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Abstract With the overwhelming amount of transportation data being gathered
worldwide, Intelligent Transportation Systems (ITS) are faced with several mod-
eling challenges. New modeling paradigms based on Computational Intelligence
(CI) that take advantage of the advent of big datasets have been systematically pro-
posed in literature. Transportation optimization problems form a research field that
has systematically benefited from CI. Nevertheless, when it comes to big data appli-
cations, research is still at an early stage. This work attempts to review the unique
opportunities provided by ITS and big data and discuss the emerging approaches for
transportation modeling. The literature dedicated to big data transportation applica-
tions related to CI and optimization is reviewed. Finally, the challenges and emerging
opportunities for researchers working with such approaches are also acknowledged
and discussed.

1 Introduction

With a vast number of diverse Intelligent Transportation Systems (ITS) operating
Worldwide, web-based, mobile, and sensor generated data arrive at and overwhelm-
ing scale. This availability allows for new science paradigms to be introduced and
novel insights to be gained. Traditionally, turning data into knowledge relies on clas-
sical statistical analysis and interpretation; this fundamentally requires analysts to
become intimately familiar with the data and serve as an interface between the data
and the users. With the recent availability of very large data sets (big data), this form
ofmanual probing becomes slow, expensive, and frequently unfeasible.Methodolog-
ically, new approaches are needed to efficiently deal with some of the challenging
issues related to big data; some of them are data size, high dimensionality, overfitting,
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assessing statistical significance, rapidly changing, missing and noisy data, complex
relationships between fields, user interaction and prior knowledge, and system inte-
gration.

Big Data is growing exponentially due to the growth of both existing and new
data sources (e.g. geospatial, social media comments, mobile). To build a smarter
planet, we need smarter computing—computing that is tuned to operate, managed
through the cloud and, importantly, designed for big data. Novel modeling paradigms
will have to: i. Capture and manage high volume multi-source data encompassing
text, images, sounds, generated impulses etc. ii. Understand patterns unfolding in
time across a complex transportation system (spatial unfolding) and produce critical
information and alerts.

In this context, Computational Intelligence (CI) offers an excellent alternative to
traditional hypothesis-driven (i.e. deductive) statistical data analyses and attempts to
extract meaningful patterns in big data. In Transportation, there has been increased
interest among both researchers and practitioners in exploring the feasibility of CI
algorithms in transportation problems, especially related to optimization. The advan-
tage of CI data analysis applications over other alternatives lies in their flexibility,
their ability to discover unknown mechanisms and covariations elusive to statisti-
cal approaches, their accuracy, and their ability to handle dynamically changing big
data. Still, the development of efficient CI applications in Transportation is complex,
rarely taught in transportation programs in Academia, while model development
and validation are frequently done ad hoc and do not follow universally accepted
procedures.

In this paper, the unique opportunities created by the data obtained from modern
ITS are discussed and some of the emerging approaches for handling big data are
reviewed. The literature dedicated to big data transportation applications related to
CI and optimization is reviewed. Finally, the challenges and emerging opportunities
for researchers working with such approaches are also acknowledged and discussed.

2 The “New” Transportation Landscape

Urbanization, smart cities and disruptive technologies may be considered as the
three pillars transforming the transportation arena. Urban areas are, nowadays, con-
sidered as the dominant type of settlement for humanity. In this context, optimizing
transportation and mobility play an imperative role in sustainable urban develop-
ment. Second, cities are becoming smarter, in terms of their infrastructure, with the
aim to maximize resources and actively support sustainable growth and high qual-
ity of life, through participatory action and engagement, while preserving natural
resources [18].

To be able to fully benefit of the above, a transportation system should be instru-
mented, interconnected and intelligent. In this context, there is an increasing inter-
est in finding novel technologies to support the transportation arena. Some of the
most prominent are mobile communications, cloud technologies, energy storage,
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autonomous vehicles and the Internet of Things (IoT). The latter is a novel concept
straightforwardly applicable to transportation applications; IoT consists of a variety
of devices or objects—such as Radio-Frequency IDentification (RFID) tags, sensors,
actuators, mobile phones, and so on—which, through unique addressing schemes,
are able to interact with each other and cooperate with their neighbors to reach
common goals [4, 106]. By continuously collecting, analyzing and redistributing
transportation information, IoT networks can offer valuable, real time information to
both travelers and operators, and, thus, support and improve the operations of ITS,
traffic and public transportation systems.

