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Abstract This article presents adjoint methods for the computation of the first-
and higher-order derivatives of objective functions F used in optimization problems
governed by the Navier–Stokes equations in aero/hydrodynamics. The first part of
the chapter summarizes developments and findings related to the application of the
continuous adjoint method to turbulence models, such as the Spalart-Allmaras and
k-ε ones, in either their low- or high-Reynolds number (with wall functions) vari-
ants. Differentiating the turbulence model, over and above to the differentiation of
the mean–flow equations, leads to the computation of the exact gradient of F , by
overcoming the frequentlymade assumption of neglecting turbulence variations. The
second part deals with higher-order sensitivity analysis based on the combined use of
the adjoint approach and the direct differentiation of the governing PDEs. In robust
design problems, the so-called second-moment approach requires the computation of
second-order derivatives of F with respect to (w.r.t.) the environmental or uncertain
variables; in addition, any gradient-based optimization algorithm requires third-order
mixed derivatives w.r.t. both the environmental and design variables; various ways to
compute them are discussed and the most efficient is adopted. The equivalence of the
continuous and discrete adjoint for this type of computations is demonstrated. In the
last part, some other relevant recent achievements regarding the adjoint approach are
discussed. Finally, using the aforementioned adjoint methods, industrial geometries
are optimized. The application domain includes both incompressible or compressible
fluid flow applications.
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1 Flow Equations and Objective Function

In this section, the equations governing the state (i.e. flow) problem for incom-
pressible fluid flows, using either the one-equation Spalart-Allmaras [1] or the two
equation Launder-Sharma k − ε [2] turbulence models, are briefly presented. The
mean–flow state equations are

R p = −∂υ j

∂x j
= 0 (1)

Rυi = υ j
∂υi

∂x j
+ ∂p

∂xi
− ∂

∂x j

[
(ν+νt )

(
∂υi

∂x j
+ ∂υ j

∂xi

)]
= 0 (2)

where υi are the velocity components, p the static pressure divided by the density,
ν and νt the bulk and turbulent viscosities. The turbulence model (TM) equation(s)
is/are

Rν̃ = υ j
∂ν̃

∂x j
− ∂

∂x j

[(
ν+ ν̃

σ

)
∂ν̃

∂x j

]
− cb2

σ

(
∂ν̃

∂x j

)2

− ν̃ P (̃ν) + ν̃D (̃ν)=0 (3)

for the Spalart-Allmaras model (TM=SA) and

Rk =υ j
∂k

∂x j
− ∂

∂x j

[(
ν+ νt

Prk

)
∂k

∂x j

]
−Pk +ε + D = 0

Rε =υ j
∂ε

∂x j
− ∂

∂x j

[(
ν+ νt

Prε

)
∂ε

∂x j

]
−c1Pk

ε

k
+ c2 f2

ε2

k
− E = 0 (4)

for the Launder-Sharma k-ε (TM=KE) one. ν̃ is the turbulence state variable if
TM=SA (νt = ν̃ fv1 ) and k, ε are the corresponding quantities (turbulent kinetic

energy and turbulent energy dissipation) if TM=KE (νt = cμ
k2
ε
). In both cases,

the boundary conditions and the model constant values are omitted in the interest of
space; see [1] and [2].

In general, the objective function may comprise both surface (S) and volume (Ω)
integrals, as follows

F =
∫

S
FSd S+

∫
Ω

FΩdΩ =
∫

S
FSi ni d S+

∫
Ω

FΩdΩ (5)

where ni are the components of the normal to the boundary outward unit vector.
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2 The Adjoint Method for Shape Optimization
in Turbulent Flows

In discrete adjoint, the differentiation of the turbulencemodel equations is straightfor-
ward and can be found in several published works, [3, 4]. In contrast, the majority of
existing continuous adjoint methods/codes rely on the so-called “frozen turbulence”
assumption, in which the sensitivities of the turbulence quantities w.r.t. the design
variables are neglected [5–9]. The first continuous adjoint to the Spalart-Allmaras
model, for incompressible flows, was presented by the current group of authors in
[10] and was extended to compressible flows in [11]. Regarding the adjoint approach
to high-Reynolds turbulence models, the continuous adjoint to the k-ε model with
wall functions has recently been published, [12], whereas the continuous adjoint
to the low-Reynolds Launder-Sharma k -ε model can be found in [13]. All these
adjoint approacheswhich rely upon the differentiated turbulencemodelwill hereafter
be referred to as “turbulent” adjoint, to distinguish it from the “frozen turbulence”
approach.

