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Abstract Fatigue has been played a key role into the design process of structures,
since many failures of them are attributed to repeated loading and unloading con-
ditions. Crack growth due to fatigue, represents a critical issue for the integrity and
resistance of structures and several numerical methods mainly based on fracture
mechanics have been proposed in order to address this issue. Apart from loading,
the shape of the structures is directly attributed to their service life. In this study,
the extended finite element is integrated into a shape design optimization framework
aiming to improve the service life of structural components subject to fatigue. The
relation between the geometry of the structural component with the service life is
also examined. This investigation is extended into a probabilistic design framework
considering both material properties and crack tip initialization as random variables.
The applicability and potential of the formulations presented are demonstrated with
a characteristic numerical example. It is shown that with proper shape changes, the
service life of structural component can be enhanced significantly. Comparisons with
optimized shapes found for targeted service life are also addressed, while the choice
of initial imperfection position and orientation was found to have a significant effect
on the optimal shapes.

1 Introduction

The failure process of structural systems is considered among the most challenging
phenomena in solid and structural mechanics. Despite of the advances achieved
over the past decades in developing numerical simulation methods for modeling
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such phenomena, there are issues still open to be addressed for accurately describing
failuremechanisms at themacro aswell as at themicro level. Reliability and accuracy
of the numerical description of failure process, plays an important role for the design
of newmaterials aswell as for understanding their durability and resistance to various
loading conditions.

In case of structural components subjected to cycling loading, fatigue plays an
important role to their residual service life. When loading exceeds certain threshold
value, microscopic cracks begin to form that propagate and possibly lead to fracture.
Additionally, the shape of these components is a key parameter that significantly
affects their residual service life and designers can control. Square holes or sharp
corners lead to increased local stresses where fatigue cracks can initiate whereas
round holes and smooth transitions or fillets will increase fatigue strength of the
component. Hence, it is required not only a reliable simulation tool for crack growth
analysis able to predict the crack paths and accurately describe the stiffness degra-
dation due to damage, but also there is a need for an optimization procedure capable
to identify improved designs of the structural components with regard to a targeted
service life.

Limitations of the analytical methods in handling arbitrary complex geometries
and crack propagation phenomena led to the development of numerical techniques
for solving fracture mechanics problems. In recent years, finite elements with enrich-
ments have gained increasing interest in modeling material failure, with the extended
finite element method (XFEM) being the most popular of them. XFEM [50] is capa-
ble of modeling discontinuities within the standard finite element framework and
its efficiency increases when coupled with the level set method (LSM) [52]. In this
framework, Edke and Chang [13] presented a shape sensitivity analysis method for
calculating gradients of crack growth rate and crack growth direction for 2D struc-
tural components undermixed-mode loading, by overcoming the issues of calculating
accurate derivatives of both crack growth rate and direction. This work was further
extended [14] to a shape optimization framework to support design of 2D struc-
tural components again under mixed-mode fracture for maximizing the service life
and minimizing their weight. Furthermore, Li et al. [46] proposed elegant XFEM
schemes for LSMbased structural optimization, aiming to improve the computational
accuracy and efficiency of XFEM, while Wang et al. [64] considered a reanalysis
algorithm based on incremental Cholesky factorization which is implemented into
an optimization algorithm to predict the angle of crack initiation from a hole in a
plate with inclusion.

Many numerical methods have been developed over the last four decades in
order to meet the demands of design optimization. These methods can be classi-
fied in two categories, gradient-based and derivative-free ones. Mathematical pro-
gramming methods are the most popular methods of the first category, which make
use of local curvature information, derived from linearization of objective and con-
straint functions and by using their derivatives with respect to the design variables
at points obtained in the process of optimization. Heuristic and metaheuristic algo-
rithms are nature-inspired or bio-inspired procedures that belong to the derivative-
free category of methods. Metaheuristic algorithms for engineering optimization
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include genetic algorithms (GA) [34], simulated annealing (SA) [38], particle swarm
optimization (PSO) [37], ant colony algorithm (ACO) [12], artificial bee colony
algorithm (ABC) [27], harmony search (HS) [23], cuckoo search algorithm [67],
firefly algorithm (FA) [66], bat algorithm [68], krill herd [20], and many others.
Evolutionary algorithms (EA) are among the most widely used class of meta-
heuristic algorithms and in particular evolutionary programming (EP) [19], genetic
algorithms [26, 34], evolution strategies (ES) [55, 59] and genetic programming
(GP) [39].

The advancements in reliability theory of the past 30 years and the development
of more accurate quantification of uncertainties associated with system loads, mate-
rial properties and resistances have stimulated the interest in probabilistic treatment
of systems [58]. The reliability of a system or its probability of failure constitute
important factors to be considered during the design procedure, since they character-
ize the system’s capability to successfully accomplish its design requirements. First
and second order reliability methods, however, that have been developed to assess
reliability, they require prior knowledge of the means and variances of component
random variables and the definition of a differentiable limit-state function. On the
other hand, simulation based methods are not restricted by form and knowledge of
the limit-state function but many of them are characterized by high computational
cost.

In this study, XFEM and LSM are integrated into a shape design optimization
framework, aiming to investigate the relation between geometry and fatigue life
in the design of 2D structural components. Specifically, shape design optimization
problems are formulated within the context of XFEM, where the volume of the
structural component is to be minimized subjected to constraint functions related
to targeted service life (minimum number of fatigue cycles allowed) when material
properties and crack tip initialization are considered as random variables. XFEM is
adopted to solve the crack propagation problem as originally proposed byMoës et al.
[50] and Stolarska et al. [61], with the introduction of adaptive enrichment technique
and the consideration of asymptotic crack tip fields and Heaviside functions. XFEM
formulation is particularly suitable for this type of problem since mesh difficulties
encountered into a CAD-FEM shape optimization problem are avoided by working
with a fixed mesh approach. In association to XFEM, the level set description is
used to describe the geometry providing also the ability to modify the CAD model
topology during the optimization process. Nature inspired optimization techniques
have been proven to be computationally appealing, since they have been found to be
robust and efficient even for complex problems and for this purpose are applied in
this study. An illustrative example of a structural component is presented, and the
results show that, with proper shape changes, the service life of structural systems
subjected to fatigue loads can be enhanced. Comparisons between optimized shapes
obtained for various targeted fatigue life values are also addressed, while the location
of the initial imperfection along with its orientation were found to have a significant
effect on the optimal shapes for the components examined [24].
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2 Handling Fatigue Using XFEM

Fatigue growth occurs because of inelastic behavior at the crack tip. The present study
is focused on 2Dmixed-mode linear elastic fracture mechanics (LEFM) formulation,
where the size of plastic zone is sufficiently small and it is embeddedwithin an elastic
singularity zone around the crack tip.

2.1 Fatigue Crack Growth Analysis at Mixed-Mode Loading

In order to quantify crack growth around the crack tip in the presence of constant
amplitude cyclic stress intensity, the basic assumptions of LEFM are employed. The
conditions at the crack tip are uniquely defined by the current value of the stress
intensity factors (SIFs) K . For extractiing mixed-mode SIFs, the domain form of
the interaction energy integral [70] is used, based on the path independent J-integral
[56], providing mesh independency and easy integration within the finite element
code. When both stress intensity factors (K I , KII) are known, the critical direction
of crack growth θc as well as the number of fatigue cycles N can easily be computed.

2.1.1 Computation of the Crack Growth Direction

The accuracy and reliability of the analysis of a cracked body depends primarily
on continuity and accurate determination of the crack path. It is therefore important
to select the crack growth criteria very carefully. Among the existing criteria, the
maximum hoop stress criterion [17], is used in this study. The crack growth criterion
states that (i) crack initiation will occur when the maximum hoop stress reaches a
critical value and (ii) crack will grow along direction θcr in which circumferential
stress σθθ is maximum.

