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Preface

Human life expectancy has nearly doubled over the last 100 years due, in part, 
to a wide range of novel medical technologies and treatments. The trend toward 
increased life expectancy in the developed countries is accompanied by the 
increased number of people surviving to an advanced age and having different 
chronic age-associated pathologies. This trend leads to the need to understand the 
genetic and physiological mechanisms underlying aging processes and particularly 
those that promote healthy aging. Moreover, in recent years, substantial evidence 
has emerged supporting the possibility of the radical human life extension, primar-
ily due to the rapid development of genetic and stem cell-based technologies.

In the development of such technologies, several insect models may provide 
useful starting points prior to animal and human studies. The use of insect mod-
els seems particularly reasonable since, despite the large phylogenetic distance 
between insects and mammals, some metabolic processes and signaling path-
ways were shown to play an evolutionarily conserved role in aging across vari-
ous insect and mammal species. Among them, the insulin/insulin growth factor 
signaling pathway, histone deacetylases, and genes involved in oxidative stress 
all exert evolutionarily conserved effects on aging and life span in a wide range 
of model organisms. These data suggest that aging itself is an evolutionarily con-
served process and not simply an inevitable deterioration of biological systems. 
The high degree of conservation between diverse species in the genetic pathways 
that regulate longevity suggests that work in model organisms can expand the the-
oretical knowledge of aging, yield valuable insight into the molecular and cellular 
processes that underlie aging process, and perhaps provide new therapeutic targets 
for the treatment of age-related disorders.

Among the widespread model organisms, the fruit fly, Drosophila melanogaster, 
is likely one of the most appropriate model organisms to study biological mecha-
nisms of aging due to its relatively short life span (60–80 days), convenient hus-
bandry, and well-studied genetics. The Drosophila genome was one of the first to 
be sequenced. It has powerful systems for gene knockout and targeted mutagenesis. 
The large brood sizes also make it possible to measure survival in large numbers of 
individuals within each experimental cohort in controlled environments and to test 
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the functional consequences of senescence either longitudinally in individuals or as 
sampled from the aging population. Furthermore, almost all cells in adult insects 
are postmitotic except a few cells in the malpighian tubules, gut, and gonads. 
Therefore, the age-related decline in cellular functions may be examined without 
interference from newly dividing cells. Certainly, not all senescent physiological 
changes revealed in flies can be simply translated to humans. However, flies and 
humans often show very similar age-related physiological phenotypes, suggesting 
that at least some of the basic biological properties and mechanisms that regulate 
longevity are conserved between flies and humans. In the last years, Drosophila 
models have been developed for a large variety of aging-related processes and 
diseases.

The goal of this book is to provide the reader with an overview of current 
research concerned with the use of the Drosophila experimental model as a tool 
for unraveling the genetic, molecular, and physiological mechanisms underlying 
the aging process and to search for life-extending remedies. This research field is 
currently a hot topic in biomedicine. Thereby, the present book, which is a collec-
tive work of the world’s leading researchers in the field of biogerontology, may be 
of interest to a wide audience, ranging from academic researchers to the general 
public.

Finally, the editors would like to thank Prof. Suresh I.S. Rattan, the “Healthy 
Ageing and Longevity” book series editor, for his kind support and wise advices. 
We would also like to thank Oksana Zabuga for the valuable help in preparing the 
book manuscript.

Alexander M. Vaiserman
Alexey A. Moskalev
Elena G. Pasyukova
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Chapter 1
Neuronal Genes and Developmental 
Neuronal Pathways in Drosophila  
Life Span Control

Elena Pasyukova, Alexander Symonenko, Natalia Roshina,  
Mikhail Trostnikov, Ekaterina Veselkina and Olga Rybina

© Springer International Publishing Switzerland 2015 
A.M. Vaiserman et al. (eds.), Life Extension, Healthy Ageing and Longevity 3,  
DOI 10.1007/978-3-319-18326-8_1

Abstract The nervous system has long been suggested as a key tissue that defines 
life span. The identity of neuronal cell types is established during development and 
maintained throughout adulthood due to the expression of specific neuronal genes 
coding for ion channels, neurotransmitters and neuropeptides, G-protein-coupled 
receptors, motor proteins, recognition and adhesion molecules. In this paper, we 
review data on the role of neuronal genes in Drosophila melanogaster life span 
control. Several pathways responsible for life span regulation are also important 
for the development of the nervous system. Genes involved in insulin-like, Target 
of Rapamycin, Janus Kinase/Signal Transducer and Activator of Transcription and 
cell polarity pathways, a number of global regulators and transcription factors play 
key roles both in aging and longevity control and in shaping the nervous system as 
a  network of specialized neuronal cells in early development. Is their impact on life 
span related, at least partially, to their developmental functions or is it explained by 
other pleiotropic influences later in life? In this paper, we address this question based 
on the published data and our own findings.

Keywords Nervous system · Neuronal genes · Drosophila · Life span ·  
Transcription factors

1.1  Introduction

The nervous system has long been suggested as a key tissue that defines life 
span. The numerous and diverse interactions between the nervous system and life 
span are reciprocal and intimately linked. On the one hand, via different types of 
 sensory neurons and a wide variety of environmental cues, the nervous system 

E. Pasyukova (*) · A. Symonenko · N. Roshina · M. Trostnikov · E. Veselkina · O. Rybina 
Institute of Molecular Genetics of RAS, Moscow, Russia
e-mail: egpas@rambler.ru
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receives complex information from the environment and further processes, inte-
grates and transforms it into various physiological outputs that have a major 
impact on life span; on the other hand, aging also affects the functional state of the 
nervous system and is associated with the development of age-associated neurode-
generative diseases.

The impact of the nervous system on Drosophila life span was initially indi-
cated by accumulating data on the genetic control of life span. Primarily, overex-
pression of many genes only in the nervous system  of transgenic flies resulted in 
an increase in life span (see, for example, Parkes et al. 1999; Seong et al. 2001; 
Ruan et al. 2002; Wang et al. 2003; Morrow et al. 2004; Bauer et al. 2005a, b; Orr 
et al. 2003; Fridell et al. 2005, 2009; Liao et al. 2008; Martínez-Azorín et al. 2008; 
Simonsen et al. 2008; Lee et al. 2009; Alic et al. 2011; Plyusnina et al. 2011; Rana 
et al. 2013). Multiple molecular and genetic mechanisms for the impact of the 
nervous system on aging and longevity were reported (for review, see Broughton 
and Partridge 2009; Alcedo et al. 2013). These include insulin-like signaling; 
stress-sensing pathways; antioxidative response mechanisms, reactive oxygen 
species (ROS) signaling and mitochondrial homeostasis; molecular chaperones, 
autophagy, lysosomal degradation; etc. Despite this progress, little is known 
whether genes that control specific functions of neuronal cells affect normal life 
span. Indeed, the abovementioned aging pathways are not specifically neuronal 
and function in several other tissues such as fat body, muscles, gonads, etc. (see, 
for example, Giannakou et al. 2004; Kapahi et al. 2004; Flatt et al. 2008; Biteau 
et al. 2010; Demontis and Perrimon 2010; Stenesen et al. 2013).

The identity of neuronal cell types is established during development and 
maintained throughout adulthood. In addition to housekeeping genes, a differ-
entiated neuron is thought to express combinations of genes that define its func-
tional properties (Hobert 2011). These genes code for: (1) ion channels (Potassium 
channels, Calcium channels, ligand-gated ion channels, etc.); (2) neurotransmit-
ters and neuropeptides (their synthesis, transport, reuptake, and degradation); (3) 
G-protein-coupled receptors; (4) motor proteins and their associated complexes 
(kinesin, dynein and myosin motors); (5) recognition and adhesion molecules 
(immunoglobulin superfamily, cadherins, neurexins superfamily) and some others. 
Collectively such genes will be further referred to as neuronal genes, even though 
we fully realize that this term is conditional, given the pleiotropic nature of most 
genes. In this paper, we review data on the role of neuronal genes in Drosophila 
melanogaster life span control.

Several pathways responsible for life span regulation are also important for the 
development of the nervous system. Genes involved in Insulin/Insulin Receptor 
(InR), Target of Rapamycin (TOR), Janus Kinase/Signal Transducer and Activator 
of Transcription (JAK/STAT) and cell polarity pathways, a number of global reg-
ulators and transcription factors play key roles both in aging and longevity con-
trol and in shaping the nervous system as a network of specialized neuronal cells 
in early development (Table 1.1). Even though, according to the definition given 
above, these genes can not be regarded as neuronal genes, they exemplify another 
embodiment of the relationship between the nervous system and longevity. Is their 
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impact on life span related, at least partially, to developmental functions or is it 
explained by other pleiotropic influences later in life? Here we address this ques-
tion based on the data found in publications and our own findings.

1.2  Neuronal Genes in Life Span Control

1.2.1  Genes Coding for Ion Channels

Many Drosophila melanogaster genes are implicated in establishing ion channels 
in the nervous system. Sh and Hk (Table 1.1) encode alpha and beta subunits of a 
voltage-dependent Potassium channel (Papazian et al. 1987; Wilson et al. 1998). 
Mutations in these genes affect synaptic activity and lead to hyperexcitability fol-
lowed by enhanced ramification of larval nerve terminals (Budnik et al. 1990). 
Both Sh and Hk mutants show a decrease in life span as compared to matched con-
trols. The decrease in life span is more pronounced for Hk than for Sh (Trout and 
Kaplan 1970; Rogina and Helfand 1995).

The effects of Sh and Hk have been suggested to be mediated by elevated 
cAMP levels in response to hyperneural activities, because dnc (Table 1.1) 
mutants with reduced phosphodiesterase activity, and hence higher cAMP 
 levels, also cause enhanced nerve terminal arborization (see Zhong and Wu 
2004 for references). Several genes involved in the cyclic AMP/Protein kinase 
A (cAMP/PKA) pathway affect both functions of the nervous system and life 
span. Mutations of the genes rut (Table 1.1) and dnc responsible for synthesis 
and degradation of cAMP, respectively, affect stability and fine tuning of synaptic 
structure and function (Baines 2004; Renger et al. 2000; Zhong and Wu 2004), 
learning, and memory (Dudai et al. 1976; Byers et al. 1981; McGuire et al. 2003). 
Mutations at rut and dnc also affect life span (Tong et al. 2007). Postsynaptic 
expression of a constitutively active form of PKA is sufficient to increase averaged 
synaptic current, while inhibition of this kinase results in a significant reduction 
in averaged synaptic current amplitude (Baines 2004). Strong modifications of the 
activity of the major PKA catalytic subunit encoded by PKA-C1 (Table 1.1) also 
impair olfactory memory and learning (Drain et al. 1991; Skoulakis et al. 1993; 
Yamazaki et al. 2007; Gervas et al. 2010). Ubiquitously overexpressed mouse 
PKA was shown to affect Drosophila life span (Tong et al. 2007). cAMP/PKA 
pathway also mediates effects of NF1 (Table 1.1) on longevity (Tong et al. 2007). 
Neurofibromin, the protein product of the NF1 gene, affects synaptic growth, 
synaptic activity (Tsai et al. 2012), memory, and learning (Buchanan et al. 2000; 
Buchanan and Davis 2010). Multiple studies have indicated that NF1-dependent 
learning in Drosophila involves the cAMP pathway (see Buchanan and Davis 
2010 for references): NF1 positively regulates the Ca2+/calmodulin–sensitive 
 adenylyl cyclase and, consequently, inactivation of NF1 results in downregulation 
of cAMP/PKA signaling. Thus, in this case, the same pathway is involved in both 
maintenance of specific neuronal functions and life span control.
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Voltage-gated Sodium channels are necessary for initiation and propagated 
transmission of the action potentials which underlay many animal activities. In 
Drosophila, the gene para (Table 1.1) encodes the major voltage-gated Sodium 
channel and the gene mle (Table 1.1) encodes ATP-dependent double-stranded RNA 
helicase. Mle protein is required for adenosine-to-inosine RNA editing and proper 
expression of para (Reenan et al. 2000). Both genes are involved in regulation of 
synaptic activity (Reenan et al. 2000; Zhong and Wu 2004) and longevity con-
trol (Reenan and Rogina 2008). Decreased expression of Sodium channels in flies 
harboring the mutant mle allele confers rapid and reversible temperature depend-
ent paralysis, because of failure of action potential propagation. The mle flies also 
exhibit decreased life span. Paralysis and decreased life span of mle mutants are 
partially rescued by increasing the dosage of para (Reenan and Rogina 2008).

1.2.2  Genes Coding for Neuropeptides

In Drosophila melanogaster, more than 40 genes encode precursors of 
 neuropeptides, peptide hormones and protein hormones, and a large number of 
 different neuropeptides has been identified in a variety of neuron types (for review, 
see Nassel and Winther 2010). The insulin-like peptides stay alone in the list of 
Drosophila neuropeptides since they are not necessarily always neuropeptides in 
other organisms. Seven genes encode insulin-like peptides (ILPs) in Drosophila 
 melanogaster. Of these, ILP2, 3 and 5 display similarities to mammalian insulins and 
are found in the 14 insulin producing cells (IPCs) embedded in a cluster of median 
neurosecretory cells in the pars intercerebralis of the CNS (for review, see Nassel 
et al. 2013). Ablation of the IPCs significantly extends life span (Fig. 1.1, Broughton 
et al. 2005; Haselton et al. 2010). ILPs are secreted into hemolymph and spread 
between target tissues where they activate insulin-like signaling (Grönke et al. 2010).

ILP2, 3 and 5 are encoded by three genes, ilp2, ilp3, and ilp5 (Table 1.1). 
Transcription level of ilp2 is regulated by p53 transcription factor. Overexpression 
of the p53 dominant-negative mutation in neurons reduces the amount of ilp2 tran-
script, activity of insulin-like signaling pathway in the fat body of flies and increases 
life span (Fig. 1.1, Bauer et al. 2005a, b, 2007, 2010). In flies with a loss-of-functions 
mutation in ilp2 life span is also increased (Fig. 1.1, Grönke et al. 2010). Inactivation 
of insulin-like signaling in the fat body of the head results in reduced transcription of 
ilp2 in ICPs and increased life span (Fig. 1.1, Hwangbo et al. 2004). Similarly, the 
stress-responsive Jun kinase (JNK) in the IPCs promotes longevity by  downregulating 
ILP2 through activation of FOXO (Fig. 1.1, Wang et al. 2003). Consistent with this, 
elevation of ILP2 amount in ICPs is associated with reduced life span (Fig. 1.1, 
Humphrey et al. 2009; Enell et al. 2010). All results presented above suggest that the 
level of expression of ilp2 in ICPs plays a key role in life span control.

However, a number of other results contradict this hypothesis. For instance, 
RNAi knockdown of ilp2 does not change life span (Fig. 1.1, Broughton et al. 
2008). Also, overexpression of mouse uncoupling protein 1 and human uncoupling 
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protein 2 in Drosophila neurons increases life span but affects transcription of 
ilp3, not ilp2 (Fridell et al. 2009). Diet restriction is associated with an increase 
in life span and with a reduction in the level of transcription of ilp5 in adults (Min 
et al. 2008) and ilp3 in larvae (Fig. 1.1, Grönke et al. 2010). Possibly, different 
ILPs synthesized in the central nervous system and slightly different in function 
can in some cases compensate for the function of each other. Indeed, a decrease 
in ilp2 expression is accompanied by an increase in ilp3 and ilp5 expression, and 
both ILP6 produced in the fat body and ILP7 produced in gonads are also involved 
in complex interactions among ILPs (Broughton et al. 2008; Grönke et al. 2010). 
Interaction with ILP7 might explain why eliminating germ cells leads, in contrast 
to other data, to both an increase in life span and an increase in the level of expres-
sion of all three genes encoding ILPs in the CNS, (Fig. 1.1, Flatt et al. 2008).

The brain IPCs that produce DILP2, 3 and 5 are directly regulated by a few 
neurotransmitters and neuropeptides. Serotonin, octopamine, gamma-aminobu-
tyric acid (GABA), short neuropeptide F, corazonin and tachykinin-related peptide 
have been identified in Drosophila as regulators of IPCs (for review, see Nässel 
et al. 2013). All these regulators might be involved in life span control, however, 
this has not yet been proved experimentally.

1.2.3  Genes Coding for Neurotransmitters Synthesis

Dopamine, a biogenic amine, plays a role as a neurotransmitter and a hormone 
in Drosophila. The conversion of tyrosine to l-DOPA catalyzed by tyrosine 
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hydroxylase is the rate-limiting step in dopamine biosynthesis. Catsup (Table 1.1) 
encodes a negative regulator of tyrosine hydroxylase (Stathakis et al. 1995, 1999). 
DOPA is then converted to dopamine by dopa decarboxylase encoded by Ddc 
(Table 1.1). Ddc also decarboxylates 5-hydroxytryptophan and transforms it into 
serotonin, another neurotransmitter (Livingstone and Tempel 1983; Stathakis et al. 
1995).

A genome-wide screen for genes affecting life span followed by quantita-
tive complementation tests with deficiencies and mutations revealed Catsup and 
Ddc as candidate genes involved in life span regulation (Nuzhdin et al. 1997; 
Pasyukova et al. 2000; De Luca et al. 2003; Roshina and Pasyukova 2007). This 
result was confirmed by analyses of structural molecular variation at Catsup 
(Carbone et al. 2006) and Ddc (De Luca et al. 2003) in a natural population. 
Catsup and Ddc polymorphisms located within functional and 5′ regulatory gene 
regions are significantly associated with life span.

1.2.4  Genes Coding for Receptors

Sensory neurons perceive environmental cues and transmit them to non-neuronal 
tissues via neural circuits that consist of other types of neurons. Genes coding for 
receptors that are expressed in different types of sensory neurons (Table 1.1) have 
been found to affect life span in Drosophila.

Orco (Or83b in original paper) is broadly expressed throughout olfactory tis-
sues and codes for co-receptor protein that interacts with conventional odorant 
receptors and is required for their localization to the neuronal dendrites; loss-of-
function mutations in Orco reduce physiological and behavioral responses to a 
wide range of odorants (for references, see Libert et al. 2007). Orco participates 
in sensory perception of smell (Mukunda et al. 2014). The loss-of-function muta-
tion of Orco significantly extends male and female life span (Libert et al. 2007). 
Mutation also produces severe olfactory defects, enhanced stress resistance, and 
altered adult metabolism.

Drosophila detect CO2 using a small subpopulation of sensory neurons that 
are located in the antennae and innervate a single glomerulus in the antennal lobe; 
these neurons express at least two gustatory receptor genes, Gr63a and Gr21a, 
which together comprise a CO2 odorant receptor (for references, see Poon et al. 
2010) and participate in detection of carbon dioxide (Kwon et al. 2007). Loss-
of-function mutation of Gr63a results in a lack of functional CO2 receptor and 
extended longevity accompanied by improved resistance to environmental stresses 
(Poon et al. 2010). Unlike Orco, Gr63a is expressed in a highly specific popula-
tion of neurons, which demonstrates that specific sensory cues and associated neu-
ral circuit have the ability to modulate fly life span.

Pheromone-sensing olfactory receptor neurons express a high level of the 
metabotropic GABA B receptor (GABA-B-R2) essential for synaptic activity 
and olfactory behavior (Root et al. 2008). Expression of GABA-B-R2 was also 
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revealed in IPCs, suggesting that GABA is involved in regulation of these neurose-
cretory cells. RNAi knock down of GABA-B-R2 specifically in the IPCs increased 
ILP amounts in these cells and shortened life span (Enell et al. 2010). Authors 
suggest that GABA-B-R2 is involved in inhibitory control of ILP production and 
release in adult flies and that this receptor mediates signals from brain interneu-
rons that may convey environmental nutritional cues.

1.2.5  Neuron-Specific Genes

Several Drosophila genes that function almost exclusively in the nervous system 
are considered here.

In mammals, cyclin-dependent kinase 5 (Cdk5) is a member of the family of 
cyclin-dependent kinases, however, unlike the cell-cycle kinases, activity of Cdk5 
is largely restricted to postmitotic neurons (for references, see Connell-Crowley 
et al. 2000, 2007). In Drosophila, Cdk5 encoded by the Cdk5 gene (Table 1.1) and 
p35, a small protein necessary for the activation of Cdk5, expressed, in particular, 
in postmitotic neurons and encoded by the p35 gene (Table 1.1), form a complex 
that regulates the accuracy of neural wiring, the growth of axons and the formation 
of synapses (Kissler et al. 2009; Connell-Crowley et al. 2000). Cdk5 also partici-
pates in the phosphorylation of the tau protein connected with the development of 
certain pathologies of the nervous system (for review, see Noble et al. 2013). Flies 
that are mutant for the dp35 gene are short-lived and demonstrate age-dependent 
degradation of motor function (Connell-Crowley et al. 2007).

Elav protein encoded by the gene elav (Table 1.1) is a member of a family of 
mRNA binding proteins involved in the post-transcriptional regulation of gene 
expression, including alternative splicing and translation (for references, see Toba 
et al. 2010). elav is expressed exclusively in the nervous system, in every neuron 
at all developmental stages, and is involved in the development and maintenance 
of the functional integrity of neurons (Robinow and White 1988, 1991). A hypo-
morphic temperature-sensitive elav mutation decreases male life span (Toba et al. 
2010).

1.2.6  Conclusions

Data on the role of neuronal genes in the control of longevity are rather sketchy, 
except for ILPs. Only in this later case the mechanism of life span-promoting 
effects is reasonably well understood and can be attributed to the well described 
evolutionary conserved insulin pathway also known to play a central role in regu-
lating various aspects of growth, development, metabolism and reproduction. Not 
quite consistent with this, synthesis of ILPs in specialized neuronal cells is not 
conserved among taxa. However, in most species analyzed to date, neurons are 
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involved in production and release of ILPs that regulate life span by influencing 
insulin-like signaling in remote tissues.

The empirical evidence at hand today indicate that another pathway that 
appears to mediate participation of neuronal genes in life span control is 
cAMP/PKA pathway, a signaling cascade used in cell communication. Several 
genes/proteins that are a part of this pathway affect life span, including the key 
enzyme, PKA. Multiple functions of PKA open up the possibility for much specu-
lation regarding the alleged role of this enzyme in both interaction with neuronal 
genes and life span control. However, it remains to be further elucidated how 
exactly cAMP/PKA signaling might provide a cross-talk between neuronal genes 
and life span.

The sensory neurons constitute perceptual systems that continuously evaluate 
environment and provide information for a wide range of behavioral decisions 
essential for locomotor, feeding, mating and other life-asserting responses in the 
daily life of a fly. Evidently, this indicates a clear link between sensory cues, cor-
responding neural circuits and longevity programs. It is therefore not surprising 
that several observations strongly support the importance of proper receptor func-
tion for longevity.

Data presented above allow directly connecting longevity with specific func-
tions of the nervous system. Not only neuronal genes themselves, but also genes 
providing general functions, yet exclusively in the nervous system, such as Cdk5, 
p35 and elav, have an impact on aging. While much future work is needed for 
a detailed understanding of the underlying regulatory mechanisms, the available 
studies in Drosophila to date clearly show that different types of neuronal genes 
are important for life span determination.

1.3  Developmental Neuronal Pathways  
in Life Span Control

1.3.1  InR/TOR Pathway

Among the molecular pathways known to affect longevity, the InR and TOR 
pathways are perhaps the most important, mainly due to their major, evolution-
arily conserved effects on life span in various model organisms (for review, see 
Tatar et al. 2003; Kapahi et al. 2010; Katewa and Kapahi 2011; Partridge et al. 
2011). Signaling through the InR and TOR pathways can act both in parallel but 
also interact with each other (Fig. 1.2), though only few experiments have directly 
explored the interactions between these pathways in terms of life span (Katewa 
and Kapahi 2011). The role of the InR/TOR signaling in life span control was 
thoroughly reviewed elsewhere and is beyond the scope of this paper. Here we 
review data on the role of the InR/TOR signaling in the development and function 
of the nervous system.
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Tissue-specific overexpression technique was used to understand how mis-
regulation of the InR/TOR signaling affects neural and behavioral development 
(Dimitroff et al. 2012). Neural overexpression of Pi3K, a principal mediator of 
growth factor inputs to TOR, causes synapse overgrowth, while neural overex-
pression of RHEB, the direct downstream target inhibited by Gigas (Table 1.1, 
Fig. 1.2), produces significant synapse overgrowth, axon misrouting, and pho-
totaxis deficits. Overexpression of AMPK (Table 1.1 and Fig. 1.2), coding for a 
component of the cellular energy sensing pathway, rescues behavioral and axon 
guidance deficits, but is not able to rescue synapse overgrowth. Altering the 
function of Raptor, a TOR complex 1 (TORC1) component, or a TORC1 down-
stream element S6K (Table 1.1 and Fig. 1.2) affects axon guidance and behavior. 
Reducing the function of TOR complex 2 (TORC2) components Rictor or Sin1 
(Table 1.1 and Fig. 1.2) suppresses synapse overgrowth. According to Dimitroff 
et al. (2012), these findings demonstrate that different inputs to InR/TOR signaling 
have specific activities in the nervous system development, and that Tor provides a 
connection between nutrient-energy sensing systems and patterning of the nervous 
system. The role of TPRC2 in regulating proper synaptic growth was further con-
firmed by (Natarajan et al. 2013). Gigas and Rictor mutants show increased synap-
tic growth, whereas Raptor knockdown has no effect on this trait. Furthermore, in 
gigas mutants the levels of phosphorylated Akt are dramatically decreased and Akt 
mutants phenocopy gigas mutants, leading to the conclusion that gigas and Akt 
work via the same genetic pathway to regulate synaptic growth.

The InR/TOR pathway also regulates dendrite growth. Early in development 
dendrites must grow in concert with animal growth to maintain proper connec-
tivity of tissues. This phenomenon, referred to as scaling growth of dendrites, 
requires the function of the microRNA bantam (ban) in the epithelial cells, which 
affects Akt activity in adjacent neurons (Parrish et al. 2009). Akt expression is 
increased in neurons but reduced in epithelial cells of ban mutants, and the amount 
of active, phosphorylated Akt and phosphorylated S6K, a downstream target of 
Akt (Fig. 1.2) is reduced. Activation of Pi3k leads to activation of Akt (Fig. 1.2) 
and a significant increase in dendrite coverage, while overexpression of Akt antag-
onist, Pten (Fig. 1.2) in neurons causes a significant reduction in dendrite coverage 
(Parrish et al. 2009). Components of the TORC2: TOR, Rictor and Sin1 are also 
required for dendritic tiling. TORC2 components physically and genetically inter-
act with the kinase Tricornered: TORC2 is essential for its phosphorylation on a 
residue that is critical for Tricornered activity (Koike-Kumagai et al. 2009).

The selective removal of unnecessary or exuberant neuronal processes with-
out loss of neurons, referred to as pruning, is a central event in the maturation of 
the nervous system during animal development. Several genes that are a part of 
InR/TOR pathway: InR, Pi3K, Pten, Akt1, gig, TOR, S6k, Thor (Table 1.1) were 
shown to participate in the control of dendrite pruning during larval-pupal tran-
sition (Wong et al. 2013). The F-box protein Slimb forms a complex with Akt, 
an activator of the InR/TOR pathway, and promotes Akt ubiquitination. Authors 
claim that activation of the InR/TOR pathway is sufficient to inhibit dendrite 
pruning.
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Importantly, the InR/TOR signaling also has specific neuronal functions in 
adult flies. For example, the levels of Pi3K regulate synapse number in adult brain 
projection neurons and is necessary for synapse maintenance (Martin-Pena et al. 
2006). Moreover, Pi3K activation induces synaptogenesis in aged adult neurons 
as well. Remarkably, Pten loss-of-function as well as Akt overexpression result 
in increased dendrite branching and regeneration (Song et al. 2012). Altogether, 
InR/TOR signaling participates in axon and dendrite maintenance and regenera-
tion in the CNS (Martin-Pena et al. 2006; Song et al. 2012).

1.3.2  Glycogen Syntase Kinase 3 Beta

Serine-threonine protein kinase Glycogen syntase kinase 3 beta (GSK3-beta) 
encoded by the gene sgg (Table 1.1) is another participant in the InR/TOR cas-
cade. When active, GSK-beta has been shown to directly phosphorylate and 
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activate Gigas when primed by AMPK-dependent phosphorylation (Fig. 1.2, for 
references, see Inoki and Guan 2006). Therefore, inactivation of GSK3-beta allevi-
ates Gigas-driven inhibition of Rheb and results in TOR activation.

GSK3-beta has multiple roles in the nervous system development and func-
tion. In some cases, GSK3-beta effects are mediated by the InR/TOR signal-
ing. Like this, GSK3-beta participates in the control of dendrite pruning during 
larval-pupal transition (Wong et al. 2013). However, other pathways also mediate 
sgg effects. For example, GSK3-beta is cleaved by the Dark-dependent caspase, 
and this cleavage converts it to an active kinase, which contributes to the devel-
opment of neural precursor cells (Kanuka et al. 2005). sgg is able to negatively 
influences synaptic growth by modulating the Jun-N-terminal kinase pathway, 
and also regulates presynaptic neurotransmitter release at the larval neuromuscu-
lar junction (Franciscovich et al. 2008). GSK3-beta also negatively controls the 
neuromuscular junctions growth and the microtubule cytoskeleton dynamics in 
motoneurons (Franco et al. 2004). GSK3-beta directly phosphorylates tau protein 
(for review, see Noble et al. 2013). Overexpression of tau disrupts axonal trans-
port causing vesicle aggregation, and co-overexpression of constitutively active 
GSK3-beta enhances the effects (Mudher et al. 2004). GSK3-beta also directly 
phosphorylates atypical Protein kinase C (aPKC) (Fig. 1.3, Colosimo et al. 2010), 
a key component ensuring asymmetric neuroblast division during Drosophila early 
development.

We addressed the question whether sgg affects life span in Drosophila. 
Panneuronal overexpression of sgg decreases the life span of both males and, 
at a lesser extent, females (Trostnikov et al. 2014). On the contrary, life span 
is increased in sggEP1576 and sggEY02862 mutant females compared to controls 
(Fig. 1.4a). Of note, both mutations are caused by insertions of the vector constructs 
P{EP} or P{EPgy2} into the first intron of the gene and were not activated by a 
driver. Accordingly, in these experiments, the effects on life span are associated with 
gene disruptions but not with sgg overexpression. Overexpression of sggEP1576 
demonstrates an intrinsic role for GSK3-beta in rhythmic locomotor activity 
(Stoleru et al. 2007), and overexpression of sggEY02862 in differentiated post-mitotic 
neurons suppresses synaptic growth (Franciscovich et al. 2008).

1.3.3  Cell Polarity Pathway

The above studies demonstrating the role of sgg in life span control attracted our 
attention to other genes involved in asymmetric neuroblast division as to potential 
aging genes.

Delaminated neuroblasts in Drosophila function as stem cells during embryonic 
central nervous system development. They go through repeated asymmetric divi-
sions to generate multiple ganglion mother cells, which divide only once more to pro-
duce postmitotic neurons. Polarity of neuroblasts is controlled by a protein complex 
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consisting of Bazooka (Baz), PAR-6 and aPKC (Fig. 1.3, Wodarz et al. 1999, 2000; 
Cai et al. 2003). aPKC is the main signaling component of this complex that func-
tions by phosphorylating downstream targets, while the PDZ domain proteins Baz 
and PAR-6 control the subcellular localization and kinase activity of aPKC. GSK3-
beta directly phosphorylates aPKC, which likely promotes its ubiquitin-mediated 
proteosomal degradation (Fig. 1.3, Colosimo et al. 2010). Apically localized aPKC 
is required for segregation of neuronal differentiation factors such as Prospero and 
Numb and the adaptor proteins Miranda and Partner of Numb to the basal cortical 
domain, to ensure their segregation into the basal daughter cell (Fig. 1.3). Numb and 
Miranda are polarized by direct aPKC phosphorylation (Smith et al. 2007; Atwood 
and Prehoda 2009), with the help of the cytoskeletal protein Lethal (2) giant larvae 
that is also phosphorylated by aPKC (Fig. 1.3) and thus released from its associa-
tion with membranes and the actin cytoskeleton (Betschinger et al. 2003). Of note, 
as it was demonstrated recently, aPKC also affects synaptic structure in larvae (Ruiz-
Canada et al. 2004; Chang et al. 2010; Colosimo et al. 2010).

When neuroblasts delaminate from the epithelial layer, Baz and Inscuteable (Insc) 
(Kraut and Campos-Ortega 1996; Kraut et al. 1996; Wodarz et al. 1999) concentrate 
in the apical stalk, maintaining the polarity cues for neuroblasts. Partnerof-Inscuteable 
(Pins), Locomotion defects (Loco), and Gαi protein join Insc (Fig. 1.3), forming an 
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apically localized functional complex before the neuroblast enters mitosis (Schaefer 
et al. 2000; Yu et al. 2000, 2003, 2005). Pins, Loco, and Gαi function redundantly 
with the Baz/aPKC/PAR-6 complex in regulating spindle geometry. Loco and Pins, 
through their GoLoco motifs, acts as a guanine nucleotide dissociation inhibitors 
(GDI) for Gαi protein. Furthermore, the regulator of G protein signaling (RGS) 
domain of Loco can also activate the GTPase activity of Gαi protein to regulate the 
equilibrium between the GDP- and the GTP-bound forms of Gαi. Thus, Loco can 
potentially regulate heterotrimeric G-protein signaling via two distinct modes of 
action during Drosophila neuroblast asymmetric divisions (Yu et al. 2005).

Three snail family genes snail, worniu, and esg (Table 1.1) encode related 
zinc finger transcription factors that have redundant and essential functions in 
 modulating asymmetric neuroblast division: they activate insc transcription and 
translation (Fig. 1.3, Ashraf and Ip 2001; Cai et al. 2001).

We assessed the life span of females heterozygous for aPKCk06403 loss-of-
function mutation. Decreased function of aPKC results in a significantly increased 
life span (Fig. 1.4). Effects on life span were also revealed for mutations in insc 
and esg. inscEY09668 and esgBG01042 mutant females live longer than their matched 
controls (Fig. 1.4c, d). Experiments with esgBG01042 mutant flies also allowed to 
directly prove the causal association between changes in life span and esg muta-
tion (Magwire et al. 2010) and an association of increased life span with decreased 
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without live yeast on the surface weekly. Dead flies were recorded daily. Sample sizes were 100–
150 flies/genotype
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esg transcription (Zaitsev et al. 2010), consistent with the results obtained for 
aPKC and insc.

Reduced expression of Loco results in a longer life span and a stronger resist-
ance to different stressors. In addition, the reduction in Loco expression decreases 
cAMP levels. In contrast, overexpression of both genomic and cDNA loco gene 
significantly shortens the life span with weaker stress resistance. Deletion analysis 
of the Loco demonstrates that its RGS domain is required for the regulation of 
longevity (Lin et al. 2011a, b). Accordingly, Lin et al. (2011a, b) proposed that 
Loco activates inhibitory Gαi•GTP protein to reduce activity of adenylate cyclase 
and may regulate stress resistance and longevity as an activator of cAMP-PKA 
pathway.

1.3.4  Global Regulators

Global regulators of gene expression programs play multiple roles in maintain-
ing genome integrity and providing epigenetic modulation of expression patterns 
during development and throughout life span. In 1997, Villeponteau proposed a 
heterochromatin loss model of aging. According to this model, heterochromatin 
domains, which are set up early in embryogenesis, are gradually lost with aging, 
resulting in derepression of silenced genes and aberrant gene expression pat-
terns (Villeponteau 1997). Experimental tests of the role of heterochromatin for-
mation in aging, however, have produced controversial results. It was shown that 
mutations at Su(var)2-1 and Su(var)205 loci have virtually no effect on life span 
(Rogina et al. 2002; Frankel and Rogina 2005). At the same time, increasing and 
decreasing HP1 levels shortens and prolongs life span, respectively (Larson et al. 
2012). Here we review data on longevity effects of global regulators that were also 
shown to affect the development and function of the nervous system.

The histone deacetilase encoded by the gene Rpd3 (Table 1.1) was shown to 
affect axon and dendrite arborization and dendrite guidance (Parrish et al. 2006; 
Tea et al. 2010). Interestingly, overexpression of Pros can suppress Rpd3 mutant 
phenotypes (Tea et al. 2010). Authors suggest a specific function for the general 
chromatin remodeling factor Rpd3 in regulating neuron development, largely 
through the postmitotic action of the Pros transcription factor. It was also shown 
that heterozygous hypomorphic or loss-of-function Rpd3 mutants have extended 
life span (Rogina et al. 2002). Authors present evidences that the effect on life 
span is not associated with the overall increase in histone acetylation.

JAK/STAT signaling have two roles: in the canonical pathway, JAK/STAT 
directly regulates target gene expression; in the non-canonical pathway, unphos-
phorylated STAT is involved in heterochromatin formation. In the non-canonical 
function, therefore, loss of STAT has the same effects as JAK overactivation, caus-
ing heterochromatin destabilization (for references, see Larson et al. 2012). In 
Drosophila, JAK is encoded by the gene hop (Table 1.1) and STAT is encoded by 
the gene Stat (Table 1.1). Lack of both JAK and STAT activation causes defects 
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in the growth and organization of axonal projections in embryos (Li et al. 2003), 
indicating the role of canonical signaling in the development of the nervous sys-
tem. Cytokine signaling through the JAK/STAT pathway is also required for 
long-term memory in Drosophila (Copf et al. 2011). On the contrary, non-canon-
ical JAK/STAT pathway was shown to affect life span (Larson et al. 2012). Flies 
heterozygous for a loss-of-function hop allele have longer life span compared to 
controls, while flies heterozygous for a gain-of-function hop allele and flies het-
erozygous for a Stat mutation are short-lived. It is not known yet whether non-
canonical JAK/STAT pathway plays a role in the nervous system.

Polycomb Group (PcG) and Trithorax Group proteins are key epigenetic 
regulators of global transcription. The H3 binding protein, a core subunit of the 
PcG complex, encoded by the gene esc (Table 1.1), was revealed in a genome-
wide analysis as a factors required for proper morphogenesis of Drosophila sen-
sory neuron dendrites (Parrish et al. 2006). It is not yet known whether its partner, 
another core subunit of the PcG complex, the histone H3 lysine 27-specific meth-
yltransferase encoded by the gene E(Z), also plays a role in neuron morphogen-
esis. However, both genes were shown to affect life span and stress-resistance 
(Siebold et al. 2010). Mutations both increase longevity and stress-resistance and 
reduce adult levels of trimethylated H3K27, which allowed authors to suggest that 
both the longevity and stress resistance phenotypes of PcG mutants are specifically 
due to violation of Polycomb silencing.

The Myc-Max-Mad-Mnt conserved transcription factors of the basic helix-
loop-helix zipper class are supposed to function together as a molecular module to 
transcriptionally regulate cell growth, proliferation, and differentiation (for refer-
ences, see Loo et al. 2005). In Drosophila, Mnt was identified and shown to affect 
the nervous system development in embryos (Loo et al. 2005) and the neuron mor-
phogenesis in cell culture (Sepp et al. 2008). Null Mnt mutants have a decreased 
life span and an increased body size (Loo et al. 2005).

1.3.5  Transcription Factors

Transcriptional cascades have long been considered as important regulators of 
many biological processes including the nervous system development (Skeath and 
Thor 2003). Individual transcription factors may also play a crucial role in regula-
tion of development, homeostasis, metabolism, growth, and life span, as exempli-
fied, for instance, by the transcription factor Forkhead Box Protein (for review, see 
Puig and Mattila 2011). Several transcription factors have already been considered 
above in the context of their neuronal functions and participation in the life span 
control via ILPs signaling (p53) and alleged association with asymmetric neurob-
las division (Esg). Here we review data on several other transcription factors that 
are involved in the development of the nervous system and longevity control.

In Drosophila, Lim3 and tup (Table 1.1) encode two RNA polymerase II tran-
scription factors required for development and function of neurons. With Drifter 
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and Apterous, Lim3 and Tup constitute a “combinatorial code” that generates dis-
tinct motor neuron identities during embryonic development (Thor et al. 1999; 
Certel and Thor 2004). Mutations at Lim3 locus and natural polymorphisms at the 
regulatory region of the Lim3 main transcript are associated with life span vari-
ation (Roshina and Pasyukova 2007; Rybina and Pasyukova 2010). A naturally 
occurring structural variation causes a sixfold change in gene transcription and a 
25 % change in life span. We hypothesized that polymorphic markers associated 
with Lim3A expression are located within the binding sites for proteins that reg-
ulate gene function, and provide general rather than tissue-specific regulation of 
transcription, and that intermediate levels of Lim3A expression confer a selective 
advantage and longer life span. Analysis of a reporter gene expression governed 
by different polymorphic variants of the Lim3 regulatory region in transgenic flies 
confirmed the functionality of naturally occurring structural variation (Rybina 
et al. manuscript in preparation). Mutations at tup locus are associated with life 
span variation (Roshina and Pasyukova 2007).Our preliminary data also indi-
cate that an insertion at the 5′ regulatory region of tup increases male and female 
life span, and precise reversion of the mutation leads to the restoration of the life 
span phenotype specific to control flies, indicating the causal association between 
changes in life span and tup mutation (Symonenko et al. unpublished).

stc (Table 1.1) encodes an RNA polymerase II transcription factor homologous 
to human transcription factor NF-X1 (Stroumbakis et al. 1996). In Drosophila, stc 
is expressed throughout all developmental stages and in adults. In embryos, stc 
is expressed in the central nervous system, where it is required to maintain the 
proper morphology of motoneuronal axon nerve routes (Stroumbakis et al. 1996). 
In adults, stc expression is highest in ovaries and provides essential maternal con-
tributions to early development (Tolias and Stroumbakis 1998). Mutations at stc 
locus are associated with life span variation (Pasyukova et al. 2004). In particular, 
one of the stc mutations was shown to increase the life span of unmated females 
and decrease the life span of mated females, without affecting males (Roshina 
et al. 2014). Precise reversions of the mutation lead to the restoration of the life 
span specific to control females, indicating the causal association between changes 
in life span and stc mutation. No differences in stc transcription are observed 
between whole bodies, ovaries, and brains of mutant and control females of dif-
ferent ages, either unmated or mated. The amount of stc transcript is substantially 
decreased in mutant embryos (Roshina et al. 2014).

1.3.6  Conclusions

The empirical data at hand today indicate that many genes are involved in both 
the nervous system development and the life span control. Do the same pathways 
mediate an impact of a gene on the neuron development and longevity? Is an 
impact of a gene on life span related, at least partially, to its developmental func-
tions or is it explained by other pleiotropic influences later in life?
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It is well established that InR/TOR signaling pathway integrates signals origi-
nating from changes in growth factors, nutrient availability, energy status and 
various physiological stresses and conveys them to downstream outputs. Recently, 
InR/TOR signaling have been found to influence the development and functions of 
the nervous system via controlling synapse growth, axon guidance, dendrite prun-
ing, etc. It was shown that axon guidance and behavioral phenotypes are affected 
by altering functions of TORC1 involved in the control of growth and life span. 
These findings demonstrate that TOR signaling provides a critical link between 
metabolic factors, axon development, and longevity. Synapse overgrowth was only 
suppressed by reducing the function of TORC2. These findings demonstrate that 
regulation of synapse overgrowth probably occurs via growth-and life span- inde-
pendent signaling mechanisms.

InR and TOR cascades were at first regarded as separate pathways, however, 
later, many new genes/proteins belonging to these cascades were discovered and 
new interactions among them were revealed. Now, InR and TOR cascades make 
up a single extensive network of interacting elements. Eventually, many other 
pathways may be appended to the network, creating an even more complicated 
system. Which exactly parts of this interacting network will be assigned to regu-
late life span is so far unclear. Evidently, at present, the puzzle is not yet complete. 
However, some promising links are indicated.

sgg belongs to many pathways, including InR/TOR signaling and asym-
metric cell division pathway; GSK3-beta participates in phosphorylation of tau 
protein and thus is associated with the development of age-related neurodegenera-
tive diseases. Thereby, sgg effects on longevity, most probably, are mediated by 
sophisticated interactions among several pathways. Cdk5 is also involved in phos-
phorylation of tau, and GSK3-beta and Cdk5 effects on longevity may be medi-
ated by partially overlapping mechanisms.

Loco is involved in asymmetric neuroblast division and may regulate both this 
process and longevity as an activator of cAMP-PKA pathway. cAMP-PKA path-
way also mediates effects of ion channel genes on life span and, in this case, the 
same pathway is also involved in both maintenance of the integrity of specific neu-
ronal functions and the life span control. These examples indicate that effects of 
seemingly unrelated genes may converge on the same pathway.

In certain cases, experimental data clearly point out that the effect on the life 
span is not mediated by the main functional activity of a gene/protein. For exam-
ple, Rpd3 is supposed to affect longevity independently of histone deacetylation. 
The role of canonical JAK/STAT signaling in the development of the nervous sys-
tem is indicated, while the non-canonical pathway plays a role the life span regula-
tion. Conversely, the longevity phenotype of PcG mutants appears specifically due 
to violation of Polycomb silencing.

Accumulating data suggest that several key life span regulators such as 
 mitochondrial electron transport chain enzymes, microRNAs, and the  transcription 
factors HSF-1 and FOXO affect life span predominantly during early  larval 
 development and early adulthood (for review, see Alcedo et al. 2013). We 
 demonstrated that only stc transcription in embryos is altered in long-lived stc 
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mutants. It is tempting to suggest that life span might depend on gene function 
during early development. We hypothesized that the long-term, carry-over effects 
of the stc mutation might be epigenetically inherited in cell lineages. Alternatively, 
the STC transcription factor might participate in transcriptional cascades that 
 predetermine structural and therefore functional properties of the adult nervous 
system. Similarly, several genes belonging to the asymmetric neuroblast division 
pathway affect life span, and it remain to be understood if neuroblast division 
that occurs during early embryonic development, may have a carry-over effect on 
aging and longevity.

1.4  Perspectives

It may be that virtually all genes are involved in life span control, the strength of 
their effects being different in different environments (variations in food supplies, 
oxygen, temperature, humidity, etc.), in different sexes, at different ages. The most 
intriguing and difficult puzzles remained to be solved in future work concern inter-
actions among different genes and pathways that provide an optimal level of integ-
rity and functionality of all organs and tissues, at all ages. At the level of the whole 
organism, pleiotropic effects of genes and tissue-, temporal-, sex-, age-specific 
activities of pathways comprise an extremely complicated functional network. 
Considering neuronal genes and developmental neuronal pathways in this context, 
the ambitious and exciting goals would be, among others: to establish pathways 
that mediate neuronal inputs in aging and longevity; to reveal feed-back and feed-
forward mechanism underlying interactions between the nervous system and other 
tissues in life span control; to understand how the nervous system mediates an 
impact of environmental cues on longevity; to discover the basis of undoubted sex-
specificity of neuronal inputs in life span.
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Abstract Proteins of the GADD45 family play an essential role in the integration 
of cellular response to a wide variety of stressors and maintenance of homeostasis 
at the level of a cell, a tissue and an organism. The basic homeostatic processes 
are implicated in the determination of the progression of aging and development 
of major age-related disorders. Moreover, GADD45s mediate several well-known 
aging-associated signaling pathways through the interaction with such proteins as 
FOXO, p53, ATM, ATR, SIRT1, mTOR and some other. These reasons point out 
the role of the GADD45 proteins in the aging and life span regulation. Indeed, we 
have shown that constitutive and conditional (mifepristone-inducible) D-GADD45 
overexpression in Drosophila melanogaster nervous system extends median and 
maximum life span, and increases the resistance to genotoxic, oxidative, thermal 
stress, and starvation. The life span-extending effect was apparently due to more 
efficient recognition and repair of DNA damage, because the spontaneous DNA 
damage in the larva neuroblasts with D-GADD45 overexpression was reduced. 
However, data obtained for flies with conditional ubiquitous D-GADD45 overex-
pression demonstrates a negative effect of this intervention on the life span and 
stress resistance.
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2.1  Introduction

Proteins of the GADD45 family (Growth Arrest and DNA Damage-inducible) play 
an essential role in the integration of cellular response to a wide variety of stress-
ors and maintenance of homeostasis at the level of a cell, a tissue and an organism 
(Liebermann and Hoffman 1994; Zhang et al. 1999; Fornace et al. 2002; Moskalev 
et al. 2012b; Salvador et al. 2013) as well as in the determination of aging-related 
processes and longevity (for review, see Moskalev et al. 2012b).

Majority of gerontogenes (genes whose activity determines organism life 
span) are members of conserved biological pathways across different groups 
of species (for review, see Moskalev et al. 2014). Likewise, GADD45 orthologs 
first appeared in molluscs, and were also found in anemones, polychaete worms, 
insects, fish, amphibians and mammals. The number of GADD45 proteins in each 
species varies from one in lower organisms to 5–6 in fish, and decreases to 2–3 in 
amphibians and mammals (GADD45α, GADD45β and GADD45γ). Additionally, 
several isoforms were described, which are generated as a result of alternative 
mRNA splicing (Flicek et al. 2011). This indicates that the GADD45 family is 
relatively “young” and has undergone duplications and deletions in the course of 
evolution (Moskalev et al. 2012b). In Drosophila there is a single ortholog of the 
GADD45 family D-GADD45 (CG11086) (Peretz et al. 2007).

The gerontogenes are classified as life span regulators, mediators, effectors, 
housekeeping genes, genes involved in mitochondrial function, and genes regu-
lating cellular senescence and apoptosis (for review, see Moskalev et al. 2014). 
GADD45s can be relevant to the last category of regulatory genes. Protein prod-
ucts of GADD45 genes are small (about 18–20 kDa), acidic (pH 4.0–4.2) proteins 
with high level of homology (55–57 % of identic aminoacids). Mainly, they have 
nucleus location and are associated with ribonucleoprotein speckles (Abdollahi 
et al. 1991; Zhang et al. 1999; Vairapandi et al. 2002; Sytnikova et al. 2011). 
GADD45 proteins form homo- and hetero-dimers and olygomers (Kovalsky et al. 
2001; Schrag et al. 2008). The median half-life of the GADD45 mRNA is unu-
sually short (less than 1 h), suggesting a regulatory rather than metabolic func-
tion for GADD45 proteins (Sharova et al. 2009). They don’t exercise enzymatic 
properties, and function through the interactions with other proteins and RNA 
(Sytnikova et al. 2011), or by way of modification of DNA/RNA accessibility 
for enzymes (Carrier et al. 1999; Moskalev et al. 2012b). The expression of the 
GADD45 proteins is detected in different tissues, including heart, brain, spleen, 
lungs, liver, skeletal muscles, kidneys, testicles, placenta (Zhang et al. 1999).

Most of the longevity genes described are related to stress response (for review, 
see Moskalev et al. 2014). GADD45 proteins are highly expressed after expo-
sure to different physical, chemical and biological agents, and physiological fac-
tors. During stress response, they control such processes as DNA repair, cell cycle 
regulation, cellular senescence, apoptosis, inflammatory response, maintaining of 
the stem cell pool and cell differentiation. However, their inducibility is reduced 
with age (Edwards et al. 2004) which can be a reason of age-dependent descent of 
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resistance to spontaneous and induced stress influences, and organism survivabil-
ity. Processes that provide basic homeostasis reactions are implicated in the deter-
mination of the progression of aging and age-related diseases (ARDs) (for review, 
see Moskalev et al. 2012b). Indeed, there are evidences that GADD45 proteins are 
involved in the development of major ARDs, including cancer, metabolic, cardio-
vascular and autoimmunity disorders (Budovsky et al. 2009; Wolfson et al. 2009; 
Moskalev et al. 2012b). Moreover, GADD45 activity is responsible for embryo-
genesis and ontogenesis, and its imbalance is implicated in the development of 
such pathologic reactions as preeclampsia (Xiong et al. 2009; Geifman-Holtzman 
et al. 2013). GADD45s mediate several well-known aging-associated signaling 
pathways through the interaction with such proteins as FOXO, p53, ATM, ATR, 
SIRT1, mTOR and some other (Furukawa-Hibi et al. 2002; Kobayashi et al. 2005; 
Bortoff et al. 2010; Moskalev et al. 2012b; Salvador et al. 2013). All these rea-
sons point out the role of the GADD45 proteins in the aging and life span regula-
tion. Recently, we have shown the life span-extending effects and stress resistance 
stimulation due to neuro-specific D-GADD45 overexpression using the fruit fly 
Drosophila melanogaster (Plyusnina et al. 2011; Moskalev et al. 2012b; Plyusnina 
et al. 2012). This data confirm the involvement of GADD45 proteins in longev-
ity determination, and suggest their ectopic expression can appear as beneficial 
method for the organism life span extension.

GADD45 family is evolutionary conserved in multicellular animals. In this 
chapter we considered participation of GADD45 genes in different aging-related 
processes, based on the data obtained in different model objects. At the same time 
we focused on the results of our investigations, which demonstrate the role of 
D-GADD45 gene in Drosophila melanogaster longevity.

2.2  Involvement of GADD45 Proteins in Stress Resistance 
Regulation

2.2.1  GADD45 in DNA Repair and Epigenetic Regulation

The expression of GADD45s is one of the critical conditions at the early stages 
of the DNA damage response with following activation of DNA repair machin-
ery. The GADD45 promoters contain binding motifs for FOXO (AFX/FOXO4, 
FKHRL1/FOXO3A, and AKT/FOXO1 transcription factors), p53, p33 (ING1), 
p73, OCT-1, BRCA1. Their activation under stress conditions leads to GADD45 
upregulation with subsequent stimulation of DNA repair, blockage of cell cycle 
in the G1/S and G2/M checkpoints, and apoptosis (Kastan et al. 1992; Guillouf 
et al. 1995; Vairapandi et al. 1996; el-Deiry 1998; De Laurenzi and Melino 2000; 
Jin et al. 2000; MacLachlan et al. 2000; Cheung et al. 2001; Jin et al. 2001; 
Furukawa-Hibi et al. 2002; Tran et al. 2002; Ju et al. 2014).

The role of GADD45 in DNA repair is supported by the studies on in vitro and 
in vivo models. GADD45α-null mouse embryo fibroblasts and GADD45α-deficient 
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human colon cancer cells exhibited slow base excision repair and delays removal 
of AP sites after treatment with methyl methanesulfonate (MMS) (Jung et al. 
2007). The GADD45a−/− mice demonstrate genomic instability, reduced nucle-
otide excision repair, increased level of mutations and high susceptibility to 
chemical oncogenes (Hollander et al. 1999, 2001). The disrupted expression of 
GADD45β caused by the hepatitis C viral infection suppresses the DNA excision 
repair as well (Higgs et al. 2010). GADD45 proteins participate in base and nucle-
otide excision repair through the links with DNA repair enzymes and regulation 
of their activity. GADD45α and GADD45β interact with the apurinic/apyrimidinic 
 endonuclease 1 (APE1) (Jung et al. 2007), xeroderma pigmentosum proteins XPC 
and XPG (Hartman and Ford 2002; Chang et al. 2003; Ma et al. 2009; Le May 
et al. 2010; Schäfer et al. 2010), and proliferating cell nuclear antigen (PCNA) 
(Smith et al. 1994; Hall et al. 1995; Vairapandi et al. 2000).

Another way of GADD45 involvement in DNA repair is its involvement in the 
repair-mediated active DNA demethylation (Barreto et al. 2007; Rai et al. 2008; 
Cortellino et al. 2011; Schomacher 2013). A possible GADD45-mediated dem-
ethylation mechanism involves nucleotide excision repair associated with the 
endonuclease activity of XPG protein. Specifically, 5-methylcytosine containing 
nucleotides could be recognized and removed through GADD45–XPG complex, 
ultimately resulting in the demethylation of CpG dinucleotides (Ma et al. 2009; 
Schmitz et al. 2009; Le May et al. 2010; Schäfer et al. 2010; Schomacher 2013). 
Additionally, GADD45 and XPG are involved in base excision repair, which could 
be another DNA repair mechanism associated with removal of methylated DNA 
(Jung et al. 2007). Additionally, GADD45 is able to bind histones and modify 
accessibility of damaged DNA for repair enzymes, and participates in chromatin 
decondensation (Carrier et al. 1999; Ma et al. 2009; Schomacher 2013). Thus, 
GADD45 recruits nucleotide and/or base excision repair factors to gene-specific 
loci and acts as an adapter between repair factors and chromatin, thereby creating 
a nexus between epigenetics and DNA repair (for review, see Niehrs and Schäfer 
2012).

Recently, GADD45α was shown to bind RNA, forming ribonucleoprotein parti-
cles. GADD45 was detected inside nuclear speckles which are sites of active tran-
scription, RNA splicing and processing (Sytnikova et al. 2011). Thus, GADD45 
could exert its epigenetic effects both through active DNA demethylation, chroma-
tin remodeling and post-transcriptional RNA regulation.

2.2.2  GADD45 in Cell Cycle Regulation  
and Cellular Senescence

ATM- and p53-mediated activation of GADD45 is essential for a DNA damage-
induced G1 and G2/M cell cycle arrest during stress response (Wang et al. 1999). 
Thus, human and mouse GADD45-dificient fibroblasts and lymphocytes failed to 
arrest at G2/M after exposure to stress stimulus (Wang et al. 1999). Microinjection 
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of the GADD45α expression vector into human primary fibroblasts arrests the 
cells in G2/M phase (Wang et al. 1999). On the same hand, ectopic expression 
of GADD45α, GADD45β or GADD45γ in cancer cells (M1 human myeloblas-
tic leukemia and H1299 lung carcinoma) leads to accumulation of cells arrested 
in the G1 phase that later underwent apoptosis (Zhang et al. 2001). Additionally, 
it was found that GADD45α expression and G1 cell cycle arrest are activated by 
c-Jun N-terminal kinase (SAPK/JNK) under fucoxanthin treatment of LNCap 
prostate cancer cells, while the inhibition of SAPK/JNK attenuated the induc-
tion of G1 arrest and GADD45α expression (Satomi 2012). To achieve cell cycle 
arrest, GADD45 proteins interact with the protein kinase cell division cycle 2 
(Cdc2), Cyclin B1, PCNA and cyclin-dependent kinase inhibitor p21 (Liebermann 
and Hoffman 2003). The interaction of GADD45α and GADD45β with the Cdc2/
Cyclin B1 kinase complex leads to its dissociation and following G2/M cell cycle 
arrest as well as the inhibition of Cdc2 kinase activity (Zhan et al. 1999; Zhang 
et al. 1999; Vairapandi et al. 2002; Hsu et al. 2014). The interaction of all three 
GADD45 proteins with p21 induces both the G1 and G2/M arrest (Smith et al. 
1994; el-Deiry 1998; Xiong et al. 2009; Zhang et al. 2014a).

GADD45 mediates cellular senescence in the case of unrepaired DNA dam-
ages, through the cell cycle arrest in the G1 phase with following unresponsive-
ness to growth factors (for review, see Moskalev et al. 2012b). A significant 
increase in GADD45α expression was observed upon stress-induced cellular 
senescence triggered by hydrogen dioxide (Duan et al. 2005). On the other hand, 
ectopic expression of GADD45γ robustly elicited senescence in hepatocellu-
lar carcinoma cells and suppressed tumor growth in vivo (Zhang et al. 2014b). 
Induction of GADD45 expression with subsequent cellular senescence can be acti-
vated by p53-dependent and JAK/STAT3 signaling pathways (Jackson and Pereira-
Smith 2006; Zhang et al. 2014b). GADD45-mediated cellular senescence involves 
an increased expression of p21, mitochondrial dysfunction and generation of reac-
tive oxygen species through the GADD45/p38 MAPK/GRB2/TGFBR2/TGFβ 
signaling pathway (Passos et al. 2010; Zhang et al. 2014a).

2.2.3  GADD45 Role in Cell Death and Survival

GADD45 family members play a dual role during mediation of apoptosis asso-
ciated with two major components—p38/JNK mitogen-activated kinase (MAPK) 
and NF-κB signaling pathways (Takekawa and Saito 1998; Harkin et al. 1999; Lu 
et al. 2001; Hildesheim et al. 2002; Yoo et al. 2003; Tront et al. 2006). In fact, the 
MAPK/GADD45/NF-κB axis responds to a variety of extracellular stimuli, con-
verting them to intracellular responses (Yang et al. 2009; Moskalev et al. 2012b). 
It is noteworthy that GADD45 proteins and stress kinases form a feedback regu-
latory loop: the expression of GADD45 is also under the control from p38 and 
JUNK MAPKs. GADD45γ and GADD45β bind to MEK kinase 4 (MEKK4) and 
promote phosphorylation and activation of the p38 and JNK MAP kinases by 
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MEKK4 (Takekawa and Saito 1998). However, specific inhibitor of p38 MAPK 
SB202190 suppresses the expression of all three GADD45 genes (Oh-Hashi et al. 
2001). NF-κB and GADD45s form a positive feedback regulatory loop as well 
(Gupta et al. 2006).

In the case of irreparable damages, GADD45 proteins exert a pro-apoptotic 
function. For example, the GADD45 proteins mediate the endoplasmic reticulum 
stress-induced apoptosis in mouse liver cells (Ji et al. 2005). Ectopic expression of 
GADD45 triggers apoptosis via the TGFβ/MEKK4/p38/JNK pathway in human 
leukemic cells or in mouse hepatocytes (Selvakumaran et al. 1994; Yoo et al. 
2003). At the same time, blocking of early expression of GADD45β suppresses the 
apoptosis induced by TGFβ in myeloid leukemia cells (Selvakumaran et al. 1994).

However, GADD45α and GADD45β also can fulfil an anti-apoptotic func-
tion. For example, their activity increases hematopoietic cell survival under 
UV-irradiation or treatment with certain chemotherapeutic drugs (Gupta et al. 
2005). Bone marrow cells obtained from GADD45α−/− and GADD45β−/− mice 
show an impaired ability for differentiation and increased sensitivity to the 
induction of apoptosis after being stimulated by cytokines (Gupta et al. 2006). 
GADD45α-deficient E1A + Ras cells treated with HDAC inhibitors demon-
strated a higher level of pro-apoptotic signals, whereas the anti-apoptotic program 
is suppressed (Igotti Abramova et al. 2014). Anti-apoptotic function of GADD45 
is realized through two mechanisms: activation of the p38/NF-κB anti-apoptotic 
pathway by GADD45α (Zhang et al. 2005; Gupta et al. 2006) and inhibition of the 
MKK7/JNK pro-apoptotic pathway by GADD45β (Papa et al. 2004b; Tornatore 
et al. 2008). Additionally, interactions of GADD45 with PCNA may promote cell 
survival, apoptosis inhibition together with DNA repair (Vairapandi et al. 2000; 
Azam et al. 2001).

It should be noted that the MAPK-mediated effect of GADD45 activation on 
the apoptosis onset is cell type specific. For example, activation of p38 and JNK 
kinases by GADD45 is associated with apoptosis in endothelial and epithelial 
cells (Harkin et al. 1999; Hildesheim et al. 2002), whereas it increases survival of 
hematopoietic cells (Platanias 2003). Additionally, induction of GADD45β by NF-
κB downregulates pro-apoptotic JNK signaling in mouse embryonic fibroblasts 
(De Smaele et al. 2001) and in hepatocytes during liver regenerations after partial 
hepatectomy (Papa et al. 2008).

2.2.4  GADD45 in Antioxidant System Regulation  
and Heat Shock Response

GADD45 proteins can be involved in the prevention of cellular damages and 
heat shock response induction. Indeed, it was found that D-GADD45 gene was 
upregulated in fly heads after treatment with free radical inductor paraquat and 
high temperatures. Furthermore, flies with D-GADD45 overexpression in the 
nervous system were more resistant to this stressor compared with ones without 
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overexpression (Moskalev et al. 2012a). In mammalian cells GADD45β-mediated 
activation of the protein kinases MEKK4 and JNK (Takekawa and Saito 1998; 
Papa et al. 2004a) increases the level of the ASK1 (Ko et al. 2001), which acts 
in opposition to the SOD1 protein. The GADD45 proteins affect the expression 
level of the transcription factors PPARγ (Hamza et al. 2009) and RXRA (Wu 
et al. 2004) as a part of JAK and MEK kinase signaling cascades, and participate 
in the induction of downstream antioxidant systems (SOD1, thioredoxin and glu-
taredoxin enzymes). Thus, in the process of oxidative stress response, GADD45 
family proteins are involved in the control of the activity and maintenance of the 
balance between antioxidant enzymes and determine the fate of cells (Moskalev 
et al. 2012a).

Additionally, the transcription factors PPAR-γ and RXRA increase the expres-
sion of the heat shock protein HSP22 (Hamza et al. 2009). HSP22 is responsible 
for activating another heat shock protein, HSP27 (Sun et al. 2004) and following 
HSP70 induction (Whitlock et al. 2005). For example, GADD45 proteins can par-
ticipate in the heat shock response through PPAR-γ and RXRA. Another way of 
involvement of the GADD45 family members in the heat shock protein activation 
is mediated by its interaction with the CDK1 protein kinase. All three GADD45 
proteins bind and inhibit CDK1, which phosphorylates the transcription factor 
SP1 (Chuang et al. 2012). The tanscription factor SP1 activates the expression of 
heat shock proteins HSP27 and HSP60 (Reed et al. 2008; Friedman et al. 2009). 
Finally, GADD45s activates the transcription factor HSF1 by inhibiting the p38 
protein kinase (Moskalev et al. 2012a). HSF1 is a key element for pathways acti-
vating heat shock proteins, such as HSP60, HSP90, HSPA4, HSP70, HSP27 and 
HSP22.

2.2.5  GADD45 in Inflammatory Response and Immunity

GADD45 proteins also contribute to cellular inflammation response and organism 
survival by modulation of the immune response (for review, see Schmitz 2013). It 
was shown using the Drosophila model, that the inflammation induced by bacte-
rial infection increases both the level of D-GADD45 mRNA and protein (Peretz 
et al. 2007; Moskalev et al. 2012a). The GADD45 genes are induced by the pro-
inflammatory transcription factor NF-κB (Balliet et al. 2001), cytokines including 
interleukins TNFα, TNFβ, IL-2, IL-6, IL-8, IL-12, IL-18 (Fan et al. 1999; Zhang 
et al. 1999; Yang et al. 2001; Salerno et al. 2012) and oncostatin M (Nakayama 
et al. 1999). The main function of GADD45 in the inflammation response is 
determined by its interactions with mitogen-activated protein kinase p38, cyc-
lin-dependent kinase p34 (Yang et al. 2000), and PCNA (Smith et al. 1994). For 
example, after IL-12 and IL-18 treatment GADD45β activated p38 and selectively 
increased cytokine-induced interferon γ (IFNγ) production (Yang et al. 2001). 
Additionally, the GADD45 proteins affect the transcription of IFNγ by interact-
ing with PCNA-p300 family (Nakayama et al. 2001). Regulation of this pathway 
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is mediated by interaction of GADD45s with the transcription factors PPARα, 
C/EBPβ and c-Jun (Moskalev et al. 2012a).

The GADD45β and GADD45γ proteins provide proliferation of T helper 1 
(Th1) cells and induce the production of IFNγ in these cells (Yang et al. 2001). 
The essential role of GADD45 in elevating the level of IFNγ is evidenced by the 
absence of this process in GADD45γ- (Lu et al. 2001) and GADD45β-deficient 
mice (Ju et al. 2009). Furthermore, GADD45 proteins play an important role in 
the process of Th1-mediated anti-tumor immune responses (Ju et al. 2009) and in 
autoimmunity reaction development (Liu et al. 2005).

It was found that GADD45α and GADD45β are also essential for differentia-
tion of bone marrow cells into macrophage and granulocyte. The GADD45α- and 
GADD45β-deficient mice were characterized by increased apoptosis during differ-
entiation and reduced clonogenicity (Gupta et al. 2006). Additionally, GADD45s 
activation of the p38 kinase is implicated in the response of granulocytes to 
lipopolysaccharide (a component of gramm-negative bacterial cells) mediated 
chemotaxis, whereas Gadd45α and Gadd45β curtailment of JNK activation was 
linked to chemotaxis of macrophages in response to this inflammatory stimu-
lus (Salerno et al. 2012). Moreover, Gadd45β regulates the autophagy process, 
a catabolic pathway that also degrades intracellular pathogens (Schmitz 2013). 
The Gadd45β-MEKK4 pathway specifically directs p38 to autophagosomes and 
mediate phosphorylation of the autophagy regulator autophagy-related 5 (ATG5) 
protein. This process results in an accumulation of autophagosomes through the 
p38-mediated inhibition of lysosome fusion (Keil et al. 2013).

2.3  Role of GADD45 Proteins in Aging  
and Life Span Regulation

The GADD45 family members are deeply implicated in the maintaining of cel-
lular, tissue and organism homeostasis which determines the aging rate and lon-
gevity. Indeed, some well-known regulators of aging-associated processes and 
longevity are partner proteins for GADD45s (Budovsky et al. 2009; Wolfson 
et al. 2009; Moskalev et al. 2012b). The GADD45 proteins contain the FOXO- 
and p53-binding motifs (Kastan et al. 1992; Guillouf et al. 1995; el-Deiry 1998; 
Furukawa-Hibi et al. 2002; Tran et al. 2002; Ju et al. 2014), and are activated by 
the ATM- and ATR-dependent way (Kastan et al. 1992; O’Prey et al. 2003; Jang 
et al. 2010). In particular, RNA interference of FOXO3a leads to inhibition of 
GADD45 stress-induced expression (Tran et al. 2002). Another example demon-
strated that in human epithelial cells an inhibitor of ATM/ATR prevented induc-
tion of GADD45 and growth arrest by flavonoid treatment (O’Prey et al. 2003). 
The SIRT1 histone deacetylase is another key longevity regulator (Guarente 2011; 
Satoh et al. 2013; Hubbard and Sinclair 2014), that is involved in the GADD45 
functioning regulation (Kobayashi et al. 2005; Scuto et al. 2013). The FOXO-
mediated GADD45 induction was markedly impaired in cells, which depleted 
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SIRT1 expression by RNA-interference (Kobayashi et al. 2005). Additionally, 
there are evidences that GADD45 expression is linked with the target of rapamycin 
(TOR) signaling. Insulin induces GADD45β transcription by activating the mTOR 
pathway (Bortoff et al. 2010), well known for its association with aging, longevity, 
and ARDs (for review, see Blagosklonny 2008; Zoncu et al. 2011). These exam-
ples of the relationship between GADD45 family members and longevity-associ-
ated genes confirm their immixture in the life span control.

Another way of GADD45 participation in the aging and longevity determina-
tion at the tissue level is subjected by the role in stem cell pool maintenance (for 
review, see Moskalev et al. 2012b). The Gadd45 proteins participate also in the 
maintenance of the pool of myeloid quiescent stem cells. Gadd45α or Gadd45β 
deletion was shown to suppress the quiescent stem cell population or lower the 
survival rate of progenitor cells, leading to the depletion of the stem cell com-
partment, and to affect the clonogenic potential of these cells (Hoffman and 
Liebermann 2007). Gadd45γ is involved in stem cell pool maintenance as well. A 
possible regulatory mechanism of stem cell pool maintenance is mediated by the 
Nucleus accumbens-1 (NAC-1) protein which is important for self-regeneration 
and pluripotency of embryonic stem cells, negatively regulates the expression of 
Gadd45γ-interacting protein 1 (Gadd45γ-ip1), preventing its suppressive activity 
towards Gadd45γ (Jinawath et al. 2009).

Aging negatively affects the ability of cells to express GADD45 proteins in 
response to stress conditions. For example, treatment of cardiomyocytes of young 
mice with free radical inducer paraquat led to the significantly increased expres-
sion of GADD45 isoforms, but did not stimulate its expression in the myocardium 
of old animals (Edwards et al. 2004). Decreased inducibility of GADD45 mem-
bers may have far-reaching consequences including genome instability, accumu-
lation of DNA damage, and disorders in cellular homeostasis—all of which may 
eventually contribute to the aging process (for review, see Moskalev et al. 2012b).

The GADD45 family members as well as longevity-associated genes are con-
cerned with ARDs. One of the main implications of the GADD45 proteins in 
the ARDs is associated with the cancerogenesis determination (for review, see 
Liebermann et al. 2011; Hoffman and Liebermann 2013). It was shown that the 
GADD45α-deficient mice were characterized by genomic instability, increased sen-
sitivity to cancerogenes, and high aptitude to ovarian, hepatocellular and vascular 
tumors (Hollander et al. 1999, 2001; Tront et al. 2006). Mice with the GADD45β gene 
knockout are more susceptible to ionizing radiation and chemical carcinogens, and 
display a lower immune response against implanted melanoma cells (Ju et al. 2009). 
In the in vivo model of Ras-overexpressing mice with different GADD45α expres-
sion levels (Ras/GADD45α+/+, Ras/GADD45α+/−, and Ras/GADD45α−/−), 
it was shown that Ras-driven genesis and growth of breast tumors is a GADD45α-
dependent process (Tront et al. 2006). Clinical patients with solid and hematopoietic 
cancers including breast, lung, nasopharyngeal, brain, liver, prostate cancer, and lym-
phoma showed disruption in GADD45 expression pattern (Hoggard et al. 1995; Sun 
et al. 2003; Jiang and Wang 2004; Qiu et al. 2004; Ying et al. 2005; Cretu et al. 2009; 
Na et al. 2010; Liebermann et al. 2011; Hoffman and Liebermann 2013).
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The main cause of GADD45 expression loss in cancers is epigenetic modifica-
tions, particularly, DNA methylation (for review, see Moskalev et al. 2012b). For 
example, the methylation of the GADD45γ promoter was significantly higher in 
different types of cancers than in normal tissues (Zhang et al. 2010). On the other 
hand, treatment of cancer cells with DNA methyltransferase inhibitors restored 
GADD45β expression to its level in the non-tumorous cells (Qiu et al. 2004). 
One of the pathways that determine GADD45 methylation is NF-κB signaling. 
This is supported by the effect of NF-κB inhibition in cancer cells which leads to 
the GADD45α- and γ-dependent induction of apoptosis and reduction in tumor 
growth (Zerbini et al. 2004). The NF-κB transcription factor induces the expres-
sion of proto-oncogene c-Myc, which binds to the GC-rich sites of the GADD45 
promoters and significantly reduces the GADD45 inducibility in response to geno-
toxic stress (Amundson et al. 1998; Zerbini et al. 2004; Zerbini and Libermann 
2005). It is known that hipermethylation of gene promoters provides the aging 
process as well (Muñoz-Najar and Sedivy 2011), thus methylation of the GADD45 
promoters can be involved in the age-dependent reduction of its expression and 
inducibility.