3 Big Data and Transportation

3.1 A Definition

Most widely available definitions of “big data” converge to the following: any col-
lection of data is big or may become big, when it becomes difficult or impossible
to model its complexity using traditional data processing tools. This definition leave
much room for arguments and misconceptions about what data can be considered as
big and how big are the available data.

A more scrutinized look at big data introduces the concept of three V’s: big
data are quantities amounts (Volume), of any type (Variety), that are collected at
unprecedented speed and must be dealt with in a timely manner (Velocity) [71]. The
V’s can be extended to include acyclic or irregular temporal data (Variability), the
uncertainty stemming from the difficulty in controlling the quality and accuracy of
the data (Veracity).

3.2 Sources and Applications of Big Data in Transportation

The big data phenomenon is not new in Transportation and Traffic Engineering. The
leading edge of transportation data has for long been streaming data coming for a
variety of sensors (loop detectors, video cameras, weather stations etc.). What has
changed over the years is the cost of new monitoring systems (more economic ways
of producing streaming data, such as the passive data produced by personal GPS), the
data granularity (very detailed information collected in real time) and the availability
of new sources of unstructured or semi-structured data, such as logs, clickstreams,
and social media data (tweets, Facebook posts etc.). A detailed classification of Big
Data sources may be found in Hashem et al. [50].

The intrusion of big data and analytics to the transportation research and industry
is significant. Large companies including Google, IBM, SAS, INRIX etc. system-
atically fund research and applications on how to leverage big data of all forms
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(structured and unstructured) to improve transportation services and customer sat-
isfaction, manage transportation infrastructure, as well as predict or estimate traffic
conditions. The gains from using big data in transportation are numerous for road
users, authorities and private sector. Road users can make informed decisions to
save time and reduce their personal trip cost based on continuously available traffic
information from various sources of the road network with extended spatio-temporal
coverage. Road authorities may take advantage of big data to understand travel pat-
terns to identify policy interventions, control traffic andmanage demand and conges-
tion, or even change the users’ behavior. Finally, private sector may gain significant
competitive advantage by identifying prevailing trends or increase productivity by
improving their route planning and logistics.

A field that has profited the most from the advent of big data is travel demand
estimation; various approaches to derive OD matrix and mobility patterns have been
based onmobile phone and personal GPS data [16, 42, 61, 74, 76, 88]. Papinski et al.
[89] andBierlaire et al. [13] developed a route choice behavior based on personalGPS
traces, whereas Hood et al. [53] used GPS traces to develop a bicycle route choice
model. Liu et al. [76, 79] studied land uses based by analyzing GPS-enabled taxi
data in Shanghai. Cai et al. [17] analyzed the manner travel patterns may influence
the electric vehicle charging infrastructure development using trajectory data from
taxis in Beijing. Chen and Chen [24] utilized taxi GPS traces for nigh bus routes
planning.

Regarding traffic, mobile phone counts have been systematically used for extract-
ing traffic information in the form of volume, speed and density in both urban and
suburban road networks [3, 9, 10, 51]. Castro et al. [19] used taxi GPS traces to
estimate the traffic flow conditions in urban areas. Guido et al. [47] attempted to
infer speeds using GPS smartphone traffic probes.

Location based services and social media are the new hype for collecting trans-
portation related data. Cheng et al. [27] and Cheng et al. [28] addressed issues
of urban mobility by analyzing twitter and social networking data. Collins et al.
[33] proposed a sentiment analysis approach to measure transit rider satisfaction by
quantifying twitter feeds. Hasan and Ukkusuri [49] demonstrated the use of a large-
scale geo-location data set to analyze and understand individual activity patterns.
Recently, Yang et al. [122] analyzed Foursquare data to derive OD information for
non-commuting trips.

A new field of research that emerged from gathering individual data collection—
either through smartphones or instrumented vehicles—is the extraction of driver’s
profiles during driving [5, 83, 84, 95, 100, 104, 110, 115, 119]. The scope of such
profiles is to improve the efficiency during driving and mitigate risky behaviors that
may lead to near misses or crashes. Driving big data has also been systematically
used to develop advanced insurance systems based on the time and manner a user
drives (pay as you drive, pay how you drive) [6, 85, 86].
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4 Transportation Big Data Analytics

Analyses based on data, regardless of being big or not, have been recognized as a
valuable tool for transportation operations. The stake when using big data is to be
able to transform data into knowledge. Transforming data into knowledge involved
a set of processes that are described in Fig. 1.

