
Nature-Inspired Algorithms: Success
and Challenges

Xin-She Yang

Abstract The simplicity and flexibility of nature-inspired algorithms have made
them very popular in optimization and computational intelligence. Here, we will
discuss the key features of nature-inspired metaheuristic algorithms by analyzing
their diversity and adaptation, exploration and exploitation, attractions and diffu-
sion mechanisms. We also highlight the success and challenges concerning swarm
intelligence, parameter tuning and parameter control as well as some open problems.

Keywords Algorithm · Adaptation · Bat algorithm · Cuckoo search · Diversity ·
Firefly algorithm · Metaheuristic · Optimization

1 Introduction

Many applications concern hard optimization problems, which may require sophis-
ticated optimization techniques to deal with. However, traditional algorithms usually
cannot cope with such highly nonlinear and multimodal problems. Alternative ap-
proaches have to be found. In recent years, nature-inspired metaheuristic algorithms
have gained huge popularity, and these algorithms include ant colony optimization,
particle swarm optimization, cuckoo search, firefly algorithm, bat algorithm, bee
algorithms and others [4, 14, 17, 28]. There are many reasons for such popularity.
From the algorithm analysis point of view, these algorithms tend to be flexible, effi-
cient and highly adaptable, and yet easy to implement. The high efficiency of these
algorithms makes it possible to apply them to a wide range of problems in diverse
applications.

The main purpose of this chapter is to highlight some key issues in adaptation
and diversity in swarm intelligence. Therefore, the chapter is organized as follows.
Section2 outlines some widely used nature-inspired algorithms, followed by a brief
discussion of the main mechanisms of generating new solutions in Sect. 3. Section4

X.-S. Yang (B)

School of Science and Technology, Middlesex University, London NW4 4BT, UK
e-mail: x.yang@mdx.ac.uk

© Springer International Publishing Switzerland 2015
N.D. Lagaros and M. Papadrakakis (eds.), Engineering and Applied
Sciences Optimization, Computational Methods in Applied Sciences 38,
DOI 10.1007/978-3-319-18320-6_8

129

130 X.-S. Yang

analyzes adaptation and diversity in swarm intelligence in detail. Section5 discusses
the parameter tuning and control, and finally some conclusions will be drawn briefly,
with some discussions for open problems in Sect. 6.

2 Some Recent Algorithms Based on Swarm Intelligence

Before we proceed to carry out any analysis, let us briefly introduce some popular
nature-inspired, swarm-intelligence-based algorithms for global optimization.

From a mathematical point of view, an algorithm A is an iterative process, which
aims to generate a new and better solution xt+1 to a given problem from the current
solution xt at iteration or (pseudo)time t . In general, an algoirthm can be written as

xt+1 = A(xt , p), (1)

where p is an algorithm-dependent parameter. A good example is the so-called quasi-
Newton method with a step size parameter.

The above formula is for a trajectory-based, single agent system. For population-
based algorithms with a swarm of n solutions (x1, x2, . . . , xn), we can extend the
above iterative formula to a more general form

⎛
⎜⎜⎜⎝

x1
x2
...

xn

⎞
⎟⎟⎟⎠

t+1

= A
(
(xt

1, xt
2, . . . , xt

n); (p1, p2, . . . , pk); (ε1, ε2, . . . , εm)
)
⎛
⎜⎜⎜⎝

x1
x2
...

xn

⎞
⎟⎟⎟⎠

t

,

(2)
where p1, . . . , pk are k algorithm-dependent parameters and ε1, . . . , εm are m ran-
dom variables. An algorithm can be viewed as a dynamical system, Markov chains
and iterative maps [28], and it can also be viewed as a self-organized system [1].

Most nature-inspired algorithms nowadays are swarm intelligence based. Their
updating equations vary significantly.However,most algorithms have linear updating
equations. For example, particle swarm optimization has two linear equations in
terms of x. On the other hand, some algorithms such as the firefly algorithm use
nonlinear updating equations, which can lead to rich characteristics and potentially
higher efficiency.

Linear systems are easier to analyze, while nonlinear systems can be more chal-
lenging to analyze. At the moment, it still lacks in-depth understanding how different
systems work. In the rest of this section, we will introduce some nature-inspired al-
gorithms.

