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Abstract This study proposes and applies a methodology to calibrate microscopic
traffic flow simulation models. The proposed methodology has the capability to
calibrate simultaneously all the calibration parameters as well as demand patterns
for any type of network. Parameters considered include global and local as well as
driver behaviour and vehicle performance parameters. Demand patterns, in terms of
turning volumes, are included in the calibration framework. Multiple performance
measures involving link counts and speeds are used to formulate and solve the pro-
posed calibration problem. In addition, multiple time periods were considered. A
Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm is used to
search for the vector of themodel’s parameters thatminimizes the difference between
actual and simulated network states. (Punzo V, Ciuffo B, Montanino M Transp Res
Rec J Transp Res Board 2315(1):11–24 2012, Punzo et al. [1]) commented on the
uncertainties present in many calibration methodologies. The motivation to consider
simultaneously all model parameters is to reduce that uncertainties to a minimum, by
leaving to the experience of the engineers as little parameter tuning as possible. The
effects of changing the values of the parameters are taken into consideration to adjust
them slightly and simultaneously. This results in a small number of evaluations of
the objective function. Three networks were calibrated with excellent results. The
first network was an arterial network with link counts and speeds used as perfor-
mance measurements for calibration. The second network included a combination
of freeway ramps and arterials, with link counts used as performance measurements.
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The third network was an arterial network, with time-dependent link counts and
speed used as performance measurements. The experimental results illustrate the
effectiveness and validity of this proposed methodology. The same set of calibration
parameters was used in all experiments.

1 Introduction

Micro-simulationmodels provide tremendous capabilities tomodel, at a high level of
resolution, complex systems in a broad range of fields, including economy, sociology,
physics, chemistry, and engineering [2].

In the context of vehicular traffic systems, microscopic traffic flow models enable
the modelling of many aspects of the actual system, including the manoeuvres of
individual vehicles and their interactions, the various types and characteristics of
facilities, and the vast number of control settings. These capabilities are associated
with a large number of modelling parameters that typically need to be tailored for
each vehicular system. For example, driver behaviour includes parameters associated
with car following, lane-changing manoeuvres, and gap acceptance.

In, Punzo et al. reflect on the uncertainties present in many of the current car-
following based traffic flow simulation calibration methodologies. It is a fact that
the accuracy of a model and the validity of its results are highly dependent on the
correctness of the chosen parameters [3–9].

Punzo et al. [1] discussed uncertainties present in many of the existing method-
ologies for the calibration of car-following-based traffic flow simulation models. It is
clear that the accuracy of a model and the validity of its results are highly dependent
on the correctness of the chosen parameters [3–9].

Hence, it is important to consider all these model parameters simultaneously
with the aim to capture their intricate interactions, thereby seeking convergence and
stability of the solutions.

In [10] we drafted a method for the simultaneous calibration of all of the parame-
ters of a CORSIMmodel. In the present work we have sharpen, extended and applied
that methodology to three different big test cases with excellent results: (i) Pyramid
Highway, in Reno, Nevada, USA; (ii) Interstate-75 in Miami, Florida, USA; and (iii)
a Network of McTrans Sample Data Sets.

This study proposes a methodology to calibrate simultaneously all model para-
meters and demand patterns based on link counts and speeds. In addition, multiple
performancemeasures were used, demand patterns were not pre-calibrated, andmul-
tiple time periods were explicitly considered with target performance values for each
period. That is, the proposed methodology implements a Simultaneous Perturbation
Stochastic Approximation (SPSA) algorithm to determine an adequate set for all
model parameters and turning volumes for multiple time periods using multiple per-
formance measures. Even though there is a significant body of literature around the
proposed problem context, to the best of the authors knowledge, no study has con-
sidered simultaneously all the aspects listed in this paragraph and included in our
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implementation and experimental framework. The state-of-the-art is summarized in
the following subsection.

TheSPSAwas chosen based on its computationally efficiency and ability to handle
large numbers of parameters [11–18]. Only two traffic flow simulation evaluations
per iteration of the SPSA are required to update all model parameters. Running a
low number of traffic flow simulations represents important savings in terms of time
and other resources. However, the SPSA algorithm performs better when the initial
model parameters relatively close to the optimal solution.

Comparative studies between SPSA and other algorithms could be found in the
literature [11, 12, 18]. In addition, the SPSA algorithm has been used to calibrate
and optimize various transportation applications [13, 19, 20].

