies. Recent work has shown that
the Green functionmay also be accurately computed (at least for the purposes of self-
force calculations) in the time domain using straightforward numerical evolutions.
A time domain calculation sidesteps issues related to a wide frequency spectrum and
appears to exhibit much better convergence properties at early times.

There are two closely-related proposals for computing the Green function in the
timedomain. In [71], Eq. (7a)was numerically solved as an initial value problem,with
the delta-function source approximated by a narrow Gaussian. A reformulation of
this approach as a homogeneous problemwithGaussian initial datawas subsequently
given in [70]. It was found that these “numerical Gaussian” approaches are able to
approximate the retarded Green function remarkably well in a large region of the
space required by worldline convolutions. The size of the Gaussian limits the scale of
the smallest featureswhich can be resolved, but it turns out that this is not significantly
detrimental to a self-force calculation.

The only regimes where the numerical Gaussian approach is not well suited to
computing the retarded Green function are at very early and very late times. At early
times the direct δ(σ(x, x)) term (which must be excluded from the worldline convo-
lution of the retarded Green function) is smeared out and is difficult to isolate from
the rest of the Green function. There is no conceptual difficulty at late times, but the
reality of a numerical evolution is that it can only be run for a finite time. Fortunately,
both of these issues are easily overcome; the former by using the quasilocal expan-
sion at early times, and the latter by using a late-time expansion of the branch cut
integral (see Fig. 4).

In the time domain approach, each numerical time domain evolution gives the
Green function G(x0, x ′) for a single base point x0, and for all source points, x . As
a result, a single numerical calculation can only be used to compute the self-force
at a single spacetime point, but it can be computed for any past-worldline ending up
at that point. This is in contrast to other self-force methods, where a single orbit is
considered at a time, but a single calculation gives the self-force at all points on the
orbit. The problem of efficiently spanning the parameter space of base points x0 is
an ideal application of reduced order methods [129, 147].

3.2 Mode-Sum Regularization

The mode-sum regularization scheme, first proposed by Barack and Ori [54],
has proven highly successful as a computational self-force strategy, having been
applied to the computation of the the self force for a variety of configurations in
Schwarzschild [74–81, 83, 102, 107–110, 113, 114, 148, 149] and Kerr [89, 91,
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φ

Fig. 4 Top Matched Green function along an eccentric orbit (eccentricity e = 0.5 and semilatus
rectum p = 7.2) in Schwarzschild spacetime. The full Green function (black) is constructed by
combining a quasilocal approximation at early times (orange, dashed line) with a time domain
calculation at intermediate times (blue, dashed line) and a late-time branch cut approximation at
late times (green, dashed line). Bottom Integrating the retarded Green function (excluding the direct
part) up to some time point on the past worldline gives the contribution to the regularized self-field
from all points on the past worldline up to that time. With an eccentric orbit of period ≈317M , we
see that a good approximation to the self-field is obtained by including the contributions from less
than one full orbit. Note that the formal divergences of the Green function are integrable and do not
cause significant numerical difficulty in computing the self-force

92, 124, 150] spacetimes. The success of the method hinges on the fact that the first
order retarded field diverges in a way which can be effectively smoothed out by a
spectral decomposition in the angular directions. More specifically, the divergence
appears as an odd power of 1/s, where s2 = (gαβ + uαuβ)σ;ασ;β is an appropri-
ate measure of distance from the worldline. The result is that the 1/s divergence of
the field near the worldline turns into an infinite sum of modes, each of which are
individually finite (but possibly discontinuous) on the worldline. The divergence of
the field then manifests itself through the failure of the (infinite) sum over modes
to converge. Conveniently, this odd-in-1/s property of the retarded field also holds
for its derivatives, both the first derivatives required for the self-force and higher
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derivatives which are useful for computing higher-multipole gauge invariants [104,
105]. As a result, an arbitrary number of derivatives of the first order retarded field
is represented by an infinite sum of modes, each of which are individually finite
(but possibly discontinuous) on the worldline. The trade-off is that as the number
of derivatives increases the divergence of the sum over modes becomes increasingly
strong.