Then the circumferential stress σrθ (see Fig. 1) along the direction of crack prop-
agation is a principal stress, hence the crack propagation direction θcr is determined
by setting the shear stress equal to zero, i.e.:

Fig. 1 Polar coordinates in
the crack tip coordinate
system

crack tip
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It is worthmentioning that according to this criteria, the maximum propagation angle
θcr is limited to 70.5◦ for pure Mode II crack propagation problems.

2.1.2 Computation of Fatigue Cycles

Fatigue crack growth is estimated using Paris law [53], which is originally proposed
for single mode deformation cases, relating the crack propagation rate under fatigue
loading to SIFs. For the case of mixed-mode loading, a modified Paris law can be
expressed using the effective stress intensity factor rangeΔKeff = Kmax − Kmin. For
a certain fatigue loading level, where the crack grows by length Δa in ΔN cycles,
Paris law reads:

Δa

ΔN
≈ da

d N
= C(ΔKeff)

m (3)

where C and m are empirical material constants. m is often called as the Paris
exponent and is typically defined in the range of 3–4 for common steel and aluminium
alloys. Equation3 represents a linear relationship between log(ΔKeff) and log( da

d N )

which is used to describe the fatigue crack propagation behavior in region II (see
Fig. 2). For calculating the effectivemixed-mode stress intensity factorΔKeff, various
criteria have been proposed in the literature. In this study, the energy release rate
model has been adopted, leading to:

ΔKeff =
√

ΔK 2
I + ΔK 2

II (4)

and consequently, the number of the corresponding cycles is computed according
to [2]:

ΔN = Δa

C(ΔKeff)m
(5)
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Fig. 2 Logarithmic crack
growth rate and effective
region of Paris law
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2.1.3 Fracture Toughness

Similar to the strength of materials theory where the computed stress is compared
with an allowable stress defining the material strength, LEFM assumes that unstable
fracture occurs when SIF K reaches a critical value Kc, called fracture toughness,
which represents the potential ability of a material to withstand a given stress field
at the crack tip and to resist progressive tensile crack extension. In other words, Kc

is a material constant and is used as a threshold value for SIFs in each pure fracture.
In XFEM, special functions are added to the finite element approximation based

on the partition of unity (PU) [3]. Finite elementmesh is generated and then additional
degrees of freedom are introduced to selected nodes of the finite element model near
to the discontinuities in order to provide a higher level of accuracy. Hence quasi-static
crack propagation simulations can be carried out without remeshing, bymodeling the
domain with standard finite elements without explicitly meshing the crack surfaces.

2.2 Modeling the Crack Using XFEM

For crack modeling in XFEM, two types of enrichment functions are used: (i) The
Heaviside (step) function and (ii) the asymptotic crack-tip enrichment functions taken
from LEFM [2]. The displacement field can be expressed as a superposition of the
standard ustd, crack-split uH and crack-tip utip fields as:

u(x) = ustd + uenr = ustd + uH + utip (6)



Reliability-Based Shape Design Optimization of Structures … 457

or more explicitly:

u(x) =
n∑

j=1

N j (x)u j +
nh∑

h=1

Nh(x)H(x)ah +
nt∑

k=1

Nk(x)
( n f∑

l=1

Fl(x)bl
k

)
(7)

where n is the number of nodes in each finite element with standard degrees of
freedom u j and shape functions N j (x), nh is the number of nodes in the elements
containing the crack face (but not crack tip), ah is the vector of additional degrees of
freedom for modeling crack faces by the Heaviside function H(x), nt is the number
of nodes associated with the crack tip in its influence domain, bl

k is the vector of
additional degrees of freedom for modeling crack tips. Finally, Fl(x) are the crack-
tip enrichment functions, given by:

{Fl(r, θ)}4l=1 =
{√

r sin(
θ

2
);√

r cos(
θ

2
);√

r sin(
θ

2
) sin(θ);√

r cos(
θ

2
) sin(θ)

}
(8)

The elements which are completely cut by the crack, are enriched with the Heaviside
(step) function H . The Heaviside function is a discontinuous function across the
crack surface and is constant on each side of the crack. Splitting the domain by the
crack causes a displacement jump and Heaviside function gives the desired behavior
to approximate the true displacement field.

The first contributing part (ustd) on the right-hand side of Eq. (7) corresponds
to the classical finite element approximation to determine the displacement field,
while the second part (uenr) refers to the enrichment approximation which takes into
account the existence of any discontinuities. This second contributing part utilizes
additional degrees of freedom to facilitate modeling of the discontinuous field, such
as cracks, without modeling it explicitly.

3 The Structural Optimization Problem

Structural optimization problems are characterized by objective and constraint func-
tions that are generally non-linear functions of the design variables. These functions
are usually implicit, discontinuous and non-convex. In general there are three classes
of structural optimization problems: sizing, shape and topology problems. Structural
optimization was focused at the beginning on sizing optimization, such as optimizing
cross sectional areas of truss and frame structures, or the thickness of plates and shells
and subsequently later, the problem of finding optimum boundaries of a structure and
optimizing its shape was also considered. In the former case the structural domain is
fixed, while in the latter case it is not fixed but it has a predefined topology.

The mathematical formulation of structural optimization problems can be exp-
ressed in standard mathematical terms as a non-linear programming problem, which
in general form can be stated as follows:
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opt: F(s)

subject to: g j (s) ≤ 0, j = 1, . . . , k

slow
i ≤ si ≤ sup

i , i = 1, . . . , n

(9)

where s is the vector of design variables, F(s) is the objective function to be
optimized (minimized or maximized), g j (s) are the behavioral constraint functions,
while slow

i and sup
i are the lower and upper bounds of the i th design variable. Due

to fabrication limitations the design variables are not always continuous but dis-
crete since cross-sections or dimensions belong to a certain design set. A discrete
structural optimization problem can be formulated in the form of Eq. (9) where
si ∈ �d , i = 1, 2, . . . , n where �n

d is a given set of discrete values representing for
example the available structural member cross-sections or dimensions and design
variables s can take values only from this set.

3.1 Shape Optimization

In structural shape optimization problems the aim is to improve the performance of
the structural component bymodifying its boundaries [4, 6, 28, 60]. All functions are
related to the design variables, which are coordinates of key points in the boundary
of the structure. The shape optimization methodology proceeds with the following
steps:

(i) At the outset of the optimization, the geometry of the structure under investiga-
tion has to be defined. The boundaries of the structure are modeled using cubic
B-splines that, are defined by a set of key points. Some of the coordinates of
these key points will be considered as design variables.

(ii) An automatic mesh generator is used to create the finite element model. A finite
element analysis is carried out and displacements, stresses are calculated.

(iii) The optimization problem is solved; the design variables are improved and the
new shape of the structure is defined. If the convergence criteria for the search
algorithm are satisfied, then the optized solution has been found and the process
is terminated, else a new geometry is defined and the whole process is repeated
from step (ii).

3.2 XFEM Shape Optimization Considering Uncertainties

In this study, two problem formulations are considered, a deterministic and a prob-
abilistic one. According to the deterministic formulation, the goal is to minimize
the material volume expressed by optimized geometry of the structural component
subject to constraints related to the minimum service life allowed (calculated using
fatigue cycles as described in Sect. 2.1.2).



Reliability-Based Shape Design Optimization of Structures … 459

3.2.1 Deterministic Formulation (DET)

The design problem for the deterministic formulation (DET) is defined as:

min: V (s)

subject to: N (s) ≥ Nmin

slow
i ≤ si ≤ sup

i , i = 1, 2, . . . , n

(10)

V is the volume of the structural component, si are the shape design variables with
lower and upper limits slow

i and sup
i , respectively, and N is the service life in terms

of number of fatigue cycles with the lower limit of Nmin.

3.2.2 Probabilistic Formulation (PROB)

The probabilistic design problem (PROB) is defined as:

min: V (s)

subject to: N̄ (s, x) ≥ Nmin

slow
i ≤ si ≤ sup

i , i = 1, 2, . . . , n

x j ∼ fx (μx , σ
2
x ) j = 1, 2, . . . , nr

(11)

where s and x are the vectors of the design and random variables, respectively, N̄ is
the mean number of fatigue cycles.