Nature-Inspired Algorithms: Success and Challenges 131

2.1 PSO

Particle swarm optimization (PSO) is one of the first algorithms that are based on
swarm intelligence. PSOwas developed byKennedy andEberhart in 1995 [14], based
on the swarm behaviour of fish or bird schooling in nature. Each particle updates
its position xi and velocity vi , and their evolution is controlled by two learning
parameter α and β with typical values of α ≈ β ≈ 2 and two random vectors ε1
and ε2 that are uniformly distributed in [0,1]. Briefly speaking, the main equations
of PSO are as follows:

vt+1
i = vt

i + αε1[g∗ − xt
i] + βε2[x∗

i − xt
i], (3)

xt+1
i = xt

i + vt+1
i . (4)

There are more than two dozen variants of PSO. For example, Yang et al. developed
the accelerated PSO [20], while Fister Jr. et al. used some reasoning techniques to
improve the efficiency of PSO [11].

2.2 Firefly Algorithm

The firefly algorithm (FA) is simple, flexible and easy to implement. FA was devel-
oped by Yang in 2008 [17], which was based on the flashing patterns and behaviour
of tropical fireflies.

One of the main advantages of the FA is that FA can naturally deal with nonlinear
multimodal optimization problems. Themovement of a firefly i is attracted to another
more attractive (brighter) firefly j is determined by

xt+1
i = xt

i + β0e−γ r2i j (xt
j − xt

i) + α εt
i , (5)

where the second term is due to the attraction, and β0 is the attractiveness at r = 0.
The third term is randomization with α being the randomization parameter, and εt

i
is a vector of random numbers drawn from a Gaussian distribution at time t . Other
studies also use the randomization in terms of εt

i that can easily be extended to other
distributions such as Lévy flights.

A comprehensive review of the firefly algorithm and its variants has been carried
out by Fister et al. [6–8]. One novel feature of FA is that attraction is used, and this
is the first of its kind in any SI-based algorithms. Since local attraction is stronger
than long-distance attraction, the population in FA can automatically subdivide into
multiple subgroups, and each group can potentially swarm around a local mode.
Among all the local modes, there is always a global best solution which is the true
optimality of the problem. Thus, FA can deal with multimodal problems naturally
and efficiently.

132 X.-S. Yang

2.3 Cuckoo Search

The cuckoo search (CS)was developed in 2009 byYang andDeb [23]. CS is based on
the brood parasitism of some cuckoo species. In addition, this algorithm is enhanced
by the so-called Lévy flights [15], rather than by simple isotropic random walks.

Recent studies show that CS is potentially far more efficient than PSO and genetic
algorithms [24, 25]. Mathematically speaking, CS uses a balanced combination of a
local randomwalk and the global explorative randomwalk, controlled by a switching
parameter pa . The local random walk can be written as

xt+1
i = xt

i + αs ⊗ H(pa − ε) ⊗ (xt
j − xt

k), (6)

where xt
j and xt

k are two different solutions selected randomly by random permu-
tation, H(u) is a Heaviside function, ε is a random number drawn from a uniform
distribution, and s is the step size. On the other hand, the global random walk is
carried out by using Lévy flights:

xt+1
i = xt

i + αL(s, λ), (7)

where

L(s, λ) = λΓ (λ) sin(πλ/2)

π

1

s1+λ
, (s > 0). (8)

Here α > 0 is the step size scaling factor, which should be related to the scales of
the problem of interest.

If we look at the CS equations from a mathematical point of view, we can analyze
their key features and characteristics, and thus highlight their advantages. CS has two
distinct advantages over other algorithms such as GA and SA, and these advantages
are: efficient random walks and balanced mixing. Since Lévy flights are usually far
more efficient than any other random-walk-based randomization techniques, CS can
be efficient in global search. In fact, recent studies show that CS can have guaranteed
global convergence [28].

On the other hand, the similarity between eggs can produce better new solutions,
which is essentially fitness-proportional generation with a good mixing ability. In
other words, CS has a varying mutation rate realized by Lévy flights, and the fitness-
proportional generation of new solutions based on the solution similarity provides
a subtle form of crossover. In addition, simulations also show that CS can have an
autozooming ability in the sense that new solutions can automatically zoom into the
region where the promising global optimality is located.

Using the framework of Markov chains and probability, we can see that equation
(7) is essentially simulated annealing in the framework of Markov chains. In Eq. (6),
if pa = 1 and αs ∈ [0, 1], CS can degenerate into a variant of differential evolution.
Furthermore, if we replace xt

j by the current best solution g∗, then (6) can further
degenerate into accelerated particle swarm optimization (APSO) [20]. This means
that SA, DE and APSO are special cases of CS, and that is one of the reasons why

Nature-Inspired Algorithms: Success and Challenges 133

CS is so efficient. A brief literature review has been carried out by Yang and Deb
[26] and Fister Jr. et al. [9].