Each step towards the ultimate goal involves a set of tasks. For example data
capturing and management involves indexing, searching, querying and visualiza-
tion. The analysis stage may target to detect anomalies, reveal patterns and complex
relationships. The prediction step entails complex and flexible data driven models
that may consistently and accurately provide information on the future conditions,
whereas mechanisms to create and disseminate information are the final step.

From a modeling standpoint, the problem faced with big data are numerous; first,
these datasets are frequently of high dimensionality, meaning that they are difficult
to visualize and understand. Moreover, having and extended dataset may not always
mean having a representative dataset or a dataset with “perfect” information. The
latter signifies that there is a need for a powerful preprocessing stage to assure that the
models developed may be estimated and generalize real world conditions. Finally,
assessing the statistical fit in big multi-dimensional datasets is not an easy task. Even
when using data drivenmodels, the surplus of datamay lead to overfitting andmodels
with reduced generalization power.

4.1 From Statistics to Computationally Intelligent Models

Usually, the statistical tools implemented entail several structural constraints and are
unable to work on quirky and messy data with little or no structure. The lack of
diversified statistical tools for big data analyses lead statisticians to see big data as a
burdensome rather than a source of valuable information. A typical example is the
time series of road traffic characteristics; typical autoregressive statistical models
suppress or ignore nonlinearity and irregularities, whereas literature has systemati-
cally underlined the usefulness of these irregularities to understand the transitional
nature of traffic flow [64, 107, 110, 111, 113, 114].

Evidently, with the advent of multi-source data collection systems, transportation
datasets will not become perfect. Treating big data brings forward the focus on size,

Fig. 1 Processes in big data
analytics

Capture & 
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the ability to model messiness and multi-dimensionality in datasets, as well as the
importance of correlations alongwith causation; we do not have to always understand
the underlying mechanisms of the data to make them work to our benefit. To this
end, new flexible and powerful modeling paradigms are imperative that are robust to
imperfections and hypothesis free. The need to develop new analysis paradigms for
the rapidly growing datasets has been underlined since the late 90s’ [39]. This road
contains either new forms of statistical thinking or data mining and computational
intelligent models. Computational intelligence (CI) is the new hype in transportation
modeling. CI includes neural networks, fuzzy logic, swarm intelligence, evolutionary
algorithms, expert systems, agent based modeling etc. These models are applicable
tomany datamining problems, fromwarehousing to prediction and decisionmaking,
and may be proven more efficient due to their non-parametric hypothesis free nature.

Contrary to common thinking, some CI tools may bare significant similarities to
classical statistical models, an issue frequently disregarded by connectionists that are
more interested in producing accurate results rather than judging on the quality of
their models and the properties of the error [15]. With the use of statistical inference,
researchers may construct CI models equivalent to many popular statistical models
[66]. For example, a single Perceptron is a linear regression model [93], while a
Multilayer Perceptron with one hidden unit and a logistic function at the output layer
is equivalent to a logit model [107].

The importance of CI to transportation is significant; CI may be used to develop
scalable, manageable, adaptable and affordable transportation systems using com-
mon sense reasoning, perception and learning, as well as autonomy. One of the many
advantages of CI, which is among themain differences with statistical thinking, is the
ability of the latter to treat many “non-algorithmizable” problems (natural language
processing, visual perception, character recognition etc.). Their ability to augment
or replace human skills reflects to gains in computations, accelerates processing and
increases productivity. These features may lead to providing results with improved
accuracy and quality in a timely manner.

5 Computational Intelligent Optimization for Big Data
Problems

In the entire process of mining knowledge from data, several modeling stages may
be formulated as optimization problems. Optimization targets the “optimum” solu-
tion(s) for a given problem within allowable time. The issue is that each problem
may have several local optimal solutions. The difficulty in converging relates to the
problem’s dimension and the number of objectives (large-scale multi-objective opti-
mization). Evidently, large-scale optimization processes are affected by the curse of
dimensionality in numerous ways [29]; the larger the dimensions of the phenom-
enon, the larger the solution space will be. The larger the dimension of a problem,
the greater the risk of some problem characteristics to be altered with the scale.



Computational Intelligence and Optimization for Transportation … 113

Moreover, most traditional methods can only be applied to continuous and differen-
tiable functions. Nevertheless, these conditions do not hold for most real world. The
above complexities may be treated by problem decomposition strategies, surrogate-
based fitness evaluations, data transformations etc. [58]. Another issue that may
increase the complexity of the optimization problems is the spatio-temporal evolu-
tion of the datasets. In non-stationary environments and transportation problems (e.g.
traffic flow) the dynamics may impose different optimal solutions in relation to time
and space. This means that an optimization strategy should be able to treat dynamic
problems and continuously converge to a solution.