The probabilistic quantity N̄ of Eq. (11) is calculated bymeans of the Latin hyper-
cube sampling (LHS) method. LHS was introduced by McKay et al. [49] in an effort
to reduce the required computational cost of purely random samplingmethodologies.
LHS can generate variable number of samples well distributed over the entire range
of interest. A Latin hypercube sample is constructed by dividing the range of each of
the nr uncertain variables into M non-overlapping segments of equal marginal prob-
ability. Thus, the whole parameter space, consisted of M parameters, is partitioned
into Mnr cells. A single value is selected randomly from each interval, producing M
sample values for each input variable. The values are randomly matched to create
M sets from the Mnr space with respect to the density of each interval for the M
simulations.

4 Metaheuristic Search Algorithms

Heuristic algorithms are based on trial-and-error, learning and adaptation proce-
dures in order to solve problems. Metaheuristic algorithms achieve efficient perfor-
mance for a wide range of combinatorial optimization problems. Four metaheuristic
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algorithms that are based on the evolution process are used in the framework of this
study. In particular evolution strategies (ES), covariance matrix adaptation (CMA),
elitist covariance matrix adaptation (ECMA) and differential evolution (DE) are
employed. Details on ES, CMA and ECMA can be found in the work by Lagaros
[42], while the version of DE implemented in this study is briefly outlined below.

4.1 Evolution Strategies (ES)

Evolutionary strategies are population-based probabilistic direct search optimization
algorithm gleaned from principles of Darwinian evolution. Starting with an initial
population of μ candidate designs, an offspring population of λ designs is created
from the parents using variation operators. Depending on the manner in which the
variation and selection operators are designed and the spaces in which they act,
different classes of ES have been proposed. In ES algorithm employed in this study
[55, 59], each member of the population is equipped with a set of parameters:

a = [(sd , γ ), (sc, σ ,α)] ∈ (Id , Ic)

Id = Dnd × R
nγ

+ (12)

Ic = Dnc × Rnσ+ × [−π, π ]nα

where sd and sc, are the vectors of discrete and continuous design variables defined in
the discrete and continuous design sets Dnd and Rnc , respectively. Vectors γ, σ and
α, are the distribution parameter vectors taking values in R

nγ

+ , Rnσ+ and [−π, π ]nα ,
respectively. Vector γ corresponds to the variances of the Poisson distribution.
Vector σ ∈ Rnσ+ corresponds to the standard deviations (1 � nσ � nc) of the
normal distribution. Vector α ∈ [−π, π ]nα is related to the inclination angles
(nα = (nc −nσ /2)(nσ −1)) defining linearly correlated mutations of the continuous
design variables sd , where n = nd + nc is the total number of design variables.

Let P(t) = {a1, . . . , aμ} denotes a population of individuals at the t-th generation.
The genetic operators used in the ESmethod are denoted by the followingmappings:

rec: (Id , Ic)
μ −→ (Id , Ic)

λ (recombination)

mut : (Id , Ic)
λ −→ (Id , Ic)

λ (mutation) (13)

selk
μ: (Id , Ic)

k −→ (Id , Ic)
μ (selection, k ∈ {λ,μ + λ})

A single iteration of the ES, which is a step from the population Pt
p to the next parent

population Pt+1
p is modeled by the mapping:

optE A: (Id , Ic)
μ
t −→ (Id , Ic)

μ
t+1 (14)
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Algorithm 1 ES algorithm
1: t = 0
2: initialize(P(t = 0))
3: evaluate(P(t = 0))
4: repeat:
5: Pp(t) = selectBest(μ, P(t))
6: Pc(t) = reproduce(λ, PP p)

7: mutate(Pc(t))
8: evaluate(Pc(t))
9: if UsePlusStrategy then
10: P(t + 1) = Pc(t) ∪ P(t)
11: else
12: P(t + 1) = Pc(t)
13: end if
14: t = t + 1
15: until isNotTerminated()

4.2 Covariance Matrix Adaptation (CMA)

The covariance matrix adaptation, proposed by Hansen and Ostermeier [30] is a
completely de-randomized self-adaptation scheme. First, the covariance matrix of
the mutation distribution is changed in order to increase the probability of producing
the selected mutation step again. Second, the rate of change is adjusted according to
the number of strategy parameters to be adapted. Third, under random selection the
expectation of the covariance matrix is stationary. Further, the adaptation mechanism
is inherently independent of the given coordinate system. The transition from gen-
eration g to g + 1, given in the following steps, completely defines the Algorithm 2.

Generation of offsprings. Creation of λ new offsprings as follows:

sg+1
k ∼ N (m(g), σ (g)2C(g)) ∼ m(g) + σ (g)N (0, C(g)) (15)

where sg+1
k ∈ �n is the design vector of the kth offspring in generation g + 1, (k =

1, ..., λ), N (m(g), C(g)) are normally distributed random numbers where m(g) ∈ �n

is the mean value vector and C(g) is the covariance matrix while σ (g) ∈ �+ is the
global step size. To define a generation step, the new mean value vector m(g+1),
global step size σ (g+1), and covariance matrix C(g+1) have to be defined.

New mean value vector. After selection scheme (μ, λ) operates over the λ off-
springs, the new mean value vector m(g+1) is calculated according to the following
expression:

m(g+1) =
μ∑

i=1

wi s
(g+1)
i :λ (16)
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Algorithm 2 CMA algorithm
1: initialize λ,μ, wi=1,...,μ, μeff, cσ , dσ , cc, μcov, ccov

2: initialize C(t) ∈ In, m(t) = ones(n × 1), p(t) = zeros(n × 1)

3: repeat:

4: xi (t) ∼ N (m(t), σ 2(t)C(t)) for i = 1, . . . , λ

5: m(t + 1) = ∑μ
i=1 wi xi (t)

6: pc(t) = (1 − cc)pc(t − 1) + √
cc(2 − cc)μeff

(m(t+1)−m(t)
σ (t)

)

7: C(t + 1) = (1 − ccov)C(t) + ccov(1 − 1
μcov

)
∑μ

i=1 wiOP
( xi (t)−m(t)

σ (t)

) +
ccov
μcov

OP(pc(t))

8: pσ (t) = (1 − cσ )pσ (t − 1) + √
cσ (2 − cσ )μeffC(t)− 1

2
m(t+1)−m(t)

σ (t)

9: σ(t + 1) = σ(t)exp
( cσ

dσ

( ‖pσ (t)‖
E(‖N (0,I)‖) − 1

))

10: until stopping criterion is met

where s(g+1)
i :λ is the i th best offspring and wi are the weight coefficients.

Global step size. The new global step size is calculated according to the following
expression:

σ (g+1) = σ (g)exp

(
cσ

dσ

(
‖p(g+1)

σ ‖
E‖N (0, I)‖ − 1

))
(17)

while the matrix C(g)
− 1
2 is given by:

C(g)
− 1
2 = B(g)D(g)−1

B(g)T
(18)

where the columns of B(g) are an orthogonal basis of the eigenvectors of C(g) and
the diagonal elements of D(g) are the square roots of the corresponding positive
eigenvalues.

