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Abstract In an engineering optimization problem such as soil slope problem, each
design variable has permissible solution domain. Therefore, efficiency of an opti-
mization algorithm may be affected by the method used for keeping the solutions
within the defined boundaries or boundary constraint handling method. Despite
importance of selecting constraint handling approach, there aren’t adequate stud-
ies in this field. Heterogeneous slope stability optimization in the presence of a band
of weak soil layer is considered as a complex geotechnical problem that requires sat-
isfying boundary constraints. Evolutionary boundary constraint handling is one of
the recently proposed methods that is very easy to implement and very effective. The
present study intended to improve the optimization results by means of evolution-
ary boundary constraint handling scheme on slope stability optimization problem.
In the current chapter five benchmark problems are analyzed using absorbing and
evolutionary boundary constraint handling schemes and their results are compared
to check the validity of this method. Based on achieved results optimization algo-
rithm performance is improved by using the proposed boundary constraint handling
method.

1 Introduction

Newlyheuristic optimizationmethods have found a reliable position to solve geotech-
nical engineering problems. One of the most important geotechnical engineering
problems is slope stability analysis. The consideration of non-circular slip surface
has produced more efficient results in the heterogeneous soil slopes. The safety of
slope is expressed in term of the factor of safety (FOS) and the limit equilibrium
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approach has been the most popular method in computing this factor. This method
uses the plastic limit theorem of solid mechanics to analyze the stability of the poten-
tial slippery mass [33]. Large numbers of selective slip surfaces are required to be
tested to find location of minimum factor of safety in order to use limit equilibrium
method for slope stability analysis.

Slope stability analysis with non-circular slip surface is considered as a com-
plicated optimization problem. As Chen and Shao [5] demonstrated, the objective
function has a lot of local minimum within solution domain. Cheng et al. [8] also
pointed out the objective function is usually non-convex and discontinuous over the
search space. It is necessary to select a good initial failure surface to apply classical
optimization techniques.

Recently by developing metaheuristic optimization algorithms, it is possible to
overcome this issue. Severalmetaheuristic algorithms have been adopted to slope sta-
bility problems.Monte carlo randomwalk typewas used byGreco [20]; genetic algo-
rithm was applied by Goh [19], Das [12], McCombie and Wiklson [31], Zolfaghari
et al. [45], Jianping et al. [22] and Sengupta and Upadhyay [36]; leap frog was used
by Bolton et al. [3]; ant colony optimization selected by Kahatadenya et al. [23];
artificial neural network optimization technique was tried by Samui and Kumar [35];
fuzzy logic has also been adopted to find critical slip surface several simple slope
stability problems by Mathada et al. [30], Rubio et al. [34] and Giasi et al. [18].

Cheng [6] and Cheng et al. [7–9] studied simulate annealing, harmony search,
tabu search, particle swarm optimization and fish swarm for finding minimum FOS.
Newly Cheng et al. [10] utilized a hybrid approach for locating the critical failure
surface; Morgenstern and Price [32] used ant colony optimization for slope stability
optimization; Khajehzadeh et al. [26, 27] used gravitational search algorithm and
modified particle swarm optimization respectively; Zhao et al. [42] tried relevance
vector machine in slope stability analysis and Kaveh and Talatahari [25] studied
imperialistic competitive algorithm performance on 2-dimensional soil slopes.

Good optimization will be achieved by providing two requirements; a robust
algorithm and proper handling of constraints. Boundary constraint handling is one
of themost important parts of constraint handling that can affect power of algorithms.
Unlike the importance of constraint handling method, there are limited studies in this
area.

For the first requirement cuckoo search (CS) algorithm, proposed byYang andDeb
[41] is selected based on its satisfying records. CS is a newmetaheuristic optimization
technique inspired by reproduction strategy of some cuckoo species. The initial test
of CS algorithm shows that this algorithm is very efficient for some benchmark
optimization problems [41]. The CS algorithm has also been used to some structural
and geotechnical engineering problems to reach optimum design by Gandomi et al.
[15, 16], respectively.