Since the individual modes are finite, numerical calculations of the retarded field
and its derivatives can be done in the reduced (t, r) space without encountering any
numerical divergences. The remaining piece of the problem is a method for render-
ing the divergent sum over modes finite. An analytic decomposition of the angular
dependence of the Detweiler-Whiting singular field yields “regularization parame-
ters” which may be subtracted mode-by-mode from the numerical retarded field
values. Provided all parts of the Detweiler-Whiting singular field which don’t vanish
on the worldline are included in the calculation, the regularized sum over modes is
convergent on the worldline and one never encounters any numerical divergences.

It is important to note that the use of the Detweiler-Whiting singular field is not
merely a convenience; it also provides well-motivated physical grounds to justify the
mode-sum regularization approach. Other ad-hoc approaches based on identifying
the asymptotically divergent contributions to themode-sum often produce the correct
regularization parameters, but their use is difficult to justify rigorously and can easily
lead to incorrect results. Crucially, there is noway of knowingwhether such an ad-hoc
regularization procedure is producing a physically correct result, or if important
contributions are being overlooked. They should therefore not be relied on without
extreme care.

Unfortunately, despite its success in first order calculations, mode-sum regular-
ization alone is not an effective tool for computing the second order self-force. The
reason for this is straightforward: the second order retarded field contains divergent
terms which appears in the form of even powers of 1/s. Intuitively, this arises from
the fact that the second order field contains terms which depend quadratically on the
first order field. Unlike the odd-in-1/s case, the angular decomposition of 1/s2 leads
to individual modes which diverge logarithmically as the worldline is approached.
Fortunately, all is not lost for the mode-sum method as a computational tool at sec-
ond order. Provided the leading order logarithmic divergence is subtracted by some
other means (for example, using the effective source approach), regularization para-
meters may be used to accelerate the rate of convergence of the mode sum. Such a
hybrid scheme complements the generality of the effective source approach with the
computational efficiency of mode-sum regularization.

3.2.1 Regularization Parameters

The computation of regularization parameters has been addressed by a series of
calculations stemming from the original Barack-Ori derivation. Barack and Ori’s
original work gave the first two self-force regularization parameters for scalar, elec-
tromagnetic and Lorenz-gauge gravitational cases in both Schwarzschild and Kerr
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spacetimes. These are sufficient for computing the regularized self-force, but they
yield mode-sums which have relatively poor quadratic convergence with the num-
ber of modes included. Since the Detweiler-Whiting regularized field is a smooth,
homogeneous function in the vicinity of the worldline, its mode-sum representation
converges exponentially. This spectral convergence is spoiled by the fact that only
the portion of the Detweiler-Whiting singular field which does not vanish on the
worldline is subtracted by the leading order regularization parameters. The mode
decomposition effectively contains information about the extension of the field off
theworldline to the entire two-sphere, so the regularized field contains residual pieces
of the Detweiler-Whiting singular field off the worldline, but on a two-sphere of the
same radius. By deriving higher-order regularization parameters one can subtract
these residual pieces order-by-order, leaving a mode-sum which is more and more
rapidly convergent (see Fig. 5). The derivation of these higher-order parameters is
closely related to the computation of the quasilocal expansion of the Green function
and has been addressed in a series of papers: the first higher order parameter was
given in [76] for the case of a scalar charge on a circular orbit in Schwarzschild
spacetime, and for eccentric geodesic orbits in [80]. This was subsequently extended
by several further orders for equatorial geodesicmotion in the scalar, electromagnetic
and gravitational cases in both Schwarzschild [82] and Kerr [90] spacetimes. Recent
work has also produced parameters for accelerated worldlines [72, 93].

Within these derivations of high-order regularization parameters, a subtle ambi-
guity appears through the elevation of the four-velocity from a quantity defined
on a worldline to a quantity defined everywhere on the two-sphere. A natural,
covariant choice is to define this off-worldline extension through parallel transport,
uα′ = gα

α′
uα. However, in practical calculations it is often convenient to make a

coordinate choice. For example, a common choice is to define the extension in terms
of “constant coordinate components”, i.e. to define uα′

such that its components in
some coordinate system have a constant value everywhere on the two-sphere. This is

Fig. 5 Spherical harmonic modes of the self-force for a point scalar charge on a circular orbit of
radius r0 = 6M in Schwarzschild spacetime. By subtracting analytically determined high-order
“regularization parameters”, the sum over modes is rendered more and more rapidly convergent.
Each regularization parameter, F [n]

r , behaves asymptotically for large-� as 1/�n



Self-force: Computational Strategies 503

a perfectly valid choice, as is any other choice where uα′
agrees with the actual four-

velocity when evaluated on the worldline. The only caveat is that the regularization
parameters beyond the leading two orders change depending on the particular choice
of extension. As a result, in order to use higher-order regularization parameters it is
essential that a compatible choice of off-worldline extension is used in the retarded
field calculation.