Covariance matrix update. The new covariance matrix C(g+1) is calculated from
the following equation:

C(g+1) = (1 − ccov)C(g) + ccov
μcov

p(g+1)
c p(g+1)T

c

+ ccov

(
1 − 1

μcov

) μ∑
i=1

wi O P

(
s(g+1)

i :λ − m(g)

σ (g)

)
(19)

OP denotes the outer product of a vector with itself and p(g)
c ∈ �n is the evolution

path (p(0)
c = 0).
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4.3 Elitist Covariance Matrix Adaptation (ECMA)

Elitist CMA evolution strategies algorithm is a combination of the well-known
(1 + λ)-selection scheme of evolution strategies [55], with covariance matrix adap-
tation [35]. The original update rule of the covariance matrix is applied to the
(1 + λ)-selection while the cumulative step size adaptation (path length control)
of the CMA(μ/μ, λ) is replaced by a success rule based step size control. Every
individual a of the ECMA algorithm is comprised of five components:

a = {s, psucc, σ, pc, C} (20)

where s is the design vector, psucc is a parameter that controls the success rate
during the evolution process, σ is the step size, pc is the evolution path and C is
the covariance matrix. Contrary to CMA, each individual has its own step size σ ,
evolution path pc and covariance matrix C. A pseudo code of the ECMA algorithm

Algorithm 3 (1 + λ)-ECMA

1: g = 0, initialize a(g)
parent

2: repeat

3: a(g+1)
parent ← a(g+1)

parent

4: for k = 1, . . . , λ do

5: s(g+1)
k ∼ N (s(g)

parent, σ
(g)2C(g))

6: end for

7: UpdateStepSize

(
a(g+1)
parent ,

λ
(g+1)
succ
λ

)

8: if f (s(g+1)
1:λ ) < f (s(g)

parent) then

9: x(g+1)
parent ← x(g+1)

1:λ
10: UpdateCovariance

(
a(g+1)
parent ,

s(g+1)
parent −s(g)

parent

σ
(g)
parent

)

11: end if

12: until stopping criterion is met

is shown in Algorithm 3. In line #1 a new parent a(g)
parent is generated. In lines #4–6, λ

new offsprings are generated from the parent vector a(g)
parent . The new offsprings are

sampled according to Eq. (8), with variable m(g) being replaced by the design vector
s(g)

parent of the parent individual. After the λ new offsprings are sampled, the parent’s
step size is updated by means of U pdateStepSi ze subroutine (see Procedure 4).
The arguments of the subroutine are the parent a(g)

parent and the success rate λ
(g+1)
succ /λ,

whereλ
(g+1)
succ is the number of offsprings having better fitness function than the parent.
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The step size update is based upon the 1/5 success rule, thuswhen the ratioλ
(g+1)
succ /λ is

larger than 1/5 step size increases, otherwise step size decreases. If the best offspring
has a better fitness value than the parent, it becomes the parent of the next generation
(see lines #8–9), and the covariance matrix of the new parent is updated by means of
U pdateCovariance subroutine (see Procedure 5). The arguments of the subroutine
are the current parent and the step change:

s(g+1)
parent − s(g)

parent

σ
(g)
parent

(21)

The update of the evolution path and the covariance matrix depends on the success
rate:

psucc = λsucc

λ
(22)

If the success rate is below a given threshold value pthresh then the step size is taken
into account and the evolution path and the covariance matrix is updated (see lines
#2–3 of Procedure 5). If the success rate is above the given threshold pthresh the step
change is not taken into account and evolution path and covariance matrix happens
are updated (see lines #5–6).

Procedure 4 UpdateSizeState
(
a = {s, psucc, σ, pc, C}, psucc

)

1: psucc ← (1 − cp)psucc + cp psucc

2: σ ← σexp

(
1

d

(
psucc − ptarget

succ

1 − ptarget
succ

(1 − psucc)

))

Procedure 5 UpdateCovariance
(
a = {s, psucc, σ, pc, C}, sstep ∈ �n

)

1: if psucc < pthresh then

2: pc ← (1 − cc)pc + √
cc(2 − cc)xstep

3: C ← (1 − ccov)C + ccovpcpT
c

4: else

5: pc ← (1 − cc)pc

6: C ← (1 − ccov)C + ccov(pcpT
c + cc(2 − cc)C)

7: end if
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4.4 Differential Evolution (DE)

Storn and Price [62] proposed a floating point evolutionary algorithm for global
optimization and named it differential evolution (DE), by implementing a special
kind operator in order to create offsprings from parent vectors. Several variants of
DE have been proposed so far [9]. According to the variant implemented in the
current study, a donor vector vi,g+1 is generated first:

vi,g+1 = sr1,g + F · (sr2,g − sr3,g) (23)

Integers r1, r2 and r3 are chosen randomly from the interval [1, N P]while i �= r1, r2
and r3. N P is the population size and F is a real constant value, called the mutation
factor. In the next step the crossover operator is applied by generating the trial vector
ui,g+1 which is defined from the elements of si,g or vi,g+1 with probability C R:

u j,i,g+1 =
{

v j,i,g+1, if randi, j ≤ C R or j = Irand
s j,i,g , if randi, j ≥ C R or j �= Irand

i = 1, 2, . . . , N P and j = 1, 2, . . . , n

(24)

where rand j,i ∼ U [0, 1], Irand is a random integer from [1, 2, . . . , n]which ensures
that vi,g+1 �= si,g . The last step of the generation procedure is the implementation
of the selection operator where the vector si,g is compared to the trial vector ui,g+1:

si,g+1 =
{

ui,g+1, if F(ui,g+1) ≤ F(si,g)

si,g , otherwise

i = 1, 2, . . . , N P

(25)

where F(s) is the objective function to be optimized, while without loss of generality
the implementation described in Eq. (25) corresponds to minimization.

Algorithm 6 Classical DE
1: initialize {x1, x2, . . . , xN P } ∈ �n

2: fi = f (xi ) for i = {1, . . . , N P}
3: repeat:

4: vi = CreateDonor({x1, x2, . . . , xN P }), for i = {1, . . . , N P}
5: vi = Crossover(xi , vi ) for i = {1, . . . , N P}
6: f offsi = f (ui ) for i = {1, . . . , N P}
7: {xi , fi } = Selection

(
xi , ui , fi , f offsi

)
for i = {1, . . . , N P}

8: until stopping criterion is met
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5 Towards the Selection of the Optimization Algorithm

In the past a number of studies have been published where structural optimization
with single and multiple objectives are solved implementing metaheuristics. A sen-
sitivity analysis is performed for four metaheuristic algorithms in benchmark mul-
timodal constrained functions highlighting the proper search algorithm for solving
the structural optimization problem.

5.1 Literature Survey on Metaheuristic Based Structural
Optimization

Perez and Behdinan [54] presented the background and implementation of a particle
swarm optimization algorithm suitable for constraint structural optimization prob-
lems,while improvements that effect of the setting parameters and functionality of the
algorithm were shown. Hasançebi [31] investigated the computational performance
of adaptive evolution strategies in large-scale structural optimization. Bureerat and
Limtragool [5] presented the application of simulated annealing for solving struc-
tural topology optimization, while a numerical technique termed as multiresolution
design variables was proposed as a numerical tool to enhance the searching perfor-
mance. Hansen et al. [29] introduced an optimization approach based on an evo-
lution strategy that incorporates multiple criteria by using nonlinear finite-element
analyses for stability and a set of linear analyses for damage-tolerance evaluation,
the applicability of the approach was presented for the window area of a generic
aircraft fuselage. Kaveh and Shahrouzi [36] proposed a hybrid strategy combining
indirect information share in ant systems with direct constructive genetic search, for
this purpose some proper coding techniques were employed to enable testing the
method with various sets of control parameters. Farhat et al. [18] proposed a sys-
tematic methodology for determining the optimal cross-sectional areas of buckling
restrained braces used for the seismic upgrading of structures against severe earth-
quakes, for this purpose single-objective and multi-objective optimization problems
were formulated. Chen and Chen [7] proposed modified evolution strategies for
solving mixed-discrete optimization problems, in particular three approaches were
proposed for handling discrete variables.