2.4 Bat Algorithm

The bat algorithm (BA) is the first algorithm of its kind to use frequency tuning for
the optimization purpose. BA was developed by Yang in 2010 [18], inspired by the
echolocation behavior of microbats. Each bat is associated with a velocity vt

i and a
location xt

i , at iteration t , in a d-dimensional search or solution space. Among all the
bats, there exists a current best solution x∗. Therefore, the updating equations for xt

i
and velocities vt

i can be written as

fi = fmin + (fmax − fmin)β, (9)

vt
i = vt−1

i + (xt−1
i − x∗) fi , (10)

xt
i = xt−1

i + vt
i , (11)

where β ∈ [0, 1] is a random vector drawn from a uniform distribution.
The motion of bats are updated by the above equations, but when to update and

which branch is updated first are controlled by the loudness and pulse emission rate
of each bat. In the most simplest case, the loudness and pulse emission rates are
regulated by the following equations:

At+1
i = αAt

i , (12)

and
r t+1

i = r0i [1 − exp(−γ t)], (13)

where 0 < α < 1 and γ > 0 are constants. Loosely speaking, here α is similar to
the cooling factor of a cooling schedule in simulated annealing.

There have been a lot of interest in the study of BA in recent years, and BA has
been extended tomultiobjective optimization [19] and various variants. For example,
Fister et al. have extended to a hybrid bat algorithm [10, 12]. The preliminary results
suggested that they are very efficient [21].

Obviously, there are other nature-inspired algorithms such as the flower pollina-
tion algorithm [22]. However, as the main purpose of this chapter is to analyze adap-
tation and diversity in metaheuristic algorithms, we will now focus on the analysis
and discussion of the forms of adaptation and diversity and their roles/representations
in the actual algorithms.

134 X.-S. Yang

3 Mechanisms for Generating New Solutions

There are many ways for generating new solutions. However, from the locality point
of view, they can be divided into the following subcategories:

• Modification of selected solutions (from the existing population).
• Local modifications.
• Global modifications.
• Mixed (both local and global as well as selected).

One of the most widely used methods for generating new solutions is to select
a subset of existing solutions from the evolving population. For example, if two
solutions are randomly selected from the existing population, they can be combined
to form two new solutions by crossover or recombination. This is one of fundamental
mechanisms in genetic algorithms andmany evolutionary algorithms. In the simplest
case when one solution is selected, some modification on a part (or a few parts) of
the solution can be carried out. This is the main mechanism for mutation in genetic
algorithms. In fact, these two ways of generating new solutions have paved the ways
for most modern evolutionary algorithms.

The aboveoperations canbe converted tomathematical equations.Mathematically
speaking, crossover can be written as

⎛
⎝

xt+1
i

xt+1
j

⎞
⎠ = C(xt

i , xt
j , pc), (14)

where pc is the crossover probability, though the exact form of C() depends on the
actual crossover manipulations. Mutation can be written schematically as

xt+1
i = M(xt

i , pm), (15)

where pm is the mutation rate. However, the form M() depends on the coding and
the number of mutation sites.

On the other hand, the fitness-dependent reproduction of the offsprings may de-
pend on the relative fitness of the parents in the population. In this case, the function
form can be even more complex. For example, C() can depend on all the individuals
in the population, whichmay lead toC(xt

1, xt
2, . . . , xt

n, pc)where n is the population
size.

From the mathematical point of view, local modifications are local randomwalks,
which can take many different forms and are usually around an existing solution.
For example, from an existing solution xt

i , new solutions can be generated locally
by using

xt+1
i = xt

i + s(xi , α), (16)

Nature-Inspired Algorithms: Success and Challenges 135

where s(xt
i , α) is a step size function that can depend on the current solution and

a parameter α. If s is small enough, the distance d = ||xt+
i − xi || is small, which

means the new solutions are limited to a neighborhood of the existing solution xt
i . As

random walks are widely used for randomization and local search in metaheuristic
algorithms [17, 18], a proper step size is very important. As different algorithms use
different forms of randomization techniques, it is not possible to provide a general
analysis for assessing randomness. In addition, the above form of equation can in
general be written in a more compact form as

xt+1
i = N (xt

i , w, α), (17)

where N () depends on the random variable w with a parameter α.
Here, randomness increases the diversity of the solutions and thus enables an

algorithm to have the ability to jump out of any local optimum. However, too much
randomness may slow down the convergence of the algorithm and thus can waste a
lot of computational efforts. Therefore, there is some tradeoff between deterministic
and stochastic components, though it is difficult to gauge what is the right amount
of randomness in an algorithm? In essence, this question is related to the optimal
balance of exploration and exploitation, which still remains an open problem.