Conversely, ectopic expression of the GADD45 members blocks cell growth by 
arresting the cells in the G2/M phase (Zhu et al. 2009) and G1/G0 phase (Higgins 
et al. 2009), and/or induces apoptosis in human tumor cell lines (Zhan et al. 1994; 
Vairapandi et al. 1996; Zhang et al. 2001; Sun et al. 2003; Jiang and Wang 2004; 
Ying et al. 2005). For example, GADD45β overexpression in LβT2 mouse gon-
adotrope cells blocked tumor cell proliferation and increased rates of apoptosis in 
response to growth factor withdrawal (Michaelis et al. 2011). Anti-cancer activ-
ity of the GADD45 proteins is conditioned by its role in apoptosis and cell cycle 
control as well as in negative regulation of oncogenes, such as p63 and β-catenin 
(Hildesheim et al. 2004).

However, in some cases, GADD45α may exert a pro-cancer action, depend-
ing on the type of the oncogenic stimuli. For example, the Myc-driven breast 
cancer is promoted by GADD45α activity, which dramatically decreased level 
of the enzyme MMP10 and led to angiogenesis. In Myc expressing tumors loss 
of GADD45α was accompanied by apoptosis or cellular senescence (Tront et al. 
2010).

Additionally, other ARDs are associated with changes in GADD45 expression. 
The GADD45 proteins participate in the development of the nervous system dur-
ing ontogenesis and provide long-term memory formation, as well as their dereg-
ulation results in neuronal pathologies including brain cancers, ischemia, insults, 
seizures, memory decline, autism, Alzheimer’s disease, psychosis (for review, see 
Sultan and Sweatt 2013). For example, Alzheimer’s disease patients are character-
ized by highly increased level of GADD45 expression in neurons, that prevents 
neuronal cells from apoptosis induced by accumulation of β-amyloid (Torp et al. 
1998; Santiard-Baron et al. 1999, 2001). The upregulation of GADD45 was also 
observed in the in vitro model (human neuroblastoma cells) of dopamine-induced 
neurotoxicity, which is a part of some neurodegenerative disorders (for exam-
ple, Parkinson’s disease) and normal brain aging (Stokes et al. 2002). The same 
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changes were found in cultures of human endothelial cells derived from athero-
sclerotic aorta or coronary arteries, as well as in the mouse model of atherosclero-
sis (Thum and Borlak 2008). Thus, the GADD45 proteins apparently are induced 
during neurodegenerative processes and atherosclerosis providing a vicarious pro-
tective mechanism.

Chronic inflammation is largely attributed to an age-related increase in pro-
inflammatory cytokines TNFα, IL-1β, IL-6 and NF-κB (Finch 1990; Chung et al. 
2009; Coppé et al. 2010), that induce GADD45 proteins. For example, the induc-
tion of GADD45 was observed in the course of liver inflammation (Gant et al. 
2003). Additionally, the GADD45 proteins can be involved in the process of the 
epithelial to mesenchymal transition (EMT). The EMT is a crucial process in the 
development of different tissues in the embryo and its reactivation in the adult is 
a part of inflammatory responses useful for the healing damaged tissue. However, 
abnormality of its control leads to tumorogenesis and organ fibrosis development 
(López-Novoa and Nieto 2009). GADD45s closely cooperate with key EMT regu-
lators NF-κB, β-catenin, and matrix metalloproteases (Moskalev et al. 2012b).

Aging-dependent induction of oxidative stress and inflammation processes con-
tributes to a process known as immunosenescence. Immunosenescence manifests 
in a decreased immune responsiveness to foreign and self-antigens, leading to an 
increased susceptibility to infection, cancer and autoimmune diseases. A decreased 
ability to maintain tolerance against self-antigens may result in autoimmune dis-
orders (for review, see Moskalev et al. 2012b). Mice with deficiency in GADD45β 
and GADD45γ spontaneously develop signs of autoimmune lymphoprolifera-
tive syndrome and systemic lupus erythematosus. The reduced inducibility of 
GADD45s in immune cells is one of the possible factors that increase frequency of 
autoimmune conditions in aging (Liu et al. 2005).

High GADD45 expression may sustain the age-related immune dysfunc-
tions, particularly, rheumatoid arthritis (for review, see Lindstrom and Robinson 
2010). It is known that infiltrated Th1 cells in the synovial fluid of patients with 
rheumatoid arthritis are resistant to apoptosis. This resistance is accompanied 
by the high levels of GADD45β resulting from stimulation by pro-inflammatory 
cytokines TNFα and IL-12 (Du et al. 2008). The activated Th1 cells avoid utiliza-
tion, which leads to chronic inflammation and tissue destruction. The important 
role of GADD45β in this process also follows from the finding that silencing of 
GADD45β by RNA interference abolished the anti-apoptotic effect of rheuma-
toid arthritis synovial fluid (for review, see Moskalev et al. 2012b). Another dis-
order associated with elevated expression of GADD45α protein is preeclampsia. 
Inflammatory and immune activation in preeclampsia may function in a feedback 
loop to maintain elevated expression of GADD45α protein (Geifman-Holtzman 
et al. 2013). GADD45α activates Mkk3-p38 and/or JNK signaling that leads to 
immunological and inflammatory changes as well as to triggering the production 
of circulating factors such as sFlt-1 (Xiong et al. 2009; Geifman-Holtzman et al. 
2013; Xiong et al. 2013).

In hepatocytes both injury and growth stimulation remarkably increase the 
expression of the GADD45β protein. In liver cancer, promoter methylation 
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frequently silences GADD45β, demonstrating a suppressive proapoptotic function. 
This contrasts with normal hepatocytes, where GADD45β facilitates cell survival, 
growth, and proliferation. GADD45β protects the liver through two ways: bind-
ing MKK7 to block damaging signal transduction or binding CAR to coactivate 
anabolic transcription (Tian et al. 2011; Tian and Locker 2013). Furthermore, the 
GADD45γ protein deregulation may be a reason of liver hypertrophy and liver 
tumor as well through the interaction with cyclins and cyclin-dependent kinase 
inhibitors (Ozawa et al. 2011).

Thus, GADD45 proteins are involved in major aging-associated conditions 
including oxidative stress, chronic inflammation, immunosenescence and fibropro-
liferative repair that contribute to the development of ARDs and aging progression 
(for review, see Moskalev et al. 2012b).

Aging-related changes in organism fertility can be caused by GADD45 expres-
sion alterations as well. In a model mice with deficiency of GADD45 isoforms, it 
was shown that GADD45s determine male fertility, testis development, and pri-
mary sex determination (Johnen et al. 2013).

In a view of its functions, it seems reasonable that GADD45 overexpression 
might promote longevity, in particular, by increasing the efficiency of DNA repair 
(for review, see Moskalev et al. 2012b). Recently, we have confirmed this hypoth-
esis in the Drosophila melanogaster model and have shown a life span-extending 
effects of D-GADD45 overactivation in the nervous system (Plyusnina et al. 2011; 
Moskalev et al. 2012a; Plyusnina et al. 2012).

2.4  Life Span and Stress Resistance in Fruit Flies  
with D-Gadd45 Overexpression

Research of the life span and stress resistance in model animals such as fruit fly 
Drosophila melanogaster with overexpressed investigated genes is a promising 
method to reveal their life span-extending properties. Therethrough, we inves-
tigated the effect of conditional and constitutive overexpression of the GADD45 
gene both in the nervous system and the whole body on the life span and some 
age-dependent physiological parameters. To realize this aim the UAS/GAL4 sys-
tem was used.

It was obtained that despite the fact that the overall spontaneous activity of the 
D-GADD45 gene increases with age, the level of expression of this gene in the 
nervous system is practically eliminated (Moskalev et al. 2012a). The dramatic 
decrease of its activity within the nervous system with age might be one of the 
reasons for the decrease in the organism’s stress resistance. Moreover, flies with 
constitutive D-GADD45 overexpression in the nervous system showed a reduction 
in mRNA levels of D-GADD45 with age as well (Moskalev et al. 2012a) that may 
indicate an epigenetic cause of the low level of activity of this gene in old flies.

Peretz et al. (2007) have shown that D-GADD45 overexpression in Drosophila 
melanogaster has diverse phenotypic manifestations depending on the target 
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tissue. Ubiquitous overexpression of this gene in Drosophila flies from the first 
stages of life cycle is lethal. Our investigations revealed that flies with conditional 
(mifepristone-inducible) ubiquitous D-GADD45 overexpression in the imagi-
nal developmental stage are viable, but characterized by 22–46 % decreased life 
span (Fig. 2.1) (our unpublished data) and low resistance to the acute γ-irradiation 
and oxidative stress induced by paraquat treatment. The reason of this effect may 
be an insufficient epigenetic regulation of D-GADD45 activity. For example, in 
human fibroblasts increased activity of DNA repair genes slows the replicative 
senescence only under simultaneous overexpression of histone deacetylase SIRT6 
(Mao et al. 2012). The GADD45 expression is depends on the sirtuins activity as 
well (Kobayashi et al. 2005; Scuto et al. 2013). Another reason could be associ-
ated with a high energy rate of repair processes (Halmosi et al. 2001). Ubiquitous 
D-GADD45 overexpression can lead to excessive energy expenditure, which vio-
lates other processes.

Opposite to ubiquitous overexpression, tissue-specific D-GADD45 overex-
pression in the nervous system leads to life span prolongation. Our data indicate 
that constitutive D-GADD45 overexpression in the Drosophila nervous system 
leads to median life span extension (by 22–77 %) in comparison with flies with-
out overexpression (Fig. 2.2a). Furthermore, the maximum life span was also 
increased, which is an evidence of slowing down aging (Plyusnina et al. 2011). 
To avoid effect of heterosis we also studied the life span effects of the condi-
tional (mifepristone-inducible) D-GADD45 overexpression in the nervous system. 
We found that the median life span of individuals with conditional overexpres-
sion of the D-GADD45 gene in the nervous system was higher in comparison 
with animals with the same genotype kept on a medium without mifepristone 
(by 3–102 %) (Fig. 2.2b) (Plyusnina et al. 2011). It must be noted that the life 
span-extending effect of D-GADD45 overexpression in Drosophila nervous 

Fig. 2.1  Survival curves for Drosophila melanogaster males (♂♂) and females (♀♀) with the 
UAS-D-GADD45/Act5C genotype not treated with mifepristone and treated with mifepristone 
(conditional ubiquitous D-GADD45 overexpression) (combined results of two replications), *** 
p < 0.001 (Kolmogorov–Smirnov test)
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system was not accompanied by decreases in fertility and locomotor activity 
parameters (Plyusnina et al. 2011). We proposed that D-GADD45 overexpres-
sion causes more effective functioning of stress response mechanisms. Indeed, the 
DNA comet assay showed that neuroblasts of third-instar larvae with D-GADD45 
overexpression had the decreased DNA damage level (by 21–27 %). Therefore, 
overexpression of the D-GADD45 gene in Drosophila nervous system results in 
more efficient recognition and elimination of spontaneous DNA damage caused by 
physiological processes and environmental factors (Plyusnina et al. 2011).

Fig. 2.2  Survival curves for Drosophila melanogaster flies with and without D-GADD45 over-
expression in the nervous system: a Survival curves for Drosophila melanogaster males (♂♂) 
and females (♀♀) with the parental UAS-D-GADD45 and GAL4-1407 genotypes and constitu-
tive D-GADD45 overexpression in the nervous system (combined results of three replications), 
b Survival curves for Drosophila melanogaster males (♂♂) and females (♀♀) with the UAS-D-
GADD45/ELAV genotype not treated with mifepristone and treated with mifepristone (condi-
tional D-GADD45 overexpression in the nervous system) (combined results of two replications), 
* p < 0.05, *** p < 0.001 (Kolmogorov–Smirnov test) (Plyusnina et al. 2011)
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In further experiment we found additional evidences of increased resist-
ance of Drosophila melanogaster individuals with constitutive and conditional 
D-GADD45 overexpression in the nervous system. In most cases, these flies are 
characterized by increased survival under conditions of genotoxic stress (chronic 
and acute γ-irradiation), oxidative stress (paraquat), hyperthermia and starvation 
(Figs. 2.3, 2.4 and 2.5) (Moskalev et al. 2012a). Additionally, the involvement 
of the D-GADD45 gene in the formation of biological responses to γ-irradiation 
was shown in the experiment on the fruit flies with homozygous and heterozy-
gous D-GADD45 mutation. Our results revealed the effects of hormesis and radio-
adaptive response for the wild-type flies irradiated by the low 40 cGy dose. Over 
against, the D-GADD45 mutations led to elimination of these reactions (Moskalev 
et al. 2012a).

Thus, ubiquitous D-GADD45 overexpression leads to decrease of life span 
and stress resistance. At the same time, neuron-specific overexpression of the 

Fig. 2.3  Survival curves of Drosophila males (♂♂) and females (♀♀) with the parental UAS-
D-GADD45 and GAL4-1407 genotypes and constitutive D-GADD45 overexpression in the nerv-
ous system under different irradiation conditions: a chronic 40 cGy γ-irradiation, b acute 30 Gy 
γ-irradiation, *** p < 0.001 (Kolmogorov–Smirnov test) (Moskalev et al. 2012a)
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Fig. 2.4  Survival curves of Drosophila males (♂♂) and females (♀♀) with the parental UAS-D-
GADD45 and GAL4-1407 genotypes and constitutive D-GADD45 overexpression in the nervous 
system under different stress conditions: a paraquat (20 mM), b hyperthermia (35 °C), c starva-
tion, * p < 0.05, ** p < 0.01, *** p < 0.001 (Kolmogorov–Smirnov test) (Moskalev et al. 2012a)
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Fig. 2.5  Survival curves for Drosophila melanogaster males (♂♂) and females (♀♀) with the 
UAS-D-GADD45/ELAV genotype not treated with mifepristone and treated with mifepristone 
(conditional D-GADD45 overexpression in the nervous system) under different stress conditions: 
a paraquat (20 mM), b hyperthermia (35 °C), c starvation, * p < 0.05, ** p < 0.01, *** p < 0.001 
(Kolmogorov–Smirnov test) (Moskalev et al. 2012a)
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D-GADD45 gene demonstrates a high life span-extending potential of controlled 
manipulation with this gene.

2.5  Concluding Remarks

Proteins of the GADD45 family are essential for stress resistance, and display 
antiaging and prolongevity activities (Fig. 2.6). Particularly, GADD45s provide a 
maintenance of basic homeostatic reactions and regulate a balance between cell 
(DNA) repair, eliminating (apoptosis) or preventing the expansion of potentially 
dangerous cells (cell cycle arrest, cellular senescence), maintaining of the stem 
cell pool and cellular differentiation. These processes provide survival of cells 
from different tissues and contribute to tissue regeneration. In turn, a decreased 
inducibility of the GADD45 family members may have far reaching consequences 
including genome instability, accumulation of DNA damage, and disorders in cel-
lular homeostasis. All these negative processes may eventually lead to the age-
dependent decline of organism system and organ functioning, aging progression, 
and promotion of carcinogenesis and development of other ARDs. It must be 
noted, that the GADD45 protein members are deeply involved in major longev-
ity-associated signaling pathways, which confirm their role in aging and longevity 
determination.

Fig. 2.6  The main anti-aging and pro-longevity activities of Gadd45 family
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Investigations carried out in Drosophila melanogaster model disclosed the life 
span-extending activity of the D-GADD45 gene due to its neuron-specific over-
activation (Plyusnina et al. 2011, 2012) but not ubiquitous overexpression. It 
was shown that both constitutive and conditional D-GADD45 overactivation in 
Drosophila nervous system extends median and maximum life span without neg-
ative changes in fertility and locomotor activity. This effect is apparently condi-
tioned by elevated efficiency of recognition and elimination of spontaneous DNA 
damages. Additionally, neuron-specific D-GADD45 overexpression can stimulate 
the resistance to different stress agents including genotoxic (γ-radiation), oxidative 
(paraquat) and thermal stressor as well as starvation.

Obtained results suggest that controlled manipulations of GADD45s and its 
interacting partners may also bring benefits to humans. Indeed, the increased 
GADD45 expression can be induced by several anti-tumor, anti-oxidant, anti-
inflammatory pharmacological agents with potential life span-extending action, 
such as troglitazone (Yin et al. 2004), arsenic trioxide (Li et al. 2003), cucurbitacin 
E (Hsu et al. 2014), xanthatin (Takeda et al. 2011, 2013), quercetin (Yoshida et al. 
2005), fucoxanthin (Kumar et al. 2013), epicatechin (Saha et al. 2010), ibuprofen 
(Bonelli et al. 2011). Thus, future studying the GADD45 family may provide pros-
perous therapeutic targets for promoting longevity and combating ARDs, as well 
as for stimulation of organism stress-resistance and enhancement of survivability.
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Abstract Since their discovery by McCord and Fridovich the superoxide 
 dismutase (SOD) enzymes have been of particular interest to the field of aging. 
The Drosophila SOD genes are required for normal oxidative stress resistance 
and life span, and have been targets for investigation of mechanisms of aging. The 
ability of SOD genes to affect Drosophila life span is dependent upon the genetic 
background, including the sex of the animal, as well as the dietary environment. 
There is increasing understanding of the role of the SODs in signaling pathways 
that modulate aging. The Cu/ZnSOD is important in linking diet to life span, and 
MnSOD can activate the mitochondrial unfolded protein response and increase 
life span. The SOD genes also modulate survival in Drosophila models of human  
disease. The conservation of SOD genes and functions in Drosophila combined 
with the availability of powerful genetic and transgenic technologies promises to 
keep Drosophila at the forefront of research on aging and the role of SOD.

Keywords Superoxide dismutase genes · Cu/ZnSOD · MnSOD · Oxidative 
stress · Life span · Aging

3.1  Aging and Oxidative Stress

Aging is thought to be the result of antagonistic pleiotropy of gene function between 
developmental stages and the sexes (Hughes and Reynolds 2005; Tower 2006). Gene 
alleles may be selected for beneficial effects on growth and reproduction despite hav-
ing deleterious effects at late ages. As a consequence, genetic interventions in aging 
may be dependent on the stage of the life cycle and/or the sex of the animal, and this 
has been observed upon manipulation of the SOD genes. The mitochondria appear 
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to be particularly susceptible to damage and malfunction during aging (Cho et al. 
2011). The mitochondria are the primary source of reactive oxygen species (ROS) in 
the cell, and increased production of ROS is associated with aging in both mammals 
and Drosophila (Salmon et al. 2010). In most organisms where it has been examined, 
aging is associated with increased abundance of oxidatively damaged macromole-
cules, including lipids, nucleic acids, carbohydrates and proteins (Yu 1993; Meli et al. 
2003; Stadtman and Levine 2003; Negre-Salvayre et al. 2010; Salmon et al. 2010; 
Simm 2013). This holds true for aging Drosophila, where increased levels of pro-
tein carbonyls, lipid peroxidation, and glycation have been reported (Schwarze et al. 
1998; Jacobson et al. 2010). ROS also function as cellular signaling molecules in both 
normal and transformed cells (Campos et al. 2013; Bauer 2014). Because the SOD 
enzymes play a key role in regulating cellular ROS levels they are implicated in both 
normal ROS signaling and in modulating ROS levels during aging.

3.2  SOD Genes, Enzymes, and Functions

The major families of eukaryotic SOD genes are each represented by a single 
member in Drosophila (Table 3.1) (McCord and Fridovich 1969; Parker et al. 
2004; Landis and Tower 2005). The gene Sod encodes the canonical cytoplasmic 

Table 3.1  Drosophila SOD and related genes

Mito mitochondria

Gene Symbol Identifiers Protein Localization Function References

Superoxide 
dismutase

Sod CG11793 Cu/ZnSOD Cytoplasm, 
outer mito 
space

SOD  
enzyme

Seto et al. 
(1989) and 
Phillips et al. 
(1989)

Superoxide 
dismutase 2 
(Mn)

Sod2 CG8905 MnSOD Inner mito 
space

SOD  
enzyme

Duttaroy 
et al. (1997)

Superoxide 
dismutase 3

Sod3 CG9027 ecSOD 
(Cu/Zn)

Extracellular SOD  
enzyme

Landis and 
Tower (2005) 
and Parker 
et al. (2004)

Copper 
chaperone  
for superoxide  
dismutase

Ccs CG17753 Copper 
chaperone

Cytoplasm, 
outer mito 
space

Copper  
binding

Kirby et al. 
(2008)

Sodesque Sodq CG5948 Related to 
Cu/ZnSOD

Extracellular 
(predicted)

Unknown  
(Lacks  
active site)

Landis and 
Tower (2005)

Related to SOD Rsod CG31028 Related to 
Cu/ZnSOD

Cytoplasm 
(predicted)

Unknown  
(Lacks  
active site)

Landis and 
Tower (2005)
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Cu/ZnSOD enzyme (Phillips 1989; Seto et al. 1989). Cu/ZnSOD functions as 
a homodimer and is found both in the cytoplasm and the outer mitochondrial 
space (Okado-Matsumoto and Fridovich 2001; Sturtz et al. 2001). The gene 
Sod2 encodes the MnSOD enzyme (Duttaroy et al. 1997). MnSOD functions as a 
tetramer and is localized to the inner mitochondrial space (Weisiger and Fridovich 
1973). The gene Sod3 encodes the extracellular form of Cu/ZnSOD, sometimes 
called ecSOD (Fukai et al. 2002; Oberley-Deegan et al. 2009). Phylogenetic 
analysis of SOD gene sequences indicates that within each phylum the ecSOD 
is more related to the cytoplasmic Cu/ZnSOD than to the ecSODs from other 
phyla, suggesting that ecSOD has evolved multiple times by the addition of a 
signal peptide to cytoplasmic Cu/ZnSOD (Landis and Tower 2005). The gene Ccs 
encodes the conserved copper chaperone that donates copper to Cu/ZnSOD (Kirby 
et al. 2008). In addition, there are two genes of unknown function that are distantly 
related to Cu/ZnSOD and that lack the active site (Table 3.1) (Landis and Tower 
2005). The Cu/ZnSOD and MnSOD enzymes carry out the same reaction and 
convert superoxide to hydrogen peroxide and oxygen. The enzymes catalase and 
peroxiredoxin convert the hydrogen peroxide to water and oxygen (Radyuk et al. 
2001). The SOD enzymes acting in concert with catalase and the peroxiredoxins 
comprise one of the major antioxidant systems of the cell.

The mitochondrial genome is associated with several proteins in a structure 
called the nucleoid. In mammals MnSOD was reported to be an integral compo-
nent of the nucleoid complex and to act there to protect mitochondrial DNA and 
associated proteins from oxidative damage (Bakthavatchalu et al. 2012). The data 
suggest that MnSOD might have a protective structural function in addition to its 
protective enzymatic function.

3.3  SOD Gene Expression and Aging

During aging the expression of RNA for Drosophila MnSOD is reduced, 
whereas the RNA for Cu/ZnSOD is more constant (Landis et al. 2004, 2012; 
Radyuk et al. 2004). Analyses of enzyme activities in extracts of aging flies 
have reported both increases and decreases (Sohal et al. 1990), whereas strains 
genetically selected for increased life span are reported to have increased SOD 
enzyme activity (Hari et al. 1998). The gene Darkener of apricot (Doa) encodes 
a LAMMER-type kinase that is implicated as a negative regulator of Cu/ZnSOD 
gene expression (James et al. 2009). The gene rolled encodes a p38 MAPK and 
has been identified as a positive regulator of MnSOD gene expression (Duttaroy 
et al. 1997). It was reported that the p38 MAPK activates the transcription fac-
tor Mef2, which in turn activates expression of MnSOD (Vrailas-Mortimer et al. 
2011). In contrast, the regulator of G-protein signaling encoded by the loco gene 
is reported to negatively regulate both MnSOD gene expression and longevity 
(Lin et al. 2011).
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3.4  Reduced SOD Function and Aging

The role of the SOD genes in Drosophila aging has been studied by reducing 
their function, using both classical mutations and RNAi approaches. Null muta-
tion of Cu/ZnSOD (n108 allele) caused reduced adult life span and reduced fertil-
ity, and also partly reduced viability during late development (Phillips et al. 1989). 
The null adult flies were hypersensitive to ionizing radiation and to the oxidative 
stressors paraquat and CuSO4. These phenotypes demonstrate the importance of 
Cu/ZnSOD for normal oxidative stress resistance.

When MnSOD gene expression was reduced during development and 
adulthood using an RNAi approach (da-GAL4 driver), development proceeded 
relatively normally and abundant adults were produced (Kirby et al. 2002). The 
adults had greatly reduced MnSOD enzyme activity and increased endogenous 
oxidative stress, as indicated by reduced activity of aconitase and other 
mitochondrial enzymes. The flies also had increased sensitivity to the oxidative 
stressor paraquat (Kirby et al. 2002). Using RNAi to knockdown MnSOD 
specifically in muscle tissue was sufficient to reduce oxidative stress resistance 
and life span, underscoring the importance of MnSOD in muscle (Godenschwege 
et al. 2009; Martin et al. 2009b). A strong mutation of the MnSOD gene caused 
greatly shortened life span and neuropathology, indicating the importance of 
MnSOD in the nervous system (Paul et al. 2007; Celotto et al. 2012). A MnSOD 
null mutation (homozygous n283 allele) produced the most severe phenotype, 
and flies died at or shortly after eclosion (Duttaroy et al. 2003; Mukherjee et al. 
2011). These results indicate the importance of MnSOD for normal oxidative 
stress resistance and mitochondrial function, and suggest a relatively greater 
requirement in the adult stage.

Intriguingly, the effects of MnSOD and Cu/ZnSOD on oxidative stress resist-
ance differed in the adult (Missirlis et al. 2003). The deleterious effects of hyper-
oxia on MnSOD RNAi flies were transient and reversible upon transfer to a 
hypoxic environment, whereas the effects of hyperoxia on Cu/ZnSOD RNAi flies 
were cumulative and could not be reversed by hypoxia (Wicks et al. 2009). A par-
tial spontaneous reversibility in the negative effect of the MnSOD null mutation on 
heart rate and stimulus response was also reported (Piazza et al. 2009). The data 
suggest that Cu/ZnSOD may be more involved in preventing some type of cumula-
tive damage, whereas MnSOD may be more involved in preventing acute mortal-
ity. Knock-down of gene expression specifically in the renal tubules indicated that 
MnSOD was required for survival upon dessication stress, whereas Cu/ZnSOD 
was not (Soderberg et al. 2011).

Finally, using an RNAi approach the ecSOD gene Sod3 was recently reported 
to be required for normal oxidative stress resistance and life span (Jung et al. 
2011). Sod3 was also found to be induced in flies over-expressing the human 
Alzheimer’s disease protein fragment Abeta, and to negatively affect survival of 
the mutant flies (Favrin et al. 2013).
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3.5  Enhanced SOD Function and Aging

One method that has been used extensively to study the role of the SOD genes 
in Drosophila has been to engineer over-expression in transgenic flies. Early 
experiments utilized the gene’s native promoters, or constitutive heterologous 
promoters, to over-express Cu/ZnSOD and/or catalase, and some conflicting 
results were obtained regarding effects on life span (Seto et al. 1990; Stavely 
et al. 1990; Reveillaud et al. 1991; Griswold et al. 1993; Orr and Sohal 1992, 
1993, 1994). One of these studies concluded that coincident over-expression 
of Cu/ZnSOD and catalase might be required to observe life span increase (Orr 
and Sohal 1994). However, several authors reviewing these results concluded 
the studies lacked sufficient controls for genetic background effects on life span, 
and this masked any possible effects of the transgenes (Tower 1996; Kaiser et al. 
1997; Tatar 1999). Subsequent studies using a larger number of lines confirmed 
that over-expression of the Cu/ZnSOD, MnSOD and catalase genes using their 
native promoters does not increase life span, regardless of whether the transgenes 
are co-over-expressed, or whether they are expressed in short-lived starting strains 
(Mockett et al. 1999; Orr et al. 2003). In contrast, several groups have reported 
life span increase when Cu/ZnSOD and MnSOD are over-expressed using tissue-
specific and/or conditional transgenic systems, where the transgenes are expressed 
using heterologous (non-native) promoters.

In the binary “GAL4/UAS” system one transgenic construct contains 
Drosophila gene regulatory sequences that drive tissue-specific expression of the 
yeast transcription factor GAL4. The GAL4 in turn activates a second transgenic 
construct where a promoter containing the GAL4 binding site (called UAS) drives 
expression of a gene of interest (Brand and Perrimon 1993), such as a SOD gene. 
The GAL4/UAS system was used to target over-expression of human Cu/ZnSOD 
to the nervous system of male Drosophila, during developmental and adult 
stages, and a life span increase was observed (Parkes et al. 1998). A subsequent 
analysis of one of these transgenes in several long-lived genetic backgrounds 
reported life span increase that depended on genotype and sex, with greater effect 
observed in females (Spencer et al. 2003). Finally, a different analysis of one of 
these transgenes using male flies reported life span increase using tissue-general 
over-expression, but no life span increase upon nervous system over-expression 
(Martin et al. 2009a). The exact reasons for the variability in results across these 
studies is not clear, but they are generally consistent with the conclusion that over-
expression of human Cu/ZnSOD in Drosophila can increase life span, and suggest 
that the life span increase depends upon the specific genetic background, including 
the sex of the animal (Fig. 3.1).

The binary transgenic system called “FLP-out” employs conditional somatic 
recombination to activate gene expression (Struhl and Basler 1993). In one 
transgenic construct a heat-activated promoter is used to drive expression of the 
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yeast FLP-recombinase protein. In the second transgenic construct the FLP 
recombinase causes excision of a transcriptional stop signal, so that the gene of 
interest becomes actively transcribed from an upstream promoter. In this way a 
brief heat pulse to the developing or adult animal activates expression of the gene 
of interest, such as SOD, from that point in time onwards. FLP-out was used to 
create tissue-general over-expression of Drosophila Cu/ZnSOD specifically in 
adult animals, and this approach allowed for controlled analysis of interactions 
with the genetic background (Sun and Tower 1999). This study found that 
Cu/ZnSOD over-expression in adult males and females could increase life span, 
and that life span increase was dependent upon the genetic background. Similarly, 
over-expression of MnSOD in adult flies using FLP-out caused increased life 
span in male and female flies (Sun et al. 2002). Co-incident over-expression of 
Cu/ZnSOD and MnSOD was found to have partially additive effects (Sun et al. 
2004). In contrast, catalase over-expression was found to increase resistance to 
hydrogen peroxide toxicity, but to have small negative effects on life span, both 
alone, and in combination with either Cu/ZnSOD or MnSOD (Sun and Tower 
1999; Sun et al. 2002). The results with the FLP-out system again indicated that 
over-expression of Cu/ZnSOD and MnSOD could increase life span depending on 
genetic background, and the negative effects of catalase suggested the possibility 
that this might involve a retrograde signal of hydrogen peroxide.

The “Tet-on” conditional transgenic system is also binary (Bieschke et al. 
1998). In one transgenic construct the tissue-general Drosophila Actin5C gene 
promoter drives expression of the artificial transcription factor called “rtTA”. 
The rtTA becomes active upon binding to tetracycline or the tetracycline deriva-
tive doxycycline. The activated rtTA binds to a binding site called Tet-O in the 
promoter of the second transgenic construct, and drives expression of the gene of 
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Fig. 3.1  Model for effect of altered SOD gene expression on life span. A hypothetical surface 
plot is diagrammed to indicate a complex relationship between diet, genetic background, and life 
span. A change in SOD gene activity is hypothesized to shift the relationship from one position 
on the plot to another. In this way altered SOD gene activity can have either a positive or negative 
effect on life span depending on the specific combination of diet and genetic background
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interest, such as SOD. In this way simple feeding of doxycycline to either larvae 
or adult flies yields conditional over-expression of SOD. The Tet-on system was 
used to over-express MnSOD in adult males, and this was also found to increase 
life span (Curtis et al. 2007). The life span increase resulted from a change in ini-
tial mortality rate, arguing against a mechanism involving prevention of accumu-
lated oxidative damage, and instead suggested a mechanism involving retrograde 
ROS signaling. Consistent with this idea, transcriptional profiling revealed that 
MnSOD over-expression causes up-regulation of a conserved set of genes asso-
ciated with increased life span (Curtis et al. 2007). These genes include ones 
involved in energy metabolism, purine biosynthesis, apoptotic pathways, endo-
crine signals and the detoxification and excretion of metabolites. In addition, 
MnSOD over-expression caused up-regulation of the Hsp22 gene and several other 
genes associated with the mitochondria unfolded protein response (UPRmt), as 
discussed further below.

3.6  Human ALS-Associated Cu/ZnSOD Over-Expression 
in Drosophila

The human disease amyotrophic lateral sclerosis (ALS) is sometimes caused by 
inherited mutations in the human Cu/ZnSOD gene (Rosen et al. 1993). Various 
possible mechanisms have been proposed for the toxicity of mutant Cu/ZnSOD, 
including misfolding and aggregation (Liu et al. 2012), disruptions of intracellular 
transport, disruptions of metal homeostasis (Lovejoy and Guillemin 2014), and 
disruptions of mitochondrial function (Hitchler and Domann 2014; Muyderman 
and Chen 2014). Transgenic Drosophila have been used in several studies to 
examine the effect of expression of human Cu/ZnSOD, including transgenes 
bearing human disease mutations. Interestingly, expression of one such mutant 
human transgene (G41S mutation) in the fly motorneurons was found to have no 
toxic effects, and to increase stress resistance and life span similar to the wild-
type transgenes (Elia et al. 1999). In contrast, expression in the motorneurons of 
a human Cu/ZnSOD engineered to be Zinc-deficient caused toxicity including 
motor impairment and mitochondrial disruption (Bahadorani et al. 2013). 
Similarly, another study found that both the human wild-type and the ALS-
associated mutant (A4V, G85R) caused locomotor defects and disruptions of 
neural circuit physiology when expressed in the motorneurons, whereas the 
wild-type Drosophila Cu/ZnSOD did not (Watson et al. 2008; Islam et al. 2012; 
Kumimoto et al. 2013). Transcriptional profiling of Drosophila expressing an 
ALS-mutant form of Cu/ZnSOD identified stress response genes, including 
oxidative stress response genes and proteasome subunit genes, that were also 
altered in ALS model mammals (Kumimoto et al. 2013). The data indicate that 
Drosophila can be used to model several aspects of human ALS, but may not 
reveal the toxicity of all disease-associated alleles.
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3.7  MnSOD Over-Expression and the UPRmt

The UPRmt is a response to protein folding stress in the mitochondrial 
compartment. A UPRmt has been described in mammals, C. elegans and 
Drosophila (Baker and Haynes 2011; Haynes et al. 2013). The UPRmt is 
characterized by the induction of nuclear genes encoding Hsps, and the targeting 
of these Hsps to the mitochondria. These Hsps targeted to the mitochondria 
include Hsp60, the mitochondrial form of Hsp70, and the small heat shock protein 
Hsp22. In Drosophila, the UPRmt has been experimentally induced by targeting a 
mutant form of ornithine-transcarbamylase to the mitochondria to cause unfolded 
protein stress (Pimenta de Castro et al. 2012). The Drosophila UPRmt has also 
been experimentally induced in Drosophila flight muscle using RNAi to an ETC 
component, and in this case a benefit for life span was observed (Owusu-Ansah 
et al. 2013). Interestingly, the benefit of the UPRmt for life span was blocked by 
coincident over-expression of catalase, suggesting a possible retrograde hydrogen 
peroxide signal generated by SOD, however effects on Hsp induction were not 
examined. The Drosophila tko gene encodes a mitochondrial ribosomal protein, 
and a partial loss of function mutation induced expression of the mitochondrial 
chaperone Hsp22, consistent with a UPRmt, however increased Hsp60 and 
mitochondrial Hsp70 was not observed. The different Hsps observed in these 
different mitochondrial perturbations may indicate different UPRmt responses, and/
or may reflect differences in the degree of the stress.

Over-expression of MnSOD causes induction of Hsp22, consistent with induction 
of the UPRmt (Curtis et al. 2007). MnSOD over-expression caused Hsp22 induction 
preferentially in the oenocytes (liver-like cells), and also reduced fly oxygen 
consumption and reduced the accumulation of age pigment in the oenocytes, 
indicating reduced oenocyte metabolism (Fig. 3.2) (Tower et al. 2013). Moreover, 
tissue-general over-expression of Hsp22 also caused induction of the endogenous 
Hsp22 gene preferentially in the oenocytes, consistent with a UPRmt (Shen and 
Tower 2013; Tower et al. 2013). The life span increase caused by MnSOD over-
expression was reduced by coincident over-expression of catalase, again suggesting 
a possible retrograde hydrogen peroxide signal (Sun et al. 2002; Curtis et al. 2007). 
The ability of Drosophila MnSOD over-expression to induce the UPRmt and 
increase life span might therefore require the enzymatic activity of MnSOD and a 
retrograde hydrogen peroxide signal, or conceivably a signal involving reduced 
superoxide. The alternative is the UPRmt results from a non-enzymatic activity of 
MnSOD over-expression in inducing the UPRmt. This might be related to a normal 
structural function of MnSOD in the mitochondrial nucleoid, or alternatively the 
UPRmt may result from disruption of normal mitochondrial protein import and 
folding homeostasis due to the abnormally high level of expression of MnSOD. 
Because normal aging in Drosophila is associated with a progressive induction of 
UPRmt genes, including Hsp22 in the oenocytes and other cells, it suggests that the 
MnSOD life span intervention is an example of hormesis (Shen and Tower 2013; 
Tower et al. 2013). Determining the precise mechanisms for UPRmt induction and 
life span extension by MnSOD will be an important area for future research.
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3.8  SOD as Modifier of Aging Phenotypes

The SOD genes have been shown to modify several aging-related phenotypes. For 
example, over-expression of Cu/ZnSOD in the female gonad was reported to delay 
the loss of germ-line stem cells during aging (Pan et al. 2007). Over-expression of 
Cu/ZnSOD in the muscle and other tissues (twist-GAL4 driver) was reported to 
rescue the life-span shortening effect of a mutation in the parkin gene (Saini et al. 
2010), and over-expression of MnSOD was reported to reduce the developmental 
defects caused by a PINK1 gene mutation (Koh et al. 2012). Over-expression 
of either Cu/ZnSOD or MnSOD was found to reduce the toxic effects of poly- 
Q-containing proteins in the Drosophila heart (Melkani et al. 2013), and to reduce 
the toxic effects of disrupted mitochondrial fusion in the heart (Dorn et al. 2011; 
Bhandari et al. 2014). Over-expression of MnSOD increased survival of flies 
expressing the mutant protein associated with human spinal cerebellar ataxia type 
12 (Wang et al. 2011). These results suggest the importance of the SOD genes in 
resistance to stress associated with human disease genes.

An RNAi approach was used to examine the possible role of Cu/ZnSOD in 
mediating life span extension caused by protein restriction (Sun et al. 2012). 
Interestingly, Cu/ZnSOD was required for increased life span upon protein 
restriction, but only under conditions of high dietary sugar, demonstrating a complex 
diet-dependent interaction between Cu/ZnSOD activity and life span (Fig. 3.1). 
Consistent with a link to carbohydrate metabolism, Cu/ZnSOD null flies showed 

MnSOD
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Mitochondrial
metabolism

Age pigment

Mitochondrial  
mutations?
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Fig. 3.2  Induction of the UPRmt by MnSOD. Over-expression of MnSOD caused induction 
of Hsp22 preferentially in the oenocytes (liver-like cells), indicating induction of the UPRmt. 
Hsp22 over-expression also induced Hsp22 expression in the oenocytes. MnSOD over- 
expression reduces oxygen consumption, and both MnSOD over-expression and Hsp22 over- 
expression reduced age pigment accumulation in the oenocytes, consistent with reduced metab-
olism in these cells. The UPRmt, as indicated by Hsp22 expression, is induced during normal 
aging of the oenocytes in a cell-specific and cell lineage-specific pattern, suggesting the possible 
involvement of mitochondrial mutations
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evidence of down-regulated carbohydrate metabolism enzyme activity (Bernard 
et al. 2011). Studies in yeast demonstrate the role of Cu/ZnSOD in repressing 
metabolism in response to glucose (Reddi and Culotta 2013). Similarly, Drosophila 
MnSOD gene activity was found to be required for the longevity-promoting effects 
of cranberry extract (Sun et al. 2014), supporting a diet-dependent interaction 
between MnSOD and life span (Fig. 3.1).

3.9  Conservation of SOD Functions in Aging

Both Drosophila Cu/ZnSOD and MnSOD have been found to modulate life span 
in a way that is dependent upon the genetic background, including the sex of the 
animal. Moreover, these effects were highly dependent upon the dietary environ-
ment (Fig. 3.1). Interestingly, over-expression of both Cu/ZnSOD and MnSOD 
has been shown to increase life span in the nematode C. elegans (Cabreiro et al. 
2011), suggesting that the role of these genes in aging may be conserved across 
species. Consistent with this idea, reduced activity of the insulin-like pathway 
can increase life span in both C. elegans and Drosophila, and in C. elegans this 
involves up-regulated activity of MnSOD (Honda and Honda 1999; Zarse et al. 
2012). In mammals, the Sirtuin SIRT3 regulates MnSOD acetylation and activ-
ity, including in response to dietary restriction (Qiu et al. 2010; Chen et al. 2011). 
These results support a conserved role for the SOD genes in modulating life span 
in response to the genetic background and the dietary environment (Fig. 3.1). The 
powerful genetics of Drosophila combined with the high degree of conservation of 
SOD genes and pathways promises to continue to provide insight into basic mech-
anisms of aging.
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Abstract Microbiota is known to interact with metabolic and regulatory  networks 
of the host affecting its fitness. The composition of microbiota was shown to 
change throughout the host aging. Such changes can be likely caused by aging 
process or, vice versa, changes in microbiota composition can impact the aging 
process. It is suggested that microbiota plays an important role in life span deter-
mination. Several species from the genus Drosophila, especially D. melanogaster, 
are powerful models to study many biological processes including microbiota 
functioning and its effects on the host aging. The host fitness can be substantially 
affected by endosymbiotic bacteria such as Wolbachia that infects up to two-thirds 
of insects taxa, including Drosophila. Wolbachia was shown to significantly affect 
Drosophila aging and life span. However, the molecular mechanisms underly-
ing interactions between Wolbachia and Drosophila remain mostly unknown. In 
this chapter, we summarize data suggesting that Wolbachia-Drosophila molecular 
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immune deficiency pathway, stress-induced JNK pathway, insulin/IGF signaling 
pathway, ecdysteroid biosynthesis and signaling pathway, as well as through the 
heat shock and autophagy-specific genes/proteins.

Keywords Microbiota · Wolbachia · D. melanogaster · Infection · Aging ·  
Longevity-associated genes

O.M. Maistrenko (*) · S.V. Serga · I.A. Kozeretska 
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
e-mail: o.m.maistrenko@gmail.com

A.M. Vaiserman 
Laboratory of Epigenetics, D. F. Chebotarev State Institute of Gerontology NAMS  
of Ukraine, Kyiv, Ukraine



84 O.M. Maistrenko et al.

4.1  Introduction

Symbiosis is a biological phenomenon, referring to coexistence of different 
organisms that form persistent associations and are called symbionts (Douglas 
2010). Symbiosis typically results in broad range of effects in physiology, 
metabolism, structure and other biological characteristics. Symbiotic interac-
tions are commonly characterized as mutualism, commensalism and parasitism 
(Martin and Schwab 2013). This chapter mainly focuses on how microbiota and 
especially endosymbiotic bacteria Wolbachia affect life span and aging of host 
organism—Drosophila.

Insects’ organisms may harbour the amount of cells of microorganisms which 
exceed the number of their own cells (Dilon and Dilon 2004). The role of symbiotic 
organisms in many aspects of host organism functioning was, however, underesti-
mated until recently (Russell et al. 2014). Microbial symbionts are shown to sub-
stantially affect growth, development, nutrition and immunological defence of hosts 
(reviewed in McFall-Ngai et al. 2013). Thus, multicellular animal is rather a consor-
tium of organisms (a “holobiont”) that becomes a functionally integrated “whole” 
incorporating the zoological organism per se, along with its persistent microbial 
symbionts (Gilbert 2014). A variety of holobiont’s microbial symbionts forms a 
new “organ system”, thereby becoming integrated into its metabolism and devel-
opment. Moreover, there are numerous reciprocal interactions between the cells of 
the host organism and its microorganisms that alter gene expression in both sets of 
cells (Gilbert 2014). A totality of host and microbial genomes is defined as “holog-
enome” (Rosenberg et al. 2009). Animal fitness is believed to be highly dependent 
on its microbiota, and a hologenome is supposed to be a unit of natural selection 
(Zilber-Rosenberg and Rosenberg 2008). In physiological terms, microbiota plays 
an important role in the host’s nutrient digestion, response to environmental stresses, 
and also in normal development of the host individuals (Costello et al. 2012; 
McFall-Ngai et al. 2013). Furthermore, it is substantially implicated in the mainte-
nance of homeostasis and, thus, in the determination of longevity of the organism.

It is suggested that microbiota composition may influence the aging of holo-
biont (Heintz and Mair 2014). Age-related changes in microbiota are observed in 
human (Biagi et al. 2011; Ottaviani et al. 2011; Cheng et al. 2013), Drosophila 
melanogaster and Caenorhabditis elegans (reviewed in Ottaviani et al. 2011; 
Heintz and Mair 2014). However, it is still unclear whether the age related changes 
in host organism or bacterial community fluctuations or both are the driving force 
for the bacterial community development (Erkosar et al. 2013). Symbiosis is 
also believed to play a crucial role in the eukaryotic evolution (Douglas 2014). 
Much evidence supports the conclusion that mitochondria originated from eubac-
terial (specifically alpha-proteobacterial) ancestor (Margulis et al. 2000; Gray 
et al. 2001). This is an important point because mitochondria are essential for 
aging/senescence of the organism (Jacobs 2003). It can be suggested, therefore, 
that highlighting the symbiotic interactions may expand our understanding of 
aging and longevity.
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4.2  Microbiota and Aging of Drosophila

Several species from the genus Drosophila, especially D. melanogaster, are pow-
erful models to study many biological processes including microbiota functioning 
and its effects on host/holobiont aging (Broderick and Lemaitre 2012). The most 
studied reservoir of microbes in Drosophila is digestive tract, especially gut and 
intestine. According to Erkosar et al. (2013), the Drosophila bacterial communi-
ties include Lactobacilus plantarum, Lactobacilus brevis, Enterococcus faecalis, 
Acetobacter pomorum. Most of these bacteria are presented in larva and adult 
flies in all analyzed laboratory stocks. E. faecalis in known to be presented only 
in adult flies. Other minor representatives of bacterial microbiota include the gen-
era Gluconoacetobacter, Gluconobacter, Enterobacter, Commensalibacter and 
Acetobacter. It was shown that microbiota in digestive tract can vary across differ-
ent species of Drosophila (Corby-Harris et al. 2007; Chandler et al. 2011; Wong 
et al. 2013). These variations depend on the diet of flies and other environmen-
tal conditions (reviewed in Broderick and Lemaitre 2012; Erkosar et al. 2013). It 
was also shown that microbiota varies between laboratory and wild flies (Chandler 
et al. 2011; Staubach et al. 2013).

Bacterial microbiota composition is known to change throughout both devel-
opmental and adult life stages of the host. In Drosophila, it has been demon-
strated that amount of Lactobacillus fructivorans tends to decrease and amount 
of Lactobacillus plantarum tends to increase throughout the larval development 
(Wong et al. 2011a, 2013). At the pupal stage, Acetobacter tropicalis becomes 
the dominant species. L. fructivorans and Acetobacter pomorum are dominant 
species in young adult flies and in aged flies, respectively. Species of the genus 
Drosophila are frequently infected by endosymbiotic bacteria, namely, Wolbachia 
and Spiroplasma (Chandler et al. 2011).

The link between the bacterial community and flies’ longevity was studied repeat-
edly (Brummel et al. 2004; Ren et al. 2007; Ridley et al. 2012). Brummel et al. 
(2004) showed that germ-free (GF) flies have shorter life span indicating that micro-
biota is required for manifestation of “wild type” longevity phenotype. However, 
it has been shown that antibiotic treatment of aged flies may increase life span 
(Brummel et al. 2004). This discrepancy can likely be explained by the deleterious 
effects of bacterial load in late life. Moreover, life extension in Drosophila caused 
by microbiota may be associated in some cases with maintenance of intestinal stem 
cells homeostasis (Biteau et al. 2010; O’Brien et al. 2011). In addition, bacteria in 
some researches may not affect flies’ longevity (Ren et al. 2007).

Microbiota may affect longevity and aging through interaction with pathways 
that are known to be involved in the control of life span, such as the immunity defi-
ciency (IMD) and the insulin/IGF (IIS) pathways. For example, Shin et al. (2011) 
have shown that Acetobacter pomorum that inhabits Drosophila digestive tract and 
also is detected in the rest part of the body is able to induce activation of IIS-pathway 
through Drosophila insulin like peptides (dIlp). Bacteria with mutation in gene of 
pyrroloquinoline quinone–dependent alcohol dehydrogenase (PQQ-ADH) were not 
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able to enhance host insulin/IGF signaling when comparing with wild type bacteria. 
Flies that harbored mutant A. pomorum had smaller body size, altered development 
time, elevated circulating sugar and triacylglycerides content, all effects similar to 
those of the mutations in the IIS pathway. Similarly, Storelli et al. (2011) showed 
that infection by Lactobacillus plantarum correlates with upregulated IIS path-
way when comparing to GF flies. L. plantarum exhibits growth-promoting effect 
in L. plantarum-monoassosiated D. melanogaster (Storelli et al. 2011). This indi-
cates that L. plantarum may be required for normal body size in D. melanogaster. 
Furthermore, L. plantarum was found to interact with TOR pathway that controls the 
ecdysone (Ecd) production, thereby mediating IIS growth phenotype.

Described above evidences of Drosophila-microbiota interactions on  molecular 
level result in upregulation of IIS pathway that allows concluding that bacteria 
is expected to decrease life span of flies. On other hand GF flies had shorter life 
span than flies with intact microbiota (e.g. Brummel et al. 2004). Mechanisms of 
interactions between mentioned and other pathways with microbiota are complex 
and multidirectional, explaining the high diversity and contradictions of effects of 
microbiota on host life span in different experiments.

Immunity protects organism against pathogenic bacteria that can directly cause 
death and also regulates normal bacterial community that is necessary for survival. 
Generally, bacterial load increases throughout the lifetime, being accompanied by 
upregulation of antimicrobial effector genes (Cecropins, Attacins, Defensin and 
Relish) (Pletcher et al. 2002), Diptericin (Seroude et al. 2002), peptidoglican rec-
ognition proteins (PGRPs) (Seroude et al. 2002), and IMD pathway target genes 
(Eleftherianos and Castillo 2012; Combe et al. 2014).

Probably, the capability of the Drosophila immune system to eliminate bacte-
ria does not change with age and flies can tolerate high amounts of bacteria in late 
age (reviewed in Eleftherianos and Castillo 2012). These findings, however, con-
tradict the aforementioned study by Brummel et al. (2004) where life extension in 
Drosophila was observed when bacteria were removed after the age of 4 weeks. 
Such contradictory data on impact of microbiota on the flies’ life span may likely be 
explained, at least partially, by different methods of obtaining of the GF flies (Ridley 
et al. 2013); as well as by high variability of microbiota among different labs and 
wild populations and by high molecular complexity of host-bacteria interactions.

Eukaryotic microbiota is likely essential for the development and longevity 
in Drosophila as well. It is reported that yeast associated with D. melanogaster 
can affect development and nutrition by providing flies with sterols and B vita-
mins. Symbiosis between Drosophila and yeast is rather mutualistic (Broderick 
and Lemaitre 2012). D. melanogaster can be infected by microsporidia that cause 
decrease in various fitness traits, e.g., fecundity (Futerman et al. 2006). D. mela-
nogaster may also be the host for several intra- and extra-cellular trypanosomatids 
parasite species (reviewed in Keebaugh and Schlenke 2014). The eukaryotic mem-
bers of the Drosophila microbial consortium are, however, poorly characterized. 
Putative complex interactions between the prokaryotic and eukaryotic members of 
Drosophila microbiota could provide another explanation why data on the use of 
antibiotics in fruit fly may differ among studies.
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4.3  Wolbachia Infection in Drosophila

Wolbachia is the most widespread heritable endosymbiont of arthropods 
(Hingelbroeker et al. 2008). Wolbachia is transmitted maternally and causes host 
reproductive outputs such as male-killing, parthenogenesis induction, cytoplasmic 
incompatibility (CI) and feminization that promote spreading of bacteria (Werren 
1997; Werren et al. 2008). Phenotype manifestation depends on the bacteria strain 
and host genotype (Werren et al. 2008). A summary of the impacts of Wolbachia 
infection on biology of some species of Drosophila genus is present in Table 4.1.

Table 4.1  Wolbachia effects on Drosophila

Speciesa Wolbachia strain Wolbachia effect on host References

Drosophila 
annanasae

wAnab Partial CI Bourtzis et al. (1996)

D. auraria wRi, wDaub Partial CI Bourtzis et al. (1996)

D. bifasciata wDbifb Weak male-killing (MK) Hurst et al. (2000)

Weak CI Hurst et al. (2000)

D. borealis wBorb MK Sheeley and 
McAllister (2009)

D. innubila wDinb MK Dyer and Jaenike 
(2004)

Increased fecundity in 
infected females

Unckless and Jaenike 
(2012)

Increased survival after Flock 
house virus (FHV) injection

Unckless and Jaenike 
(2012)

D. melanogaster wMel Weak CI Hoffmann (1988)

Altered survival in cold/hot 
conditions

Versace et al. (2014)

Altered fitness and fecundity Olsen et al. (2001), 
Fry et al. (2004), 
Serga et al. (2014)

Increased tolerance to RNA 
viruses

Hedges et al. (2008), 
Teixeira et al. (2008)

Altered mating behaviour Markov et al. (2009), 
Sharon et al. (2010)

Increased life span in females 
infected by Wolbachia com-
pared with tetracycline-treated

E.g. Alexandrov et al. 
(2007)

Restored fertility in 
Wolbachia-infected Sxl 
mutants

Starr and Cline (2002)

wMelPop Degradation of nervous and 
muscles tissues: decrease of 
life span

Min and Benzer 
(1997)

(continued)
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In several Drosophila species including D. neotestacea (Jaenike et al. 2010), D. 
mauritania (Giordano et al. 1995), D. santomea, D. teissieri, D. yakuba (Zabalou 
et al. 2004; Hughes and Rasgon 2014), Wolbachia causes no reproductive distortions 
such as CI. In D. simulans, naturally infecting strains wCof, wAu (Hoffmann et al. 
1996), and wMa (Charlat et al. 2003) do not exhibit CI as well. In these species, the 
mechanisms of Wolbachia maintenance in host populations remain unknown.

D. melanogaster natural populations are infected by Wolbachia at  relatively 
high frequency (Hoffmann et al. 1998; Serga et al. 2014). However, Wolbachia 
that naturally infects populations of D. melanogaster is known to induce 
low levels of CI. In case of high prevalence of CI inducing Wolbachia in host 

Table 4.1  (continued)

Speciesa Wolbachia strain Wolbachia effect on host References

D. paulistorum wAu-like, 
wMel-like

Increased fecundity in 
infected females compared to 
tetracycline treated

Miller et al. (2010)

Premating isolation between 
D. paulistorum semispecies

Miller et al. (2010)

CI between D. paulistorum 
semispecies

Miller et al. (2010)

D. recens Strain unknown CI in matings between 
infected D. recens males 
and uninfected D. s ubquinaria 
females

Shoemaker et al. 
(1999)

Strain unknown CI Werren and Jaenike 
(1995)

D. sechellia wHab, wSnb, 
wShb

Partial CI Giordano et al. (1995), 
Bourtzis et al. (1996)

D. simulans wRi CI Hoffmann et al. (1986), 
Ballard (2004)

Resistance to RNA viruses Osborne et al. (2009)

Increased fecundity in 
infected females compared 
to uninfected

Kriesner et al. (2013)

wHa CI O’Neill and Karr 
(1990)

wNo CI Mercot et al. (1995)

wAu Resistance to RNA viruses Osborne et al. (2009)

D. subquinaria Strain unknown 
(same strain as 
in Drosophila 
recens)

MK Jaenike (2007)

aDrosophila species were not included in the table if phenotypic effects of Wolbachia are 
unknown or absent
bThis strain is presented in populations of given species, however reference article in column 4 
does not provide name of Wolbachia strain that is responsible for inducing phenotype listed in 
the column 3 of table
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population it gives reproductive advantage to infected females because in 
crosses between uninfected females and infected males the progeny is not 
viable. However, low CI may be unsufficient to keep high infection rate of 
Wolbachia in D. melanogaster population. Many papers report other kinds of 
effects (see Table 4.1) by which Wolbachia increases hosts fitness or increases 
chances to be transmitted in next generation that finally results in propagation 
of Wolbachia infection in natural populations of D. melanogaster (reviewed in 
Serga and Kozeretskaya 2013).

Wolbachia was shown to affect Drosophila fitness by a variety of mechanisms. 
In D. melanogaster, Wolbachia was shown to mitigate the phenotypic manifesta-
tion of mutations in IIS pathway (Ikeya et al. 2009) and to restore fertility in Sxl 
mutants (Starr and Cline 2002). In D. paulistorum, these bacteria are considered as 
an obligate mutualist because of their ability to suppress female lethality through 
interaction with IIS pathway (Miller et al. 2010). These observations suggest abil-
ity of Wolbachia to rescue lethal mutations or mitigate the manifestation of the 
mutant phenotype.

To study Wolbachia—host interactions, the transinfection technique are widely 
applied (reviewed in Hughes and Rasgon 2014).

CI is the most frequent reproductive manipulation phenotype in  transinfection 
experiments. For instance, Wolbachia (strain wCer2 that induces CI in natural 
host) from Rhagolesi cerasi transifected to D. simulans, was shown to induce 
CI in Drosophila (Riegler et al. 2004). Wolbachia can acquire reproductive manip-
ulation ability in the novel host. For example, Wolbachia strains wYak, wTei, and 
wSan do not cause any observable effects in natural hosts, but cause CI in transin-
fected D. simulans (Zabalou et al. 2008). However, in some cases, the repro-
ductive manipulation phenotype specific for natural hosts may not manifest in 
transinfected species. For example, transinfection of Wolbachia wDin strain from 
D. innubila (Table 4.1) that induces male-killing in natural host to D.  simulans 
and D. melanogaster flies does not cause male-killing (Veneti et al. 2012). 
Surprisingly, one of the two transinfected lines tested also showed the increased 
longevity. In general, the transinfection method reveals that reproductive manipu-
lation phenotypes may be inconstant in novel hosts species.

In transinfection experiments, Wolbachia also affected fecundity and viral 
resistance of novel host species. In particular, wCer2 Wolbachia strain in D. 
s imulans reduced the female fecundity by 10 % (Riegler et al. 2004), and wMel 
strain in D. simulans increased the viral resistance (Osborne et al. 2009).

4.4  Effects of Wolbachia on Life Span in D. melanogaster

D. melanogaster harbours at least two endosymbiotic bacteria: Wolbachia and 
Spiroplasma (Mateos et al. 2006). It was observed that number of Spiroplasma 
cells increase through aging of fly, causing the enhancement of male-killing phe-
notype manifestation (reviewed in Haselkorn 2010). To date, however, there is a 
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little information on effects of Spiroplasma on D. melanogaster longevity. In this 
chapter, we will focus on the effects of another endosymbiont, Wolbachia pipien-
tis, on aging and life span in D. melanogaster.

Aging and life span are fitness related traits that are probably regulated by 
Wolbachia. An association between Wolbachia infection and Drosophila longev-
ity has been observed repeatedly. In the study by Alexandrov et al. (2007) infected 
females had extended life span when compared with the tetracycline-treated (unin-
fected) female flies.

The effects of the infection on life span of infected and tetracycline-treated flies 
have been found to be strongly dependent on host genetic background (Fry and 
Rand 2002; Fry et al. 2004). To investigate the inheritance of the survival pheno-
type and its dependence on the host sex and genotype, Fry and Rand (2002) used 
reciprocal hybrid crosses between the strains, one that lived longer with Wolbachia 
(Z53) and one that did not (Z2). The positive effects of infection were found to be 
more pronounced in hybrids than in parental flies. These effects were more appar-
ent in the single-sex cages, where courtship and mating were not permitted. In the 
subsequent study by the same group, infected females from three different strains 
also showed altered survival or fecundity associated with Wolbachia infection, 
compared to uninfected flies (Fry et al. 2004). Z53 and Ftf1 strains lived longer 
when they were infected with Wolbachia, and the life span of Wj9 strain was 
decreased. Other experimental fly strains, Z2 and Ftf100, demonstrated no survival 
effects associated with Wolbachia. In the study by Min and Benzer (1997), the 
Wolbachia popcorn (wMelPop) strain was shown to be strongly virulent, causing 
degeneration of brain, retina, and muscle tissues, and culminating in life-shorten-
ing of flies. Tetracycline treatment eliminated both the bacteria and the degenera-
tion, restoring normal longevity.

4.5  Molecular Mechanisms Underlying the Interaction 
Between Wolbachia and Drosophila

Wolbachia like other intracellular bacteria can secret different factors via the 
Type IV Secretion System to mediate the interactions with the host (Masui et al. 
2000). Among the candidate factors, the ankyrin domain containing proteins seem 
to play a key role. Wolbachia genome contains 23 genes encoding proteins with 
ankyrin domains (Wu et al. 2004). The products of genes WD0285, WD0636, 
and WD0637 are the most probable candidates to contribute to the Wolbachia-
Drosophila interactions (Wu et al. 2004, Foster et al. 2005). Ankyrin repeats, 
tandem motifs of about 33 amino acids, are known to mediate protein-protein 
interactions in eukaryotes (Caturegli et al. 2000). These proteins are found in 
 obligate and facultative endosymbiotic bacteria (Siozios et al. 2013). Proteins with 
ankyrin repeat from Wolbachia are involved in CI induction in D. melanogaster 
and D. simulans (Papafotiou et al. 2011). Capability of ankyrin containing proteins 
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to mediate Wolbachia-induced CI makes them candidates to play role in other 
aspects of Wolbachia-Drosophila interactions including aging.

Wolbachia may likely influence the levels of both mRNA expression and pro-
tein synthesis of some factors involved in the aging of fruit fly. The associations 
between Wolbachia-induced transcriptional profiles and flies’ aging process, how-
ever, have not been systematically analyzed until now.

We summarized in this chapter genes potentially implicated in the aging 
 process in Drosophila, and, among them, those influenced by Wolbachia. We 
searched available research data (published before August 2014) for  evidences 
of any interactions with Wolbachia for each of 159 genes involved in D. 
 melanogaster aging [according to FlyBase Gene Ontology (ID: GO: 0007568, the 
release date: July 21, 2014)]. The list of Drosophila genes potentially implicated 
in aging and longevity which are affected by Wolbachia are presented in Table 4.2.

Table 4.2  Genes affected by Wolbachia that are involved in aging and life span determination 
of D. melanogaster

aGene names are in line with http://flybase.org/ (the release date: November 21, 2014)
bDirect experimental research was not performed. Statement about interaction of this gene with 
Wolbachia is rather hypothetical

Gene name Model on which Wolbachia-
Drosophila interactions were 
studied

Reference

Atg8a (Autophagy-related 8a)a Adult females Voronin et al. (2012)

chico Larval testes Zheng et al. (2011)

EcR (Ecdysone receptor) N/Ab Negri and Pellecchia (2012)

Hsp22 (Heat shock protein 22) S2 cell line Xi et al. (2008)

Larval testes Zheng et al. (2011)

Hsp26 S2 cell line Xi et al. (2008)

Hsp27 S2 cell line Xi et al. (2008)

Hsp68 S2 cell line Xi et al. (2008)

Hsp70 S2 cell line Xi et al. (2008)

Ilp (Insulin-like peptide) Adult males and females Gronke et al. 2010

Indy (“I’m not dead yet”) Larval testes Zheng et al. (2011)

Adult males Toivonen et al. (2007)

InR (Insulin receptor) Adult males and females Ikeya et al. (2009)

mld (molting defective 
(DTS-3)

S2 cell line Xi et al. (2008)

mthl5 (methuselah-like 5) S2 cell line Xi et al. (2008)

mys (myospheroid) S2 cell line Xi et al. (2008)

PGRP-LE (Peptidoglycan 
recognition protein-LE)

N/Ab Kaneko et al. (2006), Lemaitre 
and Hoffmann (2007)

PGRP-LF (Peptidoglycan 
recognition protein LF)

S2 cell line Xi et al. (2008)

puc (puckered) S2 cell line Xi et al. (2008)

Sod (Superoxide dismutase) Adult males and females Wang et al. (2012)

http://flybase.org/
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4.5.1  Immune Deficiency Pathway

Peptidoglycan recognition proteins (PGRPs) are innate immunity proteins that 
play a key role in defense against pathogenic organisms (Gupta 2008). PGRPs’ 
functions include bacterial cell wall peptidoglycan recognition and activation of 
two central immune pathways in Drosophila, namely, Toll and Immune Deficiency 
(IMD) signaling pathways (Royet and Dziarski 2007). A member of the PGRP 
family, PGRP-LE protein, plays a key role in peptidoglycan recognition and acti-
vation of IMD pathway (Fig. 4.1). Unlike another activator of IMD, transmem-
brane protein PGRP-LC, PGRP-LE is located in cytoplasm (Kaneko et al. 2006); 
thus, this protein seems the most likely candidate to interact with Wolbachia 
(Lemaitre and Hoffmann 2007). Overexpression of PGRP-LE in fat body resulted 
in constitutive up-regulation of the immune response and enhanced pathogen 
resistance; the chronic activation of PGRP-LE, however, led to an inflammatory 
state and reduced fly life span (Libert et al. 2006). Paik et al. (2012) also suggest 
that high bacterial infection load and chronically over-activated immune response 
can lead to life span shortening. Other negative regulator of IMD pathway, PGRP-
LF, likely acts through inhibition of PGRP-LC by concurrent interaction with bac-
terial peptidoglycans (Maillet et al. 2008). Paik et al. (2012) suggested that over 
activation of PGRP-LF can likely cause life extension. Remarkably, PGRP-LF has 
been shown to be up-regulated (1.26 fold change of gene expression) in S2 cell 
lines infected with Wolbachia (Xi et al. 2008) compared to uninfected. Since the 
activity of IMD and other immune pathways is obviously important for survival 
of fruit fly, the effects of Wolbachia or other associated bacteria on both PGRP-LF 
and/or PGRP-LE activity at either gene expression and/or protein levels may likely 
affect the Drosophila longevity. Several previous studies, however, have failed 
to show any effects of Wolbachia on D. melanogaster survival after infection by 
other bacteria (Wong et al. 2011b; Rottschaefer and Lazzaro 2012), despite the 
fact that up-regulation of IMD and Toll pathways genes along with up-regulation 
of antimicrobial peptides genes have been shown in flies infected with Wolbachia 
(Eleftherianos et al. 2013).

4.5.2  Stress-Induced JNK Pathway

In Drosophila, Jun N-terminal Kinase (JNK) signaling pathway is responsible for 
induction of autophagy by oxidative stress (Wu et al. 2009), heat stress (Gonda 
et al. 2012), and antibacterial responses (Maillet et al. 2008) and known to play 
central roles in aging and life span determination. Overactivation of JNK path-
way through overexpression of its components such as JNKK/Hep (Hemipterous) 
(Libert et al. 2008) and JNK/Bsk (Basket) (Biteau et al. 2010) has been shown 
to be able to extend fly’s life span both under normal and stress conditions. 
JNK/Bsk targets AP1 (Fig. 4.1) (protein dimer of the products of the Drosophila 
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proto-oncongenes dJun (Jun-related antigen) and dFos (also known as kayak)) 
(Kockel et al. 2001), and Drosophila Forkhead transcription factor O (dFOXO) 
that activates genes involved in stress response (Alic et al. 2014).

The puckered gene encoding a VH1-like phosphatase has been shown to play 
a key role in negative regulation JNK activity in Drosophila (Fig. 4.1) (Martin-
Blanco et al. 1998). In flies heterozygous for loss-of-function alleles, pucA251.1 
or pucE69, a significant life span extension was observed (Wang et al. 2003, 
2005).

In the S2 cell system, the Wolbachia infection was shown to be able to up- 
regulate the puckered expression (1.30 fold change) (Xi et al. 2008) thereby 
 potentially causing life extension in vivo. Up-regulation of dJun was observed (1.3 
fold change) in infected S2 cells, potentially inducing transcriptional up-regulation 
of puckered which is target of AP1 complex that contains dJun (Xi et al. 2008).

4.5.3  Heat Shock Protein Genes

Many studies show that up-regulation of heat shock protein (Hsp) genes is associ-
ated with increased life span while down-regulation results in life shortening in 
Drosophila (reviewed in Tower 2011). The primary function of chaperone proteins 
coded by these genes is assistance in the folding and refolding of other proteins, 
particularly under stress conditions, including aging.

Fig. 4.1  Interactions between Wolbachia and host regulatory network contributing to 
l ongevity in Drosophila. Genes up-regulated in the presence of Wolbachia are marked in red, 
down-regulated—in green, proteins and/or genes that interact with Wolbachia in unknown or 
complicated way are marked in yellow
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Down-regulation of 11 of 27 studied Hsp genes (from −1.2 to −1.7 fold 
change) was observed in Wolbachia-infected S2 cells (Xi et al. 2008). Zheng et al. 
(2011) also showed downregulation of Hsp22 (−1.55 fold change) in larval tes-
tes. Among these down-regulated genes Hsp22, Hsp68 and Hsp70 were repeatedly 
found to affect life span in D. melanogaster (Tatar et al. 1997; Wang et al. 2003; 
Morrow et al. 2004). Interestingly that in the fruit fly, JNK signaling pathway up-
regulates the transcription of Hsp68 and Hsp26 genes through dFOXO (Fig. 4.1) 
(Wang et al. 2003, 2005). Because of up-regulation of puckered that negatively 
regulates JNK pathway Wolbachia infection can result in decreased stress resist-
ance through down-regulation of Hsp genes, contributing to the life-shortening 
effect.

4.5.4  Autophagy-Specific Genes

Autophagy refers to the normal self-cleaning process responsible for elimina-
tion of damaged cellular components. Several recent findings demonstrate that 
autophagy can likely contribute to many life-extending manipulations (Madeo 
et al. 2010). In D. melanogaster, autophagy is regulated by crosstalk between 
IMD, JNK, TOR and IIS pathways (Gelino and Hansen 2012). One of the 
autophagy-related genes, autophagy-specific gene 8a (Atg8a) encodes protein that 
is necessary to control the intracellular Wolbachia density in many invertebrates 
(Voronin et al. 2012). It was shown that autophagy gene Atg8a was three times 
overexpressed in D. melanogaster infected by pathogenic Wolbachia strain wMel-
Pop when compared to uninfected flies (Voronin et al. 2012). Increased expression 
of Atg8a in the nervous system of adult flies can increase life span due oxidative 
stress resistance and elimination of damaged cell components (Simonsen et al. 
2008). It may be hypothesized that Wolbachia-induced autophagy can also cause 
the removal of damaged cellular components and ‘rejuvenation’ of cell population.

4.5.5  Insulin/IGF Signaling Pathway

The insulin/IGF signaling (IIS) pathway is thought to play a central role in growth, 
stress resistance, reproduction and metabolism as well as in determination of life 
span of all multicellular organisms including D. melanogaster (Wang et al. 2014). 
The moderate tissue-specific and/or whole-organism reduction of IIS pathway 
activity was found to be associated with life extension in fruit fly (Broughton and 
Partridge 2009). The Drosophila insulin-like peptides (DILPs) are triggers of insu-
lin signaling cascade that act through binding to insulin receptor (InR). There are 
7 DILPs that are expressed in D. melanogaster in a tissue- and developmental-spe-
cific manner (Brogiolo et al. 2001). In the Grönke et al. (2010) study, homozygous 
dilp2 null mutants and homozygous dilp2,3- null double mutants had significantly 
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extended median life span and homozygous dilp2-3,5 null triple mutants had 
slightly extended maximum life span compared to control flies. The extended 
mean life span was also observed in flies with ablated median neurosecretory cells 
that produce DILPs 2, 3 and 5 (Broughton et al. 2005).