2.1 Continuous Adjoint to Low-Re Turbulence Models

In the continuous adjoint approach for shape optimization problems, the total deriva-
tive (symbol δ) of any functionΦ w.r.t. the design variables bn must be distinguished
from the corresponding partial sensitivity (symbol ∂) since

δΦ

δbn
= ∂Φ

∂bn
+ ∂Φ

∂xl

δxl

δbn
(6)

where δxl
δbn

are the sensitivities of nodal coordinates. In case Φ is defined along

a surface, Eq.6 becomes δsΦ
δbn

= ∂Φ
∂bn

+ ∂Φ
∂xk

nk
δxm
δbn

nm . Since any sufficiently small
surface deformation can be seen as a normal perturbation, only the normal part of
the surface deformation velocity δxm/δbnnm contributes to changes in Φ.

In order to formulate the adjoint method, the augmented objective function Faug

is defined as the sum of F and the field integrals of the products of the adjoint variable
fields and the state equations, as follows

Faug = F +
∫

Ω

ui Rυ
i dΩ +

∫
Ω

q R pdΩ + ET M (7)

where ui are the adjoint velocity components, q the adjoint pressure and the extra
terms ET M depend on the turbulence model (T M). If T M = S A,

ES A =
∫

Ω

ν̃a Rν̃dΩ (8)
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whereas if T M = K E ,

EK E =
∫

Ω

(
ka Rk + εa Rε

)
dΩ (9)

where ν̃a , ka and εa are the adjoints to ν̃, k and ε, respectively.
Based on the Leibniz theorem, the derivative of Faug w.r.t. bn is

δFaug

δbn
= δF

δbn
+

∫
Ω

ui
∂ Rυ

i

∂bn
dΩ +

∫
Ω

q
∂ R p

∂bn
dΩ (10a)

+
∫

SWp

(
ui Rυ

i + q R p) δxk

δbn
nkd S + δ(ET M )

δbn

δ(ES A)

δbn
=

∫
Ω

ν̃a
∂ Rν̃

∂bn
dΩ+

∫
SWp̃

νa Rν̃ δxk

δbn
nkd S (10b)

δ(EK E )

δbn
=

∫
Ω

ka
∂ Rk

∂bn
dΩ+

∫
Ω

εa
∂ Rεa

∂bn
dΩ+

∫
SWp

(
ka Rk + εa Rε

) δxk

δbn
nkd S

(10c)

where SWp is the parameterized (in terms of bn) part of the solid wall. The develop-
ment of the volume integrals in Eqs. 10a, b, based on the Green-Gauss theorem and
the elimination of terms depending on the variations of themean–flow and turbulence
model variables, lead to the adjoint mean–flow equations

Rq = ∂u j

∂x j
= 0 (11)

Ru
i = u j

∂υ j

∂xi
− ∂(υ j ui )

∂x j
− ∂

∂x j

[
(ν+νt )

(
∂ui

∂x j
+ ∂u j

∂xi

)]
+ ∂q

∂xi
+ AM Si =0 (12)

The extra terms AM Si arise from the differentiation of the turbulence model, see
[10, 13]. The adjoint turbulence model variables fields ν̃a, ka and εa are governed
by the “turbulent” adjoint PDEs, which are

Rν̃a =−∂(υ j ν̃a)

∂x j
− ∂

∂x j

[(
ν+ ν̃

σ

)
∂ν̃a

∂x j

]
+ 1

σ

∂ν̃a

∂x j

∂ν̃

∂x j
+ 2

cb2

σ

∂

∂x j

(
ν̃a

∂ν̃

∂x j

)

+ ν̃a ν̃Cν̃ + ∂νt

∂ν̃

∂ui

∂x j

(
∂υi

∂x j
+ ∂υ j

∂xi

)
+ (−P+D) ν̃a = 0 (13a)

Rka =−∂(υ j ka)

∂x j
− ∂

∂x j

[(
ν + νt

Prk

)
∂ka

∂x j

]