Global modifications can also take many forms. For example, the simplest form
of global modification or global randomization is

xi = L + (U − L)ε, (18)

where ε is a random number drawn in [0, 1]. This equation gives new solutions
between the lower bound L and the upper bound U . On the other hand, random
walks can be both local and global simultaneously. For example, the method in the
cuckoo search uses Lévy flights in terms of

xt+1
i (new solution) = xt

i (old solution) + αL(s, λ), (19)

which can generate both local and global solutions, controlled by α and the intrinsic
nature of Lévy flights that provides occasional long-jumps. However, this is just a
simple case where the new solution only depends on one existing solution and the
randomization term. In general, the solutions can be generated in parallel by random
permutation, and thus we may have a more generic form

⎛
⎜⎜⎜⎜⎜⎝

xt+1
1

xt+1
2
...

xt+1
n

⎞
⎟⎟⎟⎟⎟⎠

= G(xt
1, xt

2, . . . , xt
n, w, β), (20)

136 X.-S. Yang

where G() can be very complex, which also depends on the random variable and
parameter β. For example, the mutation operator in differential evolution takes the
form

xt+1
k = xk + F(xi − x j), (21)

where i , j and k are random permutations among 1, 2, . . . , n, and F is a parameter
or constant.

It is worth pointing out that the difference between global or local modifications
are subtle. When the step sizes are large enough, local modifications can be become
global. Furthermore, these mechanisms for generating new solutions do not always
belong to a single mechanism, and they can be a mixture of two or more components.
For example, Lévy flights in the cuckoo search can be considered as amixture of both
local and global modifications, while the bat algorithm uses a combination of simple
global randomization in one branch and the local modification in another branch,
with the additional control for switching between these two branches depending on
the loudness and pulse emission rate.

In fact, all good algorithms uses a combination of the above components, not just
a simple component. However, how to combine different modification methods is a
challenging problem and what is the most efficient combination is yet to be discov-
ered (if it ever exists). Furthermore, such effective combinations may be problem
dependent and should be adaptive as well.

4 Adaptation and Diversity in Swarm Intelligence

Adaptation and diversity in metaheuristic algorithms can take many forms, including
the balance of exploration and exploitation, generations or moves of new solutions,
the right amount of randomness, parameter adjustment and parameter control, and
other subtle forms. We will discuss the role of adaptation and diversity in such cases.

4.1 Diversity and Adaptation

The effectiveness of swarm intelligence based algorithms can be attributed to two
important characteristics: adaptation and diversity of nature-inspired optimization
algorithms.

Adaptation in nature-inspired algorithms can take many forms. For example, the
ways to balance exploration and exploitation are the key form of adaptation [2]. As
diversity can be intrinsically linked with adaptation, it is better not to discuss these
two features separately. If exploitation is strong, the search process will use problem-
specific information (or landscape-specific information) obtained during the iterative
process to guide the new search moves; this may lead to the focused search and thus
reduce the diversity of the population, which may help to speed up the convergence

Nature-Inspired Algorithms: Success and Challenges 137

of the search procedure.However, if exploitation is too strong, it can result in the quick
loss of diversity in the population and thus may lead to the premature convergence.
However, if new search moves are not guided by local landscape information, it can
typically increase the exploration capability and generate new solutions with higher
diversity. However, too much diversity and exploration may result in meandered
search paths, thus lead to the slow convergence. Therefore, adaptation of search
moves so as to balance exploration and exploitation is crucial. Consequently, to
maintain the balanced diversity in a population is also important.

On the other hand, adaptation can also be in terms of the representations of solu-
tions of a problem. In genetic algorithms, representations of solutions are usually in
binary or real-valued strings [2, 13], while in swarm-intelligence-based algorithms,
representations mostly use real number solution vectors. For example, the population
size used in an algorithm can be fixed or varying. Adaptation in this case may mean
to vary the population size so as to maximize the overall performance. For a given
algorithm, adaptation can also occur to adjust its algorithm-dependent parameters.
As the performance of an algorithm can largely depend on its parameters, the choice
of these parameter values can be very important.

Parameter values can be varied so as to adapt the landscape type of the problem
and thus may lead to better search efficiency. Such parameter tuning is in essence
parameter adaptation. Once a parameter is tuned, it can remain fixed. However,
there is no particular reason why parameters should be fixed. In fact, adaptation in
parameter can be extended to parameter control. That is to control the parameter
values in such a way that their values vary during the iterations so that optimal
performance of the algorithm can be achieved.