Grönke et al. (2010) by examining how Wolbachia interacts with Drosophila 
IIS pathway, found that loss of DILPs produced in the brain significantly extended 
life span but only in the presence of the Wolbachia. Specifically, wDah dilp2-3,5 
mutants that carried Wolbachia had increased median and maximum life span 
when comparing with wDah wild type lines with Wolbachia and tetracycline-
treated wDah wild type lines and wDah dilp2-3,5 mutants. However, Wolbachia 
infection was not contributing to the observed life span extension in dilp2 single 
mutant and dilp2-3 double mutant flies. Wolbachia infection also contributed to 
DDT resistance of dilp2-3,5 triple mutant but had no effect on survival of flies 
under starvation and peroxide treatment. Authors suggest that moderate down-reg-
ulation of IIS can cause life extension. Simultaneous loss of DILPs 2, 3, 5 may, 
however, lead to deleterious phenotypic effects, whereas the Wolbachia infection 
can likely attenuate the manifestation of dilp2-3,5 mutant phenotype through the 
increased IIS signaling.

In the Ikeya et al. (2009) study, the dominant negative reduction of insulin 
receptor (InRDN) activity in precense of Wolbachia led to reduced growth and 
fecundity phenotypes and extended life span when compared to infected and unin-
fected control flies. In uninfected InRDN flies, the extreme dwarfism, sterility, 
increased fat content and decreased life span were observed compared to infected 
and uninfected control flies and flies with mutant receptor (InRDN) and with 
Wolbachia. Removal of Wolbachia from control flies caused moderate reduction in 
weight and fecundity but did not affect the life span. Expression of InRDN in the 
fat body had no effect on life span in Wolbachia-infected flies, whereas removal of 
Wolbachia resulted in life span extension. These data suggest that Wolbachia may 
interact with IIS downstream of InR.

No differences in expression of IIS downstream target, 4E-BP, were, however, 
observed in infected and uninfected dilp2-3,5 flies in the Grönke et al. (2010) 
study. Moreover, there were no differences in egg-to-adult survival, development 
time, energy storage, fecundity and stress resistance between infected and unin-
fected dilp2-3,5 mutants. Taken together, these findings suggest that life extension 
in infected flies could proceed through other pathways than the IIS. Generally, 
interaction of Wolbachia with components of IIS pathway is unclear but pres-
ence of Wolbachia in many cases tends to “smooth” the mutant phenotypes of IIS 
pathway.

Reducing the gene dose of chico that encodes ligand of InR may also cause 
life extension. Flies carrying loss-of-function allele chico1 exhibited extended 
median life span (Clancy et al. 2001). The transcription of chico was found to be 
up- regulated (1.53 fold change) in larval testes of D. melanogaster infected by 
Wolbachia (Zheng et al. 2011). Thus, some Wolbachia-induced longevity pheno-
types may be mediated by chico.
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Transcription factor dFOXO is maintained in cytoplasm through its phospho-
rylation by IIS. While dFOXO is localized in cytoplasm JNK-activated stress 
response genes are repressed.

Thus, IIS-mediated phosphorylation works antagonistically to JNK-mediated 
phosphorylation (Partridge and Bruning 2008). Overactivation of dFOXO causes 
life extension in flies (Giannakou et al. 2004).

By examining the effects of reduced IIS in the absence of dFOXO in Drosophila, 
using a newly generated null allele of dfoxo, Slack et al. (2011) found that the 
removal of dFOXO almost completely blocks IIS-dependent life span extension. 
However, unlike in C. elegans, removal of dFOXO does not suppress the body size, 
fecundity, or oxidative stress resistance phenotypes of IIS-compromised flies.

Down-regulation of JNK-signaling and up-regulation of insulin/IGF signaling, 
expectedly, will reduce life span. However, non-pathogenic strains of Wolbachia 
cause life span extension of D. melanogaster. Consequently, Wolbachia possibly 
extend life span through interaction with other pathways.

4.5.6  Ecdysteroid Biosynthesis and Signaling

Several findings have demonstrated that ecdysteroid signaling pathway is involved 
in life span determination in Drosophila. For example, flies heterozygous for the 
mutation in the gene encoding ecdysone receptor, EcRV559fs, exhibit increased 
life span and resistance to various stresses compared to controls without the muta-
tion, with no apparent deficit in fertility or activity (Simon et al. 2003). It may 
be hypothesized that Wolbachia produces regulators able to interact directly or 
indirectly with ecdysone receptor resulting in modulation of ecdysteroid signaling 
(Negri and Pellecchia 2012).

Female DTS-3/+ flies that are mutant for moulting defective (mld) gene 
involved in ecdysone biosynthesis also had increased life span when were culti-
vated at 29 °C. The up-regulation (1.67 fold change) of this gene was observed in 
Wolbachia infected S2 cell lines as well (Xi et al. 2008).

Ecdysteroid signaling pathway is involved in manifestation of Wolbachia repro-
ductive manipulation phenotypes (Negri et al. 2010, 2012). Thus, the ecdysteroid 
pathway may likely be implicated in Wolbachia-mediated life span modulations in 
D. melanogaster.

4.5.7  Indy Gene

The Indy (“I’m not dead yet”) gene is one of the most known life-extending genes. 
This gene encodes a transporter of Krebs cycle intermediates including citrate 
which plays a role in energy regulation by affecting fatty acid synthesis and gly-
colysis. The decreased expression of Indy results in metabolic changes similar to 
those induced by calorie restriction, such as decreased levels of lipids, changes in 
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carbohydrate metabolism and increased mitochondrial biogenesis (Frankel and 
Rogina 2012), as well as with an extended longevity in Drosophila (Rogina and 
Helfand 2013). The variations of this gene in natural populations were shown to 
confer fitness advantage and extension of life span through transposon insertion 
(Zhu et al. 2014). Specifically, heterozygous flies for Hoppel transposone inser-
tion significantly outlive homozygous flies lacking the insertion in Indy gene. A 
mutation of this gene can lead to doubling the life span of fruit fly through met-
abolic changes, while maintaining high levels of functioning and fertility (Zhu 
et al. 2014).

Remarkably, in CS-Indy206 fly line, the extended longevity phenotype was 
removed by tetracycline treatment (Toivonen et al. 2007). Authors suggest that life 
span extension phenotype was induced by the presence of Wolbachia or other bac-
teria that can be removed by tetracycline.

4.5.8  Myospheroid Gene

The myospheroid (mys) gene encodes the Drosophila beta-integrin (beta-PS), one 
of the cell surface receptors that mediate linkage between the extracellular matrix 
and cytoskeleton (MacKrell et al. 1988). The loss-of-function mutations in mys 
were reported to extend median life span in D. melanogaster (Goddeeris et al. 
2003). In the Xi et al. (2008) study, it has been demonstrated that infection of S2 
cells with Wolbachia leads to up-regulation (1.29 fold change) of the mys gene.

4.5.9  Methuselah Gene

The methuselah (mth) gene, encoding G-protein-coupled receptor, is known to 
be associated with longevity and stress resistance in Drosophila (Petrosyan et al. 
2014). Mutations decreasing the activity of this gene are known to extend the life 
span in flies (Lin et al. 1998). The methuselah-like (mthl) genes are also assumed 
to play a role in life span determination based on their homology with mth (Araújo 
2012). mth was not expressed at different levels in Wolbachia-infected and unin-
fected S2 cells cultures; one of the mth genes, mthl5, was, however, up-regulated 
(1.26 fold change). stunted (sun) gene, that encodes a ligand/agonist of mth prod-
uct and whose mutation displays an extension of life span (Cvejic et al. 2004), was 
down-regulated (−1.18 fold change) in infected S2 cells (Xi et al. 2008).

4.5.10  Superoxide Dismutase

Superoxide dismutase (SOD) is an important enzyme that catalytically converts 
superoxide radical to oxygen and hydrogen peroxide (Fukai and Ushio-Fukai 
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2011). This enzyme is a major player in the organismal antioxidant defense system 
since it is involved in protecting the cells from superoxide radicals generated dur-
ing aerobic metabolism. Overexpression of SOD has been repeatedly found to be 
associated with reduced oxidative damage and extended life span in Drosophila 
under both normal metabolism and environmental stress (Fleming et al. 1992; 
Landis and Tower 2005). Wolbachia likely may be implicated in these associa-
tions. Wang et al. (2012) demonstrated that Wolbachia infection decreased activity 
of SOD compared to tetracycline treated flies.

4.6  Conclusion

Analysis of data from the studies included in this systematic review suggests 
that, to ensure their persistence within the host, Wolbachia may affect expres-
sion of key genes controlling different pathways implicated in immune response, 
stress resistance, metabolic processes, antioxidant defense system, autophagy 
and other important survival functions, thus influencing longevity in Drosophila. 
It remains unclear, however, why the Wolbachia infection in some cases leads to 
life extension, while in other cases can shorten the life span of the flies. These 
effects of infection by Wolbachia must be thereby taken into account by using the 
Drosophila model system to investigate the aging process. Further researches are 
also required for the identification of molecular pathways by which Wolbachia 
infection affects the aging process and longevity in Drosophila.
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Abstract A debilitating feature of aging in humans is the progressive loss of skeletal  
muscle mass and function termed sarcopenia. A variety of intrinsic and extrinsic  
factors that are induced by aging contribute to sarcopenia, which in turn is a risk  
factor for many other age-related diseases. While widely studied in human and rodent 
models, sarcopenia has been identified also in the common fruit fly Drosophila mel-
anogaster. Drosophila is emerging as a powerful system to study the mechanisms 
underlying sarcopenia, as it shares many of the same skeletal muscle characteristics 
as mammalian models. Decreased protein homeostasis, mitochondrial dysfunction, 
increased apoptosis, and alterations in transcription are just a few of the features 
of sarcopenia that are shared between mammals and Drosophila. Given its short 
life span compared to mammals and the ease in conducting genetic manipulations, 
including genome-wide muscle-specific transgenic screens, Drosophila offers unique 
advantages for studying the fundamental mechanisms of skeletal muscle aging and 
may provide potential therapeutic targets to combat sarcopenia in humans.

Keywords Drosophila · Skeletal muscle · Sarcopenia · Protein homeostasis ·  
Mitochondrial dysfunction · Apoptosis · Aging

5.1  Introduction

During their life span many animal species, including nematodes, flies, rodents, 
and primates, develop sarcopenia, the progressive loss of skeletal muscle mass 
and strength with age (Herndon et al. 2002; Wolkow 2006; Augustin and Partridge 
2009; Demontis et al. 2013a, b). Sarcopenia can be attributed to muscle-intrinsic 
and extrinsic defects that lead to a gradual decrease in the capacity to maintain 
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skeletal muscle function and mass during aging. While sarcopenia is progressive 
and it is not fully reversible, muscle atrophy that occurs in response to catabolic 
stimuli such as fasting is rapid (a matter of days), generally reversible, and typically 
it does not entail intrinsic defects. There are many models available to study skel-
etal muscle agingand Drosophila has become a useful one to examine the cellular 
processes and genetic pathways responsible for functional decrements of skeletal 
muscle with aging (Augustin and Partridge 2009; Demontis et al. 2013a, b).

The organization and metabolic properties of skeletal muscle fibers of Drosophila 
melanogaster are similar to those of mammals (Sink 2006). Both Drosophila and 
mammalian skeletal muscles are composed of tandem arrays of sarcomeres con-
taining thin filaments, composed of actin, and thick filaments, composed of myosin 
(Sink 2006). Release of calcium from the sarcoplasmic reticulum results in bind-
ing of the myosin head to the actin filament, which leads to generating the force 
of contraction. After the calcium is reabsorbed by the sarcoplasmic reticulum, the 
muscle is prepared for another contraction. Alternatively, some skeletal muscle in 
Drosophila, such as the indirect flight muscles, do not rely on extensive calcium 
recycling to maintain contractions. Instead, mechanical stimuli, through stretching 
and shortening of the muscle, are used to maintain the high frequency of contrac-
tions needed for flight (Dickinson 2006; Vigoreaux 2006; Tregear 2011).

Similar to mammals, Drosophila skeletal myofibers appear to be either 
 glycolytic or oxidative (Sink 2006). The flight muscles, both direct and indirect, 
have been proposed to have an oxidative phenotype, as they are fatigue resistant, 
similar to the soleus muscle in mammals. Conversely, the leg muscles of adult flies 
and the body wall muscles of larvae, which are used intermittently, are thought to 
be glycolytic, similar to the tibialis anterior muscle in mammals (Sink 2006).

The developmental origin of Drosophila skeletal muscle is similar to 
 vertebrates, as the somatic, visceral and cardiac musclesarise from the mesoderm. 
The commonality in structure and developmental origin makes Drosophila an 
excellent model for studying skeletal muscle differentiation, growth, aging, and 
disease. During the embryonic stage muscle progenitor cells differentiate and fuse 
to form individual myofibers. Embryonic muscle development is completed within 
one day (Fig. 5.1). Drosophila embryonic development provides a useful system 
for the examination of the cellular mechanisms and genetic pathways regulating 
myoblast fusion and myofiber differentiation, which may be relevant for under-
standing muscle regeneration and satellite cell function during aging in mammals.  
Subsequently, during the ~5 days of larval development (Fig. 5.1),  larval  
muscles (each composed by a single myofiber) grow 50-fold in size (Demontis 
and Perrimon 2009). The profound changes in muscle mass observed during lar-
val development provide a sensitized setting for the identification of the cellular 
mechanisms and genetic pathways regulating muscle growth and atrophy.

After the larval stage, developing Drosophila undergo pupal  metamorphosis 
(Fig. 5.1) during which most of the larval muscles are degraded in a process 
called “histolysis” and replaced with adult muscles composed of multiple fibers 
similar to vertebrates (Patel et al. 2002). Analysis of the pupal stage of muscle 
development can further the understanding of myofiber degeneration and loss in 



1095 Skeletal Muscle Homeostasis and Aging in Drosophila

mammalian models of age-related diseases. Importantly, because some myofibers 
are spared and do not undergo histolysis, studies on muscle pupal development 
may shed light on the genetic and metabolic properties that can provide protec-
tion from different atrophic stimuli. For example, glycolytic muscles preferentially 
undergo atrophy during cachexia, sarcopenia and starvation in mammals (Li et al. 
2007; Yu et al. 2008; Yamada et al. 2012; Wang and Pessin 2013), while oxidative 
muscles undergo wasting during disuse and immobilization in rodents and humans 
(Edstrom 1970; Appell 1990; Thomason and Booth 1990). However, the mecha-
nistic basis for this differential sensitivity to atrophic stimuli is largely unknown 
and studies in Drosophila may provide some clues on the fundamental mecha-
nisms involved.

After around 10 days of development, the adult flies eclose. Examination of 
skeletal muscle in the adult allows for the analysis of the role of organelle turno-
ver and proteinhomeostasis in regulating skeletal muscle homeostasis and function 
during aging (Fig. 5.1). In fact, although there is currently no evidence for muscle 
mass loss in old flies, there is an abundance of literature demonstrating age-related 
muscle intrinsic defects leading to functional declines including decreased flight, 
climbing, and walking ability (Grotewiel et al. 2005; Dickinson 2006; Martinez 
et al. 2007; Miller et al. 2008). Here below we describe how Drosophila is emerg-
ing as a convenient model organism to study sarcopenia and related processes.

Fig. 5.1  The Drosophila life cycle: muscle differentiation, growth, remodeling, and aging. Dur-
ing embryonic development myoblasts fuse to form myofibers, which undergo differentiation. 
Subsequently, myofibers grow up to 50-fold in size during 4–5 days of larval development. Dur-
ing the pupal stage, most myofibers undergo rapid atrophy and degradation (“histolysis”) while a 
few myofibers escape histolysis and form the template for the formation of the adult musculature 
by adult muscle precursor cells (AMPs). Finally in the adult fly, muscles must maintain their 
functional and structural integrity despite decreased homeostatic capacity and progressive inci-
dence of muscle-extrinsic and muscle-intrinsic age-related defects
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5.2  Developmental Skeletal Muscle Growth and Histolysis 
in Drosophila: A Model for Mammalian Muscle 
Atrophy and Hypertrophy

There are similarities in the mechanisms regulating skeletal muscle growth and 
atrophy in Drosophila and mammals. In mammals signaling from contraction, 
nutrients, and hormones through the IGF/Akt/TOR pathway leads to robust hyper-
trophy (Schiaffino and Mammucari 2011). Importantly, the hypertrophic response 
to nutrient and contraction stimuli can be attenuated in mice by inhibition of the 
TOR pathway through muscle specific knockouts or through activation/sup-
pression of TOR regulators such as TSC1/2 and Raptor (Bentzinger et al. 2008; 
Schiaffino and Mammucari 2011; Bentzinger et al. 2013; Sandri et al. 2013). 
Similar to mammals, the rapid muscle growth during Drosophila larval develop-
ment is heavily dependent on nutrient sensing through the insulin/Akt/TOR path-
way. Signaling through the transcription factors FoxO, Myc, and Mnt are also 
required for normal muscle growth in Drosophila. Overexpression of FoxO can 
inhibit muscle growth at least in part through inhibition of Myc activity, and over-
expression of Mnt, a Myc antagonist, also inhibits muscle growth (Demontis and 
Perrimon 2009). The extensive genetic resources available in Drosophila allow for 
rapidly testing the role of any given gene and signaling pathway in the process of 
muscle growth in the larva, providing comprehensive insight into signaling path-
ways that may regulate muscle hypertrophy in mammals.

Similar to hypertrophy, many different stimuli including disuse, starvation, den-
ervation, aging, stress signals, and reactive oxygen species can induce atrophy in 
mammalian skeletal muscle. In Drosophila, muscle atrophy followed by cell death 
is observed during histolysis. Larval muscles undergo two fates during metamor-
phosis. While a few muscles change morphology and become the adult muscles, 
most are degraded and replaced with new muscles formed by adult muscle precur-
sor cells (AMPs). One of the signals regulating the rapid degradation of muscle 
during histolysis is a class of steroid hormones, called ecdysteroids, which induce 
similar gene expression changes as glucocorticoids when applied to mammalian 
cells (Christopherson et al. 1992; Jindra 1993). These steroid molecules cause the 
rapid breakdown of myofibrils leading to severe atrophy. Similar to the mamma-
lian response to glucocorticoids, not all muscles undergo histolysis when exposed 
to ecdysteroids (Goldberg and Goodman 1969; Hegstrom and Truman 1996). 
Interestingly, the muscles that do not undergo histolysis are used as scaffolding 
for the growth and development of the adult skeletal muscles (Chinta et al. 2012). 
Taken together, although muscle growth and atrophy in Drosophila is limited to 
specific stages of development, the vast similarities in the signaling pathways 
regulating muscle size in Drosophila and mammals makes flies a good model for 
examining the regulation of muscle hypertrophy and atrophy.

While there are no stem cells in the muscles of adult flies, there are some simi-
larities between mammalian satellite cells and stem cell-like adult muscle pre-
cursors (AMPs) in Drosophila. The AMPs are responsible for the formation of 
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adult musculature during pupal metamorphosis (Figeac et al. 2007). AMPs, like 
quiescent satellite cells, can be regulated by epidermal growth factor (EGF) sign-
aling and undergo fusion to promote muscle growth and new fiber formation. 
In Drosophila, over-expression of EGFR leads to increased number of AMPs in 
embryos (Bidet et al. 2003). Although different in many regards, AMPs can be 
a good model system for better understanding the cellular processes and signal-
ing pathways regulating muscle stem cell behavior. Unlike mammals, there is no 
apparent regeneration of Drosophila muscles in adulthood. Therefore any muscle 
damage and intrinsic defects may rapidly lead to decreased muscle function given 
the lack of compensatory mechanisms.

In summary, different steps of Drosophila development allow for the investiga-
tion of the cellular and molecular mechanisms responsible for muscle growth and 
atrophy, regeneration, and muscle stem cell function, processes that are relevant 
for modulating muscle aging in mammals.

5.3  Age-Related Skeletal Muscle Functional Decay  
in Drosophila: A Model for Mammalian Sarcopenia

Sarcopenia has recently been defined as “an aging-related condition that normally 
manifests during or after the 4th decade of life where the overall quality of skel-
etal muscle decreases, ultimately leading to muscle weakness” (Brotto and Abreu 
2012). Much attention has been given to the analysis of sarcopenia in mammals 
through the use of monkeys and rodents. The relatively long life span and the high 
costs associated with aging studies with these animal models as well as the ina-
bility to conduct large scale genetic screens suggests that simpler organisms may 
complement research in mammals and provide further insight into the mechanisms 
regulating sarcopenia.

Drosophila melanogaster undergoes dramatic age-related muscle deterioration, 
recalling the age-related decline in muscle function observed in humans (Doherty 
2003). Defects in climbing, flight, and spontaneous movement are clearly dis-
cernable with aging in Drosophila over the course of its short life span of around 
2–3 months (Grotewiel et al. 2005; Martinez et al. 2007; Miller et al. 2008). In 
Drosophila the decline in muscle function is largely due to a decrease in mus-
cle strength. Decrements in muscle ultrastructure identified in old flies include 
mitochondrial degeneration, accumulation of misfolded protein and lysosomal 
dysfunction, and disorganization of the sarcoplasmic reticulum and sarcomeres 
(Takahashi et al. 1970; Hunt and Demontis 2013) (Fig. 5.2), defects that are also 
seen in mammalian models of sarcopenia (Tomonaga 1977).

The age-related decline in muscle function in humans correlates with an overall 
decrease in skeletal muscle mass, and muscle cross sectional area has been shown 
to decrease by 40 % between the ages of 20 and 60 years (Vandervoort 1994; Porter 
et al. 1995). Some of the loss in muscle mass could be attributed to disuse atrophy 
as the elderly display the lowest levels of physical activity of any age group (Nelson 
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et al. 2007). However, the decrease in muscle strength is 3-fold greater than the loss 
in muscle mass indicating that the loss in mass alone is not sufficient to explain 
the decrements in muscle function (Goodpaster et al. 2006). Contrary to humans, 
disuse atrophy and age related decreases in muscle mass have not been described in 
the adult Drosophila (Piccirillo et al. 2014), whereby age-related changes in cellular 
homeostatic systems and organelles appear to be largely responsible for the decline 
in muscle function observed during aging. Alternatively, the lack of evidence for 
muscle loss with aging in Drosophila could be attributable to the small size of the 
muscle making it difficult to detect small changes in muscle mass that may occur 
with aging. Although this may be a potential difference in the occurrence of sar-
copenia in Drosophila compared to mammals, there are many benefits to using 
Drosophila for investigating the intrinsic changes that are responsible for decreased 
muscle function during aging. Along with the wide array of genetic tools that allow 
for muscle specific and genome wide analysis of gene function in Drosophila, large 
cohorts of flies of a given age and/or genotype can be analyzed for environmental, 
pharmacological, and dietary interventions. Additionally, laboratory mice are typi-
cally housed in small cages that limit physical activity, a condition that clearly asso-
ciates with decreased muscle mass and function, whereas flies have proportionally 
larger housing, which provides the possibility for being more active, and thus age in 
a manner closer to fly populations in the wild.

5.4  Protective Role of Balanced Protein Homeostasis

Skeletal muscle mass and function is maintained by constant turnover of proteins 
and organelles. A shift in the balance between protein synthesis and degradation 
can lead to severe myopathies and skeletal muscle atrophy. Protein degradation is 
vital to proper muscle growth and homeostasis, as the inhibition of protein deg-
radation pathways such as autophagy leads to the accumulation of dysfunctional 

Fig. 5.2  Intracellular changes in Drosophila skeletal muscle during aging. During aging,  
skeletal muscle function declines. This is associated with accumulation of misfolded protein 
aggregates, dysfunctional organelles (including mitochondria and lysosomes), decreased number of 
nuclei (which are lost via syncytial apoptosis), decreased organization and contractile properties  
of sarcomeres, and many other degenerative changes in several cellular functions. Altogether, 
these changes contribute to the decreased muscle function observed during aging
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proteins and organelles, ultimately leading to decreased function, atrophy, and 
apoptosis of myofibers (Masiero et al. 2009). The importance of muscle protein 
homeostasis is well established in humans and in rodent models of aging. During 
aging, multiple stress resistance pathways such as the unfolded protein response are 
activated to cope with the progressive accumulation of damaged proteins and orga-
nelle dysfunction (Haigis and Yankner 2010; Aoi and Sakuma 2011).

In Drosophila, increased gene expressions of the ubiquitin proteasome system 
components and antioxidant response pathways have been observed in aging skel-
etal muscle (Girardot et al. 2006). These responses include increased levels of heat 
shock protein 70 (Hsp70) (Wheeler et al. 1995), a cytosolic chaperone that aids in 
refolding proteins, as well as increased expression of JNK pathway components 
including Jra (the homologue of Jun) and factors involved in cytoskeletal rear-
rangements such as Myo31DF and Rac2 (Girardot et al. 2006). This response is 
also seen in the muscle of mice during aging (Clavel et al. 2006). While overex-
pression of Hsp70 does not prevent age-induced accumulation of poly-ubiquitin 
aggregates in flies, Hsp70 does associate with these aggregates (Demontis and 
Perrimon 2010) presumably suppressing the proteotoxicity of the ubiquitinated 
misfolded proteins. In addition to the increase in cytosolic chaperones, mitochon-
drial chaperones Hsp22 and Hsp23 are also induced in aged Drosophila muscle 
(Wheeler et al. 1995). In mice, overexpression of Hsp10, another mitochondrial 
heat shock protein, attenuates both the decline in muscle mass and the decrease 
in muscle strength during aging (Kayani et al. 2010). In addition to heat shock 
proteins, the unfolded protein response in the endoplasmic reticulum (UPRER) is 
increased during aging in mouse skeletal muscle. The UPRER induces phosphoryl-
ation of eIF-2α leading to the suppression of muscle protein synthesis in mammals 
(Hasten et al. 2000) and Drosophila (Webster et al. 1980).

Although protein synthesis is a necessary component of the homeostatic bal-
ance that maintains skeletal muscle function during aging, its role is paradoxical. 
In humans, aged muscle is characterized by anabolic resistance, i.e. decreased pro-
tein synthesis in response to anabolic stimuli such as amino acid ingestion (Guillet 
et al. 2004; Cuthbertson et al. 2005). While dietary supplementation of amino acids 
and subsequent increases in protein synthesis may offset in the short-term some of 
the decreases in skeletal muscle mass observed with aging (Fujita and Volpi 2006), 
caloric restriction (which decreases protein synthesis) has been shown to delay age-
associated muscle dysfunction in mammals and flies (Colman et al. 2008; Altun 
et al. 2010; Katewa et al. 2012). The suppression of protein synthesis during dietary 
restriction is mediated in part by the inhibition of IGF-1/TOR signaling (Mercken 
et al. 2013) and is associated with decreased muscle accrual of damaged proteins in 
mice (Lass et al. 1998) and preservation of muscle mass in rats (Altun et al. 2010). 
Moreover, activation of the protein synthesis machinery by insulin signaling and 
TOR activation has been associated with decreased longevity in both mammals and 
Drosophila (Garofalo 2002; Bartke 2008; Harrison et al. 2009), further indicating 
that a partial decrease in protein synthesis with age may be a protective mechanism 
elicited in the muscle. Recent studies have indeed suggested that moderate sup-
pression of protein synthesis may in part explain the life span extension induced 
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by caloric restriction or inhibition of TOR signaling through rapamycin adminis-
tration in both vertebrates and invertebrates (Masoro 2005; Bjedov et al. 2010). 
Moreover, a recent paper has shown that overexpression of the transcription factor 
Mnt in skeletal muscle can reduce age-related muscle climbing defects and extend 
life span by reducing the function of the nucleolus, the site of rRNA transcription 
and ribosome biogenesis (Demontis et al. 2014) which determines the capacity for 
protein synthesis in the muscle. In addition to regulating protein synthesis, TOR 
activity has been linked to the inhibition of the autophagy pathway (Castets et al. 
2013). Excessive activation of autophagy in mice has been associated with mus-
cle wasting conditions in response to fasting and other catabolic stimuli (Bonaldo 
and Sandri 2013). However, activation of the autophagy pathway is necessary to 
maintain muscle mass and muscle quality (Masiero et al. 2009). Inhibition of 
autophagy through ablation of muscle Atg7 in mice results in abnormal mitochon-
dria, accumulation of protein aggregates, and misaligned sarcomeres, which lead to 
decreased muscle function (Masiero et al. 2009). Muscle knockout of Atg7 in mice 
activates several stress responses including up-regulation of chaperones and ubiq-
uitin proteasome system components such as the muscle E3 ligases atrogin-1 and 
MuRF1 (Masiero et al. 2009). Similar to the muscle ablation of Atg7, muscle Atg5 
knockout mice accumulate protein aggregates leading to decreased muscle mass 
(Raben et al. 2008). A transcription factor regulating the expression of autophagy 
genes is FoxO. As demonstrated by Sandri et al. in mice and by Demontis et al. 
in Drosophila, overexpression of FoxO can lead to the induction of the autophagy 
pathway (Sandri et al. 2004; Demontis and Perrimon 2009). In Drosophila, muscle 
overexpression of FoxO delays the accumulation of poly-ubiquinated protein aggre-
gates during muscle aging while FoxO null flies demonstrate accelerated accumula-
tion of these aggregates. FoxO increases the expression of Hsp70 as well as several 
genes regulating the autophagy/lysosomal pathway, such as Atg genes and Lamp1. 
Furthermore the knockdown of Atg7 in muscle with FoxO overexpression results in 
an increase in protein aggregate accumulation compared with age-matched FoxO 
overexpressing controls. These data demonstrate that overexpression of wild type 
FoxO in muscle of Drosophila prevents the age-related decrease in muscle protein 
homeostasis and maintains muscle function during aging by preserving the func-
tionality of the autophagy pathway (Demontis and Perrimon 2010).

In addition to its role in autophagy, FoxO is also a mediator of protein 
 degradation through the ubiquitin proteasome system (UPS). Activation of the 
UPS helps to maintain muscle integrity through selected degradation of poly- 
ubiquitinated proteins. The UPS requires the attachment of ubiquitin to targeted 
substrates. Ubiquitinated proteins are then preferentially degraded by the 26S 
 proteolytic complex eliminating damaged and misfolded proteins and allowing for 
the recycling of amino acids under stress conditions. Overexpression of FoxO can 
increase expression of the E3 ubiquitin ligase atrogin-1 in mice and in cultures of 
C2C12 myotubes (Sandri et al. 2004; Zhao et al. 2007). Sandri et al. demonstrated 
FoxO-mediated regulation of atrogin-1 expression by examining mouse skeletal 
muscle transfected with constitutively active FoxO, which lead to a 20-fold increase 
in atrogin-1 promoter luciferase activity. Additionally, inhibition of FoxO through 
RNAi in mouse skeletal muscle prevented fasting-induced atrogin-1 promoter 
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luciferase activity. These data led to the identification of FoxO binding sites at the 
5′ end of the atrogin-1 gene that are necessary for its expression by FoxO (Sandri 
et al. 2004). In addition, constitutively active FoxO induces several autophagy-
related genes including LC3B, Gabarapl1 and Atg12 in C2C12 myotubes through 
direct binging to their promoters (Zhao et al. 2007). While removal of damaged 
proteins is vital to the maintenance of muscle function with aging, over activation 
of protein degradation pathways including the UPS and autophagy is known to be 
deleterious and can lead to atrophy in mice and C2C12 myotubes.

In addition to its regulation through the ubiquitination of proteins, the pro-
teasome is regulated in part by the composition of the 20S catalytic core as well 
as the 19S regulatory cap (Ciechanover 1994). The composition of the protea-
some is altered during aging in mammals (Husom et al. 2004; Ferrington et al. 
2005). Recently, a decrease in 26S proteasome activity and a decrease in protea-
some assembly were reported in the course of Drosophila aging (Vernace et al. 
2007). The decrease in proteasome assembly and activity was associated with an 
age-related reduction in ATP levels in the fly skeletal muscle, and given the ATP-
dependent nature of the proteasome this may well contribute to proteasome dys-
function in aged muscle (Vernace et al. 2007). In rats, increased expression of 
the alternative version of the proteasome (the immunoproteasome) and increases 
in proteasome subunit oxidation may explain the overall decrease in proteasomal 
activity observed during aging in skeletal muscle (Husom et al. 2004; Ferrington 
et al. 2005). However, while some studies have demonstrated decreased activation 
of the proteasome in aged muscle (Low 2011), others reported increased func-
tion (Carrard et al. 2002; Altun et al. 2010). For example, proteasome peptidase 
activity was increased in the skeletal muscle of 30-month-old rats, indicating an 
increase in proteasome capacity, which was reduced by caloric restriction (Altun 
et al. 2010). These conflicting data on the regulation and role of the proteasome 
in skeletal muscle aging demonstrate the need for further research in this area. 
Although there is much debate over the role of the UPS in aging skeletal mus-
cle, there is clear evidence that dysregulation of the systems controlling protein 
homeostasis can lead to accumulation of dysfunctional proteins and organelles as 
well as to unselective loss of muscle mass, ultimately leading to decreased muscle 
function.

In summary, the specificity and activity of protein degradation pathways needs 
to be tightly controlled for ensuring the maintenance of skeletal muscle mass and 
function during aging.

5.5  Systemic Aging and Life Span Determination  
in Response to Exercise and Signals from Skeletal 
Muscle

The human body is comprised by nearly 50 % skeletal muscle that mediate the 
body’s movements. There is extensive epidemiological evidence indicating that 
muscle contraction leads to organism-wide responses following different exercise 
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regimens, at least in part due to the high nutrient/metabolic demand of contract-
ing muscle. A common example of muscle’s systemic effects is the observation of 
cellular and metabolic responses following muscle contraction. For example, exer-
cise can reduce whole body glucose levels as well as increase lipolysis in the adi-
pose tissue. Exercise also protects from neurodegeneration (Ahlskog 2011; Revilla 
et al. 2014), reduces the risk of developing many types of cancers (Brown et al. 
2012), improves cardiac and endothelial function (Shephard and Balady 1999), 
and potentially increases life span (Piazza et al. 2009).

Similar to mammals, studies in Drosophila also demonstrate muscle adapta-
tions to exercise. For example, climbing (negative geotaxis) exercise increases 
mitochondrial function and preserves motor capacity in flies (Piazza et al. 2009) 
at least in part via the PGC-1α/β homolog spargel (Tinkerhess et al. 2012). While 
exercise has potent health benefits, muscle disuse and physical inactivity have been 
linked with increased health risk and mortality. Interestingly, studies in both flies 
and mammals have shown an increase in physical activity that is associated with 
caloric restriction (Holloszy and Schechtman 1991; Giustina et al. 1997; Weed 
et al. 1997; Katewa et al. 2012). Moreover, disuse of skeletal muscle induced 
through wing ablation can prevent the life span extension caused by caloric restric-
tion in Drosophila (Katewa et al. 2012). These data demonstrate that the protective 
effects of some life span-extending interventions such as caloric restriction appear 
to be directly tied to skeletal muscle function and physical activity.

The complex interplay between exercise, metabolic homeostasis, and life span 
clearly requires further studies. A recent avenue of investigation suggests that 
 skeletal muscle is an important endocrine tissue with the capacity to  influence 
whole-organism metabolism via the secretion of muscle-derived cytokines and 
growth factors known as “myokines” (Pedersen and Febbraio 2008; Pratesi et al. 
2013). The release of myokines from muscle may explain how exercise and 
 perturbations in skeletal muscle signaling can lead to alterations in organism-wide 
physiological homeostasis and aging. Specifically, there is evidence for myokine-
based crosstalk of skeletal muscle with several organs and tissues such as the liver, 
endothelium, pancreas, adipose tissue, and perhaps the brain during both healthy 
and disease states (Pedersen and Hojman 2012).

A notable recent case is irisin, a myokine that is secreted by skeletal muscle 
during endurance exercise following the cleavage of its transmembrane precursor 
(FNDC5, fibronectin type III domain containing 5). Once released, irisin can then 
induce the browning of adipose tissue making it more metabolically active than 
the white adipose tissue. The browning of the adipose tissue may indeed result in 
increased metabolic substrate utilization and may thus mimic (phenocopy) caloric 
restriction. The health benefits of irisin are still under investigation; however, irisin 
is closely linked to metabolic homeostasis and is emerging as a possible therapeu-
tic target for the treatment of obesity and diabetes (Elbelt et al. 2013). Treatment 
of C2C12 myotubes with irisin can lead to an increase in mitochondrial biogen-
esis and increased expression of Glut4 glucose transporter (Vaughan et al. 2014). 
Additionally, irisin has been shown to increase IGF-1 and suppress myostatin in 
primary human myocytes (Huh et al. 2014). A recent study suggested that irisin 
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may also play a role in the aging process as elevated plasma irisin in humans was 
associated with increased telomere length, which declines during cellular aging 
(Rana et al. 2014).

Other myokines such as Myostatin (MSTN) and interleukin-6 (IL-6) can also 
regulate whole body metabolism. Myostatin is a negative regulator of muscle mass; 
however, it has recently been shown to act on non-muscle tissues such as the adi-
pose and other tissues, as reviewed by Argiles et al. (2012). For example, exposure of 
mesenchymal stem cells to MSTN leads to the differentiation of immature adipocytes 
that protect from obesity and metabolic diseases (Feldman et al. 2006). Interestingly 
Myoglianin, the Drosophila homolog of human Myostatin and GDF11, has been 
recently shown to extend life span and delay systemic aging by acting on muscle, 
adipocytes, and possibly other tissues (Demontis et al. 2014). These effects were 
not due to feeding or changes in muscle mass (Demontis et al. 2014), suggesting 
that Drosophila may be a convenient system for testing the direct signaling roles of 
GDF11/Myostatin signaling without the indirect confounding effects deriving from 
the increased muscle mass observed in Myostatin (MSTN) knock-out mice. In fact, 
MSTN knock-out mice have increased insulin sensitivity and glucose oxidation and 
decreased whole body adiposity at least in part due to the higher metabolic demand 
deriving from the doubling in muscle mass, which leads to higher nutrient utilization 
in muscle and reduced nutrient availability for other tissues (Guo et al. 2009).

Another prominent myokine is Interleukin-6, IL-6, which can induce lipoly-
sis and increase insulin sensitivity when elevated for a short term, such as during 
exercise. While acute elevations in IL-6 appear beneficial, long-term increases in 
IL-6 levels are associated with muscle wasting (Haddad et al. 2005). Although par-
adoxical, IL-6 is a myokine with the potential to affect the aging process through 
inter-tissue crosstalk. For example, IL-6 increases glucose uptake in the muscle, 
it also signals for the secretion of insulin from the pancreas (Ellingsgaard et al. 
2011).

Although little is known on myokine signaling in Drosophila, many puta-
tive evolutionarily conserved myokines are encoded by the Drosophila genome. 
Several studies indicate systemic regulation of agingfollowing muscle-specific 
genetic interventions in Drosophila (Demontis et al. 2013b) and signals released 
by muscle (such as myokines) may play a role. For example, muscle-specific FoxO 
overexpression increases autophagy/lysosomal activities locally in the muscle but 
also systemically in the brain, retina, and adipose tissue via the organism-wide 
induction of FoxO/4E-BP signaling (Demontis and Perrimon 2010). Interestingly, 
muscle specific overexpression of FoxO increases life span and also preserves 
muscle function, decreases feeding behavior, and lowers glycemia (Demontis 
and Perrimon 2010). FoxO activity in muscle can improve muscle function and 
systemic proteostasis at least in part by decreasing the expression of dawdle, an 
activin-related secreted factor which is a direct FoxO target gene (Bai et al. 2013). 
Thus, FoxO-regulated myokines released by the muscle may be responsible at 
least in part for the regulation of systemic aging and life span.

A recent study has described a transgenic RNAi screen for myokines regulating 
life span in Drosophila (Demontis et al. 2014). Among the myokines identified, 
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there was Myoglianin, the Drosophila homolog of human Myostatin and the 
related factor GDF11. Overexpression of myoglianin in muscle extended life 
span and reduced the number of flies that displayed climbing defects in old age 
(Demontis et al. 2014). Conversely, myoglianin RNAi in the muscle lead to accel-
erated muscle aging and shorter life span. Myoglianin regulates aging by reducing 
the activity of the nucleolus (which is the key site for ribosome biogenesis and 
thus protein synthesis) and by activating p38 MAPK (Demontis et al. 2014), a reg-
ulator of aging in multiple species and a signal transduction component of non-
canonical TGF-beta signaling in vertebrates. Thus, myokine signaling appears to 
be an important determinant of systemic aging and life span. Drosophila may be a 
valuable system for studying how muscle-specific genetic interventions can regu-
late life span, the role of myokines in mediating the crosstalk between muscle and 
other tissues, and the cellular and molecular responses induced in distant tissues.

Other studies have emphasized a protective role of skeletal muscle against 
whole body oxidative stress. Muscle specific suppression of super-oxide 
 dismutase-2 (Sod-2), p38 MAPK, and AMPK expression can reduce the resistance 
of the organism to oxidative stress while overexpression of p38 MAPK in muscle 
can increase life span and stress resistance in Drosophila (Vrailas-Mortimer et al. 
2011). Additionally, p38 has been recently implicated in the regulation of skeletal 
muscle protein translation through its interaction with the scaffold protein Receptor 
of activated protein kinase C-1 (Rack1) (Belozerov et al. 2014). Taken together, 
these data demonstrate that muscle-specific activation of signaling pathways can 
alter organism-wide aging and stress resistance through modulation of systemic 
metabolism, myokine signaling, and perhaps also neuronal interactions (Fig. 5.3).

Fig. 5.3  Systemic regulation 
of aging and lifespan in 
response to signals from 
skeletal muscle. Skeletal 
muscle can interact with a 
host of tissues and organs 
to regulate systemic aging 
and lifespan. Myokine 
signaling, nutrient demand of 
contracting muscle, metabolic 
homeostasis, and crosstalk 
with neuronal circuits all 
intersect with skeletal muscle 
and may impact lifespan and 
systemic aging in Drosophila
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5.6  Methods for Studying Skeletal Muscle Homeostasis 
and Aging in Drosophila

Drosophila melanogaster has been a model organism for developmental research 
for over a century. Recently it has emerged as a promising model for the study of 
skeletal muscle homeostasis during aging because of its short life span, the evo-
lutionary conservation of signaling pathways, and the wide array of genetic and 
molecular interventions available. In particular, the ability to quickly generate 
muscle-specific genetic mutations that encompass all of the skeletal muscle has 
allowed for the analysis of muscle signaling on organismal wide aging and home-
ostasis. While techniques to induce genetic mutations in the muscle of rodents are 
available through electroporation of overexpression and knockdown plasmids, 
typically only few myofibers are successfully transfected, thus limiting the experi-
mental tissue available for analysis. It is well known that electroporation allows 
for the monitoring of transgene expression only for a few weeks rather than over 
many months, as it would be required for the analysis of sarcopenia progression. 
Alternative methods, such as the Cre-LoxP system, allow for the modulation of 
transgene expression in the entire tissue and for a longer period of time. However, 
the breeding and development of tissue specific transgenic mice can be expensive 
and slow. Additionally, variation in the genetic background in mice can be a con-
founder in life span and aging studies. For example, Liao et al. demonstrated that 
caloric restriction only extended life span in 9 mouse strains out of 42, and that 
caloric restriction even shortened life span in four strains (Liao et al. 2010). These 
findings demonstrate the inconsistency across different mouse strains and the need 
for careful control of the genetic background in aging studies. Given the short life-
cycle of Drosophila, fly strains carrying different transgenes or classical mutations 
can be easily isogenized by backcrossing them over many generations against the 
same genetic background to avoid any confounding effects due to background 
mutations.

In addition to minimization of variation deriving from differences in the genetic 
background, gene knockdown through RNA interference (RNAi) has allowed for 
genome-wide screens to be conducted in the adult bypassing developmental effects 
(Duffy 2002), such as gene mutations causing embryonic and larval lethality. 
In Drosophila RNAi is cell autonomous (Van Roessel et al. 2002). When used in 
combination with the GAL4/UAS expression system, tissue/cell specific gene func-
tion can be studied (Brand and Perrimon 1993). For example several GAL4 drivers 
are available that are specific to skeletal muscle including Mef2-GAL4 and Mhc-
GAL4. Additionally, the availability of drug- and temperature-controlled GAL4 
systems allow for gene inactivation and transgene expression during specific stages 
of the lifecycle and tissue-specifically (Duffy 2002). Importantly, the  availability 
of multiple genome wide transgenic RNAi libraries has made it possible to con-
duct systematic RNAi screens in specific tissue types during different stages of 
development (Dietzl et al. 2007). Additionally, clustered regularly interspaced 
short palindromic repeats (CRISPR) and TALEN technologies are emerging as 
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complementary approaches for the generation of Drosophila lines containing novel 
mutations in targeted genes (Bassett and Liu 2014).

In addition to a vast array of technologies for modulating gene expression and 
function during aging, multiple tests can be used in Drosophila to examine mus-
cle activity. Spontaneous locomotion, climbing, jumping and flight assays have all 
been used to analyze the functional decrements of different muscle subsets during 
aging and thus provide a physiological readout of any given genetic intervention. 
Climbing assays utilize the flies’ negative geotaxis behavior, e.g. the innate instinct 
of the flies to move away from the earth, while flight and jumping assays probe the 
function of other muscle groups upon stimulation. Analysis of single muscle fibers 
from Drosophila can also be conducted to determine alterations in muscle tension, 
power output, and calcium levels in the muscle (Miller et al. 2008). Along with 
the host of genetic and functional assays available, Drosophila is also amenable to 
many routine molecular and cellular assays used in mammals for the investigation 
of gene function in muscle and for probing the effect of drugs and dietary regi-
mens and for assessing their interaction with genetic interventions.

5.7  Conclusion

Drosophila melanogaster is a promising model for the study of skeletal muscle 
homeostasis and aging. During aging, Drosophila muscle display profound deteri-
oration and dysfunction, a key characteristic of mammalian sarcopenia. In addition 
to age-associated muscle dysfunction, systemic aging is evident in Drosophila and 
the examination of muscle-specific genetic alterations has lead to striking findings 
on the role of muscle in regulating aging in other tissues and life span. Further 
work is still necessary to determine the signaling factors released by muscle and 
regulating organismal aging and to dissect the fundamental muscle-intrinsic mech-
anisms responsible for sarcopenia.
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Abstract Cardiac dysfunction is a critical problem in the aging population, with 
heart disease the number one cause of death in humans. While much has been 
learned about the characteristics of the aging heart from human longitudinal  
and cohort studies, as well as from vertebrate animal models, substantial  
logistical obstacles exist to the study of these phenomena in long-lived  
animals or humans. The emergence of Drosophila as a short-lived model system 
for studying cardiac function across ages has thus been an important factor in 
boosting understanding of conserved changes during cardiac aging. Here we dis-
cuss established and emerging methodology for assessment of cardiac function in 
Drosophila and review conserved changes to function during normal aging that 
have been observed in flies. We also review genetic factors contributing to car-
diac aging that have been identified and studied using these techniques, including 
genes involved in stress response, contractile function, ion exchange, and  nutrient 
sensing. Further, we discuss the use of Drosophila to study longitudinal effects 
of environmental interventions, such as exercise, on cardiac function. Lastly, we 
compare transcriptional changes induced by various methods of longevity exten-
sion in Drosophila and point out common pathways induced by selective breeding, 
exercise and dietary restriction.
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6.1  Introduction

The use of invertebrate models to understand the genetics of pattern formation 
during development has been one of the greatest success stories of the latter twen-
tieth century. More recently, the same model systems have begun to be used to 
understand the genetic regulation of various physiological processes and how the 
functions of various organ systems are integrated. The problems of how organ 
function declines during normal aging, and how this process is regulated geneti-
cally, are questions where invertebrate models are particularly well suited for 
examination.

Some of the same advantages that invertebrates offer to developmental genet-
ics are equally valuable for the study of progressive changes to organ function, 
including (1) large numbers, (2) short life span, and (3) extensive conservation 
of genetic regulatory factors. Until recently, the major obstacle to use of inver-
tebrate models for functional research has been the lack of suitable assays to 
track organ performance in these smaller organisms. However, within the last 
decade, several useful methods for analyzing performance of cardiac function 
in Drosophila have been developed, making the fly model system (Fig. 6.1a) 
 available for study of progressive effects of aging or disease on cardiac function 
(summarized in Table 6.1).

6.2  Methods for Analyzing Heart Performance  
in Drosophila

6.2.1  M-Mode

High-speed cameras applied to dissected, beating hearts in physiologically 
 accurate solution capture video images of heart movements in two dimensions. 
These images can be processed to focus on a single slice of the heart, then make 
a sequential print of the edges of the heart in that single region across time up 
to a minute (Fink et al. 2009). Several important functional assessments can be 
 calculated from these M-mode transcriptions, including heart period, rhythmicity, 
systolic and diastolic diameter, and fractional shortening (Fig. 6.1c).

6.2.2  Optical Coherence Tomography (OCT)

This ultrasound-like technology has been adapted and scaled for use on small 
organisms, such as flies (Wolf et al. 2006). This method provides sequential 
recordings of the size and shape of the heart cavity and has been effectively used 
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to generate similar data as M-mode transcriptions from fully intact, unanesthe-
tized flies (Fig. 6.1b). Recent adjustments to the technology now also allow 3D 
diagrams of the thickness of the heart wall itself along the full length of the fly as 
well as in cross-section (Li et al. 2013).

6.2.3  GFP Tracing

Stable integration of a cardiac-specific GFP-expressing element allows tracing 
of cardiac movements using brightness to identify the edges of the heart in two 
dimensions (Monnier et al. 2012). This allows measurement of rate, rhythm and 
diameter of the heart and does not require dissection (Fig. 6.1e).

6.2.4  Atomic Force Microscopy

This method allows detection of resistance to physical perturbation by monitoring 
the force displacement when the heart is indented with a cantilevered piece of plas-
tic (Kaushik et al. 2011). This method allows the measurement of mechanical resist-
ance and stiffness, an important factor in aging hearts.

6.2.5  Electrical Pacing

This method uses a small current to externally pace the heart to an increased heart 
rate. It serves as a measure of stress tolerance, an important early indicator of pro-
gressive heart dysfunction before overt pathology is manifested. This method has 
been used in two ways, (1) to measure the maximal heart rate that the animal can 
tolerate (Paternostro et al. 2001) and (2) to measure the changes in the tolerance 
to a single protocol during aging or genetic alteration (Fig. 6.1f) (Wessells and 
Bodmer 2004).

6.2.6  Bioinformatics

In addition to physical experimentation, databases have been created that catalog 
the total expressed proteome of the Drosophila heart (Cammarato et al. 2011) and 
the total transcriptome of the heart at multiple ages (Monnier et al. 2012).
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Fig. 6.1  Methods to assess cardiac function in Drosophila. a Structural anatomy of the adult 
Drosophila heart (Piazza and Wessells 2011). b Photograph of a live Drosophila on a bright field 
dissecting microscope. Located within the white box is a visible portion of the heart tube from 
which live images can be taken. c M-mode image constructed from sequential photographs of a 
beating heart to display contractile function over time in a linear fashion (Wessells et al. 2009).  
d Two OCT images of a live Drosophila heartbeat. Images are a kind gift from Gerald Dorn. e 
Fluorescent image of a live Drosophila heart made possible by stable integration of a heart-spe-
cific GFP driving construct (Wessells et al. 2004). f Electrical pacing apparatus used to pass an 
electrical current through the fly to temporarily increase heart rate. This assay is used to test car-
diac stress tolerance. g The Power Tower apparatus takes advantage of the flies’ natural instinct 
for negative geotaxis. Fly vials are repetitively dropped, knocking the flies to the bottom of their 
vial, causing them to rapidly climb. Repeating this process allows for (1) measurement of acute 
endurance or for (2) an automated daily exercise training regime (Tinkerhess et al. 2012a, b)



1316 Drosophila Models of Cardiac Aging and Disease 

Table 6.1  Drosophila genes associated with adult cardiac function, with their respective human 
orthologs, and known associated human disease models

Drosophila gene Human ortholog Associated human disease/
disorder

Wingless

wg

Wingless-type MMTV integra-
tion site family, member 1
WNT1

Ischemic and hypertrophic 
cardiomyopathies
Reentrant ventricular tachycardia

Decapentaplegic
dpp

Bone morphogenetic protein 2
BMP2

Congenital heart disease
Mechanical failure of calcified 
heart valves

Notch
N

notch 1
NOTCH1

Congenital heart disease
Aortic valve disease

Hedgehog
hh

Sonic hedgehog
shh

Abnormal heart development

Abdominal A
abd-A

Homeobox
HOX

Congenital heart disease

Tinman
tin

NK2 homeobox 5
NKX2-5

Congenital heart disease
Atrial septal defect
Hypoplastic left heart syndrome

Myocyte enhancer factor
Mef2

Myocyte enhancer factor 2C
MEF2C

Congenital heart disease
Impaired cardiac remodeling

Ras oncogene

Ras85D

Kirsten rat sarcoma viral onco-
gene homolog
KRAS

Congenital heart disease

Cardiofaciocutaneous syndrome

Rhomboid
rho

Rhomboid, veinlet-like 2
RHBDL2

Enlarged cardiac chamber

Scalloped
sd

TEA domain family member 1
TEAD1

Cardiomyopathy
Heart failure

Actin 57B
Act57B

Actin, beta
ACTB

Cardiomyopathy, idiopathic dilated

Dystrophin

dys

dystrophin

DMD

Becker muscular dystrophy, 
cardiomyopathy, dilated, X-linked, 
duchenne muscular dystrophy

Heartless

htl

Fibroblast growth factor recep-
tor 1
FGFR1

Venous malformations

Band4.1 inhibitor LRP 
interactor
Bili

FERM domain containing 8

FRMD8

Cavernous angiomatous 
malformations

wings up A

wupA

Cardiomyopathy, familial hyper-
trophic, 3

Target of rapamycin
Tor

Mechanistic target of rapamycin
MTOR

Cardiac hypertrophy
Distinctive ventricular electro-
physiologic abnormality

(continued)
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Table 6.1  (continued)

Drosophila gene Human ortholog Associated human disease/
disorder

Upheld

up

Cardiomyopathy, familial hyper-
trophic, 2

Muscle LIM protein at 
84B
Mlp84B

cysteine and glycine-rich 
protein 2
CSRP2

KCNQ
KCNQ

KCNQ1
KCNQ1

Jervell and Lange–Nielsen syndrome

Mitochondrial assembly 
regulatory factor
Marf

mitofusin 2

MFN2

Myosin heavy chain

mhc

Myosin, heavy chain 6 and 7 
(alpha and beta)
MYH6,7

Cardiomyopathy, familial hyper-
trophic, 1

Zipper

zip

Myosin, heavy chain 11

MYH11

Cardiomyopathy, familial hyper-
trophic, 1

Myosin light chain 
cytoplasmic
Mlc-c

Myosin, light chain 3

MYL3

Cardiomyopathy, hypertrophic, 
midventicular chamber type (3)

Spaghetti squash

sqh

Myosin, light chain 2, regula-
tory, cardiac, slow
MYL2

Cardiomyopathy, hypertrophic, 
midleft ventricular chamber type (3)

Bent

bt

Titin

TTN

Cardiomyopathy, familial hyper-
trophic, 9

Sallimus

sls

Myosin binding protein C

MYBPC3

Cardiomyopathy, familial hyper-
trophic, 4

Tropomyosin 1

Tm1

Tropomyosin 1 (alpha)

TPM1

Cardiomyopathy, familial hyper-
trophic, 3

Actin 5C

Act5C

Actin, alpha, cardiac muscle 1

ACTC1

Cardiomyopathy, idiopathic 
dilated

Actin 88F

Act88F

Actin, alpha, cardiac muscle 1

ACTC1

Cardiomyopathy, idiopathic 
dilated

Lamin

Lam

Lamin A/C

LMNA

Cardiomyopathy (1), myopathy, 
desminopathic

(continued)
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More genes associated with cardiac function continue to be identified in this active field of 
research. More information can be found at www.Flybase.org and www.OMIM.org, in addition 
to further reviews (Piazza and Wessells 2011; Wolf and Rockman 2011; Qian and Bodmer 2012; 
Seyres et al. 2012; Whitaker et al. 2014)

Drosophila gene Human ortholog Associated human disease/
disorder

Seizure

sei

Potassium voltage-gated chan-
nel, subfamily H (eag-related), 
member 2, 6, 6
KCNH2,6,7

Long QT syndrome-2

Paralytic

para

Sodium channel, voltage-gated, 
type I, alpha subunit
SCN1A

Long QT syndrome-3

Ventral nervous system 
defective
vnd

NK2 homeobox 1-6,8

NK2-1-6,8

Artial septal defect with atriooven-
tricular conduction defects

Ryanodine receptor

RyR

ryanodine receptor 1-3

RYR1-3

Stress-induced polymorphic ven-
tricular tachycardia
Arrhythmogenic right ventricular 
dysplasia

Angiotensin converting 
enzyme
Ance

Angiotensin I converting 
enzyme
ACE

Myocardial infarction

G protein alpha o 
subunit

Galphao

Guanine nucleotide binding 
protein (G protein), alpha acti-
vating activity polypeptide O
GNAO1

Idiopathic ventricular arrhythmias

Acetyl Coenzyme A 
synthase

AcCoAS

Acyl-CoA synthetase short-
chain family member 1/Acyl-
CoA synthetase short-chain 
family member 2
ACSS1/ACSS2

Hypertension, essential

Table 6.1  (continued)

6.2.7  Exercise

The development of an automated exercise machine for flies (Piazza et al. 2009a, b) 
has allowed heart performance to be measured under conditions of chronic exercise 
and to measure fatigue tolerance (Fig. 6.1g) (Tinkerhess et al. 2012a, b).

http://www.Flybase.org
http://www.OMIM.org
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6.3  Phenotypic Changes During Normal Cardiac  
Heart Aging

Young flies exhibit a regular, highly rhythmic heartbeat, reported variously from 
3–6 Hz, depending on measurement conditions (Wessells and Bodmer 2004; Wolf 
et al. 2006; Monnier et al. 2012). Flies undergo a progressive decline in most 
measures of function between one and five weeks of age, at which point the rate of 
decline levels off as flies enter the log phase of their survival curve (Wessells et al. 
2004).

In resting hearts, the heart rate at steady temperature declines progressively 
with age (Wessells et al. 2004), as does the maximal heart rate to which flies 
can be stimulated by external electrical current (Paternostro et al. 2001). Fly 
hearts also exhibit a progressive deterioration of rhythmic rigor, with increasing 
episodes of arrhythmic beating or pauses (Ocorr et al. 2007a, b). These changes 
are reflected in measurements of calcium transients in semi-intact preparations 
(Santalla et al. 2014). Contractile strength also deteriorates, as reflected in reduced 
fractional shortening with age (Wolf et al. 2006).

Resistance to acute stress is also dramatically reduced with age. Flies aged to 
five weeks, for example, enter arrest or fibrillation at three times the rate of one-
week old flies, when subjected to transient electrical pacing (Wessells et al. 2004). 
Aging hearts are also more sensitive to acute hypoxic stress and take longer to 
recover to a normal resting heart rate following a bout of hypoxia (Coquin et al. 
2008).

These changes to resting function are reflected in anatomical degradation in 
the myocardium of aged flies. Electron microscopy of related Drosophila spe-
cies reveals alterations to myofibril structure and mitochondrial degradation in 
older wild type flies (Burch et al. 1970). Staining actin filaments with fluores-
cent markers reveals the gradual disorganization of myofiber arrays with age, 
likely contributing to reduced contractility (Taghli-Lamallem et al. 2008). In 
addition, the physical stiffness of fibers gradually increases with age (Kaushik 
et al. 2011), probably also contributing to lack of elasticity during contraction 
and relaxation.

6.4  Role of Stress Response Genes in Cardiac Aging

A decreased ability to tolerate stress is a major component of cardiac aging and 
aging in general. In this section, we will survey the genetic models that have been 
utilized to model various stress responses in the fly heart, and report findings of 
relevance to vertebrate research.
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6.4.1  Oxidative Stress

Oxidative stress has been proposed to be a conserved mechanism contributing to 
heart failure in aging populations. In the fly model, transcripts related to oxidative 
stress resistance, including the JNK signaling pathway, are upregulated in the heart 
with age, suggesting that heart tissue may indeed be increasingly subjected to oxi-
dative stress during aging (Monnier et al. 2012).

In support of this proposed mechanism, flies mutant for the reactive oxygen 
species scavenging protein Superoxide Dismutase 2 (SOD2) have drastically 
reduced fractional shortening, rhythmicity and pacing tolerance (Piazza et al. 
2009a, b). Conversely, cardiac overexpression of MafS, a rate-limiting cofactor 
for the fly homolog of the oxidative stress responsive transcription factor Nrf2, 
leads to protection against age-related increases in arrhythmias and heart period 
(Rahman et al. 2013).

Taken together, these observations suggest that increasing oxidative stress and/
or decreasing tolerance for oxidative stress are likely to be significant contributing 
factors to late-stage cardiac aging.

6.4.2  Stress-Induced Hypertrophy

Chronic stress can result in stress-induced cardiac hypertrophy in vertebrates.  
A fly model for this process has recently been described, generating increased wall 
thickness, abnormal fiber morphology and decreased end diastolic lumen dimen-
sions (Yu et al. 2013). These phenotypes were shown to be entirely dependent on 
the presence of activated Raf in the cardiomyocytes, and activation of Raf in car-
diac tissue was sufficient to produce the hypertrophy-like state.

6.4.3  Proteostatic Control

Maintenance of protein quality in the cell has been proposed to be a driving factor 
in the aging process. Recent evidence supports the role of protein quality control 
in Drosophila cardiac aging.

Age-associated atrial fibrillation is an important consequence of normal aging 
in humans. The remodeling events associated with atrial fibrillation are thought 
to involve loss of proteostasis. Consequently, gene products that promote effec-
tive proteostasis could ameliorate some of the consequences of atrial fibrillation-
induced remodeling. Indeed, overexpression of Hsp proteins has been shown to 
have protective effects in this context in humans (Brundel et al. 2006).

Using a fly model for atrial fibrillation caused by tachypacing (Zhang et al. 
2011), it was shown that induction of fly Hsp proteins by either hormetic treat-
ments or by transgene expression could reduce arrhythmias caused by aging or 
tachypacing (Zhang et al. 2011).
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6.5  Role of Developmental Genes in Cardiac Aging

A common theme in adult cardiac dysfunction is the reiteration of developmen-
tal programs to generate pathological states of postnatal growth, or hypertrophy. 
The fly system has been instrumental in elucidating the role of several important 
developmental pathways in maintenance of adult cardiac function over time. For a 
review, see (Qian and Bodmer 2012).

Several genes necessary for cardiac specification have also been demonstrated 
to be necessary for function in adult flies. The Nkx2.5 homolog tinman, for exam-
ple, plays a key role, as cardiac-specific disruption of the tin product causes dis-
ruption of the heart period and deficits in heart size (Zaffran et al. 2006). Likewise, 
adult-specific disruption of the GATA4 homolog pannier in flies causes increased 
arrhythmias and decreased tolerance of pacing stress (Qian and Bodmer 2009). 
Similar phenotypes are seen in hearts with adult-specific disruption of the T-box 
factor neuromancer, which also exhibit increased arrhythmias, decreased toler-
ance of external pacing, reduced heart rate, and progressive structural disruption of 
myofibrils (Qian and Bodmer 2009).

These genes seem to work cooperatively, as strong genetic interactions were 
seen between trans-heterozygotes of tinman and neuromancer (Qian and Bodmer 
2009), as well as tinman and the Drosophila Cdc42 (Qian et al. 2011). These phe-
notypes are likely to be relevant to normal aging, since chronic overexpression 
of either tinman or neuromancer offers significant protection against age-related 
decline in heart rate and stress resistance.

Embryonic induction of cardiac specification genes such as tinman is depend-
ent on proper regulation of Wnt signaling (Venkatesh et al. 2000). In adult flies, 
cardiac knockdowns of several components of the Wnt signaling pathway have 
mild cardiac defects. By contrast, the transcriptional cofactor and Wnt signal-
ing pathway component Pygopus is essential for maintenance of adult cardiac 
performance (Tang et al. 2013). Pygopus is specifically expressed in adult heart 
cells, and adult-specific knockdowns cause progressive functional and structural 
defects in the myocardium (Tang et al. 2013). The Pygopus adult phenotype, per-
haps surprisingly, is not dependent on interactions with Wnt signaling, however, 
but on Wnt-independent interactions with Calcium/Calmodulin-Dependent Protein 
Kinase 2 (CaMKII) (Tang et al. 2013).

The Wnt-antagonizing transcription factor Sox102F is a functional homolog of 
the vertebrate SOX5. Cardiac knockdowns of Sox102F result in increased arrhyth-
mias, increased thickness of cardiac walls, leading to a restricted cardiomyopa-
thy type phenotype (Li et al. 2013). Anatomical disruptions are also seen in these 
knockdowns with disruptions in both myofibril array and mitochondrial integrity 
(Li et al. 2013). This phenotypic array may reflect the results of deregulated Wnt 
signaling on adult function.

In addition to modeling the broad impact of transcription factors and stress 
response on aging, flies have also been used to dissect more specific gene interactions 
affecting subsets of the characteristic age-related declines in cardiac function. In the 
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next sections, we will discuss the roles of ion channels in regulating progressive dys-
rhythmia and the role of contractile proteins in maintaining functional integrity.

6.6  Role of Ion Channels in Regulating Dysrhythmias

The Drosophila KCNQ gene encodes the alpha subunit of a potassium channel 
 responsible for the slow repolarizing current in cardiac muscle (Ocorr et al. 2007a, b).  
Cardiac expression of KCNQ declines progressively with age, suggesting a role in 
normal age-related decline. Both KCNQ mutant flies and flies with cardiac-specific 
knockdown of KCNQ exhibit arrhythmias that worsen progressively, while cardiac 
overexpression of KCNQ is sufficient to rescue the mutant phenotype. Overexpression 
in otherwise wild-type flies can also protect hearts from age-related increases in 
arrhythmias and tolerance for external pacing (Ocorr et al. 2007a, b).

Another critical channel-encoding gene is dSur. dSur is highly expressed in the 
fly myocardium under the direction of Nkx2.5 and GATA factor homologs, and 
expression has been observed to decline progressively with age, concurrent with 
increased arrhythmias (Akasaka et al. 2006). dSur encodes an essential component 
of a KATP channel, and knockdowns have defects in rhythmic control, tolerance of 
pacing stress and resistance to pacing stress (Akasaka et al. 2006). These defects 
are similar to a subset of defects seen in normal aging.

Taken together, these observations indicate that age-related changes in expres-
sion and availability of channel proteins play an important role in loss of rhythmic 
homeostasis during aging.

6.7  Role of Contractile Proteins in Maintaining  
Functional Heart Integrity

Mutations in structural proteins that are directly involved in forming the contrac-
tile machinery have been associated with dystrophic phenotypes in both skeletal 
and cardiac muscle (Spletter and Schnorrer 2014). Similar phenotypes have been 
observed in several fly models for dystrophies, and these progressive phenotypes 
may also serve as models for gradual dysfunction with age.

For example, the fly homolog of the dystrophin gene, Dys, has been causally 
associated with dilated cardiomyopathy in flies (Taghli-Lamallem et al. 2008). 
These phenotypes progressively worsen with age, as they do in humans (Corrado 
et al. 2002). Dys proteins have two conserved roles, serving as mechanical links 
to a complex that acts to stabilize the sarcolemma, and also acting as a signal-
ing molecule that modulates the activity of multiple proteins, including nNos 
(Brenman et al. 1996).

A recent study takes advantage of prior work on the structure/function of ver-
tebrate dystrophin to express variant constructs of the human Dys in the fly heart 
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and break down the relative importance of these two roles in aging heart function. 
Transgenes were created that express forms of Dys that lack either the mechani-
cal role or the signaling role. Both forms of Dys were able to provide substan-
tial, though incomplete, rescue of systolic diameter and contractility, suggesting 
that both roles are important and required for full function (Taghli-Lamallem et al. 
2014). In addition, Nos was identified as an important target of Dys signaling in 
flies, as Nos gain of function had protective effects in Dys signaling-impaired 
hearts (Taghli-Lamallem et al. 2014).

As a side note, these experiments, as well as others (e.g. Grossman et al. 2011), 
validate the approach of expressing vertebrate constructs directly in the fly heart to 
assess the phenotypic consequences of different protein variants.

Flies have also been used to detail the effects of mutations to the Myosin 
Heavy Chain (MHC), where the ATPase activity of MHC was found to be a key 
factor in predicting the consequences of specific mutations. Lesions that increase 
ATPase activity of MHC cause restrictive cardiomyopathy, whereas muta-
tions that decrease ATPase activity cause dilated cardiomyopathy (Cammarato  
et al. 2008).

A series of deletion mutants in delta-sarcoglycan have also been examined in 
flies. Heart function was quite tolerant of smaller deletions in the lengthy cod-
ing region, but larger deletions caused dilated cardiomyopathy and poor fractional 
shortening, along with progressive motor impairment, suggestive of accom-
panying somatic muscle phenotypes (Allikian et al. 2007). In another example, 
mutation to the tropomyosin-binding region of the fly homolog of Troponin T 
was observed to cause prolonged systole, impaired relaxation and increased 
myocardial stiffness (Viswanathan et al. 2014). These phenotypes were depend-
ent on aberrant localization of tropomyosin, as verified by genetics and electron 
microscopy.

The Muscle Lim Protein (MLP) homolog Mlp84B was shown to localize to the 
Z-disc of cardiac sarcomeres in flies (Mery et al. 2008), as it does in vertebrates 
(Arber et al. 1997). Mutant hearts or hearts with cardiac-specific knockdown of 
Mlp84B showed arrhythmias and reduced heart rate, leading to a reduced life span. 
However, the fly mutant did not show the sarcomeric disarray shown in the mouse 
model, suggesting an alternative mechanism for LIM proteins in the development 
of cardiomyopathy (Mery et al. 2008).

Taken together, these results emphasize the highly conserved nature of the con-
tractile machinery and the value of invertebrate research in investigating complex 
interactions between structural proteins during the aging process.

6.8  Calcium Signaling and Cardiac Disorders

Dysregulation of calcium signaling or calcium storage is a component of the eti-
ology of several cardiac disorders. For example, constitutive activation of the 
calcium-dependent phosphatase calcineurin induces pathological hypertrophy 
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in vertebrates (Molkentin et al. 1998; Wilkins and Molkentin 2002). Conversely, 
inhibition of calcineurin suppresses induction of hypertrophy (Sussman et al. 
1998; Taigen et al. 2000).

Recently, similar constitutively active calcineurin constructs have been 
employed to model this effect in the fly heart, where activated calcineurin led to 
enlargement of heart walls and reduced fractional shortening (Lee et al. 2014a, b). 
Excitingly, the fly model was employed to identify novel modifiers of this effect. 
Knockdown of the galactokinase gene in the myocardium was sufficient to rescue 
enlargement of the heart wall and fractional shortening in the presence of activated 
calcineurin (Lee et al. 2014a, b).

Presenilin is an important factor in the etiology of Alzheimer’s and age-
related cardiac dysfunction in humans. Knockdown of the fly homolog of pre-
senilin in the heart caused a prematurely reduced heart rate, reduced expression 
of sarco/endoplasmic reticulum calcium-ATPase (SERCA), and reduced symp-
toms of dilated cardiomyopathy, indicating that Presenilin may have a conserved 
role in the onset of age-related dilated cardiomyopathy (Li et al. 2011). Another 
study took advantage of a temperature sensitive mutation in SERCA to show that 
inactivation of SERCA causes reduction of heart rate with no effect on fractional 
shortening (Abraham and Wolf 2013). Cardiac-specific expression of a mutant 
form of SERCA instead caused dilation of the heart tube and reduced fractional 
shortening, with no effect on heart rate. These phenotypes were dependent on 
calcium flux, as they could be rescued by a mutation in the ryanodine receptor 
homolog (Abraham and Wolf 2013). Interestingly, overexpression of fly SERCA 
was capable of rescuing a fly model of cardiomyopathy, lending further credence 
to the fly as an inexpensive model for testing potential interventions.

6.9  Degenerative Disease Models

Degenerative diseases, such as Huntington’s disease or Parkinson’s disease, often 
manifest cardiac pathologies, which in many cases, are the proximate cause of death 
in patients (Ziemssen and Reichmann 2010; Jain and Goldstein 2012; Abildtrup 
and Shattock 2013). Therefore, modeling the development of cardiac dysfunction 
in patients with progressive diseases is an important research priority. For exam-
ple, Huntington’s disease causes inclusion bodies to form in cardiac tissue as well as 
neuronal tissue (Gunawardena and Goldstein 2005; Abildtrup and Shattock 2013). 
Inclusion bodies are thought to result from aggregation of proteins with Poly-glutamine 
sequences of various lengths (Finkbeiner 2011; Arrasate and Finkbeiner 2012).