+
(

B1

Prk
− ν

k

)
∂k

∂x j

∂ka

∂x j
+ B1

Prε

∂ε

∂x j

∂εa

∂x j
+B1

(
∂υi

∂x j
+ ∂υ j

∂xi

)
∂ui

∂x j
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+
[

ν

2k2

(
∂k

∂x j

)2
− ν

k

∂2k

∂x2j
−P B1

]
ka

−
⎡
⎣c1

ε

k
P B1 + 2ν

(
∂2υk

∂xi ∂x j

)2

B1+c2 f2
ε2

k2
− 1.2c2

k2

ν2
e−Re2t −c1Pk

ε

k2

⎤
⎦ εa =0

(13b)

Rεa =−∂(υ j εa)

∂x j
− ∂

∂x j

[(
ν + νt

Prε

)
∂εa

∂x j

]

+ B2

Prε

∂ε

∂x j

∂εa

∂x j
+ B2

Prk

∂k

∂x j

∂ka

∂x j
+B2

(
∂υi

∂x j
+ ∂υ j

∂xi

)
∂ui

∂x j
+ (1−P B2) ka

+
⎡
⎣−2ν

(
∂2υk

∂xi ∂x j

)2

B2 − c1
ε

k
P B2+2c2 f2

ε

k
− 0.6c2

k3

ν2ε
e−Re2t − c1Pk

1

k

⎤
⎦ εa = 0

(13c)

The detailed derivation of the adjoint PDEs, the various terms or constants inEqs. 13a,
b, c and the corresponding adjoint boundary conditions can be found in [10] or [13].

After satisfying the field adjoint equations, the sensitivity derivatives of Faug are
given by

δFaug

δbn
=

∫
S
BCu

i
∂υi

∂bn
d S+

∫
S
(u j n j + ∂ FSi

∂p
ni )

∂p

∂bn
d S+

∫
S
(−ui n j + ∂ FSk

∂τi j
nk)

∂τi j

∂bn
d S

+
∫

SWp

ni
∂ FSWp ,i

∂xm
nm

δxk

δbn
nkd S+

∫
SWp

FSWp ,i

δni

δbn
d S+

∫
SWp

FSWp ,i ni
δ(d S)

δbn

+
∫

SWp

(ui Rυ
i + q R p)

δxk

δbn
nkd S+SD (14)

where, depending on the turbulence model, terms BCu
i and SD can be found in [10]

or [13]. The gain from using the “turbulent” adjoint approach and overcoming the
“frozen turbulence” assumption, at the expense of additionally solving the adjoint
to the turbulence model PDEs, is demonstrated below in a few selected cases. The
“frozen turbulence” assumptionmay lead to wrongly signed sensitivities, misleading
or delaying the optimization process. As an example, the optimization of a 90◦ elbow
duct, targeting minimum total pressure losses, minF = − ∫

SI

(
p + 1

2υ
2
)
υi ni d S −∫

SO

(
p + 1

2υ
2
)
υi ni d S, where SI and SO are the inlet to and outlet from the flow

domain, with a Reynolds number equal to 3.5× 104, modeled using TM=SA model
is demonstrated in Fig. 1, [10]. Comments can be found in the caption.

The shape optimization of an S-shaped duct, with the same target as before,
is demonstrated in Fig. 2. The flow Reynolds number based on the inlet height is
Re = 1.2 × 105 and TM=KE is used. The upper and lower duct contours are para-
meterized using Bézier–Bernstein polynomials with 12 control points each. The
Fletcher-Reeves Conjugate Gradient (CG) method is used. The gradients used by
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Fig. 1 Adjoint to the low-Re Spalart–Allmaras model: Left adjoint pressure field in a 90◦ elbow
duct with constant cross-section. Right sensitivity derivatives of the total pressure losses function
(δF/δbn), where bn are the normal displacements of the solid wall grid nodes. Two sensitivity
distributions, close to the 90◦ bend, are compared. The abscissa stands for the nodal numbers
of the wall nodes. By making the “frozen turbulence” assumption, wrongly signed sensitivities
between nodes 20 and 50 are computed. Extensive validation of the adjoint solver against direct
differentiation is conducted in [10]
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Fig. 2 Adjoint to the low-Re Launder–Sharma k−ε model: Shape optimization of an S-shaped duct
targeting minimum total pressure losses. Left Starting duct shape compared to the optimal shapes
resulting from a “turbulent” adjoint and b adjoint based on the “frozen turbulence” assumption;
axes not in scale. Right Convergence history of the CG algorithm driven by the two different adjoint
methods. From [13]