CI approaches have both the structural flexibility and learning capability to
deal with complex, time varying multi-objective problems [128]. CI applications
to transportation include nature-inspired algorithms (evolutionary algorithms, par-
ticle swarm optimization etc.) and non-linear mapping and knowledge embedding
approaches (neural networks, fuzzy algorithms etc.). CI have been found to per-
form well in non-stationary and highly nonlinear problems due to their robustness
(impose little or no requirements on the objective function) and flexibility to handle
highly non-linear mappings [54]. Moreover, self-adaptation and parallel operation
are among the most important characteristics that enable CI to improve their per-
formance and decompose complex tasks into simpler ones. Nevertheless, literature
systematically underlines the need to cautiously apply CI to transportation problems
as their proper development is frequently tedious and involves significant parame-
trization [66].

5.1 Computational Intelligent Optimization in Transportation
Problems

Numerous efforts dedicated to CI optimization approaches to transportation appli-
cations can be traced in literature. Table1 is a non-exhaustive list of the most recent
research attempts related to CI and optimization. These applications are categorized
by the transportation problem they aim to solve, the CI algorithms implemented, as
well as the type of data used to evaluate the proposed approach. Special attention is
given to whether the listed applications involve the full big data perspective (5Vs).

Genetic algorithmsmay be considered the first and leading CI techniques in trans-
portation optimization problems systematically applied to network design problems
[67], vehicle routing and allocation problems [2, 44, 65, 78], signalization optimiza-
tion [21, 22, 91, 99, 101] and highway alignment optimization [55, 63], pricing [68]
and so on.

Significant interest from transportationmodelers has been placed on Swarm Intel-
ligence (SI). SI is an innovative branch of meta-heuristics derived from imitating
the behavioral pattern of natural insects. Teodorović [102] reviews the literature on
swarm intelligence and transportation and traffic engineering applications, whereas
Zhang et al. [127] conduct a thorough review on the swarm intelligence applications
to transportation logistics.
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Table 1 Classification of literature on computational intelligent application to transportation opti-
mization problems

Authors Date Problem CI method Data

Bai et al. [7] 2014 Transportation asset
management

NSGA II Numerical example

Chen et al. [25, 26] 2014 Trip planning Heuristic Algorithm Location-based
social network, taxi
GPS digital
footprintsa

Chira et al. [31] 2014 Vehicle routing Evolutionary
algorithms, ant
colony

Real world case
study

Danalet et al. [36] 2014 Pedestrian routing Bayesian networks Wi-fi dataa

Doolan and
Muntean [37]

2014 Vehicle routing Ant-colony
optimization

Simulation

Fagnant and
Kockelman [38]

2014 Share autonomous
vehicles

Agent-based model Simulation

Forcael et al. [40] 2014 Tsunami evacuation
routes

Ant colony Real world case
study

Galland et al. [43] 2014 Car pooling Agent-based model Simulation

Kallioras et al. [59] 2014 Emergency
inspection
scheduling

Harmony search Real world case
study

Kammoun et al. [60] 2014 Traffic routing Ant-hierarchical
fuzzy model

Simulation

Lin and Ku [75] 2014 Stopping patterns
for passenger rail
transportation

Genetic algorithm Real world case
study

Liu et al. [78] 2014 Emergency medical
service allocation

Genetic algorithms Real world case
study

Pahlavani and
Delavar [87]

2014 Route planning Weed colonization Simulation

Stolfi and Alba [98] 2014 Traffic routing Evolutionary
algorithm

Simulation

Terzi and Serin
[103]

2014 Maintenance works
on pavements

Ant colony Numerical example

Yang et al. [122,
123]

2014 Highway alignment
optimization

Genetic algorithm Real world case
study

Yin et al. [124] 2014 Hurricane
evacuation

Agent-based model Simulation

Zhang et al. [125] 2014 Transit network
design

Agent-based model Simulation

Zhou et al. [128] 2014 Mobile traffic
sensor routing

Ant colony, PSO Simulation

Arango et al. [2] 2013 Berth allocation Genetic algorithms Simulation

(continued)
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Table 1 (continued)

