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Abstract This article serves as a pedagogical introduction to the problem of motion
in classical field theories. The primary focus is on self-interaction: How does an
object’s own field affect its motion? General laws governing the self-force and self-
torque are derived using simple, non-perturbative arguments. The relevant concepts
are developedgradually by consideringmotion in a series of increasingly complicated
theories. Newtonian gravity is discussed first, thenKlein-Gordon theory, electromag-
netism, and finally general relativity. Linear and angular momenta as well as centers
of mass are defined in each of these cases. Multipole expansions for the force and
torque are derived to all orders for arbitrarily self-interacting extended objects. These
expansions are found to be structurally identical to the laws of motion satisfied by
extended test bodies, except that all relevant fields are replaced by effective versions
which exclude the self-fields in a particular sense. Regularization methods tradition-
ally associated with self-interacting point particles arise as straightforward pertur-
bative limits of these (more fundamental) results. Additionally, generic mechanisms
are discussed which dynamically shift—i.e., renormalize—the apparent multipole
moments associated with self-interacting extended bodies. Although this is primar-
ily a synthesis of earlier work, several new results and interpretations are included
as well.

1 Introduction

How are charges accelerated by electromagnetic fields? How domasses fall in curved
spacetimes? Such questions can be answered in many different ways. Consider, for
example, the Newtonian n-body problem. This is typically solved using a certain
systemof ordinary differential equationswhich govern the locations of n points inR

3.
Besides its location, eachpoint is characterizedonlyby itsmass.This is a considerable
abstraction from the stars or planets whose motion the n-body problem is intended
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to describe. Physically, each mass point is really an extended body described by the
laws of continuum mechanics. The internal density distributions, velocity fields, and
temperatures of these bodies might be governed by complicated sets of nonlinear
partial differential equations. From one point of view, it is the solutions to these
equations which represent “the motion” of each mass.

This is not, however, the approach which is typically adopted in celestial mechan-
ics. In that context, one instead focuses only on each body’s center of mass (and
perhaps its spin angular momentum). These are observables which describe motion
“in the large.” It is a central result of Newtonian gravity that much of the dynamics
of these observables can be understood without detailed knowledge of each body’s
internal structure. This is why the extended stars and associated partial differential
equations of the “physical n-body problem” can often be modeled as discrete points
satisfying a simple set of ordinary differential equations—an enormous simplifica-
tion.

This work is intended as an introduction to techniques which have recently been
developed [1–5] to similarly simplify problems of motion in a wide variety of con-
texts. Is it possible, for example, to describe extended masses in general relativity
using appropriately-defined centers of mass? Do these mass centers obey simple
laws of motion? Of course, the same questions may also be asked for charged matter
coupled to electromagnetic fields. In simple cases, appropriate laws of motion are
well-known in both electromagnetism and general relativity: Sufficiently small test
charges accelerate via the Lorentz force law and sufficiently small test masses fall
on geodesics. Test body motion is also understood in cases where a body’s higher
multipole moments cannot be neglected [6].

Although it has historically been difficult to relax the test body assumption
in relativistic theories, several important cases have nevertheless been understood
[7–14]. Themajority of thiswork has been intrinsically perturbative. Itmakes detailed
assumptions about the systems to be studied and uses these assumptions at all stages
in the analysis. Concepts like the mass and momentum of individual objects typi-
cally arise as purely perturbative structureswith no clear connection to the full theory.
This review takes a different approach. Although approximations may be needed to
understand specific applications, we adopt the point of view that approximating exact
concepts is preferable to considering structures which emerge only as artifacts of a
particular approximation scheme. We therefore focus on non-perturbative descrip-
tions of motion. Somewhat surprisingly, considerable progress can be made from
this perspective. Indeed, applying perturbation theory “too early” serves mainly to
increase the computational burden and to obscure the underlying physics.

The first step in our program is to define exact linear and angular momenta for
arbitrary extended objects.1 It is these momenta which are used to characterize an
object’smotion. Their evolution equations are derivedwithout placing any significant

1Classical point particles are sometimes discussed as though they were the fundamental building
blocks of all classical matter. This viewpoint is severely problematic on both mathematical and
physical grounds, and is rejected here. That said, appropriately-regularized point particles do arise
as mathematical structures obtained from certain well-defined limits involving families of extended
bodies. All mention of point particles here is to be understood in this (effective) sense.
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constraints on an object’s shape, composition, or degree of rigidity. Despite this
generality, the methods used here are very easy to apply once the main concepts
have been understood. Almost all difficulties lie in finding appropriate definitions
and interpreting relations between those definitions; complicated calculations are not
required.2 Nevertheless, many of the concepts used here are likely to be unfamiliar.
Considerable effort has therefore been devoted to explaining these concepts slowly
and carefully by applying them in a series of increasingly complicated contexts.

The prototype for all of our discussion is Newtonian celestial mechanics. The
laws of motion for this theory are reviewed in Sect. 2. This serves two purposes. First,
Sect. 2.1 uses standard techniques to remind the reader which ideas are important and
why they are true. What, for example, is a self-field? Why do the self-force and self-
torque vanish in Newtonian gravity? The methods used to discuss these questions
make essential use of the vector space structure of Euclidean space, and cannot be
generalized to curved spacetimes.

Section2.2 therefore uses Newtonian gravity as a familiar setting with which
to introduce techniques that do make sense in curved spacetimes. The problem is
reformulated such that no reference is made to any particular coordinate system or
to the detailed properties of Euclidean space. All that is needed is a Riemannian
space which admits a maximal set of Killing vector fields. It is then possible to
introduce a “generalized momentum” which serves to describe a body’s large-scale
behavior. The ordinary linear and angular momenta arise as two aspects of this more
fundamental structure. Using the generalized momentum has many advantages and
plays an essential role throughout this review. Employing it, Newtonian self-forces
and self-torques are seen to vanish using a one-line computation which requires only
the symmetry of an appropriate Green function. That symmetry is physically related
to Newton’s third law.

From this perspective, certain generalizations of Newtonian gravity may be con-
sidered with almost no additional effort. The standard Euclidean background space
can, for example, be replaced by one which is spherical or hyperbolic. The usual
laws of motion still hold in these cases, except for the addition of Mathisson-
Papapetrou spin-curvature couplings. Such terms arise kinematically even in these
non-relativistic problems, and are shown to have a simple geometrical interpretation.

Fully relativistic motion is first discussed in Sect. 3, although only in flat or oth-
erwise maximally-symmetric backgrounds. We consider for simplicity the motion
of matter coupled to a linear scalar field. A non-perturbative self-field is defined in
this context using a slight generalization of its Newtonian analog. Unlike in the non-
relativistic case, forces and torques exerted by relativistic self-fields do not necessar-
ily vanish. They instead act to renormalize3 an object’s linear and angular momenta.
This effect is finite and non-perturbative. Physically, it represents the inertia associ-
atedwith an object’s self-field.Mathematically, it is related to the hyperbolicity of the

2As is typical throughout physics, simple underlying principles do not imply simple applications
to explicit problems. Applications typically do require significant computations.
3It is common in the literature to use the words renormalization and regularization interchangeably,
both implying the removal of unwanted infinities. This is not the usage here. Renormalization is
intended in this review essentially as a synonym for “dynamical shift.” These shifts need not be
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underlying field equations. Similar effects apply generically for all matter coupled
to long-range hyperbolic fields.

Section4 considersmotion in fully generic curved spacetimes. TheKilling vectors
used to define momenta in simpler cases must then be replaced by an appropriate set
of “generalized Killing fields.” This is accomplished in Sect. 4.1. The scalar prob-
lem of motion is analyzed first in this more general context, where a new type of
renormalization is found to occur. This affects the quadrupole and higher multipole
moments of a body’s stress-energy tensor, and may be viewed as a consequence of
the “passive gravitational mass distribution” of an object’s self-field. Matter cou-
pled to electromagnetic fields in generic background spacetimes may be understood
similarly, and is discussed in Sect. 4.3. Finally, Sect. 4.4 considers motion in general
relativity.

Notation
The sign conventions used here are those of Wald [15]. Metrics have positive signa-
ture. The Riemann tensor satisfies 2∇[a∇b]ωc = Rabc

dωd for any 1-form ωa , and the
Ricci tensor is defined by Rab = Racb

c. Abstract indices are denoted using letters
a, b, . . . from beginning of the Latin alphabet, while i, j, . . . represent coordinate
components. Boldface symbols are used to denote Euclidean vectors and tensors.
Units are chosen such that c = G = 1.

2 Newtonian Gravity

Consider a Newtonian test body immersed in a gravitational potential φ(x, t). If such
a body is sufficiently small, it is well-known that its center of mass location γ t at
time t evolves via

γ̈ t = −∇φ(γt , t). (1)

This is not the correct equation of motion for (non-spherical) objects with significant
self-gravity. Relaxing the test body assumption while still imposing an appropriate
smallness condition results in

γ̈ t = −∇φ̂(γ t , t), (2)

where φ̂ denotes that part of the potentialwhich is determined only bymasses external
to the body of interest. Comparison of these two equations shows that the field ∇φ̂

(Footnote 3 continued)
infinite. Regularizations, by contrast, always refer to rules for handling singular behavior. Almost
all discussion here focuses on finite renormalizations. Regularizations arise only in certain limiting
cases.
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which accelerates a large mass can differ4 from the field∇φwhich would be inferred
by measuring the accelerations of nearby test particles. Although it is not often
emphasized, this is a standard result in Newtonian gravity. The well-known laws of
motion which describe “Newtonian point masses” are, for example, equivalent to
(2), not (1).

A central goal of this review is to explain how similar results hold in more compli-
cated relativistic theories. In all cases, the laws of motion are structurally identical to
those associated with test bodies. The fields which appear in those laws of motion are
not, however, the physical ones. Effective fields appear instead, their details depend-
ing on appropriate notions of self-interaction. Once the precise nature of the effective
field has been determined in a particular theory, “point particle limits” and related
approximations follow very easily.

Many of the difficulties encountered in the relativistic theory motion already
appear in the Newtonian problem (where they can be so simple as to easily pass by
unnoticed). It is therefore instructive to open this review by carefully discussing the
Newtonian theory ofmotion. Section2.1 accomplishes this using essentially standard
arguments. Concepts such as the self-field and self-force are emphasized, as well as
their connections to physical principles like Newton’s third law. Similar discussions
may be found in, e.g., [14, 16, 17]. Unfortunately, the familiar techniques used in
Sect. 2.1 cannot be readily applied tomore complicated theories. Section2.2 therefore
uses Newtonian gravity as a familiar setting with which to introduce a different, more
geometrical, approach. The resulting formulation, some ofwhich originally appeared
in [2, 5], does generalize. It is used throughout the remainder of this review.

2.1 Newtonian Celestial Mechanics

Consider an extended body residing inside a finite (and possibly time-dependent)
region of space Bt ⊂ R

3 which contains no other matter. The mass density ρ and
momentum density5 ρv of this body are both assumed to be smooth. Local mass and
momentum conservation then imply that [17–19]

∂ρ

∂t
+ ∇ · (ρv) = 0 (3)

4Although the gradients of φ and φ̂ coincide at the center of a spherically-symmetric mass, they can
be quite different in general. Consider, for example, a barbell constructed by joining two unequal
spheres with a massless strut.
5In simple cases, v represents a velocity field in the standard sense. More generally, it might
be only an effective construction. This occurs, for example, if a body is composed of multiple
interpenetrating fluids.
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and

∂

∂t
(ρv) + ∇ · (ρv ⊗ v − τ ) = f . (4)

The Cauchy stress tensor τ describes how matter interacts via contact forces, while
the force density f describes longer-range interactions (also known as body forces).
If the only long-range forces are gravitational, there exists a potential φ such that6

f = −ρ∇φ. (5)

Inside Bt , the potential must satisfy Poisson’s equation

∇2φ = 4πρ. (6)

The influence of masses external to Bt may be encoded using, e.g., φ or its normal
derivative on the boundary ∂Bt .

Equations (3)–(6) are very general. They are not, however, complete. Imposing
appropriate boundary conditions, Poisson’s equation determines φ in terms of ρ,
mass conservation evolves ρ using v, and momentum conservation evolves v using
τ . The stress tensor cannot, however, be determined without additional assumptions.
Its evolution is not universal. Stresses depend on an object’s detailed composition,
reflecting the trivial fact that different types of materials move differently. This is
but a minor obstacle in celestial mechanics, and no particular form for τ is assumed
here.

Observables which describe a body’s “large-scale” motion may be obtained by
integrating the conservation laws (3) and (4). This results in the total mass m, linear
momentum p(t), and angular momentum S(zt , t):

m :=
∫
Bt

ρd3x, p :=
∫
Bt

ρvd3x, S :=
∫
Bt

ρ(x − zt ) × vd3x. (7)

The general philosophy of celestial mechanics is to focus on p and S while ignoring
ρ and v as much as possible. The vast majority of information concerning an object’s
internal structure is set aside; only its momenta matter. Evolution equations for these
momenta are easily obtained from (3) and (4), which show that the mass remains
constant and that

ṗ = −
∫
Bt

ρ∇φd3x, Ṡ = −
∫
Bt

ρ(x − zt ) × ∇φd3x − żt × p. (8)

6This follows from noting that any sufficiently small piece of matter with finite density responds to
gravitational forces as though it were a test body.
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The gravitational force and torque acting on an extended body therefore depend on
its mass distribution, its internal gravitational potential, and a “choice of origin”
parametrized by zt .

One reason for considering p is its close relation to the center of mass position
γ t . This can be defined by

γ t := 1

m

∫
Bt

xρ(x, t)d3x, (9)

or equivalently by demanding that a body’s mass dipole moment vanish when eval-
uated about γt : ∫

Bt

(x − γ t )ρ(x, t)d3x = 0. (10)

Regardless, it follows from (3) and (9) that the center of mass velocity must satisfy

mγ̇ t = p. (11)

Note that this is a derived result, not a definition; m, γ t and p are defined in terms
of ρ and v via (7) and (9). In more complicated theories, the center of mass velocity
need not be parallel to the momentum.

Once γ t has been defined, its time evolution is easily found by combining (8) and
(11) to yield

mγ̈t = −
∫
Bt

ρ∇φd3x . (12)

Evaluating S(zt , t) with zt = γ t isolates the spin component of the angular momen-
tum from the orbital component which can appear more generally, resulting in

Ṡ = −
∫
Bt

ρ(x − γ t ) × ∇φd3x. (13)

In astrophysical applications, ρ and ∇φ are typically only very coarsely constrained
by observations. Integral expressions like (12) and (13) are therefore unsuitable for
applications. They must first be simplified.

Such simplifications are immediate if∇φ varies negligibly throughoutBt , as can
occur if themass in question is a test bodywhose dimensions are small comparedwith
the distances to all other masses in the universe. In these cases, it follows from (12)
and (13) that the center of mass acceleration satisfies (1) and that Ṡ = 0. Simplifying
the laws of motion in more general contexts requires understanding the influence of
an object’s own gravitational field.
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A precise definition for the self-field may be obtained via a two-point function
(or propagator) G(x, x′) describing “the gravitational potential at x per unit mass
at x′.” Any potential constructed from such a propagator can reasonably be called a
self-field only if it is a Green function for the Poisson equation:

∇2G(x, x′) = 4πδ3(x − x′). (14)

There are, of course, many possible Green functions. A particular onemay be singled
out by demanding that self-fields described by G be compatible with Newton’s third
law. Consider two distinct points x, x′ ∈ Bt . It is then natural to interpret “the force
on mass at x due to mass at x′” to mean

− ρ(x, t)∇
[
G(x, x′)ρ(x′, t)d3x′] d3x. (15)

The weak form of Newton’s third law states that the force at x due to x′ must be
equal and opposite to the force at x′ due to x, which implies that

∇G(x, x′) = −∇′G(x′, x). (16)

The strong form of Newton’s third law instead requires that the force at x due to x′
point along the line which connects these two points. Imposing this,

∇G(x, x′) ∝ x − x′. (17)

Any G(x, x′) which is compatible with the strong form of Newton’s third law can
therefore depend only on the distance |x − x′| between its arguments. Up to an
irrelevant additive constant, it follows from (14) that

G(x, x′) = G(x′, x) = − 1

|x − x′| . (18)

The total self-field is then

φS(x, t) :=
∫
Bt

ρ(x′, t)G(x, x′)d3x′ = −
∫
Bt

ρ(x′, t)

|x − x′|d
3x′. (19)

The physical field φmay be viewed as the sum of the self-field φS and an appropriate
remainder φ̂:

φ̂ := φ − φS. (20)

It follows from (6), (14), and (19) that the effective potential φ̂ satisfies the vacuum
field equation ∇2φ̂ = 0 throughout Bt .
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Now consider the total force exerted by φS, the “self-force.” Noting (8), it is
natural to let this refer to

FS := −
∫
Bt

ρ∇φSd
3x. (21)

Substituting (19) into this expression results in an integral over the product space
Bt × Bt :

FS = −
∫
Bt ×Bt

ρ(x, t)ρ(x′, t)∇G(x, x′)d3xd3x′. (22)

Recalling (16) or (18), the integrand is antisymmetric under interchange of x and
x′. The Newtonian self-force therefore vanishes. This is an exact result. It holds for
all compact mass distributions. Whatever the shape a particular body happens to be
inBt , the self-force vanishes because that shape is trivially symmetric when copied
intoBt × Bt . A similar argument may be used to show that the self-torque, the net
torque exerted by φS, vanishes as well.

The main point of this discussion is that the net gravitational force exerted on any
isolated extended mass satisfies

ṗ = −
∫
Bt

ρ∇(φ̂ + φS)d
3x = −

∫
Bt

ρ∇φ̂d3x. (23)

Not necessarily choosing zt to be the center ofmass, the equivalent evolution equation
for S(zt , t) is

Ṡ = −
∫
Bt

ρ(x − zt ) × ∇φ̂d3x − żt × p. (24)

The vanishing self-force and self-torque allows φ to be replaced by φ̂ in the evolution
equations for both the linear and angular momenta. Although forces and torques may
be computed using either the physical field φ or the fictitious effective field φ̂, the
latter computation is often simpler. In most cases of practical interest, ∇φ̂ varies
far more slowly in Bt than does ∇φ. The integral involving ∇φ̂ can therefore be
amenable to approximation when the (otherwise equivalent) integral involving ∇φ
is not.

Recalling that φ̂ is harmonic inside the body region, it must be analytic there.
This means that its Taylor series about an arbitrary point zt ∈ Bt converges at least
in some neighborhood of zt . If that series converges throughout the body, it may
be substituted into (23) and integrated term by term. The integral expression for the
force is then equivalent to

ṗi (t) = −m∂i φ̂(zt , t) −
∞∑

n=1

1

n!m j1··· jn (zt , t)∂i∂ j1 · · · ∂ jn φ̂(zt , t), (25)
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where m j1··· jn (zt , t) denotes the body’s 2n-pole mass moment about zt :

m j1··· jn (zt , t) :=
∫
Bt

(x − zt )
j1 · · · (x − zt )

jn ρ(x, t)d3x. (26)

The series (25) is referred to as a multipole expansion for the force. A similar series
also exists for the angular momentum. If zt is chosen to coincide with the center
of mass γ t , the dipole moment mi (γ t , t) vanishes by (10). The n = 1 term in (25)
therefore vanishes as well, so

γ̈i
t = −∂i φ̂(γt , t) − 1

m

∞∑
n=2

1

n!m j1··· jn (γt , t)∂i∂ j1 · · · ∂ jn φ̂(γt , t). (27)

The utility of this expression is that there are many cases of interest where the
multipole series can be truncated at low order without significant loss of accuracy.
The simplest such truncation recovers (2). More generally, there are correction to
this equation which involve a body’s quadrupole and higher multipole moments.