each method to update the design variables are based on (a) “turbulent” adjoint and
(b) adjoint with the “frozen turbulence” assumption. The starting duct shape along
with the optimal ones computed by CG, based on the two variants of the adjoint
formulation, are presented in Fig. 2. The shape resulting from (a) has an F value by
about 3% lower than that of (b) and reaches the optimal solution after ∼20% less
cycles.
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Fig. 3 The adjoint technique with wall functions: A vertex-centered finite volume ΩP associated
with the “wall” (horizontal line) at node P . The real solid wall lies underneath P , at a distance Δ

2.2 Continuous Adjoint to High-Re Turbulence Models

In industrial projects, many analysis codes rely on the use of the wall function (WF)
technique, due to the less stretched and generally coarser meshes required close to
the walls and the resulting economy in the overall CPU cost. The development of
the adjoint approach to the wall function model is, thus, necessary. This is briefly
presented below for the k-ε and the Spalart-Allmaras models. The two developments
differ since the first was based on the in-house GPU-enabled RANS solver, [14], with
slip velocity at thewall, [15], while the second on theOpenFOAMcodewith a no-slip
condition at the wall. Note that these differences in the primal boundary conditions
at the wall cause differences in the corresponding adjoint boundary conditions.

Regarding the k-ε model, the development, which was carried out by the authors’
group [12] was based on vertex-centered finite volumes with non-zero slip velocity
at the wall. The real solid wall is assumed to lie at a distance Δ underneath SW .
Integrating the state equations over the finite volume of Fig. 3, the diffusive flux
across segment αβ depends on the friction velocity υτ ,

υ2
τ = (ν + νt )

(
∂υi

∂x j
+ ∂υ j

∂xi

)
n j ti (15)

and υt = υi ti ; υt computed via the local application of the law of the wall.
With known υτ , the k and ε values at P are

kP = υ2
τ√
cμ

, εP = υ3
τ

κΔ
, if y+ ≥ y+

c

kP = υ2
τ√
cμ

(
y+
y+

c

)2
, εP = k

3
2
P

1+ 5.3ν√
kP Δ

κc
− 3
4

μ Δ

, if y+ < y+
c

(16)

where y+ = υτ Δ
ν

, υ+ = υt
υτ
, which result from the expressions υ+ = 1

κ
lny++B, with

κ = 0.41 and B = 5.5, if y+ ≥ y+
c or υ+ = y+ if y+ < y+

c .
Similar to the definition of υτ , Eq. 15, the development of the adjoint equations

introduces the adjoint friction velocity uτ at each “wall” node (such as P) defined
by, [12],
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u2
τ = (ν + νt )

(
∂ui

∂x j
+ ∂u j

∂xi

)
n j ti (17)

Attention should be paid to the close similarity of Eqs. 17 and 15. During the solution
of the adjoint PDEs (TM=KE), the value of uτ , which contributes to the adjoint
viscous fluxes at the “wall” nodes, is expressed in terms of the gradients of k, ka , ε
and εa , as follows

u2
τ = 1

cv

[
2uktkυτ −

(
ν + νt

Prk

)
∂ka

∂x j
n j

δk

δυτ

−
(

ν + νt

Prε

)
∂εa

∂x j
n j

δε

δυτ

]
(18)

On the other hand, if TM=SA (based on a cell-centered finite-volume schemewith
a no-slip condition at the solid wall boundary faces), the wall function technique is
based on a single formula modeling both the viscous sublayer and the logarithmic
region of the boundary layer

fW F = y+ − υ+ − e−κ B
[

eκυ+ − 1 − κυ+ − (κυ+)2

2
− (κυ+)3

6

]
= 0 (19)