Similarly, diversity in metaheuristic algorithms can also take many forms. The
simplest diversity is to allow the variations of solutions in the population by random-
ization. For example, solution diversity in genetic algorithms is mainly controlled by
the mutation rate and crossover mechanisms, while in simulated annealing, diversity
is achieved by random walks. In most swarm-intelligence-based algorithms, new so-
lutions are generated according to a set of deterministic equations, which also include
some random variables. Diversity is represented by the variations, often in terms of
the population variance. Once the population variance is getting smaller (approach-
ing zero), diversity also decreases, leading to converged solution sets. However, if
diversity is reduced too quickly, premature convergencemay occur. Therefore, a right
amount of randomness and the right form of randomization can be crucial.

From a different perspective, we can also say that adaptation and diversity can
also be related to the selection of solutions among the population and the replacement
of the old population. If the selection is based on the fitness, parent solutions with
a higher level of fitness will be more likely to pass onto the next generation. In the
extreme case, only the best solutions can be selected, which is a kind of elitism. If the
replacement of worst solutions by new (hopefully better) solutions, this will ensure
that better solutions will remain in the population. The balance of what to replace
and what to pass on can be tricky, which requires good adaptation so as to maintain
good diversity in the population.

138 X.-S. Yang

4.2 Exploration and Exploitation

Adaptation and diversity are just one side of the coin. In the context of nature-
inspired metaheuristics, the characteristics of an algorithm can also be analyzed in
terms of basic components: exploitation and exploration, which are also referred to
as intensification and diversification [3, 17].

Roughly speaking, exploitationuses any informationobtained from theproblemof
interest so as to help to generate new solutions that are better than existing solutions.
However, this process is typically local, and information (such as gradients) is also
local. Therefore, it is for local search. For example, hill-climbing is a method that
uses derivative information to guide the search procedure. In fact, new steps always
try to climb up the local gradient. The advantage of exploitation is that it usually
leads to very high convergence rates, but its disadvantage is that it can get stuck
in a local optimum because the final solution point largely depends on the starting
point. On the other hand, exploration makes it possible to explore the search space
more efficiently, and it can generate solutions with enough diversity and far from the
current solutions. Therefore, the search is typically on a global scale. The advantage
of exploration is that it is less likely to get stuck in a local mode, and the global
optimality can be more accessible. However, its disadvantages are slow convergence
and waste of lot computational efforts because many new solutions can be far from
global optimality.

Therefore, a fine balance is required so that an algorithm can achieve the best
performance. Too much exploitation and too little exploration means the system
may converge more quickly, but the probability of finding the true global optimality
may be low. On the other hand, too little exploitation and too much exploration can
cause the search path meander with very slow convergence. The optimal balance
should mean the right amount of exploration and exploitation, which may lead to
the optimal performance of an algorithm. Therefore, a proper balance is crucially
important.

In essence, the optimal balance is itself a higher-level optimization problem.
However, how to achieve such a balance is still an open problem. In fact, no algorithm
can claim to have achieve such an optimal balance in the current literature. In essence,
the balance itself is a hyper-optimization problem, because it is the optimization of
an optimization algorithm. In addition, such a balance may depend on many factors
such as the working mechanism of an algorithm, its setting of parameters, tuning and
control of these parameters and even the problem to be considered. Furthermore, such
a balance may not universally exist [16], and it may vary from problem to problem,
thus requiring an adaptive strategy.

4.3 Attraction and Diffusion

The novel idea of attraction via light intensity as an exploitation mechanism was first
used by Yang in the firefly algorithm (FA) in 2007 and 2008. In FA, the attractiveness

Nature-Inspired Algorithms: Success and Challenges 139

(and light intensity) is intrinsically linked with the inverse-square law of light inten-
sity variations and the absorption coefficient. As a result, there is a novel but nonlinear
term of β0 exp[−γ r2]where β0 is the attractiveness at the distance r = 0, and γ > 0
is the absorption coefficient for light [17]. The main function of such attraction is to
enable an algorithm to converge quickly because these multi-agent systems evolve,
interact and attract, leading to some self-organized behaviour and attractors. As the
swarming agents evolve, it is possible that their attractor states will move towards to
the true global optimality.