Authors Date Problem CI method Data

Chevrier et al. [30] 2013 Railway scheduling Evolutionary
algorithm

Real world case
study

Cong et al. [34] 2013 Traffic routing Ant colony
algorithm

Simulation

Goksal et al. [46] 2013 Vehicle routing PSO algorithm Numerical example

Jia et al. [56] 2013 Transportation-
distribution
planning

NSGA II algorithm Numerical example

Kontou et al. [69] 2013 Transit depot
allocation

Genetic algorithm Real world case
study

Lagaros et al. [70] 2013 Fund allocation PSO algorithm Real world case
study

Levin and Kanza
[73]

2013 Vehicle routing Heuristic algorithm Location-based
networka

Liu et al. [77] 2013 Freeway corridor
diversion control

Genetic algorithms Real world case
study

Shafahi and
Bagherian [94]

2013 Highway alignment
optimization

PSO algorithm Numerical example

Ceylan and Ceylan
[20]

2012 Signalization
optimization

Harmony search
algorithm

Simulation

D’Acierno et al.
[35]

2012 Signalization
optimization

ACO-based
algorithm

Simulation

Kang et al. [61, 62] 2012 Highway alignment
optimization

Genetic algorithm Real world case
study

Putha et al. [91] 2012 Traffic signal
optimization

Ant colony, GA Numerical example

Balseiro et al. [8] 2011 Vehicle routing Ant colony Numerical example

Geroliminis et al.
[44]

2011 Transit mobile
repair units
allocation

Genetic algorithm Real world case
study

Mesbah et al. [82] 2011 Transit priority Genetic algorithm Numerical example

Deshpande et al.
[122]

2010 Scheduling
pavement
rehabilitation

Multi-objective
genetic algorithm

Numerical example

García-Nietoa et al. 2010 Traffic light
scheduling

PSO algorithm Simulation

Kepaptsoglou et al.
[68]

2010 Pricing policy
optimization

Genetic algorithm Real world case
study

Meng and Khoo
[81]

2010 Ramp metering NSGA-II Real world case
study

(continued)
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Table 1 (continued)

Authors Date Problem CI method Data

Pishvaee et al. [90] 2010 Logistics network
design

Memetic algorithm Numerical example

Shimamoto et al.
[96]

2010 Transit network
design

NSGA-II Ticket-based travel
dataa

Kang et al. [63] 2009 Highway alignment
optimization

Genetic algorithm Real world case
study

Karlaftis et al. [65] 2009 Vehicle routing Genetic algorithm Real world case
study

Kepaptsoglou and
Karlaftis [67]

2009 Transit network
design

Genetic algorithm Real world case
study

Lau et al. [72] 2009 Vehicle routing Genetic algorithm,
fuzzy algorithm

Simulation

aBig data applications

Another domain of CI that has attracted significant attention in transportation and
traffic engineering is agent based modeling. Agent and multi-agent systems have
been applied to many traffic and transportation fields including dynamic routing and
congestion management. Chen et al. [24] and Bazzan and Klüge [12] reviewed the
literature related to agent-based traffic modelling and simulation, and agent-based
traffic control and management. However, as stated in Bazzan [11], the “agentifi-
cation” of transportation problems may hinder several challenging issues (e.g. the
number of agents is high, the extent and magnitude of collective behavioral patterns
is immense and probably unpredictable etc.) that should be carefully examined and
taken into consideration.

A significant portion of literature refers to the optimization of leaning processes
involved in transportation models. Learning from extensive transportation and traffic
datasets involve multi-source data distributed in many different locations and involve
toomany data points and extensive spatial coverage. Learning strategies inside traffic
and transportation predictionmodels, aswell as dimensionality reduction approaches
and imputation problems have been systematically addressed using computationally
intelligent techniques [23, 52, 80, 105, 107, 108, 110, 112, 118].

The analysis of literature indicates that there are very few big data applications to
transportation optimization problems that are treated with CImethods. Shimamoto et
al. [96] introduce a NSGA II algorithm to solve the transit assignment problem using
ticket-based travel data. Levin and Kanza [73] implemented heuristic algorithms for
the vehicle outing problem using location based data. Danalet et al. [36] leveraged
campus wi-fi data to solve the pedestrian routing problem, whereas Chen et al.
[26] used GPS traces and location based data for trip planning. The limited number
of studies on transportation optimization using big data does not signify limited
interest on the specific subject, but reflects two distinct challenges: first, large-scale
optimization problems involving a significant number of modeling parameters are
difficult to be estimated in a global search context; even CI that are more robust that
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classical approaches, may fail or become extremely time consuming, especially in a
multi-objective framework [128]. Second, transportation optimization problems are
complex and involve a tedious procedure for evaluating the quality of solutions when
dealing with global population based search algorithms.