The rest of this paper is organized as follows:We do a brief literature review in the
next subsection. We expose the proposed methodology in Sect. 2. Then we share the
experiments performed alongside with the corresponding results in Sect. 3. Finally
we put together some concluding remarks in section .

1.1 State of the Art

Abroad number of optimization algorithms, ranging fromgenetic algorithms to finite
difference stochastic approximation, have been used to determine an adequate set of
model parameters for a particular traffic system [3, 4, 6, 21, 22].

For example, the sequential simplex algorithmwas used to calibrate parameters for
car-following, acceleration/deceleration, and lane-changing behaviour [6]. However,
only a subset of parameters was considered, maybe because of the lack of enough
computing power in 2002. Moreover, parameters associated with infrastructure and
vehicle performance were not considered. The algorithm provided adequate results
under congested conditions. However, under low-congestion conditions, manual cal-
ibration provided better results [6].

In [23] they calibrate the VISSIM model of the NGSIM corridor, using a quite
limited optimization technique, exploring only the limits. They calculate a number
of restrictions for some parameters and accept values only if they satisfy all the
restrictions. Additionally, they are only tuned to a specific period of the day.

In a recent study, [24], Markov Chain Monte Carlo (MCMC) method using
Bayesian estimation theory. Only five parameters of a linear car following model
[25] are calibrated.

Genetic Algorithms (GA) has been extensively used to calibrate traffic simulation
parameters. In [26] the use a simpleGA to calibrate the parameters of aCORSIM [27]
based simulation of a 5.8km expressway in Singapore. In [28], a freeway segment in
California was used as a test example to attempt the optimization of two PARAMICS
calibration parameters.

In both cases, the results proved limited success reducing discrepancies between
real word and simulations.
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Genetic Algorithms were used for the calibration of global and local capacity and
occupancy parameters [20, 29]. A sequential approach was used to update global
and local parameters.

In [30] a Genetic Algorithm was used to calibrate a small subset of all the
PARAMICS [31] parameters.

In [32] aMultiobjective version of the Non-dominated Sorting Genetic Algorithm
(NGSA-II, [33]) was applied to solve the multi-objective optimization task of para-
meter calibration. Results are modest and they were optimizing or calibrating a very
few, only five of VISSIM’s [34].

In [35] five PARAMICS [31] parameters were optimized for a larger model of
down town Toronto, Canada. They tested three different GA approaches but they
finally did not obtained significant improvements in the accuracy of the model.

In [8] they tuned 11 CORSIM [36] parameters of a 22.4km segment of Interstate
10 inHouston, Texas. The authors used aGeneticAlgorithm to perform an automated
calibration of these parameters. Their results were remarkable, including a sensitivity
analysis. As happens for every GA approach to traffic simulation calibration, there
were a few set-up parameters in theGeneticAlgorithm thatmust be carefully selected,
because the quality of results is very dependent on them. There was no computing
performance information provided for such work, which should be a very interesting
element for comparisonwith SPSA-based approaches, likely to be faster, more suited
to real world on-line applications.

In [37] yet another GA based PARAMICS parameter calibration was proposed.
The authors only calibrate 5 parameters that needed to be initialized at “default
values”. In addition, there were eight additional configuration parameters that need
to be tuned for the Genetic Algorithm to obtain better performance. This parameter
adjustment required significant trial-and-error and experience by the researcher.

Regarding specifically SPSA algorithms we have selected a few interesting and
related studies. In [13]Lee usedSPSAalgorithms to calibratemodel parameters using
distributions to generate input for various stages. The calibration capabilities of GA
and SPSA algorithms were shown to be similar in [20]; however, SPSA algorithms
were less computationally expensive.

In [38], the authors proposed a SPSA algorithm for the calibration of a simulation
model of the Massachusetts Bay Transportation Authority (MBTA) Red Line. The
authors used a generic simulator, SimMETRO. The effort involved a multiple objec-
tive function and simultaneous parameter calibration. It is important to notive that
the simulation of one Metro line involves less parameters compared to a vehicular
traffic system. This makes the problem more computationally affordable and less
complex.

In they proposed a rail simulation SPSA based parameters calibration for the
test case of the Massachusetts Bay Transportation Authority (MBTA) Red Line,
using a generic simulator they called SimMETRO. Even when it is not exactly the
same problem to solve than in our case, this is a remarkable application of multiple
objective simultaneous parameter calibration. It is also true, though, that a oneMetro
line simulation has not as many calibration parameters as a vehicular simulation like
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CORSIM may include, making the problem more computationally affordable and
also less complex.