Like most optimization algorithms, new produced solution of CS in each iteration
may be gone beyond the boundaries. In this case traditional absorbing scheme was
utilized by original CS. Recently Gandomi and Yang [17] developed a simple and
effective method for boundary constraint handling that is so-called evolutionary
boundary constraint handling (EBCH). This evolutionary scheme is also very easy
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to implement for any optimization algorithm. The results showed that EBCH can
outperform other existing methods. Therefore for the second requirement, EBCH is
selected to handle boundary constraints.

The current study is allocated to contrast the location of critical slip surface using
original CS and CS with EBCH called CS_EB. Assuming non-circular slip surface
for Morgenstern-Price [32] method, FOS is calculated. Five different case studies
are evaluated here to show the efficiency of the proposed method. As a result in all
cases, better results are gained using CS_EB than CS. This fact is magnified in more
complicated cases and CS_EB are capable to evade local minima far better than CS.

2 Slope Stability Analyzing

2.1 Generation of Trial Slip Surface

An acceptable slip surface is required to be generated to find critical failure surface.
A proper slip surface should be concave upward to be cinematically acceptable.
Procedure proposed by Cheng [6] is used to shape slip surface. Slope geometry in
Cartesian coordinate system XOY is shown as Fig. 1. Slope geometry and bedrock
are defined by y = g(x) and y = B(x) mathematical functions, respectively.

By dividing slippery mass into n vertical slices, (n + 1) edge coordinates of
each slice have to be determined. Therefore V vector, containing control variable, is
defined for optimization as follows:

V = [x1, y1, x2, y2, . . . , xn, yn, xn+1, yn+1] (1)

Fig. 1 Generation of Non-circular slip surface
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The widths of all the slices are considered to be equal for simplicity. Then xi can
be computed as follows:

xi+1 = xi + xn+1 − x1
n

× (i − 1) (2)

In this method upper and lower bound for yi value, yimax and yimin are defined as
slope geometry and bedrock, respectively. A random value between yimin and yimax

is selected for yi as Eq. (3).

yi = rand × (yi max − yi min) (3)

Finally a trial slip surface will be defined by using above mentioned control
variables.

2.2 Factor of Safety Calculation

A quantitative value is defined as FOS to explore the stability of a slope. In this study
a concise procedure proposed by Zhu et al. [44] is used. By considering effective
inter-slice forces as Fig. 2, FOS could be calculated by an iterative procedure as
follows:

First, calculate Ri and Ti using Eqs. 4 and 5;

Ri = [Wi cosαi − Wiαh sin αi + Qi cos(ωi − αi ) − Ui ] × tan φ′
i + c′

i bi secαi (4)

Ti = Wi sin αi + Wiαh cosαi − Qi sin(ωi − αi ) (5)

Fig. 2 a General failure surface, b Inter-slice forces in slice number i
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Second, specify inter slice force function, f (x) (it could be chosen constant, sine,
half sine), as Eq.6:

f (x) = sin(π × x − a

b − a
) (6)

where a and b are x-coordinates of two ends of slip surface. In this study constant
function is selected.

Third, consider initial values of Fs and λ so that Eq.7 will be satisfied.

Fs > − sin αi − λ fi cosαi

cosαi + λ fi sin αi
tan φ′ (7)

Fourth, calculate �i and �i−1 using Eqs. 8 and 9 for all the slices.

�i = (sin αi − λ fi cosαi ) tan φ′
i + (cosαi + λ fi sin αi )Fs (8)

�i−1 = [(sin αi − λ fi cosαi ) tan φ′
i + (cosαi + λ fi sin αi )Fs]/�i−1 (9)

Fifth, calculate Fs using Eq.10.

Fs =

n−1∑

i=1
(Ri

n−1∏

j=i
� j ) + Rn

n−1∑

i=1
(Ti

n−1∏

j=i
� j ) + Tn

(10)

Sixth, repeat forth step with new Fs and compute Fs again with new �i and �i−1
values using Eq.8.

Seventh, calculate Ei using Eq.11 by updated Fs value for all the slices.
Finally, calculate λ using Eq.12.