Lastly, note that themoments (26) are somewhat different from the ones which are
found in textbooks. The harmonicity of φ̂ implies that arbitrary traces may be added
to them j1··· jn without affecting the force. Them j1··· jn appearing in (25)may therefore
be replaced by different moments m̃ j1··· jn which are trace-free in all pairs of indices.
It is these trace-free moments which are typically used in practical calculations.
Besides the elimination of irrelevant components, the trace-free moments are also
useful in that they may be determined purely using external measurements of an
object’s gravitational field.

2.2 Reformulating Newtonian Celestial Mechanics

The discussion which has just been presented relies heavily on the geometric pecu-
liarities of Euclidean space. This is not essential. The only characteristic of (three-
dimensional) Euclidean spacewhich is truly important is that it ismaximally symmet-
ric: There exist a total of six linearly independentKilling vector fields. TheNewtonian
laws of motion are now rederived using methods which make this manifest.

As a consequence, certain aspects of the Newtonian problem are significantly
clarified. The geometrical nature of the linear and angular momenta is made precise,
for example. These are shown to be two aspects of a more fundamental vector which
lives not in the physical space, but in a space which is dual to the space of Killing
vector fields. The approach introduced in this section also emphasizes the impor-
tance of symmetries. It is fundamental to understanding motion in more complicated
theories.



Motion in Classical Field Theories and the Foundations of the Self-force Problem 337

Another advantage of the reformulation discussed in this section is that certain
generalizations of Newtonian gravity may be understood essentially “for free.” Not-
ing that spherical and hyperbolic spaces are both maximally-symmetric, there are
no new complications if the usual Euclidean background of Newtonian gravity is
replaced by a space of constant curvature. It is also trivial to change the number of
spatial dimensions, or to add, e.g., amass term to the field equation. For concreteness,
we restrict to three spatial dimensions and keep the gravitational field equation as-is.
We do, however, allow the background space to be curved. This has interesting con-
sequences which reappear in the more complicated relativistic theories considered
in later sections.

2.2.1 Geometric Preliminaries

The locations of Newtonian events may be viewed as points in a four-dimensional
manifold M. While a relativistic spacetime is defined using only a manifold and a
non-degenerate metric, Newtonian spacetimes require more structure [18–20]. One
such structure is a preferred notion of time. This takes the form of an equivalence
class7 of functions which associate each event in spacetime with “the time” at which
it occurs. Associated with this is a preferred foliation of M into a one-parameter
family of hypersurfaces {St }. These are the spaces of constant time.

Newtonian spacetimes are difficult to work with directly. They simplify consider-
ably in the presence of a frame, a structure that identifies events at different times as
being at “the same” spatial point. It is assumed here that a frame has been fixed in such
a way that all St are mapped into a single space consisting of a three-dimensional
manifold S together with a (fixed) Riemannian metric gab. This process also fixes a
particular time function. It permits all physical quantities in spacetime to be viewed
as time-dependent quantities on S. We allow the spatial metric to be curved, but
assume that its curvature is everywhere constant. Letting ∇a and Rabc

d denote the
covariant derivative and Riemann tensor associated with gab, ∇a Rbcd

f = 0. This
implies that (S, gab) is maximally symmetric.

Consider the motion of a material object instantaneously confined to a subman-
ifold Bt ⊂ S which contains no other matter and has finite volume. Denote this
body’s mass density at time t by ρ(·, t) and its velocity field at time t by va(·, t).
Local conservation of mass and momentum continue to hold in this context, so (3)
and (4) carry over essentially without change:

∂

∂t
ρ + ∇a(ρva) = 0, (28)

∂

∂t
(ρva) + ∇b(ρvavb − τab) = −ρ∇aφ. (29)

7For any single time function T : M → R and any c, d ∈ R such that c > 0, the map cT + d is
also an acceptable time function.
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The gravitational potential φ which appears here satisfies the obvious generalization
of Poisson’s equation:

∇a∇aφ = gab∇a∇bφ = 4πρ. (30)

2.2.2 Generalized Momentum

Our first significant departure from the elementary discussion of Newtonian motion
found in Sect. 2.1 arises in the definitions for a body’s linear and angular momenta.
The usual integrals (7) make sense only when evaluated in a Cartesian coordinate
system. Alternatively, they require a canonical identification of tangent spaces asso-
ciated with different points in the spatial manifold. While this is easily accomplished
in Euclidean space, it is not obvious what to do more generally. Our first task is
therefore to define momenta which do not make reference to a specific coordinate
system. Accomplishing this provides a notion of momentum which is easily gener-
alized to curved Newtonian backgrounds, and even to completely generic relativistic
spacetimes. It is a basic building block for all results discussed in this review.

One problem with elementary definitions of mechanical momentum is that they
attempt to represent this concept via a spatial vector or covector. This is physically
unnatural (except for point particles or momentum densities). Momenta are asso-
ciated with extended regions, not individual points. There is no natural tangent or
cotangent space in which to place the momentum contained in an extended region
R ⊂ Bt . The simplest mathematical structure with which to represent a quasi-local
quantity must itself be quasi-local. Spatial tensors are not, of course, examples of
such structures.

Besides being quasi-local, momenta must also be extensive. For any two disjoint
regions R1,R2 ⊂ Bt which are “physically independent,” there must be a sense in
which

(momentum in R1) + (momentum in R2) = (momentum in R1 ∪ R2) (31)

for some binary operation “+” which is both associative and commutative. IfR1 and
R2 are identically prepared, it is also natural to suppose that

(momentum in R1) + (momentum in R2) = 2(momentum in R1). (32)

This motivates a notion of scalar multiplication.
Together, these considerations and others suggest that momenta should be ele-

ments of a vector space. The most natural vector space is not, however, the space of
tensors at any particular spatial point. A better choice may be motivated by recall-
ing that conserved linear momenta arise naturally in theories which are derived
from translation-invariant Lagrangians. Similarly, conserved angular momenta arise
from Lagrangians which are invariant with respect to rotations. This suggests that
both types of momenta can be associated explicitly with a collection of continuous
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symmetries. Consider, in particular, those symmetries—the continuous isometries—
which preserve the spatial metric. While these are not necessarily symmetries for all
physically-interesting quantities, they are extremely useful.

The continuous isometries of a Riemannian space (S, gab) are generated by its
Killing vector fields. By definition,

Lξgab = 0 (33)

for every Killing vector ξa , where Lξ denotes the Lie derivative with respect to ξa .
We use K to denote the collection of all Killing vector fields together with obvious
notions of addition and scalar multiplication. This is a vector space. Moreover, the
dimension of this vector space is finite. If the dimension of the physical space is
dim S = dimBt = N , it may be shown that (see, e.g., Appendix C of [15])

dim K ≤ 1

2
N (N + 1). (34)

This section restricts attention to maximally-symmetric spaces where dim K =
1
2 N (N + 1). When N = 3, Euclidean, spherical, and hyperbolic spaces are all
maximally-symmetric. They admit six linearly-independent Killing fields. Given a
preferred point, three Killing fields may be interpreted as translations and three as
rotations. This makes sense only near the given point, and is best avoided at this
stage. Doing so implies that the linear and angular momenta should be treated as
elements of a single object “conjugate to” the space of all Killing vector fields.

Consider a representation of a body’s momentum as a vector in the space K ∗
which is dual to K . An element of K ∗ is, by definition, a linear map from K to R.
The specific linear map which has the desired properties is

Pt [R](ξ) :=
∫
R

ρ(x, t)va(x, t)ξa(x)dV, (35)

where ξa ∈ K and the volume element is the natural one associated with gab. We call
this the generalized momentum contained in R ⊆ Bt at time t . It is often convenient
to omit the dependence onR, in which case it is to be understood that Pt = Pt [Bt ].

The dimension of K ∗ is equal to the dimension of K , so this momentum has six
components in three spatial dimensions. These components correspond to the usual
three components of linear momentum and three components of angular momentum.
Such a split can be made explicit by introducing additional structure, namely a
preferred point zt ∈ Bt . For any such point, Pt [R] can be re-expressed in terms
of spatial tensors pa , Sa at zt . This is explained in Sect. 2.2.6. For now, it suffices
to consider Pt [R] on its own. While the introduction of a preferred point allows
this map to be replaced by spatial tensors, avoiding such representations whenever
possible provides considerable calculational and conceptual simplifications.
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In relativistic contexts where there exists a maximally-symmetric background
geometry, the generalized momentum remains essentially unchanged. The infinites-
imal momentum ρvadV is merely replaced by Ta

bdSb, where Ta
b is an appropriate

stress-energy tensor and dSb is the natural volume element on a three-dimensional
hypersurface. If a spacetime is not maximally-symmetric, one also replaces K by
another vector space which has the correct dimensionality. The “generalized Killing
fields” used for this purpose are discussed in Sect. 4.1.

2.2.3 Generalized Force

HowdoesNewtonian gravity affect the time evolution of the generalizedmomentum?
Using local momentum conservation (29) and assuming that the boundary ∂R is
independent of time (or that there is no matter there),

d

dt
Pt [R](ξ) =

∫
R

[
−ρLξφ + 1

2
(ρvavb − τab)Lξgab

]
dV = −

∫
R

ρLξφdV .

(36)

The second equality here follows from Killing’s equation (33). If Lψφ = 0 for
some specific Killing field ψa , it is clear that the associated momentum Pt [R](ψ) is
conserved. This means that if φ is constant along a translational Killing field, there
can be no force in that direction. Similarly, a field which is invariant about rotations
around a given axis exerts no torque about that axis. Both of these statements are
physically obvious. They are also of limited value. Once the field equation (30) is
taken into account, Lψφ = 0 implies that Lψρ ∝ Lψ∇a∇aφ = ∇a∇aLψφ = 0 as
well. This is clearly impossible for any compact body if ψa is a pure translation.
Rotational symmetries fare better, although they are still a rather special case.

Transforming (36) into a surface integral results in amore interesting conservation
law. Using the field equation and integrating by parts shows that

d

dt
Pt [R](ξ) = −

∮
∂R

T a
bξ

bdSa, (37)

where

Tab := 1

4π
(∇aφ∇bφ − 1

2
gab∇cφ∇cφ) (38)

is the stress tensor associated with φ. At least in flat space, one might imagine
extending ∂R (and perhaps ∂Bt ) far outside of all matter of interest. If φ falls off
sufficiently fast in this region, the surface integral can be seen to vanish. The gen-
eralized momentum is therefore conserved in such cases. Of course, the momentum
associated with a single object in a larger system is not conserved. Understanding its
dynamics requires a different argument.
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2.2.4 The Self-field

The generalized force (36) involves the physical fieldφ. As discussed in Sect. 2.1, this
is too complicated to work with directly. We therefore isolate its most complicated
part—the self-field—and compute what it does directly. Once this is accomplished,
the remaining undetermined portion of the force is relatively simple to understand.

The self-field in this context is defined in Sect. 2.1 in terms of a certain two-point
function G. This must still be a Green function. If G(x, x ′) = G(x ′, x), the two
constraints (16), (17) which implied a notion of Newton’s third law in Euclidean
space generalize to the statement that

LξG(x, x ′) = [
ξa(x)∇a + ξa′

(x ′)∇a′
]
G(x, x ′) = 0 (39)

for all ξa ∈ K . In the Euclidean case, translational invariance alone implies the
weak form of Newton’s third law. Further imposing rotational invariance recovers
the strong form of Newton’s third law. In general, though, symmetries of G imply
only “portions of” Newton’s third law.

It is always possible to find Green functions which satisfy (39) in maximally-
symmetric backgrounds. Indeed, these Green functions depend only on the geodesic
distance between their arguments. Introducing Synge’s function (also known as the
world function) [10, 21, 22]

σ(x, x ′) := 1

2
(squared geodesic distance between x and x ′), (40)

the Euclidean Green function (18) can be written as G = −1/
√
2σ. Green func-

tions associated with spherical and hyperbolic spaces are merely more complicated
functions of σ [23]. In any of these cases, LξG ∝ Lξσ = 0.

Using the symmetric Green function which satisfies (39) to define the self-field,
let

φS(x, t) :=
∫
Bt

ρ(x ′, t)G(x, x ′)dV ′. (41)

Substituting this into (36) shows that

d

dt
Pt = −

∫
Bt

ρ(x, t)Lξφ̂(x, t)dV

− 1

2

∫
Bt

dV
∫
Bt

dV ′ρ(x, t)ρ(x ′, t)LξG(x, x ′)

= −
∫
Bt

ρ(x, t)Lξφ̂(x, t)dV, (42)
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where φ̂ = φ − φS andR has been replaced by the entire body regionBt . It is clear
from this that the self-force and self-torque both vanish as an immediate consequence
of (39). All forces and torques may therefore be computed using φ̂ instead of φ.
Furthermore, the effective field satisfies the vacuum equation

∇a∇aφ̂ = 0. (43)

It can clearly be computed by subtracting the self-field from the physical field. Alter-
natively, Stokes’ theorem may be used together with (43) to write φ̂ as a kind of
average of φ over a closed surface which surrounds the body of interest.

It has already been mentioned that Pt (ψ) is conserved if Lψφ = 0. Equation (42)
shows that this also true if Lψφ̂ = 0, a much weaker condition. For a closed system,
one typically has φ = φS and hence φ̂ = 0. All components of the generalized
momentum are therefore conserved in such cases.

Equation (42) has been established by showing that the generalized force exerted
by φS always vanishes. This force involves an integral over Bt × Bt , and may
therefore be interpreted as a two-point interaction. It can sometimes be interesting
to also consider interactions between three or more points. Let

φ̃S(x, t) :=
nmax∑
n=1

cn

∫
Bt

dV1 · · ·
∫
Bt

dVnρ(y1, t) · · · ρ(yn, t)Gn(x, y1, . . . , yn), (44)

where the cn are arbitrary constants and the (n+1)-point propagatorsGn are symmet-
ric in their arguments and satisfy LξGn for all ξa ∈ K . It is straightforward to show
that the generalized force exerted by any such field vanishes. Given the two-point G
used to define φS, an appropriate three-point interaction may be chosen using, e.g.,

G3(x, y, z) = G(x, y)G(y, z)G(z, x). (45)

Other choices are also possible, of course. Higher-order propagators typically lead to
fields φ̃S which are not really Newtonian self-fields in the sense that∇a∇aφ̃S �= 4πρ.
Series like (44) can nevertheless be useful for understanding different theories where
matter couples to nonlinear fields. In those cases, the sum in φ̃S might be compared
to a kind of Dyson series for an object’s self-field. Regardless of the field equation,
however, the existence of a Killing field ψa which satisfiesLψ(φ− φ̃S) = 0 for some
φ̃S always implies that Pt (ψ) is conserved. Although this conservation law might be
manifest only for a particular choice of φ̃S, the value of Pt (ψ) does not depend on
that choice.
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2.2.5 Multipole Expansions

Returning to themain development, note that (36) and (42) differ only by the replace-
ment φ → φ̂. Although both of these integrals are numerically equivalent, the lat-
ter is often simpler to evaluate. This is because Lξφ̂ can be readily approximated
throughout Bt in many more physically-interesting situations than can Lξφ. Such
approximations are based on a Taylor expansion of φ̂. While this has an obvious
meaning in Euclidean space, a technical diversion is needed to explain what is meant
by Taylor expansions more generally.

Given an origin zt ∈ Bt about which a particular Taylor expansion is to be per-
formed, the most natural Cartesian-like coordinate systems are the Riemann normal
coordinates with origin zt . These are unique up to rotations, and may be used to
perform Taylor expansions in the usual way.

To be more precise, recall that the exponential map expx Xa = x ′ takes as input
a point x and a vector Xa at that point. The point x ′ which is returned is found by
considering an affinely-parametrized geodesic yu satisfying y0 = x and ẏa

0 = Xa .
The point x ′ is then equal to y1. An equivalent statement may be expressed using
Synge’s function (40). Letting σa(x ′, x) denote ∇aσ(x ′, x),

expx [−σa(x ′, x)] = x ′. (46)

First derivatives of Synge’s function therefore generalize the concept of a “separation
vector.” The x′ − x of a conventional Taylor series in Cartesian coordinates naturally
turns into−σa(x ′, x) inmore general contexts. If a scalar fieldλ(x) is to be expanded
in a Taylor series about some x , it is convenient to first rewrite this as a function on
the tangent bundle by defining

�(x, Xa) := λ(expx Xa). (47)

Now let the nth tensor extension of λ at x be

λ,a1···an (x) :=
[

∂n�(x, Xb)

∂Xa1 · · · ∂Xan

]
Xb=0

. (48)

This is the unique tensor fieldwhich reduces to n partial derivatives ofλ in a Riemann
normal coordinate system with origin x . In flat space, λ,a1···an = ∇a1 · · · ∇an λ. More
generally, the curvature can appear. Further discussion of tensor extensions may be
found in [4, 6].

Combining all of these concepts, a natural Taylor series for φ̂ which applies
regardless of the background geometry is

φ̂(x ′, t) =
∞∑

n=0

(−1)n

n! σa1(x ′, zt ) · · · σan (x ′, zt )φ̂,a1···an (zt , t). (49)
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All distances are assumed to be sufficiently small that σ remains single-valued and its
derivative is well-defined. Furthermore, a Taylor series like this is—even if it does
not converge everywhere of interest—assumed to be at least a useful asymptotic
approximation throughout Bs . Substituting (49) into (42) and integrating term-by-
term results in a multipole expansion for the generalized force. Noting that

Lξσ
a = Lξ(g

ab∇bσ) = gab∇bLξσ = 0 (50)

for any Killing field ξa , the multipole expansion for the generalized force is

d

dt
Pt (ξ) = −

∞∑
n=0

1

n!ma1···an (zt , t)Lξφ̂,a1···an (zt , t). (51)

The mass moments which appear here depend on ρ via

ma1···an (zt , t) := (−1)n
∫
Bt

σa1(x ′, zt ) · · · σan (x ′, zt )ρ(x ′, t)dV ′. (52)

It follows from (28) that the zerothmoment, themass, is independent of time. Conser-
vation laws do not, however, fix the evolution of the higher moments. These depend
on the type of matter under consideration.

If Lψφ̂ = 0 for some Killing field ψa , it follows that Lψφ̂,a1···an = 0 for any n.
The conservation of Pt (ψ) in such a case is therefore preserved by any approximation
which truncates the multipole series at finite n. This is an important property which
helps such approximations have accurate long-time behavior.

2.2.6 Linear and Angular Momenta

Thus far, Pt = Pt [Bt ] has been loosely described as equivalent to a body’s linear and
angular momenta at time t . Similarly, time derivatives of the generalized momentum
have been interpreted as “forces and torques.” These identifications are now made
precise.