Gholizadeh and Salajegheh [25] proposed a new metamodeling framework that
reduces the computational burden of the structural optimization against the time
history loading, for this purpose a metamodel consisting of adaptive neuro-fuzzy
inference system, subtractive algorithm, self-organizing map and a set of radial basis
function networks were used to accurately predict the time history responses of
structures. Wang et al. [65] studied an optimal cost base isolation design or retrofit
design method for bridges subject to transient earthquake loads. Hasançebi et al. [32]
utilized metaheuristic techniques like genetic algorithms, simulated annealing, evo-
lution strategies, particle swarm optimizer, tabu search, ant colony optimization and
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harmony search in order to develop seven optimum design algorithms for real size
rigidly connected steel frames. Manan et al. [47] employed four different biologi-
cally inspired optimization algorithms (binary genetic algorithm, continuous genetic
algorithm, particle swarm optimization, and ant colony optimization) and a simple
meta-modeling approach on the same problem set. Gandomi and Yang [21] provide
an overview of structural optimization problems of both truss and non-truss cases.
Martínez et al. [48] described a methodology for the analysis and design of rein-
forced concrete tall bridge piers with hollow rectangular sections, which are typically
used in deep valley bridge viaducts. Kripakaran et al. [40] presented computational
approaches that can be implemented in a decision support system for the design of
moment-resisting steel frames, while trade-off studies were performed using genetic
algorithms to evaluate the savings due to the inclusion of the cost of connections in
the optimization model. Gandomi et al. [22] used the cuckoo search (CS) method
for solving structural optimization problems, furthermore, for the validation against
structural engineering optimization problems theCSmethodwas applied to 13 design
problems taken from the literature.

Kunakote and Bureerat [41] dealt with the comparative performance of some
establishedmulti-objective evolutionary algorithms for structural topology optimiza-
tion, four multi-objective problems, having design objectives like structural compli-
ance, natural frequency and mass, and subjected to constraints on stress, were used
for performance testing. Su et al. [63] used genetic algorithm to handle topology
and sizing optimization of truss structures, in which a sparse node matrix encoding
approach is used and individual identification technique is employed to avoid dupli-
cate structural analysis to save computation time. Gandomi andYang [21] used firefly
algorithm for solving mixed continuous/discrete structural optimization problems,
the results of a trade study carried out on six classical structural optimizationproblems
taken from literature confirm the validity of the proposed algorithm. Degertekin [11]
proposed two improved harmony search algorithms for sizing optimization of truss
structures, while four truss structure weight minimization problems were presented
to demonstrate the robustness of the proposed algorithms. The main part of the work
byMuc andMuc-Wierzgoń [51] was devoted to the definition of design variables and
the forms of objective functions for multi-layered plated and shell structures, while
the evolution strategy method was used as the optimization algorithm. Comparative
studies of metaheuristics on engineering problems can be found in two recent studies
by the authors Lagaros and Karlaftis [43], Lagaros and Papadrakakis [44] and in the
edited book by Yang and Koziel [69].

5.2 Sensitivity Analysis of Metaheuristic Algorithms

Choosing the proper search algorithm for solving an optimization problem is not
a straightforward procedure. In this section a sensitivity analysis of four search
algorithms is performed for five constrained multimodal benchmark test functions
in order to identify the best algorithm and to be used for solving the structural shape



468 M. Georgioudakis et al.

optimization problem studied in the next section. This sensitivity analysis is carried
out to examine the efficiency of the four metaheuristic algorithms and thus proving
their robustness. In particular, for the solution of the five problems ES, CMA, ECMA
and DE methods are implemented, since they were found robust and efficient in pre-
vious numerical tests [43, 44]. This should not been considered as an implication
related to the efficiency of other algorithms, since any algorithm available can be
considered for the solution of the optimization problem based on user’s experience.

The control parameters for DE are the population size (N P), probability (C R)
and constant (F), while for ES, CMA and ECMA the control parameters are the
number of parents (μ) and offsprings (λ). The characteristic parameters adopted for
the implementation are as follows: (i) for DE method, population size N P = 15,
probability C R = 0.90 and constant F = 0.60, while (ii) for all three ES, CMA and
ECMA methods, number of parents μ = 1 and offsprings λ = 14 for the case of ES
and ECMA and number of parents μ = 5 and offsprings λ = 15 for the case of CMA.

For all four algorithms the initial population is generated randomly using LHS in
the range of design space for each test example examined, while for the implementa-
tion of all algorithms, the real valued representation of the design vectors is adopted.
For the purposes of the sensitivity analysis 50 independent optimization runs were
performed, for the combination of the algorithmic parameters given above. The 50
independent optimization runs, represents a necessary step since non deterministic
optimization algorithms do not yield the same results when restarted with the same
parameters [57]. Using the optimum objective function values achieved for the 50
independent optimization runs, mean and coefficient of variation of the optimum
objective function value are calculated.

For comparative reasons the method adopted for handling the constraints and the
termination criterion is the same for all metaheuristic optimization algorithms. In
particular, the simple yet effective, multiple linear segment penalty function [44] is
used in this study for handling the constraints. According to this technique if no
violation is detected, then no penalty is imposed on the objective function. If any of
the constraints is violated, a penalty, relative to the maximum degree of constraints’
violation, is applied to the objective function, otherwise the optimization procedure
is terminated after 10,000 function evaluations. For the results found in the literature
and used for our comparative study different constraint handling techniques and
termination criteria were implemented.

5.2.1 Test Case S-6ACT

The first test case considered in this sensitivity analysis study is the so called S-
6ACT [33] problem that is defined as follows:

min: F(x) = x21 + x22 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2

+ (x5 − 3)2 + 2(x6 − 1)2 + 5x27 + 7(x8 − 11)2 + 2(x9 − 10)2

+ (x10 − 7)2 + 45
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subject to: g1(x) = 105 − 4x1 − 5x2 + 3x7 − 9x8 ≥ 0

g2(x) = −10x1 + 8x2 + 17x7 − 2x8 ≥ 0

g3(x) = 8x1 − 2x2 + 17x7 − 2x8 ≥ 0

g4(x) = −3(x1 − 2)2 − 4(x2 − 3)2 − 2x23 + 7x4 + 120 ≥ 0

g5(x) = −5x2 − 8x2 − (x3 − 6)2 + 2x4 + 40 ≥ 0

g6(x) = −x21 − 2(x2 − 2)2 + 2x1x2 − 14x5 + 6x6 ≥ 0

g7(x) = −0.5(x1 − 8)2 − 2(x2 − 4)2 + 3x25 + x6 + 30 ≥ 0

g8(x) = 3x1 − 6x2 − 12(x9 − 8)2 ≥ 0

−10 ≤ xi ≤ 10, i = 1, . . . , 10

It is a 10 design variables problemwith 8 inequality constraints. As it can be observed
in Table1 the better COV value is achieved by CMA and the worst one by ES
algorithm, while the best mean value is obtained by DE algorithm and the worst
by ES.

The best optimized designs achieved by the four metaheuristics among the 50
independent optimization runs is given in Table2. Although, the best optimized
design is achieved by CMA and DE algorithm, DE algorithm had slightly better
performance with reference to the statistical data of Table1. It should be noted also
that for all 50 independent optimization runs performed for each algorithm, feasible
optimized designs were obtained.

5.2.2 Test Case S-CRES

This test case problem was proposed by Deb [10] and is formulated with 2 design
variables and 2 inequality constraints:

min: F(x) = (x21 + x2 − 11)2 + (x1 + x22 − 7)2

subject to: g1(x) = 4.84 − (x1 − 0.05)2 − (x2 − 2.5)2 ≥ 0

g2(x) = x21 + (x2 − 2.5)2 − 4.84 ≥ 0

0 ≤ x1 ≤ 6

0 ≤ x2 ≤ 6

Table 1 Results comparison for test case S-6ACT

Algorithm μ λ Selection Obj. function

Best Mean COV (%)

ES 1 14 + 14.962 49.0379 1.56E+02

CMA 5 10 , 14.257 15.1669 8.57E-02

ECMA 1 14 + 14.436 14.2681 5.17E+00

DE 14.257 14.2608 3.42E-01
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Table 2 Results comparison for test case S-6ACT

x Deb [10] ES CMA ECMA DE

x1 2.171996 1.5859 1.576076 1.6996902 1.5760762

x2 2.363683 2.8712 2.731987 2.6947086 2.7319869

x3 8.773926 8.7952 8.791763 8.7832448 8.7917633

x4 5.095984 5.0471 5.059531 4.9932193 5.0595309

x5 0.990655 1.1745 0.976753 1.0675614 0.9767532

x6 1.430574 1.9129 1.436430 1.6072484 1.4364296

x7 1.321644 0.7489 0.783778 0.8738167 0.7837782

x8 9.828726 9.6163 9.709677 9.7054379 9.7096767

x9 8.280092 9.7648 9.774489 9.7654962 9.7744885

x10 8.375927 7.1255 7.064255 6.9290318 7.0642553

F 24.30621 14.962 14.257 14.436 14.257

In Fig. 3 the feasible and infeasible domain of the problem is shown. The feasible
domain is approximately 0.7% of the total search space. The two constraint functions
g1, g2 create a crescent shape for the feasible domain, as it is shown in Fig. 4 with
the zoomed area around the optimal point.