Ei�i = �i−1Ei−1�i−1 + Fs Ti − Ri (11)

λ =
∑ [bi (Ei + Ei−1) tan αi + Wiαhhi + 2Q sinωi hi ]

∑ [bi ( fi Ei + fi−1Ei−1)] (12)

Repeat all the eight above mentioned steps to Fs and λ converge to nearly constant
values.
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3 Optimization Techniques

3.1 Cuckoo Search

Cuckoo search (CS) algorithm is one of the swarm intelligence metaheuristic opti-
mization algorithms. CS, inspired by cuckoo’s life, has been proposed by Yang and
Deb [41] recently. The cuckoos are fascinating because of their kind of reproduction
strategy. Their eggs are laid in the nest of other host birds, nearly other species. At
the same time they threw away host bird eggs to raise their egg hatching probabil-
ity. Cuckoos are able to select recently spawned nests. Generally the cuckoo chicks
are capable to hatch slightly earlier than host bird chickens. The cuckoo’s hatchling
will evict the other eggs by blindly propelling them instinctively. Also cuckoos are
specialized to mimic the call of its host bird. In this way cuckoo chick can increase
its share of food. However, some host birds can combat with infringing cuckoos. If
these birds discover alien egg either throw this egg away or abandon the whole nest
and build a new one.

In nature, animals and insects try to find food by following a random or quasi
random prototype. Based on random walk which can model animals foraging path,
the next move is derived from current position based on a probability which can be
modeled mathematically.

In order to ease three idealized regulations proposed by Gandomi et al. [16]:

• Each cuckoo flyblows one egg at a time, and leaves it in an arbitrarily chosen nest.
• The best nests (solution) with highest quality of eggs will usable over the next
generations.

• The number of available host nests is fixed, and a host can discover an alien egg
with a probability Pa ∈ [0, 1]. If this encroachment has occurred, the host bird goes
for either getting rid of the alien egg or leaving the nest and building a completely
new one in a new location.

Inductively, each solution (considered as nest) will be replaced by a new one with
a probability of Pa.

CSdefines themain problem that optimizationwill be done for; completely similar
to other popular optimization algorithms (i.e., GA, PSO and so on) as Objective
Function.

By considering above three rules, CS conform the following procedures:
New solution using Levy-Flight is related to the current solution by Eq.13.

x (t+1)
i = x (t)

i + α ⊕ Levy(λ) (13)

where α > 0 is step size parameter which is supposed to be change with the scales of
the problem.Mostly,α sets to unity. The product⊕means entry-wisemultiplications.
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The Levy term provides a random walk type search, and the probability distribu-
tion defined as Eq.14 that has an infinite variance with an infinite mean.

Levy ∼ u = t−λ, (1 ≤ λ ≤ 3) (14)

By implementing above procedure iteratively CS will approach the nearest best
solution for minimization problems. For more detail refer to the main source
(i.e., [41]).

3.2 Evolutionary Boundary Constraint Handling

Inmany optimization algorithms new solutionsmay be violated from allowable range
of variables within reproduction procedures. There are proposed several methods
to push the solution inside boundaries. The classical boundary constraint handling
method is absorbing which is presented in Eq.15. The other methods are random
scheme as Eq.16 and the toroidal space scheme as Eq.17 or some schemes like
replacing components with a mirror image relative to the boundary as Eq.18.

f (zi → xi ) =
{

lbi i f zi < lbi

ubi i f zi > ubi
(15)

f (zi → xi ) = lbi + rand × (ubi − lbi ) i f zi < lbi or zi > ubi (16)

f (zi → xi ) =
{

lbi − (zi − lbi ) i f zi < lbi

ubi − (zi − ubi ) i f zi > ubi
(17)

f (zi → xi ) =
{

ubi + zi − lbi i f zi < lbi

lbi + zi − ubi i f zi > ubi
(18)

where lbi and ubi are the i th lower bound and upper bound, by order, zi and xi are
violated component and corrected component and rand is a random number between
0 and 1.

Also some literature devoted to examine certain methods for boundary constraint
handling such as: Haung and Mohan [21] used damping scheme in particle swarm
(PSO), Xu and Rahmat-Samii [39] proposed some hybridmethods in PSO, Chu et al.
[4] proposed a method in PSO based on reducing velocity, Chu et al. [11] done a
comparative study using various boundary constraint handling methods in PSO and
Kaveh and Talatahari [25], proposed a harmony search-based method.