3.2.2 Choice of Basis and Gauge

There are two other factors which must be considered in the mode-sum scheme: the
choice of angular basis functions for the spectral decomposition and the choice of
gauge in the electromagnetic and gravitational cases.

The choice of basis functions is typically motivated by their ability to produce
separability of the retarded field equations; an appropriate choice of basis functions
yields an independent set of equations in (t, r) space for each individual mode. For
the case of a scalar charge in Schwarzschild spacetime, the appropriate basis func-
tions are the standard spherical harmonics. In the Kerr case the spheroidal harmonics
are required for separability. For electromagnetic and gravitational cases, there are
several choices. For Schwarzschild spacetime one can choose between a tensor har-
monic basis and a basis of spin-weighted spherical harmonics. In the Kerr case only
the spin-weighted spheroidal harmonics are known to yield separability [134, 135].

This choice of angular basis also affects the regularization parameters. The para-
meters for scalar spherical harmonic modes, tensor harmonic modes, spin-weighted
spherical harmonic modes and spheroidal harmonic modes are all potentially differ-
ent. However, it is always possible project the tensor, spin-weighted, or spheroidal
harmonic modes onto the scalar spherical harmonic basis. In fact, since the regular-
ization parameters are most easily obtained for the scalar spherical harmonic basis,
calculations of the retarded field are typically done using the computationally most
convenient basis and the result is then projected onto the scalar spherical harmonics
before the regularization and sum-over-modes steps are done [113].

A more difficult issue in the electromagnetic and gravitational cases is the choice
of gauge. The Detweiler-Whiting singular field is defined in Lorenz gauge (since it
is derived from a Lorenz gauge Green function), but numerical calculations of the
retarded field are more easily done in either radiation or Regge-Wheeler gauge. The
existence of tensor spherical harmonics makes a Lorenz-gauge calculation possible,
if somewhat cumbersome in the Schwarzschild case [111, 118, 120]. One obtains
a coupled set of 10 equations for the metric perturbation, but there is no coupling
between different different tensor-harmonicmodes. Unfortunately, this does not hold
for the Kerr case as there are no known tensor spheroidal harmonics. Rather than
trying to derive tensor spheroidal harmonics, a better approach is to work with the
relatively straightforward Teukolsky equation in radiation gauge [124]. The difficulty
then is in identifying the appropriate regularization parameters, particularly since the
gauge transformation from Lorenz gauge is itself often singular. This remained an
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open problem until recently, when an understanding of how to apply the mode-sum
regularization scheme in radiation gauge was finally established [119] and applied
in a self-force calculation [108].

3.2.3 Mode-Sum Regularization in the Frequency Domain

The mode-sum scheme provides a method for computing the regularized self-force
using numerical data for the modes of the retarded field in the reduced (t, r) space.
There are, however, several possibilities for computing this numerical data. One
option relies on a further decomposition of the time dependence into Fourier-
frequency modes, in an analogous way to the frequency-domain Green function
described in Sect. 3.1.2 above. Using a spin-weighted spheroidal harmonic basis,
this leads to a radial equation for the Teukolsky function,

�−s d

dr

(
�s+1 d R

dr

)
+ V (r)R = T (r) (16)

with the potential given by

V (r) = K 2 − 2is(r − M)K

�
+ 4irωs − λ. (17)

Here, � ≡ r2 − 2Mr + a2, K ≡ (r2 + a2)ω − am, λ is an eigenvalue of the
spheroidal equation,