Recently, ectopic Poly-Q sequences were expressed in fly hearts and shown 
to cause increased arrhythmias, cardiac dilation, myofibril disorganization, mito-
chondrial fragmentation and consequent decreased fractional shortening (Melkani 
et al. 2013). The severity of these phenotypes was dependent on the length of the 
Poly-Q sequences in the expressed construct. The mechanism by which aggre-
gations cause dysfunction was explored genetically and pharmacologically.  
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In support of an oxidative stress-based mechanism, co-expression of antioxidant 
SOD proteins or feeding with the antioxidant resveratrol was able to partially res-
cue cardiac function (Melkani et al. 2013). In support of a protein folding/endo-
plasmic reticulum ER stress-based mechanism, co-expression of the chaperone 
Unc45 was also able to partially rescue (Melkani et al. 2013). Taken together, 
these results indicate that both oxidative stress and protein misfolding are likely 
to play a role in development of cardiac dysfunction in Huntington’s hearts, and 
therapies aimed at either mechanism have palliative potential.

The role of the ubiquitin ligase Parkin in wild type or diseased hearts has 
been ambiguous, due to compensatory upregulation of other ubiquitin ligases in 
the hearts of vertebrate knockdown models. Due to reduced complexity in the fly 
genome, the cardiac role of Parkin was recently studied in the fly heart model. 
Heart-specific knockdown of dparkin caused the formation of dysmorphic mito-
chondria with abnormal depolarization. This, in turn, led to increased reactive oxy-
gen species ROS in the myocardium and reduced fractional shortening (Bhandari 
et al. 2014). Cardiac dysfunction in this model was ROS-dependent, as co-expres-
sion of SOD proteins or RNAi against Reactive Oxygen Species Modulator One 
ROMO1 was able to rescue function (Bhandari et al. 2014). Interestingly, the same 
study found that inhibition of mitochondrial fusion by blocking an ortholog of 
mitofusin was able to rescue the cardiac phenotype, suggesting that the effects of 
reduced mitochondrial clearance can be ameliorated by preventing damaged mito-
chondria from fusing with undamaged ones (Bhandari et al. 2014).

These results highlight the utility of the Drosophila model for the study of 
degenerative cardiac phenotypes across ages. The next section will examine recent 
findings related to lipid metabolism in the fly heart, and its relationship to environ-
mental factors such as diet and exercise.

6.10  Lipid Metabolism

Lipodystrophies are an important factor in cardiac performance across species.  
A screen for mutants that alter the profile of aging heart performance identified 
two loci encoding genes involved in lipid metabolism that strongly regulate adult 
cardiac performance, easily shocked (eas) and the fatty acid transporter dFatp.

Eas encodes an enzyme necessary for biosynthesis of phosphatdiylethanola-
mine (PE), which in turn induces biosynthesis of Sterol regulatory element binding 
protein (SREBP), a conserved lipogenic transcription factor. Flies mutant for eas 
accumulate SREBP in the nucleus of cardiomyocytes, leading to the activation of 
lipogenic genes (Lim et al. 2011). Either eas mutants or flies overexpressing SREBP 
in the heart show elevated triglycerides in the heart, resulting in arrhythmias, relaxa-
tion defects, increased sensitivity to pacing stress and increased heart rate (Lim et al. 
2011). The cardiac phenotype of mutants can be completely rescued by interfering 
downstream with lipid biosynthesis, either by knocking down SREBP itself or its tar-
gets acetyl-coA carboxylase (acc) or fatty acid synthase (fas) (Lim et al. 2011), dem-
onstrating that the defects are completely dependent on the cardiac steatosis.
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dFatp encodes a conserved fatty acid transporter protein with extensive homol-
ogy to the vertebrate Fatp family. Although homozygous null mutants for dFatp 
are lethal, heterozygotes display accumulations of triglycerides in haemolymph 
and in cardiac muscle (Sujkowski et al. 2012). As a result, heterozygous hearts 
have defects very similar to those seen in eas mutants, with increased heart rate, 
relaxation defects, and decreased tolerance for pacing stress (Sujkowski et al. 
2012). This phenotype is completely dependent on triglyceride accumulation, as 
interventions eliminating steatosis such as lipase overexpression or endurance 
exercise are capable of rescuing the cardiac phenotype (Sujkowski et al. 2012).

Interestingly, both of these mutations act at the level of lipid processing and 
have effects that are tissue-specific and diet-independent, raising the possibility of 
interventions downstream of diet that can ameliorate the effects of high-fat diets. 
Fly models for the effects of diet and exercise modulation will be discussed below 
in a separate section.

In addition to the direct role of lipid accumulation in the heart on aging, there 
also exist important signaling roles of lipid processing and/or biosynthesis with 
critical effects on aging heart function. For example, the effects of the drug family 
known as statins on maintenance of cardiac function during aging are an impor-
tant subject of current research and clinical guidelines. In particular, the possible 
cholesterol-independent benefits of statins for cardiac function are a topic of great 
interest. Since flies are auxotrophic for cholesterol, they make an excellent model 
to test cholesterol-independent functions of statins.

In addition to impairing cholesterol biosynthesis, statins impair production of 
isoprenoids, which are required for protein farnesylation. Farnesylation, in turn, is 
necessary for various small molecules to be anchored to cell membranes, includ-
ing important signaling molecules such as Ras GTPases. The altered localization 
of signaling GTPases has been proposed to account for cholesterol-independent 
protective effects of statins in vertebrates (Liao and Laufs 2005).

Simvistatin has recently been demonstrated to extend the life span of flies in 
a mechanism dependent on prenylation of Ras and Rab4 (Spindler et al. 2012). 
Importantly, this intervention also decreases arrhythmias in aging flies, suggesting 
a possible conserved role for prenylation in maintenance of cardiac function dur-
ing normal aging.

On the other side of the equation from metabolism of dietary constituents are 
the downstream signaling effects that occur when nutrient intake is sensed by the 
animal. These nutrient-sensing pathways and their exciting therapeutic potential 
for aging hearts are discussed in the following section.

6.11  Nutrient-Sensing Pathways

Reduction in signaling through nutrient-sensing pathways has been well estab-
lished as a method of life span extension in model organisms (Greer et al. 
2008; Greer and Brunet 2009; Tatar et al. 2014). However, the mechanisms by 
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which these pathways act at the level of organ function is less well understood. 
In flies, mutations that reduce signaling through the insulin receptor or reduce 
the secretion of insulin-like peptide protect cardiac function to very advanced 
ages, as measured by heart rate and resistance to pacing stress (Wessells et al. 
2004). Importantly, the heart itself is an important target tissue for these sign-
aling events, since heart-specific knockdown of insulin signaling also protects 
against cardiac aging, to the same extent as genomic mutation (Wessells et al. 
2004). This protection is dependent on the conserved transcription factor dFoxo, 
as manipulation of dFoxo expression levels is sufficient to drive the protective 
phenotype.

The related and interdependent Target of Rapamycin (TOR) kinase signaling 
pathway (Chong et al. 2011, O’ Neill 2013) also plays an important role in cardiac 
aging. Viable TOR transheterozygotes are protected against age-related decrease in 
heart rate and resistance to pacing stress (Luong et al. 2006). This phenotype, too, 
is organ-autonomous, as heart-specific expression of tuberous sclerosis complex 1 
and 2 (TSC1 and TSC2), which act together to reduce TOR activity, provides pro-
tection to a degree similar to TOR transheterozygotes. Conversely, cardiac overex-
pression of TOR itself hastens age-related decline (Wessells et al. 2009).

Interestingly, the cardioprotection provided by these knockdowns is not 
dependent on changes to circulating glucose levels, since TOR knockdowns have 
reduced circulating glucose (Luong et al. 2006), while insulin signaling knock-
downs have increased glucose levels (Clancy et al. 2001; Tatar et al. 2001).

Instead, the key downstream factor seems to be the regulation of cap-depend-
ent translation by the eukaryotic initiation factor binding protein d4eBP. 4eBP 
is a conserved protein, regulated at the transcriptional level by Foxo-dependent 
insulin signaling, and at the post-transcriptional level by TOR signaling (Grewal 
2009). Cardiac overexpression of d4eBP is sufficient to protect against age-related 
decline in heart rate, rhythmicity, and resistance to pacing stress (Wessells et al. 
2009). Furthermore, d4eBP appears to be fully epistatic to TOR in this process, 
as co-overexpression of Tor and d4eBP protects to the same extent as expressing 
d4eBP alone. Co-overexpression of dfoxo with d4eBP also protects to the same 
extent as d4eBP alone, indicating that Foxo and 4eBP have no additive effect in 
this process.

An important modulator of these pathways is the TOR antagonist Sestrin 
(Sesn). dSesn is both a target and a feedback regulator of TOR signaling. Mutants 
display several phenotypes associated with overactive TOR, including increased 
lipid accumulation, and decreased cardiac performance (Lee et al. 2010). dSesn 
mutant hearts have increased arrhythmias, decreased heart rate and expansion of 
the diastolic period, similar to the dilated cardiomyopathy phenotype seen in TOR-
overexpressing hearts. These phenotypes can be rescued by administration of the 
TOR inhibitor rapamycin or by the AMP-activated protein kinase (AMPK) activa-
tor AICAR, suggesting that dSestrin is dependent on both TOR and AMPK for its 
effects (Lee et al. 2010).

The cardiac phenotype of dSesn mutants is similar to that of cardiac knock-
downs of essential autophagy genes, suggesting that TOR-mediated autophagy 
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may be a critical intermediate in the Sesn-mediated control of cardiac aging. 
Upregulation of AMPK and autophagy are also characteristics of endurance exer-
cise and caloric restriction, raising the idea that Sestrin may be an important link 
between these processes. In the next section, we discuss data using the fly model 
to examine external interventions in the diet or exercise environment and their 
effect on long-term cardiac function.

6.12  Diet and Exercise

Laboratory flies are typically fed a very simple diet, composed of a sugar source 
(sucrose or molasses/corn meal) and yeast (either killed or live baker’s yeast). This 
simplicity offers some advantages for calculating the effects of varying relative 
amounts of these components in diet on long-term performance. Multiple groups 
have observed that the relative composition of the diet has a bigger impact on life 
span and other markers of aging than does the total amount of calories ingested 
(Lee et al. 2008; Skorupa et al. 2008; Simpson and Raubenheimer 2009).

Cardiac performance is particularly sensitive to dietary composition in flies. 
When a high-fat dietary preparation using oil as the primary food source was fed 
to wild-type flies, they exhibited dramatic increases in whole-body triglycerides 
and accumulated deposits of lipid in the myocardium (Birse et al. 2010). The stea-
tosis seen in these hearts led, in turn, to increased arrhythmias, decreased heart 
rate and decreased fractional shortening. Such hearts had increased expression of 
fas and decreased expression of the triglyceride lipase brummer. This process was 
dependent on increased signaling through TOR kinase, as heart specific reduction 
of TOR signaling was able to rescue the effect (Birse et al. 2010).

It is noteworthy that the reduced fractional shortening and increased arrhyth-
mias caused by this diet are similar to the phenotypes seen in mutants with 
increased myocardial lipid deposits, such as eas and dFatp (see above).

In an attempt to model acquired diabetic cardiomyopathy, high sugar diets 
have also been formulated and fed to adult flies. Flies on such diets have high cir-
culating sugars and exhibit progressive insulin resistance, as measured by phos-
porylation levels of insulin targets (Na et al. 2013). Hearts in these flies exhibit 
progressively worsening arrhythmias and decreased fractional shortening, without 
changes to heart rate. An increase in pericardin expression in heart tissue was also 
observed, suggesting the development of a fibrosis like phenotype. Like flies on 
a high-fat diet, flies on the high-sugar formulation also accumulated triglyceride 
deposits in the myocardium (Na et al. 2013).

When sugar and yeast (source of lipid and protein) were varied inversely in 
a matrix of different dietary components, it was found that cardiac performance 
was strongly responsive to more subtle variations in diet as well. As was found 
for life span, cardiac performance was more dependent on ratio of dietary compo-
nents than on total caloric intake (Bazzell et al. 2013). Fractional shortening and 
resistance to pacing stress were best on low-calorie diets with a balanced amount 
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of sugar and yeast, while the diets that promoted the worst cardiac function were 
those with high sugar/yeast ratios. In this context, the requirements for running 
speed seem to be different than those for cardiac performance, as high sugar diets 
promote increased performance in speed assays, although not in endurance assays 
(Bazzell et al. 2013).

Although mutants that reduce insulin signaling are protective against cardiac 
aging on normal diets (see above), mutants in the IRS homolog chico enhance the 
cardiac dysfunction of flies on a high-sugar diet (Na et al. 2013). This highlights 
the importance of testing model organisms under multiple conditions to get a clear 
picture of a mutation’s effects. In addition to diet, varying exercise conditions can 
have an enormous impact on the expression of mutant phenotypes.

Wild-type flies that complete a three-week endurance training program show 
delayed age-related decline in fractional shortening (Tinkerhess et al. 2012a, b), 
resistance to pacing stress (Piazza et al. 2009a, b), maintenance of myofibril integ-
rity (Bazzell et al. 2013), and mitochondrial integrity (Laker et al. 2014). As in 
vertebrates (Ehsani et al. 2003; Evans et al. 2005), these improvements to health-
span do not cause a significant increase in maximal life span (Sujkowski et al. 
2012). However, there is likely to be substantial overlap in mechanism between 
exercise and life span-extending interventions. In support of this idea, recently 
performed microarrays compared changes in gene expression following exercise 
to changes in gene expression caused by selective breeding for longevity. About 
70 % of gene expression changes found in long-lived flies were also found in wild-
type flies after three weeks of endurance exercise (Fig. 6.2a, b) (Sujkowski and 
Wessells, unpublished).

Invertebrate exercise seems to work through conserved pathways. For example, 
the fly spargel, a homolog of the well-studied vertebrate exercise response gene 
peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 
alpha), is also necessary for flies to receive the full benefits of exercise (Tinkerhess 
et al. 2012a, b). Conversely, spargel overexpression in somatic and cardiac muscle 
is sufficient to improve both endurance and cardiac resistance to pacing stress.

Exercise induces some of the same downstream genes as nutrient-signaling 
pathways, including sestrin and d4eBP (Lee and Wessells, unpublished), suggest-
ing that further study of the exercise response in flies may shed important light on 
mechanisms of cardiac healthspan. Furthermore, exercise can restore normal func-
tion to mutant flies with steatosis phenotypes (Sujkowski et al. 2012), emphasizing 
again the synergistic importance of diet and exercise to stimulate pro-healthspan 
genetic pathways.

Exercise is a powerful stimulator of mitochondrial biogenesis in cardiac tissue 
in flies (Tinkerhess et al. 2012a, b; Laker et al. 2014). Using a marker of mito-
chondrial stress, it has been observed that older flies that have been exposed to 
chronic exercise have a higher percentage of healthy mitochondria and fewer that 
show signs of exposure to oxidative stress (Laker et al. 2014). It is probable that 
this is a result of directed mitophagy in conjunction with biogenesis to rejuvenate 
the mitochondrial population in cardiac muscle.



1456 Drosophila Models of Cardiac Aging and Disease 

The induction of secreted factors from cardiac and skeletal muscle by diet or 
exercise is an important emerging topic in metabolic research. Flies have been an 
important model for discovery of such factors. For example, a fly screen for fac-
tors mediating the protective role of reduced insulin signaling uncovered the TGF-
beta ligand dawdle as an important downstream factor whose expression in muscle 
is sufficient to increase muscle autophagy and life span (Bai et al. 2013). Whether 
dawdle secretion is activated by exercise in addition to reduced insulin signaling is 
a topic of ongoing study.

In support of this potential link, it has been demonstrated that perturbation of 
the mitochondrial electron transport chain (ETC) in Drosophila muscle induces a 
mitohormesis effect that extends life span and muscle performance (Owusu-Ansah 

Fig. 6.2  Endurance exercise causes transcriptional changes similar to those caused by selec-
tive breeding for longevity. a Heat map of control, exercised control, and longevity-selected 
flies. After three weeks of daily exercise, exercised flies have transcriptional profiles more like 
long-lived flies. b Venn diagram showing overlap in transcriptional changes induced by selective 
breeding for longevity and exercise
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et al. 2013). The beneficial effects of this treatment are dependent on induction of 
the mitochondrial unfolded protein response, as has also been observed for life span-
extending perturbations of the ETC in C. elegans (Durieux et al. 2011). As endur-
ance exercise is known to generate transient oxidative stress in Drosophila muscle 
mitochondria (Laker et al. 2014), this supports a model where endurance exercise 
can protect muscle healthspan through a mitohormesis mechanism.

Muscle-specific factors have also recently been shown to be critical for suscep-
tibility to obesity in flies. Cardiac overexpression of the transcriptional regulatory 
proteins Mediator 12 and Mediator 13 plays a protective role against the develop-
ment of obesity in mice (Grueter et al. 2012). Using the fly model, it has recently 
been discovered that this effect is mediated by induction of Wnt signaling through 
the fly gene wingless, and that activation of Wnt signaling in muscle leads to both 
tissue-autonomous Wg pathway activity and secretion of the Wg protein, which 
can potentially be sensed in adipose tissue (Lee et al. 2014a, b).

The advantages of the fly model for combining genetic manipulation with lon-
gitudinal physiology in large numbers position the fly heart model as an impor-
tant system for analyzing genetics, diet and exercise on aging and disease in ever 
greater detail in the years to come.
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Abstract The intestinal hologenome lies at the center of intestinal homeostasis and 
disease. It is the sum of the host genome and the intestinal microbiome. During the 
last decade we came to appreciate the pivotal role of the microbiome in intestinal 
inflammation and concomitant diseases. Moreover environmental factors, predomi-
nantly diet, affect the microbiome and the host immune responses. Thus manipula-
tion of intestinal microbiota and environmental factors are rightfully the focus of 
current research. The study of the hologenome necessitates not only clinical assess-
ments but also the use of model organisms, for example, mice and flies. Despite 
the limitations imposed by the evolutionary distance between flies and mammals, 
Drosophila research provided us during the last few years with a wealth of informa-
tion regarding intestinal inflammation and the role of microbiota. Conserved aspects 
of intestinal homeostasis and disease between flies and mice, for example in signal-
ling pathways, the intestinal defence responses and the role of microbiota, consoli-
date and may advance the principles that govern intestinal inflammation in humans.

Keywords Intestinal microbiota · Microbiome · Inflammation · Immune response ·  
Inflammatory bowel disease · Drosophila

7.1  Introduction

Inflammatory bowel disease (IBD) is a condition caused by inflammationof the 
small or large intestine. It is increasingly prevalent in Western countries, and 
impacts on the patients’ quality of life and the risk for colorectal cancer (CRC) 
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(Molodecky et al. 2012). A number of disorders are classified as IBD, including 
the most common ones, Crohn’s disease (CD) and ulcerative colitis (UC). Disease 
classification has been first proposed in 1988 (Greenstein et al. 1988), but over 
the years new information has modified the criteria based on the disease location, 
clinical behaviour and age of onset (Silverberg et al. 2005; Levine et al. 2011). 
CD can occur discontinuously anywhere along the digestive tract and throughout 
the intestinal wall. It is usually associated with granulomas and can develop fis-
tulas and intestinal stenosis (Pal 2014). UC generally affects the large intestine 
causing inflammation continuously along the colon, and is usually limited to the 
mucosa (Abraham and Cho 2009). Epidemiological data showed in 2013 that 
in the United States 1,171,000 people have IBD, 565,000 of which are CD and 
593,000 UC patients (Kappelman et al. 2013). In Europe 0.3 % of the population, 
that is, 2.5–3 million people, suffer from IBD. Of those approximately 1.1 mil-
lion suffer from CD and 1.5 million from UC (Burisch et al. 2013). This imposes 
a substantial public health burden because IBD is usually chronic and cannot be 
easily treated.

While the etiopathology of IBD is not yet clear, accumulating evidence indicates 
that genetic predisposition leads to an aberrant immune response against enteric 
microbes, which may be triggered by environmental factors, such as western world 
diets (Sartor 2006). The gut houses many trillions of microorganisms of >500 dif-
ferent aerobic and anaerobic species (Human Microbiome Project Consortium 
2012). Microbiota metabolise nutrients that the host cannot digest, provide vita-
minsand protect against harmful microbes (Backhed et al. 2005). Microbiota also 
helps to maintain the intestinal tissue homeostasis through a crosstalk between the 
intestinal epithelial and immune cells (Mortha et al. 2014). However, genetic and 
environmental factors may cause a persistent microbial infection or a shift in the 
relative abundance of microbial species and may lead to an imbalance in the host 
defence. Consequently bacteria may invade the intestinal mucosa or activate an 
abnormal immune response, leading to innate and adaptive immune cell infiltration, 
tissue damage and regeneration (Xavier and Podolsky 2007). On a chronic basis 
intestinal inflammation increases the risk for colorectal cancer (CRC) (Pohl et al. 
2000). The precise risk levels of cancer in IBD can be difficult to quantify due to 
the variation of methodological approaches. Evidence nevertheless shows that there 
is an at least two fold increase in the prevalence of colorectal cancer in patients 
with UC whereas patients with CD are at increased risk for small bowel adeno-
carcinoma (Pohl et al. 2000). One in five patients with UC develops CRC within 
30 years of the disease onset and more than half of them will die from colitis-asso-
ciated cancer (CAC) (Lakatos and Lakatos 2008). This is because CRC is caused 
by the accumulation of gene mutations in oncogenes and tumor suppressor genes, 
such as APC, K-Ras and p53, which lead to abnormal cell proliferation, tissue inva-
sion and metastasis (Fearon and Vogelstein 1990). In IBD, the persistent production 
of pro-inflammatorycytokines and reactive oxygen species may induce genomic 
instability and cancer promoting mutations (Neurath 2014).

Below we summarize prominent risk and associated factors, clinical assess-
ments and treatments for IBD and introduce a comparative view of the literature 
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regarding mouse and fly models of human intestinal inflammationand cancer. 
Modelling of intestinal inflammation and inflammation-driven tumorigenesis 
in flies and mice has been fruitful because despite the differences with humans, 
some parallels among them are striking (Fig. 7.1). Mouse models of IBD are 
traditionally used due to the high degree of conservation between the human 
and the mouse intestinal tract (Wirtz and Neurath 2007; Gkouskou et al. 2014). 
Nevertheless, key principles of mammalian inflammatory bowel disease patho-
genesis can be recapitulated and new aspects of disease have been proposed using 
Drosophila models (Apidianakis and Rahme 2011; Panayidou and Apidianakis 
2013).

7.2  Risk and Associated Factors in IBD

7.2.1  Genetic Predisposition

The inheritance of IBD has been the focus of many epidemiologists because of the 
increased risk for IBD among relatives (Halme et al. 2006). According to Halme 
and colleagues, 2–14 % of CD patients reported a family history of CD, 7–11 % 
of UC patients a UC history in their family and 10 % of either UC or CD patients 
a family history of some type of IBD (Halme et al. 2006). Moreover, identical 
(monozygotic) versus non-identical (dizygotic) twins studies provide a strong con-
firmation for the genetic basis of IBD. For example, the concordance of CD and 
UC is much higher in monozygotic versus dizygotic twins, which can be explained 
by genetic rather than environmental factors (Brant 2011).

Various genome wide association studies (GWAS)on UC and CD have exam-
ined the genetic makeup of affected versus healthy individuals (Table 7.1). Many 
of them belong to the epithelial barrier function group, such as mucins and matrix 
metalloproteinases (Buisine et al. 1999; von Lampe et al. 2000; Makitalo et al. 
2009, 2010; Giuffrida et al. 2014), or oxidative stress related genes, such as ascor-
bate transporters SLC23A1 polymorphisms (Amir Shaghaghi et al. 2014). Innate 
and adaptive immunity, regeneration and autophagy genes are described below 
in more detail. Nevertheless, the gene lists provided here are not exhaustive. 
Moreover, many of the listed genes, such as neuropeptide S receptor 1 (NPSR1) 
are associated with IBD susceptibility but their function is poorly understood 
(D’Amato et al. 2007).

Genes controlling inflammation, such as anti-inflammatory cytokines of the IL10 
family (IL-10/19/26), IL-2, IL-27 and pro-inflammatory cytokines(IL-3/12b/21) 
and receptors (IL1R2, IL7R, IL8RA/B, IL17REL, 23R) have been strongly associ-
ated with risk for IBD indicating the crucial role of immune system responses at the 
site of inflammation (Franke et al. 2010; Anderson et al. 2011; Jostins et al. 2012). 
The magnitude of inflammatory signals expressed by the immune system (ILC, T 
cells, macrophages, dendritic cells) or the intestinal cells associated with IBD can 
be expanded to include tumor necrosis factors (TNFSF) 8/9/11/14/15 and receptors 



1557 Parallels Between Mammals and Flies in Inflammatory Bowel Disease

Ta
bl

e 
7.

1 
 P

ro
ce

ss
es

 a
nd

 g
en

es
 a

ff
ec

tin
g 

su
sc

ep
tib

ili
ty

 to
 in

te
st

in
al

 in
fe

ct
io

n,
 s

tr
es

s 
or

 in
fla

m
m

at
io

n 
(i

n 
hu

m
an

s,
 m

ic
e 

an
d 

fli
es

)

H
um

an
 S

N
Ps

/g
en

es
M

ou
se

 S
N

Ps
/g

en
es

Fl
y 

ge
ne

s

A
ut

op
ha

gy
A

T
G

16
L

1 
(P

re
sc

ot
t e

t a
l. 

20
07

);
 

IR
G

M
1 

(M
cC

ar
ro

ll 
et

 a
l. 

20
08

);
 U

L
K

1 
(H

en
ck

ae
rt

s 
et

 a
l. 

20
11

);
 M

T
M

R
3 

(H
en

de
rs

on
 e

t a
l. 

20
11

);
 V

A
M

P3
, D

A
P 

(F
ra

nk
e 

et
 a

l. 
20

10
);

 L
R

R
K

2,
 C

U
L

2,
 

PA
R

K
7,

 N
O

D
2 

(K
ho

r 
et

 a
l. 

20
11

);
 R

IP
K

3 
(G

un
th

er
 e

t a
l. 

20
11

)

A
T

G
4B

 (
C

ab
re

ra
 e

t a
l. 

20
13

);
 I

R
G

M
1 

(H
en

ry
 e

t a
l. 

20
07

);
 A

T
G

16
L

1 
(S

ai
to

h 
et

 a
l. 

20
08

);
 R

IP
K

3 
(G

un
th

er
 e

t a
l. 

20
11

)

A
T

G
1,

 A
T

G
6 

(W
u 

et
 a

l. 
20

09
a)

In
na

te
 im

m
un

ity
N

F-
kB

, T
N

F-
α

 (
Pl

ev
y 

et
 a

l. 
19

97
);

 C
O

X
-2

 
(H

en
de

l a
nd

 N
ie

ls
en

 1
99

7)
; T

L
R

 (
B

an
k 

et
 a

l. 
20

14
);

 T
L

R
-4

 (
Fr

an
ch

im
on

t e
t a

l. 
20

04
);

 I
L

18
R

A
P 

(Z
he

rn
ak

ov
a 

et
 a

l. 
20

08
);

 
N

O
D

2 
(O

gu
ra

 e
t a

l. 
20

01
);

 β
-d

ef
en

si
ns

; 
H

B
D

2;
 H

B
D

3;
 H

B
D

4 
(W

eh
ka

m
p 

et
 a

l. 
20

03
);

 H
B

D
5;

 H
B

D
6 

(W
eh

ka
m

p 
et

 a
l. 

20
05

);
 J

A
K

; T
Y

K
2 

(F
ra

nk
e 

et
 a

l. 
20

10
);

 I
L

-1
 (

C
as

in
i-

R
ag

gi
 e

t a
l. 

19
95

);
 

SL
C

11
A

1,
 F

C
G

R
2A

/B
, R

E
L

, C
A

R
D

9 
(K

ho
r 

et
 a

l. 
20

11
);

 M
IF

 (
G

ri
ga

 e
t a

l. 
20

07
);

 F
O

X
O

3 
(L

ee
 e

t a
l. 

20
13

a)

T
N

FR
, N

F-
kB

, T
L

R
 (

A
ra

ki
 e

t a
l. 

20
05

) 
T

L
R

5 
(U

em
at

su
 e

t a
l. 

20
06

);
 I

FN
-γ

, 
T

N
F-
α

 (
Po

w
ri

e 
et

 a
l. 

19
94

);
 I

L
-1

2 
(K

ul
lb

er
g 

et
 a

l. 
19

98
);

 N
O

D
1 

(C
ha

tte
rj

ee
 

an
d 

C
ha

ud
hu

ri
 2

01
3)

; N
O

D
2 

(K
ob

ay
as

hi
 

et
 a

l. 
20

05
);

 P
I3

 K
/A

K
T

 (
K

ha
n 

et
 a

l. 
20

13
);

 F
O

X
O

3 
(S

no
ek

s 
et

 a
l. 

20
09

)

IM
D

/R
el

is
h 

(B
uc

ho
n 

et
 a

l. 
20

09
b,

 L
em

ai
tr

e 
et

 a
l. 

19
95

);
 J

ak
-S

ta
t (

B
uc

ho
n 

et
 a

l. 
20

09
b)

; 
R

as
 (

R
ag

ab
 e

t a
l. 

20
11

);
 T

ol
l (

L
em

ai
tr

e 
et

 a
l. 

19
96

);
 b

bg
 (

B
on

na
y 

et
 a

l. 
20

13
);

 
PG

R
P-

L
B

 (
Z

ai
dm

an
-R

em
y 

et
 a

l. 
20

06
);

 
PG

R
P-

L
C

 (
Sc

hm
id

t e
t a

l. 
20

08
);

 P
G

R
P-

L
E

 
(B

os
co

-D
ra

yo
n 

et
 a

l. 
20

12
);

 P
L

C
β

-D
U

O
X

, 
p3

8 
M

A
PK

 (
L

ee
 e

t a
l. 

20
13

b)
; d

om
e-

le
ss

, U
pd

s 
(B

uc
ho

n 
et

 a
l. 

20
09

b)
; E

ig
er

 
(S

ch
ne

id
er

 e
t a

l. 
20

07
);

 F
O

X
O

 (
K

ar
pa

c 
et

 a
l. 

20
13

)

(c
on

tin
ue

d)



156 C. Theodoulakis and Y. Apidianakis

Ta
bl

e 
7.

1 
 (

co
nt

in
ue

d)

H
um

an
 S

N
Ps

/g
en

es
M

ou
se

 S
N

Ps
/g

en
es

Fl
y 

ge
ne

s

A
da

pt
iv

e 
im

m
un

ity
PR

D
M

1 
(F

ra
nk

e 
et

 a
l. 

20
10

);
 L

SP
1,

 
Sm

ad
3,

 S
m

ad
7,

 T
G

F-
β

 (
M

on
te

le
on

e 
et

 a
l. 

20
01

);
 T

N
FR

SF
 6

/9
/1

4 
(A

nd
er

so
n 

et
 a

l. 
20

11
);

 I
L

4/
6/

10
/1

2B
/1

3/
17

A
/1

8/
21

/2
2,

 
IL

1R
/7

R
/8

R
/1

2R
, I

L
17

R
//2

3R
 (

Fr
an

ke
 

et
 a

l. 
20

10
; A

nd
er

so
n 

et
 a

l. 
20

11
);

 T
N

F-
α

, 
IF

N
-γ

, T
N

FR
SF

6B
 (

K
ug

at
ha

sa
n 

et
 a

l. 
20

08
);

 V
N

N
1 

(G
en

so
lle

n 
et

 a
l. 

20
13

);
 

T
N

FS
F8

/1
1/

15
 (

Fr
an

ke
 e

t a
l. 

20
10

);
 C

C
R

3 
(M

an
ou

so
u 

et
 a

l. 
20

10
);

 C
C

R
9 

(L
in

to
n 

et
 a

l. 
20

12
);

 H
L

A
-D

R
1/

2,
 H

L
A

-D
Q

w
5 

(T
oy

od
a 

et
 a

l. 
19

93
);

 C
X

C
R

3/
4 

(H
os

om
i 

et
 a

l. 
20

11
);

 C
X

C
L

1 
(A

lz
og

ha
ib

i e
t a

l. 
20

08
);

 I
L

-5
. G

A
TA

3 
(N

eu
ra

th
 e

t a
l. 

20
02

);
 

E
R

A
P2

, D
E

N
N

D
1B

, L
N

PE
P 

(K
ho

r 
et

 a
l. 

20
11

)

C
X

C
L

1 
(S

he
a-

D
on

oh
ue

 e
t a

l. 
20

08
);

 
C

X
C

R
3,

 C
C

R
2/

5 
(T

ok
uy

am
a 

et
 a

l. 
20

05
);

 T
N

F-
α

 (
K

oj
ou

ha
ro

ff
 e

t a
l. 

19
97

);
 

T
N

FR
FS

F9
 (

M
ae

rt
en

 e
t a

l. 
20

06
);

 
IL

-1
/6

/1
0/

12
/2

2/
23

, I
FN

-γ
 (

G
ri

ve
nn

ik
ov

 
et

 a
l. 

20
09

; Z
en

ew
ic

z 
et

 a
l. 

20
08

; S
tu

rl
an

 
et

 a
l. 

20
01

);
 S

m
ad

3 
(M

ag
gi

o-
Pr

ic
e 

et
 a

l. 
20

06
);

 V
N

N
1 

(P
ou

ye
t e

t a
l. 

20
10

);
 I

N
F-
α

 
(K

at
ak

ur
a 

et
 a

l. 
20

05
)

R
eg

en
er

at
io

n
W

nt
, N

ot
ch

 (
va

n 
E

s 
an

d 
C

le
ve

rs
 2

00
5)

; 
A

PC
 (

G
ro

de
n 

et
 a

l. 
19

93
);

 S
ta

t1
 

(S
ch

re
ib

er
 e

t a
l. 

20
02

);
 S

ta
t3

 (
Ji

an
g 

et
 a

l. 
20

13
);

 S
ta

t4
 (

O
ht

an
i e

t a
l. 

20
10

);
 S

ta
t5

 
(C

on
ne

lly
 e

t a
l. 

20
13

);
 J

A
K

2 
(A

nd
er

so
n 

et
 a

l. 
20

11
);

 K
R

as
 (

V
og

el
st

ei
n 

et
 a

l. 
19

88
);

 
PI

3 
K

/A
K

T
 (

K
ha

n 
et

 a
l. 

20
13

)

W
nt

, N
ot

ch
 (

D
ah

an
 e

t a
l. 

20
11

);
 B

M
P 

(H
ar

am
is

 e
t a

l. 
20

04
);

 S
ta

t3
 (

Pi
ck

er
t e

t a
l. 

20
09

);
 J

N
K

 (
Jo

ne
s 

et
 a

l. 
20

08
);

 S
ta

t4
 

(S
im

ps
on

 e
t a

l. 
19

98
);

 S
ta

t6
 (

E
lr

od
 e

t a
l. 

20
05

);
 p

 5
3,

 R
as

/M
A

PK
 (

V
al

en
tin

-V
eg

a 
et

 a
l. 

20
08

);
 P

I3
 K

, A
PC

 (
D

em
in

g 
et

 a
l. 

20
14

)

JN
K

 (
B

uc
ho

n 
et

 a
l. 

20
09

a)
; J

ak
/S

ta
t (

Ji
an

g 
et

 a
l. 

20
09

);
 W

ar
ts

, Y
or

ki
e 

(S
ta

le
y 

an
d 

Ir
vi

ne
 2

01
0)

; E
G

F 
(B

ite
au

 a
nd

 J
as

pe
r 

20
11

);
 W

in
gl

es
s 

(X
u 

et
 a

l. 
20

11
);

 v
ei

n,
 

sp
itz

, K
er

en
, M

K
P3

, R
as

 (
Ji

an
g 

et
 a

l. 
20

11
a)

; W
nt

, A
PC

 (
W

an
g 

et
 a

l. 
20

13
)

O
xi

da
tiv

e 
st

re
ss

N
O

S2
 (

Si
ng

er
 e

t a
l. 

19
96

; D
hi

llo
n 

et
 a

l. 
20

14
);

 D
uo

x2
 (

W
u 

et
 a

l. 
20

13
);

 A
D

O
, 

SL
C

22
A

4,
 G

PX
1/

4,
 U

T
S2

, P
E

X
13

, 
PA

R
K

7,
 D

L
D

, B
A

C
H

2,
 N

O
D

2,
 L

R
R

K
2,

 
PR

D
X

5,
 H

SP
A

6,
 C

A
R

D
9,

 (
K

ho
r 

et
 a

l. 
20

11
);

 S
L

C
23

A
1 

(A
m

ir
 e

t a
l. 

20
14

);
 N

ox
1 

(S
za

nt
o 

et
 a

l. 
20

05
)

iN
O

S 
(K

ri
eg

ls
te

in
 e

t a
l. 

20
01

);
 G

PX
1/

2 
(K

ho
r 

et
 a

l. 
20

11
);

 N
ox

1 
(J

on
es

 e
t a

l. 
20

13
)

dD
uo

x 
(H

a 
et

 a
l. 

20
09

);
 d

N
ox

 (
Jo

ne
s 

et
 a

l. 
20

13
)

(c
on

tin
ue

d)



1577 Parallels Between Mammals and Flies in Inflammatory Bowel Disease

Ta
bl

e 
7.

1 
 (

co
nt

in
ue

d)

H
um

an
 S

N
Ps

/g
en

es
M

ou
se

 S
N

Ps
/g

en
es

Fl
y 

ge
ne

s

E
pi

th
el

ia
l b

ar
ri

er
M

U
C

1/
3/

4/
5B

 (
B

ui
si

ne
 e

t a
l. 

19
99

);
 

H
N

F4
A

, C
D

H
1/

3,
 L

A
M

B
1,

 G
N

A
12

 (
U

K
 

IB
D

 G
en

et
ic

s 
C

on
so

rt
iu

m
 e

t a
l. 

20
09

);
 

C
D

H
11

 (
C

os
te

llo
 e

t a
l. 

20
05

);
 C

D
H

1,
 

E
R

R
FI

1,
 M

U
C

19
, I

T
L

N
1 

(K
ho

r 
et

 a
l. 

20
11

);
 M

M
P-

1/
3/

7/
9/

10
/1

2/
13

/1
4/

26
, 

T
IM

P-
1/

2/
3,

 (
M

ak
ita

lo
 e

t a
l. 

20
09

, 2
01

0;
 

vo
n 

L
am

pe
 e

t a
l. 

20
00

; G
iu

ff
ri

da
 e

t a
l. 

20
14

);
 D

L
G

5 
(S

to
ll 

et
 a

l. 
20

04
);

 M
L

C
K

 
(B

la
ir

 e
t a

l. 
20

06
)

M
U

C
1 

(M
cA

ul
ey

 e
t a

l. 
20

07
);

 M
U

C
2 

(V
el

ci
ch

 e
t a

l. 
20

02
);

 X
B

P1
 (

K
as

er
 e

t a
l. 

20
08

);
 M

M
P3

 (
L

i e
t a

l. 
20

04
);

 M
L

C
K

 (
Su

 
et

 a
l. 

20
09

)

M
yo

1B
 (

H
eg

an
 e

t a
l. 

20
07

);
 D

ro
so

cr
ys

ta
lli

n 
(K

ur
ai

sh
i e

t a
l. 

20
11

);
 b

bg
 (

B
on

na
y 

et
 a

l. 
20

13
);

 β
ν
 in

te
gr

in
 (

O
ku

m
ur

a 
et

 a
l. 

20
14

)



158 C. Theodoulakis and Y. Apidianakis

(TNFRSF) 6/9/14. Upstream and downstream regulators of these cytokines, such 
as TYK2, IRF5, DENND1B, PRDM1, LSP1, JAK2, PTPN2 and STAT3 have also 
been identified within the IBD risk loci, signifying the importance of these path-
ways in IBD pathogenesis. Implication of these pathways in IBD has been further 
validated in animal models where investigation has proven their link to IBD. For 
example, IL-10 deficient mice are widely used for IBD modeling. These mice are 
predisposed for pro-inflammatory signal production from macrophages, such as 
TNF-α, through the JAK-STAT pathway (Riley et al. 1999). Moreover, a number of 
single nucleotide polymorphisms (SNPs) in NOD2 and CARD9, suggest that rec-
ognition of bacteria is essential in maintaining intestinal homeostasis (Ogura et al. 
2001; Khor et al. 2011; Beaudoin et al. 2013). NOD2 is primarily associated with 
IBD because it can promote both innate and adaptive immune responses. Upon bac-
terial recognition, NOD2 stimulates production of AMPs, antigen presentation and 
autophagy demonstrating a central role in intestinal protection (Khor et al. 2011). 
Macrophage migration inhibitor factor (MIF), have also been associated with CD 
predisposition and the need for higher steroid treatment in patients, because for 
example, MIF induces the production of pro-inflammatorycytokines and counter-
acts the anti-inflammatory effects of glucocorticoids (Griga et al. 2007).

Genes of the signal transducers and activators of transcription (STATs) path-
ways are implicated in both innate immunity and intestinal regeneration in mam-
mals and in flies (Panayidou and Apidianakis 2013) and SNPs in many of them 
have been linked to IBD (Table 7.1). In fact, STAT3 pathway lies at the inter-
section of inflammationand regeneration because innate immune cells secrete 
its ligands, IL6 and IL22, to induce epithelial regeneration in the nearby cells 
(Grivennikov et al. 2009; Kirchberger et al. 2013; Kryczek et al. 2014). Intestinal 
regeneration is driven by stem cells and is also linked to intestinal tumorigenesis 
via many of the same genes that drive CRC, such as APC, WNT/Wg, K-Ras/Ras1 
and PI3 K (Table 7.1).

Lastly, autophagy has been implicated in the pathogenesis of IBD. Autophagy 
is the process where the cell catabolises unnecessary or foreign components 
through lysosomal degradation. Dysfunction of this mechanism either through 
polymorphisms or mutations is believed to increase the chance of IBD (Scharl 
and Rogler 2012). A threonine to alanine substitution (T300A) in the autophagy 
related 16 like (ATG16L1) gene has been associated with an increased risk for 
CD and UC (Prescott et al. 2007). Similarly, a non-synonymous SNP in ATG16L1 
has been shown to increase the risk of CD due to loss of Paneth cell function and 
morphology (Prescott et al. 2007). Another autophagy-related protein is IRGM, 
which is associated with mitochondrial function, apoptosisand CD (McCarroll 
et al. 2008; Singh et al. 2010). The role of autophagy is crucial for the correct 
immune response. ATG16L1 and IRGM have been shown to be important for 
the elimination of pathogens present in the mucus layer, such as adherent inva-
sive Escherichia coli and Salmonella typhimurium (Henry et al. 2007; Brest 
et al. 2011), but also those found in the lumen. VAMP3 is a SNARE protein that 
mediates exocytosis of vesicles into the extracellular medium and is involved 
in cell migration and integrin trafficking (Luftman et al. 2009) and SCAMP3 
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is a key ingredient in the intestinal epithelium mucus barrier, both of which are 
related to autophagy and have been reported to be associated with intestinal 
inflammation(Campbell et al. 2001; Franke et al. 2010). DAP encodes a death 
associated protein and is a negative regulator of apoptosis. While previously asso-
ciated with CD, expression of DAP kinase is linked to autophagy and is elevated 
in UC (Kuester et al. 2010).

7.2.2  Geographic and Dietary Associations

The prevalence of UC and CD varies widely—from 0 to more than 20 per 
100,000 people worldwide (Molodecky et al. 2012)—probably because IBD is 
highly related to western societies’ lifestyle. For example, there is a higher inci-
dence of IBD in North America compared to Asian countries (Molodecky et al. 
2012). Furthermore, within Europe there is a gradient of IBD incidence from East 
to West and from North to South (Shivananda et al. 1996; Burisch et al. 2014). 
Even within individual countries, such as France and Finland, a North to South 
geographical distribution is clear (Nerich et al. 2006; Jussila et al. 2013). This phe-
nomenon may be due to many factors, including vitamin D and lactase levels, sun-
shine and latitude (Szilagyi et al. 2014). However a combination of environmental 
factors, dietary habits and genetic background would give a more complete expla-
nation of disease prevalence.

One of the pivotal factors in IBD is diet (Table 7.2). Dietary changes have been 
investigated in a number of studies on immigrant populations. Traditional diets of 
South Asian populations consist of mostly complex carbohydrates and minimal 
fats or sugars (Misra et al. 2009). However when foreign populations are exposed 
to western diets high in fat and sugar, in their lifetime or in subsequent genera-
tions, a significantly higher incidence of IBD is observed (Pinsk et al. 2007). A 
systematic review on food intake suggests a correlation between specific nutrients 
(fat, proteins, carbohydrates) and food groups (meats, vegetables, fruits) and the 
prevalence of IBD (Hou et al. 2011). For example, consumption of meat, saturated 
and total fat, and polyunsaturated fatty acids (PUFAS), such as low omega-3 to 
omega-6 ratio, correlate with increased risk for IBD. In contrast, the high intake of 
fiber, vegetables and fruits has the opposite effect (Hou et al. 2011).

7.2.3  Intestinal Microbiota and Dysbiosis

The human intestinal tract contains 10 times more bacterial cells than the total 
body cells (Backhed et al. 2005). The human microbiome project revealed that 
bacterial species vary among individuals, but Bacteroides and Firmicutes and to a 
lesser extent Proteobacteria and Actinobacteria phyla prevail in the human intes-
tine (Human Microbiome Project Consortium 2012). Bacterial species interact 
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dynamically and are usually in balance with each other, the host and the environ-
ment. Bacterial communities in the gut provide a physical barrier to incoming 
pathogens through direct and indirect competition. Antagonism for food sources 
or attachment sites and production of various antimicrobial substances protect the 

Table 7.2  Dietary factors that influence IBD and intestinal homeostasis [increase (↑), decrease 
(↓) or change (↕)]

Diet Organism (Human, Mice, Flies) Effect

Probiotic H (Bibiloni et al. 2005; Parvez 
et al. 2006; Kanai et al. 2014),  
M (Matsumoto et al. 2001; 
Mennigen et al. 2009), F (Ryu 
et al. 2008; Lee et al. 2013b)

↓IBD, ↓CRC, ↕homeostasis

Fermented food H (Parvez et al. 2006; Kanai et al. 
2014), M (Matsumoto et al. 2001)

↓IBD, ↓dysbiosis

N-6 PUFAs H (Hou et al. 2011, Andersen et al. 
2012), M (Ghosh et al. 2013)

↑CD, ↑UC, ↑colitis

N-3 PUFAs/UFAs H (Andersen et al. 2012),  
M (Vilaseca et al. 1990; Hudert 
et al. 2006; Devkota et al. 2012)

↓UC, ↓CRC, ↓inflammation

Meat (red) H (Maconi et al. 2010; Hou et al. 
2011)

↑CD, ↑UC

Fat H (Hou et al. 2011), M (Devkota 
et al. 2012; Paik et al. 2013)

↑IBD, ↑colitis, ↑dysbiosis

Vegetables H (Hou et al. 2011) ↓UC, ↓CD, ↓inflammation

Fiber H (Hou et al. 2011),  
M (Bassaganya-Riera et al. 2011), 
F (Shin et al. 2011)

↓CD, ↓inflammation, ↕homeostasis

Fruits H (Hou et al. 2011), M (Fujisawa 
et al. 2005; Kohno et al. 2006)

↓CD, ↓colitis, ↓inflammation

Proteins 
(meat/veg.)

H (Jantchou et al. 2010; Andersen 
et al. 2012), M (MacDonald and 
Przybyszewski 2008; Jiang et al. 
2011b), F (Chandler et al. 2011)

↑colitis, ↑IBD/↓colitis, 
↕microbiome

Milk H (Gudmand-Hoyer and Jarnum 
1970; Pittschieler 1990),  
M (Madsen et al. 2002; Lara-
Villoslada et al. 2006; Fuhrer et al. 
2010)

↑IBD/↓colitis

Dairy products H (Asakura et al. 2008; Maconi 
et al. 2010)

↑CD,↑UC

Sugars H (Reif et al. 1997; Sakamoto 
et al. 2005), M (Turnbaugh et al. 
2009; Fuhrer et al. 2010),  
F (Chandler et al. 2011)

↑dysbiosis, ↑IBD, ↕microbiome

Vitamins H (Todhunter et al. 2005),  
M (Song et al. 2000; Carrier et al. 
2003; Lagishetty et al. 2010; 
Benight et al. 2011)

↕colitis
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host from invading pathogens. Ruminococcus brommi and other colonic bacteria 
degrade indigestible nutrients, such as dietary fibber and resistant starch, to pro-
duce acetic acid and other physiologically important short-chain fatty acids (Wong 
et al. 2006; Ze et al. 2012). Similarly, Acetobacter pomorum affect host metabolism 
via acetic acid production in the Drosophila gut (Shin et al. 2011). Bifidobacteria 
and lactic acid bacteria produce necessary vitamins that cannot be synthesized by 
human cells (LeBlanc et al. 2013). Another important aspect of the gut microbi-
ome is its ability to modulate intestinal homeostasis. This is crucial for a healthy 
gut since it is a cell-damaging environmentwhere the need for constant cell renewal 
is vital for proper gut function. Bacteroides thetaiotaomicron has been found to 
modulate genes involved in intestinal maturation and mucosal barrier fortification 
(Hooper et al. 2001). Microbiota also facilitates gut immune system development 
and modulate immune responses to control inflammation (Round and Mazmanian 
2009; Hooper et al. 2012). For example, Polysacharide A (PSA) produced by 
Bacteroides fragilis directs maturation of the immune system by expanding and 
differentiating splenic CD4 + T cells (Mazmanian et al. 2005). In addition, PSA 
protects mice against induction of experimental IBD by decreasing the levels of 
pro-inflammatorycytokinesvia IL-10 expression by CD4 + T cells (Mazmanian 
et al. 2008). Regulatory T cells accumulate in the mucosa after administration 
of specific indigenous Clostridium species protecting against systemic immune 
responses and colitis development (Atarashi et al. 2011). Similarly, Bifidobacterium 
infantis protects against Salmonela typhimirium via regulatory T cells (O’Mahony 
et al. 2008).

On the contrary, when microbiota is depleted as in germ free mice, a number 
of bacterial pathogens can colonize and induce inflammationin mice (Cahill et al. 
1997; Balish and Warner 2002; Kim et al. 2007a, b; Tlaskalova-Hogenova et al. 
2011). Similarly, IBD in CD patients may relapse if beneficial bacteria, such as 
Faecalibacterium prausnitzii, are reduced (Sokol et al. 2008). Such imbalances in 
bacterial diversity are common among IBD patients and may have a major impact in 
humans. Studies investigating the bacterial composition of IBD and control patients 
have identified differences in the microbiota of UC and UC patients compared to 
controls with a characteristic depletion of commensal bacteria belonging to the 
Bacteroidetes and Firmicutes phyla compared to the family of Enterobacteriaceae 
(Ott et al. 2004; Frank et al. 2007; Kaakoush et al. 2012; Morgan et al. 2012). 
Whether the rise in Enterobacteriaceae species, such as Escherichia coli, is a cause 
or a consequence of IBD is a subject of intensive research.

7.2.4  Dysbiosis upon Bacterial Infection or Antibiotics 
Treatment

The gastrointestinal track is exposed to a plethora of ingested microbes and 
therefore is prone to microbial infections. Even though a few potentially patho-
genic strains reside in the gut, these are dormant and cause no health issues. Some 
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bacterial species however (Table 7.3), such as the adherent and invasive E. coli 
(AIEC) are directly associated with IBD pathogenesis (Barnich et al. 2007). AIEC 
has been found to colonize the ileal mucosa of CD patients by attaching to car-
cinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) present on 
CD patients’ ileal enterocytes. IFN-γ and TNF-α cytokines produced upon AIEC 
infection induce CEACAM6 expression in enterocytes, indicating that these 
bacteria can promote their own colonization (Barnich et al. 2007). In immuno-
compromised or genetically predisposed animal models a number of potential 
pathogens have been implicated in the pathogenesis of IBD. Helicobacter hepati-
cus, Enterococcus faecalis and Clostridium difficile species have been linked to 
IBD (Cahill et al. 1997; Balish and Warner 2002; Khanna and Pardi 2012). A more 
complex scheme was observed in gnotobiotic transgenic mice where infection 
with two commensal bacteria, a nonpathogenic Enterococcus faecalis or a non-
pathogenic Escherichia coli strain, act additively to induce duodenal inflamma-
tion and aggressive pancolitis, showing the cooperation of different bacteria in the 
pathogenesis of IBD (Kim et al. 2007a, b). Similarly, in genetically predisposed 
mouse models of IBD, intestinal inflammation can be cured with the administra-
tion of broad-spectrum antibiotics, indicating that some intestinal microbes may 
induce IBD (Garrett et al. 2007). The same study showed that wild type mice 
developed colitis when co-housed with the diseased transgenic mice, which was 
explained by pathogenic bacteria transferred between mice.

Nevertheless, administration of antibiotics in healthy individuals may induce 
microbial changes favouring the growth of potentially harmful bacteria or oppor-
tunistic pathogens. For example, Clostridium difficile is a bacterium that causes 
diarrhea and pseudomembranous colitis in patients using antibiotics (George 
et al. 1978). Clostridium difficile can take advantage of the antibiotic-medi-
ated reduction in microbial diversity to infect the adult gut (Chang et al. 2008). 
Nevertheless, the effect of antibiotics can be even more pronounced during early 
childhood. Antibiotic use in early postnatal period can modulate the relative 
abundance of intestinal microbiota, decreasing Bifidobacteria while increasing 
Enterobaceriaceae (Tanaka et al. 2009). A study of 36 IBD patients and 360 con-
trols showed that administration of antibiotics to children less than 1 year old tri-
ples their chance to develop IBD (Shaw et al. 2010). A population based cohort 
study in the UK assessed over 1 million individuals 748 of whom developed IBD 
and found that antianaerobic antibiotics promote the development of IBD in a 
number of dose- and young age-dependent manner (Kronman et al. 2012).

7.2.5  Others Risk Factors

Exogenous factors also play a role in the prevalence and development of IBD. 
Smoking is a known risk factor for a number of diseases. In IBD, smoking has 
been found to be a risk factor for CD but interestingly protective against UC (Jang 
et al. 2006; Mahid et al. 2006). In addition, appendectomy may lower the risk 
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Table 7.3  Bacterial species linked to intestinal damage or inflammation

Phyla Species—host (Human, Mice, Flies) Effect

Firmicutes Lactobacillus plantarum (H, M, F) (Schultz 
et al. 2002)

↓inflammation, ↓IFN-γ, ↓IL-12, 
↓CRC

Lactobacillus salivarius (H, M) (Macho 
Fernandez et al.  2011)

↓inflammation, ↑IL-10

Lactobacillus casei Shirota (H, M) 
(Matsumoto et al. 2005)

↓inflammation

Lactobacillus acidophilus (H, M) 
(Mohamadzadeh et al. 2011)

↓inflammation, ↓IL-12, ↓TNF-α, 
↑IL-10

Lactobacillus bulgaricus (H, M) (Hunter 
et al. 2009)

↕systemic immune responses

Lactobacillus reuteri (H, M) (Jones and 
Versalovic 2009)

↓inflammation, ↓TNF, 
↑antimicrobials

Lactobacillus fermentum (H, M) (Peran 
et al. 2006)

↑glutathion, ↓iNOS, ↓TNF-α

Lactobacillus rhamnosus (H, M) (Ma et al. 
2004; Tao et al. 2006; Lin et al. 2009)

↓inflam, ↓TNF-α, ↑cytoprotection, 
↑NGF

Lactobacillus crispatus (H, M) (Zhou et al. 
2012)

↑IL-1β, ↑IL-6, ↑TNF-a, ↓IL-10

Lactobacillus johnsonii (H, M) (Sgouras 
et al. 2005)

↓inflammation, ↓infection

Lactobacillus delbrueckii lactis (H, M) 
(Santos Rocha et al. 2014)

↓inflammation, ↓colitis

Lactobacillus brevis (H, M, F) (Ueno et al. 
2011)

↕intestinal homeostasis, 
↓inflammation

Bacillus subtilis (H, M) (Selvam et al. 2009) ↓inflammation, ↓colitis

Enterococcus faecalis (H, M, F) (Balish and 
Warner 2002)

↑inflammation, ↑IBD

Streptococcus thermophilus (H, M) (Menard 
et al. 2004)

↓inflammation, ↓TNF-α

Staphylococcus sp. (H, M, F) (Sibley et al. 
2008; Edwards et al. 2012)

↑inflammation

Clostridium difficile (H, M) (George et al. 
1978)

↑diarrhea, ↑colitis, ↑IBD

Faecalibacterium prausnitzii (H, M) (Sokol 
et al. 2008)

↓inflammation

Ruminococcus gnavus (H, M) (Menard et al. 
2004)

↓inflammation, ↓TNF-α

Bacteroides Bacteroides thetaiotaomicron (H, M) 
(Bloom et al. 2011)

↕intestinal homeostasis, ↑IBD

Bacteroides fragilis (H, M) (Ruiz-Perez 
et al. 2005; Mazmanian et al. 2008; Round 
and Mazmanian 2010)

↓inflammation

enterotoxigenic Bacteroides fragilis (H, 
M) (Toprak et al. 2006; Rhee et al. 2009)

↑inflammation, ↑CRC

Bacteroides vulgatus (H) (Shiba et al. 2003; 
Bloom et al. 2011)

↑IBD

Bacteroides ovatus (H) (Saitoh et al. 2002) ↑inflammation

(continued)
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Table 7.3  (continued)

Phyla Species—host (Human, Mice, Flies) Effect

Proteobacteria Acetobacter pomorum (F) (Shin et al. 2011) ↕intestinal homeostasis

Helicobacter hepaticus (H, M) (Kullberg 
et al. 1998; Mazmanian et al. 2008)

↑inflam., ↑IFN-γ, ↑IL-12, ↑IBD

Helicobacter muridarum (H, M) (Jiang 
et al. 2002; Monceaux et al. 2013)

↑disease activity

Helicobacter bilis (H, M) (Javed et al. 2013) ↑inflammation, ↑ROS, ↑IL-8

adherent invasive E. coli (H, M) (Small 
et al. 2013)

↑inflammation, ↑fibrosis

Pseudomonas entomophila (F) (Liehl et al. 
2006)

↑inflammation

Pseudomonas aeruginosa (H, M, F) 
(Apidianakis et al. 2009; Wagner et al. 
2013)

↑inflammation

Cronobacter sakazakii (H, M) (Hunter et al. 
2009)

↑Nitric oxide, ↑inflam./IL-6

Escherichia coli Nissle 1917 (H, M) (Kruis 
et al. 2004)

↕UC remission

Salmonella typhimurium (H, M) (Stecher 
et al. 2006)

↑inflammation, ↑colitis

Serratia marcescens (H, M, F) (Nehme 
et al. 2007)

↑inflammation

Vibrio cholerae (H, M, F) (Blow et al. 2005; 
Ou et al. 2009)

↑inflammation, ↑IL-8

Neisseria sp. (H, M, F) (Sibley et al. 2008) ↑inflammation

Actinobacteria Bifidobacterium infantis (H, M) (Shiba et al. 
2003)

↕immune response

Bifidobacterium longum (H, M) (Ocon et al. 
2013)

↓inflammation, ↓iNOS

Bifidobacterium breve (H, M) (Menard et al. 
2004)

↓inflammation, ↑IL-10, ↓TNF-α

Bifidobacterium bifidum (H, M) (Kim et al. 
2007a, b; Philippe et al. 2011b)

↓inflammation, ↓IFN-γ, ↓IL-6

Bifidobacterium adolescentis (Kawabata 
et al. 2013)

↓inflammation, ↓NO

Bifidobacterium lactis (H, M) (Philippe 
et al. 2011a)

↓inflammation, ↓TNF-α, ↓IL-6

Mycobacterium paratuberculosis (H, M) 
(Momotani et al. 2012)

↑inflammation, ↑colitis

Propionibacterium freudenreichii (H, M) 
(Uchida et al. 2007)

↑bacterial homeostasis, ↓IBD

Propionibacterium acnes (H, M, F) (Sibley 
et al. 2008)

↑inflammation
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for UC even though it may increase the risk for CD (Radford-Smith et al. 2002; 
Kaplan et al. 2008). Also, psychological factors affect the onset and progression of 
the disease, such as anxiety and depression that exacerbate IBD (Goodhand et al. 
2012). While IBD patients may find it difficult to exercise (Bilski et al. 2014), 
recent evidence shows that exercise is associated with anti-inflammatory effects 
and prevention of colon cancer (Aoi et al. 2013).

7.3  Treatments

7.3.1  Diagnosis and Prognosis

The world gastroenterology organisation has released practice guidelines for the 
diagnosis and management of IBD (Bernstein et al. 2010). Currently, the use of 
video capsule endoscopy provides additional clinical information, treatment 
adjustments and better outcomes in children with IBD (Min et al. 2013). IBD or 
colon cancer history in the family is an indicator of possible genetic predisposi-
tion or environmental factors within the family environment. Intestinal inflam-
mation symptoms vary from mild to severe and are attributed to UC if there is 
continuous inflammation in the colonic mucosa accompanied by frequent bloody 
diarrhea. In CD there is discontinuous transmural inflammation in any part of the 
alimentary canal, diarrhea with abdominal pain and tissue defects like ulcers and 
deep fissures. Two serological antibodies, perinuclear anti-neutrophil cytoplasmic 
antibody (p-ANCA) and anti-Saccharomyces cerevisiae antibody (ASCA) indica-
tive of heightened immune response (Konrad et al. 2004; Walker et al. 2011) are 
certified as IBD diagnostic tools, however the number of biomarkers is rising 
(Meuwis et al. 2007; Han et al. 2013). Proteomic studies investigate biomarkers 
that aid in early diagnosis and classification of IBD through a selection of method-
ologies in sera, tissue and fecal samples (Bennike et al. 2014). Such simple non-
invasive tests could identify IBD and possibly help prognosis and the development 
of  personalised treatments.

Due to the multivariable nature of the disease, it is difficult to predict how IBD 
will progress. As with most diseases, the earlier the stage of IBD diagnosis the bet-
ter the prognosis. However, the disease type and manifestation can provide some 
clues for the patient’s prognosis. The presence of perianal disease is associated 
with 3–4 fold increased risk for severe disease (Tarrant et al. 2008). Furthermore, 
if the disease affects the small bowel instead of the colon, there is faster progres-
sion to complicated disease (Tarrant et al. 2008). Mucosal healing is a sign of good 
prognosis in both UC and CD and is linked with disease remission and decreased 
need for active therapy (Froslie et al. 2007; Baert et al. 2010). Serum biomarkers 
are another method of investigating the disease prognosis. Levels of the bacterial 
antigen I2, ASCA and anti-E. coli outer membrane porin protein C antibodies have 
been found to be correlated with a more perforating disease, strictures, fibroste-
nosis and the need for small bowel surgery (Mow et al. 2004). C-reactive protein 
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(CRP) is an indicator of prognosis in a number of diseases and in inflammatory 
bowel disease (Keshet et al. 2009). Elevated CRP indicates active disease and is 
associated with a more severe clinical course, with better response in infliximab 
treatment (Solem et al. 2005; Koelewijn et al. 2008). Other studies have also vali-
dated a panel of serological markers with antibody response to be associated with 
disease progression. For example, anti-neutrophil cytoplasmic (ANCA), anti-
CBir1 Flagellin and anti-glycan antibodies have been used to distinguish disease 
type and been correlated with disease prognosis (Papp et al. 2008; Dotan 2010; 
Kovacs et al. 2014). Anti-CBir1 and pANCA expression have been correlated 
with ileal pouch anal anastomosis and the pouchitis in UC patients (Fleshner et al. 
2008). ASCA antibody reactivity is associated with stenosing and penetrating CD 
behaviour with increased need for surgery in children and adults (Dubinsky et al. 
2008). Pancreatic autoantibodies for glycoprotein 2 (GP2) and CUB/zona pellu-
cida-like domain-containing protein 1 (CUZD1) have been recently implicated in 
the diagnosis of UC and CD but further research is needed for their correlation 
with any prognostic value (Roggenbuck et al. 2009; Komorowski et al. 2013).

7.3.2  Drugs and Surgery

Management of UC and CD have been proposed by the European evidence-based 
consensus panel of the European Crohn’s and Colitis Organisation in 2010 and 
2012 (Dignass et al. 2010, 2012). Drug treatment of IBD is focused on the reduc-
tion of inflammation in the gastrointestinal tract. Aminosalicylates, such as sul-
fasalazine and mesalazine, are usually the first anti-inflammatory drugs used for 
the treatment of active and quiescent UC, but not CD (Nielsen and Munck 2007). 
Corticosteroids are commonly used as anti-inflammatory agents in both CD and 
UC. They act by inhibiting various inflammatory pathways and induce remis-
sion and minimize the chances of a relapse. These can be delivered orally, intra-
venously or through suppositories for direct absorption. However, steroids have a 
number of side effects therefore an initial high dose is administered in conjunction 
with other regiments to counteract the side effects, and a steady dose reduction 
until complete withdrawal from steroids (Mowat et al. 2011). If steroids are inef-
fective, then intensification of treatment or surgical intervention is considered. Up 
to 1 in 4 patients with UC and up to 70 % of patients with CD will require sur-
gery (Hoie et al. 2007). This is usually required if the disease progresses without 
responding to therapies, upon extensive damage with chronic severe symptoms or 
increased risk of malignancy. Half of operated CD patients will need to do another 
surgery due to disease relapse (de Buck van Overstraeten et al. 2012). However it 
is mostly preferred to maintain a remission status through alternative treatments 
before proceeding to any surgical intervention.

The use of non-steroidal anti-inflammatory drugs (NSAIDS) is not recom-
mended because they may cause gastrointestinal toxicity and mucosal injury and 
have been associated with the onset or relapse of IBD (Klein and Eliakim 2010). 
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Azathioprine (AZA) and 6-mercaptopurine are routinely used as non-steroids 
for the treatment of UC and CD, despite the concerns about toxicity (Ardizzone 
et al. 2006; Prefontaine et al. 2009; Chande et al. 2013). Antibiotics are impor-
tant in the treatment of secondary complications of IBD as they control bacterial 
overgrowth and abscess formation (Castiglione et al. 2003). Ciprofloxacin, met-
ronidazole, rifaximin and ornidazole are antibiotics with antimicrobial action that 
have been found to be beneficial for the treatment of perianal CD and pouchi-
tis (Kale-Pradhan et al. 2013). Calcineurin and methotrexate are some other 
drugs that have been found to be beneficial in treating UC and CD respectively 
(Mowat et al. 2011). Patients that have failed to respond to standard immunosup-
pression therapies are given antibodies against Tumor Necrosis Factor α (anti-
TNFα), namely Infliximab or Adalimumab. TNF can promote chronic colitis by 
suppressing glucocorticoid (anti-inflammatory steroid hormones related with 
decreased IBD severity) synthesis in the intestine (Huang et al. 2014). Infliximab 
and Adalimumab block effectively the pro-inflammatory effects of TNFα in both 
UC and CD, but patients might experience other inflammatory disorders as a side 
effect (Rutgeerts et al. 2005; Hanauer et al. 2006; Niess and Danese 2014).

7.3.3  Diet and Probiotics

Malnutrition has been observed in up to 50 % of IBD hospitalised patients and is 
an indicator of disease severity (Nguyen et al. 2008). Therefore, frequent analysis 
of nutrient uptake should be performed to assess if nutrient supplements (vitamins, 
iron, calcium, proteins) should be provided especially when significant weight loss 
is observed. Diet may directly affect bacterial diversity in the gut, shape the abnor-
mal microbiota composition and restore intestinal balance. For example, semi-vege-
tarian diet has been investigated in CD patients that achieved remission and found to 
significantly prevent relapse in 15 out of 16 patients (Chiba et al. 2010). Probiotics, 
like Lactobacillus and Bifidobacterium species, have been found to prevent pouchi-
tis and alleviate symptoms by inducing and maintain remission of ulcerative colitis 
(Bibiloni et al. 2005; Gionchetti et al. 2003). A probiotic cocktail of four strains of 
Lactobacillus, three strains of Bifidobacterium and Streptococcus salivaris has been 
tested in humans and mice and found to alleviate IBD by inducing IL-10 and TGFβ 
expressing cells (Bibiloni et al. 2005; Di Giacinto et al. 2005). Additional studies 
corroborating these findings show that Lactobacillus species may decrease pro-
inflammatory cytokines and intestinal inflammation (Schultz et al. 2002; Ma et al. 
2004; Foligne et al. 2007). Pathogen induced inflammation can also be controlled by 
probiotics. For example, Bifidobacterium infantis decreases the levels of pro-inflam-
matory cytokines and inflammation upon Salmonella infection by regulating T cells 
induction and NF-κΒ activation in mice (O’Mahony et al. 2008). Fecal microbiota 
transplantation is a newer approach with promising results as it is associated with 
beneficial changes in fecal bacterial diversity and it was successful in treating IBD 
in a number of cases (van Nood et al. 2013; Kao et al. 2014; Kunde et al. 2013).
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7.3.4  Clinical Trials

A number of human clinical trials are on-going around the world to investigate 
promising biological agents and various drugs towards their efficacy in IBD. For 
UC and CD children that do not respond to conventional therapies a clinical trial 
(Identifier: NCT02150551) has been initiated that will assess intravenously allo-
geneic bone marrow-derived mesenchymal stromal cells for their ability to locate 
inflammation, decrease pro-inflammatory cytokines and promote tissue repair. 
Moreover, new drugs and biomarkers are being tested in humans, such as AST-
120 (Identifier: NCT00321412) and serum calprotectin (Meuwis et al. 2013). 
Humanised monoclonal antibodies against cytokines, such as anti-IL-2 recep-
tor are investigated against moderate to severe UC (Identifier: NCT00073047). 
Several studies are using fecal microbiota transplantation or bacteriotherapy 
in treating IBD (Identifiers: NCT01560819, NCT02108821, NCT01793831, 
NCT01757964).

7.4  Advances and Overlapping Findings in Ibd and Cancer 
Research with the Use of Mouse and Fly Models

7.4.1  Mouse Models

In recent years animal models of inflammatory bowel disease have been developed 
to assist researchers in investigating IBD. Mouse is a very good model organism 
because it retains much of the complexity of human biology while being experi-
mentally fairly manageable. There are two groups of inflammatory bowel disease 
models, the chemically-induced and the genetically-predisposed mouse mod-
els. Intestinal inflammation can be triggered by chemicals like dextran sodium 
sulphate (DSS), TNBS/DNBS and Oxazolone. DSS induced colitis is the most 
widely used chemical model due to its ability to induce both acute or chronic coli-
tis depending on the protocol (Okayasu et al. 1990). Feeding mice with DSS in 
the drinking water for several days induces acute colitis accompanied by ulcera-
tions, bloody diarrhea and infiltration with granulocytes (Wirtz and Neurath 2007). 
Various mouse but also human studies have shown that underneath the gut epi-
thelium, lamina propria immune cells, such as macrophages, dendritic cells and 
T-cells, respond to microbial products and tissue damage to produce cytokines, 
such as TNFα, and attract neutrophils and innate lymphoid cells (ILCs) and acti-
vate further macrophages, T cells and other tissue cells (Rimoldi et al. 2005; 
Zaph et al. 2007; Coccia et al. 2012; Kang et al. 2012; Peterson and Artis 2014). 
For example, Helicobacter hepaticus has been found to enhance recruitment of 
granulocytes and ILCs in the gut causing intestinal inflammation through IL-23 
and IL-1β signalling (Kullberg et al. 2006; Coccia et al. 2012). TNFα stimu-
lates angiogenesis, epithelial cell death, DNA damage through reactive oxygen 
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species and promotes cellular transformation (Yan et al. 2006). IL-6 and IL-22 
cytokines, are secreted by macrophages and dendritic cells or T cells and ILCs 
respectively to activate the transcription factor STAT3. Under physiological con-
ditions, activated STAT3 maintains intestinal regeneration of epithelial cells and 
activates the production of mucus and antimicrobial peptides, such as defensins 
and regenerating islet derived (REG) proteins (Zindl et al. 2013). However, activa-
tion of the transcription factor STAT3 in genetically predisposed epithelial cells 
by IL-6 and IL-22 may also promote stemness and colorectal cancer development 
(Grivennikov et al. 2009; Kirchberger et al. 2013; Kryczek et al. 2014).

In conjunction with a carcinogen, such as azoxymethane (AOM), chronic 
inflammation in mice leads to the development of colorectal cancer (Tanaka 
et al. 2003). As an alternative, transgenic mice provide a sensitised genetic back-
ground that can be used to directly investigate particular molecular mechanisms of 
inflammation and its contribution to carcinogenesis. Interleukin-10 (IL-10) defi-
cient mice, for example, exhibit spontaneous colitis and adenocarcinoma associ-
ated with aberrant cytokine production and T cell responses (Berg et al. 1996). 
To investigate the pathogenesis of intestinal cancer, adenomatous polyposis coli 
gene (APC) mutant mice are one of the first models to be used for the develop-
ment of intestinal adenomas (Oshima et al. 1995). These models have also been 
used in combination with bacterial infections to study the role of intestinal micro-
biota in IBD because inflammation and cancer do not develop in germ free mice 
(Gkouskou et al. 2014). Increased Enterobacteriaceae and Bacteroides levels are 
correlated with intestinal inflammation in DSS and IL-10 deficient mice (Bloom 
et al. 2011; Arthur et al. 2012; Hakansson et al. 2014). Moreover, Fusobacterium 
nucleatum and enterotoxigenic Bacteroides fragilis have the potential to induce 
colon cancer (Wu et al. 2009b; Kostic et al. 2013). Genotoxic and adherent inva-
sive Escherichia coli have also been linked with colon cancer where they were 
found to cause genomic instability through their polyketide synthase (pks) geno-
toxic island and promote invasive carcinoma in a mouse model (Arthur et al. 2012; 
Sears and Garrett 2014). The extent to which inflammation plays a role in the 
models of intestinal carcinogenesis it is still an open question.