Recently Gandomi and Yang [17], developed an evolutionary boundary constraint
handling (EBCH) in Differential Evolution (DE) algorithm that is examined on wide
set of benchmark problems. Not only EBCH is simple and can be used in any opti-
mization algorithm, but also it is efficient and can simply outperform the other exist-
ing methods. In the current study, EBCH method adopted on CS algorithm and the
results are compared to original CS that is used classical absorbing scheme.
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Post process results and visualization

Discovering alien eggs with Pa probability and Produce new solution by Biased Random Walk

Replace the component outside of solution domain with a new produced one using evolutionary boundary 

constraint handling method.

Update current population position by Levy Flight and produ ce new Nest (solution)

Evaluate Objective Function and find best solution

K=K+1

K=1

Generate n initial solution in feasible solution boundary

Initialize the necessary parameters: number of Nest (n), Pa discovering 

alien eggs probability, Maximum iteration (Mi)

Evaluate objective Function and find best Nest and its Cost value

Replace the component outside of solution domain with a new produced one using evolutionary boundary 

constraint handling method.

Evaluate Objective Function and find best 
solution

K=K+1

K<Mi

Fig. 3 The CS_EB flowchart

In this method, if a component goes outside of boundaries, this component replace
with new one produced using the following mutation operator:

f (zi → xi ) =
{

α × lbi + (1 − α)xb
i i f zi < lbi

β × ubi + (1 − β)xb
i i f zi > ubi

(19)

in which xb
i is the related component of the best solution, and α and β are random

number between 0 and 1.
Representation of the CS_EB algorithm is presented in Fig. 3.
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4 Numerical Simulation

In order to compare proposed algorithmefficiency, five soil slope examples are solved
and final results are reported. In this chapter for evaluation of Factor of Safety number
of slices is considered equal to 25. Furthermore because of the chaotic operation of
optimization algorithm all the examples run about 20 times and results are reported
by the best value, mean and standard deviation to illustrate the performance of every
algorithm more efficient. The CS parameters used in this study are shown in Table1.
Number of nests is considered 50 and number of iteration is equal to 3000, therefore
the number of function evaluation will be 15,000 times.

4.1 Case I

The first case is a homogeneous slope with an effective friction angle φ of 10◦, an
effective cohesion intercept c of 9.8kPa, a unit weight γ of 17.64kN/m3 selected
from the work by Yamagami and Ueta [40]. The geometry of slope and slip surfaces
are as Fig. 4.

This example was analyzed byYamagami andUeta [40] for the first time, and then
it was analyzed in the works of Greco [20] by pattern search and the Monte-Carlo
methods, Solati and Habibagahi [37] by genetic algorithm, Kahatadeniya et al. [23]
by ant colony optimization (ACO). In the current study this example solved once
again by using CS and CS_EB to explore these algorithms efficiency. As shown in
Table1, the resulted FOS values from CS and CS_EB are equal, but the lower value
of standard deviation of CS_EB proves better performance of this algorithm respect
to the original CS. Table2 shows the previous studies in which FOS was computed.

4.2 Case II

The second case is selected from the work by Arai and Tagyo [1]. In this case, a
weak soil layer is stated between two stronger ones. The soil properties, geometry
of slope and slip surfaces are as Table3 and Fig. 5, respectively.

This example is surveyed in the literature, for example Arai and Tagyo [1]
used Janbu’s simplified method in combination with the conjugate gradient method,

Table 1 Values of FOS comparison for Case I

Optimization algorithm CS CS_EB

Mean 1.3206 1.3206

Best 1.3206 1.3206

Standard deviation 2.08E-08 1.05E-08
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Fig. 4 Slope geometry and critical slip surface for Case I