[ 1

sin θ

d

dθ

(
sin θ

d

dθ

)
− a2ω2 sin2 θ − (m + s cos θ)2

sin2 θ

− 2aωs cos θ + s + 2maω + λ
]

s S�m = 0 (18)

and a and M are the Kerr spin andmass parameters. For a = 0, λ = (�−s)(�+s+1)
and this reduces to the Schwarzschild wave equation decomposed into spin-weighted
spherical harmonics (in radiation gauge for the gravitational case), while for s = 0
it reduces to the scalar wave equation. A decomposition of the point-particle source
term yields a source involving δ(r − rp) (and in some cases its derivative), where
rp is the radial location of the particle. In practice, the frequency domain mode-
sum approach proceeds in the same way as for the Green function: two independent
solutions of the homogeneous radial equation are obtained and are matched at the
particle’s location.7 Then, the distributional sources do not introduce any numerical
difficulty as they simply appear as jumps whenmatching the homogeneous inner and
outer solutions.

7For eccentric orbits where the particle can not be considered to be at a single radial location in
the frequency domain this matching must be modified slightly using, for example, the method of
extended homogeneous solutions [112, 116].
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The solutions of the Teukolsky equation for a given (�, m,ω) can be obtained
either through straightforward numerical integration of the radial ordinary differen-
tial equation (typically with somemodifications to improve numerical accuracy [151,
152]) or as an approximation in the form of an infinite convergent series of hyperge-
ometric functions. The latter method is based an idea originally developed by Leaver
[153] and now commonly referred to as the “MST” method, after Mano et al. [154]
who reformulated it into its current form. It provides an efficient and highly accu-
rate method for computing solutions of the radial equation. For example, recent
results have used it to compute solutions accurate to several hundred decimal places,
allowing the solutions to be used to determine previously unknown high-order post-
Newtonian parameters [155–159]. For a comprehensive review of theMST approach,
see the living review by Sasaki and Tagoshi [160] and references therein.

The frequency-domain approach is particularly appropriate in scenarios where
the worldline is well represented by a discrete spectrum involving a small number of
frequencies. In such cases, mode-sum regularization is by far the optimal choice and
is unparalleled in its accuracy and computational efficiency [161]. The prototypical
example is a circular orbit, in which only a single frequency is present. In the case of
eccentric equatorial orbits (and inclined circular orbits in the Kerr case), there are two
fundamental frequencies, and also an infinite number of higher harmonics produced
from combinations of the fundamental frequencies. For mildly eccentric orbits this
does not cause a great deal of difficulty. However, for more eccentric orbits (with
eccentricities e � 0.5) an increasingly large number of frequencies must be included
and the competitive advantage of the frequency domain approach is lost [161]. Even
worse, generic geodesic orbits in Kerr spacetime have three fundamental frequencies
and the computational difficulty is so high that a calculation has yet to be attempted.
Similarly, unbound orbits and other cases such as radial infall are not well suited
to frequency domain methods. Apart from these deficiencies, the frequency domain
mode-sum approach has been highly successful for producing results.

3.2.4 Mode-Sum Regularization in the Time Domain

The mode-sum scheme may also be applied in the time domain by skipping the
Fourier decomposition step and instead solving a set of 1 + 1D partial differential
equations in (t, r) space. The main difficulty then is in appropriately handling the
distributional source termwhich has the form δ(r −rp(t)). One solution, used in [49,
79, 98, 113, 149, 162], is to use a discretised representation of a delta function and
to construct the computational grid such that the worldline only ever passes between
grid points.

An alternative approach is to reformulate the problem in an analogous way to
the frequency-domain method. By splitting the computational domain into two
domains—one either side of the particle—the delta-function source can be refor-
mulated in terms of a jump in the fields and their derivatives at the interface of the
two domains. This method is well suited to highly-accurate spectral numerical meth-
ods as all of the numerically evolved fields are smooth functions. It was implemented
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using discontinuous-Galerkin methods in [106, 115] and using Chebyshev pseudo-
spectral methods in [78, 81]. Eccentric orbits present a small additional complexity
in this case as the particle must always lie on the domain interface. This is easily
achieved by introducing a time-dependent mapping between the computational and
physical coordinates of the system [81, 106].