Recall that the generalized momentum is a vector in K ∗, the vector space dual to
K . While it is productive to view Pt simply as a linear map from K to R, it can also
be useful to find its components with respect to a particular basis. It is in this context
that the linear and angular momenta arise in their more familiar form.

A basis for K may be found by recalling that knowledge of a Killing field and its
first derivative at any one point fixes it everywhere [15]. Choosing an arbitrary point
x , the space of Killing vectors is in one-to-one correspondence with the space of
all 1- and 2-forms at x . There exist two-point tensor fields �a′a(x ′, x), �a′ab(x ′, x)

such that

ξa′
(x ′) = �a′a(x ′, x)Aa + �a′ab(x ′, x)Bab (53)
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is an element of K for any Aa and any Bab = B[ab]. The “Killing data” satisfies

Aa = ξa(x), Bab = B[ab] = ∇aξb(x). (54)

In a physical space of dimension N , there exist N linearly independent 1-forms
and N (N − 1)/2 linearly independent 2-forms. Together, these generate the requi-
site N (N + 1)/2 linearly independent Killing vectors. In Euclidean space and in a
Cartesian coordinate system,

�i ′i (x ′, x) = δi i ′ , �i ′i j (x ′, x) = (x′ − x)[iδ j]i ′ . (55)

More generally, �a′a and �a′ab are related to the geodesic deviation equation and
form a basis for K . They can be computed using the first two derivatives of Synge’s
function [24]. Defining σab := ∇bσa = ∇b∇aσ, σaa′ := ∇a′σa , and Ha′

a :=
[−σa

a′ ]−1,

�a′a = Ha′
bσ

ba, �a′ab = Ha′[aσb]. (56)

Substituting (53) into (35) shows that Pt (ξ) can be written as a linear combination
of ξa(x) and ∇aξb(x). The coefficients in this combination are identified with the
linear momentum pa(x, t) and the angular momentum bivector Sab = S[ab](x, t):

Pt (ξ) = pa(x, t)ξa(x) + 1

2
Sab(x, t)∇aξb(x). (57)

This is an implicit definition. Varying amongst all possible ξa and ∇aξb recovers the
explicit formulae

pa(x, t) =
∫
Bt

ρ(x ′, t)va′(x ′, t)Ha′
b(x ′, x)σba(x ′, x)dV ′, (58)

Sab(x, t) = 2
∫
Bt

ρ(x ′, t)va′(x ′, t)Ha′[a(x ′, x)σb](x ′, x)dV ′. (59)

In three spatial dimensions, the angular momentum bivector is dual to an angular
momentum 1-form Sa via

Sa = 1

2
εabc Sbc. (60)

Introducing Cartesian coordinates in a flat background, it is easily verified that the pi

and Si derived from Pt in this way reproduce the elementary definitions (7). Explicit
coordinate expressions are more difficult to obtain in curved backgrounds, but these
are rarely necessary.
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Thus far, the spatial curvature has played no explicit role in any of our discussion.
It does appear, however, in the evolution equations for pa and Sab. First note the
general identity [15]

∇a∇bξc = −Rbca
dξd , (61)

which holds for any Killing field ξa . Time derivatives of the Killing data (Aa, Bab)

along a path zt therefore satisfy

D

dt
Aa = żb

t Bba,
D

dt
Bab = −Rabc

d żc
t Ad . (62)

These are known as the Killing transport equations [15, 25]. They are ordinary
differential equations which can be used to relate Killing data at one point to Killing
data at another point.

Consider linear and angular momenta defined about some zt , so, e.g., pa =
pa(zt , t). Substituting (54) and (62) into (57) then shows that

(
Dpa

dt
− 1

2
Rbcd

a Sbcżd
t

)
ξa + 1

2

(
DSab

dt
− 2p[a żb]

t

)
∇aξb = d

dt
Pt (ξ) (63)

for all ξa ∈ K . Varying over all Killing vector fields recovers the individual evolution
equations

ṗa = 1

2
Rbcd

a Sbcżd
t + Fa, Ṡab = 2p[a żb]

t + N ab. (64)

The force Fa and torque N ab = N [ab] appearing here are determined by match-
ing appropriate coefficients in dPt/dt . Integral expressions follow from (42), (53),
and (56):

Fa = −
∫
Bt

ρHa′bσab∇a′ φ̂dV ′, (65)

Nab = −2
∫
Bt

ρHa′[aσb]∇a′ φ̂dV ′. (66)

These expressions are exact. Their multipole expansions follow from (51):

Fa = −
∞∑

n=0

1

n!mb1···bn ∇aφ̂,b1···bn , (67)

N ab =
∞∑

n=0

2

n!g
c[amb]d1···dn φ̂,cd1···dn . (68)
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Note that the velocity ża
t of the (arbitrarily-chosen) origin does not appear in Fa

or N ab. Those portions of (64) which do involve the velocity are spatial analogs of
the Mathisson-Papapetrou terms typically used to describe the motion of spinning
particles in general relativity. It is apparent here that similar terms arise even in
non-relativistic theories. Their origin is essentially kinematic, being related to the
decomposition of K into pure translations and pure rotations. It follows from (57)
that pa(zt , t) is associated with Killing vectors which appear translational at zt in
the sense that ∇aξb(zt ) = 0. Similarly, Sab(zt , t) is associated with Killing fields
which are purely rotational in the sense that ξa(zt ) = 0. The Mathisson-Papapetrou
terms arise in the laws of motion because, e.g., a Killing vector which is purely
translational at zt is not necessarily purely translational at a neighboring point zt+dt .
A given Killing field may have different proportions of “translation” and “rotation”
at different points, and this inevitably mixes the evolution equations for pa and Sab.
A simple version of this effect occurs even in flat space, where a pure rotation about
one origin is not necessarily a pure rotation about another origin. This explains the
p[a żb]

t term in (64) and the −żt × p term in (24).
Essentially the same explanation for the Mathisson-Papapetrou terms applies in

general relativity. In that case, the spacetime may not admit any Killing vectors at all.
Regardless, there still exists a ten-dimensional space of “generalized Killing fields”
as described in Sect. 4.1. Given a particular event, these are naturally decomposed
into a four-dimensional space of translations and a six-dimensional space of rota-
tions and boosts. Whether or not a particular generalized Killing field is, e.g., purely
translational varies from point to point just as it does for ordinary Killing fields. The
evolution equations for relativistic momenta therefore acquire velocity-dependent
terms which are closely analogous to those which appear in the generalized New-
tonian theory discussed here.

Confining attention only to the generalized momentum whenever possible avoids
the complications associated with theMathisson-Papapetrou terms. It also simplifies
the discussion of conservation laws. Recall that the presence of a particular spatial
Killing field ψa which satisfies Lψφ̂ = 0 implies that Pt (ψ) must be conserved.
It follows from (57) that a particular linear combination of pa and Sab must be
conserved as well:

pa(zt , t)ψa(zt ) + 1

2
Sab(zt , t)∇aψb(zt ) = (constant). (69)

This constant is independent of zt . Its existence implies that a particular combination
of forces and torques must vanish. Specifically, comparison with (63) shows that

Faψa + 1

2
N ab∇aψb = 0. (70)

Although these results could be deduced directly from (64)–(66), they are consider-
ably more clear from the perspective of the generalized momentum and its evolution
equation (42).
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2.2.7 Center of Mass

The laws of motion for pa and Sab have left zt undetermined. One convenient choice
is to set zt = γt , where γt denotes the body’s center of mass at time t .

This is straightforward when the background space is flat. It is then standard to
define the center of mass to be the origin about which the mass dipole moment van-
ishes: ma(γt , t) = 0. Enforcing this while differentiating (52) recovers the standard
relation pa = mγ̇a

t between an object’s velocity and its linear momentum. Using
(64) and (67),

γ̈a
t = −∇aφ̂(γt , t) − 1

m

∞∑
n=2

1

n!mb1···bn (γt , t)∇a∇b1 · · · ∇bn φ̂(γt , t). (71)

This is equivalent to (27).
Similar results do not appear to hold when the background space is curved. It is

still possible to demand that the dipole moment vanish [which, among other benefits,
eliminates the n = 1 term in (67) and the n = 0 term in (68)]. The velocity of such
a trajectory may be shown to satisfy

γ̇b
t

∫
Bt

ρ(x ′, t)σa
b(x ′, γt )dV ′ = −

∫
Bt

ρ(x ′, t)va′
(x ′, t)σa

a′(x ′, γt )dV ′. (72)

The integral on the left-hand side of this equation can (typically) be inverted to yield
an explicit expression for γ̇a

t . Unfortunately, the result does not depend on pa in any
simple way. Simplifications are possible when a body’s dimensions are much smaller
than the curvature scale. In these cases σa

b and σa
a′ can be expanded in Taylor series

about γt , yielding the ordinary momentum-velocity relation at lowest order. More
generally, this is problematic. Higher-order corrections require more information
about the body than is required for the evolution equations of the momenta alone.
Moments of a body’s momentum distribution—its “current moments”—are required
together with its mass moments.

It is only in this very last step where a celestial mechanics of “curved New-
tonian gravity” appears to be problematic. Similar complications do not arise in rel-
ativistic systems. Among other differences, the presence of boost-type Killing fields
(or their generalizations) provide additional constraints which imply well-behaved
momentum-velocity relations.

2.2.8 Equations of Motion

Results such as (64) are properly described as laws ofmotion, not equations ofmotion
[26, 27]. They are incomplete. Even if zt is chosen as a body’s center of mass, we
still have not described how to compute φ̂ or the higher multipole moments.
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The traditional approach is to introduce smallness assumptions. Consider, for sim-
plicity, the n-body problem in flat space. If a particular body in such a system has
characteristic size � andmass m, its 2n-pole moments must be smaller8 than approxi-
mately m�n . Letting r denote a minimum distance between bodies and assuming that
all masses are comparable, the nth term in (71) is at most of order 1

n! (m/r)2(�/r)n .
Considerable simplifications therefore result if � � r . At lowest order, only the
monopole term is retained in the law of motion. Furthermore, each φ̂ may be com-
puted in this approximation by assuming that all other masses are pure monopoles.
This recovers the typical Newtonian n-body equations of motion. More details may
be found in, e.g., [16, 17].

3 An Introduction to Relativistic Motion

Despite being considerably more abstract than the traditional presentation of New-
tonian gravity, the formalism which has just been described is very powerful. It does
not rely on any particular coordinate systems, and the majority of the discussion
doesn’t even require that the metric be flat. Indeed, most of the results well-known in
ordinary Newtonian gravity continue to hold in generalizations of this theory which
employ spherical or hyperboloidal geometries. It is also trivial to change the num-
ber of spatial dimensions, or even to amend the field equation in certain ways. It is
physically more interesting, however, to consider motion in relativistic theories such
as electromagnetism or general relativity.

This section describes how the formalism of Sect. 2.2 generalizes for objects
coupled to relativistic fields. For simplicity, we consider the motion of an extended
mass coupled to a scalar field φ which satisfies the Klein-Gordon equation

(∇a∇a − μ2)φ = 4πρ. (73)

μ represents a (constant) field mass and ρ the body’s charge density. Following the
Newtonian problem as closely as possible, the four-dimensional background space-
time (M, gab) is assumed to be maximally-symmetric. Understanding motion in
more general curved spacetimes requires eliminating our reliance on a maximal set
of Killing vector fields. This is indeed possible, but is somewhat technical. Its dis-
cussion is therefore delayed to Sect. 4. Motion in electromagnetic fields is discussed
there as well.

Scalar charges in maximally-symmetric spacetimes provide a simple example
with which to introduce the relativistic theory of motion. They differ from their New-
tonian counterparts in only one important respect: Self-forces no longer vanish. Still,

8Large astrophysically-relevant objects like planets tend to be very nearly spherical due to the
limited shear stresses which can be supported. The trace-free components of the moments, which
are all that couple to the motion, are then much smaller than m�n . These tend to be induced mainly
by rotation and external tidal fields, and are typically modeled using Love numbers.
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self-forces are “almost ignorable.” They effectively renormalize a body’s momen-
tum, but do nothing else.9 This is a finite renormalization, meaning only that self-
forces conspire to, e.g., make the mass computed by integrating over a body’s stress-
energy tensor differ from the mass inferred by watching how that body accelerates
in response to external fields.

Physically, renormalization arises because as a charge accelerates, its field must
be accelerated as well. Although portions of that field may break away as radiation
or otherwise change, there is a sense in which charges and their fields remain insep-
arably coupled. The energy contained in a body’s self-field implies that it must resist
acceleration and contribute to that body’s inertia.

Now, self-forces vanish in Newtonian theory because of Newton’s third law. The
self-field is sourced by a body’s instantaneous mass distribution and exerts forces
on that same mass distribution. Interactions are no longer instantaneous, however,
in theories which involve hyperbolic field equations. Fields are sourced by charge
in a four-dimensional region of spacetime, but act only on configurations in three-
dimensional hypersurfaces. It is impossible to maintain an exact concept of “action-
reaction pairs” in this context. The imbalance which results turns out to exert forces
and torques which precisely mimic changes to a body’s linear and angular momenta.
This type of effect is generic for any coupling to long-range fields which satisfies
hyperbolic field equations (or otherwise depends on a system’s history).

3.1 Relativistic Continuum Mechanics

The simplest relativistic modification of Newtonian gravity10 involves objects with
scalar charge density ρ interacting via a fieldφwhich satisfies thewave equation (73).
Suppose that the body of interest resides inside a worldtubeW ⊂ M containing no
other matter. Also assume thatW is spatially bounded in the sense that its spacelike
slices have finite volume.

Our description for the motion of a compact object is based on its stress-energy
tensor T ab

body. This encodes many of a body’s mechanical properties, and is analogous

to the (ρ, va, τab) triplet used to analyze Newtonian objects in Sect. 2. Like those
variables, the stress-energy satisfies differential equations which are independent
of the specific type of material under consideration. Although these laws do not
determine T ab

body completely, they do provide significant constraints.

If φ vanishes everywhere and there are no other long-range fields, ∇bT ab
body = 0.

More generally, scalar fields contribute to a system’s total stress-energy. It is only

9The notion of self-force used here is consistent with the usual Newtonian definition, but is uncon-
ventional in relativistic contexts. Its precise meaning is made clear below.
10This is to be considered as a model problem. If interpreted as a theory of gravity, the type of scalar
field theory described here is not compatible with observations. Of course, it is not necessary to
interpret φ as a gravitational potential (so ρ needn’t be a “mass density” in any sense).
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this total T ab
tot = T (ab)

tot which is necessarily11 conserved:

∇bT ab
tot = 0. (74)

Consider splitting this total into “body” and “field” components:

T ab
tot = T ab

field + T ab
body. (75)

Away from any matter, it is clear that T ab
body = 0 and

T ab
field = 1

4π

[
∇aφ∇bφ − 1

2
gab(∇cφ∇cφ + μ2φ2)

]
. (76)

Elsewhere, local interactions between the matter and the field make it physically
difficult to motivate any particular split.

One possible way forward is to work only with T ab
tot . Unfortunately, the momen-

tum obtained from this stress-energy tensor might be very different if computed
first in a slice of W, and then in a slightly larger hypersurface. There is no natural
boundary where integrations can be stopped. Although momentum integrals might
settle down when performed over very large volumes, it is unclear how useful this
is. The relevant distance scale could be so large that the only “total momenta” which
are useful encompass the entire (modeled) universe, precluding any ability to learn
about the dynamics of individual masses. Results based on T ab

tot alone can be useful
in certain approximations involving the motion of very small bodies [28], but this is
insufficiently general for our purposes.

The approach adopted here is mathematically the simplest. Let T ab
field be given

by (76) throughout W. The remaining stress-energy tensor is then defined to be the
body’s: T ab

body = T (ab)
body := T ab

tot − T ab
field. Equations (73)–(76) imply that this satisfies

∇bT ab
body = −ρ∇aφ, (77)

which generalizes the Newtonian conservation laws (28) and (29).

3.2 Generalized Momentum

Recall the generalized momentum (35) defined for Newtonian mass distributions.
This requires very little modification for use in relativistic systems. The one com-
plication which does arise is that there is no longer any preferred notion of time. A
time parameter must be supplied as an additional ingredient, which is accomplished

11In a Lagrangian formalism, the total stress-energy tensor considered here is derived from a func-
tional derivative of the action with respect to the metric. It is conserved whenever the action is
diffeomorphism-invariant [15].
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by foliating W with a 1-parameter family of hypersurfaces {Bs}. Each Bs may be
viewed as the body region at time s, and is assumed to have finite volume. The pre-
cise nature of the body regions may be considered arbitrary for now. They can be
spacelike or even null.12

Supposing that a particular foliation has been fixed, the generalized momentum
contained in any three-dimensional region R ⊆ Bs is most obviously defined as

Ps[R](ξ) =
∫
R

T ab
bodyξadSb, (78)

where ξa is anyKilling vector field. Ps[R](·) defines a linearmap on the space of K of
Killing vector fields. It is therefore a vector in the dual space K ∗. For the maximally-
symmetric four-dimensional spacetimes considered here, dim K = dim K ∗ = 10.
Given a particular event, four of these dimensions correspond to translations and six
to rotations and boosts. As in the Newtonian case, such decompositions allow the
generalized momentum to be expressed in a basis which recovers linear and angular
momenta associated with a preferred event. The details of this correspondence are
described more precisely in Sect. 3.7.

3.3 Generalized Force

Forces and torques are determined by s-derivatives of the generalized momentum.
Considering only the momenta in Bs , it is convenient to simplify the notation by
defining Ps = Ps[Bs]. Using (77) together with Killing’s equation then shows that

d

ds
Ps(ξ) = −

∫
Bs

ρLξφdS (79)

for all ξa ∈ K , where dS := tadSa and ta denotes a time evolution vector field for
the foliation {Bs}. The relativistic generalized force (79) is essentially identical to
its Newtonian analog (36). As in that context, the force can be immediately put into a
practical formonly if the object of interest does not significantly contribute toφ.More
generally, the self-field introduces considerable complications. Progress is made by
finding a precise definition for the self-field, computing its effects analytically, and
then subtracting it out. The “effective field” which remains after this process is
typically much simpler to analyze than the physical one.

12Consider, e.g., the past-directed light cones associated with a timelike worldline.
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3.4 The Self-field

At least in part, the Newtonian self-field (19) can be generalized essentially as-is.
Let the relativistic self-field φS be obtained by convolving an object’s charge density
with a particular two-point13 scalar G. This must be a Green function, so

(∇a∇a − μ2)G(x, x ′) = 4πδ(x, x ′). (80)

Still more constraints are necessary to fix G uniquely. One of these follows from
requiring that the self-field14 depend only quasi-locally on a body’s “instantaneous”
configuration. It should not, for example, involve distantly-imposed boundary con-
ditions, the behavior of other objects, or a body’s history in the distant past. Such
conditions can be ensured by demanding that G(x, x ′) = 0 whenever x and x ′ are
timelike-separated. Lastly, suppose that G(x, x ′) = G(x ′, x). Such objects exist
(at least in finite regions), are unique, and are referred to as S-type or “singular”
Detweiler-Whiting Green functions [10, 29]. In the maximally-symmetric back-
grounds considered here, G satisfies LξG = 0 for all ξa ∈ K . It implies a rela-
tivistic form of Newton’s third law. For massless fields in Minkowski spacetime,
G = 1

2 (G+ + G−) where G± are the advanced and retarded Green functions. More
generally,

G = 1

2
(G+ + G− − V ) (81)

for a certain symmetric biscalar V (x, x ′) which satisfies the homogeneous field
equation. G can also be expressed in terms of Synge’s function σ. Using� to denote
the van Vleck determinant [10] (which depends on second derivatives of σ), δ the
Dirac distribution, and � the Heaviside distribution,

G = 1

2
[�1/2δ(σ) − V �(σ)]. (82)

This shows that G(x, ·) can have support on and outside the light cones of x .
The self-field “due to” charge contained in a given spacetime volume R ⊆ W

can now be expressed in terms of the S-type Detweiler-Whiting Green function:

φS[R](x) =
∫
R

G(x, x ′)ρ(x ′)dV ′. (83)

If the argument R is omitted, the integral is understood to be carried out over an
object’s entire worldtube W.