Table 2 Previous studies computed FOS for Case I

References Optimization algorithm FOS

Yamagami and Ueta [40] Broyden–Fletcher–Goldfarb–Shanno (BFGS) 1.338

Yamagami and Ueta [40] Davidon–Fletcher–Powell (DFP) 1.338

Greco [20] Pattern search 1.326–1.330

Greco [20] Monte Carlo 1.327–1.333

Malkawi et al. [29] Monte Carlo 1.238

Solati and Habibagahi [37] Genetic algorithm 1.380

Jianping et al. [22] Genetic algorithm (spline slip surface) 1.321

Jianping et al. [22] Genetic algorithm (line slip surface) 1.324

Kahatadeniya et al. [23] Ant colony optimization 1.311

Kashani et al. [24] Imperialistic competitive algorithm 1.3206

Table 3 Soil Layers properties for Case II

Layer γ (kN/m3) c(kPa) φ (◦)
1 18.82 29.4 12

2 18.82 9.8 5

3 18.82 294.0 40

Sridevi and Deep [38] and Malkawi et al. [29] applied the random search technique
(RST-2) and Monte Carlo method and Khajehzadeh et al. [27] utilized PSO and
MPSO optimization algorithms, respectively.
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Fig. 5 Slope geometry and critical slip surface for Case II

Table 4 Values of FOS comparison for Case II

Optimization algorithm CS CS_EB

Mean 0.409 0.392

Best 0.391 0.391

Standard deviation 0.0319 0.00016

In the present study CS and CS_EB are used to solve this problem and their
results are presented in Table4 by minimum FOS, mean and standard deviation. In
order to compare these algorithms results with previous studies all the results are
summarized in Table5. In this case the values of FOS are equal again and from the
SD it is concluded that the CS_EB is the best algorithm on this case among all the
past proposed ones.

4.3 Case III

The third case is a sample of more complicated slope geometry which a band of
weak soil layer is sandwiched between two strong layers borrowed fromSVSLOPE’s
manual [13] as Fig. 6. Soil layers properties are, also presented in Table6. In this case
water table is at the base of the weak layer. As shown in Fig. 6 the slip surface is laid
within weak layer. The factor of safety published by SVSLOPE’s manual was equal
to 1.26 and the one calculated here are depicted in Table7.Moreover this casewas the
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Table 5 Previous studies computed FOS for Case II

References Optimization algorithm FOS

Arai and Tagyo [1] Conjugate gradient 0.405

Sridevi and Deep [38] Random search technique 0.401

Malkawi et al. [29] Monte Carlo 0.401

Khajehzadeh et al. [27] Particle swarm optimization 0.393

Khajehzadeh et al. [27] Modified particle swarm optimization 0.391

Kashani et al. [24] Imperialistic competitive algorithm 0.392

Gandomi et al. [15] Particle swarm optimization 0.392

Gandomi et al. [15] Firefly algorithm 0.392

Gandomi et al. [15] Cuckoo search 0.391

Gandomi et al. [15] Levy-Flight Krill Herd 0.391

Fig. 6 Slope geometry and critical slip surface for case III

Table 6 Soil layers properties for Case III

Layer γ (kN/m3) c (kPa) φ (◦)
1 18.84 28.5 20

2 18.84 0 10

aim of study in the work done by Gandomi et al. [15] and the results are summarized
in Table8. As results show, the performance of CS is benchmarked better in this case
and CS_EB obtained a lower value for FOS.
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Table 7 Values of FOS for Case III

Optimization algorithm CS CS_EB

Mean 1.235279319 1.232020613

Best 1.226171806 1.223049725

Standard deviation 0.006388442 0.004708358

Table 8 Previous studies computed FOS for Case III

References Optimization algorithm FOS

Gandomi et al. [15] Particle swarm optimization 1.2462

Gandomi et al. [15] Firefly algorithm 1.466

Gandomi et al. [15] Cuckoo search 1.2261

Gandomi et al. [15] Levy-Flight Krill Herd 1.2237

4.4 Case IV

In this example, the dry case of slope problem proposed by Fredlund and Krahn [14]
is considered. Some researchers such as Kim et al. [28], Baker [2], and Zhu et al.
[43] solved this problem in their studies. The slope geometry, location of slip surface
and soil properties are shown in Fig. 7 and Table9, respectively.