The novel attraction mechanism in FA is the first of its kind in the literature
of nature-inspired computation and computational intelligence. This also motivated
and inspired others to design similar or other kinds of attraction mechanisms. Other
algorithms that were developed later also used inverse-square laws, derived from
nature. For example, the charged system search (CSS) used Coulomb’s law, while
the gravitational search algorithm (GSA) used Newton’s law of gravitation.

Whatever the attraction mechanism may be, from the metaheuristic point of view,
the fundamental principles are the same: that is, they allow the swarming agents to
interact with one another and provide a forcing term to guide the convergence of the
population. Attraction mainly provides the mechanisms for exploitation, but, with
proper randomization, it is also possible to carry out some degree of exploration.
However, the exploration is better analyzed in the framework of random walks and
diffusive randomization. From the Markov chain point of view, random walks and
diffusion are both Markov chains. In fact, Brownian diffusion such as the dispersion
of an ink drop in water is a random walk. Lévy flights can be more effective than
standard random walks. Therefore, different randomization techniques may lead to
different efficiency in terms of diffusive moves. In fact, it is not clear what amount
of randomness is needed for a given algorithm.

All these unresolved issues and problems discussed so far may motivate more
research in this area and thus the relevant literature can be expected to expand in the
near future.

5 Parameter Tuning and Parameter Control

Adaptation and diversity can also take the form of parameter tuning and parameter
control. In fact, one of the most challenging issues when designing metaheuristic
algorithms is probably to control exploration and exploitation properly in terms of
controlling algorithm-dependent parameters, which is still an open question. It is
possible to control attraction and diffusion in algorithms that use such features so
that the performance of an algorithm can be influenced in the right way.

Ideally we should have some mathematical relationships that can explicitly show
how parameters can affect the performance of an algorithm, but this is an un-resolved
problem. In fact, unless for very simple cases under very strict, (often) unrealistic
assumptions, no theoretical results exist at all. Obviously, one of the key questions

140 X.-S. Yang

is how to tune parameters to gain the best parameter values so that an algorithm can
perform in the most effective way.

5.1 Parameter Tuning

As an algorithm is a set of interacting Markov chains, we can in general write an
algorithm as

⎛
⎜⎜⎜⎝

x1
x2
...

xn

⎞
⎟⎟⎟⎠

t+1

= A[x1, . . . , xn, p1(t), . . . , pk(t), ε1, . . . , εm]
⎛
⎜⎝

x1
...

xn

⎞
⎟⎠

t

, (22)

which generates a set of new solutions (x1, . . . , xn)
t+1 from the current population

of n solutions. In principle, the behaviour of an algorithm is largely determined by
the eigenvalues of the matrix A that are in turn controlled by the parameters pk(t)
and the randomness vector ε = (ε1, . . . , εm).

From the Markovian theory, we know that the first largest eigenvalue is typically
1, and therefore the convergence rate of an algorithm is mainly controlled by the
second largest eigenvalue 0 ≤ λ2 < 1 of A. However, it is extremely difficult to
find this eigenvalue in general. Therefore, the tuning of parameters becomes a very
challenging task. In fact, parameter tuning, or tuning of parameters, is an important
topic under active research [5, 27]. The aim of parameter tuning is to find the best
parameter setting so that an algorithm can perform most efficiently for a wider range
of problems. At the moment, parameter tuning is mainly carried out by detailed,
extensive parametric studies, and there is no efficient method in general.

In essence, parameter tuning itself is an optimization problem which requires
higher-level optimization methods to tackle. However, a recent study shows that
a framework for self-tuning algorithms can be established with promising results
[27]. For example, Yang et al. used the firefly algorithm to tune itself so that the
firefly algorithm can achieve optimal performance for a given set of problems. This
framework can be expected to be applicable to other algorithms and a range of
applications.

5.2 Parameter Control

Related to parameter tuning, there is another issue of parameter control. Parameter
values after parameter tuning are often fixed during iterations, while parameters
should vary for parameter control.

Nature-Inspired Algorithms: Success and Challenges 141

The main idea of parameter control is to vary the parameters so that the algorithm
of interest can provide the best convergence rate and thus may achieve the best
performance. Again, parameter control is another tough optimization problem to
be yet resolved. In the bat algorithm, some basic form of parameter control has
been attempted and found to be very efficient [18]. By controlling the loudness and
pulse emission rate, BA can automatically switch from explorative moves to local
exploitation that focuses on the promising regions when the global optimality may
be nearby. Similarly, the cooling schedule in simulated annealing can be considered
as a form of basic parameter control.

Both parameter tuning and parameter control are crucial to the performance of all
algorithms, and thus deserve more research attention.