7.4.2  Fly Models

Drosophila research is facilitated by a wealth of genetic tools for the investigation 
of innate immunity and intestinal pathophysiology. It is a relatively fast, cheap and 
easy to use organism with significant similarities to the digestive tract of humans. 
The digestive tract of mammals goes through the esophagus and into the stom-
ach for digestion; the nutrients are absorbed in the small and large intestine and 
are excreted from the rectum. In flies a similar process follows the consumption 
of food, as it passes through the foregut and into the crop; absorption takes place 
in the midgut and hindgut and waste products eventually exit through the anus 
(Apidianakis and Rahme 2011). Also tissue architecture and regeneration in both 
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flies and mice depend on intestinal stem cells that give rise to enteroblasts or tran-
sit amplifying cells, which develop into enterocytes or secretory cells through con-
served signaling pathways (Apidianakis and Rahme 2011). The simpler immune 
system of the fly reduces the complexity and enables the easier study of human 
intestinal microbes and their relation to the host defense responses that lead to dis-
ease (Panayidou et al. 2014). Furthermore, infectious disease and cancer studies in 
Drosophila are facilitated by established techniques for large scale in vivo RNAi 
and drug testing (Tzelepis et al. 2013).

Drosophila intestinal homeostasis and pathology upon infection or aging 
is guided by conserved signaling pathways (Apidianakis and Rahme 2011) 
(Fig. 7.1). Drosophila lacks adaptive immunity but its innate immune system is 
well conserved (Lemaitre and Hoffmann 2007). Microbicidal reactive oxygen spe-
cies (ROS) are produced by the NADPH oxidase Duox forming a line of defense 
in the intestinal mucosa (Ha et al. 2005). The NF-κB/Imd and JAK-STAT serve as 
an additional level of defense controlling intestinal antimicrobial peptide (AMP) 
production (Buchon et al. 2009b; Lee and Lee 2014). Drosophila gut regeneration 
serves as a third line of defense against intestinal infection and stress (Panayidou 
et al. 2014). While stem cell-mediated proliferation and differentiation maintain 
intestinal homeostasis (Micchelli and Perrimon 2006; Ohlstein and Spradling 
2006), intestinal infection or enterocyte stress or damage or aging induce regen-
erative inflammatory signaling via the JNK and JAK-STAT signaling pathway 
(Apidianakis et al. 2009; Biteau et al. 2008; Buchon et al. 2009b; Cronin et al. 
2009; Jiang et al. 2009; Panayidou and Apidianakis 2013).

Flies constitutively activating the NF-κB/Imd pathway in the gut exhibit an 
intestinal inflammation-like condition, accompanied by dysbiosis that leads to gut 
cell apoptosis and premature death (Ryu et al. 2008). These flies produce AMPs 
excessively, which lead to dysbiosis, characterized by pathobiont proliferation and 
intestinal damage (Lee and Lee 2014). Interestingly, inhibition of the NF-κB/Imd 
pathway results in high colonization with gut commensals, which leads to faster 
intestinal regeneration and hyperplasia because of concomitant excessive ROS 
production by Duox (Buchon et al. 2009a). Similarly, Duox loss of function in 
transgenic flies increases death rate after a rather mild bacterial infection, while 
Duox overexpression leads to enterocyte damage via excessive ROS production 
(Ha et al. 2005). A recent study showed that chronic activation of Foxo, a tran-
scription factor found to repress peptidoglycan recognition protein SC2 (homolog 
of human anti-inflammatory molecule PGLYRP1-4 and negative regulator of the 
NF-κB/Imd pathway), induces immunosenescence in aging enterocytes caus-
ing commensal dysbiosis and intestinal epithelial dysplasia (Guo et al. 2014). 
Furthermore overexpression of PGRP-SC2 in enterocytes prevents dysbiosis and 
extends life span, emphasizing the importance of bacterial balance and gut homeo-
stasis in host longevity (Guo et al. 2014). Similarly to mice, germ free flies reverse 
the effect of genetic- or aging-driven and host defense-mediated intestinal damage 
(Guo et al. 2014; Lee and Lee 2014).

Genetically predisposed flies have also been investigated in the context of 
intestinal defense response-driven tumorigenesis. Infection with Pseudomonas 
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aeruginosa, a Gram-negative opportunistic pathogen, induces enterocyte apoptosis 
and mediates intestinal stem cell regeneration via c-Jun N-terminal kinase path-
way activation (JNK) (Apidianakis et al. 2009). When flies are predisposed with 
a latent Ras1 oncogene, P. aeruginosa infection stimulates extreme stem cell pro-
liferation and intestinal dysplasia, illustrating a synergy between bacterial infec-
tion and genetic predisposition (Apidianakis et al. 2009). Furthermore, persistent 
bacterial infection activates the Imd-dTab2-dTak1 innate immune pathway, which 
synergizes with the Ras1 V12 oncogene to induce extracellular matrix degradation, 
basal invasion and hindgut cell dissemination to distant sites (Bangi et al. 2012; 
Christofi and Apidianakis 2012).

7.4.3  Perspectives on the Parallels Observed Between 
Mammals and Flies

Inflammatory bowel diseases have been on the rise during the last decades. There 
are a number of etiologies for IBD, such as, the westernization of life style, 
genetic predisposition, dysbiosis and prolonged use of antibiotics. Treatment strat-
egies have also been updated with new drugs and probiotic cocktails that seem 
to alleviate the disease. However, the diverse responses to these treatments sug-
gest the need for more personalized therapies tailored for each patient. The use of 
models organisms is invaluable for the study of this multifactorial disease, open-
ing a new era for UC and CD understanding and treatment. Nevertheless many 
questions remain unanswered: Which synergisms among diet, microbiota and 
host genetics trigger IBD and inflammation-driven tumorigenesis? Consequently, 
which combinations of diets and microbiota may eliminate dysbiosis, IBD and 
inflammation-driven tumorigenesis? Given the differences between humans and 
mice in inflammatory response (Seok et al. 2013), to what extent are mouse and 
fly data translatable into therapies for humans?

While answers to these questions may come from further studies on humans, 
mice and flies, model organisms already provide some consensus on the signals 
that drive intestinal inflammation-driven tumorigenesis (Fig. 7.1) that should be 
relevant to human disease. Lessons from mice during the last few years indicate 
among others that innate immune cells (ILCs, dendritic cells, macrophages and 
neutrophils) secrete IL6/IL22 to induce intestinal epithelium cell proliferation 
and innate immunity (mucus, AMPs) via STAT3 signaling (Takeda et al. 1999; 
Grivennikov et al. 2009; Pickert et al. 2009; Wittkopf et al. 2011; Murano et al. 
2014). Also EGFR pathway is induced in epithelial cells by ligands (Epiregulin, 
Amphiregulin) expressed in epithelial cells and myofibroblasts (Nishimura et al. 
2008) and intestinal defense response NADPH oxidases, Nox1 induces epithelial 
regeneration (Jones et al. 2013). Interestingly, innate and adaptive immune cells 
produce TNF and IFN to induce enterocyte apoptosis, but these same signals pro-
mote tumorigenesis upon genetic predisposition (Neurath 2014).
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Some striking parallels come from fly studies of the last few years (Fig. 7.1). 
Drosophila intestinal cells (enterocytes, progenitor cells and intestinal muscle) 
induce regenerative inflammatory signaling and AMPs via JAK-STAT signal-
ing (Apidianakis et al. 2009; Buchon et al. 2009b; Jiang et al. 2009). Also EGFR 
pathway is induced in intestinal stem cells (ISCs) by ligands (Vein, Spitz, Keren) 
expressed in neighboring muscle and epithelial cells (Biteau and Jasper 2011; Xu 
et al. 2011) and intestinal defense response NADPH oxidase, dNox induces epi-
thelial regeneration (Jones et al. 2013). Lastly, Drosophila TNF/Egr is induced 
by phagocytes (plasmatocytes) inducing apoptosis in epithlelial cells, but pro-
motes proliferation of tumorigenic cells (Cordero et al. 2010). Thus modeling in 
Drosophila is not only poised to identify new genes pertinent to intestinal inflam-
mation and inflammation-driven tumorigenesis, but may also provide insights and 
reinforce observations on some basic principles of disease development.
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Abstract Protein quality control is an essential process for cellular survival. 
When protein damage occurs, a series of coordinated response mechanisms repair 
or degrade damaged proteins to avoid the accumulation of toxic protein aggregates 
and restore proteostasis. However, the amount of misfolded proteins increases 
during aging overwhelming the mechanisms responsible for protein quality con-
trol, thus leading to the development of several age-dependent neurodegenerative 
disorders. Interestingly, targeted expression of proteins causative of these dis-
eases in flies reproduces the pathological behaviors seen in humans. This remark-
able conservation provides a valuable experimental tool to elucidate the complex 
mechanisms associated with the maintenance of proteostasis. In this chapter, we 
summarize how Drosophila has contributed to understand the roles of the heat 
shock response, the unfolded protein response, autophagy and the ubiquitin pro-
teasome system in brain aging and neurodegeneration associated with protein-
misfolding disorders. In addition, we describe fundamental contributions of the fly 
system to the design of new therapeutic strategies for these devastating disorders.
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8.1  Introduction

Protein quality control or proteostasis refers to the cellular processes involved in 
the biogenesis, folding, maturation, distribution, and degradation of proteins in dif-
ferent cellular compartments. These activities are critical for proper cell function 
because they maintain active proteins and organelles, and also prevent the accu-
mulation of toxic unfolded/misfolded proteins. When protein damage occurs, a 
series of coordinated response mechanisms repair or degrade damaged proteins 
to avoid the accumulation of toxic protein aggregates that can, ultimately, lead 
to cell death. Protein toxicity can be the result of different alterations in protein 
homeostasis associated with aberrant folding and aggregation, leading to the so-
called proteinopathies or protein misfolding disorders. The most common causes 
of these disorders include missense mutations, abnormal post-translational modi-
fications, protein overexpression, and exogenous stressors, including temperature 
and chemicals among others. Most of the cellular machinery implicated in protein 
quality control is essential for cell survival, highlighting the importance of protein 
homeostasis. This is particularly true for neurons, because of their weak capacity 
to regenerate and their long life span. It is, thus, obvious that maintaining protein 
homeostasis is critical for healthy brain aging and longevity.

A complex network of conserved cellular processes controls the quality of 
the proteome and restores proteostasis following the aberrant accumulation of 
misfolded proteins. This protective network can be grouped into mechanisms 
that detect and respond to protein unfolding/misfolding, which include the heat 
shock response (HSR) and the unfolded protein response (UPR), and mechanisms 
responsible for abnormal protein degradation, which comprises autophagy and the 
ubiquitin proteasome system (UPS). All four processes are highly integrated to 
prevent the cellular toxicity associated with the accumulation of protein aggregates 
(Fig. 8.1).

A particular group of human disorders has played a critical role in the char-
acterization of protein quality control pathways in neuronal survival, the so-
called protein-misfolding diseases or proteinopathies. A large number of human 
diseases are associated with protein misfolding, which can affect specific organs 
(brain, muscle, eye, skin) or have systemic effects (Valastyan and Lindquist 
2014). Currently, more than 30 different human diseases are linked to aberrant 
protein accumulation, including the highly prevalent Alzheimer’s disease (AD), 
Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS), which have a 
mostly sporadic etiology. A large number of rare genetic conditions also have pro-
tein aggregation as the main trigger, including Huntington’s disease (HD) and sev-
eral spinocerebellar ataxias. These disorders have distinct clinical presentations, 
affect different parts of the brain, and are caused by the misfolding and aggrega-
tion of unrelated proteins, which can be either wild type or mutant. A common 
thread to these diverse disorders, though, is that they all have late onset presenta-
tion. This link is revealing because in the genetic diseases the triggering protein 
is expressed throughout the lifetime, but several decades go by without clinical 
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signs. This observation suggests that the cellular machinery that controls protein 
homeostasis prevents protein aggregation and neuronal cell death for several dec-
ades. Then, in middle to old age, the same machinery seems to be overwhelmed by 
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Fig. 8.1  Impact of aging and disease in cellular proteostasis. Under physiologic conditions, the 
heat shock response (HSR), the unfolded protein response (UPR), and two catalytic pathways 
(autophagy and UPS) cooperate to prevent the aggregation and toxicity of misfolded proteins. 
Heat shock proteins (HSPs) act as the first line of defense by binding misfolded substrates, pro-
moting their refolding, and directing their degradation through chaperone-mediated autophagy 
(CMA). In the ER, accumulation of misfolded proteins activates the three UPR pathways that 
alter gene expression to restore proteostasis, including the up-regulation of ER associated deg-
radation (ERAD). When misfolded proteins escape HSPs, they accumulate and aggregate in the 
cytosol, where become substrates for degradation by autophagy and the UPS. This complex, 
coordinated system maintains cellular proteostasis for decades and is critical for the function 
of post-mitotic neurons. However, protein misfolding disorders and aging place the proteostasis 
machinery under stress by overproducing misfolded proteins and reducing the cellular response 
to insults. Misfolded proteins saturate the response systems and prevent the regular turnover of 
old proteins and organelles. Aging is known to weaken gene expression of all stress-response 
pathways, thus dampening the ability to protect the cell. The combination of both stressors may 
be at the heart of multiple late-onset neurodegenerative disorders
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the accumulation of misfolded proteins and an age-related decrease in the expres-
sion of key factors of the quality control pathways. Overall, the tight connection of 
aging with protein-misfolding diseases enables the study of the cellular machinery 
that keeps protein quality in check during normal brain physiology and aging. In 
this chapter we summarize the proteostasis mechanisms, and how Drosophila has 
contributed to understand their roles in brain aging and neurodegeneration associ-
ated with protein-misfolding disorders.

Several model systems have been employed to investigate the pathways and 
protein interactions involved in proteostasis, including in vitro and cell culture 
paradigms. The small fruit fly Drosophila melanogaster has proven a useful tool 
for the study of multiple human disorders, protein misfolding diseases and aging. 
Around 75 % of human genes associated with human diseases have a homologous 
in Drosophila. Moreover, the low cost and easy handling make this small fly an 
excellent model organism. Another advantage of Drosophila is the large number of 
genetic tools available for gene manipulation (loss-of-function and gain-of-func-
tion alleles), tissue specific gene expression with the UAS/GAL4 system, temporal 
control of gene expression with Gal80TS, and the recent introduction of markers 
of neuronal architecture and function (del Valle Rodriguez et al. 2011).

Drosophila has also contributed significantly to understand human protein 
misfolding diseases. A large number of these diseases have been modeled in flies 
because the proteins causative of these diseases in human exhibit the same aber-
rant behavior in flies and, thus, misfold, aggregate, and induce toxicity in the 
Drosophila brain and eyes (Rincon-Limas et al. 2012). Interestingly, Drosophila 
models have played a critical role in unraveling the cellular mechanisms under-
lying disease pathogenesis. Indeed, unbiased genetic screens have revealed the 
involvement of unsuspected genes and pathways. Moreover, candidate approaches 
allowed the efficient testing of hypotheses in vivo, confirming the role of sus-
pected pathways, including chaperones and autophagy. Finally, these models have 
also been used to examine the effectiveness of pharmacological modulators of sus-
pected pathways, providing in vivo information that can shorten the path to the 
translation of effective therapies in humans.

8.2  Molecular Chaperones: The Cell First Line of Defense

Molecular chaperones are ubiquitous and highly conserved proteins with a main 
role in protein homeostasis. They recognize and bind unfolded and misfolded pro-
teins to prevent aggregation and promote refolding. Chaperones were first identi-
fied through their transcriptional response to heat stress in Drosophila, but they 
can respond to several stresses such as cold, ischemia, hypoxia, oxidative stress, 
proteotoxic stress, chemicals, and heavy metals. Heat shock proteins (HSPs) are 
the major group of molecular chaperones inside the cell, and include several fami-
lies with distinct localization in organelles and cellular compartments, and differ-
ent functions (Kim et al. 2013).
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HSPs contain a substrate-binding domain (SBD) that recognizes short hydro-
phobic stretches on unfolded/misfolded client proteins and this interaction is 
the first key step to prevent their aggregation. In fact, in the absence of chaper-
ones, proteins with exposed hydrophobic stretches self-associate creating aggre-
gates that can be unstructured or highly ordered into amyloid fibers (Douglas 
and Cyr 2009). Some HSPs contain ATPase domains and cooperate with ATP-
independent co-chaperones to efficiently bind and refold substrates. HSPs are clas-
sified based on their molecular weight, ranging from small HSPs with less than 
30 kDa to large proteins over 100 kDa. Each family comprises several members 
with different tissue and subcellular distribution (Voisine et al. 2010).

8.2.1  The Hsp70/Hsp40 System

The Hsp70 family is among the most conserved proteins in the animal world. 
Their main role is to promote the correct protein folding of both nascent and 
mature proteins by recognizing exposed hydrophobic residues on unfolded or mis-
folded substrates, and prevent their aggregation. Structurally, Hsp70 chaperones 
have two major functional domains: an N-terminal nucleotide binding domain 
(NBD) that binds ATP and hydrolyzes it to ADP and a C-terminal SBD that inter-
acts with exposed linear hydrophobic segments. In its ATP-bound state, Hsp70 
binds substrates with low affinity. ATP hydrolysis to ADP forces a conformational 
change in the SBD that increases the affinity for the substrate. Then, interaction 
with a nucleotide exchange factor restores ATP binding of Hsp70, which forces the 
release of the client protein, completing the Hsp70 cycle. Although Hsp70 exerts 
a potent refolding activity in vitro, the Hsp40 family regulates Hsp70 cycling in 
vivo. Hsp40s are ATP-independent chaperones characterized by a J-domain that 
interacts with the NBD of Hsp70 and stimulates ATP hydrolysis, thus strength-
ening the interaction with the client protein. In vitro studies suggest that Hsp40 
first binds client proteins and presents them to the SBD of Hsp70 while stimulat-
ing ATP hydrolysis in the NDB domain, therefore enhancing Hsp70 refolding effi-
ciency (Young 2010).

The characterization of several brain disorders linked to protein misfolding 
and deposition suggested that HSPs should be involved in the pathogenesis and 
could also play a role in therapy. Initially, a study in cell culture showed that over-
expressed Hsp70 co-localized with mutant Ataxin1 (Atx1-82Q) in nuclear inclu-
sions, which pointed to a stress response against pathogenic protein aggregation. 
To determine whether increased Hsp70 activity could harbor a protective role 
against protein aggregates, Warrick and cols. overexpressed HSPA1L, a human 
inducible Hsp70, in Drosophila showing aberrant eye morphology linked to 
mutant Ataxin3 (Atx3tr-78Q). Co-expression of HSPA1L completely suppressed 
the aberrant phenotype caused by Atx3tr-78Q, indicating the critical role of Hsp70 
in the toxicity of this aggregate-prone polyglutamine allele (Warrick et al. 1999). 
Moreover, co-expression of Atx3tr-78Q and a constitutive Drosophila Hsp70 
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(Heat shock cognate 4, Hsc4) carrying the K71S substitution that inactivates the 
ATPase activity enhanced neurotoxicity, suggesting that the endogenous activity 
of Hsp70 mitigates the toxicity of Atx3tr-78Q. A prediction from these results was 
that Hsp70 overexpression would exhibit the same protective activity against other 
polyglutamine expansions, since the same mutation was responsible for the aber-
rant protein folding in a different protein. Spinal-bulbar muscular atrophy (SBMA) 
is linked to a polyglutamine expansion in the androgen receptor (AR) and expres-
sion of the mutant allele in flies induces neurotoxicity. As expected, co-expression 
of HSPA1L rescued the toxicity of AR-108Q, confirming the beneficial effect of 
Hsp70 against related misfolded substrates (Chan et al. 2000).

The next question in the field was whether Hsp70 could exert the same neu-
roprotective activity against other toxic amyloids unrelated to the polyglutamine 
expansions. The same lab addressed this question in a Drosophila model express-
ing α-synuclein, the most abundant protein in Lewy bodies, typically found aggre-
gating in PD patients. HSPA1L not only co-localized with α-synuclein aggregates 
but also increased the survival rate of dopaminergic cells (Auluck et al. 2002). In 
contrast, co-expression of α-synuclein and dominant-negative Hsc4 resulted in 
increased dopaminergic cell death without changing the number of Lewy body-
like aggregates (Auluck et al. 2002). Additionally, the prion protein (PrP), a 
membrane-anchored glycoprotein widely expressed in the brain, leads to aggres-
sive vacuolar degeneration when misfolds. We asked whether Hsp70 could exert 
a protective activity against PrP misfolding in vivo either by indirectly maintain-
ing intracellular homeostasis or directly by exiting the cell and interacting with 
PrP. To our surprise, we found that Hsp70 overexpression protected against PrP 
toxicity, reduced PrP levels, and inhibited PrP misfolding (Fernandez-Funez et al. 
2009). Since we found that Hsp70 co-immunoprecipitated with PrP, Hsp70 seems 
to mediate its protective effects by binding directly to PrP at the membrane. This 
ability of Hsp70 and other chaperones to exit the cell has been described previ-
ously, but is associated with stressful conditions (Pittet et al. 2002; Fleshner and 
Johnson 2005). Thus, HSPA1L is beneficial against a wide variety of misfolded 
proteins that accumulate in the nucleus, cytosol, and the extracellular space.

With Hsp70 working as a potent suppressor of toxicity, the potential protec-
tive activity of other chaperones emerged over the next few years. Two independ-
ent screens for modifiers of Atx1-82Q and 65Q-only toxicity in flies identified 
the protective activity of dDnaJ-1/Hsp40 overexpression (Fernandez-Funez et al. 
2000; Kazemi-Esfarjani and Benzer 2000). Interestingly, Hsp40 overexpression 
altered the distribution of nuclear inclusions of Atx1-82Q, which appeared to 
coalesce into a single compact aggregate per nucleus, suggesting a link between 
aggregate distribution and toxicity (Fernandez-Funez et al. 2000). Further prove 
of the protective activity of Hsp70 came from overexpression of the Drosophila 
orthologue of human Hdj-1/Hsp40 in fly models of polyglutamine toxicity. Flies 
overexpressing dHdj1 strongly suppressed Atx3tr-78Q toxicity, but only partially 
suppressed the toxicity of mutant Huntingtin (Htt-120Q). On the other hand, elim-
ination of the J-domain or mutation of the SBD enhanced the toxicity of Atx3tr-
78Q, suggesting that mutant dHdj1 behaves as a dominant-negative by blocking 
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the protective activity of endogenous factors, i.e., Hsp70. However, expression of 
a second orthologue, dHdj2, partially rescued Atx3tr-78Q and did not rescue Htt-
120Q, indicating that Hsp40s exhibit substrate selectivity. Moreover, a coordinated 
overexpression of both, dHdj1 and Hsp70 showed an even stronger protection 
(Chan et al. 2000; Bonini 2002). This different function supported the theory that 
chaperones from the same family can recognize different substrates and, in conse-
quence, exert different functions (Bonini 2002). Interestingly, these studies failed 
to observe changes in nuclear inclusions, which suggested a decrease in protein 
neurotoxicity without reductions on protein aggregation (Chan et al. 2000).

Subsequent studies demonstrated that, besides Hsp70, other chaperones coop-
erate with Hsp40 to mitigate protein toxicity. Kuo and collaborators described a 
chaperone capable of enhancing the protective effect of DNAJ-1, Hsp70bc, an 
orthologue of human Hsp110. Despite the structural and functional conservation 
with Hsp70, Hsp70bc did not rescue polyQ toxicity on its own. However, Hsp70bc 
enhanced the protective activity of Hsp40, whereas inactivation of its ATPase 
domain led to a complete loss of  such protective function (Kuo et al. 2013), dem-
onstrating the cooperative activity of HSPs.

Another interesting member of the Hsp40 family of chaperones are the 
cysteine-string proteins (CSPs). CSPs contain the characteristic N-terminal J 
domain that recognize and bind to Hsc70/Hsp70 proteins promoting their ATPase 
activity (Miller et al. 2003; Zinsmaier 2010). Under physiological conditions, 
CSPs participate on the maintenance of synaptic function and structure by regu-
lating the Soluble NSF Attachment Protein Receptor (SNARE) complex assembly 
and modulating presynaptic Ca2+ channels activity (Zinsmaier 2010). In addi-
tion, CSP chaperone activity could impede neurodegeneration by preventing toxic 
accumulation of misfolded synaptic proteins. However, when abnormal protein 
aggregation occurs in the neurons, sequestration of CSPs by the toxic aggregates 
compromise CSP function, reducing synapsis and triggering neurodegeneration 
(Miller et al. 2003; Fernandez-Chacon et al. 2004; Zinsmaier 2010). Recently, 
Wang et al. described that overexpression of Hip, a co-chaperone that enhanced 
and stabilized binding of Hsp70 to its substrates, promotes client protein’s ubiquit-
ination and poly Q-Androgen receptor clearance. In this regard, YM-1, a synthetic 
co-chaperone similar to Hip, led to similar results when supplied to a Drosophila 
model of SBMA. Thus, allosteric activators of Hsp70 can be used as new thera-
peutic approaches against the protein aggregation that occurs during age-depend-
ing neurodegenerative disorders (Wang et al. 2013).

8.2.2  Hsp90

Hsp90 is the most conserved chaperone involved in the folding, stability and 
maturation of the structural integrity of proteins. Hsp90 contains an N-terminal 
ATPase domain, a SBD in the middle, and a C-terminal domain for dimerization 
(Pearl and Prodromou 2006). Hsp90 assists in protein folding and stabilization 
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in coordination with Hsp70 and Hsp40, but it seems to have a higher affinity for 
aberrant proteins (Waza et al. 2006; Luo et al. 2008; Koren et al. 2009). Hsp90 
plays a key regulatory role in the heat shock response due to its binding to Heat 
shock factor 1 (HSF1), a transcription factor that regulates the expression of 
Hsp70 and other HSPs. Hsp70 and Hsp40 also bind HSF1, but do not inhibit its 
transcriptional activity. Under stress, Hsp90 releases HSF1, which forms trimers, 
relocates to the nucleus, and induces the expression of HSPs (Morimoto 2008; 
Luo 2010, 2013). Hsp90 inhibitors have been developed to reverse the permissive 
role of Hsp90 in tumorigenesis. Several geldanamycin derivatives show lower tox-
icity and improved activity, including 17-allylamino-17-demethoxygeldanamycin 
(17-AAG) and 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-
DMAG). However, these Hsp90 inhibitors still have limitations for clinical use 
due to their toxicity.

Quite surprisingly, the potential benefit of Hsp90 refolding activity against 
amyloids has not been tested in animal models, so far. In fact, Hsp90 has been 
targeted for inhibition as a strategy to induce the protective activity of HSF1 and 
its downstream targets, including Hsp70. Administration of Hsp90 inhibitors in the 
media activates HSF-1 in Drosophila, which leads to suppression of Atx3tr-78Q, 
α-synuclein, and Htt-120Q (Auluck et al. 2002; Fujikake et al. 2008). This recov-
ery correlates with an increase in Hsp70 and Hsp40 transcription, demonstrating 
for the first time the use of chaperones as therapeutic targets in protein-misfold-
ing diseases. We had shown before the beneficial effect of Hsp70 overexpression 
against PrP neurotoxicity and wanted to find out whether the Hsp90 inhibitors also 
showed this protective activity. We found that the Hsp90 inhibitors geldanamy-
cin and 17-DMAG had no effect on the accumulation of PrP. This was somehow 
expected because the protective effect of Hsp70 on PrP is weak due to their pres-
ence in different compartments. We argued that boosting Hsp70 induction with a 
second compound would enhance the activity of 17-DMAG and result in direct 
effects on PrP accumulation. We found that the glucocorticoid dexamethasone 
acted as an Hsp70 activator by increasing the transcriptional activity of HSF1 by 
stabilizing its binding to the transcriptional machinery. As predicted, the combi-
nation of 17-DMAG and dexamethasone significantly increased the levels of 
inducible Hsp70 and decreased PrP steady-state levels (Zhang et al. 2014). This 
treatment reduced final levels of pathogenic PrP, and improved locomotor activity 
without the potential deleterious effects observed when adding either drug in high 
doses.

8.2.3  Small Heat Shock Proteins (SHSPs)

Small HSPs (sHSPs) comprise all chaperones under 30 kDa with an 80 amino 
acid α-crystallin domain responsible for intra- and inter-molecular interactions. 
The sHSPs family includes 10 members in mammals (referred to as HSPB1 to 
10) and four in Drosophila (Hsp22, Hsp23, Hsp26, and Hsp27) that exert different 
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functions, although most inhibit protein aggregation and increase the clearance of 
abnormally folded proteins.

HSPBs dimerize through their α-crystallin domains and form oligomers that 
recognize and inhibit the aggregation of unfolded proteins (Carra et al. 2008, 
2009). Although all HSPBs share structural similarities, they exert different activi-
ties in vivo. For instance, human HspB7 and HspB8 exhibited the strongest protec-
tive function against Atx3tr-78Q toxicity in flies. Cell culture assays showed that 
this protective activity was due to a high anti-aggregation function that does not 
require the refolding activity. Interestingly, the anti-aggregation activity associated 
with HSPB7 and HSPB8 is exerted through different mechanisms and is substrate-
dependent (Vos et al. 2010). In contrast, HSPB1, HSPB4, and HSPB5 display 
milder protective effects against Atx3tr-78Q with little anti-aggregation activity, 
but a strong refolding effect. Regarding Drosophila sHsps, Hsp27 is the only one 
that improves paraquat-induced movement disorder and mild toxicity caused by a 
short polyQ tract (47 residues); however, it does not alleviate the severe toxicity 
caused by a long polyQ repeat (121 residues) (Liao et al. 2008). These data sup-
port the hypothesis that HSPBs have different functions and substrate selectivity to 
maintain protein homeostasis (Vos et al. 2010).

8.2.4  Heterologous Hsp104

The strong protective effect of classic HSPs against misfolded protein has sparked 
a renewed interest in new chaperones with therapeutic applications. Hsp104 is a 
yeast chaperone that has recently gain attention because of its ability to efficiently 
disaggregate amyloids, although it shows poor ability to prevent aggregation of 
unfolded substrates. Hsp104 forms a hexameric complex with two AAA+-ATPase 
sites per monomer (NBD1 and 2) and a large central cavity for the interaction with 
aggregated substrates.

The interest on Hsp104 relies on its unusual ability to disaggregate large pro-
tein aggregates, which has been tested in different animal models including 
Drosophila and mice. Recently, Hsp104 demonstrated different activities against 
closely related substrates: Hsp104 suppressed the toxicity of Atx3tr-78Q with-
out affecting its aggregation, but enhanced the toxicity of full length Atx3-78Q 
(Cushman-Nick et al. 2014). These opposite effects were explained by the interac-
tion of Hsp104 with different domains that modulate Atx3 conformation. Another 
interesting finding in this study is that Hsp104, contrary to Hsp70, reduces Atx3tr-
78Q aggregation after it has begun. By using the conditional Gene Switch system 
in Drosophila (Roman et al. 2001), the authors induced Hsp104 or Hsp70 at day 
7 in flies that expressed Atx3tr-78Q constitutively in the eye. While Hsp70 had 
no effect, Hsp104 mitigated the degeneration associated with pre-existing Atx3tr-
78Q aggregates (Cushman-Nick et al. 2014). These promising results suggest that 
this heterologous HSP could have therapeutic applications against proteinopathies 
after the onset of pathogenic protein-induced degeneration.
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8.2.5  NMNAT

NAD synthase nicotinamide mononucleotide adenylyltransferase (NMNAT) is 
a protein that acts both as NAD synthase and chaperone in Drosophila (Zhai et al. 
2006). NMNAT delays axonal degeneration and protects against protein toxicity in 
Drosophila models of spinocerebellar ataxia type 1 (SCA1), suggesting that NMNAT 
is required for neuronal maintenance and neuroprotection. Presumably, NMNAT 
reduces aggregation and promotes protein degradation through a proteasome-medi-
ated pathway (Zhai et al. 2008). In addition, NMNAT promotes ubiquitination and 
clearance of toxic tau species in Drosophila, and when overexpressed suppresses 
tau-related phenotypes (Ali et al. 2012). Moreover, in fly brains overexpressing poly-
glutamine expanded proteins, NMNAT appears up-regulated and co-localizes with 
Hsp70 in protein aggregates; however, both proteins act independently and in an 
additive manner. These data suggest that NMNAT acts as a stress-response chaperone 
to maintain and protect neuronal cells (Zhai et al. 2008; Jaiswal et al. 2012).

8.2.6  Engineered Chaperones: Secreted Hsp70

One of the limitations of HSPs is that small amounts leak outside the cell under 
stressful conditions. However, several proteinopathies are characterized by pro-
tein aggregates in the extracellular space, where limited chaperone activity exists. 
We devised a new approach to increase the chaperone activity in the extracel-
lular space by designing a secreted form of Hsp70 (secHsp70). This new chap-
erone consists in fusing the signal peptide of the human Immunoglobulin heavy 
chain V–III to HSPA1L. SecHsp70 can be detected in cell media and in the 
lumen of the eye imaginal disc, confirming the functionality of the signal peptide. 
Moreover, the activity of Hsp70 outside the cell neutralizes the toxicity of Aβ42 
in a Drosophila model of AD, including life span extension. We confirmed that 
secHsp70 binds Aβ42, but this interaction has no effect on Aβ42 steady-state lev-
els or aggregation. We propose that the protective activity of secHsp70 is mediated 
by masking key neurotoxic Aβ42 epitopes, thus preventing the interaction of Aβ42 
with cellular substrates that mediate pathogenesis, including receptors and chan-
nels. This ability of secHsp70 to bind misfolded extracellular substrates may also 
prove useful to prevent the prion-like spread of different oligomeric assemblies 
proposed to mediate pathogenesis, including synucleinopathies, tauopathies, and 
TDP-43 proteinopathies (Fernandez-Funez et al. under review).

8.2.7  Chaperone Dynamics During Aging

Aggregation of damaged or unfolded proteins is associated with an impairment 
in the mechanisms involved in protein quality control associated with aging, and 
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is a risk factor for the development of several age-dependent diseases. Chaperone 
proteins are the first cell defense to assure correct protein folding and ameliorate 
protein aggregation. However, during aging, protein aggregation is enhanced, 
which can be partly associated with a decrease in the expression and function of 
HSPs, or defects in capacity of HSPs (Soti and Csermely 2003). In Drosophila, 
expression of hsp22 appears up-regulated during aging, most likely as a response 
to stressors only present later in life; and, at normal temperatures, transient heat 
induced overexpression of Hsp70 increases life span (Tatar et al. 1997; King and 
Tower 1999). Furthermore, overexpression of Drosophila Hsp22, Hsp23 and 
Hsp26 resulted in a mean increase of life span in flies exposed to mild heat stress 
and paraquat-induced oxidative stress (Morrow and Tanguay 2003; Liao et al. 
2008). However, as stated above, only HSP27 has the ability to ameliorate para-
quat-induced movement disorder (Liao et al. 2008).

Interestingly, although expression of HSPs is positively-correlated with life 
span under mild stressors, under constant stress HSP expression can be an indica-
tive of susceptibility and failure in homeostasis (Yang and Tower 2009).

8.3  ER Stress and Unfolded Protein Response

The endoplasmic reticulum (ER) is an essential organelle responsible for the trans-
location and folding of ER-resident proteins, membrane proteins, and secreted 
proteins. A complex protein network in the ER lumen regulates post-translational 
modifications to ensure correct protein function (Hetz et al. 2011). Alterations in 
ER homeostasis due to protein accumulation in the lumen results in a condition 
termed ER stress, which results in the activation of the unfolded protein response 
(UPR). Under normal circumstances, UPR controls abnormal protein aggrega-
tion by attenuating protein synthesis, promoting protein refolding, and enhancing 
abnormal protein degradation. However, chronic disruption in ER proteostasis can 
trigger cell death leading to neurodegeneration (Matus et al. 2011). Recent evi-
dence indicates that chronic ER stress is involved in diverse diseases, including 
neurodegenerative conditions, cancer, and diabetes (Koumenis 2006; Lipson et al. 
2006; Hetz and Glimcher 2009).

Three key ER stress sensors regulate the UPR: protein kinase RNA-like ER 
kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring 
enzyme 1 (IRE1) (Hetz and Mollereau 2014). PERK is a type I ER transmembrane 
protein with a cytosolic kinase domain. When misfolded proteins accumulate in 
the ER, the cytosolic domain of PERK dimerizes and autophosphorylates, which 
leads to eIF2a phosphorylation and inactivation (Harding et al. 1999). EIF2a inac-
tivation causes a decrease in the general protein synthesis rate and increases the 
translation of the transcription factor ATF4, which regulates expression of UPR 
genes involved in amino acid metabolism, autophagy, and resistance to oxidative 
stress (Hetz et al. 2011). The PERK signaling cascade is reversible once ER home-
ostasis is reestablished, recovering the normal translation rate.
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ATF6 is a type II ER transmembrane protein that comprises a bZIP tran-
scriptional motif in the cytosolic domain. Under normal conditions, the ATF6 is 
retained at the ER membrane. Under ER stress conditions, ATF6 migrates to the 
Golgi apparatus, where two protease cleavages release the cytosolic fragment. 
Cleaved ATF6, then, enters the nucleus to activate the transcription of several ER-
chaperones and endoplasmic reticulum-associated protein degradation (ERAD)-
associated genes among others. ATF6 response initiates early during the UPR and 
activates expression of unspliced X-box binding protein 1 (XBP1), which accumu-
lates in the ER becoming available for the later IRE1 response.

IRE1 is the most conserved branch of the UPR, with homologues in plants, C. 
elegans, Drosophila, and mammals. IRE1 is a type I transmembrane protein with 
a luminal domain responsible for detecting ER stress and a cytosolic domain with 
protein kinase and endonuclease activities (Rasheva and Domingos 2009). Upon 
ER stress, IRE1 oligomerizes and autophosphorylates, activating an alternative 
splicing in XBP1 mRNA. Spliced XBP1 (XBP1s) is a potent transcription factor 
that regulates the expression of genes associated with protein folding, ERAD, pro-
tein translocation into the ER, and lipid synthesis among other processes. During 
the recovery phase of ER stress, the unspliced XBP1 acts as a negative regulator of 
XBP1s, which inhibits transcription of target genes (Hetz et al. 2011).

Under physiological circumstances, the UPR is activated as a protective mecha-
nism against ER stress caused by abnormal protein aggregation associated with 
cellular differentiation and exposure to stressors. ER stress markers also appear 
up-regulated in several models of neurodegeneration as well as in postmortem 
brains of several neurodegenerative diseases suggesting a pathogenic role of UPR. 
While a transitory response can be beneficial for cell survival, a chronic UPR 
can lead to apoptotic mechanisms promoting neurodegeneration (Halliday and 
Mallucci 2014).

In recent years, Drosophila has contributed to elucidate the role of UPR against 
protein toxicity in vivo. Retinitis pigmentosa (RP) is a degenerative eye condition 
caused by an accumulation of misfolded mutant Rhodopsin 1 (Rh1*) in the ER. In 
flies, accumulation of misfolded Rh1* in the ER elevates the expression of XBP1s. 
Accordingly, reduction of XBP1 increases the retinal degeneration induced by 
Rh1*, which indicates that XBP1 and its target genes are protective (Ryoo and 
Steller 2007). Moreover, the authors describe that disruption of the ERAD path-
way leads to an increase in Rh1 protein levels in Drosophila. Consistently, the 
ER stress caused by Rh1 is reduced when some subunits of the ERAD machinery 
are overexpressed (Kang and Ryoo 2009). Interestingly, UPR is also implicated 
in neurodegenerative diseases. In a fly model of tauopathy, UPR is increased due 
to phosphorylation of tau, and when levels of XBP1 are reduced, the ER stress 
response decreases promoting tau toxicity and neurodegeneration (Loewen and 
Feany 2010). In addition, we recently described that a fly model expressing Aβ42 
displays ER stress-mediated neurodegeneration and that overexpression of XBP1s 
suppresses this phenotype (Casas-Tinto et al. 2013). Accordingly, XBP1 loss-
of-function exacerbates Aβ42-induced toxicity. This protective effect of XBP1s 
was mediated by the down-regulation of ryanodine calcium channels in the ER, 
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which prevents the release of pro-apoptotic levels of calcium in the cytoplasm 
(Casas-Tinto et al. 2013). Another study with Drosophila identified mild ER stress 
(“preconditioning”) as a neuroprotective mechanism against human α-synuclein 
toxicity (Fouillet et al. 2012). These authors demonstrated that α-synuclein-
expressing flies treated with a mild dose of tunicamycin, a chemical inducer of 
UPR, display activation of the IRE1-XBP1 pathway in the brain, improvement 
of locomotor function and protection of dopaminergic neurons. In addition, the 
authors found that this “preconditioned” mild ER stress mediates neuronal sur-
vival by blocking apoptosis in vivo. Interestingly, this ER-mediated protection was 
lost upon autophagy impairment suggesting that autophagic clearance contributes 
to the ER-mediated protection (Fouillet et al. 2012). These data agree with the 
hypothesis that UPR functions as neuroprotective mechanism when ER stress is 
not prolonged in time.

8.3.1  UPR Impairment During Aging

It is clear that a better resistance to stress leads to an increase in life span, which 
correlates with a better prevention against different harmful insults (Salminen and 
Kaarniranta 2010). However, the amount of misfolded proteins increases in the ER 
lumen during aging suggesting an involvement of ER stress in the aging process 
(Salminen and Kaarniranta 2010). Indeed, while the UPR is strong in young ani-
mals, it is compromised during aging and the expression of several ER proteins 
is reduced (Naidoo 2009). It is not surprising then, that some neurodegenerative 
disorders that involved accumulation of misfolded proteins present impaired UPR 
(Brown and Naidoo 2012). As it occurs with other protein quality control systems, 
duration and strength of the stressor have different consequences in the cell and 
life span of the organisms. Mild doses of a stressor can lead to a better stress tol-
erance, whereas a chronic stress exposure leads to cellular degeneration. This is 
especially true in the ER, where abnormal protein accumulation lead to a sustained 
UPR that triggers cell apoptosis.

8.4  Autophagy

Autophagy is a catabolic process for degrading and recycling organelles and 
misfolded proteins inside double membrane vesicles called autophagosomes. 
The fusion of the autophagosome with lysosomes allows the degradation of the 
contents of the vesicle, producing fresh building materials or energy. Autophagy 
occurs at basal levels in healthy cells but can be up-regulated by starvation, cel-
lular stress, and other stimuli. This basic cellular process is critical for cell survival 
and renewal, but it is particularly important for quality control in neurons due to 
the limited regenerating capacity of the nervous system.
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8.4.1  Macroautophagy and Protein Misfolding Diseases

In the last decade, several studies have shown presence of autophagy vesicles 
in neurodegenerative disorders such as HD or PD, pointing to a protective role 
of this mechanism against neurodegeneration. Drosophila has been a useful 
tool to study this process. Ravikumar and colleges showed that TOR (target 
of rapamycin, a key regulator of autophagy) is sequestered in polyQ aggre-
gates and promotes autophagy (Ravikumar et al. 2004). These authors pro-
posed that rapamycin, a negative regulator of TOR, would increase autophagy 
and protect against the toxicity of Htt-120Q. Flies expressing Htt-120Q in 
the eye fed with rapamycin experienced an increase in the number of photo-
receptors (Ravikumar et al. 2004). In fact, rapamycin also reduces toxic-
ity caused by wild type and mutant tau in Drosophila presumably because of 
autophagy degradation of insoluble tau (Ravikumar and Rubinsztein 2006). 
Moreover, overexpression of TSC1 and TSC2, which are negative regulators of 
TOR, inhibit neuronal degeneration caused by Htt-120Q (Wang et al. 2009a). 
Overexpression of the autophagy gene 1 (Atg1) also suppresses photoreceptor 
cell death in the Htt-120Q flies due to an induction of autophagy (Wang et al. 
2009a).

In another study, inhibition of the small GTPase Rab5, which regulates 
endosome trafficking, enhances the toxicity of Htt-120Q, whereas overexpres-
sion enhances autophagosome synthesis, suppression of aggregation, and sup-
pression of Htt-120Q toxicity (Ravikumar et al. 2008). These data suggest that 
besides the role of Rab5 in endocytosis, it also functions in the early stages of 
autophagosome formation (Ravikumar and Rubinsztein 2006; Ravikumar et al. 
2008). On the other hand, a screen for modifiers of Atx3tr-78Q neurodegenera-
tion identified genes that affect protein accumulation through autophagy con-
firming the protective effect of this process over protein deposition (Bilen and 
Bonini 2007).

However, not all aggregate-prone proteins are degraded by autophagy. P. 
Salvaterra’s group found that expression of Aβ1-42 induces the formation of 
autophagic vesicles that compromise cell viability and led to neurological deficits, 
whereas Aβ1-40 did not show changes in autophagy (Ling et al. 2009). This sug-
gests that, depending of the substrate, autophagy can begin as a protective mecha-
nism but due to a decrease in its degradation function induces abnormal autophagy 
vesicles leading to neurodegeneration (Ling et al. 2009). In a posterior study, Ling 
and Salvaterra observed that this deterioration in the autophagy system shifts nor-
mal brain aging into pathological aging. The authors used temporal-dependent 
paradigms in flies and found an early protective effect of autophagy in life that 
becomes progressively deleterious during normal brain aging (Ling and Salvaterra 
2010). Under these paradigms, expression of Aβ1-42 exacerbates the dysfunc-
tion of the autophagy system increasing the ratio of neurodegeneration (Ling and 
Salvaterra 2010). This observation agrees with the fact that age is a risk factor in 
the onset of AD.
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8.4.2  Interaction Between Autophagy and Chaperones

Chaperone-mediated autophagy (CMA) is a process that selectively removes dam-
aged or unfolded cytosolic proteins in order to maintain proteostasis (Cuervo 
and Wong 2014). Although CMA occurs under normal conditions, its activity is 
increased under stress conditions. In CMA, misfolded proteins are targeted on the 
cytosol by chaperones, which recognize a specific amino acid sequence, and, then, 
transported to the lysosomal membrane. Once there, the protein enters the lysosome 
by crossing the membrane through a translocation complex. CMA selective degra-
dation increases over time in the presence of a stressor as a protective mechanism. 
In this regard, its specific substrate selection avoids the elimination of proteins or 
organelles that are essential for the cell survival, and preferentially targets non-
essential proteins. Interestingly, CMA is impaired in several human diseases includ-
ing neurodegenerative disorders as PD, AD or PolyQ diseases. Aberrant proteins 
such as alpha-synuclein or leucine-rich repeat kinase 2 (LRRK2) can interact with 
lysosome-associated membrane protein 2A (LAMP-2A), the receptor for chaperone-
mediated autophagy, with high affinity but are unable to translocate to the lysosome 
lumen. This interaction not only fails to eliminate these aberrant or damaged pro-
teins, but also affects the degradation of other CMA substrates by saturating the sys-
tem (Cuervo et al. 2004; Orenstein et al. 2013). In the case of tauopathies, it seems 
that tau binds successfully LAMP-2A but undergoes a partial translocation to the 
lysosome lumen releasing a toxic tau fragment to the cytosol, therefore, increasing 
toxicity and cell death (Wang et al. 2009b; Cuervo and Wong 2014).

It is clear that chaperones play an important role against protein misfold-
ing (Kim et al. 2013). However, some proteins cannot be refolded and need to be 
directed to degradation by an independent system. Some chaperones lack refold-
ing activity and, instead, act as part of the autophagy system to target unfolded 
proteins to degradation by the lysosome. For instance, two members of HSPB 
family, HspB7 and HspB8, protect against polyQ toxicity in an autophagy-medi-
ated manner (Vos et al. 2010). These findings suggest that autophagy acts down-
stream of the sHSP response. In support of this idea, overexpression of autophagy 
related 7 gene (Atg7) is sufficient to revert Hsp27 knockdown-mediated shortened 
life span in Drosophila. Conversely, knockdown of Atg7 blocks Hsp27-mediated 
long life span (Chen et al. 2012).

Altogether, these data suggests that the heat shock protein response functions 
upstream of autophagy and that the association between these pathways can be 
due to CMA or chaperone-assisted selective autophagy (CASA).

8.4.3  Autophagy and Aging

During normal aging, the expression of several autophagy genes is reduced 
in Drosophila. A decrease in autophagy is associated with an increase of neu-
ronal damage and a reduced life span, however maintaining the expression of 
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autophagy-related genes promotes longevity and prevents the age-dependent 
damage. For instance, when the Atg8a gene (autophagy-related 8a) is mutated 
in flies, life span is shorter and sensitivity to oxidative stress is higher (Simonsen 
et al. 2008). Interestingly, a raise in Atg8a expression in old fly brains results in 
an increase over 50 % in life span and promotes resistance to oxidative stress 
(Simonsen et al. 2008). Similarly, expression of Atg7, an essential factor for 
longevity of flies, has been consistently associaed with the regulation of aging 
(Hara et al. 2006; Chen et al. 2012). Furthermore, mutations in Atg5 and Atg7 
genes, which are required for autophagosome formation, lead to increased 
neurodegeneration (Hara et al. 2006). These data support the hypothesis that 
autophagy plays an important role in regulation of aging and that its activation 
can be neuroprotective.

8.5  UPS and Interaction Between Protein Degradation 
Pathways

Protein quality control is a complex mechanism that needs a tight collaboration 
between several processes to avoid misfolded protein aggregation and cell death. 
When chaperones fail to unfold and refold abnormal proteins, degradation path-
ways are activated to prevent protein toxicity and ultimately cell death. The UPS 
is one of the pathways involved in the aberrant protein degradation (Hershko and 
Ciechanover 1998). In fact, a wide range of mutations in UPS-associated genes are 
associated with accumulation of proteasome substrates and, therefore, with neu-
rodegeneration (Ciechanover and Brundin 2003). Interestingly, compromising the 
proteasome pathway in a Drosophila model of SBMA enhances degeneration and 
decreases poly(Q) protein solubility (Chan et al. 2002). Moreover, the protective 
activity of SCA3 observed against polyQ neurotoxicity in vivo requires the ubiq-
uitin-associated activities of the protein and is dependent upon proteasome func-
tion (Warrick et al. 2005). In addition, reduction of the 26S proteasome activity 
in flies is associated with age-related accumulation of proteins and the duration of 
life span (Tonoki et al. 2009).

Recent evidences suggest a compensatory regulation between autophagy, UPR 
and UPS. For instance, in a fly model of SBMA, expression of histone deacetylase 
6 (HDAC6), a microtubule-associated deacetylase that interacts with polyubiqui-
tinated proteins, rescues degeneration associated with UPS impairment through 
autophagy (Pandey et al. 2007). Similarly, in a fly model for Gaucher’s disease, 
activation of UPR leads to accumulation of parkin substrates triggering cell death 
most likely through an attenuation of normal autophagy (Maor et al. 2013). In 
addition, Drosophila proteasome mutants show increased autophagy, whereas 
autophagy mutants display increased ubiquinated protein agreggation (Chang and 
Neufeld 2010; Jaiswal et al. 2012). Moreover, flies treated with Bortezomib—a 
selective proteasome inhibitor—exhibit UPR induction that leads to autophagy 
activation to counterbalance UPS impairment (Velentzas et al. 2013). All these 
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data illustrate the complexity of the regulatory mechanisms that coexist in the cell 
to maintain proteostasis during aging in an attempt to prevent protein aggregation 
and cell death.

8.6  Concluding Remarks

The functional similarities between Drosophila and mammalian proteomes make 
it possible to model human protein misfolding disorders with results that are rel-
evant to human physiology. In fact, Drosophila has been behind many of the fun-
damental advances that have occurred in this field during the last 15 years. While 
fruit flies cannot replace the need for studying mammalian models, the stud-
ies outlined here illustrate their potential to untangle the molecular associations 
between protein aggregation, neurodegeneration and aging. In addition, these stud-
ies illustrate how Drosophila has contributed to understand a number of complex 
processes utilized by the cell to maintain protein homeostasis in the brain. It is 
clear now that promoting a correct refolding of misfolded proteins by overexpress-
ing chaperones, enhancing the activity of the UPR, or promoting protein clearance 
with autophagy or the ubiquitin proteasome system reduces protein toxicity and 
improves life span. However, it is important to keep a balance among the path-
ways involved in proteostasis, otherwise a sustained stimulation can overwhelm 
the systems and contribute to potentiate cell death. Altogether, these important dis-
coveries demonstrate the relevance of Drosophila as a model to study protein qual-
ity control in late-onset neurodegenerative diseases and its potential to design new 
therapeutic strategies for these devastating disorders. We anticipate, therefore, that 
the power of Drosophila genetics will further extend our understanding of neu-
ronal proteostasis in new and unexpected directions in the years to come.
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Abstract Drosophila melanogaster is increasingly being used in drug  discovery 
efforts. Although there are several other genetic model organisms including  
C. elegans that can and are being used to study aging, the fly has certain advantages. 
These include a complex brain capable of sophisticated behaviors, and several organ 
systems with certain degrees of structural and functional conservation with humans 
like a heart, that can be investigated with the powerful genetics afforded by the fly. 
With respect to aging and drug discovery, there are several opportunities to utilize 
the fly ranging from therapeutic discovery for age related diseases like Alzheimer’s 
disease to drugs that extend life span to drugs that improve cognition.
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9.1  Introduction

Drosophila melanogaster is increasingly being used in drug discovery efforts. The 
exact role of the common fruit fly within the pipeline can vary depending on the 
nature of the disease process being studied. The traditional discovery pipeline for 
target-based drug discovery usually begins with brute force screening of up to sev-
eral hundreds of thousands of chemically distinct small molecules from large com-
pound libraries against cells in culture. The endpoints can vary, but most assays 
involve screening in 384-well cell culture plates that detect some measureable 
change in physiology of the cell produced by the drug. For example: cell growth 
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or inhibition of growth, increases in intracellular calcium levels, or light produced 
from a reporter can all be measured by high throughput with the appropriate equip-
ment. Unfortunately, most drugs fail for one reason or another at some point in the 
developmental process, and the cost of bringing a single new drug to market has 
recently been estimated to be over five billion dollars (Herper 2013). Incorporation 
of the model genetic organism Drosophila melanogaster into the development 
pipeline can significantly reduce time and costs by rapidly generating lead com-
pounds of intrinsically higher quality prior to moving to expensive and time con-
suming preclinical rodent studies. Although there are several other genetic model 
organisms including C. elegans that can and are being used to study aging, the fly 
has certain advantages. These include a complex brain capable of sophisticated 
behaviors, and several organ systems with certain degrees of structural and func-
tional conservation with humans like a heart, that can be investigated with the pow-
erful genetics afforded by the fly. With respect to aging and drug discovery, there 
are several opportunities to utilize the fly ranging from therapeutic discovery for 
age related diseases like Alzheimer’s disease to drugs that extend life span to drugs 
that improve cognition.

9.2  Traditional Drug Development

In traditional drug development, a high throughput assay is developed such that 
the function of a particular disease related enzyme or receptor can be measured 
by an appropriate outcome in an appropriate cell based system. Compounds from 
a chemical library are added to individual wells of a high density plate contain-
ing the cellular or enzymatic assay, the plates are incubated for the appropriate 
time, and the plates are then placed into a reader and the outcome variable meas-
ured. Several thousand chemicals can be screened in a day and several hundred 
thousand in weeks to months depending on the assay. Chemicals that produce 
the desired outcome (leads) are identified and evaluated for further study. A large 
screen may yield several hundred lead candidates. These are retested more vig-
orously in panels of cell based assays at different concentrations and multiple 
cell types relevant to the disease of question. A significant number of initial lead 
candidates will usually not demonstrate efficacy in these subsequent studies, and 
several more will likely prove to have unacceptable toxicity, or other negative 
property associated with them. After many more months of secondary screening, 
several hundred initial lead compounds may have been narrowed down to only a 
few. Candidates at this point are not usually suitable as drug candidates, however. 
Whereas they may have efficacy, it may be weak or the potency may be low, a 
certain degree of toxicity or off-target effects may still be present, or the nature 
of the structure confers low bioavailability to the compound. Medicinal chemistry 
is usually employed to modify the more promising structures to produce series of 
analogs that are then retested for the desired effects over the following months. 
Often, several rounds of testing and modification are performed that in sum can 
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last up to several years in order to arrive at a small collection of promising leads to 
take further into animal models.

When moving to animals models, these have traditionally been rodent models 
using mice and/or rats. Rodent studies are expensive and time consuming, and can 
take up to several more years to demonstrate safety and efficacy. More often than 
not, a promising lead is found to have unexpected toxicity in the whole animal, or 
found to be ineffective in treating the disease condition it was developed for. After 
several years, and several hundred millions of dollars, a company is lucky to find 
one drug suitable for being moved to clinical trials in humans. Even then, most 
drugs today fail in clinical trials for one reason or another (DiMasi et al. 2010). 
In the past 20 years the number of successful drugs brought to market per year 
has declined sharply, while the cost of development per successful drug has sky-
rocketed. On average, it now takes about 15 years to develop, test, and bring a new 
drug to market at a cost of over 5 billion dollars per drug (Herper 2012, 2013).

One theory that has been presented for the decreasing success in drug develop-
ment is that ‘all the low hanging fruit has been identified’, and there are effective 
drugs on the market for most of the diseases that are caused by a defect in a single 
target (e.g. enzyme or receptor). It has been recently estimated that of the 30,000 
genes encoded by the human genome, only 3000 of these genes are responsible 
for diseases when defective. It has also been estimated that there are about 3000 
genes that encode for druggable targets (genes that encode for enzymes or recep-
tors) (Hopkins and Groom 2002). Unfortunately, the overlap between these two 
sets of genes that represent the number of disease causing genes that also encode 
for druggable targets is estimated to only be 600–1500 genes (Hopkins and Groom 
2002). Increasingly, drug discovery efforts are being aimed at diseases and con-
ditions that are multicomponent (e.g. diabetes, heart disease), with several genes 
underlying their etiology. The traditional target-based brute force discovery pipe-
line is becoming obsolete, allowing for more sophisticated systems-based models 
to be used. In the systems-based approach, rather than the target consisting of a 
single enzyme/receptor, the target represents a heterogeneous system with several 
potential targets present that is believed to be more relevant to the disease as a 
whole.

9.3  The Role of Drosophila Melanogaster  
in Drug Development

The fly can have a valuable role in both realms, in traditional target-based as well 
as systems-based approaches. In the target-based pipeline, the process from going 
from the initial leads through rodent models can be lengthy and expensive, and 
the bulk of lead compounds will fail in rodents due to toxicity or ADME issues 
(adsorption, distribution, metabolism, and excretion). The fly can serve here as 
a valuable secondary screening platform. Once a fly model has been developed 
for the appropriate disease, several hundred initial leads can be screened in flies 
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at a fraction of the time and cost as compared to rodents to produce a smaller 
and higher quality pool of candidates for further optimization or to directly take 
into rodents. Drugs that are toxic to flies will likely also be toxic to rodents, and 
ADME parameters are also correlative between fly and rodent. Importantly, drugs 
of several diverse classes where the target protein is conserved between fly and 
mammal usually demonstrate similar shared effects on both physiology and/or 
behaviors. For example, CNS active drugs like cocaine and methamphetamine 
stimulate activity and arousal through mediating increases in dopamine (Andretic 
et al. 2005; Kaun et al. 2012), and sulfonylurea drugs used to treat diabetes in 
humans influence glucose homeostasis in flies (Haselton and Fridell 2010; Kim 
and Rulifson 2004). Significantly, many disease models in flies now incorporate 
the transgenic expression of rodent or human gene counterparts relevant to the dis-
ease in the fly, increasing the probability of translation of therapeutic efficacy. For 
example, human alpha synuclein expressed in fly retina or brain has served as a 
discovery platform for Parkinson’s disease (Whitworth 2011).

The fly can also be useful as a primary screening platform within the systems-
based approach. In this scenario, a smaller collection of up to only a few thou-
sand ‘high quality’ compounds are screened in the appropriate fly model. These 
higher quality libraries can represent sets of previously FDA approved medica-
tions, each with acceptable toxicity and ADME measures in humans. Given the 
difficulty of generating and identifying novel chemical entities to treat a condi-
tion, repurposing older medications for new indications has recently become very 
popular with some success (Padhy and Gupta 2011). Here, proceeding first with 
flies can narrow down several thousand compounds tested to only a few, but these 
few will have a greater chance of also achieving therapeutic success when tested 
in rodent models. Because these drugs are already human approved, in many 
instances, rodent trials may not even be necessary before using the drug in human 
patients directly. Alternatively, if the appropriate assay can be designed in flies, 
high throughput can be achieved that can test several tens of thousands of drugs 
within a few weeks to months to test any collection of small molecules in a pri-
mary screen to identify a small collection of leads with higher quality than would 
result from traditional cell culture screening.

The ability to generate sophisticated models of human diseases in flies has been 
steadily increasing as genetic tools and techniques for transgene expression have 
become more advanced. There are now informative models of diseases includ-
ing cardiovascular disease, asthma, inflammatory bowel, and cancer (Pandey and 
Nichols 2011). With regard to CNS disorders, the use of flies to study neurode-
generative diseases like Alzheimer’s disease (AD), Parkinson’s disease (PD), and 
amyotrophic lateral sclerosis (ALS) have a long history and several drug discov-
ery efforts have already been initiated with these models (Pandey and Nichols 
2011). For normal CNS processes, the fly has also been used as a discovery plat-
form to identify agents that modify sleep and cognitive processes like learning and 
memory.
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9.4  Drug Discovery Using Drosophila Melanogaster 
Relevant to Age Related Diseases

The fly has been used to model several aspects of the aging process to understand 
the physiology of aging not only for the fly but applicable to higher organisms 
as well as humans, as discussed in the other chapters in this book. Specifically 
relevant to drug discovery, initial efforts were largely directed towards disorders 
associated with aging like progressive neurodegenerative disorders, which typi-
cally do not afflict an individual until middle or advanced age. Several models of 
Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease 
(HD) have been developed and used to understand relevant physiological pro-
cesses associated with the diseases as well as discovery platforms for therapeutics.

Although AD, PD, and HD are different diseases with different causes, they 
have overlapping symptoms that include loss of motor coordination, and prema-
ture death in humans. In the case of AD, the precise etiology remains unknown, 
although there are several factors that contribute to neurodegeneration. The most 
popular theory is that abnormal processing of the amyloid precursor protein (APP) 
via β- and γ-secretase enzymes produce toxic aggregates of Aβ-40 and Aβ-42 pep-
tides, and that accumulation these plaques within neurons leads to neurodegenera-
tion (Querfurth and LaFerla 2010). Processing of APP by a different α-secretase 
enzyme produces different Aβ peptides that do not form aggregates and are not 
toxic (Querfurth and LaFerla 2010). Mutations within the APP can promote a 
higher degree of aggregation of toxic Aβ peptides. Within the fly, most compo-
nents of this system are present, including APP-Like (APPL), and enzymes with 
γ-secretase activity, which is involved in the Notch signaling pathway (Prüßing 
et al. 2013). There are several published reports of developing flies that over 
express human APP, the γ-secretase presenilin, or the human version of another 
protein implicated in neurofibrilatory tangles associated with AD, Tau (Pandey and 
Nichols 2011; Prüßing et al. 2013). These flies can exhibit hallmark symptoms of 
AD that include loss of coordination, severe neurodegeneration, and reduced life 
span (Prüßing et al. 2013).

The vast majority of PD in humans results from unknown causes. There is, 
however, a small percentage (2–3 %) of patients that develop PD early in life 
(in their 20s or 30s). These early onset cases are for the most part the result of 
mutations in defined genes including alpha synuclein, parkin, DJ-1, and PINK. 
Mutations of these genes in humans leads to a rapid decline of dopaminergic neu-
rons in the substantia nigra, and the development of PD symptoms (Dauer and 
Przedborski 2003). The hallmark of PD is the presence of Lewy bodies, comprised 
of aggregates of alpha synuclein and ubiquitin, among other proteins, in neurons 
(Dauer and Przedborski 2003). There have been several fly models of PD devel-
oped (Whitworth 2011). Notably, the fly does not express many of the known 
genes associated with PD like the one encoding for alpha synuclein. Nevertheless, 
overexpression of the human form of these genes in the fly has been reported by 



218 C.D. Nichols

several groups to produce symptoms of loss of dopamine neurons, motor control, 
and premature death (Whitworth 2011).

Unlike AD or PD, the precise molecular nature of HD is known, and results 
from a polyglutamate expansion within the protein encoded by the Hungtintin 
gene (Walker 2007). There are several diseases that are due to polyglutamate 
expansions like spinal and bulbar muscular atrophy (androgen receptor gene; 
Kennedy’s Disease) (Ross 2002). Disease models have been developed in the fly 
to express the human Huntingtin/htt gene with normal and expanded glutamine 
repeats of various lengths. In flies where the mutant protein is expressed, pheno-
types of neurodegeneration, loss of motor control, and premature death correlate 
with the degree of polyglutamate expansion (Green and Giorgini 2012).

Even though these neurodegenerative diseases are caused by different fac-
tors and molecular lesions, the fly is used in each model in a similar fashion for 
drug discovery. The corresponding transgene (either the endogenous wild type or 
mutant fly or homologous human gene) is overexpressed in either the eye, all neu-
rons, or the entire body, and a similar suite of behaviors and/or pathologies are 
examined. Why would the eye be such a powerful tool to screen for drug therapies 
against brain diseases like AD or PD? The eye is a very sophisticated organ that 
has been termed a neurocrystalline lattice (Ready et al. 1976), comprised of about 
850 discreet units called ommatidium. Each ommatidium contains 8 photoreceptor 
neurons that form deeper connections in the lamina and medulla with interneurons 
that send projections to the brain. In addition, there are glial cells, and support 
cells like pigment cells and cone cells, which secrete the lens material covering the 
ommatidium. The high degree of structure present in the eye is the most attractive 
feature both literally and figuratively. Small perturbations to the development or 
function of a particular cell will often produce obvious defects in the eye structure 
that are easy to observe. The eye can appear rough, mis-shapen, smaller in size, 
lacking bristles, or not even be present. The degree of change often correlates with 
the degree of defect. Expression in the eye is easily achieved using the bipartite 
GAL4/UAS system (Brand and Perrimon 1993) where the driver strain is one such 
as GMR-GAL4 that produces the yeast transcription factor GAL4 in photorecep-
tor neurons of the eye, and the responder UAS strain has the binding and activa-
tion sites for the GAL4 protein upstream of the cDNA encoding for the human 
transgene of the disease-relevant proteins.

When the driver and responder strains are crossed, the human gene is expressed 
exclusively within photoreceptors of the eye. Over expression of the pathogenic 
forms of human proteins like alpha synuclein, Htt, or APP in photoreceptor neu-
rons can lead to profound degeneration of the neurons that is easily visible and 
conducive to rapid screening by simple observation under a dissection micro-
scope. Recently, a modification of the eye-based assay has been developed that 
incorporates the use of membrane targeted GFP, which may be more powerful to 
detect more mild neurodegeneration (Burr et al. 2014). Use of the eye is not lim-
ited to drug screening for neurodegenerative disease, but to many other diseases 
as well including cancer (Vidal and Cagan 2006). For drug screening using the 
eye, a fertilized egg can be placed into a 96 well plate (or other sized container) 
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containing food or solid media to which an appropriate amount of the test mol-
ecule has been added. After hatching, the larva will ingest the drug throughout 
development until pupation. After the adult fly emerges (10 days between egg and 
adult at 25 °C), it can be collected, and the eye examined under a microscope for 
rescue of the degree of defect. Several thousand compounds can be tested by this 
technique within a few weeks to months. Compounds that rescue the eye defects 
of the model represent high quality leads to examine further. They are high qual-
ity because by virtue of the fly growing to adulthood and demonstrating rescue, 
the compound likely has little overall toxicity at the organismal level, and favora-
ble pharmcodynamic properties. An example of the eye being used as a validation 
platform for potential chemicals identified by more traditional HTS that may be 
effective for enhancing autophagy and reducing toxicity in HD is that of Sarkar 
et al. (2007).

Rescue of locomotor activity is another powerful screening tool that can be 
used for discovery related to neurodegenerative disorders. Here, the pathological 
human disease gene is expressed exclusively in neurons using the GAL4/UAS sys-
tem. Genes can be expressed in all neurons using the elav-GAL4 driver, or only in 
motor neurons using one of several drivers like OK6-GAL4. When proteins rel-
evant to AD, PD, and HD are expressed in motor neurons they lead to a decrease 
in motor coordination and activity, with the severity of these effects correlating 
with the expression level of the transgene, or the severity of the allele. There are 
two basic assays to assess motor function in adults. The first is a simple assay that 
measures overall locomotor activity over time, and is accomplished by placing 
individual flies of the desired genotype within small glass capillary tubes in 32 
tube arrays equipped with photobeams for each tube and measuring photobeam 
breaks with the Drosophila Activity Monitoring System (DAMS; Waltham, MA, 
USA). Multiple arrays can be used in parallel to examine several hundred flies 
simultaneously. Drug is included with food or media plugging one end of the tube, 
with cotton at the other (for ventilation), and the arrays placed in an incubator for 
several days and photobeam breaks monitored by computer. Drugs that rescue 
activity levels to control levels represent high quality leads to proceed with.

Another common adult motor assay that also takes coordination into account 
is the negative geotaxis assay (Nichols et al. 2012). Here, small groups of flies 
expressing pathological variants of human proteins in motor neurons are rapidly 
tapped down to the bottom of a vial, and the number of flies that climb to a cer-
tain height, or the average height climbed in a specific time interval, is determined. 
Normal control flies should be able to rapidly climb the interior. As coordination, 
and/or activity is disrupted fewer flies will have the ability to climb the interior 
wall, or will climb the wall slower. Whereas the eye-based screens and the DAMS 
method are relatively high throughput, and have the capacity to screen several 
hundred to thousand of drugs within a relatively short period of time, the negative 
geotaxis assay is comparatively lower in throughput because typically ~25 adult 
flies are needed per assay, larger amounts of food + drug are needed in larger 
spaces to grow the flies for treatment, and an investigator is usually necessary to 
tap the vials down. Therefore, negative geotaxis may be more appropriate for a 
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secondary screen to cross validate results of leads identified from eye-based or 
photobeam beam-based assays, or even mammalian cell based HTS. An example 
of this type of screening was performed by McKoy and colleagues who used nega-
tive geotaxis as a secondary validation assay for lead compounds from a cell-based 
HTS that disrupt Aβ aggregates in a fly model of AD (McKoy et al. 2012).

Larval locomotion can also be used as a screening platform for rescue of loco-
motor deficits in neurodegenerative disease models. In this type of assay, larva are 
maintained on food substrate + drug, or larva are acutely fed drug for a period 
of time and placed on Petri dishes with a solid agarose substrate (Nichols et al. 
2012). Locomotion is measured by either placing the dish over a grid and count-
ing grids crossed in a defined time period, or by video tracking. Although this type 
screen is of somewhat low throughput, several hundred drugs can be screened in a 
few weeks. This type of screen was performed by Lawal et al. (2014) who identi-
fied potential new therapeutic entities for PD from a collection of 1000 known and 
FDA approved drugs.

9.5  Drug Discovery with Drosophila Melanogaster  
to Examine Longevity

Perhaps one of the easiest assays to perform in the fly, and the most relevant to 
the aging process, are longevity assays, which can also be adapted to drug screen-
ing. It has been estimated that there are several hundred genes involved in the 
Drosophila aging process (Pletcher et al. 2002). Many of these genes are known 
and have mammalian orthologs [reviewed in (Paaby and Schmidt 2009)]. A num-
ber of these genes, and likely many of those that remain to be characterized, rep-
resent druggable targets. In the longevity assay, newly emerged adult flies are 
maintained on food substrate with drug, and the number of days the flies survive 
measured, or flies are allowed to lay eggs onto food + drug, and the entire devel-
opmental timeline measured. This type of screen can be used as a primary screen 
or as a secondary validation platform. The life span of an adult fly in the labora-
tory can range from 25 to 60 days at 25 °C, depending on the strain, temperature, 
and humidity (Bhandari et al. 2007). Therefore, several factors such as the strain 
used and environmental conditions the flies are raised in need to be taken into 
account when using longevity assays for drug screening.

The choice of housing conditions is important. The life span is dependent on 
the temperature, with flies raised at lower temperatures (e.g. 18°) living about 
twice as long as flies raised at higher temperatures (e.g. 25 °C). The difference in 
longevity between high and low temperatures can be exacerbated in certain dis-
ease models, therefore the temperature most appropriate for the particular strain 
of fly (i.e. wild type or disease model) must be carefully chosen. Choice of food 
substrate is also a factor. Normal fly food usually contains yeast, and other micro-
organisms that can easily grow in the food. These microorganisms can sometimes 
metabolize test compounds and lower the effective concentration in the food 
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over time. Whereas this may not be a factor in an assay like the locomotor assay 
that only lasts a few days, it may pose a significant issue over longer time peri-
ods. Alternatives are to use other food substrates like agarose supplemented with 
sucrose, or an instant food without yeast products.