In this case, the adjoint friction velocity must be zeroed. This is the major difference
between the two finite–volume approaches (cell– and vertex–centered); despite this
difference and any difference in the interpretation of the adjoint friction velocity,
both will be referred to as “adjoint wall function” technique. Here, also, the role of
(zero) uτ is to complete the adjoint momentum equilibrium at the first cell adjacent to
the wall. The development is omitted in the interest of space. Applications, including
validation, of the “adjoint wall function” technique are shown in Figs. 4 and 5, with
comments in the caption.
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Fig. 4 Adjoint to the high-Re k-ε model: Optimization of an axial diffuser, for minimum total
pressure losses, using the “adjoint wall function” technique. Left Friction velocity υτ and adjoint
friction velocity uτ distributions along its lower wall. Right Sensitivity derivatives of F w.r.t. the
design variables, i.e. the coordinates of Bézier control points parameterizing the side walls. The
“adjoint wall function” method perfectly matches the sensitivity derivatives computed by finite
differences. From [12]
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Design Variables

"adjoint wall function"
FD

frozen turbulence
"turbulent" adjoint (LowRe)

Fig. 5 Adjoint to the high-Re Spalart–Allmarasmodel, flow around the isolatedNACA0012 airfoil,
α∞ =3◦, Re = 6× 106: Drag sensitivities computed using the “adjoint wall function” method are
compared to finite-differences (FD), the adjoint method using the “frozen turbulence” assumption
and the adjoint method with the “low–Reynolds” approach. The latter implies that the turbulence
model is differentiated but the differentiation of the wall functions is disregarded. Only the latest
24 design variables, namely the y coordinates of the control points, where the magnitude of the
computed derivatives is greater, are considered; the first 12 correspond to the suction side and the
other to the pressure side. It is interesting to note that the “low-Re” adjoint approach performs
even worse than the “frozen turbulence” one. In other words, the incomplete differentiation of the
turbulence model produces worse results than its complete omission!

Recently, the “turbulent adjoint” method for the k − ω SST turbulence model
with wall functions was published by the same group, [16].

2.3 Other Applications of the Continuous Adjoint Methods

The continuous adjoint method is a low-cost tool to derive information regarding
the optimal location and type of steady suction/blowing jets, used to control flow
separation, [13]. In unsteady flows, the adjoint method, [17], can also be used to
compute the optimal characteristics of unsteady jets, such as pulsating or oscillating
ones. Such an application, where the optimal amplitudes of pulsating jets have been
computed using the unsteady continuous adjoint method is presented in Fig. 6.

An inherent difficulty of the adjoint method, applied to unsteady flows, is the need
of having the primal solution field available for the solution of the adjoint equations in
each time-step. Since the adjoint solution evolves backwards in time, the need to store
every primal solution arises. Since storing everything is expensive memory-wise,
some turnaround is often used instead. A very common approach is the checkpointing
technique, [18], where selected primal flow fields are stored (checkpoints) and the
rest are recomputed starting from the checkpoints. Checkpointing is much cheaper
memory-wise, at the expense of extra CPU time, needed for the re-computations of
the primal fields.
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Fig. 6 Time-averaged dragminimization of the unsteady flow around a cylinder at Re = 100, using
pulsating jets: Optimal amplitudes for the symmetrically placed jets computed by the continuous
adjoint method

Another way to overcome this is to use an approximation to the time evolution
of the primal fields, such as the proper orthogonal decomposition (POD) technique,
[19]. Approximating the primal field of each iteration bears no extra CPU cost.

On the other hand, topology optimization in fluid mechanics exclusively relies
upon the adjoint method. In these problems, a real-valued porosity (α) dependent
term is introduced into the flow equations. Based on the local porosity values, domain
areas corresponding to the fluid flow are identified as those with nodal values α≤ε,
where ε is a user-defined infinitesimally small positive number. All the remaining
areas where α>ε define the part of the domain to be solidified. The goal of topology
optimization is to compute the optimal α field in order to minimize the objective
function under consideration. Since the number of the design variables is equal to
the number of mesh cells (and thus, very high), the adjoint method is the perfect
choice for computing δF/δα, as its cost is independent of the number of design
variables. Continuous adjoint methods for solving topology optimization problems
for laminar and turbulent ducted flows, with or without heat transfer, are described in
[20]. For turbulent flows, the adjoint approach is exact, i.e. includes the differentiation
of the turbulence model (“turbulent” adjoint), (Fig. 7).