Another very interesting application of a SPSA algorithm to Intelligent Trans-
portation Systems was published in [39]. A dynamical emission model was opti-
mized to estimate aggregate emission patterns for traffic fleets so as to predict local
air conditions.

SPSA and Finite Difference Stochastic Approximation algorithms have been pro-
posed for the calibration of time depending Origin-Destination matrices. For exam-
ple, in [11] driver behaviour parameters where pre-calibrated considering various
time intervals. Other important performance measures, such as speed, were not con-
sidered.

In [40], a SPSA algorithm is used for the simultaneous adjustment of a dynamic
traffic O-D matrix using traffic counts and speeds. However, the author states that
some parameters must be tuned by hand to get close to the desired solutions. Hence,
the proposed approach is infeasible for a large amount of calibration parameters as
it requires significant user involvement and experience.

Min. N RM S = 1√
N
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(

W ×
√
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√
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)2

)

Subject to:
Lower bound � θ � Upper bound

(1)

Ben-Akiva et al. worked on the calibration of a dynamic traffic O-D matrix [41]
for a large network in Beijing. The SPSA algorithm was used given its capability to
address noise. The significant work conducted using the SPSA algorithm to perform
related research motivated its use in the proposed study.

are

2 Methodology

2.1 Formulation of the Calibration Problem

The calibration problem for all model parameters, θ , is formulated using a mathe-
matical programming approach. The analysis period is divided into a number T of
discrete time periods. The objective function, normalized root mean square (NRMS),
as denoted by Eq.1, is the sum over all calibration time-periods of the average of the
sum over all links I of the root square of the square of the normalized differences
between actual and simulated link counts and speeds. The normalization enables
the consideration of multiple performance measures, in this case, link counts and
speeds. In our experimental set-up, the initial parameters for a model are selected as
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the default values used in CORSIM models. The calibration problem is formulated
as shown in Eq.1, where:

• Vi = actual link counts for link i
• Ṽ (θ)i = simulated link counts for link i
• Si = actual speeds for link i
• S̃(θ)i = simulated speeds for link i
• N = total number of links in the model
• T = total number of time periods t
• W = weight used to assign more or less value to counts or speeds

gkθk = y(θk + ckΔk) − y(θk − ckΔk)

2ck
[Δ−1

k1 ,Δ−1
k2 ,Δ−1

k3 , . . . , Δ−1
kp ]T (2)

2.2 Calibration Criteria

The calibration criteria for this study were based on guidelines from the Federal
Highway Administration. The difference between actual and simulated link counts
should be less than 5% for all links; and, the GEH statistic, in Eq.3, should be less
than 5 for at least 85% of the links [27].

G E H =
√

2(Vi −Ṽ (θ)i )
2

Vi +Ṽ (θ)i

Vi = actual link counts at the link i.
Ṽ (θ)i = simulated link counts at the link i.

(3)

2.3 Simultaneous Perturbation Stochastic Approximation
Algorithm

The SPSA algorithm is an iterative approach that uses gradient estimations of the
objective function to determine an optimal solution. Details of its implementation are
provided by Spall [15–18]. In each iteration of SPSA, the vector of model parameters
is updated using Eq.4; where:

θk+1 = θk − ak gkθk (4)

• θk+1= vector of updated parameters at iteration k+1
• θk= vector of initial parameters at iteration k+1
• ak= gain coefficient at iteration k+1 calculated using Eq.5
• gkθk= estimated gradient at iteration k+1.
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ak = a

(k + 1 + A)α
(5)

where a, A, and α are empirical non-negative coefficients. These coefficients affect
the convergence of the SPSA algorithm. The simultaneous perturbation and gradient
estimate are represented by gkθk , and is calculated using Eq.2.

Here, ck is calculated using Eq.6 where c and γ are empirical non negative
coefficients.

ck = c

(k + 1)γ
(6)

where, c = 2.7598 and γ = 0.1666.

The elements in the random perturbation vector are Bernoulli-distributed, with a
probability of one-half for each of the two possible outcomes (Eq.7).