Fig. 7 Slope geometry and critical slip surface for Case IV
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Table 9 Soil layers properties for Case IV

Layer γ (kN/m3) c (kPa) φ (◦)
1 19.22 28.73 20

2 19.22 0 10

Table 10 Values of FOS comparison for Case IV

Optimization algorithm CS CS_EB

Mean 1.341315805 1.33212733

Best 1.323208687 1.308168866

Standard deviation 0.011051164 0.013925208

Table 11 Previous studies computed FOS for Case IV

References Optimization algorithm FOS

Fredlund and Krahn [14] – 1.373

Zhu et al. [43] – 1.381

Kashani et al. [24] Imperialistic competitive
algorithm

1.3625

Abrief comparison of present study and previous results are presented in Tables10
and 11, respectively. From the results it is obvious that the CS and CS_EB reach the
best solution, and CS_EB does even better than CS.

4.5 Case V

For the last case study, to investigate algorithms efficiency more accurately, more
complicate example is selected from the literature of Zolfaghari et al. [45]. The soil
parameters and slope geometry and slip surfaces are shown in Table12 and Fig. 8,
respectively.

Table 12 Soil layers properties for Case V

Layer γ (kN/m3) c (kPa) φ (◦)
1 19.00 15.0 20

2 19.00 17.0 21

3 19.00 5.00 10

4 19.00 35.0 28
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Fig. 8 Slope geometry and critical slip surface for Case V

Table 13 Values of FOS comparison for Case V

Optimization algorithm CS CS_EB

Mean 1.11585765 1.0731675

Best 1.0635 1.0502

Standard deviation 0.034966155 0.025047471

This problem is analyzed in various studies such as: Zolfaghari et al. [45] by
using genetic algorithm, Cheng et al. [9] by using the artificial fish swarm algorithm
(AFSA), Kahatadeniya et al. [23] by using the ant-colony method and Cheng et al.
[10] by using HSPSO. The present study and latest studies results are summarized
in Tables13 and 14, respectively.

As a result, because of presence of thin weak soil layer between two strong ones
multiple strong local minima have occurred and ACO and GA fail to converge to
a very good solution. The computed FOS by CS and CS_EB demonstrate that the
present study provides a good solution in this example. Because of lower value of
FOSbyCS_EB, it is concluded that CS_EB is the best algorithm among other utilized
algorithms.
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Table 14 Previous studies computed FOS for Case V

References Optimization algorithm FOS

Zolfaghari et al. [45] Genetic algorithm 1.24

Cheng et al. [9, 10] Simulated annealing 1.2813

Cheng et al. [9, 10] Genetic algorithm 1.1440

Cheng et al. [9, 10] Particle swarm optimization 1.1095

Cheng et al. [9, 10] Simple harmony search 1.2068

Cheng et al. [9, 10] Modified harmony search 1.1385

Cheng et al. [9, 10] Tabu search 1.4650

Cheng et al. [9, 10] Ant colony optimization 1.5817

Khajehzadehet al. [26] Gravitational search algorithm 1.0785

Kashani et al. [24] Imperialistic competitive algorithm 1.0642

Gandomi et al. [15] Particle swarm optimization 1.1148

Gandomi et al. [15] Firefly algorithm 1.303

Gandomi et al. [15] Cuckoo search 1.0635

Gandomi et al. [15] Levy-Flight Krill Herd 1.0579

5 Conclusion

Effect of evolutionary boundary constraint handling scheme is assessed in com-
plex geotechnical problems. This scheme is one of the recently proposed methods
to implement boundary limitation on optimizations algorithms such as slope sta-
bility optimization problems. In this study a metaheuristic optimization algorithm
that traditionally uses absorbing scheme is adopted to optimize five slope stability
benchmark problems then their results are compared to the results with evolutionary
boundary constraint handling scheme. The obtained results, such as best FOS values
and standard deviation, using the classical and new proposed method prove the effi-
ciency of the new method on making better the location of critical slip surface. Refer
to the case studies; in the cases that obtained FOS are nearly equal, Case I and Case
II, the lower value of standard deviation is belong to CS_EB and from Case III to V,
the lower values of FOS yield by CS_EB. Altogether, the results declared the current
proposed algorithmCS_EB are capable to reach better solution than original CS. Not
only this new boundary constraint handling method is easy to implement, but also
it is efficient. This means evolutionary boundary constraint handling can make the
optimization algorithm performance better without complex action like hybridizing.