13It is also possible to introduce (n + 1)-point self-fields similar to (44). This is not considered any
further here.
14The term self-field is used in several different ways in the literature. The definition adopted here
is uncommon, and is sometimes described as the “Coulomb-like” component of the self-field.
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We now compute the self-force. It simpler not to consider this directly, but rather
its integral over a finite interval of time. Letting sf > si, it is clear from (79) that

Psf (ξ) − Psi(ξ) =
∫ sf

si

d

ds
Ps(ξ)ds = −

∫
I

ρLξφdV (84)

for any ξa ∈ K . The 4-volume I = I(si, sf) ⊂ Wwhich appears here represents that
part of an object’s worldtube which lies in between the initial and final hypersurfaces
Bsi ,Bsf . See Fig. 1. Substitution of the self-field definition (83) into (84) shows that
the total change in momentum due to φS alone is

∫
I
dV

∫
W

dV ′ f (x, x ′), (85)

where

f (x, x ′) = −ρ(x)ρ(x ′)ξa(x)∇aG(x, x ′) (86)

may be interpreted as the density of generalized force exerted at x by x ′. Indepen-
dently of any specific form for f , double integrals with the form (85) can be rewritten
as

1

2

∫
I
dV

(∫
W

dV ′[ f (x, x ′) + f (x ′, x)] +
∫
W\I

dV ′[ f (x, x ′) − f (x ′, x)]
)

(87)

whenever the relevant integrals commute. This identity is very general, and is cen-
tral to understanding motion in every relativistic theory we discuss. It is therefore
worthwhile to examine it in detail.

Fig. 1 Schematic illustrations of a body’s worldtube W together with hypersurfaces Bsi and Bs f

(drawn spacelike). The region I(si , s f ) ⊂ W bounded by these hypersurfaces and appearing in
(84) is indicated. The shaded 4-volumes B̂si and B̂s f [see (97)] denote the domains of dependence
associated with the self-momenta Esi and Es f defined by (90). Although Ps f (ξ) − Psi (ξ) depends

on ρLξφ̂ throughout I(si , s f ), it depends on more complicated aspects of a body’s internal structure
only in the shaded regions. These contributions are always confined to within approximately one
light-crossing time of the bounding hypersurfaces, and are therefore “quasi-local”
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The first term in (87) can be interpreted as an average of “action-reaction pairs”
in the sense of Newton’s third law. It is very similar to the types of identities used
to simplify the motion of objects coupled to elliptic fields in Sect. 2. Recalling that
discussion, the reciprocity relation G(x, x ′) = G(x ′, x) implies that

∫
I
dV

∫
W
dV ′[ f (x, x ′)+ f (x ′, x)] = −

∫
I
dV

∫
W
dV ′ρ(x)ρ(x ′)LξG(x, x ′). (88)

As in the Newtonian theory, Lie derivatives of G are associated here with sums
over action-reaction pairs. As in that case, these sums vanish. All of the self-force is
therefore determined by the second group of terms in (87). These do not vanish in
general. They are intrinsically connected to the finite speed of propagation associated
with the wave equation, and are responsible for renormalizing a body’s momentum.

3.5 Renormalization

The generalized force exerted by φS is entirely determined by the final part of (87).
To understand this, first letB+

s (resp.B−
s ) denote the four-dimensional future (past)

of Bs inside the body’s worldtube:

B±
s (s) :=

⋃
±(τ−s)>0

Bτ . (89)

Also define

Es(ξ) := 1

2

(∫
B+

s

ρLξφS[B−
s ]dV −

∫
B−

s

ρLξφS[B+
s ]dV

)
. (90)

Like Ps , this represents an s-dependent vector in K ∗. Using it, the second term in
the expansion (87) for the self-force is simply

1

2

∫
I
dV

∫
W\I

dV ′[ f (x, x ′) − f (x ′, x)] = −[Esf (ξ) − Esi(ξ)]. (91)

Taking the limit sf → si while combining (84), (87), (88), and (91) finally shows
that the generalized force can be written as

d

ds
Ps(ξ) = −

∫
Bs

ρLξφ̂dS − d

ds
Es(ξ). (92)

Replacing the physical field φ with φ̂ = φ − φS can therefore be accomplished only
at the cost of the counterterm −dEs/ds. That this is a total derivative suggests the
introduction of an “effective generalized momentum” P̂s satisfying
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P̂s := Ps + Es . (93)

For any finite scalar charge in a maximally-symmetric spacetime,

d

ds
P̂s(ξ) = −

∫
Bs

ρLξφ̂dS. (94)

There is a sense in which Es renormalizes the (bare) momentum Ps . The sum of Ps

and Es behaves instantaneously as though it were the momentum of a test charge
placed in the effective field φ̂. Furthermore,

(∇a∇a − μ2)φ̂ = 0. (95)

Physically, it is not sufficient to motivate the renormalization Ps → P̂s merely by
fact that the self-force is a total derivative. Essentially any function of one variable
can be written as the total derivative of its integral. Indeed, one might introduce a
constant s0 and define

P̃s(ξ) := Ps(ξ) + Es(ξ) +
∫ s

s0
dτ

∫
Bτ

dSρLξφ̂. (96)

This does not vary at all with s. While it may be useful for some purposes, P̃s is not
a physically acceptable momentum. This is because it depends in an essential way
on the configuration of the system for all times between s0 and s. While P̃s would
be approximately local for s ≈ s0, it otherwise depends on a system’s history in a
complicated way.

The renormalized momentum P̂s defined by (93) does not share this deficiency.
Like Ps , it depends only on the body’s configuration in regions “near” Bs . The
relevant region is, however, somewhat larger for P̂s than it is for Ps . Definitions (83)
and (90) imply that Es(ξ) depends on a neighborhood B̂s ⊃ Bs defined to be the
set of all points in W which are null- or spacelike-separated to at least one point in
Bs . In terms of Synge’s function,

B̂s = {x ∈ W | σ(x, y) ≥ 0 for some y ∈ Bs}. (97)

B̂s is a (finite) four-dimensional region of spacetime. It extends into the past and
future of Bs by roughly the body’s light-crossing time. See Fig. 1.

One might have guessed that a self-momentum at time s could be defined by
integrating the stress-energy tensor associated with15 φS over a large hypersurface
which contains Bs . Unfortunately, such integrals depend on gradients of φS far
outside of Bs . These, in turn, depend on the body’s state in the distant past and
future. Such a definition is physically unacceptable in general. Nevertheless, it does

15Recalling (76), T ab
field is quadratic in φ. The stress-energy tensor “associated with φS” is taken to

mean that portion of T ab
field which is quadratic in φS. Terms linear in φS are not included.
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make sense in the stationary limit, and may be shown to coincide with Es in that
case [2]. In more dynamical cases, the Es defined here appears to be the only well-
motivated possibility.

3.6 Multipole Expansions

Forces and torques exerted on relativistic scalar charges may be expanded exactly as
in the Newtonian theory. Assuming that φ̂ can be accurately approximated using a
Taylor series about some origin zs ∈ Bs , the techniques of Sect. 2.2.5 may be used
to show that (94) admits the multipole expansion

d

ds
P̂s(ξ) = −

∞∑
n=0

1

n!q
a1···an (zs, s)Lξφ̂,a1···an (zs). (98)

The 2n-pole moment of ρ which appears here is defined by

qa1···an (s) := (−1)n
∫
Bs

σa1(x, zs) · · · σan (x, zs)ρ(x)dS, (99)

and φ̂,a1···an denotes the nth tensor extension of φ̂. Equation (98) may be compared
with the Newtonian generalized force (51). Unlike its Newtonian counterpart, how-
ever, the relativistic scalar monopole moment q may depend on time; the total charge
is not necessarily conserved. Also note that the relativistic multipole expansion is
intended only to be asymptotic. It may require truncation at large n (see, e.g., [30]).

3.7 Linear and Angular Momenta

Like Ps , the effective generalized momentum P̂s is an element of K ∗. Expanding
this in an appropriate basis recovers objects which may be interpreted as a body’s
linear and angular momenta. The appropriate arguments are almost identical to those
described in Sect. 2.2.6.

Choosing a point zs ∈ Bs , every Killing field may be written as a linear combi-
nation of 1- and 2-forms at zs [cf. (53)]. Ps(ξ) and P̂s(ξ) are clearly linear in ξa , so
they too may be expanded in linear combinations of 1- and 2-forms at zs . Recalling
(57), the coefficients in this combination may be identified as a body’s linear and
angular momentum:

P̂s(ξ) = p̂a(zs, s)ξa(zs) + 1

2
Ŝab(zs, s)∇aξb(zs). (100)
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Hats have been placed on p̂a and Ŝab to emphasize that these are renormalized
momenta. Bare quantities defined in terms of Ps may be introduced as well and
shown to coincide with the momenta introduced by Dixon [6, 17, 24] for objects
without electromagnetic charge-currents. The bare momenta obey more complicated
laws of motion, and are not considered any further.

Differentiating (100) while using (61) leads to an implicit evolution equation for
p̂a and Ŝab:

(
D p̂a

ds
− 1

2
Rbcd

a Ŝbc żd
s

)
ξa + 1

2

(
DŜab

ds
− 2 p̂[a żb]

s

)
∇aξb = d

ds
P̂s(ξ). (101)

Varying over all ξa and all ∇aξb = ∇[aξb] recovers the explicit equations

D p̂a

ds
= 1

2
Rbcd

a Ŝbc żd + F̂a,
DŜab

ds
= 2 p̂[a żb] + N̂ ab. (102)

The force F̂a and torque N̂ ab = N̂ [ab] appearing here may be found in integral form
by comparing (94) and (101). Using the multipole expansion (98) instead,

F̂a = −
∞∑

n=0

1

n!q
b1···bn ∇aφ̂,b1···bn , (103)

N̂ ab =
∞∑

n=0

2

n!g
c[aqb]d1···dn φ̂,cd1···dn . (104)

The laws of motion (102)–(104) describe bulk features of essentially arbitrary self-
interacting scalar charge distributions in maximally-symmetric backgrounds. As in
the Newtonian case, all explicit dependence on ża

s is contained in the Mathisson-
Papapetrou terms. These terms are kinematic, andmay again be traced to the changing
character of Killing fields evaluated at different points.

All conservation laws discussed in theNewtonian context generalize immediately.
If Lψφ̂ = 0 for some particular Killing field ψa ,

P̂s(ψ) = p̂aψa + 1

2
Ŝab∇aψb = (constant). (105)

Similarly,

F̂aψa + 1

2
N̂ ab∇aψb = 0. (106)

These results are exact. They hold independently of any choices made for zs . They
also apply to approximate momenta evolved via any consistent truncation of the
multipole series.
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Although the relativistic multipole expansions are structurally almost identical
to their Newtonian counterparts, it is important to emphasize that the effective field
is far more difficult to compute in relativistic contexts. In Newtonian gravity, φ̂ is
simply the external potential and is easily computed given the instantaneous external
mass distribution of the universe. The relativistic effective potential can, however,
depend in complicated ways on boundary conditions, initial data, and past history.
Using retarded boundary conditions, the relativistic φ̂ typically depends on ρ, and is
therefore not interpretable as a purely external field.

Another property of the relativistic theory is that the angular momentum has
six independent components rather than three. Consider a unit timelike vector ua

at zs . This acts like a local frame which may be used to decompose Ŝab into two
components. Given ua , there exist Ŝa and m̂a which satisfy

Ŝab = εabcduc Ŝd − 2u[am̂b] (107)

and ua Ŝa = uam̂a = 0. Writing out Ŝab explicitly in flat spacetime in the limit
of negligible self-interaction suggests that Ŝa represents a body’s “ordinary” angu-
lar momentum about zs . Similarly, m̂a may be interpreted as the dipole moment
of a body’s energy distribution. Relativistically, these are two aspects of the same
physical structure. The split Ŝab → (Ŝa, m̂a) is closely analogous to the decom-
position Fab → (Ea, Ba) of an electromagnetic field into its electric and magnetic
components.

3.8 Center of Mass

Thus far, the foliation {Bs} of W used to define the generalized momentum has
been left unspecified. The collection of events {zs} used to perform the multipole
expansion (98) has been arbitrary as well. This constitutes a considerable amount of
freedom.

One simplifying strategy is to first associate a hypersurface with each possible
point in W. This could be accomplished by, e.g., defining Bs to be the past- (or
future-) null cone with vertex zs . A timelike worldline parametrized by {zs} then
results in a null foliation ofW. Alternatively, a spacelike foliation may be chosen as
described in [17, 24, 31].

Regardless, defining each Bs in terms of zs reduces all freedom in the law of
motion to the choice of a single worldline (and its parametrization). Recall that in
Newtonian gravity, a body’s center ofmass is the location aboutwhich itsmass dipole
moment vanishes.Relativistically, the dipolemoment of a body’s stress-energy tensor
is proportional to Ŝab(zs, s). In general, there is no choice of zs which can be used
to make this vanish entirely. It is, however, possible to use translations to set m̂a = 0
as defined in (107). This requires the introduction of a frame with which to choose
an appropriate dipole moment. Consider the zero-momentum frame ua where
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p̂a = m̂ua . (108)

ua is defined to be a unit vector, so the rest mass m̂ must satisfy

m̂ :=
√

− p̂a p̂a . (109)

A center of mass γs may now be defined by demanding that

Ŝab(γs, s) p̂a(γs, s) = 0. (110)

This can be interpreted as requiring that the dipole moment of a body’s energy
distribution vanish as seen by a zero-momentum observer at γs . It is a highly implicit
definition. Good existence and uniqueness results are known for the closely-related
Dixon momenta [32, 33], but not more generally. We nevertheless assume that a
unique worldline (and associated foliation) can be found in this way. Other choices
are also possible, however.

A general relation between the center ofmass 4-velocity and the linearmomentum
may be found by differentiating (110). The result of this differentiation is solved
explicitly for γ̇a

s in [17, 31], resulting in16

m̂γ̇a
s = p̂a − N̂ a

bub −
Ŝab

[
m̂ F̂b − 1

2 ( p̂c − N̂ c
huh)Ŝd f Rbcd f

]

m̂2 + 1
4 Ŝ pq Ŝrs Rpqrs

. (111)

This assumes that the parameter s has been chosen such that γ̇a
s p̂a = −m̂, and also

that all instances of zs have been replaced with γs . In principle, it is possible for
the denominator m̂2 + 1

4 Ŝ pq Ŝrs Rpqrs here to vanish, indicating a breakdown of the
center of mass condition. This can occur only if the curvature scale is comparable
to a body’s own size, in which case it is unlikely that any simple description of
an extended body in terms of its center of mass is likely to be useful. In more
typical cases, it is straightforward to obtain multipole approximations of (111) by
substituting appropriately-truncated versions of (103) and (104).

Also note that γ̇a
s is not necessarily collinear with p̂a . The difference p̂a − m̂γ̇a

s
may be interpreted as a “hiddenmechanical momentum.” Simple examples of hidden
momentum are commonly discussed in electromagnetic problems (see, e.g., [8, 34,
35]), but occur much more generally. Some consequences of the hidden momentum
are discussed in [36, 37].

The center of mass condition provides more than just a relation between the
momentum and the velocity. It also implies that Ŝab(γs, s) can be written entirely in
terms of the spin vector Ŝa(γs, s). Inverting (107) while using (110),

16References [17, 31] derive the momentum-velocity relation using Dixon’s momenta without a
scalar field, but in a spacetime which is not maximally-symmetric. Here, Dixon’s momenta are
modified by Es , there is a scalar field, and the spacetime is maximally-symmetric. Despite these
differences, the relevant tensor manipulations are identical.
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Ŝa(γs, s) = −1

2
εabcdub Ŝcd . (112)

Differentiating this and applying (102), the spin vector evaluated about the center of
mass is seen to satisfy

DŜa

ds
= −1

2
εabcdub N̂ cd + ua

(
Ŝb

Dub

ds

)
. (113)

The first term here represents a torque in the ordinary sense. The second term is
responsible for the Thomas precession, and may be made more explicit by substitut-
ing (102) and (108).

An evolution equationmay also be derived for themass m̂, which is not necessarily
constant. Variations in m̂ are not an exotic effect; masses change even for monopole
test bodies coupled to relativistic scalar fields. In general, use of (102) and (109)
shows that the mass evaluated using zs = γs satisfies [24]

dm̂

ds
= −γ̇a

s F̂a + N̂abua Dub

ds
. (114)

The final term here may be made more explicit by using (102) and (108) to eliminate
Dub/ds.

3.9 Monopole Approximation

The equations derived here are quite complicated in general. Some intuition for them
may be gained by truncating the multipole series at monopole order. Inspection of
(103) and (104) then shows that

F̂a = −q∇aφ̂, N̂ab = 0. (115)

Further restricting to cases where q = (constant), it follows from (114) that

m̂ − qφ̂ = (constant). (116)

m̂ − qφ̂ may therefore be viewed as a conserved energy for the system. Note that it
is the effective field φ̂ which occurs here, not the physical field φ.

Contracting (113)with Ŝa also shows that Ŝ2 := Ŝa Ŝa = (constant), meaning that
the spin vector can only precess in the monopole approximation. The rate at which
this occurs may be simplified by first recalling that in any maximally-symmetric
spacetime, there exists a constant κ such that

Rabcd = κga[cgd]b. (117)
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Of course, κ = 0 in the flat background of special relativity. Regardless, the spin
evolution is independent of κ:

DŜa

ds
= −(q/m̂)ua Ŝb∇bφ̂. (118)

It experiences a purely Thomas-like precession. The momentum-velocity relation
(111) does, by contrast, retain explicit evidence of the curvature, reducing to

m̂γ̇a
s = p̂a +

(
q/m̂

1 + 1
2κ(Ŝ/m̂)2

)
εabcdub Ŝc∇d φ̂. (119)

The linear momentum is also affected by κ:

D p̂a

ds
= −q∇aφ̂ + q

(
1
2κ(Ŝ/m̂)2

1 + 1
2κ(Ŝ/m̂)2

) (
δb

a + uaub − Ŝa Ŝb/Ŝ2
)

∇bφ̂. (120)

The overall force is therefore a particular linear transformation of −q∇aφ̂. Up to
an overall factor, the second term here extracts that component of q∇aφ̂ which is
orthogonal to both p̂a and Ŝa .