Similar to the previous test case, statistical results (mean value and COV) are
given in Table3. Furthermore, in Table4, the results are compared with the best
result found in literature [10]. It should be noted also that for all 50 independent
optimization runs performed for each algorithm, feasible optimized designs were
obtained.

The CMA and DE algorithms had better performance, since COV values of the
optimized objective function value obtained at the end of the evolution process was
orders of magnitude smaller than the one obtained by the other two algorithms.

Fig. 3 Feasible and
infeasible domain for
S-CRES problem
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Fig. 4 Enlarged space
around the optimal point

Table 3 Results comparison for test case S-CRES

Algorithm μ λ Selection Obj. function

Best Mean COV (%)

ES 1 14 + 13.59085 13.6897 2.53E+00

CMA 5 15 , 13.59084 13.5909 1.34E-03

ECMA 1 14 + 13.59087 13.6096 3.49E-01

DE 13.59084 13.5957 1.79E-02

Table 4 Results comparison for test case S-CRES

x Deb [10] ES CMA ECMA DE

x1 2.246826 2.246841 2.246826 2.246811 2.246826

x2 2.381865 2.382141 2.381865 2.381597 2.381865

F 13.59085 13.59085 13.59084 13.59087 13.59084

5.2.3 Test Case S-0.5F

The optimization problem S-0.5F [8] is formulated with 7 design variables and 4
inequality constraints:

min: F(x) = (x1 − 10)2 + 5(x2 − 12)2 + x43 + 3(x4 − 11)2

+ 10x65 + 7x26 + x47 − 4x6x7

subject to: g1(x) = 127 − 2x21 − 3x22 − x3 − 4x24 − 5x5
2 ≥ 0

g2(x) = 282 − 7x1 − 3x2 − 10x23 − x4 − x5 ≥ 0

g3(x) = 196 − 23x1 − x22 − 6x26 + 8x7 ≥ 0

g4(x) = −4x21 − x22 + 3x1x2 − 2x23 − 5x6 + 11x7 ≥ 0

−10 ≤ xi ≤ 10, i = 1, . . . , 7
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Table 5 Results for test case S-0.5F

Algorithm μ λ Selection Obj. function

Best Mean COV (%)

ES 1 14 + 680.7721 705.7945 1.24E+01

CMA 5 15 , 680.6301 680.6301 1.20E-07

ECMA 1 14 + 680.6848 681.5228 6.33E-02

DE 680.6301 680.6551 1.67E-01

Table 6 Results comparison for test case S-0.5F

x Deb [10] ES CMA ECMA DE

x1 2.330499 2.320378 2.330501 2.299430 2.330501

x2 1.951372 1.967625 1.951373 1.947076 1.951373

x3 −0.477541 −0.281803 −0.477539 −0.468747 −0.477539

x4 4.365723 4.319129 4.365723 4.382807 4.365723

x5 −0.624487 −0.615799 −0.624484 −0.611883 −0.624484

x6 1.038131 1.057470 1.038125 1.001823 1.038125

x7 1.594227 1.560759 1.594225 1.541608 1.594225

F 680.63 680.77 680.63 680.69 680.63

In this problem, only 0.5% of the space is feasible. Similar to the previous test
functions for all 50 independent optimization runs performed for each algorithm,
feasible optimized designs were obtained. Statistical results (mean value and COV)
are given in Table5. Table6 shows that even thought all algorithmsmanaged to locate
the optimal design domain, only CMA and DE algorithms found the global optimum
design. CMA algorithm had the best performance, since COV value of the optimized
objective function is almost zero.

5.2.4 Test Case S-HIM

The optimization problem S-HIM [8] is formulated with 5 design variables and 6
inequality constraints:

min: F(x) = 5.3578547x23 + 0.8356891x1x5 + 37.293239x1 − 40792.141

subject to: g1(x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4
− 0.0022053x3x5 ≥ 0

g2(x) = 92 − g1(x) ≥ 0

g3(x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2

+ 0.0021813x23 − 90 ≥ 0

g4(x) = 20 − g3(x) ≥ 0
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Table 7 Results for test case S-HIM

Algorithm μ λ Selection Obj. function

Best Mean COV (%)

ES 1 14 + −30665.5 −30190.0 1.81E+00

CMA 5 15 , −25273.7 −24258.6 2.07E+01

ECMA 1 14 + −30665.5 −30477.6 8.45E-01

DE −30665.5 −30700.5 2.68E-01

Table 8 Results comparison for test case S-HIM

x ES CMA ECMA DE

x1 78.000 78.000 78.000 78.000

x2 33.000 33.000 33.000 33.000

x3 29.996 45.000 29.995 29.995

x4 45.000 45.000 45.000 45.000

x5 36.776 27.000 36.776 36.776

F −30665.5 −25272.7 −30665.5 −30665.5

g5(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3
+ 0.0019085x3x4 − 20 ≥ 0

g6(x) = 5 − g4(x) ≥ 0

78 ≤ x1 ≤ 102

33 ≤ x2 ≤ 45

−27 ≤ xi ≤ 45, i = 3, 4, 5

Statistical results (mean value and COV) are given in Table7. The optimal value of
the objective function value is equal to −31005.7966 [1], which was achieved after
350,000 function evaluations. From Table8 is shown that for all 50 independent opti-
mization runs performed only for ES, CMA and DE algorithms, feasible optimized
designs were obtained. In contrast to the previous test functions, CMA algorithm
failed to identify the area of the optimal solution.

5.2.5 Test Case S-G08

The optimization problem S-G08 [1] is formulated with 2 design variables and 2
inequality constraints:

min: F(x) = sin(2πx1)3sin(2πx2)

x31(x1 + x2)

subject to: g1(x) = x21 − x2 + 1 ≥ 0

g2(x) = 1 − x1 + (x2 − 4)2 ≥ 0

= 1 ≤ x1 ≤ 3

= 1 ≤ x2 ≤ 5
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Table 9 Results for test case S-G08

Algorithm μ λ Selection Obj. function

Best Mean COV (%)

ES 1 14 + −0.10546 −0.08413 4.14E+01

CMA 5 15 , −0.10546 −0.06765 1.49E+02

ECMA 1 14 + −0.10546 −0.10398 4.11E+01

DE −0.10566 −0.10546 7.02E-01

Fig. 5 Design variables
domain for test case S-G08

Figure5 depicts the search space, while Fig. 6 depicts the area around the optimal
solution found in the literature. Similar to the previous test case, statistical results
(mean value and standard deviation) are given inTable9. TheDEalgorithmhad better
performance, since COV value of the optimized objective function value obtained at
the end of the evolution process was orders of magnitude smaller than that obtained
for the other three algorithms. The optimal value of the objective function found in
the literature is equal to −0.09582 [1], achieved after 350,000 function evaluations.
Similar to the previous test functions, in Table10 is shown that for all algorithms
feasible optimized designs were obtained.

5.3 Selection of the Appropriate Search Algorithm

The sensitivity of the four algorithms with respect to different optimization runs
characterized by the mean and coefficient of variation of the optimized objective
function values for each metaheuristic algorithm was identified in the corresponding
tables of Sect. 5.2. The lower mean and COV values are, the better the algorithm is.
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Fig. 6 Domain around
global minimum for test case
S-G08

Table 10 Results comparison for test case S-G08

x Aguirre et al. [1] ES CMA ECMA DE

x1 1.227971 1.227818 1.227818 1.227818 1.227817

x2 4.245373 3.744911 3.744911 3.744911 3.744911

F −0.09582 −0.10546 −0.10546 −0.10546 −0.10546

This is due to the fact that low COV values mean that the algorithm is not influenced
by the independent runs. Overall, the algorithm resulting to the lower mean value
(in case of minimization problem) and COV is used for performing the optimization
run with the specific algorithm, i.e. the DE algorithm.