3.2.5 Limitations of the Mode-Sum Regularization Scheme

Despite its resounding success to date, themode-sum regularization scheme has some
unfortunate disadvantages which make it ill-suited as a general-purpose method for
self-force calculations:

1. Its application in the Kerr case is only straightforward in the frequency domain,
since the field equations are not separable in the time domain8

2. It relies on the use of Lorenz gauge for regularization in the gravitational case.
This is not a major issue in the Schwarzschild case since the tensor spherical
harmonics may be used to decouple the Lorenz gauge field equations in the
angular directions (leaving 10 coupled 1 + 1D equations for each �, m mode).
However, there are no know tensor spheroidal harmonicswhichwould be required
for the Kerr case, and even if there were they would likely not be applicable
in the time domain (again, it is conceivable that a coupled system of equations
involving tensor spherical harmonics could be used, but the coupling would result
in considerable complexity).

3. It is not applicable beyond first perturbative order, since the modes of the second
order perturbation diverge logarithmically near the worldline.

The first two issues are not necessarily showstoppers. There have been several
attempts at 1+ 1D time-domain implementations using coupled spherical-harmonic
modes in the Kerr case [163, 164], and recent progress on reformulating mode-sum
regularization for radiation gauge has clarified the regularization issue [119]. The
third point, however, appears insurmountable. For these reasons, among others, the
effective source method, described in the next section, was developed.

3.3 Effective Source Approach

Proposed in 2007 as a solution to the shortcomings of mode-sum regularization, the
effective source approach9 provides an alternative method for handling the diver-
gence of the retarded field. Rather than first computing the retarded field and then

8It may still be possible to use mode-sum regularization for the Kerr case in the time domain
by decomposing the field equations into spherical harmonics and evolving the resulting infinitely
coupled set of 1 + 1D partial differential equations in a similar manner to the Schwarzschild case.
9Note that the effective source proposed by Lousto and Nakano [65] is similar in spirit, but differs
in that it is not derived from the Detweiler-Whiting singular field.
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subtracting the singular piece as a post-processing step, one can insteadwork directly
with an equation for the regular field. This idea—independently proposed by Barack
and Golbourn [56] and by Vega and Detweiler [57]—has the distinct advantage of
involving only regular quantities from the outset, making it applicable in a wider
variety of scenarios than the mode-sum scheme. In particular, since it does not rely
on a mode decomposition of the retarded field, it can be used by any numerical pre-
scription for solving the retarded field equations, whether in the frequency domain
(where the method is really just a generalisation of mode-sum regularization) or in
the time domain as a 1 + 1D, 2 + 1D or even 3 + 1D problem.

The basic idea is to use the split of the retarded field into regular and singular
pieces, Eq. (4), to rewrite the field equations, Eqs. (1a), (2a) and (3a) as equations for
the Detweiler-Whiting regular field,

(� − ξR)�R = (� − ξR)(�ret − �S)

= −4πρ − (� − ξR)�S, (19a)
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(19c)

If the singular field used in the subtraction is exactly the Detweiler-Whiting singular
field, then the two terms on the right hand side of this equation cancel and the regular-
ized field would be a homogeneous solution of the wave equation. Unfortunately, one
typically does not have access to an exact expression for the singular field. Indeed,
the Detweiler-Whiting singular field is only defined through a Hadamard parametrix
which is not even defined globally. Instead, the best one can typically do is a local
expansion which is valid only in the vicinity of the worldline. Borrowing the lan-
guage of Barack and Golbourn, we refer to an approximation to the singular field
as a “puncture” field, �S ≈ �P, AS

α ≈ AP
α, h̄S

αβ ≈ h̄P
αβ . Then, the corresponding

approximate regular field—referred to as the “residual field”—is no longer a solution
of the homogeneous equation, but instead is a solution of the sourced equation with
an effective source (see Fig. 6) which is defined to be the right-hand side of Eq. (19)
with the puncture field substituted for the singular field

Seff = −4πq
∫

δ4(x, z(τ ′))dτ ′ − (� − ξR)�P , (20a)
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Fig. 6 The effective source for a scalar particle on a circular orbit in Schwarzschild spacetime.
The source is generically non-smooth in the vicinity of the worldline (left), but the smoothness can
be improved by incorporating higher-order parts of the Detweiler-Whiting singular field into the
source
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∫
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(20c)