6 Opportunities and Challenges

6.1 The Changing Nature of Transportation Problems

Conceptually, the methodological change that big data brings to transportation is
the need to automatically process and analyze data. This has significant effects on
the knowledge that may be or needs to be extracted from the available data. Several
solutions to problems in transportation science that were founded on static univariate
data may not be applicable to dynamically changing multivariate datasets leading
to the need to reexamine several phenomena or even change the way we think of
transportation problems.

Three promising research fields that will most likely benefit from the data deluge
area are:

• User experience mining for improving transportation services,
• Naturalistic driving experiments for monitoring driver’s behavior, constructing
driver’s profile and identifying risk in driving, and

• Autonomous driving for congestion mitigation and safety.

The deluge of big data may not signify that some scientific questions are to be bet-
ter modeled, but, a more detailed modeling approach to various phenomena may be
accomplished [97]; some examples are OD surveys home interviews, census surveys,
and so on. The ability to monitor the transportation and traffic related characteristics
of individual road users will significantly affect the manner transportation research
problems are articulated. Nevertheless, to turn data into knowledge some old dilem-
mas and challenges extend to big data science. These refer to model selection, real
time operation, the quality and availability of the data, the quality of optimization
solutions, the inference mechanisms, as well as ethical and social issues.

6.2 Big Data Analytics Versus Models

The changing nature of transportation problems often drives the need to test and
evaluate new modeling paradigms robust to big data and imperfections. CI and data
mining has taken a large part of the related transportation literature frequently leaving
less ground to classical statistics and models. This may hinder the danger to consider
thatmodels, either statistics or borrowed by laws of physics, traditionally used to treat
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transportation problems are now obsolete. The truth is rather in themiddle and relates
to the type and extent of information needed. Evidently, a deeper understanding of
the transportation problems will dictate the use of models that may translate data
into causal relationships. Towards this direction, literature has emphasized the need
to develop synergies with statistics to enhance the explanatory power of many CI
applications [66]. Statisticsmay enhance the inferencemechanisms of CI approaches
and assure the reliability of the models developed and their generalization power.

6.3 From Batch to Real-Time Computations

The challenging task in big data analysis is not only to produce knowledge, but
to produce it in a timely manner. The time to produce results relates to the size
and the complexity of the datasets. Processes that may take long, but can claim
increase accuracy and reliability are of limited use, if they are provided with delay.
Batch model building with either data mining or statistical approaches has been
the dominant approach to transportation problems. Modeling has been traditionally
based on historical data, that where leveraged using different modeling paradigms to
extract knowledge. In this framework, by the time new data arrive, these were batch
processed to produce the output. This approach seems to be conceptually at arms
with the computational needs ofmodern ITS systems that require timely and accurate
information to disseminate to centers and users in a highly dynamic transportation
environment. Data driven ITS and individual driven ITS systems are founded on
real time computations, developing real-time new models that may not only respond
in real-time, but learn to change their behavior in real-time (retraining strategies
for CI short-term forecasting models) [108, 117]. In such conditions, optimization
challenges are numerous and involve optimizing models to include new phenomena
and forget past—probably incorrect or trivial—knowledge.

6.4 Data Quality, Availability, Representativeness
and Relevance

Data unceasingly coming from multiple sources, at a variety of forms and in high
resolutions are inhomogeneous and may contain noise and erroneous values. Noise
and errors mask the significant information hindering in the data. The usual approach
is to filter and apply data reduction techniques to eliminate the effect of noise and
errors [48]. Data cleaning is a long standing problem but with significance in cases of
big data. Data cleaning may include several tasks, such as irregularities (anomalies)
detection, incomplete data filling, duplicates removal, conflicting values detection
and so on. Nevertheless, these tasks are not so easy to be accomplished in the big
data framework [121]; first, becausemany data cleaning strategies are not suitable for
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big data, and second, because in the big data framework, many error types (incom-
plete data, missing data, erroneous data duplicate data etc.) coexist, while existing
techniques are focused on treating a specific error type at a time.

Furthermore, there is a thin line between information and extreme data. Noise and
extreme values may contain useful information for the phenomenon under investi-
gation. The use of advanced techniques to automatically preprocess the data and
transform them to a more “analyzable” form may lead to datasets that have signifi-
cantly distorted information about real world conditions [109].