Boundary Constraint Handling Affection on Slope Stability Analysis 357

References

1. Arai K, Tagyo K (1986) Determination of noncircular slip surface giving the minimum factor
of safety in slope stability analysis. Soils Found 26(3):152–154

2. Baker R (1980) Determination of the critical slip surface in slope stability computations. Int J
Numer Anal Methods Geomech 4:333–359

3. Bolton HPJ, Heymann G, Groenwold AA (2003) Global search for critical failure surface in
slope stability analysis. Eng Optim 35(1):51–65

4. Chen TY, Chi TM (2010) On the improvements of the particle swarm optimization algorithm.
Adv Eng Softw 41:229–239

5. Chen Z, Shao C (1983) Evaluation of minimum factor of safety in slope stability analysis. Can
Geotech J 25(4):735–748

6. Cheng YM (2003) Locations of critical failure surface and some further studies on slope
stability analysis. Comput Geotech 30:255–267

7. Cheng YM, Li L, Ch SC (2007) Performance studies on six heuristic global optimization
methods in the location of critical failure surface. Comput Geotech 34:462–484

8. Cheng YM, Li L, Chi SC, Wei WB (2007) Particle swarm optimization algorithm for the
location of the critical non-circular failure surface in two-dimensional slope stability analysis.
Comput Geotech 34(2):92–103

9. Cheng YM, Liang L, Chi SC, Wei WB (2008) Determination of the critical slip surface using
artificial fish swarms algorithm. J Geotech Geoenviron Eng 134(2):244–251

10. Cheng YM, Li L, Sun YJ, Au SK (2012) A coupled particle swarm and harmony search
optimization algorithm for difficult geotechnical problems. Struct Multidisc Optim 45:489–
501

11. Chu W, Gao X, Sorooshian S (2011) Handling boundary constraints for particle swarm opti-
mization in high-dimensional search space. Inf Sci 181(20):4569–4581

12. Das SK (2005) Slope stability analysis using genetic algorithm. Electron J Geotech Eng 10(A)
13. Feng T, FredlundM (2012) SVSLOPE, Slope stabilitymodeling software’s verificationmanual
14. Fredlund DG, Krahn J (1977) Comparison of slope stability methods of analysis. Can Geotech

J 14(3):429–439
15. Gandomi AH, Kashani AR, Mousavi M, Jalalvandi M (2014) Slope stability analyzing using

recent swarm intelligence techniques. Int J Numer Anal Methods Geomech 39(3):295–309
16. Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach

to solve structural optimization problems. Eng Comput 29(1):17–35
17. Gandomi AH, Yang XS (2012) Evolutionary boundary constraint handling scheme. Neural

Comput Appl 21:1449–1462
18. Giasi CJ, Masi P, Cherubini C (2003) Probabilistic and fuzzy reliability analysis of a sample

slope near Aliano. Eng Geol 67(3):391–402
19. Goh A (2000) Search for critical slip circle using genetic algorithms. Civil Eng Environ Syst

17(3):181–211
20. Greco YR (1996) Efficient Monte Carlo technique for locating critical slip surface. J Geotch

Eng ASCE 122:517–525
21. Huang T, Mohan AS (2005) A hybrid boundary condition for robust particle swarm optimiza-

tion. IEEE Antennas Wirel Propag Lett 4:112–117
22. Jianping S, Li J, Liu Q (2008) Search for critical slip surface in slope stability analysis by

spline-based GA method. J Geotech Geoenviron Eng 134(2):252–256
23. Kahatadeniya KS, Nanakorn P, Neaupane KM (2009) Determination of the critical failure

surface for slope stability analysis using ant colony optimization. Eng Geol 108:133–141
24. Kashani AR, Gandomi AH, Mousavi M (2014) Imperialistic competitive algorithm: a meta-

heuristic algorithm for locating the critical slip surface in 2-dimensional soil slopes. Geosci
Front (in Press). doi:10.1016/j.gsf.2014.11.005

25. KavehA, Talatahari S (2009) Particle swarm optimizer, ant colony strategy and harmony search
scheme hybridized for optimization of truss structures. Comput Struct 87(5–6):267–283

http://dx.doi.org/10.1016/j.gsf.2014.11.005


358 A.H. Gandomi et al.

26. Khajehzadeh M, Taha MR, El-shafie A, Eslami M (2011) Search for critical failure surface in
slope stability analysis by gravitational search algorithm. Int J Physic Sci 6(21): 5012–5021