Together, (116) and (118)–(120) determine the evolution of a scalar charge in
the monopole approximation. Despite the approximations which have already been
made, these equations remain rather formidable. They may be simplified further by
demanding that Ŝ = 0 at some initial time. The monopole approximation implies
that an initially non-spinning particle remains non-spinning, so it is consistent to set
Ŝ = 0 for all time. It also follows that p̂a = m̂γ̇a

s and

γ̈a
s = −(q/m̂)(gab + γ̇a

s γ̇b
s )∇bφ̂. (121)

In the test body limit where φ̂ ≈ φ, this is the typical equation adopted for the motion
of a point particle with scalar charge q. A point particle limit of this equation which
still allows for self-interaction is equivalent to what is known as the Detweiler-
Whiting regularization [10, 29]. This regularization—which originally arose via
heuristic arguments associated with the singularity structure of point particle fields—
is a special case of the much more general results derived here (and which first
appeared in [2]). Its origin is unrelated to anypoint particle limits or to the singularities
associated with them.

It is shown in Sect. 4.2 that standard self-force results follow easily from (121).
That section also generalizes all laws ofmotion derived here to apply to scalar charges
moving in arbitrarily-curved spacetimes.
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4 Motion in Curved Spacetimes

The discussion up to this point has made extensive use of Killing vector fields.
This is familiar and simple, but not necessary. The first step towards understanding
motion in generic spacetimes is to find a suitable replacement for the space of Killing
vector fields. Once this is accomplished, the problem of motion for extended charges
coupled to scalar fields is considered once again. This example is used to illustrate
a new type of renormalization which occurs in spacetimes without symmetries. The
techniques used to solve the scalar problem are then adapted to discuss motion in
electromagnetic fields. Lastly, we consider motion in general relativity, where the
objects of interest dynamically modify the geometry itself.

4.1 Generalized Killing Fields

Recalling (35) or its relativistic analog (78), the generalized momenta used in
maximally-symmetric spacetimes are defined as linear operators over the space K
of Killing vector fields. There is, however, no obstacle to replacing K by some other
vector space KG . This is the approach we take to defining momenta in generic space-
times. Although several notions of generalized or approximate Killing fields exist in
the literature [38–40], only one of these [1] appears to be suitable for our purposes.
We describe it now.

The space of generalized Killing fields used here can be motivated axiomatically.
First note that avoiding significant modifications to the formalism developed thus
far requires that all elements of KG be vector fields on spacetime (or space in non-
relativistic problems). It is also reasonable to require that:

1. All genuineKilling vectorswhichmight exist are also generalizedKilling vectors:
K ⊆ KG .

2. K = KG in maximally-symmetric spacetimes.
3. The dimensionality of KG can depend only on the number of spacetime dimen-

sions.

The first of these conditions is clearly necessary for any KG which may be said to
generalize K . The second condition ensures that there are not “toomany” generalized
Killing fields in simple cases. The final condition is more subtle. It guarantees that
the generalized momentum contains the “same amount” of information regardless
of the metric. More specifically, a generalized momentum defined using KG must
be decomposable in terms of linear and angular momenta with the correct number
of components. Recalling (34),

dim KG = 1

2
N (N + 1) ≥ dim K (122)

in any N -dimensional space.
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The given conditions restrict KG , but do not define it. An additional constraint
is needed which describes how those elements of KG which are not also elements
of K preserve an appropriate geometric structure. It is not, of course, possible to
demand that they preserve the metric. Symmetries of the connection or curvature are
unsuitable as well. The only reasonable possibilities are nonlocal.

4.1.1 Symmetries About a Point

First consider the Riemannian case.17 Recalling (50), any Killing vector field used to
drag two points x and x ′ preserves the separation vector −σa(x, x ′) between those
points. A slightly weaker condition can be used to define generalized Killing vectors
evenwhen no genuineKilling vectors exist. Suppose that a particular point x has been
fixed and demand that AG(x) be defined as the set of all vector fields ξa satisfying

Lξσ
a(x ′, x) = 0. (123)

The result clearly forms avector space.Unfortunately AG(x) is too large. Inflat space,
it becomes independent of x and coincides with the space of affine collineations: vec-
tor fields satisfying∇aLξgbc = 0. Geometrically, affine collineations represent sym-
metries which preserve the connection. In generic spaces, AG(x) may be described
as a space of generalized affine collineations with respect to x .

The space of Killing vector fields is known to be a vector subspace of the affine
collineations. Similarly, generalized Killing fields KG(x) may be obtained as an
appropriate subspace of AG(x). It is sufficient to demand only that the appropriate
vector fields be exactly Killing at x :

Lξgab(x) = 0. (124)

The set of all vector fields satisfying this and (123) are denoted by KG(x). They are
the generalized Killing fields with respect to x . Any genuine Killing fields which
may exist are also elements of KG(x).

Many geometric structures are preserved by generalized Killing fields. Equation
(124) can be shown to generalize to

Lξgab(x) = ∇aLξgbc(x) = 0, (125)

17The same geometric conditions can also be imposed in Lorentzian geometries. Physically, how-
ever, the vector fields discussed here aremost useful in non-relativistic contexts. Amore complicated
structure described in Sect. 4.1.2 is better-suited to Lorentzian physics.
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which holds only at the special point x .More generally, “projectedKilling equations”
are valid wherever the generalized Killing fields are defined [1]:

σa′
(x, x ′)Lξga′b′(x ′) = σa′

(x, x ′)σb′
(x, x ′)∇a′Lξgb′c′(x ′) = 0. (126)

The elements of KG(x) also preserve all distances from x in the sense that
Lξσ(x, x ′) = 0. In general, ξa′

(x ′) is a solution to the geodesic deviation (or Jacobi)
equation along the geodesic connecting x and x ′.

The generalized Killing fields may be shown to admit an expansion in terms of 1-
and 2-forms at x . Expanding (123) in terms of covariant derivatives shows that for
every ξa ∈ KG(x),

ξa′ = �a′aξa + �a′ab∇aξb. (127)

The bitensors �a′a and �a′ab which appear here—known as Jacobi propagators—
are explicitly given by (56). The expansion (53) of Killing vector fields is therefore
identical to the expansion (127) of generalized Killing vector fields. Varying ξa and
∇aξb arbitrarily, it is clear that dim KG(x) = N + 1

2 N (N − 1) = 1
2 N (N + 1) in N

spatial dimensions.
The generalized Killing fields defined by (123) and (124) provide a notion of

symmetry with respect to a point. They may be used to analyze non-relativistic
motion in geometries which do not admit any exact symmetries. This is not pursued
here. We instead focus on relativistic motion, in which case it is more appropriate
to consider a different kind of generalized Killing field which provides a notion of
symmetry near a worldline instead of a point.

4.1.2 Symmetries About a Worldline

In relativistic contexts, it is useful to define a KG which takes as arguments a timelike
worldline and a foliation instead than a single point. Given a worldtube W = {Bs |
s ∈ R} in a Lorentzian spacetime (M, gab) of dimension N , consider a foliation
{Bs}. Also consider a timelike worldline Z parametrized by zs := Z ∩ Bs . The
definition of KG(Z, {Bs}) in this context is as follows: First, (125) is enforced
for all zs . This provides a sense in which the elements of KG(Z, {Bs}) generalize
Poincaré symmetries “near”Z . It implies that the generalized Killing fields and their
first derivatives satisfy the Killing transport equations on Z . Moreover,

∇a∇bξc|Z = −Rbca
dξd , (128)

which generalizes (61). This describes, e.g., how generalized Killing fields which
might appear purely rotational or boost-like at one point acquire translational compo-
nents at nearby points.When applied to problems ofmotion, it leads to theMathisson-
Papapetrou spin-curvature force.
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Demanding that (125) hold on Z describes the generalized Killing fields only on
that worldline. They may be extended outwards into W by demanding that

Lξσ
a′

(x ′, zs) = 0 (129)

for each x ′ ∈ Bs . This is merely a restriction of (123). It implies that (127)
holds whenever there exists some s such that x = zs and x ′ ∈ Bs . Elements of
KG(Z, {Bs}) may therefore be specified using an arbitrary pair of 1- and 2-forms at
any point on Z . As required, the generalized Killing fields form a vector space with
dimension 1

2 N (N + 1). Additionally, Lξσ(x ′, zs) = 0 and

σa′
(x ′, zs)σ

b′
(x ′, zs)Lξga′b′(x ′, zs) = 0 (130)

whenever x ′ ∈ Bs [1]. The elements of KG(Z, {Bs}) are the generalized Killing
fields used in the remainder of this work.

4.2 Scalar Charges in Curved Spacetimes

We now return to the motion of scalar charges as discussed in Sect. 3, but no longer
require that the background spacetime admit any symmetries. Consider a body cou-
pled to a Klein-Gordon field φ in a four-dimensional spacetime (M, gab). This body
is assumed to be contained inside a worldtubeW ⊂ Mwith finite spatial extent and
no other matter. Its stress-energy tensor T ab

body is assumed to satisfy (77).
A generalized momentum is easily defined by reusing (78), but with the space

K employed there replaced by an appropriate space KG(Z, {Bs}) of generalized
Killing fields as described in Sect. 4.1. This requires the introduction of a timelike
worldline Z and a foliation {Bs} of W. Supposing that these structures have been
chosen—perhaps using center of mass conditions—let

Ps(ξ) :=
∫
Bs

T ab
bodyξadSb (131)

for all ξa ∈ KG(Z, {Bs}). For each s, this is a vector in the ten-dimensional space
K ∗

G(Z, {Bs}). The associated linear and angular momenta pa and Sab coincide with
those introduced by Dixon [6, 17, 24] for matter which does not couple to an elec-
tromagnetic field.18

Using stress-energy conservation to differentiate the generalized momentumwith
respect to the time parameter s,

18Dixon’s papers never considered matter coupled to scalar fields. The momenta associated with
(131) are those which arise naturally for objects falling freely in curved spacetimes.



Motion in Classical Field Theories and the Foundations of the Self-force Problem 367

d

ds
Ps(ξ) =

∫
Bs

(
1

2
T ab
bodyLξgab − ρLξφ

)
dS. (132)

The first term on the right-hand side of this expression is not present in its maximally-
symmetric counterpart (79); extra forces arise when the ξa are not Killing. These
may be interpreted as gravitational effects. While sufficiently small test bodies fall
along geodesics in curved spacetimes, the same is not true for more extendedmasses.
Gravity then exerts nonzero 4-forces and 4-torques which are described by theLξgab

term in (132). If expanded in a multipole series, (125) implies that such effects first
appear at quadrupole order. This is described more fully in Sect. 4.2.2.

The effect of the scalar field on the second term on the right-hand side of (132)
may be understood by repeating the arguments of Sects. 3.4 and 3.5. This results in
Eq. (94) being replaced by

d

ds
P̂s(ξ) =

∫
Bs

[
1

2
T ab
body(x)Lξgab(x) − ρ(x)Lξφ̂(x)

− 1

2

∫
W
dV ′ρ(x)ρ(x ′)LξG(x, x ′)

]
dS. (133)

The effective field which appears here is defined by φ̂ := φ − φS, where φS satisfies
(83) andG is theDetweiler-WhitingS-typeGreen function described in Sect. 3.4. The
generalized momentum Ps has also been replaced by the renormalized momentum
P̂s := Ps + Es , where the self-momentum Es is given by (90).

An absence of spacetime symmetries explicitly affects self-interaction only via the
second line of (133). Unlike in maximally-symmetric backgrounds, the Detweiler-
Whiting Green function does not satisfy LξG = 0 in general. Indeed, no Green
function can be constructed with this property, a result which could be viewed as
implying that it is impossible to define an analog of Newton’s third law in generic
spacetimes. It follows that the self-force cannot be entirely absorbed into a redefi-
nition of the momentum. Understanding it requires another type of renormalization
which affects the quadrupole and higher multipole moments of T ab

body.

4.2.1 Breakdown of Newton’s Third Law

The self-force which remains after renormalizing Ps depends on LξG. It may be
understood physically by recalling that there is a sense in which G is constructed
purely from the spacetime metric. It therefore follows that for any vector field ξa ,
whether it is a generalized Killing field or not, LξG must depend linearly on Lξgab.
In this sense, the first and third terms on the right-hand side of (133) are both linear
in Lξgab. They are physically very similar, both representing different aspects of the
gravitational force [4].

As remarked in Sect. 3, a body’s inertia depends on both its own stress-energy
tensor and the properties of its self-field. The inertia due to T ab

body is described by
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Ps and the inertia due to φS by Es . A body’s passive gravitational mass experiences
a similar split. The gravitational force exerted on a body due to its stress-energy
tensor is

1

2

∫
Bs

T ab
bodyLξgabdS, (134)

while the gravitational force exerted on a body’s self-field is instead described by

− 1

2

∫
Bs

dS
∫
W
dV ′ρρLξG. (135)

Although it is difficult to do so explicitly, this latter expression can be transformed
into a linear operator on Lξgab. It effectively adds to a body’s gravitational mass
distribution as inferred by observing responses to different spacetime curvatures. In a
multipole expansion, the force (135) may be viewed as renormalizing the quadrupole
and higher multipole moments of a body’s stress-energy tensor.

The failure of Newton’s third law provides a second mechanism by which self-
fields induce renormalizations. It is distinct—both in its origin and in the quantities
it affects—from the mechanism described in Sect. 3.5. The renormalization of a
body’s momentum was shown to be closely connected to the hyperbolicity of the
underlying field equation. The geometry-induced19 failure of Newton’s third law can
instead arise even for matter coupled to elliptic field equations. It affects only the
quadrupole and higher moments of a body’s stress-energy tensor. Combined, the two
types of renormalization affect all multipole moments of T ab

body. In this sense, one is
led to the concept of an effective stress-energy tensor. This is defined quasi-locally,
and can be identified with T ab

tot only in special cases.
A fully explicit discussion of this effect is not known. Tomotivate it more directly,

it is instructive to find a wave equation satisfied by LξG. Noting that

Lξδ(x, x ′) = −1

2
δ(x, x ′)gab(x)Lξgab(x), (136)

a Lie derivative of (80) yields

(∇a∇a − μ2)LξG = ∇a
[(

gacgbd − 1

2
gabgcd)∇bGLξgcd

]

+ μ2

2
(gabLξgab)G. (137)

19This type of renormalization fundamentally arises from the connection between LξG and Lξgab
which occurs for Green functions associated with the Klein-Gordon equation. In different theories,
Lie derivatives of G can depend on fields other than the metric. Self-forces renormalize whichever
moments are coupled to these fields.



Motion in Classical Field Theories and the Foundations of the Self-force Problem 369

ViewingLξG on the left-hand side of this equation as “independent” of the G appear-
ing on the right-hand side suggests thatLξG is a solution to a wave equation sourced
by Lξgab and its first derivative. A source which is independent of G may be found
by applying the Klein-Gordon operator to both sides:

(∇a′∇a′ − μ2)(∇a∇a − μ2)LξG = 4π∇a
[(

gacgbd − 1

2
gabgcd)

(Lξgcd)∇bδ
]

− 2πμ2(gabLξgab)δ.
(138)

This describes LξG as the solution to a fourth-order distributional differential equa-
tion sourced by Lξgab and ∇aLξgbc.

Results like these may be used together with the field equation to integrate (135)
by parts. Let

T ab
field,S := 1

4π

[
∇aφS∇bφS − 1

2
gab(∇cφS∇cφS + μ2φ2

S)

]
(139)

be the stress-energy tensor associated with φS and define

Ia := 1

8π
(gacgbd − 1

2
gabgcd)φS∇bφSLξgcd

+ 1

8π

∫
W

ρ′(∇aφSLξG − φS∇aLξG)dV ′. (140)

The law of motion (133) then reduces to

d

ds
P̂s =

∫
Bs

[
1

2
(T ab

body + T ab
field,S)Lξgab − ρLξφ̂

]
dS

− d

ds

∫
Bs

IadSa −
∮

∂Bs

IatbdSab. (141)

The gravitational force in this expression clearly acts on the combined stress-energy
tensor T ab

body+T ab
field,S.Unfortunately, the stress-energy tensor associatedwith the self-

field does not have compact spatial support. The finite integration volume Bs must
therefore be compensated by the two boundary terms involving Ia . If these can be
ignored, it is evident that gravitational forces are determined only by T ab

body + T ab
field,S.

This cannot, however, be expected to hold generically. In general, there does not
appear to be any reason to neglect Ia .

Approximations may instead be introduced which allow the renormalized mul-
tipole moments to be computed essentially using local Taylor series [4]. Another
approach, described here for the first time, is to use Hadamard series. Recalling the
Hadamard form (82) for G,



370 A.I. Harte

LξG = 1

2

[
�1/2δ′(σ)Lξσ + (Lξ�

1/2 − HLξσ)δ(σ) − LξV �(σ)
]
. (142)

Our task is now to convert this into an expression where all Lie derivatives act on
the metric.

This is easily accomplished for the Lie derivatives of σ and �. Differentiating the
well-known identity σa′

σa′ = 2σ shows that

σa′∇a′Lξσ − Lξσ = 1

2
σa′

σb′Lξga′b′ . (143)

The differential operator σa′
(x, x ′)∇a′ appearing here is a covariant derivative along

the geodesic connecting x and x ′, so (143) may be viewed as an ordinary differential
equation for Lξσ. Letting yτ denote a geodesic which is affinely parametrized by τ
while satisfying y0 = x and y1 = x ′, it follows that

Lξσ(x, x ′) = 1

2

∫ 1

0
ẏa
τ ẏb

τLξgab(yτ )dτ . (144)

Moreover, an argument found in [4] shows that Lie derivatives of the van Vleck
determinant � depend on Lξσ:

Lξ ln�1/2 = −1

4

[
gabLξgab + ga′b′Lξga′b′ + 2Haa′∇a∇a′Lξσ

]
. (145)

Both Lξσ and Lξ�
1/2 may therefore be written as line integrals—solutions to trans-

port equations—which are linear in Lξgab. Substituting these expressions into (142)
goes much of the way towards expressing LξG in terms of Lξgab.

All that remains is to consider LξV . This is more difficult. Even V itself is com-
plicated to compute. It is a solution to the homogeneous field equation which is
symmetric in its arguments and satisfies

V (x, x ′) = G+(x, x ′) + G−(x, x ′) (146)

whenever x ′ is timelike-separated from x . Alternatively, V can be computed using
a transport equation along null geodesics [10]. For each x ′, this transport equation
may be used as boundary data with which to obtain V (·, x ′). Extending this data
outside of the null cones is essentially an “exterior characteristic problem:” One
seeks a solution to a hyperbolic differential equation in the exterior of a null cone
given values of the solution on that cone. Unlike interior characteristic problems, the
general mathematical status of such problems is unclear.