Note that the presence of a distributional component of the source on the worldline
is merely a formal prescription; in practice the puncture field is chosen so that it
exactly cancels this distributional component on the worldline. This effective source
is then finite everywhere, but has limited differentiability on the worldline. This
makes it well-suited to numerical implementations since no divergent quantities are
ever encountered. The only numerical difficulty arises from the non-smoothness of
the source in the vicinity of the worldline (see Fig. 6), which leads to numerical noise
in the computed self force. The noise can be reduced by making the source smoother
using higher-order parts of the Detweiler-Whiting singular field. As shown in Fig. 7,
at the same numerical resolution a higher order source (C2 in this case) eliminates
the vast majority of the numerical noise that is present when using a lower order
source (C0 in the case in the figure). The cost of this improved accuracy is a source
which is considerably more complicated, and costly to compute in a numerical code.

An additional level of complexity arises from the fact that the puncture field is
defined only in the vicinity of the worldline. To avoid ambiguities in its definition far
from the worldline, one must ensure that the puncture field goes to zero there. This
is most easily achieved by multiplying it by a window function, W , with properties
such that it only modifies the puncture field in a way that its local expansion about
the worldline is preserved to some chosen order. In a first-order calculation of the
self-force, it suffices to choose W such that W(x p) = 1, W ′(x p) = 0, W ′′(x p) = 0
and W = 0 far away from the worldline. The residual field (see Fig. 8) then obeys

(� − ξR)�res = Seff (21a)
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β = Seff
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Fig. 7 Radial self-force for a scalar particle on an eccentric orbit in Schwarzschild spacetime,
computed with a 3 + 1D implementation of the effective source scheme. Here, the independent
variable χ is a “relativistic anomaly parameter” defined through r = pM/(1 + e cosχ), with
p the semilatus rectum and e the eccentricity. The high-frequency errors using a continuous but
non-differentiable source (blue) are dramatically decreased by using a twice differentiable source
(orange) obtained from a higher-order approximation to the Detweiler-Whiting singular field. For
reference, a highly accurate value computed using frequency-domain mode-sum regularization is
also included (dashed, black). Figure based on version presented in Ref. [165]

Fig. 8 The � = 1, m = 1
spherical-harmonic mode of
the residual field, �res, for a
scalar point particle on a
circular orbit in
Schwarzschild spacetime.
This was produced in [86]
using a frequency-domain
effective source approach

and has the properties

�res(x p) = �R(x p), ∇α�res(x p) = ∇α�R(x p),

�res(x) = �ret(x) for x 
∈ supp(W), (22a)

Ares
α (x p) = AR

α(x p), ∇α Ares
α (x p) = ∇α AR

α(x p),

Ares
α (x) = Aret

α (x) for x 
∈ supp(W), (22b)
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hres
αβ(x p) = hR

αβ(x p), ∇αhres
αβ(x p) = ∇αhR

αβ(x p),

hres
αβ(x) = hret

αβ(x) for x 
∈ supp(W). (22c)

As the residual field coincides with the retarded field far from the particle we
can use the usual retarded field boundary conditions when solving Eqs. (21a)–(21c).
The details of a numerical implementation of the effective source approach are then
much the same as for the Green function and mode-sum regularization schemes.
One can use either a frequency domain or a time domain method for solving the field
equations, the key differences now being that there is no restriction to 1 + 1D, and
that the effective source must be included as a source term. A more thorough review
of the effective source approach—including a detailed description of methods for
obtaining explicit expressions for the effective source—can be found in Refs. [126,
166].

The effective source approach has been successfully applied in the frequency
domain [86], and in the time domain in 1+1D [57], 2+1D [84, 96, 122] and 3+1D
[85, 87, 88] contexts. It has also been formulated—but not yet implemented—in the
gravitational case to second order in the mass ratio [40, 41]; for the second order
problem it is currently the only viable computational strategy. Since the effects of
the second-order metric perturbation will be very small—being suppressed by two
orders of the mass ratio relative to test body effects—it is likely that a highly accurate
numerical scheme will be required, suggesting a frequency domain treatment of the
problem where one encounters ordinary differential equations (ODEs) which are
relatively easy to solve numerically to high accuracy.