The size of the vessel the fly is maintained in is also an important factor. When 
performing validation screens of only a few drugs, groups of flies can be main-
tained in larger vials or bottles with food + drug, and these can last up to several 
weeks before the flies will need to be placed on fresh food + drug. The disadvan-
tage to this approach is that the larger containers will require a significant amount 
of drug. When performing more high throughput screens using fewer flies in 
smaller tubes (e.g. 5 ml culture tube with 0.5 ml food, and 5–10 adult flies), we 
have found that transferring flies to fresh food + drug every 3–4 days is neces-
sary to prevent desiccation of the food, which will affect feeding. When feeding 
drugs to flies, they may have unpleasant tastes causing the flies to eat less. This 
can lead to dietary restriction, which in and of itself can promote longevity (Mair 
et al. 2003; Metaxakis and Partridge 2013), and confound data. If reduced food 
intake is a concern, or suspected of lead candidates resulting from a screen, feed-
ing assays like the CAFE assay (Ja et al. 2007) can be performed incorporating the 
drug in question to examine the effects of drug on food intake.

Selection of the sex of fly to be tested is important. Mixing both sexes in a vial 
will result in extra energy utilization from procreation and egg laying, which will 
confound results of assays examining adult longevity, therefore examining only 
one sex per population of a vial is desired. Females are more sensitive to dietary 
restriction (Magwere et al. 2004; Mair et al. 2005) and are a popular choice. The 
use of only males, however, avoids potential confounding effects of egg laying 
(Spindler et al. 2012). Importantly, if a drug candidate is found to increase life 
span, it must then be tested in other assays to assess its influence on other pro-
cesses like fecundity, metabolism, stress resistance, and for possible toxic effects 
that may be evident from examination of activity levels (Jafari 2010). An example 
of a small molecule screen for compounds that extend life span is that of Spindler 
and colleagues, who screened a small library of known kinase inhibitors to iden-
tify a small collection that increased life span by up to 35 % (Spindler et al. 2012).

9.6  Drosophila Melanogaster as a Discovery Platform  
for Therapeutics to Treat Age Related Declines  
in Cognitive Function

A significant effect of aging in humans is a decline in cognitive function in 
advanced years. The discovery of new chemical entities to enhance normal cogni-
tive function and perhaps return cognitive abilities of the aged to their youth is an 
enticing prospect. Although there are a few drugs aimed at preserving cognitive 
function in dementia like donepizil (Doody et al. 2012), an acetylcholinesterase 
inhibitor, or wakefulness, arousal and vigilance in humans with CNS stimulants 
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like modafinil (Minzenberg and Carter 2008) and caffeine (Griffiths and Woodson 
1988), there are no medications approved by the FDA solely to enhance cogni-
tive function of healthy individuals. Not surprisingly, many CNS stimulants like 
amphetamine, cocaine, modafinil, and caffeine have similar effects in flies as 
humans acting through conserved molecular mechanism (Nichols 2006). Further, 
also acting through conserved molecular mechanisms, many drugs that are CNS 
depressants in humans like benzodiazepines have similar sedative effects in flies 
(Nichols 2006). Importantly, unlike lower model organisms, the fly demonstrates 
learning and memory behaviors with many conserved aspects to mammalian learn-
ing and memory (Davis 2005; Kahsai and Zars 2011). The fly is capable of short 
term memory, medium term memory, and long term memory comprised of acqui-
sition, consolidation, and recall (Margulies et al. 2005). The fly can be trained and 
tested in operant paradigms and conditioned place preference assays. Learning 
and memory can be visual, olfactory, gustatory, or mediated by temperature. As 
in humans, learning and memory ability declines in the fly as it ages (Tonoki and 
Davis 2012). Because of each of these factors, the fly is an attractive platform to 
utilize learning and memory assays to discover therapeutics that may enhance nor-
mal cognitive performance.

Small molecule screening experiments can be designed for any of the available 
learning and memory assays. In general these assays are rather low throughput 
due to the need for an experimenter to test the populations of treated flies individ-
ually. The training component, at least for olfactory learning and memory, can be 
automated to some extent with the use of multichannel ‘Robotrainers’, which are 
capable of being programmed for a variety of training protocols and can be run 
in parallel. Nevertheless, using this method a single dedicated investigator should 
be able to perform a first pass screen of about 10–20 different drugs/week on long 
term olfactory learning and memory, and about 50 different drugs per week for 
effects on short term memory. Using the olfactory assay as an example (Krashes 
and Waddell 2011), the effects of a drug on different aspects of learning and mem-
ory can be examined. To examine short term learning and memory, populations of 
about 100 adult flies (2 days post eclosion for young healthy flies) are maintained 
on food + drug for 48 h, then trained by conditioned stimulus training where the 
unconditioned stimulus is an aversive odor, and the conditioned stimulus an elec-
trical shock paired with a different aversive odor. The flies are immediately tested 
by transferring to the choice point of a T-maze where they are presented with both 
odors. The flies that go towards and away from the respective odors are counted and 
a performance index calculated (PI = [((# away from the paired odor)-(# toward the 
unpaired odor))/total # of flies tested]*100). A PI of zero indicates a 50/50 split, and 
no learning, and a PI of 100 indicates that all flies learned the shock pairing to the 
odor and went to the non-paired odor side of the maze. Eight half trials are usually 
performed, alternating the shock pairing, to give a final n = 4 for statistical analysis. 
A typical PI for robust short term learning and memory is between 70 and 90.

Different aspects of the learning and memory process can be assessed by 
increasing the time interval between training and testing. For example, long term 
memory (LTM) can be determined by testing the flies 24 h or more after training. 



2239 Drosophila Models in Therapeutic Drug Discovery Related to Aging

The most effective training for LTM is spaced training, where there are ten train-
ing sessions separated by 15 min. This training produces a robust response readily 
measured at 24 h, although the PI values are typically lower and in the range of 
15–25 at 24 h. To measure the effects of a drug on acquisition or learning, drug is 
fed to flies for a specified time interval until training (e.g. 24–48 h). To measure 
the effects of a drug on the consolidation process, flies can be fed drug for 3–6 h 
immediately after the training session. To measure recall, flies can be fed drug for 
2–3 h prior to testing. An example of screening several different drugs for their 
effects on both short term and long term olfactory learning and memory can be 
found in (Johnson et al. 2011).

Interestingly, the fly has been used to develop a cell-based screening platform 
for cognitive enhancers. It was discovered in 1995 that activation of the transcrip-
tion factor CREB in flies improved olfactory memory performance (Yin et al. 
1995), and later in another form of learning and memory, courtship suppression 
(Tubon et al. 2013). A mammalian cell-based HTS screening was developed based 
upon this premise that identified several enhancers of CREB function that were 
tested in flies for their ability to activate CREB and enhance aspects of memory 
(Scott et al. 2002). One of the more promising candidates identified through this 
pipeline was an inhibitor of PDE4 (Scott et al. 2002).

9.7  Summary

Drosophila has tremendous potential to facilitate drug discovery efforts. Not 
only in aging related diseases and processes, but several others as well. As dis-
covery is moving away from target-based approaches to system-based approaches 
the fly offers a rapid and inexpensive platform for identifying high quality leads 
subsequent to more traditional HTS, or even as a primary screening platform. 
Compounds that rescue phenotypes in the relevant fly model and do not dem-
onstrate toxicity are of high quality, and will have much more favorable ADME 
properties in subsequent whole animal rodent testing compared to compounds 
taken into rodents from the culture dish. The promises that the fly holds, when 
properly incorporated into the discovery pipeline, is to more rapidly bring more 
effective drugs to market at reduced development costs.
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Abstract Plant-derived compounds known as phytochemicals have attracted the 
attention of biologists as well as the general public for their ability to improve 
quality and quantity of life. Several phytochemicals have been found to exert 
 beneficial effects in this regard, including inhibition of aging and extending 
the life spans of experimental animals such as yeast, worms, flies, and mice. 
Drosophila melanogaster is a particularly effective model system for evaluat-
ing anti-aging compounds. This insect is suitable for aging research since it has a 
rapid generation time and short life span. In this chapter, we review typical phyto-
chemicals such as resveratrol, curcumin, and catechin that extend the life span of 
Drosophila melanogaster as well as discuss the molecular mechanisms underlying 
this effect.

Keywords Drosophila · Phytochemicals · Aging · Life extension · Resveratrol ·  
Curcumin · Catechin

10.1  Introduction

Fruits, vegetables, and herbs have long been consumed to improve human 
health. Plant-derived products and their extracts have a variety of physi-
ological effects, including anti-oxidant and anti-inflammatory properties, and 
are thus effective for protecting against numerous diseases such as cancer, 
diabetes,   cardiovascular disease, and neurodegenerative disorders. For  example, 
 blueberries and green tea have anti-oxidant and anti-inflammatory activities 
that help prevent cancer, cardiovascular disease, memory impairment, obesity, 
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and cognitive impairment due to aging in experimental animals (Giacalone 
et al. 2011; Yang et al. 2014). In addition, pomegranate juice has been reported 
to reduce blood pressure via anti-oxidant activity (Aviram and Dornfeld 2001), 
whereas cinnamon is known to ameliorate diabetes by enhancing insulin signal-
ing (Qin et al. 2003). The beneficial properties of these nutraceuticals can be 
attributed to their secondary metabolites, which are part of the biological sys-
tems by which plants resist various stresses. These secondary metabolites func-
tion as phytochemicals. Numerous phytochemicals have been identified, and 
the mechanisms underlying their protective effects against disease have been 
actively investigated. Recently, some phytochemicals have attracted attention 
due to their potential to retard the aging process and extend the life spans of 
various experimental animals.

To evaluate the beneficial properties of nutraceuticals and phytochemi-
cals,  efficient animal models with rapid generation times and short life spans 
are required. Drosophila melanogaster is an effective model for evaluating 
anti-aging compounds. The average life span of Drosophila is approximately 
60–80 days depending on the strain. This short life span is useful for testing the 
anti-aging properties of phytochemicals using several replicates. Any effective 
model for aging research should also have organismal complexity comparable 
to that of humans. Although D. melanogaster is evolutionally distal to humans, 
the Drosophila genome contains 60 % of all human disease-related genes. 
Additionally, numerous signaling pathways and cellular processes such as, for 
example, the insulin signaling pathway, are conserved in both flies and mammals. 
Furthermore, well established databases and valuable genetic tools for modulating 
gene expression in these flies are available.

Over past decades, many phytochemicals have been identified as having anti-
aging effects in Drosophila. However, some of these compounds need to be 
 rigorously tested again to confirm their effects. Recently, Mahtab Jafari introduced 
an algorithm for evaluating anti-aging compounds using a Drosophila model 
system (Jafari 2010). Based on her study, compounds that increase life span and 
reduce mortality should be further tested to determine whether or not they affect 
other parameters such as food intake, reproduction rates, and fecundity. In addi-
tion, these compounds should not have adverse effect on health span that can be 
monitored by assessing fly locomotion. In this chapter, we discuss current  studies 
on phytochemicals that have been shown to extend life span in a Drosophila 
model system.

10.2  Nutraceuticals and Phytochemicals

Several phytochemicals with known health beneficial effects are polyphenolic 
compounds. Polyphenols are characterized by hydroxylated phynyl moieties and 
classified as flavonoid polyphenols, such as catechine and fisetin, or non-flavonoid 
polyphenols, including resveratrol and curcumin, based on chemical structure.
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10.2.1  Resveratrol

Resveratrol (3,5,4’-trihydroxysilbene), a non-flavonoid polyphenolic compound found 
in the skin of red grapes, is produced in response to fungal infection. This compound 
belongs to the stilbene group, which includes members that naturally exist as both 
cis- and trans-isomers. Resveratrol has several beneficial effects, including conferring 
protection against metabolic diseases such as diabetes, cardiovascular disease, and neu-
rodegenerative disorders (Marchal et al. 2013). In addition, resveratrol is the most well 
characterized phytochemical for extending the life spans of various animal models, 
including yeast, worms, flies, short-lived fish Nothobranchius furzeri, and mice fed a 
high-fat diet (Howitz et al. 2003; Wood et al. 2004; Baur et al. 2006; Valenzano et al. 
2006). In 2003, the effect of resveratrol on life span extension was first investigated 
using Saccharomyces cerevisiae (Howitz et al. 2003). It was found that resveratrol 
could increase the replicative life span of yeast via stimulation of sirtuin expression 
and activity. In 2004, the life span-extending effect of resveratrol was confirmed 
using Caenorhabditis elegans and D. melanogaster (Wood et al. 2004). Subsequently, 
Valenzano et al. reported the pro-longevity effect of resveratrol on short-lived fish 
Nothobranchius furzeri (Valenzano et al. 2006). Baur et al. also demonstrated that res-
veratrol increases survival of mice fed a high-calorie diet (Baur et al. 2006).

Several studies have shown the effect of resveratrol on life span extension in 
flies fed a normal diet, although these investigations have produced conflicting 
results. In 2004, Wood et al. and Bauer et al. independently reported that res-
veratrol (100 and 200 μM, respectively) could extend the life span of Canton-S 
wild-type D. melanogaster (Bauer et al. 2004; Wood et al. 2004). In contrast, Bass 
et al. showed in 2007 that the median life spans of Canton-S and Dahomey wild-
type fruit flies were not extended by resveratrol supplementation at concentrations 
ranging from 1 to 1000 μM (Bass et al. 2007). In 2011, Xiang et al. confirmed the 
pro-longevity effect of resveratrol (50 μM) using a yw fruit fly strain (Xiang et al. 
2011). Supplementation of larval diet with resveratrol was found to extend the life 
span of adult fruit flies (Chandrashekara and Shakarad 2011). More recently, the 
pro-longevity effect of resveratrol was found to be dependent on gender and die-
tary nutrient composition (Wang et al. 2013). Specifically, resveratrol (200 μM) 
extended the life span of females fed a low-sugar/high-protein diet while 400 μM 
resveratrol extended the life span of females fed a high-fat diet. These findings 
are in agreement with another report showing that resveratrol was able to extend 
the life span of mice fed a high-fat diet but not a standard diet (Baur et al. 2006). 
These results suggest that the ability of resveratrol to extend life span depends on 
the dietary conditions of the organism.

Several reports have suggested that the life span-extending effect of  resveratrol 
is associated with activation of sirtuin. For instance, resveratrol was found to  
lack pro-longevity activity in C. elegans or D. melanogaster possessing mutated 
 sirtuin genes (Wood et al. 2004). However, other studies have shown that 
 resveratrol does not activate sirtuin (Borra et al. 2005, Kaeberlein et al. 2005), 
and different  factors such as insulin-like growth factor-1 (IGF-1), AMP-activated 
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protein kinase (AMPK), p53, and peroxisome proliferator-activated receptor-γ-
coactivator-1α (PGC-1α) may instead be associated with the pro-longevity effect 
of resveratrol (Lagouge et al. 2006; Baur et al. 2006; Pirola and Frojdo 2008; 
Antosh et al. 2011).

10.2.2  Curcumin

Curcumin [1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione], a 
non-flavonoid polyphenolic compound found in the rhizome of Curcumma longa 
(turmeric), has been wildly used as a spice, food additive, dye, and herbal medi-
cine in Asia. Numerous studies have investigated the anti-oxidant activity of 
curcumin. However, this compound is also known to exert anti-inflammatory, anti-
diabetic, anti-allergic, and anti-carcinogenic effects (Shen et al. 2013a).

The first ever demonstration of the life span-extending effect of curcumin using 
Drosophila was by Suckow and Suckow in (2006). In their study, supplementation 
with 1 mg/g of curcumin extended the life span of wild-type fruit flies. However, it 
remained unclear whether or not this pro-longevity effect is associated with second-
ary physiological confounding factors that extend life span, such as food consump-
tion and fecundity. Furthermore, the population size used in their study was rather 
small. In 2010, Lee et al. investigated the life span-extending effect of curcumin 
using two independent strains of fruit flies, Canton-S and Ives (Lee et al. 2010). It 
was confirmed that the life span-extending effect of curcumin is not associated with 
changes in fecundity or food intake. They also observed that gene expression profiles 
were altered by curcumin. In 2011, tetrahydocurcumin (THC), an active metabolite 
of curcumin, was reported to have a pro-longevity effect on both male and female 
yw strain flies (Xiang et al. 2011). Additionally, THC supplementation increased sur-
vival rates of both of paraquat-treated and untreated wild-type Oregon-R fruit flies. 
In 2013, Shen et al. observed that 0.5 and 1 mg/g of curcumin could extend the mean 
and median life spans of both male and female Oregon-R flies as well as increase 
activity of superoxide dismutase (SOD) (Shen et al. 2013b). Further, Soh et al. 
showed that supplementation with 100 mM curcumin over the entire adult life span 
of fruit flies, or during periods in which their survival was less than 80 %, did not 
extend the median life span of the Ra strain (Soh et al. 2013). However, supplementa-
tion with 100 mM curcumin during the development stage, periods in which survival 
was greater than 90 %, or periods in which survival was from 80–90 % extended the 
median and maximum life spans of Ra flies. These findings suggest that the life span-
extending effect of curcumin is associated with age-specific gene profiles.

The mechanism underlying the life span-extending effect of curcumin is being 
actively investigated. Curcumin supplementation affects many genes and signal-
ing pathways, including the nuclear factor-κB (NF-κB), AMPK, and target ofra-
pamycin (TOR) signaling pathways, which are known to regulate organismal life 
span (Aggarwal 2010). The pro-longevity effect of THC is absent when dFoxo 
and dSir2 genes are mutated, indicating that activation of FOXO/4EBP and 
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sirtuin plays a key role (Xiang et al. 2011). In addition, genome-wide analysis was 
recently performed using Drosophila to better understand the molecular altera-
tions induced by curcumin supplementation (Zhang et al. 2013). Curcumin supple-
mentation altered the transcription levels of five groups of genes, including those 
affecting the Notch signaling pathway, Wnt signaling pathway, cell cycle regula-
tion, riboprotein synthesis, and p53 pathway.

10.2.3  Catechin

Catechin is a flavanol-type flavonoid (flavan-3-ol) that has two benzene rings as well 
as a dihydropyran heterocycle with a hydroxyl group at position 3 (Malaguti et al. 
2013). Catechin is commonly found in foods and edible plants, such as green tea, 
cacao, and red wine. In tea, catechin mainly exists as epicatechin (EC), epicatechin-
3-gallate (ECG), epigallocatechin (EGC), epigallocatechin-3-gallate (EGCG), and 
gallocatechin (GC) (Clifford et al. 2013). All of these possess various biological 
 properties such as cardioprotective, anti-atherogenic, and anti-carcinogenic effects 
(Mak 2012). In particular, EGCG, the most abundant form of catechin in green tea, 
induces expression of anti-oxidant enzymes such as glutathione peroxidase, catalase, 
and glutathione S-transferase in mice (Na and Surh 2008). In addition, EGCG treat-
ment has been reported to increase the expression of SOD and reduce ROS levels in 
C. elegans (Zhang et al. 2009). Furthermore, Huntington disease (HD)-related pheno-
types such as photoreceptor degeneration and motor function were shown to improve 
when EGCG was fed to transgenic HD flies overexpressing a pathogenic htt exon 
1 protein (Ehrnhoefer et al. 2006). Other studies have demonstrated the life span-
extending effect of catechin using various animal models. In particular, EGCG was 
reported to extend the life span of C. elegans under stress (Zhang et al. 2009). In addi-
tion, Kitani et al. reported that 80 mg/L of green tea catechin could increase the mean 
life span of male mice (Kitani et al. 2004), whereas Si et al. showed that 0.25 % EC 
could increase the survival time of diabetic db mice (Si et al. 2011).

Using a Drosophila model system, several groups previously investigated the 
life span-extending effects of catechin. In 2007, Li et al. showed that 10 mg/mL 
of green tea catechin extract consisting of 62 % EGCG, 19 % EGC, 7 % EC, and 
9 % ECG could extend the median and mean life spans of Oregon-R flies by 36 
and 16 %, respectively (Li et al. 2007). In addition, they found that 10 mg/mL 
of green tea catechin could increase the survival time of paraquat-treated wild-
type flies but not SOD or catalase mutants, and supplementation with green tea 
catechin increased SOD and catalase activities. These data suggest that the pro-
longevity and anti-oxidant effects of green tea catechin are associated with SOD 
and catalase. Furthermore, the authors reported that supplementation with green 
tea catechin could reduce mortality and prolong the life span of flies fed a high-
fat diet (Li et al. 2008). EC (0.01–8 m mol/L) extracted from cocoa has also been 
reported to increase the life span of Drosophila (Si et al. 2011), whereas black tea 
extract mixed with EC and theaflavins was found to increase SOD1 and catalase 
activities as well as extend the life span of Drosophila (Peng et al. 2009).
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10.2.4  Others

Aside from the compounds described above, several other phytochemicals such 
as morphine, quercetin, and fisetin have also attracted attention from gerontolo-
gists as putative anti-aging and pro-longevity compounds. Previous studies have 
attempted to verify the life span-extending effects of these reagents using model 
animals such as D. melanogaster. Morphine, widely known as an narcotic anal-
gesic extracted from opium poppies, reportedly extends the life span of D. mela-
nogaster (Dubiley et al. 2011). Specifically, exposure to morphine hydrochloride 
at 0.01–0.25 mg/mL once per week increased the mean life span of Oregon-R 
male and female flies. In addition, morphine has been reported to reduce the 
expression of genes involved in metabolic functions (Loguinov et al. 2001), inhibit 
expression of NADPH oxidase, and modulate intracellular redox levels (Lee et al. 
2004, Qian et al. 2007), suggesting that the pro-longevity effect of morphine 
hydrochloride is associated with a reduced metabolic rate and reactive oxygen 
species production. Furthermore, the pro-longevity effect of morphine is corrobo-
rated by several reports showing that morphine activates NF-κB, a factor involved 
in cellular senescence and age-related disease (Lin et al. 2007; Salminen et al. 
2011b), as well as heat shockprotein 70 (HSP70), which helps regulate life span 
(Ammon-Treiber et al. 2004).

Quercetin (3,3′,4′,5,7-pentahydroxyflavone) is a flavonol-type flavonoid and 
one of the most important dietary flavonoids in foods (Peng et al. 2011). This 
compound is found in most fruits and vegetables, especially peels and seeds of 
apples, berries, onions, grapes, tea, and tomatoes as well as some medicinal plants. 
Quercetin has many beneficial effects, including anti-inflammatory, anti-oxidative, 
and anti-mutagenic activities, and has thus received much attention as a reagent 
to extend life span. The life span-extending effect of quercetin is mainly based on 
studies using a C. elegans model system. The pro-longevity activity of querce-
tin is supposedly mediated by insulin/IGF signaling components in C. elegans 
(Pietsch et al. 2009) but not by FOXO (Saul et al. 2008). Quercetin has no signifi-
cant effect on the life span of yeast (Howitz et al. 2003) or long-lived F1 hybrid 
mice (Spindler et al. 2013). The effects of quercetin have not been examined in a 
Drosophila model and future research is needed to test it.

The flavonoid fisetin (3,7,3′,4′-tetrahydroxyflavone) has also been reported to 
extend the Drosophila life span (Wood et al. 2004). In 2004, the pro-longevity 
effect of fisetin as a sirtuin-activating compound (STAC) was analyzed. It was 
found that fisetin increased the median and mean life spans of yw male and female 
flies fed a normal diet but not flies given a restricted diet (Wood et al. 2004). This 
observation means that the life span-extending effect of fisetin is associated with 
caloric restriction. In addition, fisetin was reported to have neuroprotective, neuro-
trophic, and cognition-enhancing effects mediated by Ras/extracellular signal-reg-
ulated kinase (ERK) signaling in an animal model of Huntington’s disease (Maher 
et al. 2011).
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10.3  Plausible Underlying Mechanisms of Life Span 
Extension by Phytochemicals

10.3.1  Hormesis

The mechanisms underlying the beneficial health effects of dietary phytochemi-
cals have only recently begun to be understood. One general mechanism of action 
involves hormesis, which activates the adaptive cellular stress response pathway. 
Hormesis is a biphasic dose-response with a low-dose beneficial effect and high-
dose toxic effect. Mild stress stimulates a defense response at the organismal level, 
resulting in biologically beneficial effects. A typical example of hormesis extending 
life span can be observed with calorie restriction. Moderately reduced calorie intake 
acts as a mild stressor that stimulates several stress-induced signaling pathways 
along with gene expression. However, malnutrition acts as a severe stressor, harm-
ing organisms and shortening life span. Similar to the effects of calorie restriction, 
many phytochemicals extend life span when ingested at certain doses, whereas their 
life span-extending effects are abolished when ingested at high doses.

Hormesis is reportedly mediated by several cellular signaling pathways, such 
as sirtuins, nuclear factor-erythoroid 2-related factor (NRF2), and NF-κB. Genetic 
manipulation of these signaling pathways is known to regulate life span in ani-
mal models. Certain phytochemicals such as resveratrol activate the sirtuin-FOXO 
pathway while others activate NFκB and cAMP response element-binding protein 
(CREB) (Mattson et al. 2007; Salminen et al. 2008b). In addition, the expression 
of vitagenes encoding cytoprotective heat shock proteins, hemeoxygenase-1 (HO-
1), and antioxidant enzymes is reportedly induced by phytochemicals (Calabrese 
et al. 2012).

10.3.2  NRF2

NRF2 is a redox-sensitive leucin zipper transcription factor. Under basal conditions, 
NRF2 resides in the cytoplasm bound to an inhibitory partner, Kelch-like ECH-
associated protein (Keap1), which is anchored to the actin cytoskeleton and represses 
NRF2 activity. In the presence of electrophilic and oxidative stresses, cysteine resi-
dues of Keap1 become modified, resulting in disruption of the Keap1-NRF2 com-
plex and translocation of NRF2 to the nucleus. Once inside the nucleus, NRF2 binds 
to an antioxidant response element (ARE) or electrophile response element (EpRE). 
Protective stress responses are subsequently generated via induced expression of sev-
eral cytoprotective genes, including NADPH:quinone oidoreductase-1, heme oxyge-
nase-1, glutamate cysteine ligase, glutathione S-transferase, glutathione peroxidase, 
and thioredoxin (Itoh et al. 1997). NRF2 nuclear translocation and activation are facili-
tated by upstream kinases such as mitogen-activated protein kinases (MAPKs), phos-
phatidylionositol-3-kinase (PI3 K), Akt, protein kinase C (PKC), and casein kinase-2. 
Furthermore, NRF2 interacts with other signaling pathways such as the NF-κB 
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cascade during inflammation and aryl hydrocarbon receptor (AhR), which regulates 
xenobiotic detoxification (Kensler et al. 2007, Reddy et al. 2007).

The effect of NRF2 on longevity has been well established in invertebrate models, 
including C. elegans and D. melanogaster (Sykiotis et al. 2011). In C. elegans, SKN-
1, the functional homologue of mammalian NRF2, is negatively regulated by the 
insulin/IGF-1 signaling pathway, which itself negatively regulates life span in many 
animals (Tullet et al. 2008). SKN-1 was found to accumulate in nuclei in worms hav-
ing a mutated copy of daf-2, which is the insulin/IGF-1 analogue of C. elegans, and 
have a pro-longevity function mediated by p38 MAPK, AKT-1, and SGK-1. In addi-
tion, skn-1 mutant worms do not respond to dietary restriction, indicating that the hor-
metic effect of dietary restriction on longevity is mediated by SKN-1 in C. elegans 
(Bishop and Guarente 2007). In Drosophila, homologues of Keap1 and NRF2 were 
reported to be activated by oxidants or increased tolerance to oxidative stress (Sykiotis 
and Bohmann 2008). Although over-activation of CncC, the Drosophila homo-
logue of NRF2, was not found to have direct effects on life span extension, mutation 
of Keap1 was observed to extend the life span of flies. These findings indicate that 
NRF2/Keap1 signaling plays a role in the regulation of longevity as a master mediator 
of anti-oxidant and detoxification responses (Sykiotis and Bohmann 2008).

Numerous phytochemicals such as curcumin, resveratrol, EGCG, sulphoraphane, 
and acetyl-L-carnitine are known to be potent antioxidants that activate NRF2 via 
several steps (Jeong et al. 2005, Wu et al. 2006, Surh et al. 2008). Some of these 
compounds such as sulforaphane, an isothiocyanante found in broccoli, oxidize or 
modify the cysteine thiol groups of Keap1, thereby stabilizing and activating NRF2 
(Hong et al. 2005). In addition, many phytochemicals such as EGCG and curcumin 
can activate NRF2 signaling by stimulating upstream kinases that subsequently 
phosphorylate NRF2 protein (Chen et al. 2000; Rushworth et al. 2006).

10.3.3  Sirtuin

Silent information regulator 2 (Sir2 or sirtuin) is a highly conserved nicotinamide 
adenine dinucleotide (NAD+)-dependent deacetylase that targets histones (result-
ing in chromatin silencing) as well as non-histone proteins. Seven members of the 
sirtuin family, SIRT1 to SIRT7, have been identified in mammals. These factors are 
involved in different physiological processes, including metabolism, stress responses, 
cell survival, replicative senescence, inflammation, circadian rhythm, neurodegenera-
tion, and cancer (Pallauf et al. 2013). In addition, mammalian SIRT1 is known to be 
a functional homologue of yeast sir2 and was reported to interact with 34 known dea-
cetylation targets, including FOXO, NF-κB, and p53 as well as six binding partners 
such as peroxisome proliferator-activated receptor γ (PPARγ) (Baur 2010).

Overexpression of sir2 is known to extend the life spans of yeast, worms, and 
flies (Imai et al. 2000; Tissenbaum and Guarente 2001; Rogina and Helfand 2004). 
An extra copy of the sir2 gene increases the replicative life span of yeast, whereas 
sir2 mutants have a shorter life span (Imai et al. 2000). In C. elegans, duplica-
tion of sir-2.1, the homologue of yeast sir2, extends life span (Tissenbaum and 
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Guarente 2001). In Drosophila, ubiquitous expression of dSir2 using dSir2EP2300 
and tubulin-GAL4 was shown to increase mean life span by 57 % (Rogina and 
Helfand 2004), whereas the life span of flies expressing dSir2 in fat bodies using 
S1106-GAL4 increased by 12 % (Hoffmann et al. 2013). Sirtuins are known to 
mediate the beneficial effects of calorie restriction, although their activity was 
found to be dependent on experimental conditions and genetic background in 
yeast (Lin et al. 2000; Tissenbaum and Guarente 2001).

Numerous compounds activate sirtuins, including chalcones, flavones, and stil-
benes (Wood et al. 2004; Cho et al. 2013). The best known phytochemical that extends 
life span via sirtuin activation is resveratrol. Treatment with resveratrol increases 
expression of sirutins. Furthermore, the pro-longevity effect of resveratrol is absent 
from C. elegans and D. melanogaster with mutations in the sirtuin gene (Wood et al. 
2004). These results indicate that the pro-longevity effect of resveratrol is dependent 
on sirtuin activation. In addition, EGCG is also known to extend life span and amelio-
rate age-related inflammation through activation of sirtuin (Niu et al. 2013).

10.3.4  NF-κB

NF-κB is a major regulator of the immune response. Under normal conditions, 
NF-κB is usually trapped in the cytoplasm after binding to inhibitory IκB proteins. 
When activating signals stimulate upstream kinases such as IκB kinase (IKK), 
calmodulin-dependent kinase II (CKII), and c-Jun N-terminal kinase (JNK), IκB 
becomes phosphorylated and degraded by ubiquitination-related proteasomes. 
The activated NF-κB complex then translocates into the nucleus where it activates 
transcription of several genes that control numerous cellular processes, including 
immune responses, proliferation, cancerous transformation, and cell survival, in 
response to stress and exposure to inflammatory cytokines (Baker et al. 2011).

Since increased proinflammatory status is known to stimulate the aging 
 process, a condition known as inflamm-aging (Franceschi et al. 2000), many 
 studies have shown that sustained activation of NF-κB signaling promotes cellular 
and organismal senescence (Rovillain et al. 2011; Salminen et al. 2011b). Over-
activation of NF-κB is known to be associated with age-related diseases such as 
cancer, cardiovascular disease, type 2 diabetes, obesity, and neurodegenerative 
diseases (Adler et al. 2007; Prasad et al. 2010). Furthermore, it was reported that 
AMPK, sirtuins, and NRF2 (a target of phytochemicals) inhibit NF-κB signaling 
(Salminen et al. 2008a; Kim et al. 2010; Salminen et al. 2011a).

Various phytochemicals are known to regulate the NF-κB pathway (Aggarwal 
and Shishodia 2004). Flavonoids and terpenoids such as artemisinin, celastrol, 
 kahweol, and lutein inhibit NF-κB activation along several points of the NF-κB sign-
aling cascade. This may be accomplished through inhibition of IκB degradation or 
nuclear translocation of p65 (Salminen et al. 2011b). Additionally, resveratrol and 
many stilbenes activate sirtuin and subsequently inhibit NF-κB signaling (Chung 
et al. 2010). EGCG treatment was also recently reported to reduce the expression of 
NF-κB mRNA and protein in rat liver and kidney (Niu et al. 2013).
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10.3.5  AMPK

AMPK, a serine/threonine kinase, is a crucial regulator of energy metabolic home-
ostasis. This factor is activated by elevated AMP levels and phosphorylation by 
upstream kinases such as liver kinase B1 (LKB1), CK, and transforming growth 
factor β-activated kinase 1 (Steinberg and Kemp 2009).

AMPK has been shown to have a significant effect on regulation of aging and 
age-related changes in lower organisms such as yeast and worms. Loss of SNF1p, 
a yeast homologue of AMPK, results in a 20 % increase in the life span of yeast 
cells (Ashrafi et al. 2000). In C. elegans, overexpression of aak-2, the worm homo-
logue of AMPKα, extends life span and appears to be required for increased lon-
gevity associated with daf-2/insulin and deacetylase sir-2.1 signaling (Curtis et al. 
2006). In addition, AMPK was reported to mediate the pro-longevity effect of calo-
rie restriction via phosphorylation of the transcription factor FOXO/DAF-16 (Greer 
et al. 2007). In Drosophila, inhibition of AMPKα expression using dAMPKα RNAi 
in muscle was reported to reduce survival of flies (Tohyama and Yamaguchi 2010). 
In addition, mild overexpression of LKB1 in whole bodies of female flies has 
been shown to stimulate activation of AMPK and life span extension (Funakoshi 
et al. 2011). Furthermore, overexpression of AMPK in adult abdominal fat bod-
ies and muscle using S1106-GAL4 and MHC-GAL4 could extend life span in flies 
(Stenesen et al. 2013). However, the role of AMPK in the regulation of aging in 
higher organisms is not clear. A recent report showed that long-term treatment with 
metformin can increase AMPK activity and extend the life span of male C57BL/6 
mice (Martin-Montalvo et al. 2013). Nevertheless, there is currently no solid evi-
dence indicating that AMPK has a direct effect on the life span of mammals.

Several pharmacological AMPK activators such as 5-aminoimidazole-4- 
carboxamide reboside (AICAR) and metformin have been identified. Additionally, 
many natural plant-derived compounds, including berberine, curcumin, quercetin, 
theaflavin, and ginsenoside Rh2, are also known to activate AMPK (Jeong et al. 2009). 
These compounds activate AMPK either by affecting upstream kinases or increasing 
local AMP concentrations. In particular, metformin, an oral anti-diabetic drug derived 
from French lilac, is a well-known potent activator of AMPK. Previous studies have 
shown that the life span-extending effect of metformin is mediated by AMPK activa-
tion in C. elegans (Onken and Driscoll 2010, De Haes et al. 2014). However, other 
investigations into life span extension in model systems have produced conflicting 
results (Anisimov et al. 2010, Smith et al. 2010, Slack et al. 2012). Curcumin is also 
known to activate AMPK similar to AICAR (Lee et al. 2009) as well as inhibit activa-
tion of the MAPK pathway, JNK, p38 MAPK, and ERK in human keratinocytes or 
mouse adipocytes (Cho et al. 2007; Ahn et al. 2010). Resveratrol increases AMPK and 
PGC-1α activity independent of Sir2 (Baur et al. 2006).
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10.4  Conclusion

In this chapter, we summarized the results of current research on life span exten-
sion by phytochemicals in Drosophila and other organisms. Plant-derived chemi-
cals and drugs have attracted a great deal of attention as reagents that can enhance 
quality of life and improve health. However, our understanding of the mechanisms 
underlying the effects of these phytochemicals is lacking. In addition, the impact 
of a wide range of plant-derived compounds on health and aging remains to be 
demonstrated along with the molecular mechanisms underlying their pro-longev-
ity effects. Furthermore, the dose of phytochemicals required to exert beneficial 
effects on health and aging needs to be identified. Additional studies should be 
conducted to determine whether or not the effects of these compounds are simi-
lar among species. Finally, more systematic and integrated assays should be per-
formed to identify and characterize phytochemicals that can extend life span as 
well as better understand how these reagents can improve quality of life.
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Abstract In the last years, epigenetic regulatory mechanisms are increasingly 
appreciated as central to a diverse array of age-associated processes such as cel-
lular and organismal senescence, genomic instability, and tumorigenesis. Recently, 
histone deacetylase inhibitors (HDACIs), a novel class of drugs targeting epi-
genetic pathways, have been proposed as a highly promising type of drugs with 
anti-aging effects. This chapter presents an overview of the anti-aging and life-
extending effects of HDACIs such as phenilbutyrate, sodium butyrate, trichistatin 
A and suberoylanilide hydroxamic acid as well as their plausible mechanism(s) of 
action in Drosophila melanogaster. Data supporting the hypothesis that life span 
extension induced by HDACIs may be caused by generalized changes in epige-
netic regulation of gene expression are discussed. Overall, findings reviewed in 
this chapter suggest that uncovering which genetic factors and signaling path-
ways contributing to healthy aging can be influenced by HDACIs in fruit fly may 
facilitate the development of new strategies for treating and preventing age-related 
human diseases and health span extension.
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11.1  Introduction

Age-related senescence is a process immanent to all living beings, and it is char-
acterized by the gradual loss of physiological functions and is accompanied by 
decreasing fertility and increased risk of mortality with advancing age. Recent 
advances in biogerontology, however, give hope that senescence may be postponed 
and/or prevented by certain approaches. An increasing number of pharmacological 
and dietary interventions are being identified, suggested to have the anti-aging and 
life-extending effects (Dominguez et al. 2009; Kapoor et al. 2009).

In the last years, epigenetic regulatory mechanisms are increasingly appreciated 
as central to a diverse array of age-associated processes such as cellular and organ-
ismal senescence, genomic instability, and tumorigenesis (Muñoz-Najar and Sedivy 
2011; Boyd-Kirkup et al. 2013; Wood and Helfand 2013). Epigenetic modifications 
refer to heritable but reversible changes in chromatin structure and gene function 
that occur without the change in the primary DNA sequence. The main epigenetic 
mechanisms include DNA methylation, modifications of histones that package the 
DNA, and microRNA regulatory pathways. The epigenetic processes normally are 
finely balanced throughout the life span. However, the epigenetic patterns can be 
significantly disrupted in abnormal cells, such as pre-cancerous or cancerous cells. 
The rate of aging may be influenced by a myriad of environmental cues that can be 
‘remembered’ throughout the life span due to the changes in the epigenome (Boyd-
Kirkup et al. 2013). The global DNA demethylation and promoter region-specific 
methylation of several specific genes including tumor suppressor genes are among 
the key age-associated epigenetic processes (Issa 1999). Epigenetic dysregulation 
has been shown to be implicated in a wide variety of age-related chronic diseases 
such as decline of immune function, atherosclerosis, type 2 diabetes, cancer, and 
neurodegenerative and psychiatric diseases (Berdasco and Esteller 2012).

It is noteworthy that, in contrast to genetic changes (mutations) that cannot be 
restored, epigenetic aberrations are reversible and can be relatively easily cor-
rected (Wood and Helfand 2013; Tollefsbol 2014). The potential reversibility of 
epigenetic aberrations, which are induced by adverse environmental exposures, 
through nutritional or pharmacological interventions makes them attractive targets 
for therapeutic drug development. Recently, a novel class of drugs targeting epi-
genetic pathways (‘epigenetic drugs’) have been proposed as a highly promising 
class of drugs with anti-aging effects (Vaiserman and Pasyukova 2012). Among 
them, some members of superfamilies of histone deacetylases (HDACs) 1-11 and 
sirtuins (SIRTs) 1-7 are presently in the main focus of research activities.

At the present time, screening of agents with potential anti-aging properties is 
performed on invertebrate models (Lucanic et al. 2013). The fruit fly Drosophila 
has numerous advantages for such studies including its relatively short life span, 
ease of maintenance, a large variety of environmental and genetic manipulations 
that alter life span, availability of stocks containing altered genes, sequence of the 
full Drosophila genome, and clear distinction between developmental and adult 
stages (Helfand and Rogina 2003). The main focus of this chapter is a review 
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of the literature describing the anti-aging and life-extending effects of synthetic 
inhibitors of HDAC activity and elucidating their mechanism(s) of action in 
Drosophila melanogaster.

11.2  Role of Histone Modification in Epigenetic  
Regulation in Drosophila

Two major epigenetic mechanisms influencing gene expression throughout the 
eukaryotic life cycle, including aging, are methylation of DNA cytosine residues 
and modification of histones (Huidobro et al. 2013). In some species, however the 
picture is not as straightforward. A question on the role of DNA methylation in 
fruit fly has been discussed controversially for many years. It has been assumed 
until recently that genomic DNA in Drosophila is completely unmethylated (Lyko 
et al. 2006). This assumption was based on the fact that most research has failed 
to detect methylated bases in the flies’ genomes during their pupal to adult stages. 
The analysis of genomic DNA in early embryos, however, revealed low but signifi-
cant levels of cytosine methylation. Thus, DNA methylation in Drosophila, in con-
trast to those in vertebrates, appears to be a transient epigenetic signal during early 
developmental stages, but not in adulthood. The obvious role of histone modifica-
tions in epigenetic regulation in Drosophila, in contrast, has been demonstrated in 
many studies (Boros 2012; Swaminathan et al. 2012).

The highly conserved core histones (H2A, H2B, H3, and H4) contain lysine-
rich N-terminal tails. These residues are prime targets for a number of covalent 
post-translational modifications, such as acetylation, phosphorylation, ubiquityla-
tion, biotinylation, sumoylation, and others (Kouzarides 2007). Modifications of 
residues in histone tails alter the histone–DNA interaction and create a “histone 
code” that coordinates the recruitment of transcription factors and polymerases, 
and regulates chromatin structure and gene expression. Among all known histone 
modifications, acetylation has the highest potential to induce chromatin unfolding, 
as it neutralizes the electrostatic interaction between the histone and the negatively 
charged DNA, making it more accessible to the transcriptional apparatus (Zentner 
and Henikoff 2013).

Both histone acetylation and deacetylation play a crucial role in chromatin 
remodeling and, thus, in gene expression. In normal, non-transformed cells, there 
is a fine balance between acetylation and deacetylation of histones (Davie and 
Spencer 1999). Histone acetylation is associated with an open chromatin and acti-
vation of gene expression, while histone deacetylation is associated with closed 
chromatin and repression of transcription. The enzymes catalyzing these modifica-
tions by addition or removal of acetyl groups to the tails of histone octamers are 
histone acetyltransferases (HATs) and HDACs, respectively (Kuo and Allis 1998). 
HATs catalyze the transfer of the acetyl moiety from acetyl coenzyme A to the 
ε-amino groups of histone lysine residues, thereby neutralizing the positive charge 
of the histone tails and reducing their affinity for DNA. This results in a more open 
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chromatin state and greater access of DNA to transcription factors. HDACs, on 
the contrary, catalyze the removal of acetyl groups from lysine residues of histone 
tails, resulting in a more condensed, transcriptionally repressive chromatin con-
formation (Witt et al. 2009). HDACs balance the acetylation activities of HATs 
in chromatin remodeling and play a key role in cell proliferation, migration and 
apoptosis, as well as immune functions and angiogenesis (Zhou et al. 2011). There 
are four main classes of HDACs. In Drosophila, Class I HDACs include RPD3 
and dHDAC3, Class II include dHDAC4 and dHDAC6, and Class III include 
dSIR2, dSIRT2, dSIRT4, dSIRT6 dSIRT7 (Chang and Min 2002). SIR2 protein 
shows NAD+-dependent HDAC activity (Imai et al. 2000). Finally, HDAC Class 
IV is represented by a single member, HDAC11 (Gao et al. 2002).

Many recent studies revealed a role of chromatin modification in both devel-
opmental and adult stages of life cycle, including aging. The heterochromatin 
loss model of aging proposed by Villeponteau (1997) suggests that heterochro-
matin domains are set up early in embryogenesis but then are gradually lost with 
aging, which results in aberrant gene expression associated with old age. An 
association between heterochromatic silencing and longevity has been revealed 
in various experimental models including yeast, Caenorhabditis elegans, mice 
and Drosophila (Wood and Helfand 2013). A dramatic reorganization of chro-
mosomal regions with age in fruit flies was found in a whole genome study by 
Wood et al. (2010). An overall decline of the active chromatin marks, such as 
H3K4me3 and H3K36me3, as well as a significant decrease in the enrichment of 
the repressive heterochromatin H3K9me3 and heterochromatin protein 1 (HP1) 
marks at pericentric heterochromatin loci have been found with age. Such exten-
sive alterations in repressive chromatin state were associated with age-related 
changes in gene expression. In a Larson et al. (2012) study conducted in trans-
genic Drosophila lines with genetically manipulated HP1 levels, the decreased 
heterochromatin levels were associated with dramatically shortened longevity, 
while increased heterochromatin levels resulted in extended life span compared to 
controls. These changes in the life span were associated with changes in muscle 
integrity. Specifically, HP1-overexpressing flies showed increased muscle function 
and structure with age, whereas flies with decreased HP1 levels demonstrated pre-
mature muscle degeneration.

11.3  Effects of HDAC Inhibitors on Life Span  
and Associated Life History Traits  
in Drosophila Melanogaster

Among the compounds affecting chromatin structure and gene expression through 
modulation of HDAC activity, HDAC inhibitors (HDACIs) seem the most promis-
ing agents for anti-aging therapies. A decrease in HDAC activity generally results 
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in gene up-regulation. A decline in transcription of many genes, primarily meta-
bolic and biosynthetic genes, is known to be observed in old age (Seroude et al. 
2002). Therefore, there is hope that HDACIs will delay aging due to the preser-
vation of the level of transcription of these genes, which is characteristic of the 
young, in aging individuals. HDAC inhibition can also result in an up-regulation 
of longevity-associated genes, such as inflammatory response and stress response 
genes. HDACIs, due to their anti-proliferative activity, are currently being inves-
tigated in human clinical trials as a new generation of anticancer therapeutics 
(Benedetti et al. 2014; Slingerland et al. 2014; West and Johnstone 2014). The 
antitumor effects of HDACIs are suggested to be attributed to both transcriptional 
repression of proto-oncogenes and transcriptional reactivation of silent tumor 
suppressor genes (Boumber and Issa 2011). HDACIs are considered to be very 
promising candidates in cancer treatments since these agents, targeting different 
malignant pathways, result in a preferential killing of the neoplastic cells, but they 
are relatively non-toxic to normal cells (Johnstone 2002).

Apart from their clinical application in oncology, HDACIs have recently 
been evaluated as potential therapeutics for many chronic pathological condi-
tions including cardiovascular disorders (Baltan et al. 2013). Supportive evidence 
is obtained for their potent immunomodulatory and anti-inflammatory effects 
(Licciardi et al. 2013). HDACIs have been also identified as candidate drugs for 
the treatment of neurodegenerative disorders such as Parkinson’s, Alzheimer’s and 
Huntington’s diseases (Abel and Zukin 2008; Hahnen et al. 2008).

High hopes were also placed on the potential therapeutic applications of modu-
lators of NAD-dependent class III HDACs (also known as SIRTs) that play central 
roles in cell survival, inflammation, energy metabolism, and aging (Sinclair and 
Guarente 2014). SIRTs are key regulators of many important processes implicated 
in aging, such as DNA damage, genome stability, stress response, cell prolifera-
tion, differentiation and apoptosis, metabolism, energy homeostasis, and cancer 
(Satoh et al. 2011; Yuan et al. 2013). Since SIRTs are crucial to pathways that 
counter the age-associated health decline, pharmacological agents that modulate 
SIRT activity are expected to have clinical potential in preventing and/or treating 
many chronic conditions, including cardiovascular, metabolic and neurodegenera-
tive diseases, arthritis, and cancer (Morris 2013).

In recent years, experimental research has emerged on the life-extending 
potential of synthetic HDACIs although several natural compounds, such as sul-
foraphane contained in broccoli, curcumin extracted from turmeric and garlic-
derived diallyl disulfide seem to be very promising as well. The most commonly 
used HDACIs are listed in Table 11.1.

In Drosophila, each HDAC was shown to regulate transcription of a unique set 
of genes and to have a distinct pattern of temporal expression (Cho et al. 2005). 
Furthermore, a differential sensitivity of HDACs to HDACIs has been shown. 
The research findings supporting the anti-aging and life-extending properties of 
HDACIs in Drosophila melanogaster are reviewed in the sections below.
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11.3.1  Phenylbutyrate

Sodium 4-phenylbutyrate (PBA) is a general HDAC inhibitor with potential anti-
neoplastic activity. This chemical was shown to inhibit class I and II HDACs, 
which lead to elevated gene expression, reduced cellular proliferation, induction 
of apoptosis, and the enhanced cell differentiation in neoplastic cell populations 
(Iannitti and Palmieri 2011).

Kang et al. (2002) were the first reporting the life-extending potential of the 
sodium salt of PBA in Drosophila melanogaster. Feeding of flies with PBA 
resulted in a substantial extension of both mean and maximal life span by up to 
30–50 % regardless of the fly’s genetic background, without diminution of loco-
motor activity and resistance to stress. This result is not due to caloric restric-
tion, known to extend life span in different model organisms, as it is evident from 
the similarity of weight and size between the flies fed with or without PBA. The 
effects obtained are also unlikely due to the decrease in reproductive activity, as 
is evident from the similar numbers of produced eggs and percentages of fertile 
eggs, and the offspring weight and size in flies fed with PBA and control animals. 
The treatment for a limited period, either early or late in adult life, has also been 
found to have potential to extend the flies’ longevity, possibly by stimulating repair 
mechanisms and/or inhibiting the accumulation of damages (Kang et al. 2002). 
The life-extending effect of PBA was dose-dependent: 10 mM of PBA lead to 
extended longevity whereas lower concentrations of this drug have no effect and 
higher concentrations were toxic. Remarkably, this trend was highly consistent 
with those for the levels of acetylation of histones 3 and 4. The effects of PBA 

Table 11.1  Overview of most widely used HDACIs

Class Compound name HDAC specificity class

Short-chain fatty 
acids

Sodium Butyrate (SB) I, II

Phenylbutyrate (PBA) I, II

Valproic Acid (VPA) I, II

Hydroxamic acids Trichostatin A (TSA) I, II, IV

Vorinostat (suberoylanilide hydroxamic 
acid, SAHA)

I, II, IV

Givinostat (ITF2357) I, II

Abexinostat (PCI-24781)

Belinostat (PXD101) I, II, IV

Panobinostat (LBH589) I, II, IV

Resminostat (4SC-201) I, II, IV

Quisinostat (JNJ-26481585) I, II, IV

Cyclic peptides Depsipeptide (romidepsin) I

Apicidin I, II

Benzamides Entinostat (MS-275) I, II

Mocetinostat (MGCD0103) I



25111 Life Extension in Drosophila by Histone Deacetylase Inhibitors

were also accompanied by marked changes in gene expression. DNA microarray-
based global transcriptional analysis revealed that PBA treatment lead to either 
down- or up- regulation of several hundreds of genes.

A partial list of genes which were either repressed or induced by this treatment 
is presented in Table 11.2. Among genes which were significantly up-regulated by 
PBA treatment, several genes have previously been found to be involved in life 
span determination in D. melanogaster, including chaperones (Tatar et al. 1997), 
superoxide dismutase (SOD) (Orr and Sohal 1994; Sun et al. 2012), glutathione 
S-transferase (Toba and Aigaki 2000), cytochrome P450 (Doroszuk et al. 2012), 
and elongation factor 1 (Webster and Webster 1984). The level of transcrip-
tion of SOD gene was most dramatically affected by PBA treatment—in flies 
fed PBA this level was 50 times higher than in control flies. It may be a reason 
why in this study the flies fed PBA were more resistant to the paraquat-induced 
oxidative stress than control ones. The general trends evident from this table are 

Table 11.2  Partial list of genes induced or repressed by PBA, according to the Kang et al. 
(2002)

Function Gene Fold change

Detoxification Superoxide dismutase 51.9

Cytochrome P450-4d1 7.2

Glutathione S-transferase 4.6

Chaperone Hsc70 4.5

Hsp60 6.7

DnaJ like2 2.9

DnaJ like1 −13.2

Translation Translational elongation factor1 α 4.1

Neurotransmitter Inebriated 26.8

Transcription factor Daughterless 8.0

Signal transduction Epididymal secretory protein 7.5

Peroxisomal farnesylated protein −1.8

Transporter Mitochondrial phophate carrier protein 5.1

Growth factor Imaginal disc growth factor1 5.3

Ligand binding Transportin 8.0

Calreticulin −26.5

DNA binding Osa −5.0

Kinase Cyclin-dependent kinase 9 −2.7

Ion channel Porin −1.4

Metabolism Glyceraldehyde-3-phosphate dehydrogenase1 −3.7

NADH:ubiquinone reductase 75-kD subunit precursor −25.3

Cytochrome c oxidase −6.6

Peptidyl gycine α hydroxylating monooxygenase −1.4

Fatty acid synthetase −2.4

Cytochrome c oxidase subunit VIb −2.2

Hexokinase −5.0
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up-regulation of the majority of genes involved in detoxification and chaperone 
activity, and down-regulation of genes involved in different metabolic pathways. 
These findings support the hypothesis that life span extension may be caused by 
overall generalized changes in epigenetic regulation (Vaiserman 2011).

11.3.2  Sodium Butyrate

In several studies, the life-extending capacity was also shown for sodium butyrate 
(SB), a short chain fatty acid having HDAC inhibition activity and known to mark-
edly influence the processes of cell growth, differentiation and apoptosis in both 
normal and transformed cells (Buommino et al. 2000; Khan and Jena 2014). The 
epigenetic modifications potentially involved in the SB-induced life extension in 
Drosophila have been deeply studied in a series of experiments of the research 
group headed by Bai-Qu Huang in the Northeast Normal University, Changchun, 
China (see Table 11.3). The first evidence for the life-extending potential of SB 
in Drosophila melanogaster was obtained in the Zhao et al. (2005a) study. In the 
short-lived line, iso4, one-off treatment with SB in a dose of 10 mmol/l for 5 h 
in the larval stage resulted in an increase of both mean and maximum life span 
by 25.8 and 11.5 %, respectively. No obvious effect on longevity was observed in 
the long-lived line, iso2. The changes obtained were accompanied by the hypera-
cetylation of core histone H3 and elevated levels of expression of hsp22 and hsp70 
genes. In the subsequent study by the same authors (Zhao et al. 2006), treatment 
with SB caused elevated acetylation levels at histone H3 located at both promoter 
and coding regions of the hsp70 gene, along with enhanced accessibility of heat-
shock factor to target element and increased rate of RNA polymerase II-mediated 
transcription. The SB-induced hyperacetylation of histone H3 resulted in up- 
regulation of both basal and inducible hsp70 expression. In addition, SB affected 
the structure of chromatin at the site of cytogenetic location of the hsp70 gene on 
the polytene chromosome (Chen et al. 2002). Furthermore, in this study, SB lead 
to a markedly elevated level of transcription of the hsp70 gene, at an extent similar 
to that induced by heat shock. Zhao et al. (2005b) by using the chromatin immu-
noprecipitation, also located the regions of the SB-induced H3 hyperacetylation 
at both the promoter and the downstream of RNA polymerase II of the transcrib-
ing hsp22 gene. It has been found that acetylation of this histone stimulated the 
transcription initiation and promoted the transcription elongation, thereby up-reg-
ulating both basal and inducible expression of this gene. In the Zhao et al. (2007) 
study, the flies fed with SB during the third instar larval stage, demonstrated an 
elevated level of acetylation of histone H3, whereas the level of acetylation of 
histone H4 remained unchanged. The histone H3 acetylation levels were signifi-
cantly increased at all the regulatory elements of the hsp26 gene promoter. The 
hyperacetylation of histone H3 was accompanied by a significantly decreased level 
of basal transcription of the hsp26 gene under the non-heat shock conditions, but 
increased level of inducible transcription under the heat shock. Specifically, when 
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the larvae were fed with 10 mM SB for 6 h at 25 °C, the basal level of expres-
sion of the hsp26 gene was inhibited by approximate 60 %, whereas heat shock at 
37 °C induced the transcription of hsp26, and if such heat activation was accom-
panied by the SB treatment, the level of inducible expression of this gene was ele-
vated by about 30 %.

According to the authors, these findings suggest that the alterations in histone 
acetylation and, thereafter, the expression of chaperone genes, may be contributed 
to the life-extending effects of SB and other HDACIs in Drosophila melanogaster 
(Zhao et al. 2005a, b).

In the Tables 11.3 and 11.4: mean life span (MLS), maximum life span 
(MaxLS); not specified (NS); not determined (ND).

Other mechanisms, however, may also be contributing. In recent research by St 
Laurent et al. (2013), the treatment with 10 mM SB-supplemented food rescued 
the locomotor impairment and early mortality of the flies with the pesticide rote-
none-induced Parkinson’s disease. In this model, SB was selected as a therapeutic 
candidate because it is known to be able to correct the disrupted HDAC activity 
in Parkinson’s disease and other neurodegenerative disorders. The SB-mediated 
rescue of rotenone-induced locomotor impairment was associated with elevated 
dopamine levels in the fly brain. At the same time, no significant differences in the 
serotonin content among the groups were observed. Additionally, treatment with 
SB did not improve significantly the deficiency in tyrosine hydroxylase (the rate-
limiting enzyme for dopamine biosynthesis) mRNA levels and in SOD activity in 
rotenone-treated insects.

Phase separation in the adult life of fruit fly and other gradually aging organ-
isms into a health span, a transition phase, and a senescent span was proposed by 
Arking et al. (2002). In analysis conducted in different model organisms, it has 
been shown that these life stages are characterized by different gene expression 
patterns. The health span is characterized by a tightly regulated gene expression 
pattern which leads to a maximized tissue function and to a minimized inflamma-
tory and other damage response; the transition phase is characterized by a gradual 
decline of the cellular regulatory capacity, and the senescent span is character-
ized by a gradual deregulation of the gene expression pattern (Arking 2009). In a 
recent study by McDonald et al. (2013), a normal-lived Ra strain demonstrated a 
decreased mortality rate and an increased life span if it was administered with SB 
during transition or senescent spans, but a decreased life span when administered 
throughout the entire adult life span or health span only. In a long-lived La strain, 
however, treatment with SB resulted in mostly deleterious effects on longevity.

In our own study, both Oregon-R male and female flies fed 10 and 20 mmol/l 
SB during both pre-imaginal and imaginal stages showed significant increase 
in mean life span compared to control flies, whereas the treatment with 20 and 
40 mmol/l SB throughout the adult stage only lead to a significant increase in 
male (but not female) longevity (Fig. 11.1). Dietary supplementation with SB in 
a high dose (160 mmol/l) during the adult stage resulted in significant decrease of 
both male and female life span (Vaiserman et al. 2012). The life-extending effects 
obtained were unlikely due to the decreased reproductive investment, because any 
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reduction in reproductive activity (fecundity) was revealed in SB-treated female 
flies. In our subsequent study (Vaiserman et al. 2013), supplementation with SB in 
a dose of 20 mmol/l led to a significant increase in the male mean life span; maxi-
mum life span was significantly increased in groups treated with SB in doses of 
10, 20 and 40 mmol/l.

No changes in female life span were obtained after administration of SB, 
whereas maximum life span was significantly increased in group treated with the 
10 mmol/l SB only. Increase in longevity of Oregon-R and w1118 males was fur-
ther confirmed in our experiments in which SB (10 mM solution) was applied to 
the food surface during the adult stage (Symonenko et al. 2014). The effect was 
somewhat more pronounced and reproducible for w1118 line characterized by a 
lower life span, and, in old w1118 flies, was accompanied by a slight increase in 
locomotion which is often considered as a marker of aging (for review, see Ridgel 
and Ritzmann 2005). In addition, both basal and inducible levels of expression of 
hsp70, sir2 and InR genes were determined in SB-treated flies and in control flies. 
Dietary supplementation with SB in a dose of 20 mmol/l at the larval stage had no 
effect on the basal levels of expression of these genes under normal (unstressed) 
conditions. The inducible levels of expression of hsp70 and InR genes in the 
stressful conditions (heat shock and starvation, respectively) were also unchanged, 
whereas, under the starvation condition, 2.5-fold higher expression of sir2 gene 
was detected in SB-treated group compared to control flies (Vaiserman et al. 
2013). We also performed an RNA-seq analysis of transcriptomes of SB-treated 
and control w1118 males. According to our preliminary results, the following 
functional gene sets were associated with SB treatment: (i) defense response to 
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Fig. 11.1  Mean life spans (M ± m) of male (dark line) and female (light line) fruit flies supple-
mented with SB at both larval and imaginal stages (a) or at imaginal stage only (b) (adapted with 
changes from Vaiserman et al. 2012)
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bacteria; (ii) regulation of immune system; (iii) regulation of response to stress, 
including JNK signaling. Accordingly, up-regulation of foxo, hep and other genes 
involved in life span control was revealed.

To summarize, a wide variety of effects of SB on life span was observed. SB 
in concentrations varying from 10 to 40 mM demonstrated a potential to increase 
life span, whereas SB treatment in higher doses (more than 100 mM) decreased 
longevity. Stage and duration of SB supplementation seem to be important with 
respect to the SB effect on life span (Table 11.3). Treatment on the larval stage 
increased longevity in most experiments. This fact indicates that SB might indeed 
affect epigenetic mechanisms of life span extension based on modification of his-
tones. Treatment with SB on adult stage had positive effect on longevity only in 
some cases, in particular, though not exclusively, when SB was supplied later in 
life and could prolong active transcription of genes essential for maintaining health 
span. Short/normal-lived strains were more sensitive to SB treatment than long-
lived strains (Table 11.3). It must take into account that different authors used 
various genotypes, which also could contribute to the observed differences in SB 
effects. Contradictions between different experiments could, at least partially, be 
also explained by sex-specificity of SB effects (Table 11.3). In many experiments, 
life span was measured in a mixed population of males and females, and this could 
substantially bias the final result. However, despite the complexity and partial 
inconsistency of results, SB demonstrated a high potential as a life-extending agent.

11.3.3  Trichostatin A

Trichostatin A (TSA) is another widely used HDACI that demonstrates a broad 
spectrum of epigenetic activities, including inhibition of the cell cycle since the 
beginning of the growth stage and promotion of the expression of apoptosis-
associated genes. TSA is recognized as a promising anticancer drug candidate. 
Possible mechanisms of action of this compound are induction of terminal differ-
entiation, cell cycle arrest and apoptosis in different cancer cell lines and thereby 
inhibition of tumorigenesis (Vanhaecke et al. 2004).

In the study by Pile et al. (2001), it has been found that TSA may play an 
important role in normal developmental progression in Drosophila melanogaster. 
Supplementation with 5 microM TSA caused lethality and delayed larval devel-
opment, and acted synergistically with the notched-wing mutations in the rpd3 
deacetylase gene. In the above-mentioned series of studies by Bai-Qu Huang 
and colleagues, the epigenetic and phenotypic effects of the TSA treatment were 
obtained that were very similar to those shown for the SB treatment (Table 11.4).

In the study by Zhao et al. (2005a), a treatment with TSA influenced the lon-
gevity of both short- and long-lived Drosophila lines, but to a different extent. In 
the short-lived iso4 line, one-off treatment with TSA caused an increase in mean 
life span by 5 %, whereas continuous treatment resulted in increase of mean 
and maximum life span by 24.4 and 16.4 %, respectively. At the same time, in 
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the long-lived iso2 line, one-off treatment with TSA had no significant effects 
on both mean and maximum life span and continuous treatment with TSA led to 
increased mean life span by 15.6 %. These life-extending effects induced by the 
TSA treatment were accompanied by the hyperacetylation of core histone H3 in 
the promoter and coding regions of some chaperone genes, such as hsp22, hsp26 
and hsp70, along with up-regulation, in most cases, of both basal and inducible 
expression of these genes. The life-extending potential of TSA was also demon-
strated in the Tao et al. (2004) research. In this study, TSA treatment significantly 
extended the mean life span by 27.3 and 23.3 % for female and male flies, respec-
tively. Maximum life span was also extended by 37.9 % for females and by 37.0 % 
for males. These phenotypic effects were accompanied by a significantly increased 
transcription level of the hsp22 gene, and modified chromatin morphology at the 
locus of hsp22 gene along the polytene chromosome. The authors suggest that the 
expression of chaperones can reduce the level of accumulation of damage, stimu-
late the repair mechanisms, and improve the cell stress resistance to create cellular 
and physiological environments that are favorable for longevity.

In our own study, both Oregon-R and w1118 males fed 10 mkM TSA through-
out the adult stage showed significant increase in mean life span compared to 
control flies, whereas this effect was not observed in females. The effect was some-
what more pronounced for w1118 line characterized by a lower life span, and, in 
old w1118 flies, was accompanied by a slight increase in locomotion. We also per-
formed an RNA-seq analysis of transcriptomes of TSA-treated and control w1118 
males. According to our preliminary results, the following functional gene sets 
were associated with the differential expression in control and TSA treated flies: 
(i) DNA replication; (ii) cell fate determination, differentiation and development of 
various organ systems, (iii) mitochondria function, ATP synthesis. Surprisingly, up-
regulation of many genes involved in development of the nervous system, heart and 
cuticula was revealed in TSA treated males in association with increased life span.

To summarize, effects of TSA on life span seem more consistent than effects 
of SB. TSA was shown to affect life span of both short/normal- and long-lived 
strains, and stage of TSA supplementation seems to be less important compared 
to SB treatment (Table 11.4). The life span-modulating effects of TSA were also 
found to be sex-dependent. Similarly to SB, TSA demonstrated a high potential as 
a life-extending agent. However, in our experiments, two HDACIs affected tran-
scription of different sets of genes, with TSA treatment affecting transcription of 
much more genes and in a greater extent compared to SB treatment.

11.3.4  Suberoylanilide Hydroxamic Acid (SAHA)

One more HDACI that was shown to be able to extend life in fruit fly, is suberoy-
lanilide hydroxamic acid (SAHA). In in vitro studies, SAHA was found to have 
similar effects as does SB although at much lower effective doses (Zhou et al. 
2011). This compound is known to induce growth arrest in transformed cells  
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(Yin et al. 2007), and it was shown to be effective in preventing Huntington dis-
ease in various animal models including Drosophila (Steffan et al. 2001).

In the recent study by McDonald et al. (2013), the effects of administration 
with SAHA throughout Drosophila health span, transition phase, and senescent 
span have been studied. Treatment with SAHA during the transition or senes-
cent spans resulted in decreased mortality rate and extended longevity compared 
to the control, while supplementation during the entire adult life span or during 
the health span only led to decreased longevity in the normal-lived Ra strain. At 
the same time, when the long-lived La strain was administered with SAHA by 
the same scheme, mostly deleterious effects were detected. All three SAHA doses 
used in research altered the late-life survivorship of the normal-lived Ra strain so 
that it resulted in the significant increase in both median and maximum longevity 
compared to the control flies. The analysis of mortality curves in all three experi-
mental cohorts used in the study indicated that there were no significant effects 
of the SAHA administration until the age of ~50 days. After this time point, all 
cohorts showed an evident lowering of the mortality rates compared to the control 
flies. The supplementation with SAHA significantly influenced the mortality rate 
when applied to the transition or senescent phases of normal-lived strain but not of 
long-lived strain. Remarkably, the SAHA-treated normal-lived Drosophila strain 
showed the late-life extending effects similar to those seen in the same study for 
the other HDACI, SB. The fact that these two different HDACIs, SB and SAHA, 
had similar effects on mortality rate during the senescent span indicates the simi-
larity of mechanisms that underlie beneficial effects for this class of HDACIs. The 
authors suggest that their findings demonstrate that the use of these HDACIs may 
significantly influence the mortality rate throughout the senescent phase by reduc-
ing the vulnerability of treated individuals, in a manner similar to that of dietary 
restriction. On the basis of their findings, the authors suggested that the HDACIs 
used may affect several pathways involved in regulating gene expression patterns 
associated with healthy aging. According to the authors, the obtained stage-spe-
cific ability of the studied HDACIs to adversely affect the survival of the both nor-
mal-lived Ra and long-lived La flies implies that the sensitivity of the organism to 
the preparation may be due to the presence of HDAC-dependent stage-specific pat-
terns of gene expression. Disruption of these patterns can lead to life shortening. 
Conversely, the induction of these patterns of gene expression throughout senes-
cence when they are not normally present may likely underlie the life-extending 
effects of HDACIs.

11.4  Conclusion

A number of environmental, life style and genetic interventions have clearly 
proven to be effective in prolonging life span in experimental animals (Jylhava 
2014). Currently, an opinion is becoming common among researchers that life-
extending interventions operate primarily to modify the epigenome (Vaiserman 
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2008; Rando and Chang 2012). A growing body of studies indicates that epige-
netic changes which are associated with age may be beneficially affected by sev-
eral lifestyle factors, such as diet or exercise. Several compounds, both chemical 
and natural, have been also proposed recently to positively affect aging and lon-
gevity including those presumably based on the fine-tuning of epigenetic regu-
lation (Uchiumi et al. 2012). Among such epigenetically-targeted pro-longevity 
drugs, HDACIs are currently in focus of scientific interest. Importantly, a very 
accurate and precise fine-tuning is required for this purpose since any unbalanc-
ing in HDAC activity, similarly to unbalanced consumption of vitamins, anti-
oxidants, or hormones, may result in disruption of finely-tuned mechanisms 
controlling homeostasis. However, as the regulation of transcriptional networks 
is mediated by central regulatory systems and thereby is a highly coordinated 
and orchestrated process, the mechanism of epigenetic regulation of gene 
expression appears a plausible candidate mechanism for the modulation of a 
highly integrated process such as aging (Vaiserman 2011; Bacalini et al. 2014). 
Thereby, nonspecific HDACIs, such as SB, TSA and SAHA, which may poten-
tially influence the expression of thousands of genes including those which are 
involved in aging, can prove to be quite effective for further anti-aging treat-
ments. The tissue-, stage-, and HDAC-specific inhibitors, however, may also be 
developed.

Drosophila, among other experimental models, is a very useful model in 
screening of anti-aging and pro-longevity drug candidates including HDACIs. 
In addition, determining which HDACIs may extend longevity in Drosophila 
and which genes are implicated in these effects, may provide important informa-
tion about the genetic basis of aging. The critical issue is certainly whether the 
mechanisms of action of HDACIs are similar between invertebrates, including 
Drosophila, and mammals. Many of these pathways are likely substantially con-
served in a wide variety of species, from invertebrates to humans (Lucanic et al. 
2013). Thereby, uncovering which transcription factors and signaling pathways 
contributing to healthy aging can be influenced by HDACIs in fruit fly may facili-
tate the development of new strategies for treating and preventing age-related 
human diseases and health span extension.
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Abstract The search for compounds that enhance health span has been  daunting. 
Many gerontological experiments on model organisms, including Drosophila  
species, have examined the effects of individual substances on life span solely. But it 
is now clear that effective alleviation of aging requires more than merely prolonged 
survival regardless of other functional effects. Monitoring other life-history charac-
ters is imperative. In addition, functional characters such as locomotor and cognitive 
capacities may be important too. Here we review the topic of healthspan extension 
using diet from the standpoint of evolutionary biology. We discuss proposed “rules” 
for evaluating candidate anti-aging substances. We point out the failings of some 
studies of anti-aging substances, such as resveratrol. We also critically review pro-
posed anti-aging strategies that have been based on evolutionary reasoning, question-
ing some of our own earlier suggestions. Here we offer a new evolutionary strategy 
for dietary enhancement of healthspan, one that is as applicable to fruit flies as 
humans. However, our overall view is that the project of ameliorating aging using 
ingestible substances is without doubt challenging to a high degree.

Keywords Life span · Healthspan extension · Fruit fly · Anti-aging substances ·  
Resveratrol

G.A. Rutledge (*) · M.R. Rose 
Department of Ecology and Evolutionary Biology, Francisco J. Ayala School of Biological 
Sciences, University of California, Irvine, California 92697-2525, USA
e-mail: grutledg@uci.edu

M.R. Rose 
e-mail: mrrose@uci.edu



266 G.A. Rutledge and M.R. Rose

12.1  The Ponce de Leon Trail Problem: Looking  
for Anti-aging Substances

12.1.1  The Ponce de Leon Trail is Very Old

One of the more universal features of the historical record of biological research 
is the search for a substance that can postpone or reverse the effects of aging on 
people. This is a ubiquitous topic in Taoist writings (vid. Needham’s Science and 
Civilization in China books 1954–2008), and a commonplace theme of Traditional 
Chinese Medicine, which grew out of Taoist traditions. In the West, the topic was 
of interest in ancient civilizations, as illustrated by the legend of Gilgamesh from 
Sumerian civilization.