One way to proceed is to construct a Hadamard series. This is an ansatz which
supposes that V can be expanded via [41]
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V (x, x ′) =
∞∑

n=0

Vn(x, x ′)σn(x, x ′). (147)

The Vn here are determined by demanding that each explicit power of σ vanish
separately when this series is inserted into (∇a∇a − μ2)V = 0. The result is an
infinite tower of ordinary differential equations. The n = 0 case is governed by

�1/2σa∇a(�−1/2V0) + V0 = 1

2
∇a∇a�1/2. (148)

For each x ′, this determines V (·, x ′) on the light cones of x ′. Higher-order terms are
needed in the exteriors of these light cones. For all n ≥ 1,

�1/2σa∇a(�−1/2Vn) + (n + 1)Vn = − 1

2n
∇a∇a Vn−1. (149)

It should be emphasized that the Hadamard series is not a Taylor expansion. The Vn

are two-point scalar fields, not constants. Furthermore, the Hadamard series is known
to converge only if the metric is analytic (and even then, it might converge only in a
finite region) [41]. Although analyticity is quite a strong assumption, there may be
other interesting cases where a finite Hadamard series can be used to approximate V
up to a well-controlled remainder.

Assuming that (147) is valid, it is easily used to compute Lie derivatives of V .
This results in

LξV =
∞∑

n=0

[LξVn + (n + 1)Vn+1Lξσ
]
σn . (150)

Lie derivatives of σ may already be transformed into Lie derivatives of gab via (144).
Lie derivatives of the Vn may instead be found by differentiating (148) and (149).
The n = 0 case satisfies

�1/2σa∇a(�−1/2LξV0) + LξV0 = 1

2

(Lξ∇a∇a�1/2 − V0Lξσ
a

a
)

+ (gabσcLξgbc − ∇aLξσ)∇a V0, (151)

for example. The left-hand side of this equation may be interpreted as an ordinary
differential operator along the geodesic which connects the two arguments of V0.
All Lie derivatives in the source on the right-hand of this equation may, with the
help of (144) and (145), be rewritten in terms of Lξgab. It follows that LξV0 can be
expressed as a line integral involving Lξgab. Similar results also hold for LξVn with
n > 0. The detailed forms of these integrals are complicated and are not displayed
here. The important point, however, is that all parts of LξG may be expressed as line
integrals involving Lξgab. Changing variables appropriately and using the spatially-
compact support of ρ then shows that the self-force (135) does indeed renormalize
the gravitational force (134).
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4.2.2 Multipole Expansions

It is useful to expand the scalar force in a multipole series when φ̂ varies slowly.
Similarly, the gravitational force may be expanded in its own multipole series when
there is an appropriate sense in which gab does not vary too rapidly20 inside each
Bs . Such expansions can be obtained using the techniques of Sects. 2.2.5 and 3.6.
Recalling (94), (98), and (133), first note that

d

ds
P̂s(ξ) = −

∞∑
n=0

1

n!q
a1···anLξφ̂,a1···an + 1

2

∫
Bs

T ab
bodyLξgabdS

− 1

2

∫
Bs

dS
∫
W
dV ′ρρ′LξG. (152)

The two integrals which remain here are intrinsically gravitational.
Given (125), it is evident that multipole expansion for the generalized force must

begin at quadrupole order. More specifically, it may be shown that [4, 6, 17]

1

2

∫
Bs

T ab
bodyLξgabdS = 1

2

∞∑
n=2

1

n! I c1···cnabLξgab,c1···cn , (153)

where gab,c1···cn represents the nth tensor extension of gab and I c1···cnab is the 2n-pole
moment of T ab

body. Tensor extensions in this context are somewhat more complicated
than in the scalar case discussed in Sect. 2.2.5. While they are still defined as those
tensorswhich reduce ton partial derivativeswhen evaluated at the origin of aRiemann
normal coordinate system, equations like (48) must be generalized for objects with
nonzero tensorial rank (see, e.g., [4]). For this reason, explicit integrals relating
I c1···cnab to T ab

body are significantly more complicated than their scalar analogs. These
are not needed here, andmay be found in [4, 6]. They areDixon’smultipolemoments.
Additionally, note that the first few tensor extensions of the metric are gab,c = 0 and

gab,c1c2 = 2

3
Ra(c1c2)b, gab,c1c2c3 = ∇(c1 R|a|c2c3)b, (154)

gab,c1c2c3c4 = 6

5
∇(c1c2 R|a|c3c4)b + 16

15
Ra(c1c2

d R|b|c3c4)d . (155)

Expanding both integrals in (152) while identifying coefficients in front of
Lξgab,c1···cn results in a series structurally identical to (153), but with all bare mul-
tipole moments I c1···cnab replaced by their renormalized counterparts Î c1···cnab. The

20More precisely, the coordinate components gi j must not vary too rapidly when expressed in
a Riemann normal coordinate system with origin zs . Physically, this is a significant restriction. It
would be far better to performmultipole expansions only using effectivemetrics where gravitational
self-fields have been appropriately removed. It is not known how to do to this for the full Einstein-
Klein-Gordon system.
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final multipole expansion for the generalized force acting on a self-interacting scalar
charge distribution is therefore

d

ds
P̂s(ξ) = 1

2

∞∑
n=2

1

n! Î c1···cnabLξgab,c1···cn −
∞∑

n=0

1

n!q
a1···anLξφ̂,a1···an . (156)

Gravitational terms first arise at quadrupole order, while scalar terms appear even at
monopole order.

4.2.3 Forces and Torques

As in Sects. 2.2.6 and 3.7, the generalized momentum can be decomposed into linear
and angular components p̂a , Ŝab. These obey the law of motion (102), where the
force and torque are now supplemented by gravitational terms at quadrupole and
higher orders:

F̂a = 1

2

∞∑
n=2

1

n! Î d1···dnbc∇agbc,d1···dn −
∞∑

n=0

1

n!q
b1···bn ∇aφ̂,b1···bn , (157)

N̂ ab =
∞∑

n=2

2

n!g
f [b( Î |c1···cn |a]dgd f,c1···cn + n

2
Î a]c1···cn−1dhgdh,c1···cn−1 f

)

+
∞∑

n=0

2

n!g
c[aqb]d1···dn φ̂,cd1···dn . (158)

A center of mass may be defined exactly as described in Sect. 3.8. Applying (110),
the momentum-velocity relation remains (111).

4.2.4 Monopole Approximation

Suppose that Z is identified with the center of mass worldline {γs}. It is then inter-
esting to consider the laws of motion truncated at monopole order. As explained in
Sect. 3.9, the spin magnitude is conserved in such cases. It is therefore consistent to
consider cases where Ŝa is negligible. Assuming this, an object’s mass m̂ and center
of mass γs satisfy

m̂ − qφ̂ = (constant), m̂γ̈a
s = −q(gab + γ̇a

s γ̇b
s )∇bφ̂ (159)

whenever q = (constant). These are formally equivalent to the standard equations of
motion adopted for scalar test charges, butwith the physical field replaced everywhere
by the effective field. Laws of motion applicable to self-interacting charges involve
φ̂, not φ.
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Classical results on the scalar self-force are easily derived from (159). In the
absence of any external charges (which does not necessarily imply trivial motion in
curved spacetimes), it is natural to suppose that initial data forφhas beenprescribed in
the distant past. If all details of that data have decayed sufficiently, the only remaining
field is the retarded solution associated with the body’s own charge distribution.
Generalizing this somewhat to also allow for a prescribed “external field” φext,

φ(x) = φext(x) +
∫
W

ρ(x ′)G−(x, x ′)dV ′. (160)

While the retarded Green function G− can be difficult to compute in nontrivial
spacetimes, we assume that this problem has been solved. Using (81) and (83) then
results in the effective potential21

φ̂ = φext + 1

2

∫
W

ρ′(G− − G+ + V )dV ′. (161)

Although the “self-field” φS has been removed from φ, remnants of the body’s
charge distribution do remain. These are responsible for self-forces as they are com-
monly defined in the literature, and give rise to physical phenomena such as radiation
reaction.

The “traditional” self-force problem involves point particle limits. Such limits
consist of appropriate one-parameter families of charge distributions λρ and stress-
energy tensors λT ab

body whose supports collapse to a single timelike worldline as
λ → 0 (see, e.g., [28]). Suppose that these families are chosen such that a body’s
physical size and mass asymptotically scale like λ1 as λ → 0, suggesting that
λqa1···an scales like λn+1 for all n ≥ 0 and that λ Î c1···cnab scales like λn+1 for all
n ≥ 2. These conditions guarantee that the multipole series can be truncated at low
order [as has already been assumed in (159)].

It is also important to demand that the time dependence of λρ remain smooth as
λ → 0. This guarantees that a body’s internal dynamics remain slow compared to
its light-crossing timescale, which is required to ensure that a charge does not self-
accelerate in the absence of any external influence. Self-acceleration could occur if,
e.g., internal oscillations conspired to generate strongly-collimated beams of radia-
tion. Such cases are physically possible, but are typically excluded from self-force
discussions.

The λ → 0 limit of the approximation which has just been sketched results
in a timelike worldline satisfying the usual equations for a monopole test charge
accelerated by φext. Effects typically described as self-forces occur at the following
order. In principle, interactions between dipole moments and φext also occur at this
order. These are dropped here for simplicity, leaving only (159). Without entering

21The two-point scalar V is to be understood here as equivalent to G± when its arguments are
timelike-separated. This defines it even in the presence of caustics and other potential complications.
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into technical details, the appropriate approximation for the effective field in this limit
may be shown to be given by (161) with a point particle charge density. Dropping
all labels involving λ,

φ̂(x) = φext(x) + 1

2
q

∫
[G−(x, γs′) − G+(x, γs′) + V (x, γs′)]ds′ (162)

plus terms of order λ2. Unlike the λ → 0 limit of φ, the limit of φ̂ is well-defined
even at the particle’s location. The same is also true of its gradient. All necessary reg-
ularizations have automatically been taken into account by first deriving the correct
laws of motion for nonsingular extended bodies.

The computations needed to evaluate ∇aφ̂ at γs are rather tedious, so we merely
cite22 the result [10]. Defining the projection operator hab := gab + γ̇a

s γ̇b
s and

assuming that q = (constant),

∇aφ̂ = ∇aφext + 1

3
(q2/m̂)habγ̇c

s

[∇b∇cφext − 2(q/m̂)∇bφext∇cφext
]

+ 1

12
q(Rγ̇a

s − 2hab Rbcγ
c
s ) + q lim

ε→0+

∫ s−ε

−∞
∇aG−(γs, γs′)ds′. (163)

Substituting this into (159), the final equations of motion are

γ̈a
s = −(q/m̂)hab

(
∇bφext + 1

3
(q2/m̂)γ̇c

s

[∇b∇cφext − 2(q/m̂)∇bφext∇cφext
]

− 1

6
q Rbcγ̇

c
s + q lim

ε→0+

∫ s−ε

−∞
∇bG−(γs, γs′)ds′

)

(164)

and

m̂ − qφext + q2
(

1

12
R − lim

ε→0+

∫ s−ε

−∞
G−(γs, γs′)ds′

)
= (constant) (165)

through first order in λ. Essentially23 the same results were first obtained by Quinn
using an axiomatic argument [42]. Their derivation from first principles was later
discussed in [2]. The integrals over the tail of G− indicate that a charge’s motion
can depend on its past history. This is related to the failure of Huygens’ principle,

22The point particle field derived in [10] includes a derivative of the particle’s acceleration. A careful
treatment of the perturbation theory shows that such terms refer only to accelerations at lower order
[28]. The self-consistent discussion which is implicit here therefore requires that accelerations be
simplified using the zeroth order equation of motion. This is taken into account in (163).
23Some sign conventions in [2, 42] are different from those adopted here.
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in which case the field a body sources in the past can scatter back towards it at later
times. This effect disappears for matter coupled to massless fields in flat spacetime,
but is almost always present otherwise.

4.3 Electromagnetic Charges

The problem of electromagnetic self-force has inspired considerable discussion over
the past century. Here, we show how it can be understood using a straightforward
application of the formalism just described for scalar charges. The body of interest
is assumed to be smooth and to be confined to a finite worldtube W ⊂ M in a
fixed four-dimensional spacetime (M, gab). It couples to an electromagnetic field
Fab = F[ab] satisfying Maxwell’s equations

∇[a Fbc] = 0, ∇b Fab = 4πJa, (166)

from which it follows as an integrability condition that the body’s 4-current J a must
be divergence-free. Its total charge

q :=
∫
Bs

J adSa (167)

is therefore a constant independent of Bs (as long as this hypersurface completely
contains the body of interest). Furthermore, the stress-energy tensor associated with
Fab can be defined throughout W via

T ab
field = 1

4π
(Fa

c Fbc − 1

4
gab Fcd Fcd). (168)

Identifying all remaining stress-energy as T ab
body, stress-energy conservation implies

that

∇bT ab
body = Fab Jb. (169)

The right-hand side of this equation is the Lorentz force density.

4.3.1 An Electromagnetic Momentum

Ageneralizedmomentummay again be defined using (131). This requires a choice of
worldlineZ and a foliation {Bs}, leading to a vector which resides in K ∗

G(Z, {Bs}).
Applying (169) shows that forces and torques follow from
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d

ds
Ps(ξ) =

∫
Bs

(
1

2
T ab
bodyLξgab + Fabξ

a J b
)
dS. (170)

This is the simplest approach. It is not, however, the only reasonable possibility. Ps

has the unfortunate property that symmetries do not necessarily imply conservations
laws. Even if there exists a vector field ψa satisfying Lψ Fab = Lψgab = 0, the
associated momentum Ps(ψ) is not necessarily conserved.

Dixon [6, 24, 43] has proposed a different set of linear and angular momenta in
this context which do form simple conservation laws in the presence of symmetries
(among other desirable properties more generally). Translating his definitions into a
generalized momentum PD

s results in

PD
s (ξ) := Ps(ξ) +

∫
Bs

dSa J a(x)

∫ 1

0
duu−1σb′

(y′
u, zs)ξ

c′
(y′

u)Fb′c′(y′
u). (171)

The curve {y′
u | u ∈ [0, 1]} describes an affinely-parametrized geodesic satisfying

y0 = zs and y1 = x . The correction to Ps which is used here represents a type of
interaction between the electromagnetic field and its source. It can bemotivated using
symmetry considerations [24], the theory of multipole moments [6], or Lagrangian
methods [43]. Some intuition for this interaction may be gained by introducing a
vector potential Aa so that Fab = 2∇[a Ab]. Then,

PD
s + q(Aaξa)

∣∣
zs

= Ps +
∫
Bs

dSa J a
(

Abξ
b −

∫ 1

0
duu−1σb′Lξ Ab′

)
. (172)

Although this has been written in terms of a gauge-dependent vector potential, it is
manifest from (171) that Ps and PD

s are both gauge-invariant.
Combining (172) with (170) shows that the generalized force associated with

Dixon’s momentum is

d

ds
(PD

s + q Aaξa) =
∫
Bs

dS

(
1

2
T ab
bodyLξgab + J aLξ Aa

)

− d

ds

∫
Bs

dSa J a
∫ 1

0
duu−1σa′Lξ Aa′ . (173)

This is awkward to write more explicitly without introducing additional technical
tools. Even so, it is simple to temporarily consider special cases where there exists
a Killing vector field ψa satisfying Lψ Fab = Lψgab = 0. It is then possible to

find a vector potential A(ψ)
a such that Lψ A(ψ)

a = 0. The component of momentum
conjugate to ψa is therefore conserved in the sense that

PD
s (ψ) + q A(ψ)

a ξa = (constant), (174)
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where A(ψ)
a ξa is understood to be evaluated at zs . Although this is reminiscent of the

canonical momentum associated with a pointlike test charge, it is valid for essentially
arbitrary extended charge distributions.

4.3.2 The Self-field and Self-force

Electromagnetic self-forces may be defined and removed from either Ps or PD
s . In

both cases, it is convenient to work in the Lorenz gauge:

∇a Aa = 0. (175)

Maxwell’s equations then reduce to the single hyperbolic equation

∇b∇b Aa − Ra
b Ab = −4πJa . (176)

Introducing the parallel propagator ga
a′(x, x ′) [10], consider a Green function Gaa′

satisfying

1. �Gaa′ − Ra
bGba′ = −4πgaa′δ(x, x ′),

2. Gaa′(x, x ′) = Ga′a(x ′, x),
3. Gaa′(x, x ′) = 0 when x , x ′ are timelike-separated.

These are the closest possible analogs of the constraints used to define G in Sect. 3.4.
They characterize the S-type Detweiler-Whiting Green function for the reduced
Maxwell equation (176). In terms of the advanced and retarded Green functions
G±

aa′ , there exists a homogeneous solution Vaa′ such that

Gaa′ = 1

2
(G+

aa′ + G−
aa′ − Vaa′) = 1

2
[gaa′�1/2δ(σ) − Vaa′�(σ)]. (177)

Although it can be difficult to find Gaa′ explicitly in a particular spacetime, we
assume that it is known.

A self-field AS
a may be defined by convolving J a with Gaa′ . Considering a space-

time volume R ⊆ W, let

AS
a[R] :=

∫
R

Gaa′ J a′
dV ′. (178)

In the scalar case, the analog of this expression represents the “self-field” sourced in
the regionR. The interpretation here is somewhat more obscure, as the restriction of
J a to arbitrary regions is not necessarily conserved and is therefore unphysical. This
definition is nevertheless useful. Without specification of any particular region, it is
to be understood that R = W so AS

a = AS
a[W]. This (full) self-field is sourced by

a conserved current, implying that FS
ab := 2∇[a AS

b] satisfies the complete Maxwell
equations
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∇[a FS
bc] = 0, ∇b FS

ab = 4πJa . (179)

The same cannot necessarily be said for fields 2∇[a AS
b][R] where R �= W.

Now consider changes in Ps due to AS
a . Applying the arguments of Sects. 3.4 and

3.5 to (170) shows that the self-force has the form (85) with

f (x, x ′) = 2ξa J b J b′∇[aGb]b′ . (180)

The average f (x, x ′) + f (x ′, x) of action-reaction pairs reduces in this case to

J a J a′LξGaa′ − ∇a(J a J a′
ξbGba′) − ∇a′(J a J a′

ξb′
Gab′). (181)

The divergences which appear here are new features of the electromagnetic problem.
Only their integrals matter, however, so they are easily dealt with. Defining the
homogeneous effective field

F̂ab := Fab − FS
ab, (182)

the final result is that

d

ds
P̂s =

∫
Bs

dS

(
1

2
T ab
bodyLξgab + ξa J b F̂ab + 1

2

∫
W
dV ′ J a J a′LξGaa′

)
, (183)

where P̂s := Ps + Es and

Es := 1

2

(∫
B+

s

dV J aLξ AS
a[B−

s ] −
∫
B−

s

dV J aLξ AS
a[B+

s ]
)

+
∫
Bs

(ξa AS
a)J bdSb. (184)

The renormalized momentum P̂s therefore evolves via F̂ab rather than Fab. As
explained in Sect. 4.2.1, the forces involving Lξgab and LξGaa′ in (183) combine in
a natural way to form an effective gravitational force. Furthermore, Es is known to
reduce in simple cases to the expected expression involving the stress-energy tensor
associated with FS

ab [3]. More generally, it should be thought of as a quasi-local
functional of J a .