6 Discussions and Open Problems

Aswe have seen from the above detailed analysis, proper adaptation and diversity are
crucial to ensure the good performance of an algorithm.Adaptation can be carried out
in different components (of an algorithm), such as the generation of the population,
selection of solutions, elitism, replacement of solutions, adjustment of parameters
and overall balance of exploration and exploitation. Diversity can also appear in
many places such as the ways to generate new solutions, selection and replacement
of existing solutions, explorative moves, randomization, and most importantly to
maintain a good balance in exploration and exploitation.

Despite the success of nature-inspired algorithms, there are still some challenging,
open problems that need to be addressed. These open problems include the balance of
exploration and exploitation, selection mechanisms, right amount of randomization,
and parameter tuning as well as parameter control.

As mentioned in the main text, one of the most challenging problems is how to
balance exploration and exploitation in an algorithm so that it can deal with a vast
range of problems efficiently. In reality, the amount of exploration and exploitation
may depend on the type of problem, and therefore, some a priori knowledge of the
problem to be solved can help to determine such a balance. However, it is not known
how to incorporate such knowledge effectively. For example, gradient/derivative
information obtained from the objective function can be very useful for exploitation,
but if such exploitation is too strong, it can cause the system to be trapped in a
local optimum, thus sacrificing the possibility of finding the true global optimality.
In order to balance exploration and exploitation, a right amount of randomness is
needed. However, no one knows what amount is the right amount. At one extreme,
if there is no randomness, an algorithm becomes a deterministic algorithm, and thus
loses the ability to explore. At the other extreme, if the search is dominated by a high
level of randomness, the algorithm becomes a random search, and thus significantly
reduces its ability to exploit the landscape information. In fact, it is not known how
to control randomness properly so as to balance exploration and exploitation most
effectively.

142 X.-S. Yang

Another important issue is the selection mechanism and it is not known what se-
lection is most effective. A proper selection pressure is crucial to maintain a healthy
population. For example, when many solutions have similar fitness, numerically
speaking, their fitness values may almost be the same, thus how to select certain so-
lutions becomes tricky. Typical approaches include re-scaled fitness values, ranking
of solutions, and adaptive elitism [2]. However, it is not clear if they can work for all
algorithms and if there is other better ways to handle selection.

On the other hand, as the performance of almost any algorithm will depend on its
parameter settings, how to tune these parameters to achieve the best performance is a
higher level optimization problem. In fact, this is the optimization of an optimization
algorithm. It is still an open question. Similarly, how to control the parameters by
varying their values to achieve the best overall performance is also a key challenging
issue.

From the landscape point of view, the problems that have been solved in the
current literature usually have fixed landscape. That is, once the problem is defined,
its landscape in the search space remain unchanged. However, for dynamic problems
and problems with noise, the search landscape can change with time. In such cases,
adaptation can be more sophisticated and challenging. It is not clear if most current
methods can still work well in such time-dependent, noisy environments.

It is worth pointing out that whatever the algorithmsmay be, the role of adaptation
and diversity may be subtle in affecting the performance of an algorithm. Therefore,
in-depth understanding and theoretical results are needed. Possible research routes
may require a combination of mathematical analysis, numerical simulations, empir-
ical observations as well as other tools such as dynamical system theories, Markov
theory, self-organization theory and probability. It may even require a paradigm shift
in analyzing metaheuristic algorithms.

Obviously, there are other issues and open problems as well. The above discussion
has just focused a few key issues. All these challenges can present golden oppor-
tunities for further research in analyzing adaptation and diversity in metaheuristic
algorithms. It can be expected more theoretical results will appear in the future, and
any theoretical results will provide tremendous insight into understanding metaheur-
sitic algorithms. It is hoped that efficient tools can be developed to solve a wide range
of large-scale problems in real-world applications. Future research directions should
focus on such key issues and challenges.

References

1. AshbyWR (1962) Princinples of the self-organizing sysem, in: Pricinples of self-organization:
transactions of the University of illinois symposium Von Foerster H, Zopf Jr. GW (eds) Perg-
amon Press, London, pp 255–278

2. Booker L, Forrest S, Mitchell M, Riolo R (2005) Perspectives on adaptation in natural and
artificial systems. Oxford University Press, Oxford

3. BlumC,Roli A (2003)Metaheuristics in combinatorial optimisation: overview and conceptural
comparision. ACM Comput Surv 35:268–308