6 Numerical Examples

A fillet from a steel structural member [61] is analyzed in this section to illustrate the
capabilities of the proposed methodology described in the previous sections of this
study. The geometry, loading conditions, and design variables of the structural com-
ponent are shown in Fig. 7. Four-node linear quadrilateral elements under plane stress
conditions with constant thickness equal to 5mm and isotropic material properties
are assumed. For the purposes of this study two boundary conditions are considered;
in the first one, designated as fillet rigid, all nodes of the bottom edge are fixed while
in the second one, denoted as fillet flexible, only the two end nodes of the bottom
edge of the component are fixed.

For both test examples deterministic and probabilistic shape optimization prob-
lems are solved. The objective function to be minimized, corresponds to the material
volume while two sets of constraints are enforced, i.e. deterministic and probabilis-
tic constraints on the fatigue cycles. Furthermore, due to manufacturing limitations
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b1

b2

r3

375mm

P

150mm

initial crack

θ
(x0, y0)

x

y

Fig. 7 Fillet geometry, loading and design variables of the problem

Table 11 Upper and lower
bounds of design variables
and corresponding steps
(in mm)

Design
variables

lup llow Step

b1 100.0 50.0 1.0

b2 100.0 50.0 1.0

r3 30.0 10.0 1.0

the design variables are treated as discrete in the same way as in a single objective
design optimization problems with the discrete version of Evolution Strategies [45].
The design variables correspond to the dimensions of the structural component taken
from Table11. The design load P (see Fig. 7), is applied as a concentrated tensile
load at the midpoint of the top edge and is equal to 20KN.

It is common in probabilistic analysis to distinguish between uncertainty that
reflects the variability of the outcome of a repeatable experiment and uncertainty due
to ignorance. The last one is sometimes referred as “randomness”, commonly known
as “aleatoric uncertainty”, which cannot be reduced. However, both deterministic and
probabilistic approaches rely on various model assumptions and model parameters
that are based on the current state of knowledge on the behavior of structural systems
under given conditions. There is uncertainty associated with these conditions, which
depends upon the state of knowledge that is referred as “epistemic uncertainty”.

In this study various sources of uncertainty are considered: on crack tip initializa-
tion (aleatoric randomness) which influences the shape of the crack propagation path
and on modeling (epistemic uncertainty) which affects the structural capacity. The
structural stiffness is directly connected to the Young modulus E , of structural steel,
while the number of fatigue cycles is influenced by the material properties C and m.
The crack length increment Δa and the poison ratio are taken equal to 5.0mm and
0.3, respectively, both implemented as deterministic. Thus, for the structural compo-
nent five random variables are used, i.e. the ordinate y0 of the crack tip initialization
and the corresponding angle θ along with the Young modulus E and parameters C ,
m. The material properties for the structural steel of the component are implemented
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Table 12 Random variables with the type of distribution and each statistical parameters: mean
value (μ) and standard deviation (σ )

Random variables μ σ cov (%) Distribution type

y0 (in mm) (150−b1)/(2+b1) − 5 Normal

θ (in ◦) 0.0 0.50 − Normal

E (in GPa) 207.0 35.19 17 Lognormal

C 2.45e-11 4.16e-12 17 Lognormal

m 2.37 0.40 17 Lognormal

as independent random variables whose characteristics were selected according to
Ellingwood et al. [16], Ellingwood and Galambos [15] and are given in Table12.

The numerical study that follows comprises of two parts: in the first part a para-
metric investigation is performed in order to find the number of simulations required
for computational efficiency and robustness regarding the calculation of the statisti-
cal quantities required and the identification of the most appropriate one that can be
used in order to characterize the influence of randomness on the fatigue cycles. In the
second part, the performance of structural components under fatigue is investigated
within a probabilistic shape design optimization framework.

6.1 Parametric Investigation

For the purpose of this parametric investigation the fillet rigid case is examined and
three designs, corresponding to the upper (Design 1), lower (Design 3) bounds of
the designs variables and an intermediate one (Design 2) are chosen. The scope of
this investigation is to find the lower number of simulations for a reliable calculation
of certain statistical quantities that are related to the number of fatigue cycles. To
this end, Monte Carlo (MC) simulations based on LHS are performed for the three
designs described above and the mean, median and standard deviation of the number
of fatigue cycles are calculated (see Table13).

The performance of the different number of MC simulations is depicted in the
histogramsofFig. 8. For the needs of this investigation, the three designs are subjected
to the ensemble of different number of simulations (100 + 200 + 500 + 1000).
Thus, 5400 XFEM analyses have been postprocessed for the three designs in order
to create a response databank with the quantities of interest. The propagation of
uncertainties is performed by means of the MC simulation method in connection
to the LHS technique which has been incorporated into the XFEM framework as
described above. According to LHS a given design is run repeatedly, for each MC
simulation using different values for the uncertain parameters, drawn from their
probability distributions as provided in Table12. It is worth mentioning that the
characteristic mesh size generated for the nestedXFEManalysis in both probabilistic
analysis and optimization cases, is kept constant in the region of the crack path.
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Table 13 Statistical quantities of the parametric investigation for the three designs of the rigid fillet
case

Design MCS Mean Median Std. dev.

Design 1 100 5382911.9 6895308.5 3176784.9

Design 1 200 6848983.6 7024024.0 11271233.5

Design 1 500 6568327.3 7026526.0 13717577.0

Design 1 1000 6533674.8 7026013.0 19043699.3

Design 2 100 90222.3 91794.2 27363.2

Design 2 200 94371.9 86020.0 28170.8

Design 2 500 96950.6 93982.8 109963.6

Design 2 1000 95214.8 94768.0 60920.3

Design 3 100 5260.5 4858.5 1141.3

Design 3 200 5371.9 4992.9 1308.9

Design 3 500 5369.6 5005.9 1278.3

Design 3 1000 5328.8 5360.0 994.2

Fig. 8 Histograms of each design

In the group of histograms of Fig. 8 the variability of the number of fatigue cycles
with respect to the number of simulations is depicted. These histograms show the
probabilistic distribution of the fatigue cycles value for different number of simula-
tions implemented into XFEM and for the three designs, respectively. The frequency
on the occurrence of the number of fatigue cycles is defined as the ratio of the number
of simulations, corresponding to limit state values in a specific range, over the total
number of simulations (Ntot ). Ntot is equal to 100, 200, 500 or 1000 depending on
the number of simulations used.

Comparing the histograms of Fig. 8, it can be noticed that the width of the con-
fidence bounds corresponding to the intermediate design is narrower compared to
the other two, while for the case corresponding to the upper bounds of the design
variables there are two zones of concentration for the frequency values. Furthermore,
comparing themean versusmedian values of the number of fatigue cycles, themedian
value is considered more reliable since it is not influenced by the extreme lower and
upper values obtained. Specifically, in the framework of an optimization problem,
search procedure might lead to designs where such extreme lower and upper values
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might be often encountered. In addition, 200 LH simulations were considered as
an acceptable compromise between computational efficiency and robustness. To this
extend an equal number of simulations are applied for the solution of the probabilistic
formulation of the shape optimization problem which is investigated in the second
part of this study.

The influence of the uncertain variables on the shape of the crack propagation paths
is presented in Figs. 9, 10 and 11, where the cloud of the typical crack paths obtained
for 200 simulations is depicted.A crack path is defined as typical, if its shape is similar
to deterministic one. Especially, for Design 1, due to its geometric characteristics,
many not typical crack paths were obtained, however only the typical ones are shown
in Fig. 9. This is an additional reason for choosing the median versus mean value as
the statistical quantity to be incorporated into the probabilistic formulations of the
problems studied in the second part of this work.