A very similar result may be derived using the Dixon momentum PD
s . This is

most easily accomplished if a new self-momentum is introduced which satisfies

ED
s := Es −

∫
Bs

dSa J a
∫ 1

0
duu−1σb′

ξc′
FS

b′c′ . (185)

Defining P̂D
s := PD

s + ED
s , it follows that
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d

ds
P̂D

s =
∫
Bs

dS

(
1

2
T ab
bodyLξgab + ξa J b F̂ab + 1

2

∫
W
dV ′ J a J a′LξGaa′

)

+ d

ds

∫
Bs

dSa J a
∫ 1

0
duu−1σb′

ξc′
F̂b′c′, (186)

or equivalently

d

ds
(P̂D

s + q Âaξa) =
∫
Bs

dS

(
1

2
T ab
bodyLξgab + J aLξ Âa + 1

2

∫
W
dV ′ J a J a′LξGaa′

)

− d

ds

∫
Bs

dSa J a
∫ 1

0
duu−1σa′Lξ Âa′

(187)

for any vector potential Âa satisfying F̂ab = 2∇[a Âb].
If a Killing vector field ψa exists which satisfies Lψ F̂ab = Lψgab = 0, it is

possible to choose a vector potential for F̂ab with the property that Lψ Â(ψ)
a = 0.

It then follows immediately that P̂D
s + q Â(ψ)

a ξa is conserved. No similarly-simple
conservation law is associated with P̂s .

4.3.3 Multipole Expansions

Integral expressions for the generalized force are not particularly useful on their own.
It is instead more interesting to consider their multipole expansions. Unlike in the
scalar theories discussed earlier,more than one “reasonable” forcemay be considered
in the electromagnetic case. As a matter of computation, it is simplest to expand the
force associated with P̂s . Dixon’s momentum is otherwise more attractive, however.
Multipole series for the associated forces and torques have already been derived in a
test body approximation [6]. The mechanics of the calculation are exactly the same
here, and result in

d

ds
P̂D

s = 1

2

∞∑
n=2

1

n! Î c1···cnabLξgab,c1···cn + q F̂abξ
a żb

s

+
∞∑

n=1

n

(n + 1)!q
b1···bnaLξ F̂ab1,b2···bn . (188)

The coefficients qb1···bna represent 2n-pole moments of J a as defined (using the
notationmb1···bna) byDixon [6, 44]. They are not to be confusedwith the scalar charge
moments satisfying (99). The Î c1···cnab appearing in (188) represent 2n-polemoments
of T ab

body as renormalized by Lie derivatives of Gaa′ . Again, these are different from
the renormalized stress-energy moments which appear in the scalar law of motion
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(156). In the limit of negligible self-interaction, however, both definitions reduce to
Dixon’s stress-energy moments [6]. For reference, the first tensor extensions of F̂ab

are explicitly

F̂ab,c = ∇c F̂ab, F̂ab,cd = ∇(c∇d) F̂ab − 2

3
F̂ f [a Rb](cd)

f . (189)

If there exists a Killing vector ψa which satisfies Lψ F̂ab = Lψ Â(ψ)
a = 0, it

has already been stated that P̂D
s (ψ) + q Â(ψ)

a ψa is conserved exactly. It is evident
from (188) that this quantity is also conserved in any consistent truncation of the
multipole series. If a particular ψa is Killing but does not necessarily preserve F̂ab,
all gravitational terms vanish from (188) and

d

ds
P̂D

s (ψ) = q F̂abψ
a żb

s +
∞∑

n=1

n

(n + 1)!q
b1···bnaLψ F̂ab1,b2···bn . (190)

This holds for all ψa ∈ K ⊆ KG . It is all that arises for charges moving in flat or de
Sitter spacetimes.

4.3.4 Linear and Angular Momentum

Linear and angular momenta may be extracted from P̂D
s using the methods described

in Sects. 2.2.6 and 3.7. Let p̂a and Ŝab be defined by

P̂D
s = p̂aξa + 1

2
Ŝab∇aξb. (191)

Differentiating this and varying over all generalized Killing fields shows that

D p̂a

ds
= q F̂a

bżb
s + 1

2
Rbcd

a Ŝbc żd
s + F̂a,

DŜab

ds
= 2 p̂[a żb]

s + N̂ ab, (192)

where

F̂a = 1

2

∞∑
n=2

1

n! Î d1···dnbc∇agbc,d1···dn +
∞∑

n=1

n

(n + 1)!q
c1···cnb∇a F̂bc1,c2···cn , (193)

N̂ ab =
∞∑

n=2

2

n!g
f [b( Î |c1···cn |a]dgd f,c1···cn + n

2
Î a]c1···cn−1dhgdh,c1···cn−1 f

)

+
∞∑

n=0

2

n!g
f [bqa]c1···cnd F̂d f,c1···cn . (194)
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Electromagnetic forces and torques defined in this way first arise at dipole order.
The (monopole) Lorentz force depends—unlike any other electromagnetic terms—
on ża

s . It has therefore been separated out explicitly in (192). There is no similarly
velocity-dependent electromagnetic torque.

Defining the force to exclude the Lorentz force has the advantage that if ψa is
Killing and preserves F̂ab, the associated conservation law implies that

F̂aψa + 1

2
N̂ab∇aψb = 0. (195)

This does not involve q, and is directly analogous to the scalar result (106).

4.3.5 Center of Mass

The electromagnetic laws of motion (192)–(194) depend on both the foliation {Bs}
and the worldline Z . Center of mass conditions may be used to fix these structures
as described in Sect. 3.8. An evolution equation for the center of mass position γs

can then be obtained by differentiating p̂a Ŝab = 0. The result differs slightly from
(111) due to the additional velocity-dependence associated with the Lorentz force.
Adapting the methods of [31], the electromagnetic momentum-velocity relation may
be shown to be

m̂γ̇a
s = p̂a − N̂ a

bub − Ŝab[m̂ F̂b + ( p̂c − N̂ c
huh)(q F̂bc − 1

2 Rbcd f Ŝd f )]
m̂2 − 1

2 Ŝ pq(q F̂pq − 1
2 Rpqrs Ŝrs)

(196)

when s has been chosen such that γ̇a
s p̂a = −m̂ and ua is the unit timelike vector

satisfying p̂a = m̂ua .
Although a precise set of assumptions which imply this are not known, it is

assumedhere that the center ofmass condition (111) admits a unique timelike solution
in a sufficiently broad class of physical systems. Inspection of (196) shows that a
breakdown of the center of mass condition must occur whenever

m̂2 − 1

2
Ŝbc

(
q F̂bc − 1

2
Rbcd f Ŝd f

)
= 0. (197)

This is sufficient but not necessary. While the q = 0 case was dismissed in Sect. 3.8
as unlikely to be physically relevant, the charged case is potentially more interesting.
Consider an electron24 in a magnetic field of order B. Setting q = e, m̂ = me,
Rabc

d = 0, and Ŝ = �/2, the denominator in (196) can divergewhen B ∼ 2m2
e/e� ∼

1014 Gauss. This may be viewed as the field strength at which an electron’s dipole
energy �B/2 becomes comparable to its rest mass. Quantum mechanically, it is also

24It is unclear that there is any sense in which an electron’s behavior can bemodeled using equations
derived for classical extended charges. Nevertheless, the example appears to be suggestive.
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the field strength at which the separation between (Landau) energy levels becomes
comparable to the rest mass energy. Indeed, this is the scale at which quantum
electrodynamics is expected to become dominant. Although systemswith 1014 Gauss
magnetic fields are far from direct laboratory experience, such fields are believed to
exist around some neutron stars [45]. Even in somewhat smaller magnetic fields,
hidden momentum effects predicted by the classical theory can become very large.
Whether or not this has qualitative consequences for neutron star astrophysics is an
open question.

If the center of mass can be defined and the classical laws of physics remain valid,
(196) may be combined with (192)–(194) to yield very general laws of motion. As
in the scalar case, Ŝab can also be reduced to a single spin vector Ŝa satisfying
(113). Similarly, the mass varies according to (114). Unlike in the scalar case, matter
coupled to electromagnetic fields can change mass only at dipole and higher orders.
Such effects are related to changes in a body’s internal energy due to work performed
by (or against) the ambient fields [24].

4.3.6 Monopole Approximation

In simple cases, the laws of motion governing an extended charge distribution may
be truncated at monopole order.Within this approximation, F̂a = N̂ab = 0 and (192)
reduces to

D p̂a

ds
= q F̂a

bγ̇
b
s + 1

2
Rbcd

a Ŝbcγ̇d
s ,

DŜab

ds
= 2 p̂[a γ̇b]

s . (198)

Contracting the second of these equations with Ŝab while using (110) again shows
that Ŝ2 := Ŝa Ŝa = (constant). An object which is initially not spinning therefore
remains non-spinning in this approximation. Consider these cases for simplicity. The
momentum-velocity relation then reduces to p̂a = m̂γ̇a

s , the mass remains constant,
and the body accelerates via the Lorentz force law

m̂γ̈a
s = q F̂a

bγ̇
b
s (199)

in the effective electromagnetic field F̂ab. The effective field always satisfies the
vacuum Maxwell equations. It is generically distinct from the physical field Fab

which governs the acceleration of nearby test charges.
In many cases of interest, it is useful to model Fab as the sum of some external

field Fext
ab and the retarded field associated with a body’s charge distribution:

Fab = Fext
ab + 2

∫
W

∇[aG−
b]b′ J b′

dV ′. (200)
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In these cases, it follows from (177) and (182) that the effective field must satisfy

F̂ab = Fext
ab +

∫
W

∇[a(G−
b]b′ − G+

b]b′ + Vb]b′)J b′
dV ′. (201)

Performing a point particle limit as discussed in Sect. 4.2.4 and [3, 28], the lowest-
order self-interaction effects follow from (201) with a pointlike current. Through first
order in the expansion parameter λ,

F̂ab = Fext
ab + q

∫
∇[a(G−

b]b′ − G+
b]b′ + Vb]b′)γ̇b′

s ds′. (202)

Evaluating this on γs and recalling the projection operator hab = gab + γ̇a
s γ̇b

s , it may
be shown that [10]

F̂ab = Fext
ab + 4

3
qγ̇l

sgl[ahb]cγ̇d
s

[
(q/m̂)γ̇

f
s ∇ f Fext

cd + (q/m̂)2g f h Fext
c f Fext

hd

+ 1

2
Rcd

] + 2q lim
ε→0+

∫ s−ε

−∞
∇[aG−

b]b′(γs, γs′)γ̇b′
s′ ds′. (203)

Substitution into (199) finally yields the equation of motion for a self-interacting
“pointlike” electric charge:

m̂γ̈a
s = qgab Fext

bc γ̇c
s + 2

3
(q3/m̂)habγ̇c

s

[
γ̇d

s ∇d Fext
bc + (q/m̂)gd f Fext

bd Fext
f c

]

+ 1

3
q2hab Rbcγ̇

c
s + 2q2 lim

ε→0+

∫ s−ε

−∞
∇[aG−

b]b′ γ̇b
s γ̇b′

s′ ds′. (204)

In curved spacetime, this is a reduced-order version—see Footnote 22—of a result
first obtained by DeWitt and Brehme [21] (with corrections due to Hobbs [46]). The
second line of (204) vanishes in flat spacetime, leaving only

m̂γ̈a
s = qgab Fext

bc γ̇c
s + 2

3
(q3/m̂)habγ̇c

s

[
γ̇d

s ∇d Fext
bc + (q/m̂)gd f Fext

bd Fext
f c

]
. (205)

This is essentially the Abraham-Lorentz-Dirac equation [8], but in a reduced-order
form typically attributed to Landau and Lifshiftz [47].

While instructive, the neglect of spin and electromagnetic dipole effects in (204)
can be overly restrictive. This restriction is easily dropped by making use of the
general multipole expansions derived above. The resulting changes are qualitatively
significant [3] (see also [28]): A hidden momentum appears, external fields may
change an object’s rest mass, and the spin magnitude may change due to torques
exerted by Fext

ab .
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For monopole point particles in flat spacetime, the use of F̂ab instead of Fab in
the laws of motion was first suggested by Dirac [48]. The appropriate generalization
for monopole particles in curved spacetimes was obtained much more recently by
Detweiler and Whiting [29]. Both of these proposals were essentially physically-
motivated axioms intended to define the dynamics of point charges. The discussion
here, which follows [3], shows that these regularization schemes are actually limits
of laws of motion which hold rigorously for nonsingular extended charge distribu-
tions. Once the general laws of motion (192)–(194) and (196) have been derived,
more explicit results such as (204) follow very easily. So do their spin-dependent
generalizations.

4.4 General Relativity

All results discussed up to this point assume that the spacetime metric is known
beforehand and has been fixed. This assumption may be relaxed. Doing so allows
the consideration of self-gravitating masses in general relativity. We take a mini-
mal approach to this problem by adapting the techniques of the previous sections as
closely as possible. Although there are some deficiencies to this approach, consid-
erable progress can still be made.

Let the spacetime be described by (M, gab) and the body of interest be contained
inside a spatially-compactworldtubeW ⊂ M. Only the purely gravitational problem
is considered here, meaning that objects can interact with each other solely via
their influence on the metric; electromagnetic and similar long-range interactions
are excluded. It follows that T ab

body = T ab
tot inside W. Letting gab be a solution to

Einstein’s equation

Rab − 1

2
gab R = 8πgacgbd T cd

body, (206)

it follows that

∇bT ab
body = 0. (207)

These two equations replace, e.g., (73) and (77) used to understand the motion of
scalar charges. Unlike in the scalar or electromagnetic cases, the gravitational law of
motion (207) is a consequence of the field equation, not an independent assumption.

Both T ab
body and the metric inside W are assumed to be smooth. This precludes

the consideration of black holes. Although unfortunate, it appears difficult to remove
this restriction in a non-perturbative theorywhich describes themotions of individual
objects (and not only characteristics of the entire spacetime). While quantities such
as momenta might be associated with a black hole horizon [49, 50], adopting such
definitions typically excludes the discussion of objects without horizons. Alterna-
tively, one may consider an effective background and compute momenta associated
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with, e.g., the Landau-Lifshitz pseudotensor [51, 52]. This is troublesome as well.
Nevertheless, the motion of black holes can be sensibly discussed within certain
approximation schemes [10, 53, 54]. These consider only the metric outside of the
body of interest, and apply versions ofmatched asymptotic expansions in appropriate
“buffer regions.” We instead consider internal metrics as well as external ones, but
do not require the existence of a buffer region.

As in other theories, the laws of motion derived here involve an effective field
which is distinct from the physical one. In general relativity, the relevant field is
the metric. We therefore use two metrics, which makes index raising and lowering
ambiguous. All factors of the appropriate metric are therefore displayed explicitly in
this section.

4.4.1 Generalized Momentum

As in scalar and electromagnetic systems, the first step to understanding themotion of
a self-gravitatingmass is towrite downageneralizedmomentum. It is thismomentum
which is used to describe an object’s large-scale behavior. Introducing a foliation
{Bs} of W and a worldline Z , the linear and angular momenta proposed by Dixon
[6, 17, 24] are conjugate to generalized Killing fields constructed using the physical
metric gab.Adding an extra argument to KG to reflect this, the appropriate generalized
momentum is

PD
s (ξ) :=

∫
Bs

T ab
bodygbcξ

cdSa, ξa ∈ KG(Z, {Bs}; g). (208)

For each s, this is an element of the ten-dimensional vector space K ∗
G(Z, {Bs}; g).

The associated linear and angular momenta have a number of useful properties
[6, 31, 55, 56]. Using (207), their time evolution satisfies

d

ds
PD

s (ξ) = 1

2

∫
Bs

T ab
bodyLξgabdS. (209)

If Lξgab varies slowly throughoutBs , forces and torques can be expanded in multi-
pole series as described in [4, 6] and in Sect. 4.2.2.

While such assumptions can be useful for test bodies, they are too strong for self-
gravitatingmasses.Movingbeyond the test body regimefirst requires the introduction
of an effective metric ĝab such that—after appropriate renormalizations—the Lξgab

appearing in (209) can be replaced by Lξĝab. If Lξĝab varies slowly, the resulting
integral for the generalized force can be expanded in a multipole series in the usual
way.One additional subtletywhich occurs in the gravitational problem is that even if a
particular ĝab can itself be adequately approximated using a low-order Taylor expan-
sion, the same can not necessarily be said for Lξĝab when ξa ∈ KG(Z, {Bs}; g).
The generalized Killing fields associated with Dixon’s momenta involve the physical
metric and all of its attendant difficulties. These difficulties are partially inherited by
the generalized Killing fields used to define PD

s .
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One way out of this problem25 is to choose a bare momentum Ps(ξ) defined by
an integral which is structurally identical to (209), but where all ξa are elements of
KG(Z, {Bs}; ĝ) rather than KG(Z, {Bs}; g). Let

Ps(ξ) :=
∫
Bs

T ab
bodygbcξ

cdSa, ξa ∈ KG(Z, {Bs}; ĝ). (210)

We take this to be the baremomentum of a self-gravitatingmass. The effectivemetric
which appears here is to be regarded at this stage as an additional parameter. The
generalized force dPs/ds follows from a trivial modification of (209). Furthermore,
Dixon’s momenta are recovered in a test mass limit where ĝab ≈ gb. If there exists
a ψa ∈ KG(Z, {Bs}; ĝ) such that Lψgab = 0, it is evident that Ps(ψ) must be
conserved.

4.4.2 Self-fields and Laws of Motion

There are many possible ways to extract an effective metric ĝab from the physical
metric gab. The simplest generalization of the previous discussions involves a two-
point tensor field Gaba′b′(x, x ′) which satisfies

Gaba′b′ = G(ab)a′b′ = Gab(a′b′) (211)

and

Gaba′b′(x, x ′) = Ga′b′ab(x ′, x). (212)

For any such propagator, consider an effective metric ĝab defined via

gab = ĝab + gSab, (213)

where

gSab[R] :=
∫
R

Gaba′b′ T a′b′
bodydV ′ (214)

and gSab = gSab[W]. Note that the volume element in this “self-field” is the one
associated with gab, not ĝab. Substituting (213) into the appropriately-modified form
of (209) shows that the s-integral of the self-field’s contribution to dPs/ds has the
form (85) with force density

25It would bemore elegant to instead demand that KG(Z, {Bs}; ĝ) and KG(Z, {Bs}; g) be identical
or otherwise closely related. Such an assumption would restrict possible relations between gab and
ĝab, and is an avenue which has not been explored.
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f = 1

2
T ab
bodyT a′b′

body(ξ
c∇cGaba′b′ + 2∇aξcGbca′b′). (215)

Applying (87) and related results then transforms the law of motion into

d

ds
P̂s = 1

2

∫
Bs

T ab
bodyLξĝabdS + 1

4

∫
Bs

dS
∫
W
dV ′T ab

bodyT a′b′
bodyLξGaba′b′ , (216)

where P̂s = Ps + Es and

Es = 1

4

(∫
B+

s

T ab
bodyLξg

S
ab[B−

s ]dV −
∫
B−

s

T ab
bodyLξg

S
ab[B+

s ]dV

)
. (217)

Es is a functional of T ab
body which effectively acts like the momentum of the self-field.