3 Robust Design Using High-Order Sensitivity Analysis

In aerodynamics, robust designmethods aim at optimizing a shape in a range of possi-
ble operating conditions or by considering environmental uncertainties, such as man-
ufacturing imprecisions or fluctuations of flow conditions, etc. The latter depend on
the so-called environmental variables c (ci , i ∈ [1, M]). In robust design problems,
the function to be minimized can be expressed as F̂ = F̂ (b, c, U(b, c)), to denote
the dependency of F̂ on the flow variables U, the design variables b (bl , l ∈ [1, N ])
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Fig. 7 Topology optimization of a plenum chamber targeting minimum fluid power losses (F),
subject to a constraint requiring half of the plenum chamber volume to be flled by fluid. Primal
velocity streamlines computed in the starting (left) and optimized geometries (right). Streamlines
are colored based on the the primal velocity magnitude. A 29% reduction in F was achieved after
a 12hour computation on 40 cores of 5 Intel Xeon E5620 CPUs (2.40GHz)

which parameterize the aerodynamic shape and the uncertain environmental vari-
ables c. A probability density function g(c) can be associated with c. In the so-called
Second-Order Second-Moment (SOSM) approach, F̂ combines the mean value μF

and variance σF
2 of F

μF (b, c) =
∫

Fg(c)dc 	 F + 1

2

[
δ2F

δc2i

]
c

σ 2
i (20)

σF
2(b, c) =

∫
(F − μF )2g(c)dc 	

[
δF

δci

]2
c
σ 2

i + 1

2

[
δ2F

δciδc j

]2
c
σ 2

i σ 2
j (21)

where the gradients are evaluated at themean values c of the environmental variables.
Based on the previous definitions, in robust design, F̂ becomes

F̂(b, c)=wμF + (1 − w)σ 2
F (22)

where w is a user-defined weight. To compute F̂ , efficient and accurate methods for
first- and second-order derivatives of F w.r.t. the environmental variables are needed.

3.1 Computation of Second-Order Moments

In aerodynamic optimization, the computation of the Hessian of F , subject to the
constraint of satisfying the flow equations, can be conducted in at least four different
ways. All of them can be set up in either discrete or continuous form [21–23]. The
presentation is always much more synoptic in the discrete sense. In this case, the
first-order variation rate of F w.r.t. ci , i =1, . . . , M is given by
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d F

dci
= ∂ F

∂ci
+ ∂ F

∂Uk

dUk

dci
(23)

whereas the sensitivities of the discretized residuals Rm of the flow equations w.r.t. ci

are given by

d Rm

dci
= ∂ Rm

∂ci
+ ∂ Rm

∂Uk

dUk

dci
= 0 (24)

whereUk are the discretized field of the flow variables. Solving Eq.24 for dUk
dci

, at the
cost of M equivalent flow solutions (EFS; this is approximately the cost of solving the
primal equations) and, then, computing d F

dci
from Eq.23 is straightforward but costly

and will be referred to as Direct Differentiation (DD). Since the cost to compute the
gradient of F using DD scales with M , the Adjoint Variable (AV) method can be
used instead. The adjoint equations to be solved for the adjoint variables Ψm are

RΨ
k = ∂ F

∂Uk
+ Ψm

∂ Rm

∂Uk
= 0 (25)

and d F
dci

are computed as

d F

dci
= ∂ F

∂ci
+ Ψm

∂ Rm

∂ci
(26)

To compute the Hessian of F , starting from Eq.23, the so-called DD-DD approach
is set up, so that

d2F

dci dc j
= ∂2F

∂ci∂c j
+ ∂2F

∂ci∂Uk

dUk

dc j
+ ∂2F

∂Uk∂c j

dUk

dci

+ ∂2F

∂Uk∂Um

dUk

dci

dUm

dc j
+ ∂ F

∂Uk

d2Uk

dci dc j
(27)

where d2Uk
dci dc j

is computed by first solving the following DD equations

d2Rn

dci dc j
= ∂2Rn

∂ci∂c j
+ ∂2Rn

∂ci∂Uk

dUk

dc j
+ ∂2Rn

∂Uk∂c j

dUk

dci

+ ∂2Rn

∂Uk∂Um

dUk

dci

dUm

dc j
+ ∂ Rn

∂Uk

d2Uk

dci dc j
= 0 (28)

Note that dUk
dci

are already known from the solution of Eq. 24.
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The DD-DD approach requires upon the computation of dUk
dci

and d2Uk
dci dc j

and

its CPU cost is M + M(M+1)
2 EFS in total (excluding the cost of solving the flow

equations). So, the overall CPU cost scales with M2 and becomes too expensive for
use in real–world optimization.