Δk = [Δ−1
k1 ,Δ−1

k2 ,Δ−1
k3 , . . . , Δ−1

kp ]T (7)

The SPSA algorithm is implemented using the following steps [18]:

• Step 1: Set counter k equal to zero. Initialization of coefficients for the gain function
a, A, and α and calibration parameters θ0.

• Step 2: Generation of the random perturbation vector Δk .
• Step 3: Evaluation of the objective function plus and minus the perturbation.
• Step 4: Evaluation of the gradient approximation gkθk .
• Step 5: Update the vector of calibration parameters using Eq.4 along with the
corresponding constraints denoted by Eq.3.

• Step 6: Check for stopping criteria. If criteria is achieved, stop; otherwise, set
counter k = k + 1 and repeat Steps 1–6.

• Convergence is achievedwhen all the criteria in Table1 is satisfied or themaximum
number of iterations is reached.

2.4 Stopping Criteria

Stopping criteria is reached when the inequality in Eq. (4) is satisfied or a user pre-
specified maximum number of iterations is reached. At convergence, the calibration
criteria are expected to be satisfied or a significantly better model is obtained.

∑k
k−n+1

√
(N RM SAV − N RM Sk)2

n
< ρ (8)
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where,

• N RM SAV = average NRMS of the last n iterations
• N RM Sk = NRMS at k iteration
• k = iteration counter
• n = pre-specified integer = 10, and
• ρ = pre-specified convergence condition = 0.015.

3 Experiments and Results

3.1 Micro-simulation Model

The proposed methodology was tested using CORSIM, a tool that integrates two dif-
ferent models to represent a complete traffic system, FRESIM for freeways andNET-
SIM for surface streets [36, 42]. The TrafficAnalysis ToolboxVolume IV:Guidelines
for Applying CORSIM Micro-simulation Modelling Software [5] describes a pro-
cedure for the calibration of micro-simulation traffic flow models, with a focus on
CORSIM. The suggested procedure in these guidelines uses three sequential and
iterative steps, including the calibration of (i) capacity at key bottlenecks, (ii) traffic
volumes, and (iii) system performance. However, the guidelines do not suggest any
particular methodology to perform the calibration in an efficient and effective man-
ner. For example, issues associated with convergence and stability of the solutions
are not discussed. Nevertheless, alternative studies have proposed and developed
practical procedures to accelerate the calibration process, which typically is time
consuming [43]. However, stability and convergence still are issues.

3.2 Calibration Parameters for CORSIM Models

The calibration ofCORSIMmodels can involveDriverBehaviour andVehicle Perfor-
mance parameters [36, 42]. These parameters can be defined exclusively for surface
streets or freeways or both models simultaneously. In addition, the resolution of
these parameters can be global or link-based defined. This study considered all types
of parameters and levels of resolution. In addition, parameters related to demand
patterns were included. Table1 shows all the different parameters used for the cali-
bration of CORSIM models. Several studies have conducted sensitivity analysis for
the calibration of CORSIM models [8]. These studies have showed that the maxi-
mum non-emergency deceleration rate, for example, does not affect the outcomes of
a specific FRESIM model. However, the specific vehicle distributions improve the
accuracy of the model [8]. Driver behaviour parameters were found to affect the time
to breakdown and the flow on ramps. Flow related parameters showed low effects.
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Table 1 Calibration parameters for NETSIM and FRESIM models

NETSIM model surface streets

Driver behaviour Vehicle performance Demand patterns

• Queue discharge headway • Speed and acceleration
characteristics

• Surface street turn movements

• Start-up lost time • Fleet distribution and passenger
occupancy

• Distribution of free-flow speed by
driver type

• Mean duration of parking
manoeuvres

• Lane change parameters

• Maximum left and right turning
speeds

• Probability of joining spillback

• Probability of left turn jumpers and
laggers

• Gap acceptance at stop signs

• Gap acceptance for left and right
turns

• Pedestrian delays

• Driver familiarity with their path

FRESIM model-freeways

• Mean start-up delay at ramp meters • Speed and acceleration
characteristics

• Freeway turn movements

• Distribution of free flow speed by
driver type

• Fleet distribution and passenger
occupancy

• Incident rubbernecking factor • Maximum deceleration

• Car-following sensitivity factor

• Lane change gap acceptance
parameters

• Parameters that affect the number
of discretionary lane changes

The calibration parameters have different effects for specific networks and condi-
tions. The interaction between these parameters is very complex andmight vary from
model to model. As a starting point, the proposed methodology uses a set of default
CORSIM values for the parameters listed in Table1. This decreases the effort during
the selection of the calibration parameters and set-up. During calibration, the value
of the selected parameters is adjusted while constraining their boundaries in order to
avoid unrealistic values.