Having large datasets may not always mean having a representative sample to
study a phenomenon. Quality is linked to the sample size that needs to be accounted
for. The collected data may account for a small part of the phenomenon both spatially
and demographically. A typical example is data gathered from tweets and Facebook
posts; those that do not possess a profile in social media will not be captured and
included in big datasets.

The big data frequently dictate the modeling approach to follow. Nevertheless
caution should be given to the modeling strategy; the belief that analyses suited
for small datasets may be done with the same or better accuracy to larger datasets is
misleading. There are models that have traditionally work well for small datasets, but
could become unfeasible with more massive data, whereas in some modeling cases
with clear underlyingdynamics, simplemodels, such as linear regressionwith distinct
causal implications could approximate with comparable accuracy and effectiveness
the given data. Hand [48] defines the unintelligent data analysis as the one that results
to over-specified models or over-idealized problems and underlines that intelligent
analysis is dependent of a “good” strategy that defines the steps, decisions and actions
taken to analyze a given dataset.

6.5 Inference from Data: Correlations and Causation

In the era of “big data” several researchers may claim that correlations will be enough
to provide information and a deeper look to causations that may help researcher to
acquire a thorough understanding of the different phenomena may not be necessary.
This misconception deriving from data enthusiasts is tricky and contradicts the true
intentions of data analytics. With data analytics we aim to extract information for
making better and more informed decisions. Such decision based solely on correla-
tions and deprived from causalities may be far from being accurate and intelligent.

Even if CI approaches are to be implemented, interpretation remain a focal point
in transportation engineering. CI using big data can easily reveal correlations; the
larger the datasets the greater number of correlations between different variables may
be revealed. This does not, however, imply that causations may be achieved [116].
Moreover, several correlations may be also coincidental (spurious) [1]. The lack of
straightforward inference mechanisms in CI approaches may lead to misinterpreta-
tions and erroneous results. This is a major shortcoming of applying CI methods to
transportation data and should be taken into consideration. Big data are complex and



120 E.I. Vlahogianni

causation can be distorted by various factors such as latent variables, indirect influ-
ences imposed by various systems acting simultaneously, multi-collinearity, missing
values and so on.

6.6 Quality of Optimization Solutions and Uncertainties

Evaluating optimization solutions is a time consuming and costly task. The more
complex the optimization problems the less efficient the global population based
approaches become. To reduce the time and effort needed to provide optimization
solutions of high quality, surrogate modeling often qualifies as a viable solution.
Surrogate modeling is a macro-modeling technique that aims to minimize the time
and computational load to develop simulations to replicate input-output relationships
[41]. The aim is to produce a faster and simpler approximation of a simulator to make
optimization, design space exploration, etc. feasible.

Another critical issue to consider is the robustness of the produced solutions over
time. Most transportation phenomena has significant spatio-temporal dependencies
that may influence the quality and consistency of the produced solutions. As such,
robustness over time is a critical characteristics of the optimization strategies. This
may be tackled by selecting the optimization approach that produces results that are
the least affected by the varying conditions (changes in variables etc.). The use of
dynamic optimization strategies that are computationally intensive seem to be out
of the context of real-time ITS applications. Evidently, achieving a tradeoff between
the best solution and the optimum solution over time—that will change only when
a solution will provide results that are no longer acceptable—is a viable approach
[57, 128].

6.7 Ethics, Privacy, Inequalities

The big data deluge in transportation comes with significant ethical and institutional
challenges. As in all disciplines, big data, especially those coming from participatory
sensing, have serious ethical and privacy issues that are frequently addressed but
rarely understood. Nowadays, a legislative framework that will dictate the ethical
boundaries of using personal data streams is missing.

Moreover, until recently, data was a key advantage of a scientific work because
several phenomena, especially those dealing with behavioral aspects, were difficult
to be monitored. Nowadays, having data still provides a competitive advantage,
but for different reasons. Although the technological means to achieve a detailed
monitoring of complex phenomena exist, they are not accessible to everyone. The
digital divides created by those who possess technology and data are significant
for achieving innovation [14]. Moreover, inequalities will progressively extend to
research institutions and Academia between those that may fund big data systems
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and those that do not possess the economic means to penetrate the market of big
data and use them to their benefit. Significant competitive advantage will have those
companies and organizations that may not only possess big data, but also can analyze
them.