After Western civilization recovered from the Dark Ages and Middle Ages mil-
lennium of hostility to biological research, the topic resurfaced in the work of the 
Renaissance alchemists, such as Paracelsus. Perhaps the most famous early-modern 
Western example of this search for a restorative substance is the possibly apocryphal 
story of Ponce de Leon looking for a fountain of youth in Florida, after the voyages 
of Columbus to the New World (Haycock 2009). Of greater significance for aca-
demic biology, the polymath and founding figure of Western science Francis Bacon 
devoted an entire book to the topic of aging and how it can be influenced, Historia 
Vitae et Mortis (1637). But because Francis Bacon was by inclination and prescrip-
tion skeptical, it is more appropriate to refer to the project of controlling aging by 
means of substances as the Ponce de Leon Trail (cf. Moment et al. 1978).

For a very long time by the standard of contemporary biology, the genus 
Drosophila has been a model system of choice for the control of aging. For exam-
ple, Loeb and Northrop (1917) used temperature to control rates of demographic 
aging in laboratory fruit flies almost a century ago, a practice that has continued ever 
since (e.g. McArthur and Sohal 1982). This fruit fly aging literature has increased 
explosively, with hundreds of publications claiming to demonstrate the experimental 
manipulation of Drosophila aging using ingested substances and other interventions. 
This is a literature too vast to be enumeratively reviewed. Instead, what we offer here 
is a critique from the standpoint of evolutionary biology.

12.1.2  We Need to Study Healthspan

A central point for us, to begin with, is the importance of what is sometimes called 
“healthspan.” Crudely speaking, this can be thought of as a combination of the 
capacity to survive together with a capacity, or capacities, to function. That is to 
say, to take an extreme example we do not regard the prolongation of human life 
in a medically-induced coma as a notable achievement of anti-aging. Effective 
mitigation of aging should be more than merely prolonged survival.

Fortunately, in the context of evolutionary theory there are well defined quan-
titative measures of healthspan that can be used for the purpose of objective 
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experimentation. One such measure would be Ro, which is the summation over all 
ages of the products of survival probability to a particular age with the fecundity 
at that age (vid. Charlesworth and Charlesworth 1973). [Similar measures would 
include the survival probability at a particular age multiplied by the fecundity at that 
age, summed over all ages.] The point of such measures is that the central function of 
living things, from the standpoint of Darwinian theory, is reproduction. In effect, eve-
rything else about life-history is subservient to that end, with the appropriate modifi-
cations for inclusive fitness when there are significant transfers of resources between 
individuals, such as occur with parental care (vid. Hamilton 1964; Lee 2003). Thus 
it is more than just appropriate to use such summations of survival probabilities and 
fecundities to calculate total healthspan. We would argue that such indices provide 
correct scientific measures of healthspan. However, for the present purpose we need 
only argue that some measure of healthspan of this kind is necessary for the measure-
ment of net effects on aging, properly considered as a whole.

12.1.3  Rules for Studying Anti-aging Candidate Substances

A useful starting point for the study of the healthspan effects of ingested sub-
stances was supplied by Jafari and Rose (2006), which proposed a set of rules 
for the design of model organism tests of candidate anti-aging substances. One of 
their starting points, which we share, is the demographic partitioning of life-his-
tory into three phases: development, aging, and late life (cf. Mueller et al. 2011). 
Though McCay’s classic experiments on dietary restriction in rodents incorporated 
life span extension arising from either protracted developed or prolonged adult 
survival (vid. McCay et al. 1939), almost all gerontologists since then have agreed 
on the point that useful anti-aging trials should focus on adult life, after the com-
pletion of development.

What is still controversial is the status of late life in anti-aging experiments. 
Late life is a distinctive phase of life first well-characterized from human demo-
graphic data by Greenwood and Irwin (1939) as a plateauing in mortality rates at 
very late ages, after the age of 90 years in their data. However, the phenomenon 
of late-life mortality rate plateaus was not generally credited as a significant bio-
logical phenomenon until the publications of Carey et al. (1992) and Curtsinger 
et al. (1992), which used laboratory medflies and Drosophila melanogaster, 
respectively. Rauser et al. (2003, 2005, 2006) subsequently demonstrated a com-
parable, though not synchronous, plateau in later-life fecundity. Within evolu-
tionary genetic theory, the selective pressures that characterize aging and late 
life phases are qualitatively different (e.g. Mueller and Rose 1996; Charlesworth 
2001; Mueller et al. 2011), which is how evolutionary biologists like ourselves 
explain the distinctly different demographic patterns of these two parts of adult 
life-history.

Jafari and Rose (2006) suggested that experimental trials using Drosophila 
should study the effects of candidate anti-aging substances on mortality rate dur-
ing the aging phase of life only. This is an elegant solution to the quantitative 
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complexity of the full adult life-cycle. However, if we are successful at slow-
ing human aging demographically, many more people will survive to reach late 
life than were found to do so by Greenwood and Irwin (1939). This makes the 
impact of candidate anti-aging substances on the post-aging late-life phase also 
of interest. However, what is indubitable is that there is potential for significant 
confusion about the impact of a candidate anti-aging substance if the demographic 
analysis of its effects does not take into account the existence of post-aging adults 
in an experimental cohort of fruit flies. Unlike the human case at present, some 
Drosophila laboratory cohorts have many individuals surviving into late life 
(e.g. Shahrestani et al. 2012), much as found by Carey et al. (1992) for medflies. 
Overall then, we are more agnostic than Jafari and Rose (2006) about the advis-
ability of confining the study of the effects of candidate anti-aging substances to 
the aging demographic phase only.

A classic concern of pharmacologists like Jafari (vid. Jafari et al. 2007a, b) is that 
one cannot be sure that the candidate substance, rather than some artifact, is having 
the inferred anti-aging effect unless there is a dose-dependent pattern to the response. 
That is, the healthspan effects of a candidate anti-aging substance should scale with 
the dose. Again, we have some qualifications that we will apply to this stricture from 
Jafari and Rose (2006), particularly where qualitative changes in diet are concerned.

Jafari and Rose (2006) further contended that experimental Drosophila that are 
being used in a test of a candidate anti-aging substance should not be hypometabolic. 
As humans are homeotherms with fairly stable metabolic rates, drugs and other 
interventions that act via gross lowering of metabolic rates in poikilotherms like fruit 
flies, producing a state of hypometabolism, are not appropriate candidates for anti-
aging interventions among human subjects. This was patently the case in the work 
of Loeb and Northrop (1917), and it is a well-known phenomenon in experimental 
physiology. In Djawdan et al. (1996), no differences in metabolic rate were observed 
between the experimentally evolved longer-lived and shorter-lived flies of Rose 
(1984), and that was a material point in the case for the value of those Drosophila 
for aging research (vid. Rose et al. 2004). Therefore, a drug that increases life span 
at the expense of a decrease in metabolism is not an ideal candidate anti-aging 
 substance for adoption by humans.

In the same vein, Jafari and Rose (2006) argue that candidate anti-aging sub-
stances should not curtail fecundity. It has been well established that lowering 
fecundity in fruit flies can dramatically increase longevity, for example by dietary 
restriction (e.g. Chippindale et al. 1993), but also when fecundity is depressed 
by other means (e.g. Maynard Smith 1958). Compounds that substantially lower 
fecundity may increase longevity from reduced ‘cost of reproduction’ effects 
alone. Again, a key point is that gross depression of total fecundity is not associ-
ated with evolutionarily postponed aging (Rose 1984; Leroi et al. 1994; Rose et al. 
2004). However, in the framework that we are developing, measures like Ro natu-
rally take depressed fecundity into account, so this problem in effect washes out in 
the quantitative measures that we recommend.

Following the same line of argument, Jafari and Rose (2006) emphasize that 
experimental model organisms should not have general nervous system impairment as 
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a result of a candidate substance. A typical example of such an effect can be achieved 
by a general-purpose tranquilizing substance. But again, appropriate healthspan meas-
urement should directly obviate this problem, in that heavily tranquilized fruit flies are 
not going to be mating, feeding, or reproducing at a normal rate.

12.2  Elixirs of Life? Single Substances Have a Problematic 
Record in the Drosophila Aging Literature

12.2.1  Why Healthspan Studies Must Consider Reproduction

Fruit flies are increasingly being used to test candidate pharmaceuticals for long-
term health benefits. There are many anti-aging studies of Drosophila supplemen-
tation with a wide variety of substances, from antioxidants such as resveratrol and 
lipoic acid to histone deacetylase inhibitors like phenyl butyrate (e.g. Bauer 2004; 
Kang 2002). However Matsagas et al. (2009) demonstrate that some single sub-
stances have ostensibly beneficial effects when only longevity or mortality rates 
are monitored, effects that might be an artifact of functional impairment of repro-
ductive characters.

An example of this problem is provided by the study of Bahadorani et al. 
(2008). Vitamins A, C, and E are each thought to play an important role in miti-
gating oxidative stress. Accordingly, each was administered to Drosophila cohorts 
under oxidative stress conditions. Under chronic oxidative stress conditions, some 
of these supplements increased life span and some decreased life span. However, 
only life span was measured in this study. Bonilla et al. (2002) is another exam-
ple of pharmaceutical supplementation research studying only fruit fly life span 
effects. Melatonin, a hormone that is thought to prevent oxidative damage to fly 
tissues, was added to nutritional medium. Life span was significantly increased 
from 61.2 days in the controls to 81.5 days in the melatonin-fed flies. Once again 
only life span was observed in this study.

As a general rule, effects on reproduction and other functional characters are 
often not measured in fruit fly drug studies that measure survival rates or longev-
ity. Yet decades of genetic and manipulative Drosophila research have shown that 
longevity is just one part of the spectrum of life-history characters that jointly 
respond when fruit fly longevity is impacted significantly. Thus average longevity 
on its own may be a poor measure of the full spectrum of effects of administered 
substances. In other words, most Drosophila studies of the effects of dietary sub-
stances fail to adequately document the range of healthspan effects.

Although not intentionally achieved by supplementation with  pharmaceutical 
substances, dietary restriction (DR) in model organisms like Drosophila is 
 well-known in animal cohorts to increase average life span in conjunction with 
reduced fertility (e.g. Chippindale et al. 1993, 1997). Figure 12.1 demonstrates 
hypothetical results of DR fly studies that monitor both survivorship and  fecundity. 
Chippindale et al. (1993) performed a series of experiments in which the amount 
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of live yeast inoculate applied to the substrate was varied. Lower yeast lev-
els, which significantly reduce fecundity, enhanced longevity. However it is also 
important to note that an overly-extreme reduction of food levels will lead to a 
reduction in life span and fecundity.

Chronic exposure of an experimental cohort to a pharmaceutical drug could 
have a superficially beneficial effect if it reduces nutritional intake due to the flies’ 
perceived noxiousness of the drug for the model organism. Also an animal may 
be sickened to the point of lethargy by a substance, even if its feeding rate is not 
reduced—such as would be the case with an addictive opiate analog, leading to 
reduced reproduction.

Research with urea supplementation in adult Drosophila provides a  clear 
example of toxicity-induced increase in life-span. Joshi et al. (1996) and Santos 
et al. (in prep.) demonstrate that when adult D. melanogaster are maintained on 
food supplemented with urea, longevity of both males and females is significantly 
increased. In addition, female flies maintained on urea-supplemented food exhibit 
a consistent decline in fecundity over time, relative to those maintained on regular 
food (Fig. 12.2 left) (Joshi et al. 1996; Santos et al. in prep.). The toxicity of urea is 
apparent when you expose larva to it: there is a significant decrease in mean adult 
longevity and an increase in age-specific mortality. Female flies exhibit a dramatic 

Fig. 12.1  Hypothetical 
effects of dietary restriction 
on Drosophila using high and 
low levels of yeast inoculate

P
er

ce
n

t 
S

u
rv

iv
in

g
Adult Age 

Female survivorship on high and low yeast diets

Fly on high   _______ 
yeast diet
Fly on low     _ _ _ _ _
yeast diet 

F
ec

u
n

d
it

y 
(e

g
g

s 
/ d

ay
)

Adult Age 

Female fecundity on high and low yeast diets

Fly on high   _______ 
yeast diet

Fly on low     _ _ _ _ _
yeast diet 



27112 An Evolutionary Analysis of Healthspan Extension …

decrease in fecundity as a result of exposure to urea as larvae too. The right panel 
of Fig. 12.2 graphically instantiates this using a healthspan measure known as “kx” 
[product of female survivorship (lx) and eggs per surviving female (mx)] (Rutledge 
et al. in preparation).

12.2.2  Single-Substance Failures of Replication

A key strategy in the publication of “successful” single-substance interventions is 
to (1) avoid collecting adverse healthspan information, (2) avoid detecting adverse 
healthspan side-effects by using inadequate replication or technique, or (3) sup-
press/fail to publish any such adverse results if they have been obtained. Usually 
tactic (3) is not necessary, because biologists can be expert at avoiding the col-
lection of data that would impinge on the “story” that they want to tell. We have 
ourselves been involved in collaborations where our (now former) colleagues have 
suppressed results that were adverse to their favored thesis.

As an example of practices that are at least less than ideal, we have the poly-
phenol resveratrol, a natural compound found in commonly-consumed plants and 
notoriously present in red wine. Resveratrol has received much attention in scien-
tific studies (Howitz 2003; Baur 2006; Lagouge 2006; Valenzano 2006; Morselli 
2010; Miller 2011). However, the life span results have been variable. Resveratrol 
is thought to be a sirtunin2-activating antioxidant compound (Bauer 2004; Wood 
2004). The authors of some studies have suggested that resveratrol acts as a 
caloric restriction mimetic due to general sirtuin activation (Howitz et al. 2003; 
Wood et al. 2004). However, Kaeberlein et al. (2005) found that resveratrol has 
no detectable effect on Sir2 activity in vivo or on life span in yeast. On the other 
hand, resveratrol has been shown to increase life span in Drosophila studies with 
little or no obvious effects on fecundity as shown in the left panel of Fig. 12.3 
(Wood et al. 2004).
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Yet Bass et al. (2007) found no significant effects of resveratrol on life span in 
seven independent trails, three of which used the same strain as was used in Wood 
et al. (2004) (Fig. 12.3 right). Bass et al. (2007) was not able to reproduce the lon-
gevity increasing property of resveratrol on the D. melanogaster strain Canton-S 
in three of their trials, and they also did not obtain positive results using the strain 
Dahomey. One possible explanation for such inconsistent results is that the effect 
of a candidate anti-aging substance can be dependent on the genetic ancestry of 
the cohort(s) undergoing pharmacological trials. It is a well-established principle 
of epistasis that some genetic backgrounds will respond differently to the introduc-
tion of the same mutation. In the case of anti-aging drug trials, it is possible that a 
particular compound might increase life span in a stock that has accidentally fixed 
a particular gene, or set of genes, yet the same compound given to a different stock 
of fruit flies might have no effect on healthspan. In such cases, it would be fair to 
say that the impact of the candidate anti-aging compound depends critically on the 
genetics of D. melanogaster, making its general value dubious.

Kang et al. (2002) reported that feeding Drosophila with 4-phenylbutyrate 
(PBA) can significantly increase life span without a reduction in other healthspan 
characteristics like reproductive ability. However Jafari et al. (2006) pointed out 
that 10 mM of PBA resulted in life span extension in a white mutant strain while 
the wild type strain only required 5 mM of PBA for life span extension.

Another possible cause of ambiguous or inconsistent results from single-sub-
stance trials could be effects on metabolic rate and locomotion. Avanesian et al. 
(2010) tested the common anticonvulsant Lamotrigine. It was hypothesized that 
this chemical increased life span at the expense of decreasing healthspan. They 
found that lamotrigine did in fact increase life span, however a reduction in loco-
motor activity and metabolic rate depression were also observed. Matsagas et al. 
(2009) performed experiments testing the effect of sedatives on life span and 
healthspan of Drosophila. Lithium, a commonly used sedative, slightly elevated 
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Fig. 12.3  Two studies of the dose-dependent effects of resveratrol on the lifespan of D. mela-
nogaster. Left Data from Wood et al. (2004) showing the effect of various levels of resveratrol on 
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trend lines, when males and females were tabulated separately
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mean longevity at the two lowest doses. However, there was a significant negative 
impact on fecundity and male mating success even at those doses.

Another possible cause of difficulties with single-substance trials arises when 
the effect of a medication is highly sensitive to the fly culture environment. 
Among other things, it is possible that recondite environmental effects on lon-
gevity are fairly minor, but the effects on fecundity or mating behavior are much 
greater. Under these conditions, some anti-aging medications may have a benefi-
cial direct effect on adult survival, but inconsistent deleterious side-effects which 
are difficult to control or to resolve, especially if no data are collected on the 
effects of the substance on the other life-history characters. It is at least conceiv-
able that the inconsistent results observed with resveratrol are due to poorly con-
trolled recondite effects on other life-history characters, such as female fecundity. 
Wood et al. (2004) tested the effect of resveratrol in a low calorie environment 
(Fig. 12.3 left dotted lines) and determined that no significant increase in life span 
was observed. They concluded that the lack of a response in the DR environment 
suggested that resveratrol must extend life span through some mechanism that is 
related to caloric restriction. We would suggest that, given the difficulty of repro-
ducing an anti-aging effect of resveratrol, variable secondary life-historical effects 
could be obscuring its general impact on healthspan. However, pharmacological 
anti-aging effects that are not robust over trials that have a range of culture condi-
tions suggest that such drug treatments may not have the consistency that would 
warrant their further study for the purpose of medical applications. Table 12.1 
summarizes various longevity-increasing compounds and their possible adverse 
effects on healthspan.

12.3  Hamiltonian and Genomic Approaches  
to Healthspan Manipulation

12.3.1  Hamiltonian Gerontology Versus Aging as 
Cumulative Damage

The common assumption among many gerontologists, particularly those that do 
not study aging from an evolutionary perspective, is that aging is a process of 
accumulating damage. With age, it is supposed that organisms accumulate damage 
through oxidation, free radicals and the like. It is doubtful that significant progress 
will be made in the manipulation of aging with these presuppositions.

Bluntly put, the falsity of conventional damage theories of aging is well dem-
onstrated by the following facts. (1) There are fissile organisms that show no 
detectable aging, both unicellular and multicellular (Finch 1990; Rose 1991). 
(2) Non-fissile species with ovigerous reproduction nonetheless are sustained by 
unbroken cell lineages that are hundreds of millions of years old, whether these 
lineages engage in sex or not. (3) Aging in some laboratory cohorts of sufficient 
size comes to a halt at later ages, as discussed previously. Together these findings 
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falsify any theory of aging that is based on a universal process of cumulative dam-
age akin the Second Law of Thermodynamics.

Aging is instead due to the declines in the Hamilton’s Forces of natural selec-
tion which occur at the start of adult life in species with clear separation of the 
products of reproduction from the adult soma (Hamilton 1966; Charlesworth 
1980; Rose 1991; Rose et al. 2007). Because natural selection produces adapta-
tion, as the power of natural selection declines, a decline in adaptation with age 
is expected. Evolutionary biologists have further been able to readily and sub-
stantially postpone fruit fly aging by manipulating Hamilton’s Forces (Rose and 
Charlesworth 1980; Luckinbill et al. 1984; Rose 1991; Rose et al. 2004), a track 
record that is unmatched by attempts to manipulate aging based on non-evolu-
tionary gerontological theories such as those based on cumulative damage. This 
leads us to conclude that Hamiltonian gerontology, as outlined in Rose (1991) and 
developed further in Mueller et al. (2011), delivers the best scientific foundation 
on which to design or evaluate attempts to intervene in aging.

Rose et al. (2010) addresses at length the question of how to develop 
Hamiltonian strategies with which to ameliorate human aging. The strategies that 
they discuss are based on starting with organisms that have had their aging slowed 
by manipulating Hamilton’s forces of natural selection and then reverse engineer-
ing the biology of those longer-lived organisms to discover interventions that can 
be used to ameliorate aging in other organisms, including humans. The so-called 
“Methuselah Flies” that have evolved slower or delayed aging (Rose et al. 2004) 
are readily available sources of physiological and genomic information with which 
to find candidate substances that might ameliorate healthspan. In particular, these 
flies have also been shown to have greater (i) stress resistance, (ii) total reproduc-
tive output, and (iii) athletic capacity (Rose et al. 2004). Thus these are not flies 
that have achieved greater life span as a result of reduced overall reproductive out-
put; rather, they have massively extended healthspan.

12.3.2  Finding Which Genes to Target with Pharmaceuticals 
or Nutritional Substances

As explained in Rose et al. (2010), in 2006 Rose and colleagues compared whole-
genome gene-expression patterns in Methuselah Flies with their matched con-
trols. They found about 1000 genes showing statistically consistent differences 
in expression. These genes are presumptive indicators of the genetic changes that 
underlie the substantially ameliorated aging achieved using Hamiltonian methods 
in fruit flies. Seven hundred of these genes had matching orthologous loci in the 
human genome and about 100 of the 700 human genes were considered candidate 
pathways to target to slow aging in both fruit flies and humans based on parallel 
findings from genomic analysis in the two species.

But that early gene-expression analysis was only a first step toward the 
genomic analysis of the genetic foundations of Hamiltonian healthspan extension. 
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Re-sequencing studies in Drosophila have shown that experimentally evolved dif-
ferences in aging involve SNP frequency changes at hundreds of locations across 
the fruit fly genome (Burke et al. 2010; Rose et al. 2011). Because of this, it will 
be very difficult, if not impossible, to find effective anti-aging pharmaceutical 
agents that increase healthspan by targeting a single pathway.

12.3.3  Can We Use Multiple Supplements to Slow Aging?

If aging is due to just a few “master regulatory genes” (vid. Guarente and Kenyon 
2000) or a small number of types of accumulating damage (e.g. de Grey and Rae 
2007), then we can suppose that massively effective “anti-aging” supplements con-
taining just a few substances might be discovered. Radically successful anti-aging for-
mulations would then only have to target those few genes or stop a few pathways of 
accumulating damage. But all the experimental evidence on this point suggests instead 
that aging is rarely, and perhaps never, due to just a few master regulatory genes.

From a Hamiltonian perspective, it is clear that in order to slow aging with 
substances, we will need to retune hundreds of genetically defined mechanisms 
of aging. Natural selection can do this for us as Methuselah Flies demonstrates. It 
will be very hard to get a small number of powerful pharmaceuticals to do this, but 
numerous substances of individually small effect conceivably might. Thus Rose 
et al. (2010) propose that the best strategy to emulate the effects of natural selec-
tion in extending life span might be nutritional supplementation with many supple-
ments that individually have physiological effects of small magnitude.

But this does not necessarily mean ingesting the hundreds of supplements that 
many modern-day molecular biologists and physicians recommend. [In fact, we 
predict a failure of such supplementation to produce extended human healthspans, 
for reasons we will discuss later.] The Hamiltonian perspective suggests using nutri-
tional supplements in the same manner as evolution often uses genetic variants of 
small effect. Rose et al. (2010) proposed screening candidate “nutrigenomic agents” 
for small to moderate benefits, just as natural selection screens new genetic variants 
for their beneficial effects. In the case of genomically-informed substance testing, 
the experimenter can choose candidate substances based on biochemical informa-
tion about the effects of candidate substances on the specific pathways that genomic 
analysis of healthspan extension has identified. This seems like a plausible strategy. 
However, we will suggest here that it may face potentially fatal challenges.

12.4  The Poisoned Chalice Problem: Do Animals Perceive 
Too Many Novel Substances as Poison?

There is a widespread belief that supplementing our diets with large amounts 
of isolated nutrients or vitamins will enhance healthspan, a belief that moti-
vates many thousands of people to take a plethora of supplements that have 
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one or another claimed or merely conjectured health benefit (vid. Kurzweil and 
Grossman 2004, 2009). Perhaps because of the universal failure to find a sin-
gle Ponce de Leon substance that provides everlasting youth in fruit flies, mice, 
or humans, the present-day hope is to combine hundreds of substances for a net 
enhancement of healthspan. The Hamiltonian strategy of Rose et al. (2010) is no 
exception to this general ambition. It seems plausible that if you have many single-
substance successes, one could combine these substances and in sum propitiously 
compound life-extending properties.

Unfortunately, studies of both humans and mice have not found that combined 
supplementation is more successful than supplementation with single substances. 
For example, Macpherson et al. (2013) performed a meta-analysis of randomized 
controlled studies in humans. Across all studies, no effect of multivitamin treatment 
on all-cause mortality was seen. Furthermore, cohort studies of human multivitamin 
use and mortality have found no benefit (Watkins 2000; Park et al. 2011). Among the 
diverse studies of multifold supplementation, it is clear that those of Spindler (see, 
e.g., Spindler 2012; Spindler et al. 2014) have achieved the highest standards of design 
and replication. Spindler et al. (2014) performed isocaloric studies in mice to test the 
hypothesis that complex mixtures of dietary supplements including vitamins, phyto-
chemicals, and other nutraceuticals could increase the longevity of initially healthy 
mammals. In addition, nutraceutical, vitamin, or mineral combinations that have had 
success in previous studies were tested again. Spindler et al. (2014) found that there 
was no significant increase in rodent life span for any supplement mixture including 
combinations that had been reported to increase life span in previous experiments. 
Also, some of the more complex mixtures tested significantly decreased life span.

We have an evolutionary hypothesis that we would like to offer to explain these 
experimental results. We also suggest that this hypothesis provides a cautionary 
note even for the Hamiltonian and genomic strategies advocated by Rose et al. 
(2010). We call this the “poisoned chalice” hypothesis.

Metazoa are not Erlenmeyer flasks. That is, our bodies are not inert vessels in 
which numerous parallel biochemical reactions occur independently of each other. 
Instead, natural selection has created enormous “kluged” networks of physiol-
ogy that collectively enhance our Darwinian fitness, often by incorporating bits 
and pieces of molecular machinery that act both summatively and sometimes in 
antagonism with each other. Furthermore, this complex large-scale interacting net-
work has feedback circuits that respond to features of the environment, much like 
control-theory designed stabilizing components of complex electronics function to 
sustain circuit signaling integrity and to prevent destructive overload of circuits.

Thus, in the case of Drosophila, we know that flies actively modify their physi-
ological functioning in the event of elevated temperatures, the so-called “heat 
shock” response. Likewise, moderate dietary restriction abruptly modifies repro-
ductive activity (Chippindale et al. 1993), which is a response that is implicated in 
the physiological machinery underlying the extension of longevity in conjunction 
with the decrease in reproduction observed in dietary restriction. Likewise, expo-
sure to urea elicits an abrupt reduction in reproduction, which may at least partly 
explain the resulting extension in life span, as we have discussed here.
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Perhaps the provision of many novel substances to humans, mice, or fruit flies 
elicits the same kind of physiological responses as those elicited by urea exposure 
or moderate dietary restriction? That is, in the specific case of Drosophila, when 
fruit flies are exposed to culture medium that this is so novel that their physiology 
reacts as if they are in an environment which is suboptimal for reproduction, they 
may shut down functional components of their aggregate physiology. Such “shut 
downs” may reduce reproduction, or they may curtail activity through sedation, 
or they may indeed curtail cellular repair processes vital to organismal survival. 
Likewise, we would suggest, assaulting human physiology with numerous sub-
stances that our digestive machinery and other pieces of our metabolic machinery 
react to as low-grade poisons may trigger toxicity reactions. The net effect of too 
many of these toxicity reactions may be to reduce overall healthspan, not increase it.

In effect, we suggest, the provision of multiple, purified, novel substances of 
individually small effect may result in a supplementation cocktail that is a poi-
soned chalice for the kind of metabolic machinery that differentiated multicellular 
animals possess. In a phrase, almost all such complex supplementation regimens 
may amount to a poisoned chalice for healthspan, not some elixir of life.

As an alternative, we suggest, what is needed is dietary intervention that our 
physiologies unequivocally “accept” as healthy food, forestalling any adverse poi-
soned-chalice reaction. The question then becomes, what would such an optimal 
food be like? How can we find such an ideal dietary regime?

12.5  Is There a Hamiltonian Holy Grail for Human 
Healthspan Extension? Going Backward in 
Evolutionary Time as You Go Forward in Biological 
Time

Recently we had another idea of some relevance for the discovery of better diets 
based on evolutionary biology. We developed this idea from considering the evolu-
tion of a population that has undergone a substantial change of diet in recent evo-
lutionary time. The evidence we have from experimental evolution suggests rapid 
adaptation to a novel environment (e.g. Matos et al. 2000), particularly for early com-
ponents of fitness such as developmental speed and initial fecundity. But Hamilton’s 
forces of natural selection fall with adult age in almost all cases, which should pro-
duce weaker adaptation at later ages in the first generations after dietary change 
(Mueller et al. 2011). Explicit simulations of this have the expected effect: lack of 
adaptation to the new environment at later ages (Rutledge et al. in preparation).

We have experimentally tested this idea in our D. melanogaster lab popula-
tions, because they have undergone a major change in diet since their introduction 
to the laboratory in 1975, approximately 1000 generations ago. As expected from 
this age-dependent effect on adaptation, at later ages our flies are better adapted to 
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a crude approximation of their ancestral diet in the wild (Rutledge et al. in prep.) 
(Fig. 12.4). So the idea works in explicit theory and in careful laboratory experi-
ments. Its practical application is that older humans might be able to improve their 
healthspans by switching to diets that resemble those of our Paleolithic ancestors, 
given that our adoption of the agricultural Neolithic diet is relatively recent in evo-
lutionary terms, about 200–400 generations ago.

But the more general principle that this line of research suggests is that there 
indeed are complex dietary changes that can be made which will enhance our 
healthspans. In the particular case of our fruit flies given their ancestral diet from 
more than 1000 generations ago, we have stumbled in the direction of such a die-
tary change based on our knowledge of their evolutionary history, at least over the 
last few hundred years. This supports the general ambition to provide improved 
diets for human healthspans based on evolutionary insights.

What remains an entirely unanswered question is whether or not we can ever 
do better, for fruit flies or humans, than the adoption of the diet that evolution long 
ago tuned our physiologies to exploit efficiently. We can of course more effec-
tively home in on what evolution has already achieved, by learning more about the 
details of fruit fly or human evolutionary histories. But can we do even better than 
to exploit what evolution has already accomplished, with respect to the creation of 
a maximal healthspan? That remains a tantalizing question for which we have no 
answer at present.
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Fig. 12.4  The functional health measure in our research with Drosophila is usually measured 
as the product of an individual’s probability of survival to a specific adult age and fertility at that 
age. The graph summarizes recent data of ours in which individuals cope as well or better with 
an evolutionarily recent “agricultural” diet as on their ancestral diet, but only at early ages. At 
later ages, the Hamiltonian diet hypothesis infers that older individuals should fare better on an 
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changed adaptation to agricultural food. Individuals raised on evolutionarily novel “industrial” 
foods fare considerably worse than those raised on ancestral foods at all ages
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Omne vivum ex ovo in hypoxia et hypercapnia

Abstract Are the current atmosphere gaseous composition and unlimited oxygen 
consumption mode optimal for the health and longevity? Food and oxygen are 
the two tightly related substances critical for the life support. Recommendations 
to restrict food consumption below the ad libitum level are recognized and have 
many followers worldwide. No analogous suggestions concerning the O2 con-
sumption are known. Living beings originated and most part of their evolution 
occurred in atmospheres with extraordinarily high CO2 and low O2. In contrast, 
O2 content in the modern atmosphere is exceeding CO2 more than 500 fold. Such 
dramatic changes should provoke conflicting situations. According to the proposed 
‘nostalgia’ concept, living systems somehow ‘remember’ and are striving to return 
to the less conflicting primordial environments. Maintenance of Drosophila in 
hypoxic atmospheres (5, 10 and 15 % of O2) started from the 20 day extended 
their mean but not maximum life span. Optimal hypoxia was lower for the older 
flies (15 % O2 started from the 40 days and 18 % for the 50 days). Data accu-
mulated do not exclude that modified atmospheres and diets could have additive 
positive effects on longevity. People in the developed countries are already liv-
ing in artificial atmospheres with optimized physical parameters—the air is con-
ditioned, filtered, ozonized, ionized, humidified, deodorized etc. However, the 
same air composition could hardly be optimal for everyone and in all situations. 
Supplementation of the air conditioners with additional gadgets could ensure opti-
mization of the atmosphere gaseous composition, as well. Despite the importance 
and technical availability, little is known about efficiency of the individually and 
situationally optimized atmospheres in human aging and longevity.
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13.1  Introduction

Living beings originated and most part of their evolution occurred in atmospheres 
with extraordinarily high CO2 and low O2, whereas in the modern atmosphere the 
O2 content exceeds CO2 more than 500 fold (Walker 1985; Nunn 1998; Berner 
1999; Holland 2006; Kurbel 2014; Mills et al. 2014; Planavsky et al. 2014). Such 
dramatic changes might induce principal alterations in the intracellular and exter-
nal environment, e.g., shifting the cellular redox from reducing to an oxidizing 
milieu or modifying the biogeochemical cycles of the carbon, nitrogen, oxygen, 
sulfur etc. Moreover, the atmosphere composition and temperature underwent sub-
stantial fluctuations causing mass extinction of populations and species (Huey and 
Ward 2005; Goldblatt et al. 2006; Harrison et al. 2006; Sessions et al. 2009; Taylor 
and McElwain 2010). The survived species apparently had to reshape their adapt-
ability resources. However, redistribution of the initially limited adaptive potential 
may occur at expanse of declined functionality of the other life supporting sys-
tems. Therefore, it is pertinent asking whether the current atmosphere gaseous 
composition is optimal for aging and longevity.

13.2  ‘Nostalgia’ Concept of Longevity

The basic life supporting systems are highly conservative. Analyses of the micro-
biota, stromatolites and other fossils from the Archaean and Proterozoic eons sup-
port the contention that the basic features of the living beings remained almost 
the same throughout the billions of years passed from the times of the universal 
common ancestor (Tyler and Barghoorn 1954; Schopf 1994; Scorpf et al. 2002; 
Sharma and Shulka 2009). But why the relatively small repertoire, e.g., few 
nucleotides and around 20 amino acids were selected for the genome and pro-
teins among the thousands of other possible candidates? A simplest answer could 
be: because they were optimal at those early life conditions. Later, the conditions 
changed dramatically but the basic life-supporting elements remained practically 
the same inevitably provoking conflicting situations. Such conflicts were appar-
ently resolved by the evolutionary trade-offs and compromises primarily for the 
benefit of reproduction and other situational short-term interests. Longevity could 
hardly be among them. Modeling long-passed environmental conditions could at 
least partly neutralize such conflicts in the modern species. According to the ‘nos-
talgia concept’, living systems somehow ‘remember’ and are striving to return to 
the less conflicting conditions. It may explain why modeling evolutionary earlier 
atmospheres often resulted in positive effects, as it was in our experiments with 
hypoxic and hypercapnic atmospheres (Muradian 2008).
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13.3  Co-evolution of the Atmosphere and Living Beings

The emergence of photosynthetic microorganisms around 3 billion years ago 
marked the beginning of co-evolution of the earth atmosphere, flora and fauna 
(Beerling and Berner 2005; Taylor and McElwain 2010; Lyons et al. 2014). 
Using the atmospheric CO2 and the sun ultraviolet, than plenty on the earth  
surface, the microorganisms synthesized glucose and other necessary compounds  
and released O2 as a by-product. The mission appeared so successful that  
in cooperation with plants they managed decreasing the CO2 content to the 
current 0.04 % reciprocally increasing O2 up to the 20.95 %. It is  remarkable 
that in the body of most modern animal species the O2 and CO2 concentra-
tions are comparable, as it possibly could be in the atmosphere at the times of 
the multicellular organisms’ origin. In our sampling of mammalian species 
(data collected from the publications available in the PubMed and in the AnAge 
database) the blood partial pressure of O2 (Po2) was almost twice higher than 
Pco2 (Po2/Pco2 = 1.89 ± 0.88). However, it is known that another half of CO2 
produced in the cells is ‘buffered’ in biological liquids and cells in the form of 
HCO3

− which could be converted back to CO2 by the carbonic anhydrase. The 
latter is known as an extraordinary efficient enzymatic system encoded by many 
dozens of multifunctional and evolutionary conserved genes (Gilmour and  
Perry 2009; Everaert et al. 2011; Imtaiyaz et al. 2013). The necessity of such 
powerful enzymatic network highlights the importance of the balanced Pco2 for 
the viability.

The basic energy generating processes could simply be described as: 
R1 + O2 ↔ R2 + CO2; where R1 and R2 are bioorganic compounds. According 
to the universal laws of chemical kinetics, increased Po2 or decreased Pco2 should 
shift the equilibrium to the right and increase the rate of energy generation and 
vice versa. In mammals, the non-parametric Spearman rank order coefficient 
revealed negative correlations of Pco2 and [HCO3

−] with the relative metabolic 
rate (RMR), supporting the idea that elevated CO2 content could suppress the met-
abolic rate (Fig. 13.1).

As for the expected positive correlation between the RMR and Po2, the data 
available at this moment seems ambivalent. After excluding the three out-
lier rodent species with higher metabolic rates (mouse, rat and hamster with 
logRMR > 0.6), the correlation between the blood Po2 and RMR was positive 
(R = 0.601, P < 0.04). However, when all currently available species were taken 
into consideration, the correlation remained positive but far from being signifi-
cant (Fig. 13.1c). It is not excluded that rodents developed mechanisms to stimu-
late their energy generation bypassing the Po2 pathway. It is understood that the 
presented correlations should be regarded as preliminary results to be checked in 
larger mammalian and non-mammalian samplings. Nevertheless, it is intriguing 
whether archaic species could have lower metabolic rate and longer life span due 
to the higher CO2 and lower O2 in the atmosphere.
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13.4  Metabolic Rate and Life Span

From the very childhood, we comprehend a simple truth: intensively working 
objects wear and broke sooner. Biological systems could hardly be an exception 
from this universal rule. It may explain why the inverse relationship between the 
rate of metabolism and longevity, first shown by Rubner in 1907, remains a popu-
lar gerontological concept since then. In fact, the negative relationship between the  
metabolic and aging rates is compatible with and could be considered as a more 
generalized concept of many known hypotheses of aging and longevity primar-
ily associated with the metabolic rate, e.g., the cellular garbage accumulation, 
generation of the reactive oxygen species, DNA mutations etc. Universality and 
plasticity of the relationship between the metabolism and longevity was proved 
on numerous phylogenetic and ontogenetic models (Frolkis and Muradian 1991).  
Nevertheless, it was surprising to find out that the essence of idea could be known  
from the ancient times, as it follows from the manuscript of Aristotle written  
around 350 year BS and entitled “On Longevity and Shortness of Life” (Aristotle 
2007).

Fig. 13.1  Correlation 
(non-parametric Spearman) 
between the mammalian 
relative metabolic rate 
(RMR) and the blood 
concentration of HCO3

− (a) 
and partial pressures of CO2 
(b) and O2 (c)



28913 Atmosphere, Metabolism and Longevity

An important assumption of the Rubner’s low is that slower metabolism could 
be a cause or, at least, a predictor of extended life span. Shown by Leob and 
Northrop as early as in 1917 (Loeb and Northrop 1917), Drosophila incubated 
at different temperatures has become a popular object for study of such relation-
ship. In our experiments, life span of Drosophila incubated within the range of 
temperatures typical for their natural habitat (15–30 °C) changed in the scales well 
outmatching other known means of life span modulation. In the studied range of 
temperatures, the four fold increase of the mean life span (Fig. 13.2a) was associ-
ated with around the same degree decrease of the O2 consumption (Fig. 13.2b) and 
CO2 production (Fig. 13.2c) in young and old imagoes. The observed alterations 
of the metabolism could partly be intermediated by the locomotor activity which 
changed over 20 fold in the same range of temperatures (Fig. 13.2d).

According ANOVA, significance of the temperature influence on the determi-
nants of longevity was extremely high (P < 10−30), much exceeding the effects of 
aging (usually P < 0.05). It is worth mentioning, that temperature-dependency of 
the Drosophila metabolism and survival is a unique model allowing manipulations 
of not only the aging rate. By a relatively simple change of the temperature, it is 
possible to enforce an organism to age following any given algorithm—gradual 
acceleration or deceleration etc. No other known means allow so elegantly modu-
late the generally complex and rigid processes of metabolism and aging.

Comparative study of mammals could be another impressive demonstration 
of the universality of the negative relation between the metabolism and longev-
ity (Fig. 13.3). Significance of the non-parametric correlation between the mam-
malian maximum life span (MLS) and RMR reached the same extraordinary high 
levels (P < 10−30) as at the incubation of Drosophila in different temperatures It 
is understood that the negative relationship between the longevity and metabolism 
should have certain limits. Life span primarily depends on the genetic background 
and low predictable environmental variables. To reveal statistical significance, the 
background variation should adequately exceed unpredictable effects (the ‘noise’). 
Therefore, the absence of statistically significant correlation between the meta-
bolic rate and life span did not obligatorily contradict the Rubner’s low but may 
be explained by the insufficient variation of life span in the analyzed samples 
compared with the ‘noise’, as it could be when comparing individuals from the 
same population, laboratory strains of the same species or conducting comparative 
analysis within small taxonomic groups. Perhaps that explains the low efficiency 
of attempts to extend life span by drug-induced inhibition of the metabolic pro-
cesses or thermoregulation. With few exceptions, such attempts resulted in only 
marginal effects, as it was in our experiments with application of various inhibitors 
of the nuclear and mitochondrial transcription, translation and uncoupling into the 
feeding medium of Drosophila or drinking water of mice (Frolkis and Muradian 
1991). Although short-term application of such compounds could be a necessary 
life-saving treatment in certain critical situations, in the life-long chronic experi-
ments on healthy objects this kind of approaches appeared low efficient primarily 
because of possible negative side-effects.
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Fig. 13.2  Life span (a), rates of the O2 consumption (b), CO2 production (c) and locomotor 
activity (d) of young (10–15 days) and old (45–55 days) Drosophila melanogaster incubated at 
different temperatures. Statistical significance was calculated by the ANOVA
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13.5  ‘Pull and Push Back’ Concept of Longevity

In search of less harmful physiological means of slowing down the metabolic rate, 
maintenance of biological objects in atmospheres with modified gaseous com-
position seems more attractive because it is associated with lesser external inva-
sions. Additionally, it could switch on numerous forward and backward loops of 
the physiological self-regulation. To slow down the rate of metabolic processes 
it is obviously necessary either decreasing the cellular Po2 or increasing Pco2 or 
the both. The decreased O2 content in the atmosphere could result in hypoxia and 
kind of ‘pulling’ the O2 → CO2 stream back, whereas the increased CO2 con-
tent may counteract the CO2 escape from the organism, thus ‘pushing’ the stream 
back. Both types of manipulations should decline the metabolic rate and hopefully 
extend life span (Muradian 2013). When checking predictions of the concept on 
mammals of different species it was found that the blood Pco2 positively corre-
lated with species maximum life span (P < 0.02). The positive correlation was 
even stronger (P < 0.01) when relation between the species longevity and blood 
[HCO3

−] were analyzed (data not shown). However, we failed to demonstrate the 
expected negative correlation between the maximum life span and Po2 (Fig. 13.4).

The stronger correlation of CO2 with the rates of metabolism and life span 
compared with the O2 (Figs. 13.3 and 13.4) could, at least, partly be explained 
by the differences of their evolutionary history and possible targets in the energy 
generating processes. As a metabolism regulator, CO2 obviously appeared much 
earlier and occupies more basic position than O2. Pco2 may regulate the rates of 
the three reactions of pyruvate decarboxylation in the citric acid cycle occurring 
according the scheme: R–COOH ↔ R + CO2. Higher CO2 concentrations will 
obviously move the reaction equilibrium to the left thus slowing the process of 
energy generation. Unlike the CO2, the molecular O2 does not directly partici-
pate in the citric acid cycle. Its regulatory role could be comparatively ‘passive’, 

Fig. 13.3  Correlation 
(non-parametric Spearman) 
between the mammalian 
maximum life span (MLS) 
and relative metabolic rate 
(RMR)
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because its participation in the energy generation is limited by oxidation of the 
electrons which reached the very bottom of the mitochondrial electron transport 
chain.

13.6  Hypoxia

Hypoxia is often regarded as a precondition of malfunction and pathology devel-
opment. Nevertheless, positive effects of moderate hypoxia, e.g., in vasodilation, 
ameliorations of the lipid metabolism, hypertension, insulin resistance and glu-
cose tolerance etc. are well established (Kayser 1992; Netzer and Breitenbach 
2010; Pollock et al. 2014). Moderate inhibition of the mitochondrial respiration 
could slow down the metabolic rate and extend life span of the short-lived labo-
ratory animal species (Honda et al. 1993; Feng et al. 2001; Cheung et al. 2008; 
Copeland et al. 2009; Klok and Harrison 2009; Forgan and Forster 2010; Lee et al. 
2010; Hwang and Lee 2011). Hypoxia significantly extends replicative life span 
of the human cells in culture (Bell et al. 2007; Poulios et al. 2007). Many types 
of stem cells live in a hypoxic microenvironment, and the hypoxia inducible fac-
tor (HIF 1α) is essential for their self-renewal, telomere length maintenance and 
proliferation (Davy and Allsopp 2011). Moreover, mild hypoxia is well known for 
all multicellular organisms from the very beginning of their life cycle. During the 
embryogenesis, all organisms are practically defenseless and should be protected 
from the environmental hazards by the egg shell in the egg-laying species or by the 
mother womb in the placental animals. The protecting ‘shields’, however, become 
a barrier for the gaseous exchange creating a hypoxic and hypercapnic environ-
ment (Muradian 2008, 2013). Thus, the well known Latin proverb “Omne vivum 
ex ovo” might be extended as “Omne vivum ex ovo in hypoxia et hypercapnia” (All 
living beings originate from an egg in hypoxia and hypercapnia). Crocodiles are 

Fig. 13.4  Correlation 
(non-parametric Spearman) 
between the mammalian 
maximum life span (MLS) 
and the blood partial 
pressures of CO2 and O2 
(Pco2 and Po2)
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few vertebrates which survived the evolutionary atmospheric fluctuations with lit-
tle morphologic changes. Incubation of American alligator eggs in hypoxia (12 % 
O2), normoxia (21 % O2) and hyperoxia (30 % O2) showed that hypoxic animals 
were smaller at hatching. Their post-hatching growth rate, O2 consumption and 
food utilization capacity were lower (Owerkowicz et al. 2009). It is remarkable 
that hypoxia and restricted diets could have additive life-prolonging effects. As it 
was found in experiments on Caenorhabditis elegans, worms treated by combined 
action of the dietary restriction and hypoxia lived almost twice longer than the con-
trols, outliving the animals kept on the hypoxia or restricted diet alone (Leiser et al. 
2013). In the same kind preliminary experiments performed on Drosophila, we 
failed to show additive effects of the hypoxia and diets because of the known dif-
ficulties of diet effects on life span extension in flies (data not shown).

Drosophila has obvious advantages as an experimental model specifically for 
studying the effects of modified atmospheres because it possesses a superior ven-
tilation and O2 delivery system. Their tracheae branches into smaller tracheoles up 
to 1 µm in diameter piercing and ensuring gaseous exchange directly in the cells. 
Apparently due to the more efficient gaseous exchange system, Drosophila can 
survive and may possibly live longer in atmospheres with O2 content up to 1 %, 
significantly outperforming mammalian species (Strehler 1962; Harrison et al. 
2006). To study the effects of artificial atmospheres on the metabolic and aging 
rates, we have developed a simple system for modeling atmospheres with given 
gaseous composition. In experiments with hypoxia, vials with flies were kept in 
hermetically closed 100 ml syringes containing mixtures of the air with N2. In the 
life-extending experiments, the usage of long-lived populations is a critical issue. 
Otherwise, possible extended life span of the initially short-lived control popula-
tions could be interpreted as a ‘neutralization’ of the negative life-shortening fac-
tors. In these experiments, we used a long-lived population of Drosophila with 
mean life span around 60–70 days. Drosophila imagoes were tested at three ages 
for exploring possible ‘age-thresholds’ of the hypoxia effects on aging. In the first 
group, the hypoxic treatments were started in the middle of the initial plateau of 
the survival curve (20 days) when the mortality rate is minimal. Flies of the sec-
ond group (40 days old) corresponded to the transient period between the plateau 
and the steeper decline of the survival curve. It obviously is associated with the 
intriguing age when hidden age-damages are abundant but are not yet manifested 
in the form of accelerated mortality. The third group (50 days) corresponded to the 
conditions when aging effects were fully deployed.

13.6.1  Hypoxia Started from the 20 Days

The life-long hypoxic treatment (15, 10 and 5 % O2) modeled by addition of cor-
responding amounts of N2 to the air and started from the 20 days-old imagoes 
induced a moderate though significant increase of the mean life span (12, 8 and 
15 % correspondingly) (Fig. 13.5a).
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Two control groups were used: flies kept either in the syringes with 100 % air 
or in the open air. The two groups did not significantly differ by the age-dynamics 
of survival or the rate of gaseous exchange. Therefore, only data for flies living 
in the syringes with air was presented. Although according the non-parametric 
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Fig. 13.5  Survival (a), rate of CO2 production (b), respiratory quotient (c) and locomotor activ-
ity (d) of Drosophila melanogaster incubated in hypoxic atmospheres with 5, 10 and 15 % O2 
starting from the 20 days of life. Statistical significance between the hypoxic and control groups 
(kept in the syringes with air) was assessed by the non-parametric Wilcoxon’s criteria
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Wilcoxon matched pair test the observed effects of life span extension at hypoxia 
were highly significant (P < 0.0001), it is necessary to recognize that the changes 
of life span were moderate and remained within the boundary typical for the 
variations of life span of the control animals in different series of experiments. 
Moreover, the maximal life span practically did not change at hypoxia, resulting 
in a steeper decline of the survival curve at the advanced ages (Fig. 13.5a). There 
was certain analogy with the lower mortality of populations living at the moder-
ate highlands. Lower frequency of the cardiovascular diseases, stroke and some 
types of cancer were often referred as evidences of the beneficial effects of the 
mild hypoxia on longevity. However, the lower rates of pathology occurrence at 
the higher attitudes were paradoxically associated with elevated rates of the dis-
ease progress and mortality when the pathological processes were already initiated 
(Burtscher 2013). Such relations should apparently result in steeper decline of the 
survival curve, as it was in our experiments with Drosophila.

In the hypoxia groups, the rate of CO2 production (Vco2) decreased in the mid-
dle ages (30–50 days) but normalized at the advanced periods of life (Fig. 13.5b). 
It is remarkable that hypoxia could decrease oxygen consumption via modulation 
of the basic regulatory mechanisms, e.g., by enhancing degradation of the main 
physiological stimulators of the metabolism—thyroxin and tri-iodothyronine 
(Raguso and Luthy 2011). Apparently, Drosophila can easily compensate the 
O2 deficit in the moderately hypoxic atmosphere by activation of the ventilation 
apparatus. Nevertheless, as it is typical for many other physiological systems, the 
compensation was obviously partial. Interesting age-dynamics were found for the 
respiratory quotient (RQ = 100 * Vco2/Vo2). It is known that RQ varies within 
75–100 % depending on the substrate nature: for oxidation of the carbohydrates 
RQ is equal 100 %, whereas for the fatty acids and proteins it decreases up to 
75 %. For young flies kept on a routine sucrose-yeast feeding medium, RQ is usu-
ally stabilized at the level around 90 %. Although in the groups of flies kept in the 
hypoxia RQ was generally lower, it did not significantly differ from the control 
groups, at least, partly because of the high variation of this index. However, RQ 
negatively correlated with the age revealing an especially steeper decline after the 
60–70 days of age (P < 0.02). If very old flies have problems with the food diges-
tion, as it is typical for other animal species, it should obviously activate oxida-
tion of the stored fatty acids and proteins which will decrease the RQ (Fig. 13.5c). 
Flies locomotor activity was assessed during the first week of hypoxia at 10 % 
O2. Within the first few days, the control and experimental flies demonstrated an 
elevated pattern of spontaneous motor activity. Among other reasons, it could be 
explained by the well known ‘curiosity’ of flies and other animal species placed 
into a new environment (the syringes). In the hypoxia, additional stimuli for anx-
iety and elevated movement could appear. However, at the end of the week the 
motor activity was practically normalized in the both control and hypoxia groups 
(Fig. 13.5d).
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13.6.2  Hypoxia Started from the 40 and 50 Days

Because of the declined adaptability of old animals, the flies in these experiments 
were kept in milder hypoxia (15 and 18 % O2). When hypoxic treatments were 
started on the 40-days-old imagoes, a moderate life span extending effect was 
observed for the 15 % O2 (Fig. 13.6a). At the 18 % O2 conditions, life span did 
not significantly change for the group started from 40-days age, but increased in 
the experiments started from 50 days of age (Fig. 13.6b). Apparently, the older the 
flies, the milder optimal hypoxia should be.

13.7  Concluding Remarks

In the developed countries, people are actually living in artificial atmospheres 
with optimized physical parameters. At office and home, the air is conditioned, fil-
tered, ozonized, ionized, humidified, deodorized etc. Disproportionally little has 
been done in a more important medico-biological issue—optimizing the air gase-
ous composition. The accumulated phylogenetic and ontogenetic data infer that a 
moderate hypoxia and hypercapnia could be beneficial for longevity. However, it 
should be recognized that the results of the direct experiments are not much opti-
mistic. Firstly, the life span extending effects were shown only for the short-lived 

Fig. 13.6  Survival of Drosophila melanogaster incubated in hypoxic atmospheres with 15 
and 18 % O2 starting from the 40 days (a) and 50 days (b). Statistical significance between the 
hypoxic and control groups (kept in the syringes with air) was assessed by the non-parametric 
Wilcoxon’s criteria
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laboratory species; secondly, the scale of extension was moderate and did not 
exceed the species specific maximum life span; thirdly, older animals were espe-
cially prone to the negative effects of hypoxia. There is an obvious similarity in 
the effects of O2 and food consumptions. Until recently, most people believed, 
and some do even now, that ‘the body knows better what and how much to eat’. 
Nowadays, however, it is apparent that this knowledge can in fact be counterpro-
ductive. More than often we have to avoid what the body wants to eat. The same 
could be true with the gaseous exchange and especially in combination of the 
modified food and O2 consumptions. Unfortunately, currently we know too little to 
discuss possible effects of the modified atmospheres on the health and longevity. 
Nevertheless, there are reasons to believe that atmospheres with individually and 
occupationally optimized compositions could be necessary not only for the deep 
space travelers but in the everyday life because these technically available manipu-
lations show obvious potentials for the metabolic rate and life span modulation.

Acknowledgments The author is grateful to Prof. Vadim Fraifeld for his valuable suggestions 
and contribution in collecting the mammalian data.

References

Aristotle (2007) On longevity and shortness of life. The University of Adelaide Library. 
eBooks@Adelaide

Beerling DJ, Berner RA (2005) Feedbacks and the coevolution of plants and atmospheric CO2. 
Proc Natl Acad Sci USA 102:1302–1305

Bell EL, Klimova TA, Eisenbart J, Schumacker PT, Chandel NS (2007) Mitochondrial reactive 
oxygen species trigger hypoxia-inducible factor-dependent extension of the replicative life 
span during hypoxia. Mol Cell Biol 27:5737–5745

Berner RA (1999) Atmospheric oxygen over Phanerozoic time. Proc Natl Acad Sci USA 
96:10955–10957

Burtscher M (2013) Effects of living at higher altitudes on mortality: a narrative review. Aging 
Dis 5:274–280

Cheung SG, Chan HY, Liu CC, Shin PK (2008) Effect of prolonged hypoxia on food consump-
tion, respiration, growth and reproduction in marine scavenging gastropod Nassarius festivus. 
Mar Pollut Bull 57:280–286

Copeland JM, Cho J, Lo T Jr, Hur JH, Bahadorani S, Arabyan T et al (2009) Extension 
of Drosophila life span by RNAi of the mitochondrial respiratory chain. Curr Biol 
13:1591–1598

Davy P, Allsopp R (2011) Hypoxia: are stem cells in it for the long run? Cell Cycle 10:206–211
Everaert N, Willemsen H, Willems E, Franssens L, Decuypere E (2011) Acid-base regulation 

during embryonic development in amniotes, with particular reference to birds. Respir Physiol 
Neurobiol 178:118–128

Feng J, Bussière F, Hekimi S (2001) Mitochondrial electron transport is a key determinant of life 
span in Caenorhabditis elegans. Dev Cell 1:633–644

Forgan LG, Forster ME (2010) Oxygen-dependence of metabolic rate in the muscles of craniates. 
J Comp Physiol B 180:715–729

Frolkis VV, Muradian KhK (1991) Life span prolongation. CRC Press, Boca Raton
Gilmour KM, Perry SF (2009) Carbonic anhydrase and acid-base regulation in fish. J Exp Biol 

212:1647–1661



298 K. Muradian

Goldblatt C, Lenton TM, Watson AJ (2006) Biostability of atmospheric oxygen and the great 
oxidation. Nature 443:643–645

Harrison J, Frazier MR, Henry JR, Kaiser A, Klok CJ, Rascón B (2006) Responses of terrestrial 
insects to hypoxia or hyperoxia. Respir Physiol Neurobiol 154:4–17

Holland HD (2006) The oxygenation of the earth and oceans. Phil Trans R Soc B 361:903–915
Honda S, Ishii N, Suzuki K, Matsuo M (1993) Oxygen-dependent perturbation of life span and 

aging rate in the nematode. J Gerontol 48:B57–B61
Huey RB, Ward PD (2005) Hypoxia, global warming, and terrestrial late Permian extinctions. 

Science 308:398–401
Hwang AB, Lee SJ (2011) Regulation of life span by mitochondrial respiration: the HIF-1 and 

ROS connection. Aging (Albany NY) 3:304–310
Imtaiyaz HM, Shajee B, Waheed A, Ahmad F, Sly WS (2013) Structure, function and applications 

of carbonic anhydrase isozymes. Bioorg Med Chem 21:1570–1582
Kayser B (1992) Nutrition and high altitude exposure. Int J Sports Med 13:129–132
Klok CJ, Harrison JF (2009) Atmospheric hypoxia limits selection for large body size in insects. 

PLoS ONE 4:e3876
Kurbel S (2014) Animal evolution and atmospheric po2: is there a link between gradual animal  

adaptation to terrain elevation due to ural orogeny and survival of subsequent hypoxic  
periods? Theor Biol Med Model 11:47

Lee SJ, Hwang AB, Kenyon C (2010) Inhibition of respiration extends C. elegans life span via 
reactive oxygen species that increase HIF-1 activity. Curr Biol 20:2131–2136

Leiser SF, Fletcher M, Begun A, Kaeberlein M (2013) Life-span extension from hypoxia in 
Caenorhabditis elegans requires both HIF-1 and DAF-16 and is antagonized by SKN-1.  
J Gerontol A Biol Sci Med Sci 68:1135–1144

Loeb J, Northrop JH (1917) What determines the duration of life in metazoa? Proc Natl Acad Sci 
U S A 3:382–386

Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth’s early ocean and 
atmosphere. Nature 506:307–315

Mills DB, Ward LM, Jones C, Sweeten B, Forth M, Treusch AH et al (2014) Oxygen requirements 
of the earliest animals. Proc Natl Acad Sci U S A 111:4168–4172

Muradian KK (2008) Artificial atmosphere, rejuvenation and longevity. Probl Aging Longevity 
17:457–477 (in Russian)

Muradian K (2013) “Pull and push back” concepts of longevity and life span extension. 
Biogerontology 14:687–691

Netzer NC, Breitenbach M (2010) Metabolic changes through hypoxia in humans and in yeast as 
a comparable cell model. Sleep Breath 14:221–225

Nunn JF (1998) Evolution of the atmosphere. Proc Geol Assoc 109:1–13
Owerkowicz T, Elsey RM, Hicks JW (2009) Atmospheric oxygen level affects growth trajectory,  

cardiopulmonary allometry and metabolic rate in the American alligator (Alligator  
mississippiensis). J Exp Biol 212:1237–1247

Planavsky NJ, Reinhard CT, Wang X, Thomson D, McGoldrick P, Rainbird RH et al (2014) Earth  
history. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals.  
Science 346:635–638

Pollock JP, Patel HM, Randolph BJ, Heffernan MJ, Leuenberger UA, Muller MD (2014) 
Ascorbic acid does not enhance hypoxia-induced vasodilation in healthy older men. Physiol 
Rep 2(7):e12091

Poulios E, Trougakos IP, Chondrogianni N, Gonos ES (2007) Exposure of human diploid fibroblasts 
to hypoxia extends proliferative life span. Ann N Y Acad Sci 1119:9–19

Raguso CA, Luthy C (2011) Nutritional status in chronic obstructive pulmonary disease: role of 
hypoxia. Nutrition 27:138–143

Schopf JW (1994) Disparate rates, differing fates: tempo and mode of evolution changed from 
the Precambrian to the Phanerozoic. Proc Natl Acad Sci U S A 1991:6735–6742



29913 Atmosphere, Metabolism and Longevity

Schopf JW, Kudryavtsev AB, Agresti DG, Wdowiak TJ, Czaja AD (2002) Laser-Raman imagery 
of Earth’s earliest fossils. Nature 416:73–76

Sessions AL, Doughty DM, Welander PV, Summons RE, Newman DK (2009) The continuing 
puzzle of the great oxidation event. Curr Biol 19:R567–R574

Sharma M, Shukla Y (2009) The evolution and distribution of life in the Precambrian eon-global 
perspective and the Indian record. J Biosci 34:765–776

Strehler B (1962) The distribution of cellular aging. Time, cells, and aging. Academic Press, New 
York, pp 33–85

Taylor CT, McElwain JC (2010) Ancient atmospheres and the evolution of oxygen sensing via 
the hypoxia-inducible factor in metazoans. Physiology (Bethesda) 25:272–279

Tyler SA, Barghoorn ES (1954) The occurrence of structurally preserved plants in Precambrian 
rocks of the Canadian Shield. Science 119:606–608

Walker JC (1985) Carbon dioxide on the early earth. Orig Life Evol Bioph 16:117–127



301

Chapter 14
Effects of Mild Stresses Applied in Adults  
on Aging and Longevity

Éric Le Bourg

© Springer International Publishing Switzerland 2015 
A.M. Vaiserman et al. (eds.), Life Extension, Healthy Ageing and Longevity 3,  
DOI 10.1007/978-3-319-18326-8_14

Abstract It is now known that some mild stresses can have positive effects on 
longevity, aging, and resistance to severe stresses in several species, and particu-
larly in Drosophila melanogaster flies. This chapter describes the effects of some 
mild stresses (heat, cold, hypergravity, oxidative stress, fasting, and so on) in flies 
and the possible mechanisms of these mild stresses (antioxidant enzymes, heat 
shock proteins, NF-κB).

Keywords Drosophila melanogaster · Mild stress · Hormesis · Aging · Lon
gevity · Severe stresses · Heat shock proteins · Antioxidant enzymes · NF-κB

14.1  Introduction

The idea that a stress could be of positive value to an organism does not appear 
at a first sight to be particularly sound. However, there is now a large corpus of 
data showing it is indeed the case in Drosophila melanogaster flies, as well as in 
other organisms such as the tiny worm Caenorhabditis elegans (e.g. Cypser and  
Johnson 2002), but also in mammals such as mice or rats (review in Le Bourg 
2009), pigs (e.g. Lavitrano et al. 2004), and human beings (reviews in Rattan and 
Le Bourg 2014).

Obviously, stress has no positive effect if too intense: positive effects are only 
observed when mild stresses are used. Therefore, the first condition to envisage 
a stress could have positive effects is to accept that the effect of any treatment is 
dependent on the strength of this treatment. This idea is not really a new one, as 
Paracelsus stated five centuries ago that anything can be a poison or not, depending 
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on the dose (Borzelleca 2000). This idea thus opened the way to the idea that a poi-
son (or a stress) can have positive effects if used at a low dose. However, with the 
rise of toxicology in the last century, this idea was not seriously considered, when 
not disregarded or even clearly discarded, and the threshold dose-response or the 
linear no-threshold models were preferred (Calabrese 2014). Favoring these models 
in toxicology has the obvious consequence that any dose is considered as neutral or 
toxic (threshold dose-response model) or always toxic (linear no-threshold model). 
Obviously, it is easier and cheaper to draw a dose-response curve by studying some 
high doses with highly toxic effects and extrapolating the dose-response curve up to 
the origin than to study the real effect of low doses, which can require a large sam-
ple to bring to the fore a significant effect. Adopting the threshold dose-response 
or linear no-threshold model allows to protect the population and workers against 
toxicity of chemicals or radioactive isotopes and it is easy to manage the risk. For 
instance, dosimeters worn by workers in nuclear power plants cumulate the doses 
and the annual dose has to remain below a threshold. However, a less desired con-
sequence of adopting this view is that if low doses have positive effects, and thus 
could be of therapeutic value, this could remain ignored. It thus can be understood 
there is a hard debate on the need to include the positive effects of low doses (hor-
metic effects) in environmental safety regulations. For instance, Calabrese (2014) is 
of the view that “the hormetic dose response model should replace the threshold and 
linear dose response models and become the default dose response model” whereas 
Thayer et al. (2005) stressed that “even if certain low-dose effects were some-
times considered beneficial, this should not influence regulatory decisions to allow 
increased environmental exposures to toxic and carcinogenic agents, given factors 
such as inter-individual differences in susceptibility and multiplicity in exposures”.

It is the opinion of the author that Thayer et al. (2005) are right when stressing 
the risks of adopting the hormetic dose-response model in risk assessment but it is  
not to say that hormesis should not be considered in therapy and biogerontology. 
However, it happened that the esteemed gerontologist Sacher (1977) considered 
that hormetic effects were to be observed only in animals living in suboptimal 
conditions and therefore that “hormesis is in one sense an obstacle in the path 
of gerobiological research, and efforts to understand and annul it would be well 
justified. A first step is to breed vigorous animal genotypes and a second step is 
to develop living environments that are optimal for their behavioral, physiologi-
cal and immunological health”. Because this view was held by a famous geron-
tologist, it is easy to understand that, after this article was published, any scientist 
observing a hormetic effect was prone to conclude it was due to suboptimal rear-
ing conditions, which obviously precludes any publication. In sharp contrast, the 
idea that a mild stress could be used to improve aging was considered as valuable 
in the 1970s in the former Soviet Union (Frolkis 1982).

Despite the Sacher’s article (1977), some authors however reported hormetic 
effects on resistance to severe stress, aging and longevity and the seminal review 
of Minois (2000) revitalized the interest for hormetic effects on aging and lon-
gevity. After that, the journal Human and Experimental Toxicology organized a 
debate among experts on the use of hormesis in aging research (Volume 20, issue 
6, 2001) and Le Bourg and Rattan (2008) edited the first book on hormesis and 
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aging. Results in mammals and human beings have been reviewed elsewhere  
(e.g. Volume 7, issue 1 of Ageing Research Reviews, Le Bourg 2009; Rattan and 
Le Bourg 2014) and the present chapter is concerned with the effects of several 
mild stresses on aging and longevity in D. melanogaster.

The privileged hypothesis explaining the existence of hormetic effects is that, 
when confronted with a mild stress, animals implement strategies to cope with it 
by inducing an overcompensation response to the disruption of homeostasis but, in 
case of chemicals, the hormetic response can also be based on specific receptors (see 
lists in Calabrese 2008, 2013). As summarized by Calabrese (2008), “a low dose of a 
toxic agent induces stress and/or damage; following the damage a repair response is 
initiated which leads to a slight overcompensation”. This explanation allows to pre-
dict that various mild stresses could have rather similar positive effects because these 
effects are not mediated by specific receptors. Therefore, it is of interest to study the 
effects of various mild stresses to know whether they provoke similarly positive or 
contrasted responses of the organism. The most studied stresses in D. melanogaster 
have been heat, cold, hypergravity, and irradiation. However, the effects of irradiation 
will not be reviewed here because the usual procedure is to irradiate eggs, and not 
adults (for reviews see Vaiserman 2008; Le Bourg 2009), but see Antosh et al. (2014) 
for recent results showing no positive effect of irradiation on longevity of adults. 
Some other studied stresses are fasting, oxidative stress, desiccation, or hydrogen 
sulfide but only a few studies have been done. The effects of these mild stresses are 
described in the following, as well as some studies on their possible mechanisms.

14.2  Heat Stress

14.2.1  Effects on Longevity

Several experiments have studied the effects of heat shocks on longevity. 
Table 14.1 shows the results of some studies reporting mean life spans: except for 
the results of Hercus et al. (2003), the effects are not of a large magnitude, when 
they indeed exist. Furthermore, these results can be fragile because Le Bourg et al. 
(2009) failed to confirm the results of Le Bourg et al. (2001) reported in the table. 
Other studies are reported in Le Bourg (2009). More recently, Defays et al. (2011) 
used recombinant-inbred lines from parental lines selected for low (D48 line: 32 
lines) or high (SH2 line: 20 lines) resistance to heat to study the effect of 35 min at 
35.5 °C at 4 and 7 days of age. In each sex, this heat shock increased longevity in 
ca 25 % of the D48 recombinant lines (usually by ca 5 days), decreased it in 25 % 
of them and had no effect in the second half of lines, these figures being respec-
tively ca 5, 45 and 50 % in the SH2 lines. On the whole, it seems possible to con-
clude that the effect of heat shock is modest and a meta-analysis concluded that 
heat shocks do not increase longevity in D. melanogaster (Lagisz et al. 2013) but, 
after this article was published, Sarup et al. (2014) still reported that 3 h at 34 °C 
at the ages of 3, 6 and 9 days increased life span by 12 %, which shows that some 
procedures are nevertheless efficient.
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14.2.2  Effects on Behavioral Aging

On the one hand, heat shock had no effect on climbing activity recorded through-
out life, i.e. the ability to climb up on the vertical side of a vial, in a wild-type 
strain (Le Bourg et al. 2001), in the inbred strain w1118, in transgenic flies over-
expressing the hsp70 gene, and in their control strain with no extra-copies of 
this gene (Minois et al. 2001). On the other hand, heat shock had, respectively, 

Table 14.1  Summary of some studies on the effect of heat shock on life span

In most of experiments life span was recorded from the day after heat shocks and thus is not life 
expectancy at emergence

T (°C) Duration Strain Sex and 
mating 
status

Age 
at heat 
shock 
(days)

Life 
span of 
controls 
(days)

Effect 
of heat 
(days)

Reference

36 70 min Inbred 
line 1

Virgin 
females

4 29.6 1.3 Khazaeli 
et al. 
(1997)Virgin 

males
35.3 3.9

Mated 
females

27.1 0.9

Mated 
males

37.8 2.1

Inbred 
line 2

Virgin 
females

23.9 1.3

Virgin 
males

28.6 2.8

Mated 
females

23.2 −0.2

Mated 
males

27.1 2.7

37 100 min Ra line Mated 
males and 
females

5–7 36.7 1.5 Kuether 
and 
Arking 
(1999)

27–29 38.7 0.3

La line Mated 
males and 
females

5–7 58.8 −5.9

27–29 58.4 −1.2

62–64 74.3 −4.2

37 5 min/day 
for 5 days

Wild-type Virgin 
males

5, 6, 7, 
8, 9

42.1 1.9 Le Bourg 
et al. 
(2001)Virgin 

females
45.5 2.0

34 3 h at 4 
ages

Wild-type Mated 
females in 
pairs

3, 6, 9, 12 54.7 8.6 Hercus 
et al. 
(2003)

55.2 6.9

Mated 
females in 
groups

63.3 6.6

64.6 10.0
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no effect or increased spontaneous locomotor activity observed throughout life in 
these two studies. Therefore, heat shocks do not seem to clearly delay behavioral 
aging.

14.2.3  Effects on Resistance to Stress

A pretreatment with heat often increased resistance to a strong heat stress  
(e.g. Krebs and Loeschcke 1994a, b; Khazaeli et al. 1997; Dahlgaard et al. 1998; 
Le Bourg et al. 2001; Hercus et al. 2003; Sejerkilde et al. 2003; Sørensen et al. 
2007, but see Kuether and Arking 1999). Heat shocks have also been reported to 
increase resistance to a cold shock (10–15 min at 20 °C) or to the oxidant paraquat 
in the inbred strain w1118, in transgenic flies overexpressing the hsp70 gene, and in 
their control strain with no extra-copies of this gene (Minois 2001). However, heat 
shocks slightly decreased starvation resistance in the same strains (Minois 2001) 
and did not protect, in both sexes of a wild-type strain, against hydrogen perox-
ide, another oxidant (Le Bourg 2008), or fungal infection (Le Bourg et al. 2009). 
A pretreatment with heat (1 h at 36 °C) increased resistance to heat (38.5 °C) of 
females but also decreased resistance to desiccation and had no significant effect 
on resistance to cold (time to recovery after 3 h at 0 °C) or to starvation (Bubliy 
et al. 2012). All the previous experiments were done with adults but, in larvae, a 
heat stress can also protect against a severe cold stress (Burton et al. 1988), confer 
neuroprotection at a high temperature (Karunanithi et al. 1999), or preserve loco-
motor competence (Klose et al. 2005).