3.3 Experimental Set-Up and Results

Three experiments were designed to test the capabilities of the proposed methodol-
ogy to calibrate simultaneously, using vehicle counts and speeds. A software tool
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was developed to implement the proposed calibration methodology. The tool was
developed using a basic layered architecture were each layer handles a group of
related functions. A Graphical User Interface (GUI) provides access to the entire
software capabilities. The entire software was developed in Java; it includes more
than 5,000 lines of code.

System Specifications

• Operative System:Windows Server, Standard Edition, 2007, Service Pack 2 64Bit
• System: Intel Xeon CPU E7450 2.4GHz (4 processors)
• Ram memory: 32 GB

First Experiment: Pyramid Highway in Reno, Nevada, USA

In this experiment a CORSIM model for a portion of the Pyramid Highway in
Reno, Nevada, was calibrated. This portion of highway is located between Milepost
1.673 and 5.131. This calibration focused on speeds and link counts for the entire
simulation. The weight factor in the objective function was set to 0.7. This value
is constant for the first two experiments because link counts were obtained using
more accurate data collection methods compared to speeds. The model included 126
arterial links, and no freeways were included. Link counts and speeds were only
available for 45 of these links. Coefficients for the SPSA algorithm were selected
using guidelines from the literature [18]). These values affected the convergence of
the algorithm. The time required for calibration was 25.5min.

Figure1a shows a Google map of the Pyramid Highway. Figure1b illustrates the
corresponding CORSIM model. Figure2 illustrates how the objective function was
minimized. The noisy trajectory was a consequence of the stochastic perturbation
applied to all calibration parameters to obtain the gradient approximation at each
iteration. The characteristics of the traffic model made the function noisier due to
rounding. The NRSM was 0.042 before calibration and 0.010 after calibration. The
calibration process stopped around the 80th iteration, when a stable regionwas found.

Figure3a shows the actual and simulated counts and speeds before calibration.
These values present poor initial conditions, especially for the volumes over 1500
vehicles per hour (vph). Figure3b shows the actual and simulated counts and speeds
after calibration. The proposed methodology is able to reduce the gap between actual
and simulated counts. The results illustrate larger improvements for the large counts.
Figure3a clearly shows that links with counts over 1500 vph were improved, while
the values with good initial conditions were slightly modified.

As illustrated in Fig. 3a, simulated speeds are far from actual speeds. The simula-
tion model underestimates many speed values. After calibration (Fig. 3a), the speeds
were improved for 23 of the links. The rest of the speeds were kept close to the initial
values with a variation less than 1 mile per hour (mph). This can be associated to the
relative large value of the weight assigned to the counts in the objective function (W
= 0.7). In addition, the experimental results show that link counts are more sensi-
tive than speeds to changes in the calibration parameters. The GEH statistics for the
models before and after calibration are shown in Table2. This statistic is included in
our analysis because it is recommended by the Traffic Analysis Tool-box [5]. It is
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Fig. 1 Pyramid highway, Reno, Nevada, USA (a) google map and CORSIMmodel (b) for the first
experiment

Fig. 2 Objective function
for the first experiment

clear that the calibrationmodel significantly improves the GEH statistic. All the links
reach a GEH statistic less or equal to 5, thereby satisfying the calibration criteria. The
results show that the three calibration criteria are satisfied. In general, the proposed
methodology was able to improve significantly the model outcomes.

Table2 summarizes the calibration results for the first experiment. The total dif-
ference between actual and simulated link counts is 6% for all links in the network.

A sensitivity analysis was conducted using the Pyramid Highway model. With
W = 0.5 and W = 1.0 the difference between simulated and link counts increased
significantly.



44 A. Paz et al.

Fig. 3 Actual versus simulated counts and speeds before (a) and after (b) calibration, for the first
experiment

Table 2 Summary of calibration results for the first experiment

NRMS Total link counts GEH

Before calib. 0.042 45,359 <5 for 74% of the cases

After calib. 0.010 55,882 <5 for 100% of the cases

Actual 59,610

Second Experiment: I-75 in Miami, Florida, USA

In this experiment, a portion of I-75 in Miami, Florida was calibrated. A total
of 375 freeway ramps and 334 arterial links were included in the model. Data was
available for 353 freeway ramps and 59 arterial links for a morning peak period of
one hour. The coefficients of the SPSA algorithm were the same as those used in the
first experiment. All the calibration parameters in the network were included as well
as the turning volumes for freeways and arterials. The weight factor in the objective
function was set to 0.7. The time required for calibration was 125min.