7 The Road Ahead

In the near future, every moving object (both humans and machines) is planned to
have a unique identity and operate in a smart social and environmental setting. In
this framework, advanced skills in data analytics and optimization will be required
to solve complex problems and materialize advanced transportation ideas. The road
ahead contains CI, but they have to be applied with caution. Some drivers for success
will be: i. develop real-time modeling efforts and efficient solutions to complex
phenomena and settings, ii. the development of synergies and the use of intuition to
enhance explanatory power, iii. the development of test beds and test data to battle
inequalities and evaluate ongoing development, iv. the integration of nature inspired
algorithms to enable the full abilities of CI, v. cloud and parallel computing for
increasing computational power and reducing the cost of transportation services, and
vi. the development of new educational paradigms so as transportation researchers
and practitioners can cope with the demanding algorithms for treating big data.

The rapid growing of transportation data impose delivering computations and
results that reflect the dynamically evolving transportation phenomena in real-time.
In this framework researchers should focus on responsive new methods and model
building techniques. Moreover, the spatio-temporal complexity seen in most trans-
portation datasets impose the decomposition of a problem to many simpler ones; this
decomposition should extend to model building. Ensembles of models rather than
a single approach should be evaluated to deliver reliable and accurate models and
predictions. As for optimization, literature review underlined that although CI global
optimization techniques may well cope with the complexities seen in transporta-
tion datasets, they have been rarely used in big transportation data due to the high
computational cost they entail. It is of great importance to use big data to develop
more flexible and computationally less costly CI meta-optimization techniques—for
example surrogates—or improve the manner to formulate optimization problems.

The rise of CI techniques to handle big data does not make statistics obsolete.
Several researchers have systematically underlined that the statistical thinking is
the means to justify the inferential leap from data to knowledge. Possible synergies
between these two different schools of thought will increase the explanatory power
of CI models and their transparency [66]. Statistics may be useful for enhancing the
clarity about the modeling goals, assessing for the reliability of the model developed,
accounting for sources of uncertainty in the underlying data mechanism and models
[45]. In the model development and evaluation stages, statistics can provide the
theoretical means for testing for optimality and suitability of the learning algorithms.
Moreover, statistics may be used to extract causalities, if necessary, an issue largely
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disregarded in the CI literature. In this spirit, intuition has a great role to play in
the understanding of the huge streams of data. The CI approaches should be tied
to human intuition so as results to be reflect reality and not a myopic look at the
different phenomena.

Research using big data in transportation should be supported by publically avail-
able testbeds and test data. Test beds of varying size and complexity are a critical
tool for reducing inequalities, supporting innovation, but also evaluating ongoing
research and may serve as a proof-of-concept tool [115]. To this end, open data
is considered today as the greatest enabler of research in intelligent transportation
systems. A typical example of the direction towards freely available data is the Euro-
pean Open Government Data Initiative (EU OGDI). This initiative targets to create
a transparent environment without discrimination and exclusivity constraints where
both data and software can be freely stored to improve practices and implemented
policies across EU member countries. The concept of open big data multiplies the
sources of creativity and collective innovation, as new applications and algorithms
are produced by both established providers (e.g. Google, IBM, SAS etc.) and public
authorities, but also by individual initiatives from programmers (e.g. applications on
smart phones).

Another critical issue that will dictate the future of CI in transportation is the abil-
ity to fully benefit from artificial intelligence (AI), a key technology to improve the
efficiency, safety, and environmental-compatibility of transportation systems [92].
Until now, CI and AI applications have been limited to specific modules of ITS
applications, especially for data analysis and prediction disregarding their power-
ful capabilities for data managing and decision making [32]. Extended usage of CI
and AI techniques is needed to fully benefit from their unique capabilities. Towards
this direction, concepts such as cloud (computation, software, data access, and stor-
age services) that do not require end-user knowledge of the physical location and
configuration of the system that delivers the services, and parallel computing (clus-
ters of computers), can enable the implementation of complex network level ITS
[50, 120, 126].

In the instrumented future, transportation engineers and researchers are chal-
lenged to be capable of applying both transportation science and interdisciplinary
data analyses for the realization and evaluation of their advanced ideas. Evidently,
the advent of the new “big data” area in transportation dictates the need to develop
new educational paradigms to produce qualified transportation researchers and prac-
titioners able copewith the demanding algorithms for treating big data. The aim is not
to replace other disciplines but to be able to produce engineers that may understand
and efficient use the full potential of big datasets and the accompanying modeling
tools.
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