4 Evolution Schemes

The calculation of the self-force is only the first stage in the production of an inspiral
model. Another critical component is a scheme for evolving the orbit using this self-
force information. Various approaches have been proposed, each of which brings
with it its own advantages and disadvantages. Approaches which make approxima-
tions in the self-force used to drive the inspiral can give substantial decreases in
the computational cost of an inspiral simulation, but come at the cost of ignoring
potentially relevant physical effects.

4.1 Dissipation Driven Inspirals

A straightforwardmodel for the inspiral can be obtained from energy balance consid-
erations. Using a flux calculation—in which fluxes of energy and angular momen-
tum are obtained by evaluating the point-particle retarded field near the horizon
and out at infinity—the entire issue of regularization is avoided and one obtains
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Fig. 9 Radial (left) and time (right) components of the self-force through one radial cycle, for
three different geodesic orbits in Schwarzschild spacetime. Solid lines indicate the full self-force
and dashed lines indicate the conservative-only (left) or dissipative-only (right) pieces. Arrows
denote the direction of the geodesic motion. Reproduced from Ref. [87]

an approximation to the contributions to the inspiral coming from dissipative self-
force effects. However, this is inadequate for capturing all relevant effects from the
first-order self-force. Being a dissipative approximation, it completely misses all
conservative corrections to the motion. Furthermore, there is no well-defined way of
associating fluxes far from the worldline with an instantaneous local self-force on
the worldline; a flux model can only be used to drive an inspiral in a time-averaged
sense, ignoring some potentially important dissipative contributions. Nevertheless,
the relative straightforwardness and computational efficiency of their implementa-
tion have made flux models a compelling approach to assessing qualitative features
of self-force driven inspirals. These “kludge” models have been used to produce
kludge waveforms for EMRI systems which capture at least some of the qualitative
physical effects [44, 45, 48, 49, 162].

To improve on the flux-based dissipative model, one can instead make use of a
half-retarded minus half-advanced scheme [43, 51–53] to compute a local, instanta-
neous dissipative self-force (see Fig. 9). This approach captures all dissipative effects
responsible for driving the inspiral, but still neglects small but potentially important
conservative corrections to the orbital phase of the system [121].

4.2 Osculating Self-Forced Geodesics

In order to account for both conservative and dissipative effects from the first order
self-force, it is essential to build an inspiral model around a full calculation of the
local self-force. This, however, still leaves some flexibility in the choice of method
for computing this local self-force. One option, based on the osculating geodesics
framework [167] is particularly compelling as it allows for dramatic improvements
in computational efficiency by separating the coupled problem of simultaneously
solving for the orbit and for the regularized retarded field into two independent,
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largely uncoupled computational problems. The basic idea is to perturbatively expand
the worldline about a geodesic of the background spacetime, z(τ ) = z0(τ ) + · · · .
Then, the self-force at first order is a functional not of the evolving orbit z(τ ), but
of the geodesic orbit, z0(τ ), which is instantaneously tangent to the worldline. This
expansion is valid in the adiabatic regime, where the orbit is evolving slowly and the
difference between the geodesic and evolving orbits is small; the error introduced
by the approximation appears at the same order in the equations of motion as a
second-order perturbative correction to the field equations.

The improvements in computational efficiency brought about by the osculating
geodesics approximation are dramatic. The problem of self-consistently computing
the regularized self-force coupled to an arbitrarily evolving orbit is reduced to the
much simpler problem of determining the self-force for geodesic worldlines. Since
orbits of black hole spacetimes are parametrised by atmost three conserved quantities
(energy and angular momentum in the Schwarzschild case, supplemented by the
Carter constant in the Kerr case), it is computationally tractable to span the entire
parameter space of moderately-eccentric geodesic orbits. Even better, the highly-
accurate frequency domain mode-sum method can be used because bound geodesic
orbits are efficiently represented by a small frequency spectrum. In Ref. [121] this
approach was explored over an entire radiation-reaction timescale for moderately-
eccentric inspirals in the Schwarzschild spacetime.10 Thiswas achieved by tabulating
the values for the self-force in a relevant portion of the energy-angular momentum
phase space of geodesic orbits, and using an interpolated model of the tabulated
results to drive an orbital inspiral.