Nature-Inspired Algorithms: Success and Challenges 143

4. Dorigo M, Di Caro G, Gambardella LM (1999) Ant algorithms for discrite optimization. Artif
Life 5(2):137–172

5. Eiben AE, Smit SK (2011) Parameter tuning for configuring and analyzing evolutionary algo-
rithms. Swarm Evolutionary Comput 1(1):19–31

6. Fister I, Fister I Jr, Yang XS, Brest J (2013) A comprehensive review of firefly algorithms.
Swarm Evol Comput 13(1):34–46

7. Fister I, Yang X-S, Brest J, Fister I Jr (2013) Modified firefly algorithm using quaternion
representation. Expert Syst Appl 40(18):7220–7230

8. Fister I, Yang XS, Fister D, Fister Jr. I (2014) Firefly algorithm: a brief review of the expanding
literature. In: Cuckoo Search Firefly Algorithm: Theor Appl Stud Comput Intell 516:347–360
(Springer, Heidelberg)

9. Fister Jr I, YangXS, FisterD, Fister I (2014)Cuckoo search: a brief literature review. In: Cuckoo
Search Firefly Algorithm: Theor Appl Stud Comput Intell 516:49–62 (Springer, Heidelberg)

10. Fister I Jr, Fister D, Yang XS (2013) A hybrid bat algorithm. Elektrotehniski Vestn 80(1–2):1–7
11. Fister Jr I, Yang XS, Ljubič K, Fister D, Brest J, Fister I (2014) Towards the novel reasoning

among particles in PSO by the use of RDF and SPARQL. Sci World J 2014, article ID 121782.
doi:10.1155/2014/121782

12. Fister Jr I, Fong S, Brest J, Fister I (2014) A novel hybrid self-adaptive bat algorithm, SciWorld
J, 2014, article ID 709738. doi:10.1155/2014/709738

13. Holland J (1975) Adaptation in natural and artificial systems. University of Michigan Press,
Ann Anbor

14. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE inter-
national conference on neural networks, Piscataway, NJ, pp 1942–1948

15. Pavlyukevich I (2007) Lévy flights, non-local search and simulated annealing. J. Comput Phys
226(12):1830–1844

16. Wolpert DH, MacreadyWG (1997) No free lunch theorems for optimization. IEEE Trans Evol
Comput 1(1):67–82

17. Yang XS (2008) Nature-Inspired metaheuristic algorithms. Luniver Press, Bristol
18. Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative

strategies for optimisation (NICSO 2010), vol. 284. Springer, Berlin, Studies in Computational
Intelligence, pp 65–74

19. Yang XS (2011) Bat algorithm for multi-objective optimisation. Int J Bio-Inspired Computat
3(5):267–274

20. Yang XS, Deb S, Fong S (2011) Accelerated particle swarm optimization and support vector
machine for business optimization and applications. Netw Digital Technol 2011, Commun
Comput Inf Sci 136:53–66

21. Yang XS, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering opti-
mization. Eng Comput 29(5):1–18

22. Yang XS (2012) Flower pollination algorithm for global optimization. In: Unconventional
computation and natural computation, Springer, Berlin, pp. 240–249

23. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: Proceeings of world congress on
nature & biologically inspired computing (NaBIC 2009). IEEE Publications, USA

24. Yang XS, Deb S (2010) Engineering optimization by cuckoo search. Int J Math Model Numer
Optisation 1(4):330–343

25. Yang XS, Deb S (2013) Multiobjective cuckoo search for design optimization. Comput Oper
Res 40(6):1616–1624

26. YangXS, Deb S (2014) Cuckoo search: recent advances and applications. Neural Comput Appl
24(1):169–174

27. YangXS, Deb S, LoomesM,KaramanogluM (2013) A framework for self-tuning optimization
algorithm. Neural Comput Appl 23(7–8):2051–2057

28. Yang XS (2014) Nature-Inspired optimization algorithms. Elsevier, London

http://dx.doi.org/10.1155/2014/121782
http://dx.doi.org/10.1155/2014/709738

	Nature-Inspired Algorithms: Success and Challenges
	1 Introduction
	2 Some Recent Algorithms Based on Swarm Intelligence
	2.1 PSO
	2.2 Firefly Algorithm
	2.3 Cuckoo Search
	2.4 Bat Algorithm

	3 Mechanisms for Generating New Solutions
	4 Adaptation and Diversity in Swarm Intelligence
	4.1 Diversity and Adaptation
	4.2 Exploration and Exploitation
	4.3 Attraction and Diffusion

	5 Parameter Tuning and Parameter Control
	5.1 Parameter Tuning
	5.2 Parameter Control

	6 Discussions and Open Problems
	References