From the results obtained, it can be concluded that the crack paths obtained by
means of XFEM is highly influenced by the random parameters considered in this
study, thus the importance of incorporating them into the design procedure is exam-
ined in the following second part.

Fig. 9 Design 1

Fig. 10 Design 2
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Fig. 11 Design 3

6.2 Optimization Results

In the second part of this study four optimization problems are solved with the dif-
ferential evolution (DE) metaheuristic optimization algorithm. The abbreviations
DET∗K and PROB∗K correspond to the optimum designs obtained through a deter-
ministic (DET) and probabilistic (PROB) formulation where the lower number of
fatigue cycles allowed is equal to ∗ thousands.

6.2.1 Design Optimization Process

Theoptimization process that is basedon the integration ofXFEMinto a deterministic
and a probabilistic formulation of structural shape optimization is shown in Fig. 12.
Within each design iteration of the search process there is a nested crack growth
analysis loop performed for each candidate optimum design. Thus, a complete crack
growth analysis is conducted until the failure criterion is met, i.e. Keq < Kc and
the corresponding service life is evaluated in order to assess the candidate optimum
design.

The parameters used for theDEalgorithmare as follows: population size N P =30,
the probability C R = 0.90 and the mutation factor F = 0.60. For comparative reasons
the method adopted for handling the constraints and the termination criterion is the
same for all test cases. On the other hand, the optimization procedure is terminated
when the best value of the objective function in the last 30 generations remains
unchanged.

6.2.2 Fillet Rigid Test Case

The fillet rigid structural component examined in the previous section is the test
example of this study. For this case two groups of formulations were considered,
deterministic and probabilistic ones (defined in Eqs. (10)–(11), respectively), where
Nmin was taken equal to 100, 200 and 500 thousands of fatigue cycles. The objective
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Optimization Process

XFEM Analysis

Design Assesment
(contraints handling)

Is Keq < Kc?

Initial Crack
x, y, theta

XFEM Analysis

YES

Calculate crack
growth direction (θc)
and add new crack

segment using θc and
Δα

Add ΔΝ to total N for the
corresponding crack segment

Evaluate {d}, {σ}, {ε}

Is the current
design optimum?

Update Best
design

YESNO

Choose
next design

Calculate design
parameters (Ν, …)

NO

Compute SIFs
(KI, KII, Keq)

Given design
b1, b2, r3

Fig. 12 XFEM shape optimization process for deterministic and probabilistic formulation

Fig. 13 Objective function
versus generation for DET
case (rigid fillet)

function to be minimized in this problem formulation, is the material volume. DE
managed to reach optimum designs as shown in Figs. 13 and 14 together with the
optimization history for the deterministic and probabilistic formulation respectively.
The optimized designs achieved are presented in Table14 along with the material
volume, while the shapes of deterministic optimized designs are shown in Figs. 15,
16 and 17.
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Fig. 14 Objective function
versus generation for PROB
case (rigid fillet)

Table 14 Optimum design for each problem formulation and corresponding statistical parameters
for fillet rigid (MCS = 200)

Design b1 b2 r3 V N (det)
c N c Nmed

c COV
(%)

DET100K 50.0 75.0 27.0 79,690 136,024 99,055 106,573 30.43

DET200K 50.0 84.0 28.0 82,461 201,728 261,604 198,703 36.84

DET500K 73.0 100.0 21.0 105,793 553,038 506,188 505,190 33.02

PROB100K 66.0 100.0 27.0 100,390 118,124 107,584 100,894 45.14

PROB200K 88.0 100.0 19.0 118,065 83,143 353,434 200,288 23.55

PROB500K 100.0 93.0 18.0 169,157 498,856 269,721 554,890 47.19

Upper Bound

Lower Bound

Optimum Design

Crack path

Fig. 15 Optimum design for deterministic formulation DET100 for rigid fillet

From Table14, comparing the three designs achieved by means of the determinis-
tic formulation it can be said that thematerial volume of DET500K is increased by 33
and 28%compared toDET100KandDET200K respectively,while that ofDET200K
is increased by almost 3.5% compared to DET100K. Furthermore, it can be seen
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Upper Bound

Lower Bound

Optimum Design

Crack path

Fig. 16 Optimum design for deterministic formulation DET200 for rigid fillet

Fig. 17 Optimum design for deterministic formulation DET500 for rigid fillet

that there are differences to almost all design variables considered to formulate the
optimization problem. The results obtained for the probabilistic formulation revealed
that the material volume of PROB500K is increased by 68 and 43% compared to
PROB100K and PROB200K respectively, while that of PROB200K is increased by
almost 17.5% compared to PROB100K. In addition, it can be seen that the material
volume of designs PROB100K, PROB200K and PROB500K is increased by 26, 43
and 60% compared to DET100K, DET200K and DET500K, respectively.

In order to justify the formulation of the shape optimization problem consider-
ing uncertainties, probabilistic analyses are performed for all six optimized designs
obtained through the corresponding problem formulations and the statistical quan-
tities related to the number of fatigue cycles are calculated. These quantities are
provided in Table14 and as it can be seen there are cases where deterministic for-
mulation overestimates the number of fatigue cycles compared to the median value
when considering uncertainty. Furthermore, it can be seen that the mean value of
the fatigue cycles is not a reliable statistical quantity since it is highly influenced by
the crack paths due to high COV values (see Table14 and Fig. 18). The high COV
values which found from the reliability analysis proposed in emerges the necessity
of a robust design formulation for the optimization problem, by minimizing these
COV values and find the “real” optimum.
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Fig. 18 Crack patterns for DET100, DET200, DET500 case respectively (rigid fillet)

7 Conclusions

In this study structural shape optimization problems are formulated for designing
structural components under fatigue. For this reason the extended finite element
and level set methods are integrated into a shape design optimization framework,
solving the nested crack propagation problem and avoiding the mesh difficulties
encountered into a CAD-FEM shape optimization problem by working with a fixed
mesh approach.

Based on observations of the numerical test presented the deterministic optimized
design is not always a “safe” design with reference to the design guidelines, since
there are many random factors that affect the design. In order to find a realistic opti-
mized design the designer has to take into account all important random parameters.
In the present work a reliability analysis combined with a structural shape design
optimization formulation is proposed where probabilistic constraints are incorpo-
rated into the formulation of the design optimization problem. In particular, structural
shape optimized designs are obtained, considering the influence of various sources
of uncertainty. Randomness on the crack initialization along with the uncertainty
on the material properties are considered. Shape design optimization problems were
formulated for a benchmark structure, where the volume of the structural compo-
nent is minimized subjected to constraint functions related to targeted service life
(minimum number of fatigue cycles allowed) when material properties and crack tip
initialization are considered as random variables.

A sensitivity analysis of four optimization algorithms based on evolution process
was conducted in order to identify the best algorithm for the particular problem at
hand to be used for solving the structural shape optimization problem. This sensitiv-
ity analysis is carried out in order to examine the efficiency and robustness of four
metaheuristic algorithms. Comparing the four algorithms it can be said that evo-
lutionary based algorithms can be considered as efficient tools for single-objective
multi-modal constrained optimization problems. In all test cases examined, a large
number of solutions need to be found and evaluated in search of the optimum one.
The metaheuristics employed in this study have been found efficient in finding an
optimized solution.
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The aim of this work in addressing a structural optimization problem considering
uncertainties was twofold. First the influence of the uncertain parameters and the
number of Latin hypercube samples was examined and in particular those related
to the statistical quantities and consequently to the number of fatigue cycles. In the
second part of this study the two formulations of the optimization problem were
considered feasible for realistic structures. The analysis of the benchmark structure
has shown that with proper shape changes, the service life of structural systems
subjected to fatigue loads can be enhanced significantly. Comparisonswith optimized
shapes found for targeted fatigue life are also performed, while the choice of the
position and orientation of initial imperfection was found to have a significant effect
on the optimal shapes for the structural components examined.
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