4.3 Self-Consistent Evolution

Unfortunately, the adiabatic approximation responsible for the dramatic improve-
ments in computational efficiency brought by the osculating geodesics framework
also introduces errors in the equation of motion at second perturbative order, making
the method inadequate for the purposes of precision EMRI astrophysics. One pos-
sible solution, implemented in [88] for the scalar field case, is to avoid expanding
out the worldline and instead evolve the self-consistent coupled system of equations,
Eqs. (1a) and (1b); (2a), (2b) and (2c); or (3a) and (3b). This is a computation-
ally much more difficult problem as the field equations must be solved in the time
domain and one cannot rely on an efficient off-line tabulation of self-force values.
This self-consistent evolution can in principal be implemented using a time-domain
mode-sum scheme, but in practice implementations have instead used the effec-
tive source approach since that will be necessary at second perturbative order (see
Sect. 3.2 for an explanation of this issue).

10See also Ref. [168] for an approximate version which assumes a sequence of quasi-circular orbits.
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While a self-consistent evolution incorporates all effects contributing to the first
order self-force, and only neglects second order contributions from the second order
field equations, this comes at the cost of computational efficiency. Whereas an oscu-
lating geodesics framework can evolve a large number (∼10,000) of orbits with ease
once the initial off-line tabulation phase is complete [121], the self-consistent scheme
requires a long calculation of the solutions of the first-order field equations for each
new orbit. In reality, this limits the practicality of the scheme to tens of orbits using
current methods. The self-consistent evolution scheme is therefore most valuable as
a benchmark against which other, less accurate but more efficient methods can be
validated. In fact, comparisons between the self-consistent and osculating geodesics
scheme for the scalar case indicate that the osculating geodesics scheme performs
remarkably well [169].

4.4 Two-Timescale Expansions

The osculating geodesics scheme is fast, but inaccurate, while the self-consistent
evolution scheme is accurate, but slow. This begs the question of whether there is a
middle groundwhich incorporates most of the accuracy of a self-consistent evolution
while maintaining the computational efficiency of the osculating geodesics scheme.
One promising possibility is that the use of a two-timescale expansion could give
just such a scheme. In the two-timescale scheme, rather than using an expansion
about a background geodesic (which is valid over short timescales characterised by
the orbital motion), one introduces an additional radiation reaction timescale into the
problem and incorporates the relevant effects over this radiation reaction timescale.

The relevant two-timescale expansion of the worldline equations of motion was
completed in Ref. [52], and follow-up work has improved our understanding of
important resonance effects for inspiral orbits [53, 170–179]. In order to consistently
incorporate a two-timescale expansion into an orbital evolution scheme, it will also
be necessary to have a two-time expansion of the field equations. Promising progress
towards such an expansion was recently reported in [180], indicating that it is likely
that a self-consistent orbital evolution using a two-timescale expansion is indeed
feasible.

5 Discussion

The techniques described in this review represent the current state of the art of self-
force calculations. The three primary approaches: worldline convolutions,mode-sum
regularization and the effective source approach can be considered complimentary,
with each having regimes where they are most appropriate:
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• The mode-sum scheme gives unparalleled accuracy (particularly in the frequency
domain) for orbits which have a small frequency spectrum.

• The worldline convolution method provides valuable physical insight and can be
easily applied to arbitrary orbital configurations, including those inaccessible by
other means.

• The effective source approach can be used in arbitrary spacetimes without relying
on any symmetries, and also stands out as the most applicable to a second order
calculation.

There still remain important developments to be made in each case. For example,
the mode sum and effective source schemes are still under development for the Kerr
gravitational case, and worldline convolution approaches have yet to be fully applied
to the gravitational case for any spacetime.

Finally, it should be pointed out that this review is not an exhaustive exposi-
tion of all self-force computation strategies. Many other calculations have not been
described, including alternative regularization strategies [66, 181, 182], near-horizon
waveform calculations [183–186], methods based on effective field theory [187–
190], analytic calculations in particularly simple cases [95, 191, 192], black holes
in higher dimensions [193], and calculations in non-black hole spacetimes such as
wormholes [194, 195] and cosmological models [196, 197]. More details can be
found in the reviews [60, 61], and references therein.
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