Figure4a shows the Google map of I-75 highway in Miami, Florida, USA.
Figure4b illustrates the corresponding CORSIM model.

Figure5 illustrates the trajectory of the objective function for this experiment. The
NRMS goes from 0.270 to 0.245.
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Fig. 4 I-75 in Miami, Florida, USA (a) google map and CORSIM model (b), for the second
experiment

Fig. 5 Objective function
for the second experiment

Figure6a illustrates the link counts for the ramp segments in the model before
calibration. Figure6b shows the link counts for the ramps after calibration. These
results clearly show that the calibration process significantly reduces the difference
between actual and simulated link counts. It is clear that the calibration model sig-
nificantly improves the GEH statistic. 99.6% of the links reach a GEH statistic less
or equal to 5, thereby satisfying the calibration criteria.
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Fig. 6 Links counts before
(a) and after (b) calibration
for freeway ramps in the
network (second experiment)

Fig. 7 Links counts before
(a) and after (b) calibration
for arterials in the network
(second experiment)

Figure7a illustrates the link counts for the arterials before calibration. Figure7b
shows the link counts for the ramps after calibration. These results show that there
is significant improvement for links with large link counts. The calibration model
significantly improves the GEH statistic. Seventy-six percent (76%) of the freeway
ramp links reach a GEH statistic less or equal to 5.

Figures6 and 7 together show that the calibration methodology provides better
results for freeway ramps than for arterials. This could be a consequence of having
more data available for freeway ramps than for arterials, thereby giving more weight
to the ramps.

Table3 shows the ‘before’ and ‘after’ GEH statistics. As illustrated, the calibration
improves the statistics, especially for the highest GEHs. However, some GEH values
need to be improved because they are over 5.

Table 3 Summary of calibration results for the second experiment

Total link counts (vph) GEH

Freeway Before calib. 234,928.2 <5 for 86% of the cases

After calib. 257,454.1 <5 for 99.6% of the cases

Actual 271,908

Arterials Before calib. 61,097 <5 for 66% of the cases

After calib. 68,927 <5 for 76% of the cases

Actual 80,524
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Fig. 8 CORSIM Model for the third experiment: network from McTrans sample datasets

Third Experiment: Network from McTrans Sample Datasets

In this experiment, a network with arterials from McTrans official web page was
calibrated. A total of 20 arterial links were included in the model. Data was available
for all arterial links. Figure 8 shows the CORSIM model for this experiment. The
time required for calibration was 10min.

The total simulation time was 1 h divided in 4 time periods t of 15min each (T
= 4). In this experiment, all parameters for all links for all four time periods were
updated. The coefficients of the SPSA algorithm were the same as those used in the
previous experiments. All the calibration parameters in the network as well as the
turning volumes were included. The weight factor in the objective function was set
to 0.7.

Figure 9 illustrates the trajectory of the objective function corresponding to the
third experiment. The initial NRMS value is 0.51, while the minimum obtained after
100 iterations of the optimization algorithm is 0.09.

Fig. 9 Objective function
for the third experiment
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Fig. 10 Actual versus simulated counts and speeds before (a) and after (b) calibration for time
period 1, (third experiment)

Figure10 illustrates the link counts and speeds before and after the calibration
results for all links in the network for the first time period of the simulation. These
results clearly show that the calibration process significantly reduces the difference
between actual and simulated link counts and speeds.

Similar to Fig. 10, Table4 shows the summary of link counts and speeds for all
links in the network for the second, third, and fourth simulation time period, respec-
tively. The calibrated results are significantly closer to the actual values, relative
to the ‘before calibration’ results. In addition, all links have a GEH statistic below
the threshold limit of 5 for all time periods. Speeds were improved for most links
especially for values less than 20 mph.

In this experiment, optimal parameters for the model were determined in order
to reproduce time-dependent link counts and speeds. The calibrated parameters took
a single value during the entire simulation process; that is, they were not time-
dependent. In contrast, the link counts and speedswere time-dependent. These results
illustrate the ability of the proposed calibration methodology to adjust model para-
meters so as to calibrate the time-dependent link counts and speeds.