If LξGaba′b′ is a linear functional of Lξĝab, the term involving LξGaba′b′ in (216)
renormalizes a body’s quadrupole and higher multipole moments. In these cases, a
multipole expansion of (216) yields

d

ds
P̂s(ξ) = 1

2

∞∑
n=2

1

n! Î c1···cnabLξĝab,c1···cn . (218)

The tensor extensions appearing here are extensions of ĝab in a spacetimewithmetric
ĝab. This means, for example, that ĝab,c = 0 and ĝab,cd = 2

3 R̂a(cd)
f ĝb f [cf. (154)].

Equation (218) represents not a particular lawofmotion, but a class of them.This is
because many different propagators may be found which satisfy (211) and (212), and
whose Lie derivatives with respect to ξa are quasi-local inLξĝab. Choosing different
propagators with these properties leads to different effective metrics, different self-
momenta, and different effective multipole moments. Any of these combinations
satisfies (216), and also (218)when the appropriate ĝab is sufficientlywell-behaved. It
is of course preferable to choose a propagator such that the associatedmultipole series
may “typically” be truncated at low order without significant loss of accuracy. This
condition is vague. In the electromagnetic and scalar theories, a (rather imperfect)
proxy was the requirement that the effective fields be solutions to the vacuum field
equation. The analogous condition in general relativity would be R̂ab = 0, where
R̂ab denotes the Ricci tensor associated with ĝab. This does not appear to be possible
within the currently-considered class of effective metrics.

We take a pragmatic approach and suppose that Gaba′b′ is the Detweiler-Whiting
S-type Green function associated with

ĝcd ∇̂c∇̂d Gaba′b′ − [
2ĝc f R̂ f (ab)

d + 1

2

(
ĝcd R̂ab + ĝabĝ

c f ĝdh R̂ f h
)]

Gcda′b′

= −16π
(
ĝacĝbd − 1

2
ĝabĝcd

)
ĝc

(a′ ĝd
b′)δ̂(x, x ′). (219)
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This is essentially the prescription suggested in [5]. In terms of retarded and advanced
solutions G±

aba′b′ to (219), the S-type Green function satisfies

Gaba′b′ = 1

2
(G+

aba′b′ + G−
aba′b′ − Vaba′b′) (220)

for somebitensorVaba′b′ which is an appropriate solution to the homogeneous version
of (219). Somewhat more explicitly,

Gaba′b′ = 2
(
ĝacĝbd − 1

2
ĝabĝcd

)
ĝc

(a′ ĝd
b′)�̂

1/2δ(σ̂) − 1

2
Vaba′b′�(σ̂). (221)

Coupling this Green function with (213) and (214) defines ĝab in terms of gab.
Unlike in scalar or electromagnetic theories, the definition of the effective field is
highly implicit in general relativity. It reduces to a simple subtraction only in linear
perturbation theory. More generally, the Green function itself depends on the field
which one intends to find, and must be found by iteration or related methods.

Despite the nonlinearity of the map gab → ĝab, the effective metric does not nec-
essarily satisfy the vacuumEinstein equation. The specific differential equation (219)
is nevertheless inspired by Lorenz-gauge perturbation theory, and has the following
desirable properties:

1. If gab is sufficiently close to a background metric ḡab satisfying the vacuum
Einstein equation R̄ab = 0, ĝab satisfies the vacuum Einstein equation linearized
about ḡab.

2. The differential operator is self-adjoint.
3. The trace of (219) can be solved independently of the full equation.

The first condition guarantees that the effective metric is reasonable at least in first
order perturbation theory. Self-adjointness is useful because it allows the reciprocity
condition (212) to be enforced. Finally, it is important for technical reasons to know
the trace ĝabGaba′b′ of Gaba′b′ . The form of (219) may be used to show that this
satisfies

ĝabGaba′b′ = Gĝa′b′, (222)

where G is an S-type Detweiler-Whiting Green function for the nonminimally-
coupled scalar equation

(
ĝab∇̂a∇̂b + 1

2
R̂
)G = 16πδ̂(x, x ′). (223)
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4.4.3 Linear and Angular Momentum

Using the Green function associated with (219) to construct ĝab and P̂s , linear and
angular momenta may be extracted in the usual way. For any ξa ∈ KG(Z, {Bs}; ĝ)

and any zs ∈ Z , let

P̂s(ξ) = p̂a(zs, s)ξa(zs) + 1

2
Ŝa

b∇̂aξb(zs). (224)

The angular momentum defined in this way is antisymmetric in the sense the
Ŝ(a

cĝ
b)c = 0. Differentiating (224) using a covariant derivative associated with

ĝab shows that

D̂ p̂a

ds
= −1

2
R̂abc

d żb
s Ŝc

d + F̂a,
D̂Ŝa

b

ds
= (ĝacĝbd − δa

dδc
b) p̂c żd

s + N̂ a
b, (225)

where

F̂a = 1

2

∞∑
n=2

1

n! Î d1···dnbc∇̂a ĝbc,d1···dn , (226)

and

N̂ a
cĝ

bc =
∞∑

n=2

2

n! ĝ
f [b (

Î |c1···cn |a]d ĝd f,c1···cn + n

2
Î a]c1···cn−1dh ĝdh,c1···cn−1 f

)
. (227)

Î c1···cnab represents the renormalized 2n-pole moment of the body’s stress-energy
tensor. Despite the notation, these are not the same as the moments appearing in
the scalar and electromagnetic multipole expansions (156) and (188), which are
renormalized differently. In the test body limit where ĝab ≈ gab, (225)–(227) reduce
to the multipole expansions derived by Dixon [6]. More generally, they show—if
the multipole expansion is valid—that with appropriate renormalizations, a self-
gravitating body moves instantaneously as though it were a test body in the effective
metric ĝab. Note in particular that the derivatives of the momenta which appear in the
evolution equations are derivatives associatedwith ĝab, not gab. This is a consequence
of choosing the generalized Killing fields to be constructed using ĝab instead of gab.

4.4.4 Center of Mass

A center of mass frame may be defined by choosing an appropriate foliation together
with the worldline {γs} which guarantees that p̂a Ŝa

b = 0 when zs = γs . A body’s
linear momentum is then related to its center of mass velocity via an appropriately
“hatted” version of (111).
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4.4.5 A Simple Case

If d P̂s/ds is sufficiently small, a body’s quadrupole and higher multipole moments
might be neglected. In these cases, it follows from (225) that the motion is described
by the Mathisson-Papapetrou equations in the effective metric:

D̂ p̂a

ds
= −1

2
R̂abc

d żb
s Ŝc

d ,
D̂Ŝa

b

ds
= (ĝacĝbd − δa

dδc
b) p̂c żd

s . (228)

Choosing zs = γs , the squared spin magnitude Ŝa
b Ŝb

a is necessarily conserved. It is
therefore consistent to once again consider systems with vanishing spin. Assuming
that Ŝa

b = 0,

D̂

ds
γ̇a

s = 0. (229)

Non-spinning masses whose quadrupole and higher interactions may be neglected
therefore fall on geodesics associated with ĝab. This generalizes the well-known
result that small test bodies in general relativity fall on geodesics associated with the
background spacetime.

Moving beyond the test body limit, the difficult step is to compute ĝab. What
is typically referred to as the first order gravitational self-force may nevertheless
be derived by considering an appropriate family of successively-smaller extended
masses. To lowest nontrivial order, the effective metric looks like the metric of a
point particle moving on an appropriate vacuum background ḡab which is close to
ĝab. Using overbars to denote quantities associated with ḡab and assuming retarded
boundary conditions,

ĝab = ḡab + 1

2
m̂

∫
(Ḡ−

aba′b′ − Ḡ+
aba′b′ + V̄aba′b′)γ̇a′

s γ̇b′
s ds′. (230)

This is well-behaved even on the body’s worldline. So is the connection associated
with it, which may be computed using, e.g., methods described in [10]. Substituting
the result into (229) recovers the MiSaTaQuWa equation commonly used to describe
the first order gravitational self-force [5]. Comparisons have not yet been made with
second order calculations of the gravitational self-force which have recently been
completed using other methods [57, 58].

4.4.6 Future Directions

The formulation of the gravitational problem of motion remains somewhat unsatis-
factory. Most importantly, the effective metric which has been adopted here (and in
[5]) is somewhat ad hoc. It is inspired by Lorenz-gauge perturbation theory, but this
has no particular significance other than being one way to guarantee hyperbolic field
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equations. More seriously, the ĝab defined here does not satisfy the vacuum Einstein
equation except in certain limiting cases. This seems unnatural. It would be prefer-
able if the general relativistic laws of motion were completely identical in structure
to the laws satisfied by test bodies moving in vacuum backgrounds. A condition like
R̂ab = 0 would also suggest, at least intuitively, that the associated ĝab might vary
slowly in a wide variety of physical systems. The importance of slow variation to the
application of multipole expansions makes it extremely interesting to search for an
effective metric which admits a multipole expansion like (218) while also being an
exact solution to the vacuum Einstein equation. Although such a metric26 has not yet
been found, there are several promising routes by which progress might be made.

The simplest conceivable modifications of the formalism described here retains
the bare momentum (210) while altering the effective metric ĝab. It is trivial to
accomplish this by, for example, modifying the differential equation satisfied by
Gaba′b′ or by introducing n-point propagators similar to those in (44). It can also be
useful to alter the functional relation (213) between gab, ĝab, and any integrals which
may be present. Despite being very simple analytically, relating two metrics to one
another via the addition of a second-rank tensor is geometrically rather awkward.

Better-motivated functional relationships between the physical and effective met-
rics may be more convenient. Geometrically, perhaps the simplest conceivable map
between two metrics is a conformal transformation. If gab = �2ĝab for an appropri-
ate �, it is straightforward27 to obtain an effective metric which exactly satisfies the
trace R̂ = 0 of the vacuum Einstein equation. This is not enough, however. More
degrees of freedom are necessary. It may be possible to go further by combining
an appropriate conformal factor with a “generalized Kerr-Schild transformation” so
that

gab = �2(ĝab + �(akb)) (231)

for some 1-forms �a and ka which are null with respect to ĝab (and therefore null
with respect to gab as well). Despite the simplicity of this expansion, there is strong
evidence that it is very general: Given any analytic gab, (�, �a, ka) triplets can always
be chosen, at least locally, which guarantee that ĝab is flat [59]. Although it is not
known how such choices interact with the laws of motion, the possibility of a flat
(or conformally flat) effective metric is intriguing. Among other benefits, it might
eliminate the need for generalized Killing vectors.28

26It could also be interesting to consider reformulations where an effective connection is sought
instead of an effective metric.
27Analyzing the effect of a conformal factor on the laws of motion is similar to considering objects
coupled to a particular type of nonlinear scalar field. Despite the nonlinearity, such systems can be
understood exactly using only minimal adaptations of the formalism used to analyze the (linear)
Klein-Gordon problem.
28Quasi-local momenta have recently been proposed in general relativity which use isometric
embeddings to lift flat Killing fields into arbitrary spacetimes [60, 61]. See also [62] for a pro-
posal which allows conformal Killing vectors to be introduced in geometries without symmetries.
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Combinations of these observations can perhaps be combined to provide one
(implicit) map gab → ĝab with the desired properties. It is likely simpler, however,
to instead use them to construct a continuous flow of metrics λg̃ab which smoothly
deforms gab = 0g̃ab into an appropriate ĝab = ∞g̃ab. The λ parameter is not neces-
sarily physical, but might be interpreted roughly as the reciprocal of the influence of
a body’s internal scales. Flows like these have the advantage that individual “steps”
λ → λ + dλ can be viewed as (easily-controlled) linear perturbations. Indeed, it is
straightforward to impose differential relations on the λ-dependence of λg̃ab which
ensure that a flow removes any initial stress-energy as λ → ∞. This requires using
a 1-parameter family of Green functions λGaba′b′ associated with Einstein’s equa-
tion linearized about each λg̃ab. Separately, it is also straightforward to construct
flows which lead to well-behaved laws of motion. What is more difficult is to find
a flow which accomplishes both of these tasks simultaneously. If this were found,
varying λ would likely vary an object’s effective metric, its effective momentum,
and its effective multipole moments. While only the λ → ∞ limit might be physi-
cal, such variations are highly reminiscent of the running couplings which arise in
renormalization group flows.

Regardless, a great deal of freedom clearly exists and may be exploited to better
understand the problem of motion in general relativity. The resulting insights may
also shed new light on nonlinear problems more generally.

5 Discussion

The techniques described in this reviewprovide a unified and largely non-perturbative
formalism with which to better understand how objects move. Although these tech-
niques have thus far been applied only to a handful of specific theories—Newtonian
gravity, Klein-Gordon theory, electromagnetism, and general relativity—they are
easily generalized.

One of the central concepts employed here is what we have called the “generalized
momentum.” This is used as a convenient observable with which to describe an
object’s motion in the large, and represents a body’s momentum not as a tensor either
in the interior of the spacetime or at infinity, but instead as a linear map over a more
abstract vector space. This automatically takes into account the nonlocality inherent
in the momentum concept and also makes explicit how particular components of the
momentum can be “conjugate to,” e.g., symmetry-generating vector fields.

Another important property of the generalizedmomentum is that it unifies a body’s
linear and angular momenta into a single object. Given a generalized momentum,
linear and angular components can easily be extracted. This process depends, how-
ever, on extra information, namely a choice of “observer” in the sense of a preferred
origin. This origin is arbitrary. It affects the angular momentum even in elemen-
tary discussions of Newtonian mechanics, but more generally influences an object’s
linear momentum as well. This has an interesting physical consequence: Mathisson-
Papapetrou terms arise in the evolution equations governing a body’s linear and
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angular momenta due to the motion of the origin used to extract these components
of the generalized momentum. Mathisson-Papapetrou effects are therefore kinematic
in nature, arising from the changing “character” of each generalized (or genuine)
Killing field at different points.

Once a generalized momentum has been defined as a particular linear map on a
particular vector space, stress-energy conservation may be used to derive its rate of
change. The resulting generalized force is another linear map on the same vector
space. Letting ξa be a particular element of that space, generalized forces typically
have the form

F =
∫
Bs

ρLξφdS, (232)

where φ represents some (not necessarily scalar) long-range field and ρ its source.
Bs is an appropriate 3-volume and dS an associated volume element. Integrals like
these can be difficult to evaluate directly, so it is important to seek approximations
in practical problems. The simplest such approximations involve some combination
of test body and smallness conditions which guarantee that Lξφ “varies slowly”
throughoutBs . A multipole expansion can then be performed to express F in terms
of φ and its derivatives as well as the multipole moments of ρ computed on a (largely
arbitrary) worldline {zs}: F = q(zs, s)Lξφ(zs) + qa(zs, s)Lξ∇aφ(zs) + . . .

It is far more difficult to obtain useful multipole expansions when an object’s
self-field can no longer be ignored. The potentially-complicated nature of ρ is then
inherited by φ via the field equation, and there is typically no sense in which Lξφ
can be approximated using Taylor-like expansions inside Bs . Coping with this is
perhaps the main theoretical problem associated with self-interaction in the classical
theory of motion.

Self-interaction is dealt with here by considering methods which alter the inte-
grand in (232) without affecting the integral as a whole (or affecting it only via terms
which can be interpreted as renormalizations). Particularly useful for this purpose
are nonlocal deformations φ → φ̂ generated by appropriate classes of propagators.
Although the cases discussed here have used 2-point Green functions associated with
appropriate field equations, other types of propagators can be more useful in other
contexts. Regardless, the large variety of possible deformations may be tailored to
optimally simplify whichever problem is at hand.

In particular, it is often possible to find a deformation φ → φ̂ such thatLξφ̂ varies
slowly even when Lξφ does not. Appropriately-modified multipole expansions can
then be applied much more generally than might have been expected. This leads to
the main physical principle which dictates motion in each of the theories we have
considered: Laws governing the motion of self-interacting masses are structurally
identical to laws governing the motion of test bodies. The fields appearing in these
laws are nontrivial, however. Objects generally act as though they were accelerated
not by the physical fields (i.e., φ), but by certain “effective fields” instead.
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The use of effective fields to understand problems of motion is not new per se.
Standard formulations of Newtonian celestial mechanics heavily rely, for example,
on external gravitational potentials which are distinct from the physical potentials.
What has been stressed here is that generalizing the external field concept (where the
“external” label is replaced by the more appropriate “effective”) is similarly essen-
tial for a simple understanding of motion even in highly non-Newtonian regimes.
All classical results on the self-force can easily be recovered, for example, once
the appropriately-formulated laws of motion have been derived. Even point particle
limits of these laws are well-defined precisely as stated; they require no independent
postulates or regularizations.

The standard deformation φ → φ̂ of the physical Newtonian gravitational poten-
tial into its effective counterpart leaves forces and torques completely unaffected: The
Newtonian self-force and self-torque both vanish. Other theories are not so simple.
Writing generalized forces in terms of effective fields generally requires the intro-
duction of compensating counterterms. It is onlywhen these counterterms have a par-
ticularly simple form that the associated effective field is likely to be useful. Indeed,
we have considered systems where these terms act only to make a body’s momenta
or other multipole moments appear to be shifted from those moments which might
have been deduced using knowledge of a body’s internal structure. The details of this
structure are rarely known in practice, in which case it is natural to “remove” residual
forces and torques by appropriately redefining an object’s momenta or other mul-
tipole moments. These are renormalizations. They affect generic extended objects,
and are always finite in this context. Considerable effort has been devoted here to
identifying renormalizations and interpreting them physically.

The resulting techniques have shown that a large variety of renormalizations are
possible even in simple theories. The effective 4-momentum of an electric charge
may differ from its bare momentum not only in length (i.e., mass), but also in direc-
tion. Spins and center of mass positions can be renormalized as well. Adding the
additional complication of a curved spacetime, even the quadrupole and higher mul-
tipole moments associated with a body’s stress-energy tensor may be dynamically
shifted via the forces exerted by its self-field.

Two general mechanisms have been shown responsible for these effects. Both of
these are associated with generalizations of—or failures to generalize—Newton’s
third law. One mechanism relates from a direct violation of this law, while the other
arises from an inability to fully take advantage of “action-reaction cancellations.”
The second of these is simpler and affects a body’s linear and angular momenta. It
is associated with self-fields which are nonlocal in time, in which case forces are
sourced in four dimensions but act on matter only in three-dimensional slices. If
the propagators associated with these statements satisfy certain minimal constraints,
the inability to construct action-reaction pairs in this context conspires to dynami-
cally shift an object’s momenta. Such effects are essentially universal in relativistic
theories, but can also be relevant for some non-relativistic systems.

The second renormalization mechanism discussed here stems from more direct
violations of Newton’s third law. Mathematically, it is related to the behavior of
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the relevant propagators under Lie dragging. If, say, a self-field is defined in terms
of a propagator G, and LξG depends only on Lξφ for some field φ, the multipole
moments coupling to φ are renormalized by the self-force. In the cases considered
here, φwas the metric and the relevant moments were those associated with a body’s
stress-energy tensor. The samemechanism applied to a nonlinear scalar theorywould
instead renormalize a body’s charge moments.

Despite the generality of these results, much remains to be learned. Besides the
various technical details which remain open—some of which have been mentioned
in the text—it would also be interesting to understand how the techniques developed
here can be applied in new ways. It may be possible, for example, to adapt these
techniques to systems where long-range fields couple to an object’s surface instead
of its volume. Such problems arise when considering the motion of solid objects
through fluids, among other cases. More generally, it might be possible to investigate
problems which are not related to motion at all. Quantities similar to (232) occur in
many fields of physics and mathematics, as do various types of regularizations and
renormalizations. It appears likely that the methods developed here can be applied
to better understand at least some of these systems. Such speculations have only just
begun to be explored.
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