14.2.4  Conclusion

Heat has no clear positive effect on life span, behavioral aging, and some severe 
stresses, but it can increase resistance to other severe stresses. Thus, hormetic 
effects of a heat pretreatment do exist but are not very important.

14.3  Cold Stress

14.3.1  Effects on Longevity

Five daily cold stresses (1 h at 0 °C) either during the first or second week of life 
(from 5 to 9 or from 12 to 17 days of age) had no effect. However, the same cold 
stress applied during these two periods (weeks 1 + 2: no stress at days 10 and 
11) increased longevity of males by 10 % or more (5–10 days; Le Bourg 2007a). 
The effects were more inconstant in females, because cold either increased (Le 
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Bourg 2007a; Le Bourg et al. 2009), decreased (Le Bourg 2010a, 2012), or had no  
effect on longevity (Le Bourg 2007a, 2011a). Applying the cold stress at various 
ages (weeks 1 + 2, or 2 + 3, or 3 + 4, or 4 + 5) significantly (weeks 1 + 2 or 
3 + 4) or marginally (weeks 2 + 3) increased male longevity, no positive effect 
being observed when the stress was applied at the oldest ages (Le Bourg 2011a). 
Figure 14.1 shows however that the cold stress had both negative and positive  
effects on mortality if applied at rather old ages, whereas nearly no negative effect 
was observed when used at the youngest age.

In another experiment, flies were subjected to the weeks 1 + 2 cold pre-
treatment and thereafter, from 19 days of age, fed on saccharose only, a poorly 

Fig. 14.1  Survival difference (%) between the cold-pretreated groups and the control one. If the 
percentage of survivors at, say 40 days of age, is 60 % in an experimental group and 50 % in the 
control one, the survival difference is 10 %. By contrast, if the control group has a higher sur-
vival than the experimental one the survival difference is negative. The bars at the bottom indi-
cate the time of pretreatment by cold for each experimental group (1 h at 0 °C during two periods 
of 5 days separated by 2 days with no cold shock). For instance, “1 + 2” stands for a cold pre-
treatment during the two first weeks of life (redrawn from Le Bourg 2011a)
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nutritious medium known to decrease longevity. The cold pretreatment increased 
remaining longevity by 2 days in both sexes (21 vs. 19 days; Le Bourg 2008).

Severe cold stresses are detrimental, because 1, 2, or 3 h daily at −3 °C from 
the third day of life decreased longevity of both sexes by ca 2 weeks in the Oregon 
strain and in the vestigial mutant (vg; Ayar et al. 2010). One may wonder whether 
milder (e.g. 0 °C) or shorter stresses (e.g. for 2 weeks rather than daily throughout 
life) could have increased longevity in these strains.

14.3.2  Effects on Behavioral Aging

The weeks 1 + 2 cold pretreatment described above increased climbing scores, 
particularly at 4–6 weeks of age in males, and at 3–4 weeks of age in females (Le 
Bourg 2007a; see also Le Bourg et al. 2009; Le Bourg 2012).

14.3.3  Effects on Resistance to Stress

The weeks 1 + 2 pretreatment increased survival time at 37 °C throughout life 
(Le Bourg 2007a, 2012). In addition, cold stresses applied at later ages increased 
survival time at 37 °C at 6 weeks of age (Le Bourg 2011a). Positive effects of 
the weeks 1 + 2 pretreatment were also observed in flies subjected to a proxy for 
“summer heatwave”, i.e. a total of 4 heat shocks (30 or 45 min at 37 °C, twice a 
week) from 4 weeks of age during a two-week period. These repeated heat shocks 
do not kill flies but decrease longevity by 50 %: cold-pretreated flies lived 15 % 
longer (+2 days) than control ones after the first 30-min heat shock, but no posi-
tive effect was observed with 45-min shocks (Le Bourg 2007a).

The weeks 1 + 2 cold pretreatment increased percent of survival to a long cold 
shock (16 h at 0 °C) in both sexes at 3, 4, 5 and 6 weeks of age, but not at 7 weeks 
of age (Le Bourg 2007a, 2012). These results are in accordance with many other 
results showing that pretreatments with cold increase resistance to later cold 
shocks (e.g. Czajka and Lee 1990; Kelty and Lee 1999, 2001; Sejerkilde et al. 
2003; Rako and Hoffmann 2006; Jensen et al. 2007; see also Marshall and Sinclair 
2012).

The weeks 1 + 2 cold pretreatment also increased survival time to fungal 
infection by Beauveria bassiana, mainly in males and throughout life (Le Bourg 
et al. 2009; see also Le Bourg 2012). Applying the cold stresses at later ages also 
increased survival of males at 6 weeks of age, except when they were applied dur-
ing weeks 4 and 5 (Le Bourg 2011a).

By contrast, the weeks 1 + 2 cold pretreatment hardly increased resistance to 
oxidative stress (hydrogen peroxide) in both sexes (Le Bourg 2008, 2012). Finally, 
this pretreatment decreased survival time in starvation conditions, mainly in 
females (Le Bourg 2007a, 2012).
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Another study showed that a pretreatment with cold (5 days at 11 °C) increased 
resistance of females to cold (time to recovery after 3 h at 0 °C), but decreased that 
to starvation and had no effect on resistance to heat and desiccation (Bubliy et al. 
2012).

14.3.4  Conclusion

In summary, cold pretreatments can increase longevity, delay behavioral aging, 
and improve resistance to various severe stresses, but not to all stresses.

14.4  Hypergravity Stress

14.4.1  Effects on Longevity

Hypergravity (HG) is a gravity level higher than the Earth gravity level (1 g). HG 
is hardly encountered by organisms living in the wild, not to say never, but people 
can be subjected to short stays in HG. For instance, a mild HG episode is observed 
in high-speed elevators, in cars during the braking phase, or in aircrafts at take-off, 
but there is an intense HG phase at launch of rockets or during acrobatic flights of 
aircrafts. Furthermore, short HG and microgravity episodes can be obtained dur-
ing the parabolic flights of space agencies aircrafts (an example in Le Bourg et al. 
1995).

The weight is increased during HG, e.g. thrice at 3 g. Therefore, HG probably 
induces a stress because the organism has to cope with this increased weight with, 
in rats acclimated to HG, the consequence of an increased resting energy expendi-
ture (Wade et al. 2002). In rats, living continuously in HG provokes a deformation 
of the vertebra, impairs growth, suppresses fat (Oyama 1982), non-significantly 
decreases life span (Economos et al. 1982), impairs body mass gain (Pitts and 
Oyama 1979; Kita et al. 2006), or decreases the number of pups (Megory and 
Oyama 1984). A short stay in HG (2, 3, or 4 g for 21 days at 9 weeks of age) 
has also negative effects in mice (Bojados and Jamon 2014; see also Jamon and 
Serradj 2009). Thus, in mammals, HG is probably too strong a stress for expecting 
favorable effects of exposure to HG (other results have been gathered for exam-
ple in hamsters, e.g. Sondag et al. 1997). Nevertheless, HG is a suitable procedure 
to increase metabolism in insects without the consequences of increased tempera-
tures in poikilotherms (speeding chemical reactions, decreased longevity, and so 
on) and without the problems linked to a large weight, as in mammals (the ability 
to tolerate HG decreases with body size increase).

Living in HG for 2 weeks (up to 5 or 7.4 g) can increase longevity of males 
(10–20 %), but has no effect or decreases longevity in females (e.g. Le Bourg and 
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Minois 1997; Le Bourg et al. 2000). On the one hand, 3 weeks in HG can still 
increase life span of males (Le Bourg et al. 2000) but longer or lifetime exposures 
can decrease it (e.g. Lints et al. 1993). On the other hand, a one-week exposure 
has no effect, as well as 3 periods of 4 days in HG followed by 3 days at 1 g (i.e. 
12 days in HG). Thus, 3 weeks in HG is the limit between a mild stress with hor-
metic effects and a strong stress with no positive effects, and a continuous expo-
sure to HG is needed for positive effects to be observed.

Using conditions known to increase or decrease longevity can modify the limit 
between positive and absence or negative effects of HG. Males kept in individual 
vials (which increases life span) after having lived 25 days in HG live longer than 
those always kept at 1 g, whereas no HG effect is observed if they live in groups 
of 15 males throughout life, the usual living condition (Le Bourg et al. 2000). In 
contrast, the positive effect of 2 weeks in HG is suppressed in males continuously 
kept with females or in males transferred at 28 or 30 °C after having lived in HG 
at 25 °C, probably because mating and high temperature decrease longevity (Le 
Bourg et al. 2004). Therefore, HG can have hormetic effects or not, depending on 
rearing conditions. Conditions that decrease longevity (mating, high temperature) 
can erase the hormetic effect of HG, whereas those that increase longevity favor 
hormetic effects to be observed (individual rearing). This is exactly the opposite of 
the Sacher’s reasoning (1977, see the introduction).

14.4.2  Effects on Behavioral Aging

HG has been shown to delay the age-linked decrease of climbing scores, mainly in 
males (Le Bourg and Minois 1999; Le Bourg et al. 2002), but this effect was not 
always observed (Le Bourg 2012). HG has however no positive effect on sponta-
neous locomotor activity and patterns of movement, i.e. the shape of paths of flies 
walking in a circular arena (Le Bourg and Minois 1999).

14.4.3  Effects on Resistance to Stress

A 2-week exposure (but also 1- and 4-week exposures) to HG increased survival 
time at 37 °C in both sexes (Le Bourg and Minois 1997; Minois and Le Bourg 
1999; Minois et al. 1999; Le Bourg 2012) or to simulated “summer heatwave” 
(see above), in males only (Le Bourg et al. 2004; Le Bourg 2005). HG had either 
no effect (Minois and Le Bourg 1999) or increased resistance to cold (Le Bourg 
2012) in experiments using however different procedures. HG did not confer pro-
tection against fungal infection (Le Bourg et al. 2009; Le Bourg 2012) or oxidative 
stress (Le Bourg 2008, 2012) and, finally, decreased resistance to desiccation or 
starvation (Minois and Le Bourg 1999, Le Bourg 2012).
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14.4.4  Conclusion

In summary, HG can increase longevity of males and may have positive effects on 
behavioral aging and resistance to heat, but it has no clear effects on other severe 
stresses.

14.5  Fasting Stress

Dietary restriction (DR), i.e. a reduction of available food without malnutri-
tion applied throughout adult life or at least for a long period, is often consid-
ered to increase longevity and improve healthspan in most of species (reviews in 
Everitt et al. 2010), but this conclusion is probably wrong (reviews in Le Bourg 
2010b; Nakagawa et al. 2012; Swindell 2012). DR is probably not a mild stress 
because, whereas mild stresses can increase longevity and severe ones decrease it, 
DR is more efficient in rodents as its duration and the reduction of food increase 
(Bertrand et al. 1999), except if the malnutrition threshold is reached (Fig. 17.4 
in Speakman and Mitchell 2011). Furthermore, DR increases mean (up to +50 % 
in rodents) and maximal longevities whereas mild stress only increases mean lon-
gevity (+20 % at a maximum, Fig. 17.1 in Minois 2000). Therefore, the features 
and effects of DR and mild stress are different (Le Bourg 2009, but see the debate 
among experts on hormesis and DR in Belle Newsletter Volume 8, issue 3, 2000).

In the following, we are thus not concerned with DR but with fasting, i.e. the 
complete absence of food for a limited period with water available. Fasting could 
be a signal for impaired environmental conditions, preparing for worse living con-
ditions by increasing resistance to severe stresses, which often co-occur with food 
limitation in the wild (e.g. heat or cold shocks in summer and winter). A short 
starvation could thus be a stimulus disturbing homeostasis without inducing severe 
damages, and provoking an adaptive response enhancing the ability to resist severe 
stresses, i.e. fasting could be a mild stress with hormetic effects.

14.5.1  Effects on Resistance to Stress

The very few studies of fasting in D. melanogaster have focused on stress resist-
ance. Vigne et al. (2009) fed young flies on a highly diluted medium for 2 days 
before an anoxia followed by reoxygenation (this is similar to a cardiac ischemia-
reperfusion insult in mammals) and this strongly increased survival to this stress. 
A caveat is that these authors did not fast flies but simply diluted the rearing 
medium. Via nitric oxide release, which is active against gram-negative bacteria 
(Foley and O’Farrell 2003), starvation for 24 h protected relish flies against gram-
negative bacteria despite the fact that the Imd innate immunity pathway protecting 
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flies against these bacteria is deficient in relish flies (Brown et al. 2009). Bubliy 
et al. (2012) showed that three periods of 18 h of fasting followed by 20 h of ad 
libitum feeding increased survival time of females to starvation (+20 %) and the 
number of survivors to desiccation (+21 %), but decreased longevity and resist-
ance to heat (38.5 °C) or cold (time to recovery after 3 h at 0 °C). Le Bourg (2013) 
starved flies for 24 h and observed resistance to heat (37 °C), cold (0 °C), oxi-
dative stress (hydrogen peroxide), and fungal infection (B. bassiana). Fasted flies 
better resisted to cold (up to 48 h at 0 °C) at young and middle age, results being 
rather inconsistent at old age, but fasting had no effect or decreased resistance to 
the other stresses.

14.5.2  Conclusion

Therefore, it is somewhat difficult to conclude on the effects of fasting on flies, 
due to a lack of studies. Nevertheless, for the time being, it seems that the positive 
effects are limited.

14.6  Oxidative Stress

14.6.1  Effects on Longevity

Le Bourg (2007b) transferred 2 or 4 week-old flies on a solution of saccharose, 
a poor medium known to decrease life span (−50 %). For one half of the flies, 
the solution contained hydrogen peroxide at various concentrations (60 mM to 
one M). Hydrogen peroxide decreased longevity, but the lowest concentration 
increased mean life span of middle-aged males (mean life span at 4 weeks of age, 
respectively, of males living on the usual corn medium, on saccharose, and on sac-
charose with 60 mM hydrogen peroxide: 20, 11, 16 days). Thus, hydrogen per-
oxide reduced the negative effect of the poor medium. However, another study 
showed that daily, weekly, or twice-weekly repeated 8 h exposures throughout life 
to a lower dose (0.1 mM) decreased life span of females feeding on the usual corn 
medium, in a linear manner with increased exposures (Pickering et al. 2013).

14.6.2  Effects on Behavioral Aging

Le Bourg (2007b) did not observe any positive effect on climbing scores of the 
hydrogen peroxide dose that reduced the negative effect on life span of a poor 
medium.
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14.6.3  Effects on Resistance to Stress

Similarly, Le Bourg (2007b) did not observe any positive effect on resistance to heat 
or to starvation of the hydrogen peroxide dose that reduced the negative effect on life 
span of a poor medium. In contrast, subjecting female flies at 7–9 days of age to a 
single 6 h exposure to a 0.1 mM hydrogen peroxide solution increased survival time, 
16 h later, to a 4.4 M solution (ca 63 vs. 49 h; Pickering et al. 2013). The effect of this 
pretreatment was lost if flies were pretreated at 13–15 or 25–27 days of age and 2 or 3 
exposures, daily, weekly, or twice-weekly, at any age, also nullified the positive effect.

14.6.4  Conclusion

In summary, the positive effects of oxidative stress are modest and the previous 
two studies show that the window to observe such effects is narrow.

14.7  Miscellaneous Stresses

14.7.1  Desiccation

Bubliy et al. (2012) kept female flies in vials containing the usual medium and 
a desiccant. Probably due to the presence of the medium, the relative humidity 
level only fell to 7–10 % in ca 11 h. However, this pretreatment decreased life 
span (−3 days). The same pretreatment increased resistance to desiccation (15 h at 
30–17 % relative humidity) and to heat (38.5 °C), but decreased that to cold (3 h at 
0 °C) and had no effect on survival time to starvation. The positive effects of des-
iccation appear to be modest.

14.7.2  Hydrogen Sulfide

Hydrogen sulfide (H2S) in air has been shown to have no effect on survival to star-
vation in females but to increase survival time in desiccation conditions (e.g. 29 
vs. 23 h, Zhong et al. 2010).

14.7.3  Dead Spores of a Fungus

Covering flies with dead spores of the entomopathogenic fungus Metarhizium 
robertsii two days before a heat shock (38 °C for 45 min) increases survival, but 
3 or 5 exposures have no effect or even slightly decrease survival. In the same 
way, a single exposure to dead spores increased life span (+3 days or ca +9 %, 
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both sexes pooled) and fecundity, but decreased survival time to live spores 
(ca −0.8 day or −10 %). Thus, there is a balance between positive and negative 
effects of the mild stress (McClure et al. 2014).

14.8  Mechanisms of Mild Stress-Induced Hormetic Effects

The previous results have shown that various mild stresses can have similar ben-
eficial effects. For instance, they can increase life span (cold, HG), delay the age-
linked decline of climbing scores (cold, HG), increase resistance to heat (heat, 
cold, HG, desiccation), cold (heat?, cold, HG?, fasting), desiccation (fasting, des-
iccation, hydrogen sulfide), or to oxidative stress (heat?, cold?, oxidative stress?). 
However, resistance to fungal infection is increased only by cold and that to star-
vation by fasting. Mild stresses can also have no effect on resistance to severe 
stresses, or can even decrease it. For instance, the resistance to heat or cold is 
decreased by fasting and that to desiccation is lowered by HG or heat.

As most of these previous stresses are environmental changes, their effects are 
probably explained by an overcompensation response to the disruption of homeo-
stasis, i.e. a general response of the organism, and not by a physical link of a mol-
ecule with a specific receptor, for instance at the surface of cells. This link could 
be observed if the mild stress were a specific molecule such as hydrogen sulfide, 
which is naturally produced by flies (Zhong et al. 2010).

Various stimuli can provoke the translocation in the nucleus of transcrip-
tion factors and this translocation can induce not a single gene but many genes 
with various effects. For instance, the translocation of DAF-16, the homologue 
of FOXO in C. elegans, is induced by flavonoids (Kampfkötter et al. 2007), and 
DAF-16 is necessary to observe a longevity increase after heat shocks, but not an 
increased thermotolerance (Cypser and Johnson 2003). dFOXO, the homologue 
of FOXO in flies, can be activated by various stresses and directs the expression 
of several defense mechanisms (apoptosis, antioxidant, immune, or metabolic 
responses: review in Puig and Mattila 2011). Therefore, transcription factors are 
candidates to explain the effects of mild stress. Enzymes known to counteract oxi-
dative challenge, such as the antioxidant enzymes superoxide dismutase (SOD) 
and catalase (CAT), could also be appropriate candidates.

14.8.1  Antioxidant Enzymes

The activity of SOD (converts O2
− to H2O2) and CAT (converts H2O2 to H2O) has 

been measured at 2, 4, or 6 weeks of age in individual flies kept in HG for the first 
two weeks of adult life and in control ones always living at 1 g. These two weeks 
in HG, known to increase longevity of males and thermotolerance in both sexes 
(see above), had no effect on SOD and CAT at any age and in either sex (Le Bourg 
and Fournier 2004).
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Therefore, the increased longevity and thermotolerance observed after exposure 
to HG are probably not explained by these enzymes and it may be understood why 
HG does not increase resistance to oxidative stress (e.g. Le Bourg 2008). However, 
no study of SOD and CAT has been performed in flies subjected to another stress 
than HG.

14.8.2  The NF-κB like Factor DIF

The DIF transcription factor, a homolog of NF-κB in flies, is involved in resistance 
to gram-positive bacteria and fungal infection. The activation of the Toll pathway 
by fungi directs the expression of the drosomycin and metchnikowin antimicrobial 
peptide genes by inducing the translocation into the nucleus of the DIF transcrip-
tion factor (review in e.g. Ganesan et al. 2011).

Dif mutants and their control strain pretreated with cold (1 h at 0 °C, daily, 
from 5 to 9 and from 12 to 17 days of age) better survived to a severe cold stress 
(16 or 18 h at 0 °C) than flies not subjected to the pretreatment and, in each of 
these groups, the Dif mutation had no effect on the percentage of survivors. By 
contrast, the cold pretreatment increased survival time to heat (37 °C) in the con-
trol strain but not in Dif flies. These results thus show that DIF probably does not 
mediate the effect of the pretreatment on resistance to cold but can, at least partly, 
explain the resistance to heat. The effects of DIF and of the pretreatment on resist-
ance to fungal infection were complex, because this pretreatment had no effect 
in the control strain and decreased resistance of Dif flies (Le Bourg et al. 2012), 
while it is known to increase resistance to fungi in wild-type flies (e.g. Le Bourg 
et al. 2009). The genetic background of the control strain (cn bw mutant) could 
explain this absence of a positive effect in these rather frail flies (low longevity 
and viability of the eggs, see Le Bourg 2011b), while the absence of DIF in this 
genetic background could explain the negative effect. However, testing the effect 
of the cold pretreatment in wild-type flies subjected to a pharmacological inhibi-
tion of NF-κB (Moskalev and Shaposhnikov 2011) could clarify the issue.

It seems possible to conclude that the DIF transcription factor can explain some 
effects of mild stress.

14.8.3  Heat-Shock Proteins

Heat-shock proteins (HSP) mediate protein refolding or degradation after a heat 
shock via the translocation in the nucleus of the heat shock transcription factor 
HSF (reviews in Morrow and Tanguay 2003; Tower 2011).

Flies subjected to HG do not synthesize the 70 kDa HSP (HSP70) and, thus, 
HSP70 cannot explain the increased longevity of males living in HG for the two 
first weeks of adult life. However, if flies of both sexes are heat-shocked, those 
having lived in HG synthesize more HSP70 than flies that have always lived at  
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1 g (Minois et al. 1999; Le Bourg et al. 2002). This better resistance could thus be 
explained by an increased HSP70 synthesis. As a consequence, flies overexpressing 
the hsp70 gene should take advantage of an increased HSP70 synthesis after hav-
ing been subjected to HG, but it happened that the positive effects of HG on sur-
vival time at 37 °C were similar in a transgenic strain and in a control strain with 
no extra-copies of the hsp70 gene (Le Bourg et al. 2002). Therefore, the synthesis 
of HSP70 can explain the better thermotolerance of flies that have lived in HG, but 
it is useless to increase this synthesis beyond the level observed in wild-type flies.

In males, 2 h at 34 °C at 3, 6 and 9 days of age provoked the up-regulation of 
heat shock proteins genes 10 and 26 days after the last heat stress (Sarup et al. 
2014). In females, 3 h at 34 °C at 2, 4, and 6 days of age induced a higher induc-
tion of HSP70 after a severe heat stress at 32 days of age (Kristensen et al. 2003). 
A similar result has been observed in flies, mainly males, harboring a heat shock 
transcription factor inactivated at 30 °C and rescued by a functional hsf gene. 
These flies also better resisted to a severe heat shock after a pretreatment with heat 
(3 h at 34 °C at 3, 6, and 9 days of age), whereas no such effects were observed in 
flies not rescued by a hsf gene (Sørensen et al. 2007). In contrast, wild-type flies 
of both sexes subjected to heat shocks at young age, which increased survival time 
at 37 °C, did not synthesize more HSP70 at any age after a 37 °C heat shock than 
control flies (Le Bourg et al. 2001). For the time being, the effect of other stresses 
on the synthesis of HSPs has not been studied, even if it is known that various 
HSPs can be induced during the recovery phase (8 h at 25 °C) after a cold shock 
(9 h at 0 °C, Colinet et al. 2010a) and that knocking down hsp22 or hsp23 genes 
impairs recovery from cold (Colinet et al. 2010b).

This whole set of results indicates that HSP70 explains, at least partly, the 
higher thermotolerance observed after a mild stress.

14.9  General Conclusions to the Chapter

It is now a well established fact that mild stresses can have positive effects on lon-
gevity, aging and resistance to severe stress in D. melanogaster. A better resistance 
to severe stress can be observed at old age even if a mild stress is applied at young 
age, and the mild stress can be efficient even if applied at rather old ages (Le 
Bourg 2011a). In addition, the positive effects of combining two mild stresses with 
positive effects in the same flies are additive. For instance, HG and cold can have 
additive positive effects on resistance to heat or to cold stresses and on longevity 
of males, but a caveat is that when one of the mild stresses has negative effects 
the result of the combination of the two pretreatments can be negative (Le Bourg 
2011a). The mechanisms of the positive effects of mild stresses are still largely 
unknown but it can be safely concluded that transcription factors are at play, as 
they are in mammals subjected to a mild stress (e.g. Calvert et al. 2009).

Being able to resist strong stresses after having been subjected to a mild stress 
can be of a high interest in the wild and thus of selective value. For instance, a 
common threat in the wild is excessive heat and a brief heat shock could be a 
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signal for forthcoming strong heat shocks, drought, and/or starvation. Animals 
able to induce a hormetic response after such a brief heat shock (a very hot day, 
for instance) would probably be more able to resist summer heatwave than those 
not displaying this hormetic response: indeed, a very hot summer can also be a 
dry summer with less food available. This would confer a selective advantage in 
the wild and these animals previously subjected to a brief heat shock would have a 
higher chance to survive and to reproduce.

The duration of the protection offered by hormetic responses in flies is in the 
range of a few weeks, at a maximum. This range is the same as their life span and 
one could wonder whether, in mammals for instance, the hormetic response would 
last for a few weeks (i.e. the absolute duration would be the same in short- and long-
lived species), or for a significant part of their life span, e.g. for months in rodents or 
years in humans. If the latter result were observed, it would mean that a mild stress 
can really have effects at an old age, even if applied a long time before, like a vac-
cine in a way. On the contrary, results in flies would be more easily explained by the 
features of the hormetic response than by real effects on the aging process.

Performing more experiments in mammals, and particularly in rodents, could 
allow to clarify the issue because, for the time being, such studies are scarce (see 
e.g. Calvert et al. 2009; see also in pigs for instance Lavitrano et al. 2004). These 
studies could help to close the gap between studies in invertebrates, mainly done 
with flies, and those on humans (reviews in Rattan and Le Bourg 2014), and to know 
to what extent mild stresses can be of therapeutic value, particularly at old age.

Yet, one can guess that new studies on flies will be done in the future but, obvi-
ously, flies are not humans, and this would be a fantasy to imagine subjecting 
young people to a mild stress such as HG in the hope to increase their resistance 
to winter infections or summer heatwave at old age. Nevertheless, mild stresses 
fitted to human physiology can be used. For instance, sauna (60 °C, 15 min daily 
for 2 weeks) can decrease blood pressure and fasting plasma glucose in patients 
suffering from hypertension or hypercholesterolemia or can decrease body 
weight and fat in obese patients (Biro et al. 2003). Indeed, there is now a corpus 
of results showing that mild stress can be of therapeutic value (reviews in Rattan 
and Le Bourg 2014). In such conditions, studies of mild stress in D. melanogaster, 
beyond the attempt to establish the most efficient stresses and their mechanisms in 
this fly, could be like suggestion-boxes for clinic research and help to find out new 
therapeutic tools to improve daily life of elderly people.
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Abstract It is generally recognized that the adult life span of Drosophila is 
not a continuous process from fertilization to death, but rather consists of four 
 demographically defined phases: the developmental, health, transition, and 
 senescent spans. These are marked by differences in gene expression patterns, 
physiology, homeostasis, and mortality rates. I review our empirical data showing 
that drugs known to significantly extend longevity in either early or late life do so 
via stage-specific effects such that beneficial effects are observed at one stage but 
neutral or detrimental effects at another stage. Whole-life feeding of these drugs 
leads to failure to detect their pro-longevity effect, suggesting that the gene-based 
drug targets are not necessarily present in all four stages.

Keywords Drosophila · Life span · Developmental phase · Healthspan ·  
Transition span · Senescent span

15.1  Introduction

Current drug screening protocols are based on the paradigm that whole life feed-
ing of candidate drugs will not yield any false negative data. Our data indicates 
that this paradigm is flawed. It might be useful to perform the initial whole-life 
and stage-specific testing of candidate pro-longevity drugs on flies prior to any 
testing on mammals. The lower cost fly experiments would allow the characteri-
zation of any stage-specific effects of the candidate drug on conserved pathways, 
and would inform the experimental design of subsequent mouse studies. One test-
able prediction of the current data is that drugs with beneficial late life effects are 
likely to be enriched for molecules capable of inhibiting or countering age-related 
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diseases, while drugs with early life beneficial effects are likely to be enriched for 
healthspan extension effects.

15.1.1  Demographic Data Supporting Different  
Life Span Phases

The lives of animals can be lengthened in three ways: increasing both their 
mean and maximum life span; increasing their mean but not their maximum life 
span; or increasing their maximum but not their mean life span (Fig. 15.1a–c)  
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(Arking et al. 2004). Although each of the three treatments resulted in a significant 
alteration of the survival curves, only the first treatment resulted in a significant 
slowing of the age-specific mortality rate (Fig 15.2a–c) (Arking et al. 2004). The 
latter two approaches transiently decreased the mortality rate only at the beginning 
or end of life, and neither case represents an optimal increase of healthy life span. 
Only the first approach caused the organism to enhance its existing repair and 
maintenance capabilities so as to actually slow the aging rate and thereby delay the 
onset of senescence.

The age-specific mortality rate is defined as the probability of dying at a certain 
age among those individuals of the birth cohort who have survived to that age. 
Gompertz (1825) found that the age -specific death rate increases as an exponen-
tial function of age:

where q0 = further expectation of life at the time of birth, or the y-intercept; 
qx = further expectation of life at the beginning of an age interval, x; and x = the 
slope constant.

The Eq. 15.1 can also be written in linear form as: ln qx = ln q0 + x, which is, 
of course, a particular form of the general equation for a straight line: y = b + mx. 
Non-linear calculations of the age-specific mortality rate can be made using 
 multiple likelihood statistics as described by Pletcher and Geyer (1999).

The three longevity types are probably general, in the sense that they exhaust 
the logical permutations of variations in the linear mortality curves. There is no 
 reason to believe that this one strain is special and every reason to believe that many 
if not all wild-type strains in this and other species are capable of mounting the 
same set of responses. The presence of three alternative longevity phenotypes in the 
same organism means that the genetic mechanisms regulating longevity are more 
complex than is often assumed. Presumably this flexibility evolved as to allow the 
organism to reproduce effectively under different environmental conditions.

(15.1)qx = (q0)
ex

Fig. 15.1  Three types of survival curves for extended longevity. a Survival curves of the 
 normal-lived Ra strain and of two long-lived strains (La and 2La) derived from it by a direct 
selection for delayed female fecundity. The data points represent the observed survival data and 
are based on the age-specific values obtained from two or three replicate cohorts consisting for 
at least 250 mixed sex individuals each. The Ra, La, and 2La curves are significantly different 
(log-rank test, χ2 = 530.16, 2 df, p < 0.0001). The continuous lines are the Weibull approxima-
tions of the empirical data (see Arking 1987 for details). b Survival curves of the normal-lived 
Ra strain and the PQR strain selected from it by direct selection for paraquat resistance. The 
data points represent the observed survival data and are based on the age-specific values obtained 
from mixed sex cohorts of 250–450 animal each. The two curves are significantly different (log-
rank test, χ2 = 24.76, 1 df, p = 0.0005). The continuous lines are the Weibull approximations of 
the empirical data (see Vettraino et al. 2001 for details). c Survival curves of the normal-lived Ra 
control strain and the longer-lived Ra heat-treated strain. The latter animals were subjected to a 
non-lethal heat shock (37 °C for 90 min) early in life at days 5–7 after eclosion. They were then 
maintained under controlled optimal conditions and their survival monitored. The two curves are 
significantly different (log-rank test, χ2 = 17.84, 1 df, p < 0.0005). The continuous lines are the 
Weibull approximations of the empirical data (see Kuether and Arking 1999 for details)
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Fig. 15.2  Three patterns of age-specific mortality rates and their effect on longevity.  
a Age-specific mortality curves of the normal-lived Ra strain and of two long-lived strains  
(La and 2La). The Ra and La curves, and the Ra and 2La curves, are significantly different  
from each other, whereas the La and 2La curves are not statistically different from each other.  
b Age-specific mortality curves of the normal-lived Ra strain and the PQR strain. The data points 
and their Gompertz approximations are shown (Ra-G and PQR-G). Statisical analysis shows that the 
curves are significantly different (p < 0.0036); the intercepts differ significantly whereas the slopes 
of the two curves have no significant difference. c Age-specific mortality curves of the normal-lived 
Ra strain and the longer-lived heat-treated strain (RaHX). The experimental points and the Gompertz 
approximations (Ra-G and Ra-HXG) are shown. There is no significant difference between the two 
curves (p < 0.35). The intercepts do not differ significantly (from Arking et al. 2004)
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The extended healthspan phenotype of Figs. 15.1a and 15.2a would clearly 
be the desired outcome for an eventual longevity intervention in humans. This 
desirability arises from the fact that the delay of the inflection point in the 
 survival curve results in an extended healthspan while having minimal effect 
on the length of the senescent span (Fig. 15.2). The extra longevity is added on 
to the healthspan and not to the senescent span; this observation suggests that 
the adult life span is based on a multiphasic genetic architecture. The existence 
of a complex architecture implies the possibility of multiple points at which 
one might intervene in the life span and further raises the possibility that 
the several phases may be lightly connected and thus susceptible to  different 
stimuli.

The analysis of the data from our laboratory as well as of that from the 
 literature leads us to conclude that the life span is not just one long process of 
erosion but rather a complex process in which different stimuli can give rise to 
alternate patterns of gene expression that give rise via differential mortality to the 
three longevity phenotypes of Fig. 15.1. Our long-lived La strain of Drosophila 
lives longer because its healthspan has been genetically altered, not because its 
senescent span is different in any way. In this view, the life span consists of four 
phases: namely, developmental span, healthspan, and senescent span; with the 
latter two being separated by a variable transition span. Actually, all four phases 
are variable in their length of time however expressed, and in their observed 
effects on the organism and it’s age-specific mortality rate. A brief summary of 
these four spans follows.

15.1.1.1  The Developmental Phase

The developmental phase in Drosophila covers the period of time from  conception 
to the eclosion of the adult. Embryonic and larval development is clearly 
 understood to be a program in the sense that development consists of a series 
of gene expression modules in which the output of one module is the input for 
the next (Davidson et al. 2002; Davidson and Erwin 2006; Tu et al. 2014). 
Developmental gene expression patterns for any species are highly complex yet 
very predictable in that they depend almost entirely on the nature of the cis- acting 
regulatory elements of the genes involved (Segal et al. 2008). They may be viewed 
as leading to a stage of highest optimal functionality in the young adult, as judged 
by their minimum values of the age-specific mortality rate. Although  development 
is mostly internally driven, chance may still play an important role in  individuals 
(Finch and Kirkwood 2000, Finch 2007). These developmental expression  
patterns are susceptible to certain environmental influences affecting their basic 
 regulatory mechanisms and thus altering their future life span (Barker 1995; 
Danese et al. 2007). For this reason, the developmental phase of the life span can-
not be excluded when considering the overall genetic architecture of longevity.
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15.1.1.2  The Health Span

The healthspan begins when the development period ends. It is defined by a low 
age-specific mortality rate and a high survival rate. The adult cohort starts out with 
100 % survival and this high level is maintained for some time in most healthy 
cohorts. The healthspan ends when the survival rate drops below 90 %, or when 
there is a negative inflection in the survival curve, whichever comes first.

15.1.1.3  The Transition Span

The Transition Span is defined as that portion of the life span encompassed 
between the adult survival rates of 89 % (e.g., immediately following the end of 
the healthspan) and 80 % (e.g., immediately preceding the beginning of the senes-
cent span). The transition span is variable, being obvious in Drosophila strains 
raised under conditions that allow a robust healthspan. Some strains and/or cohorts 
display an almost continuous decrease in the survival curve, suggesting that these 
animals are somehow weakened such that they have a relatively high age-specific 
mortality rate from eclosion onwards.

15.1.1.4  The Senescent Span

The Senescent Span is characterized by the obvious loss of function implicit in 
the decreasing survival as well as by the changing physiology of the older adults. 
It is this portion of the life span that is commonly referred to by the word aging. 
Humans and the common laboratory model organisms used to study senescence 
are all species with determinate growth that undergo a gradual senescence. The 
canonical patterns of senescence in these species were elucidated by Finch (2007) 
as encompassing most or all of the following: mortality acceleration,  reproductive 
decline, slowed movements, cardiovascular dysfunctions, abnormal growths, 
 oxidative damage, and neuron loss. The senescent span ends with the death of the 
organisms and the cohort.

15.1.1.5  Architecture of the Life Span

A diagrammatic summary of these demographic divisions of the life span, as 
well as brief summaries of their genetic and physiological traits, is presented in 
Fig. 15.3. Much discussion is available about aging mechanisms, but this term 
lumps together processes involved in our healthspan with those mostly involved 
in our senescent span. The data presented in Figs. 15.1 and 15.2 make it likely that 
the healthspan can be regulated independently of the senescent span. Our more 
recent data, summarized in this chapter, confirms that the mechanisms operative 
in one phase are not necessarily present in another phase (McDonald et al. 2013;  
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Soh et al. 2013). The data summarized in Fig. 15.3 demonstrates that the four 
phases of the life span are quite different at multiple functional levels. They should 
be separated for clarity of thought, which is essential if we wish to be able to 
understand and manipulate the processes regulating longevity and aging.

The reader will notice that I list the possibility of reversing aging from the 
transition or senescent spans to the healthspan. This has now been shown to take 
place in several precisely defined conditions. The work of Chung and  colleagues 
(see Adler et al. 2007, 2008) demonstrated the reversal of skin aging in a 
mouse genetically engineered so as to inhibit in late life the activity of NFkB,  
a transcription factor intimately involved in chronic ROS production. Once the 
pro-inflammatory signals were inhibited, the skin histology changed to  resemble 
that of a younger mouse. The work of Conboy and colleagues (Conboy et al. 
2005; Carlson et al. 2014) showed that age-related loss of mice and humans to 
undergo muscle wound healing could be restored by providing or enhancing the 
MAPK/Notch signal molecules needed to maintain that process. Both projects 
show that cell and tissue function is dependent on the presence of appropriate 
signals and so either the presence of a pro-inflammatory signal or the absence 
of a necessary signal may induce the aging process. The basic validity of these 

Fig. 15.3  A diagrammatic view of the architecture of the life span overview of the changes in 
physiology, gene expression, cell functions, mortality, and resilience during the developmental, 
health, and senescent phases of the life span as well as during the transition phase between the 
latter two spans. See text for discussion (modified after Arking 2009)
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experiments is supported by the description of genetic processes in other  systems 
which either repress the onset of senescent span gene expression or activate 
genes capable of protecting against age-related senescent diseases. Both of these 
 processes also result in an effective extension of the healthspan (Liu et al. 2011; 
Gentilini et al. 2013; Lu et al. 2014). The important point about these several 
 processes is that they either alter the gene expression patterns characteristic of 
the senescent span into patterns characteristic of the healthspan, or else  maintain 
the healthspan gene expression patterns by repressing genes which would 
 otherwise shift the organism into the senescent span. The fact that these processes 
act so as to maintain the healthspan against insults suggest that we can view the 
healthspan as being the default state of the adult organism. It also suggests that 
the demographic divisions of Fig. 15.3 actually represent functionally distinct 
 compartments at the genetic level.

15.1.2  Goal of this Chapter

The question posed by this chapter is: What is the empirical evidence supporting 
the concept that the demographic divisions of the life span as shown in Fig. 15.3 
actually do reflect distinct phases of gene expression patterns, with all that is 
implied by that statement? The most direct way to fully answer the question is 
to do an analysis of stage-specific gene expression patterns for each of the four 
life stages, and compare them. We recently began such an analysis and those data 
will be reported elsewhere at a later date. Our present data indicate that there are 
at least ~1000 genes which exhibit significantly different expression differences 
in the long-lived La females relative to the normal-lived Ra females. Our analysis 
is in progress and so we cannot now use a direct approach to answer our question. 
in the meantime, we will use indirect measure of stage-specific gene expression 
effects to provide an interim answer to our question.

15.2  Empirical Data Supporting the Demographic 
Divisions

15.2.1  Background Information

Our motivation in undertaking the series of experiments discussed in this  chapter 
was to determine if there existed any small molecule compounds (i.e., drugs) 
which might induce an extended longevity in the normal-lived Ra strains  similar 
to that observed in the long-lived La strains. We decided to use both whole-life 
as well as stage-specific patterns of exposure to various drugs. Experimental 
pro-longevity drugs are usually administered over the entire adult life span of 
the test organism. Given that different life stages have different patterns of gene 
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expression, and given that molecules regulating longevity may have a gene- 
specific target pattern, then there is reason to believe that whole-life interventions 
will not always be the most effective intervention. Such compounds may have 
stage-specific positive effects in one part of the life span but neutral or negative 
effects in another part. Given the potential of whole life experiments to yield false 
negative conclusions, then temporally targeted investigations may yield better 
insights into drug efficacy. The various reagents and techniques involved in these 
experiments were fully discussed in Soh et al. (2013) and McDonald et al. (2013), 
and should be consulted for those details as well as for the data mentioned but 
not shown below. Animals were raised on yeast-sucrose-agar food with a standard 
caloric (protein/carbohydrate) content/ml (AL food = ~3.1 cal/10 ml) or a 50 % 
reduction (DR food). The survival statistical data cited herein are each based on 
the log-rank test as specified in the GraphPad Prism 5.04 software; the relevant 
parameters are in the figure legends or text. Mortality kinetics were derived using 
multiple likelihood analysis; the calculations are available in the supplementary 
data of the original publications.

15.2.2  Summary Information

We now report that curcumin and certain HDAC inhibitors have beneficial effects 
in the normal-lived Ra. However, the two drugs do this in strikingly different 
 manners. Curcumin increases longevity when administered in the  developmental 
or healthspan stages, but has a negative effect when administered over the entire 
adult life span or over the senescent stage only. The two HDAC inhibitors tested, 
on the other hand, increased longevity during the transition and senescent spans 
but had negative effects on longevity when given during the developmental 
or healthspans. Table 15.1 briefly summarizes the pattern of these effects in the 
Ra and La strains. Note the clear difference between the sensitive periods of the 
 normal-lived Ra animals to these two drugs. Note also that the long-lived La 
 animals are not affected by curcumin at all at any stage, but are negatively affected 
by sodium butyrate (SB) in early life but not in late life.

Table 15.1  Summary of the stage-specific effects of the tested drugs on the Ra and La strains

Ra normal-lived strain, La long-lived strain, + positive effect of drug on longevity when  
fed at the indicated stage, 0 neutral effect of drug on longevity when fed at the indicated stage,  
−  negative effect of drug on longevity when fed at the indicated stage, nd no data

Drugs Development 
span

Healthspan Transition 
span

Senescent 
span

Whole life

Strain Ra La Ra La Ra La Ra La Ra La

Curcumin + 0 + 0 – 0 – 0 – 0

SB − − − − + − + − − −
SAHA nd nd nd nd + − + − nd nd
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In the remainder of this chapter, I will present the detailed data supporting 
Table 15.1 and then conclude with comments, based on these data, regarding how 
to improve the current protocols for testing pro-longevity drug candidates.

15.3  Results of Stage-Specific Curcumin Treatment  
on Longevity and Gene Expression

15.3.1  Developmental Span

15.3.1.1  Effect of Curcumin Feeding

A dose-response test was done on both the Ra and La strains by testing the effect 
of 0, 10, 100 and 200 mM curcumin food fed to larvae only, and assaying the 
 subsequent longevity of the adult flies raised on the AL food. The optimal extended 
longevity response was displayed by the Ra adults fed 100 mM as larvae (days −10 
to −5) which displayed an 80 % increase in the length of their healthspan  relative 
to the control (Fig. 15.4). and the resulting adults expressed decreased mRNA 
levels for a number of known longevity loci. The ten genes studied and their rela-
tive responses to larval curcumin are shown in Table 15.2, while Fig. 15.5 visually 
details the response of Tor (which is a nutritionally sensitive regulator of RNA and 
protein synthesis). The results are expressed as the mean ±SEM of fold change in 
curcumin relative to control expression at each age, as determined by RTq-PCR.  

Fig. 15.4  Larval curcumin Dose-Response studies. Eggs were laid on curcumin- containing 
media and exposed to the chemical from −10 to −5 days as indicated by the solid box on the 
X-axis. Resulting female adults were raised on control AL food. The 150 normal-lived Ra 
 animals show a maximum response at 100 mM (e.g., a ~ 85 % delay in the age of onset of 
 senescence relative to the 150 controls (48 days vs. 26 days), and significant increases in median 
and maximum life spans relative to controls (log rank test, χ2 = 26.79, 1 df, p < 0.0001) (from 
Soh et al. 2013)
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The day 1 results are anomalous in all cases and likely reflect the stresses of  eclosion 
on the young adult. Most of the genes tested are repressed in late larval life and at 
day 5 but return to normal levels by day 15 or 30. Both 4e-BP and S6k are down-
stream target branches from Tor, while Foxo (a transcription factor  intimately 
involved in stress resistance responses) is indirectly downstream on another branch 
from Tor. Sir2 is a major longevity gene indirectly affecting Tor. The hsps are 
 downstream chaperones genes and only indirectly involved in longevity. Cat and  

Table 15.2  qRT-PCR-based expression values of candidate genes affected by curcumin treatment 
(from Soh et al. 2013)

Curcumin/Control relative gene expression

Stage Larval day 1 day 5 day 15 day 30 day 45

GENE

Tor 0.65 2.22 0.67 0.78 0.93 1.14

4eBP 0.41 3.45 0.34 1.21 0.64 0.99

S6 k 0.75 2.61 0.54 1.11 0.95 1.13

Sir2 0.44 2.58 0.3 0.85 1.06 1.27

hsp22 0.54 1.6 0.16 2.37 0.94 1.38

hsp27 0.37 1.98 0.18 1.42 0.99 1.04

hsp70 0.05 0.86 0.1 1.03 0.67 1.11

Cat 0.77 2.5 0.53 0.75 0.95 1.49

Foxo 1.03 1.84 0.6 0.776 0.99 1.11

Sod 2.09 1.46 0.75 1.02 0.91 1.02

Fig. 15.5  Curcumin/control relative tor gene expression values at each age. These preliminary 
qRT-PCR data were obtained from one experiment consisting of three dependent replicates of 
~50 males/time point. Wild-type parents laid eggs on control or curcumin-containing food, and 
the F1 were flash-frozen in liquid N2 at the indicated stages (larval = late non-feeding 3rd instar) 
or male adult ages. qRT-PCR was done using standard techniques. Results are expressed as the 
mean ±SEM of fold change in curcumin relative to control expression at each age. Table 15.2 
shows the relative expression values of nine other genes assayed during the same experiment 
(from Soh et al. 2013)
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Sod are also downstream genes involved in reactive oxygen species scavenging and 
indirectly involved in longevity. The significance of these gene expression patterns 
is not yet understood. We are presently involved in the analysis of microarray data 
which should increase our understanding of the processes influenced by curcumin 
treatment. Chandrashekara et al. (2014) have data suggesting that curcumin affects 
both Akt activity and mitochondrial energy efficiency, among other effects. Akt 
affects many different signaling pathways and may be responsible for the multiple 
effects of curcumin noted in the research literature.

The long-lived La animals showed no significant response to curcumin, possibly 
because their selection regime involved alterations in the same longevity mechanisms 
affected by curcumin in the normal-lived Ra animals. The La animals do not respond 
to a DR diet either, supporting the idea that the mechanism(s) involved in both the DR 
and the curcumin responses may be similar to one another. Curcumin thus appears to 
be genome specific in that it does not extend the longevity of at least one long-lived 
strain. The developmental span must be considered as an integral part of the life span.

15.3.1.2  Similarity of Curcumin Effect to the Crowding Effect

When first isolated and tested, the La animals expressed a strong gene- 
environment effect such that the extended longevity phenotype was not expressed 

Fig. 15.6  Timing of the critical larval period determining the adult expression of the long-lived 
phenotype. Determination of the critical period during which time the larvae must be exposed to 
high larval densitiy (HD; 50–60 eggs/vial) conditions if they are to exhibit the extended longev-
ity phenotype, and conversely, which time the larvae must be exposed to low larval density (LD; 
10–12 eggs/vial) conditions if they are not to express the extended longevity phenotype. Timed La 
strain larvae were started at one density condition, shifted to the other at the indicated time, and 
assayed with the paraquat test at 5 days of aging to see if they expressed the extended longevity 
phenotype. The points represent the mean ±SEM of three independent replicate experiments. The 
numbers indicated the total number of vials, each containing 10 animals, used for each indicated 
shift. The entire experiment involved ~2550 animals exclusive of controls (not shown). Short arrow 
Estimated time the larvae stop feeding. Long arrow Approximate observed time of pupation. Closed 
circles LD to HD shifts. Open squares HD to LD shifts (from Buck et al. 1993). The critical period 
likely ends at 108 hrs, when the larvae stop feeding and presumably receive no further signals
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unless the La larvae were raised under conditions of high larval density (i.e., 
>50 eggs/vial) (Arking 1987). Controlled density shift experiments delineated 
a critical period during larval life for expression of the adult extended  longevity 
 phenotype ranging from 60 to 96 h after egg laying (Fig. 15.6). Failure to be 
exposed to high density during this time period results in the La animal  expressing 
only a normal longevity (Buck et al. 1993). This density-dependent phenotype 
was lost when the animals were inadvertently raised on a very low pH food, the 
effect of which was to convert the extended longevity of the La strain from an 
 environmentally inducible phenotype to a constitutively expressed phenotype. All 
of our work since then has been done using the density-insensitive strain which 
survived the low pH food. I long thought that the original Ra strain, since it was 
the progenitor of the La strain, likely contained some sort of environmentally 
dependent longevity phenotype. I suggest that the curcumin-dependent ability 
of the Ra strain to express an extended longevity is likely to operate through the 
same mechanism which gave the original La strain its density-dependent inducible 
 longevity phenotype. It may also have been one of the biological processes acted 
on by our selection protocol, unbeknownst to us (Luckinbill et al. 1984).

15.3.1.3  Transgenerational Effects of Curcumin

The F1 female offspring of larvae fed on curcumin food show a beneficial trans-
generational effect on their longevity (Fig. 15.7). The offspring had no direct 
contact themselves with curcumin food. The females showed a larger significant 
increase in longevity than did the males. Our data doesn’t allow us to decide if the 

Fig. 15.7  Transgenerational effects of curcumin. Ra eggs were laid on food containing 100 mM 
curcumin. The resultant adults were raised on AL food without curcumin and allowed to mate. 
These young adults laid eggs on AL food without curcumin. The F1 offspring were then raised 
on this standard food and their adult longevity measured. The F1 females of curcumin-fed 
 parents live longer than F1 females from control parents not fed on curcumin (log-rank test, 1 df, 
χ2 = 17.17, p < 0.001). F1 males show a similar statistically significant (p = 0.0001) extension 
of longevity (data not shown) (Arking unpublished data)
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transgenerational effect is due to epigenetic effects or simply due to an improved 
health of the offspring of curcumin fed mothers. Chandrashekara et al. (2014) have 
data showing that the transgenerational effect extends to the F2 generation. Their 
finding deserves attention since it may provide insight into alternative methods of 
increasing the healthspan of the progeny of treated mothers.

15.3.1.4  Effects of Larval Curcumin Feeding on the Adult Age-Specific 
Mortality Rate

Changes in longevity must flow from changes in mortality. Curcumin-fed Ra 
larvae yield adults of both sexes with significantly altered mortality  kinetics 
(Fig. 15.8). The age-specific mortality values of the curcumin treated females 
and males are significantly different (p < 0.0001, F-test) than the controls, 
and are best described by different curves. Curcumin treatment changed the 
 Gompertz-Makeham type curve of the control animals into the Gompertz curve 
of the experimental cohort. The Gompertz curves of the untreated long-lived La 
 animals are shown for comparison. Note that the decreased slope and reduced 
early mortality of the curcumin-treated Ra females approximate that of the 
Gompertz curve for the long-lived La female control. Curcumin significantly 

Fig. 15.8  Effect of curcumin on mortality rate kinetics. Curcumin affects both Gompertz 
 parameters and increases mortality rate doubling time in both sexes (male data not shown).  
The age-specific mortality rate (lnqx) was calculated from the survival curve of each cohort, 
 plotted, and the best fit mortality curve fitted to the data using maximum likelihood analysis 
(Winmodest), calculated and graphed. The data symbols represent the actual lnqx values. The 
solid lines represent the best fit curves: a Gompertz-Makeham plot for the control females (CLC-
R2xF, N = 120) and a Gompertz plot for the experimental female (CLA100R2xF, N = 87) 
cohort. The dotted line represents the Gompertz curves of the long-lived La females (N = 188) 
on standard food without curcumin. Note that the fitted Gompertz curve of the curcumin treated 
Ra females approximates the comparable curve of the La female (from Soh et al. 2013, which 
should also be consulted for the male data)
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alters the male mortality response (P < 0.0001, F-test) such that they are also 
best described by a Gompertz curve without additional mortality terms (data not 
shown). These data unequivocally show that altering the normal developmental 
by feeding the Ra larvae on a high dose (100 mM) of curcumin (Fig. 15.5) alters 
the normal gene expression patterns such that the Ra adult longevity phenotype 
now mimics that of the long-lived La adult. These data reinforce the presumption 
that the larval crowding-dependent mechanism (see 15.3.1.2) is closely related in 
some way to the larval curcumin-dependent mechanism. In these strains at least, 
adult longevity is the outcome of an environmentally-dependent development and 
genetic process.

15.3.1.5  Effects of Larval Curcumin Feeding on the Adult  
Trophic Behaviors

Curcumin feeding during the larval span significantly improved the adult 
females climbing ability in a standard negative geotactic test relative to controls 
(Fig. 15.9). The enhanced climbing response lasts for the first four weeks of 
the adult life span. The enhanced negative geotropic response suggests that the 
extended longevity of the treated animals is based on a more robust or efficient 
metabolism. The La animals are known to be very active as well as long-lived. 

Fig. 15.9  Curcumin enhances locomotor activity. Negative geotactic climbing behavior is 
enhanced by curcumin regardless of adult diet. Each column represents the mean ±SD of the  
climbing index compiled from 6 cohorts of 25 flies each which were tested twice consecutively  
(i.e., replicated tests of 150 animals/cohort/time point) and used to calculate the mean  climbing  
index value for each cohort. Females raised on AL food with curcumin had a significantly higher  
climbing index over weeks 2–4 relative to controls fed AL food only (t-test, t = 4.574, df = 2,  
p = 0.0441). Flies raised on dietary restriction (dr) food with curcumin had a significantly  
higher climbing index than controls fed DR food only over weeks 2–8 (t-test, t = 3.342, df = 6,  
p = 0.0156; data not shown). There is no significant difference between the AL control and the  
dietary restriction (DR) control (t-test = 0.4053, df = 6, p = 0.6993; data not shown). Similar  
results were found in males (from Soh et al. 2013, which should also be consulted for the  
male data)
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The fact that larval curcumin treatment increases the Ra animals’ activity as well 
as decreases its age-specific mortality to a level coincident with that of the long-
lived La strain indicates that the curcumin effect is not limited to longevity alone, 
or to climbing alone, but rather to a complex of activities that make the treated Ra 
animals closely resemble the selected La animal. If this hypothesis is confirmed 
by our ongoing analysis of our microarray data, then it may well be the case that 
 curcumin is activating a pathway(s) responsible for a coordinated alteration of 
multiple traits into an integrated extended longevity phenotype.

15.3.2  Entire Adult Life Span

We investigated the effects of feeding curcumin over the entire adult life span but 
not in the developmental span. Feeding curcumin during the entire adult life span 
(from days 5–65) decreases median life span, but not maximum life span, in both 
males and females (Fig. 15.10). This decrease is borderline significant in the Ra 
males but is highly significant in the Ra females.

In both cases, the negative effects of lifetime feeding manifest themselves in an 
earlier age of the end of the healthspan and an earlier age of onset of senescence 
relative to either controls or to animals fed curcumin only during the healthspan 
(see below).

Fig. 15.10  Effect of curcumin feeding over the entire adult life span. Curcumin has an 
 inhibitory effect if fed thoughout the adult life span in either sex. Ra females were fed 100 mM 
curcumin only during the entire adult life span. The curcumin fed females (N = 156, median life 
span = 36 days) respond with significant 30 % decrease in median but not maximum life span 
relative to their controls (N = 230, median = 47 days). The negative effects of lifetime feeding 
of curcumin manifest themselves in an earlier age of the end of the healthspan and an earlier age 
of onset of the senescent span relative to either control or to animals fed curcumin only during 
the healthspan. Males (data not shown) showed a similar response (from Soh et al. 2013, which 
should also be consulted for the male data)
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15.3.3  Effects of Curcumin Feeding in the Healthspan  
on Longevity

When Ra males were fed an AL diet with curcumin only during their healthspan 
(days 5–27; see 15.1.1.2) and then transferred to an AL diet without curcumin for 
the rest of their lives, they displayed a delayed onset of senescence which resulted 
in a significant increase in their median (49 %) and maximum longevities (49 %) 
(see Fig. 15.11a). Ra females treated in the same manner also showed a significant 
increase in longevity (see Fig. 15.11d).

Fig. 15.11  Effects of curcumin feeding during specific phases of adult life span. Adult 
 curcumin intervention has an early life stage-specific effect in Ra males and females. Panel 
a compares effect of feeding curcumin during the Healthspan (days 5–27; orange, N = 125, 
median life span = 73 days) relative to AL fed only male controls (black, N = 290,  
median LS = 49; log-rank test χ2 = 211.0, 1 df, p < 0.0001). Panel b compares the effect 
of feeding curcumin (N = 121, median = 57) during the Transition Span (days 28–40) to 
male controls (N = 290, median = 49) (log rank test, χ2 = 63.38, 1 df, p < 0.0001). Panel 
c shows the effect of feeding curcumin (N = 181, median = 45) during the Senescent Span 
(days 38–89) relative to male controls (N = 290, median = 49) (log-rank test, χ2 = 12.91, 
1 df, p = 0.0003). Panel d is a composite graph of female longevities following curcumin 
feeding during the entire life span (N = 147, median = 36 days), Healthspan (N = 126, 
median = 69, χ2 = 127.7, p < 0.0001); Transition Span (N = 126, median = 59, χ2 = 59.4, 
p < 0.0001); or Senescent Span (N = 125, median = 39, χ2 = 7.567, p = 0.0059) spans 
relative to controls (N = 230, median = 47). Note that both sexes show the same stage-
specific response as well as the same decreased longevity after whole-life feeding (from Soh  
et al. 2013)
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15.3.4  Effects of Curcumin Feeding in the Transition Span 
on Longevity

When Ra males were fed an AL diet with curcumin only during their transition 
span (days 27–40; see 15.1.1.3) and fed with an AL diet without curcumin before 
and after that period, for the rest of their lives, they displayed a lesser increase 
in their median and minimum longevities of 25 % (see Fig. 15.11b). Ra females 
treated in the same manner also showed a significant in their median longevity  
relative to animals treated only in the healthspan (see Fig. 15.11d).

15.3.5  Effects of Curcumin Feeding in the Senescent Span 
on Longevity

When Ra males were fed an AL diet with curcumin only during their senescent 
span (days 38–89, see 15.1.1.4) and fed an AL diet with no curcumin prior to day 
38, they displayed a 4 % decrease in median longevity and an ~11 % decrease  
in maximum longevity (see Fig. 15.11c). Ra females treated in the same manner 
also showed a significant decrease in their median longevity relative to controls 
(see Fig. 15.11d).

15.4  Effects of HDAC Inhibitors on Longevity and Gene 
Expression of Ra and La Strains

15.4.1  Background Information

We were curious as to whether other drugs would have stage-specific effects 
on the longevity of our Ra or La strains. Kang et al. (2002) showed that 
 phenylbutyrate fed to flies resulted in an extension of longevity, particularly when 
fed during the later phase of the healthspan and the transition span. This latter 
result was the first to present proof of principle that a drug could  significantly 
increase the longevity of an organism. The suggestion of that data that SB might  
be active at a stage when curcumin was not led us to test its stage-specific effects  
to determine if it did in fact have a different pattern of stage-specific effects on  
longevity. We tested the effects of SB and suberoylanilide hydroxamic acid 
(SAHA) on the longevity of our Ra and La strains, using the same stage- specific 
strategy as described above with curcumin. SB was chosen because it is a 
broad spectrum, if relatively insensitive, histone deacetylase (HDAC) inhibitor 
 representative of the Class I, II and IV zinc-binding enzymes (Witt et al. 2009). 
SAHA has similar effects on cells as does SB but at much lower doses (Zhou 
et al. 2011). The experimental design employed in these SB/SAHA studies is 



33915 Strategies for Stage-Specific Extension of Longevity 

described in McDonald et al. (2013) and is similar to that described above for the 
curcumin tests.

15.4.2  Effects of Continuous Larval + Adult Exposure  
to SB on Ra and La Animals

Ra animals raised on AL + SB food from the time of egg-laying until death 
showed significant dose-dependent longevity effects (Fig. 15.12a). Both  treatments 
showed a short delay (~6 days) in the onset of senescence relative to controls; 
they differed however in their effects on the senescent span itself. In the low dose 
group, the treatment also induced a significantly longer life span (p < 0.0001) 
which involves an alteration of the survival pattern such that there is a 9 day 
increase in the median life span. In the high dose group, the treatment induced a 
significant decreased longevity which involved a 10 day decrease in the median 
life span. Neither dose affected the maximum longevity. These data suggest that 
the low dose slowed the mortality rate during the transition and senescent stages 
while the high dose accelerated it during these same stages.

Exposure of the La strain to the drug continuously during its entire life 
time leads to a set of survival curves which are statistically different from  
the controls, but in different directions (Fig. 15.12b). The high dose group 

Fig. 15.12  Effects of whole-life feeding of SB on longevity of normal-lived and long-lived 
females. Feeding of SB during the entire life span has dose-dependent effects on longevity of  
Ra and La adults. SB fed at either dose over the entire life span has different effects on the Ra 
(Panel a) or La (Panel b) strains relative to controls. In the Ra strains, the low dose results in 
a significant extension of median, but not maximum, age relative to controls (log-rank test, 
χ2 = 26.81, 1 df, p < 0.0001) while the high dose results in a significant decrease of median but 
not maximum longevity (χ2 = 20.21, 1 df, p < 0.0001). In the La strains, the low dose has no 
effect (p = 0.9415) while the high dose significantly decreases the median but not maximum life 
span (χ2 = 13.04, 1 df, p = 0.0003). The median life spans of the several cohorts are listed in the 
legends of Panels a and b. The N for each Panel a cohort is: control 169; low dose 136; and high 
dose 132. The N for each Panel b cohort is: control 160; low dose 135; and high dose 135 (from 
McDonald et al. 2013)
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shows a significant decrease in longevity relative to controls (p = 0.0244), 
which seems to begin at the end of the healthspan. The low dose group is not 
statistically different from the control. These data suggest that the low dose 
had no effect on the La mortality rate, while the high dose accelerated its 
increase relative to controls.

15.4.2.1  Effects of Continuous Adult Exposure Only to SB on Ra and 
La Animals

The high dose of SB during the adult phase of the Ra strain significantly lowers 
the longevity relative to controls (p < 0.0001) (see Fig. 15.13a). This appears 
to occur at a decreased length of late life (e.g., post 45 day longevity). The 
low dose of SB has an obvious but borderline shortening of the later life span 
(p = 0.0589). We conclude that the Ra animals are negatively affected by this 
treatment.

The response of the La animals to continuous adult exposure to SB was  similar 
to that of the Ra animals in that the high dose induced a significant decrease 
(p = 0.0244) in its longevity but the low dose had no statistically significant 
(p = 0.2869) effect. We conclude that the La animals are negatively affected by 
this treatment (see Fig. 15.13b).

Fig. 15.13  Effect of continuous SB feeding during the entire adult life span on Ra and La 
females. Feeding of SB only during the adult stage decreases longevity of Ra (Panel a) and 
La (Panel b) adults. The low dose (10 mM) has no statistically significant effect relative 
to controls (log-rank test, p = 0.0589 (Ra) or p = 0.2869 (La). The high dose (100 mM) 
yields signficant decreases relative to controls in Ra (p < 0.0001) and La (p = 0.0244).  
The median life spans of the several cohorts are listed in the legends of Panels a and b. 
The N for each Panel a cohort is: control 159; low dose 148; and high dose 150. The N for  
each Panel b cohort is: Control 160, low dose 154, and high dose 152 (from McDonald 
et al. 2013)
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15.4.3  Effects of SB Feeding Only During the Health or 
Transition or Senescent Span

Figure 15.14 summarizes the results of exposure to the low dose of SB 
to Ra animals (Fig. 15.14a) or to La animals (Fig. 15.14b). SB decreased 
 longevity of Ra animals at both low and high (data not shown) doses when 
applied during the healthspan only (1–21 days). However treatment with the 
low dose during the transition span (21–42 days) yielded a highly  significant 
(p < 0.0001) 12.4 % increase in the median longevity, even though the drug 
was not applied until the mid-life stage of the control cohort’s life span. 
Treatment of Ra animals with SB during the senescent span (43–64 days) 
also yielded a highly significant increase in longevity. These data have been 
replicated (Supp. Figure 1 of McDonald et al. 2013). We conclude that SB is 
harmful to Ra adults if administered during the healthspan but is beneficial if 

Fig. 15.14  Effect of SB feeding only during the healthspan, or transition span, or senescent span 
on longevity of Ra or La females. Feeding SB to Ra adults only during their health, transition 
or senescent spans leads to significant stage-specific effects on longevity. The dotted lines in the 
figure indicate the approximate boundaries of these three spans. Panel a reports the Ra results. 
At a low dose, there is a non-significant decrease in median longevity relative to controls (log- 
rank test, p = 0.2781) for intervention in the healthspan. However a significant increase in 
the median and late-life longevities is observed following feeding of SB during the transition 
(χ2 = 52.98, 1 df, p < 0.0001) or senescent (χ2 = 38.52, e df, p < 0.0001) spans. Note that 
SB feeding added 12.4 % to the median life span of the control even thought the treatment did 
not start until 54 % of the control longevity was already over at the treatment start. The N for 
each Panel a cohort is: control = 152; health = 147; transition = 133; and senescent = 155. 
Panel b reports the La results. Feeding SB at low doses to La adults only during their health (log-
rank test, χ2 = 49.83, 1 df, p < 0.0001), transition (χ2 = 6.72, 1 df, p = 0.0095) or  senescnet 
(χ2 = 25.91, 1 df, p < 0.0001) spans lead to significant decreases relative to controls in their 
median but not maximum life spans. Feeding SB at high doses also leads to similar decreases in 
longevity (data not shown). The N for each Panel b cohort is: control 159, health 129; transition 
158, and senescent 152 (from McDonald et al. 2013)



342 R. Arking

administered during the transition or senescent span. Figure 15.15 illustrates 
the significant extension of the senescent span that is brought about by this 
late-life acting drug.

15.4.3.1  Effects of SAHA Feeding

SAHA has a similar effect as SB on the late life survival of the Ra females, as 
shown in Fig. 15.16. There is no statistical difference between the three different 
doses of SAHA, the 1 μM dose being equivalent to the 20 μM dose.

15.4.4  Effects of Late-Life SB or SAHA Feeding on 
Mortality Kinetics of the Ra and La Animals

SB feeding, at either dose, significantly reduces the age-specific mortality rate 
of the late-life (i.e., >42 days) Ra females relative to that of the untreated control 
(Fig. 15.17). The analysis was done using the Winmodest program (Pletcher et al. 
2000); a Gompertz-logistic curve is the best fit to the observed mortality data derived 
from Fig. 15.15. Note that there seems to be a difference in the manner by which 
each does brings about a similar phenotype. In the case of the La animals, each of 
the two doses significantly increase the age-specific mortality during the senescent 
span, which phenomenon underlies the shortened longevity of the La animals in 
every experimental situation involving the long-lived animals (data not shown).

Fig. 15.15  Expanded view of SB-induced extended survival in late life. The Ra survival from 
Fig. 15.14a were rescaled so as to examine the details of extended survival during the senescent 
span (days 43 and following). It is clear that low dose SB treatment during the transition span  
has a greater positive effect on survival and longevity in the senescent span than does 
 intervention during the senescent span itself (log-rank test, χ2 = 10.31, 1df, p = 0.0013). Other 
N and p values are as noted in Fig. 15.14 (from McDonald et al. 2013)
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A similar analysis was made of the effects of SAHA on the mortality kinet-
ics of late-life Ra females. A Gompertz-logistic curve also fits the survival data 
of Fig. 15.16. Note that there is very little difference in the mortality curves of the 
three doses tested.

Fig. 15.16  Effect of SAHA on late-life survival of Ra females. Late life treatment with SAHA 
increases late life survival. Sister cohorts of Ra females were treated with the vehicle (dimethyl 
sulfoxide; DMSO) only (N = 225), or 1 μM SAHA in DMSO (N = 301), or 10 μM SAHA in 
DMSO (N = 125), or 20 μM SAHA in DMSO (N = 288). The three experimental cohorts are 
highly significantly different from the controls (log-rank test, χ2 = 19.50, 1 df, p = 0.0002), but 
do not statistically differ between themselves (log-rank test, χ2 = 1.233, 1 df, p = 0.5400). The 
vertical arrow approximates the age (42 days) at which the experimental cohorts were introduced 
to SAHA (from McDonald et al. 2013)

Fig. 15.17  Analysis of SB effects  on mortality kinetics during the senescent span.  Mortality 
rates were calculated from the survival data of Fig. 15.15 as ux = ln(px), where px is the 
 probability of survival from age x to age x + 1, and are presented on the logarithmic scale. The 
Winmodest program was used to determine that a logistic-Gompertz model was the best fit to 
the observed data (solid symbols in graph). Both low and high doses or SB started in the mid-life 
period yields significant decreases in the mortality rates of Ra females (solid lines) during the 
senescent span relative to controls (dotted line) (from McDonald et al. 2013)
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15.5  Conclusions

15.5.1  Existence of Stage-specific Domains

The detailed data presented above supports the concept of stage-specific domains. 
It is likely, but not yet proven, that these domains are defined by stage-specific 
gene expression patterns, and by stage-specific gene targets unique to particular 
drugs. Once the stage-specific gene expression patterns have been assayed and 
 catalogued, then the identification of potential stage-specific gene product  targets 
for curcumin and SB might be made easier. Awareness of presumably critical 
stage- and pathway-specific gene products available in each phase of the life span 
might also lead to the reverse engineering of potential ‘designer drugs’ targeted for 
the alleviation of particular conditions.

15.5.2  Curcumin has Stage-specific Longevity Effects

The results of whole life feeding of curcumin to mice led to the conclusion 
that curcumin has no effect on longevity (Strong et al. 2013). This conclusion 
 contradicted prior preliminary studies on mice which showed that early to mid-life 
feeding of tetrahydrocurcumin led to an increased longevity (Kitani et al. 2007). In 
our hands, whole life feeding of high doses of curcumin to flies led to  significant 
decreases in median longevity (Fig. 15.10), while feeding curcumin to flies at 
low doses led to no or minimal increases in their healthspan or median longevity 
(Fig. 15.5; Lee et al. 2010). The possibility exists that the failure of curcumin to 
induce a longevity effect in mice might be due to problems with the dosage and/or 
with feeding it over the whole life span. It seems as if some investigators may have 
used curcumin dosages derived from cell-based studies and so may have failed to 
create an effective bioavailability of the drug in an intact animal. Our use of high 
doses (100 mM) yields repeatable and verifiable effects.

There is a possibility that current drug screening protocols are based on a faulty 
paradigm of drug-gene interactions; namely that whole life feeding of candidate 
drugs will not yield any false negative data if the drug in question actually has a 
stage-specific effect. Given the expense of drug screens on mammals, and given 
the real possibility that whole life feeding may yield false negative data due to its 
different stage-specific effects on the organism, then it might be useful to perform 
the initial whole-life and stage-specific testing of candidate pro-longevity drugs on 
worms or flies prior to any testing on mice or other mammals. The lower cost fly 
experiments would allow the characterization of any stage-specific effects of the 
candidate drug on conserved pathways, and would inform the experimental design 
of subsequent mouse studies.
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15.5.3  Testable Implications of the Stage-specific Hypothesis

One testable prediction of the current data is that drugs with beneficial late life 
effects are likely to be enriched for molecules capable of inhibiting or  countering 
age-related diseases, while drugs with early life beneficial effects are likely to be 
ineffective against late life age-related diseases. The use of stage-specific testing 
protocols might enrich the candidate drug pool of molecules capable of  inhibiting 
the expression of late-life age-related diseases. Future research on life  extension 
should focus on identifying and characterizing those active gene repression/ 
protection mechanisms that prevent the expression of age-related disease genes. 
The ‘escaper’ subset of centenarians is known to delay the onset of any major 
age-related disease and increase the length of their healthspan by as much as 
40 years due to their ability to inhibit disease gene expression in mid- and late-
life (Andersen et al. 2012; Sebastiani et al. 2012, 2013; Sebastiani 2013). Given 
the effectiveness of stage-specific drug effects in extending the healthspan (e.g., 
curcumin) or in inducing a healthier senescent span (e.g., SB or SAHA) then 
identifying and characterizing more small molecules with stage-specific effects 
would be an effective way of enabling those of us who are not centenarians to also 
extend our healthspans or reduce the frailty of our senescent spans. Extending the 
healthspan and/or decreasing the morbidity of the senescent span may do much 
to increase the quality and productivity of human life. The data generated by a 
continued investigation of stage-specific mechanisms may help guide us to that 
desired future.
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