27. Khajehzadeh M, Taha MR, El-Shafie A, Eslami M (2012) Locating the general failure surface
of earth slope using particle swarm optimization. Civil Eng Environ Syst 29(1):41–57

28. Kim J, Salgado R, Lee J (2002) Stability analysis of complex soil slopes using limit analysis.
J Geotech Geoenviron Eng 128(7):546–557

29. Malkawi AIH, Hassan WF, Sarma SK (2001) Global search method for locating general slip
surface using Monte Carlo techniques. J Geotech Geoenviron Eng 127(8):688–698

30. Mathada VS, Venkatachalam G, Srividya A (2007) Slope stability assessment-a comparison
of probabilistic, possibilistic and hybrid approaches. Int J Performability Eng 3(2):11–21

31. McCombie P,Wilkinson P (2002) The use of the simple genetic algorithm in finding the critical
factor of safety in slope stability analysis. Comput Geotech 29(8):699–714

32. MorgensternNR,PriceVE (1965)The analysis of the stability of general slip surfaces.Géotech-
nique 15:79–93

33. Rezaeean A, Noorzad R, Dankoub AKM (2011) Ant colony optimization for locating the
critical failure surface in slope stability analysis. World Appl Sci J 13(7):1702–1711

34. Rubio E, Hall JW, AndersonMG (2004) Uncertainty analysis in a slope hydrology and stability
model using probabilistic and imprecise information. Comput Geotech 31(7):529–536

35. Samui P, Kumar B (2006) Artificial neural network prediction of stability numbers for two-
layered slopes with associated flow rule. EJGE

36. SenguptaA,UpadhyayA (2009) Locating the critical failure surface in a slope stability analysis
by genetic algorithm. Appl Soft Comput 9(1):387–392

37. Solati S, Habibagahi G (2006) A genetic approach for determining the generalized interslice
forces and the critical non-circular slip surface. Iran J Sci Technol Trans B Eng 30(1):1–20

38. Sridevi B, Deep K (1992) Application of global optimization technique to slope stability
analysis. In: Proceedings of the 6th international symposium on landslide. Christchurch, New
Zealand, pp 573–578

39. Xu S, Rahmat-Samii Y (2007) Boundary conditions in particle swarm optimization revisited.
IEEE Trans Antennas Propag 55(3):112–117

40. Yamagami T, Ueta Y (1988) Search for noncircular slip surfaces by the Morgenstern-Price
method. In: The 6th international conference on numerical methods in geomechanics. Numer-
ical methods in geomechanics (Innsbruck 1988). Balkema, Innsbruck, pp 1335–1340

41. Yang XS, Deb S (2009) Cuckoo search via Levy flights. In: Proceedings of world congress on
nature and biologically inspired computing. IEEE Publications, USA, pp 210–214

42. Zhao H, Yin S, Ru Z (2012) Relevance vector machine applied to slope stability analysis. Int
J Numer Anal Methods Geomech 36(5):643–652

43. Zhu D, Lee CF, Jiang HD (2003) Generalized framework of limit equilibrium methods for
slope stability analysis. Geotechnique 4:337–395

44. Zhu DY, Lee CF, Qian QH, Chen GR (2005) A concise algorithm for computing the factor of
safety using the Morgenstern-Price method. Can Geotech J 42(1):272–278

45. Zolfaghari AR, Heath AC, McCombie PF (2005) Simple genetic algorithm search for critical
non-circular failure surface in slope stability analysis. Comput Geotech 32(3):139–152


	Boundary Constraint Handling Affection  on Slope Stability Analysis
	1 Introduction
	2 Slope Stability Analyzing
	2.1 Generation of Trial Slip Surface
	2.2 Factor of Safety Calculation

	3 Optimization Techniques
	3.1 Cuckoo Search
	3.2 Evolutionary Boundary Constraint Handling

	4 Numerical Simulation
	4.1 Case I
	4.2 Case II
	4.3 Case III
	4.4 Case IV
	4.5 Case V

	5 Conclusion
	References