The summary of the results are showed in Table4.
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Table 4 Summary of the calibration results for the third experiment

Goalkeeper GK Total link counts (vph) GEH

Time period 1 Before calib. 10,126 <5 for 10% of the cases

After calib. 17,136 <5 for 100% of the cases

Actual 17,276

Time period 2 Before calib. 13,498 <5 for 10% of the cases

After calib. 22,625 <5 for 100% of the cases

Actual 22,891

Time period 3 Before calib. 10,502 5 for 0% of the cases

After calib. 17,820 <5 for 100% of the cases

Actual 18,767

Time period 4 Before calib. 10,533 <5 for 0% of the cases

After calib. 17,939 <5 for 95% of the cases

Actual 19,013

4 Conclusions

This study proposed a methodology for the calibration of micro-simulation traffic
flow models. The design and implementation of this methodology seeks to enable
the calibration of generalized models. The proposed calibration methodology was
developed independent of characteristics for any particular microscopic traffic flow
simulation model. It minimizes the difference between actual and simulated time
dependent link counts and speeds by considering all model parameters and turning
volumes simultaneously.

The methodology used the Simultaneous Perturbation Stochastic Approximation
(SPSA) algorithm to determine the calibrated set of model parameters. Previous
studies have proposed the use of the SPSA algorithm for the calibration of vehic-
ular traffic systems; however, few parameters were considered, and the calibration
typically was based on a single performance measure, usually link counts. During
the experiments developed, the proposed algorithm always reached convergence and
stability.

The proposed methodology was tested using CORSIM models. However, there
is nothing preventing the implementation of the proposed methodology for the cal-
ibration of other models. Three different vehicular traffic systems were calibrated,
taking into consideration all their model parameters by using various performance
measures, including link counts and speeds. The first experiment included arterials,
using as performance measures link counts and speeds. The second system included
both arterials and freeways. Considering arterials and freeways represented a sig-
nificant challenge because two different models with different parameters needed to
be considered simultaneously. The third experiment included time-dependent link
counts and speeds for four time periods during this experiment; in addition, global,
individual, and time-dependent parameters were considered. Further analysis was
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required to determine the weight factor, W. This value was set constant because
link counts were obtained using more accurate data collection methods compared to
speeds. Information about the data collection and data quality can be used to set the
weight factor.

The experimental results illustrated the effectiveness of the proposed methodol-
ogy. The three vehicular traffic systems used in this study were successfully cali-
brated; specifically, the calibration criteria were satisfied after the calibration was
performed. The results from the first and third experiment showed that speeds were
improved after the calibration. The quality of the second vehicular traffic system
improved significantly. However, further sensitivity analysis of the parameters used
by the SPSA algorithm is required to achieve better results and satisfy the calibra-
tion criteria. These parameters were chosen using sensitivity analysis. A pattern to
find optimal values for the SPSA parameters was not found. Further, as the number
of parameters required for calibration increases, the complexity of the optimization
problem also increases as well as the complexity to determine the set of required
optimization coefficients.

The same set of calibration parameters was used in all the experiments. There-
fore, any effort during parameter selection has been reduced. The results were
improved for the entire model. All calibrated parameters were within reasonable
boundaries. Similarly, no irregularities were observed using the graphical user inter-
face. The calibration software developed in this study can be downloaded, along
with a user’s guide and examples, using this link: http://faculty.unlv.edu/apaz/files/
CalibrationToolDemo.zip. Hence, the reviewers can replicate the results from this
study.

The calibration tool developed as part of this study used an optimization algorithm
that required a set of coefficients to find the appropriate set of CORSIM model
parameters. A time-consuming sensitivity analysis of these coefficients was required
to achieve desired results.

A bi-level optimization framework is required to enable the simultaneous calibra-
tion of traffic flow and SPSA parameters. The first level of the bi-level framework
represents the existing calibration tool developed as part of the existing project,whose
objective was the calibration of CORSIM models under saturated conditions. Here,
andSimultaneous Perturbation StochasticApproximation (SPSA) optimization algo-
rithmwas used to determine the appropriate calibration parameters. The second level
of the proposed bi-level framework corresponds to future research, whose objective
is to automate the sensitivity analysis that is required to find the right set of optimiza-
tion coefficients for the SPSA algorithm. A parallel paper currently under review
describes the proposed bi-level framework.
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