Two less expensive approaches to compute the Hessian of F are the AV-DD (AV
for the gradient and DD for the Hessian) and AV-AV ones. As shown in [23], both
cost an many as 2M+1 EFS. It can be shown that the fourth alternative way, i.e. the
DD-AV approach (DD for the gradient and AV for the Hessian), is the most efficient
one to compute the Hessian matrix. In DD-AV, the Hessian matrix is computed by

d2F

dci dc j
= ∂2F

∂ci∂c j
+ Ψn

∂2Rn

∂ci∂c j
+

(
∂2F

∂Uk∂Um
+ Ψn

∂2Rn

∂Uk∂Um

)
dUk

dci

dUm

dc j

+
(

∂2F

∂ci∂Uk
+ Ψn

∂2Rn

∂ci∂Uk

)
dUk

dc j
+

(
∂2F

∂Uk∂c j
+ Ψn

∂2Rn

∂Uk∂c j

)
dUk

dci
(29)

where dUk
dci

result from Eq.24 and Ψm is computed by solving the adjoint equation,
Eq.25 (same as before). The total CPU cost of DD-AV is equal to M+1 EFS being,
thus, the most economical approach.

3.2 Robust Shape Optimization Using Third-Order
Sensitivities

If the problem of minimizing the combination of the two first statistical moments
is to be solved using a stochastic method such as an evolutionary algorithm, the
methods presented in Sect. 3.1 serve to provide μF and σF

2; no other derivation is
required. However, if a gradient-based method is used, the gradient of F̂ Eq.22 must
be differentiated w.r.t. bq ,

δ F̂

δbq
= w

(
δF

δbq
+ 1

2

δ3F

δc2i δbq
σ 2

i

)
+ (1 − w)

2 δF
δci

δ2F
δci δbq

σ 2
i + δ2F

δci δc j

δ3F
δci δc j δbq

σ 2
i σ 2

j

2

√[
δF
δci

]2
σ 2

i + 1
2

[
δ2F

δci δc j

]2
σ 2

i σ 2
j

(30)
From Eq.30, the computation of δ F̂

δbq
involves up to third-order mixed sensitivities

w.r.t. ci and bq , such as δ3F
δci δc j δbq

. The computation of the second and third-order
sensitivity derivatives is presented in detail in [24–26]. For instance, in the discrete
sense, the highest-order derivative d2F

dci dc j dbq
is computed using the expression
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d3F

dci dc j dbl
= ∂3F

∂ci∂c j∂bl
+ ∂3F

∂ci∂bl∂Uk
· dUk

dc j
+ ∂3F

∂c j∂bl∂Uk
· dUk

dci

+ ∂3F

∂bl∂Uk∂Um
· dUk

dci
· dUm

dc j
+ ∂2F

∂bl∂Uk
· d2Uk

dci dc j

+ K
i, j

n
∂ Rn

∂bl
+ L

j
n

(
∂2Rn

∂ci∂bl
+ ∂2Rn

∂bl∂Uk
· dUk

dci

)

+ M i
n

(
∂2Rn

∂c j∂bl
+ ∂2Rn

∂bl∂Uk
· dUk

dc j

)

+ Nn

(
∂3Rn

∂ci∂c j∂bl
+ ∂3Rn

∂ci∂bl∂Uk
· dUk

dc j
+ ∂3Rn

∂c j∂bl∂Uk
· dUk

dci

+ ∂3Rn

∂bl∂Uk∂Um
· dUk

dci
· dUm

dc j
+ ∂2Rn

∂bl∂Uk
· d2Uk

dci dc j

)
(31)

where the adjoint variables Nn satisfy the equation

∂ F

∂Uk
+ Nn

∂ Rn

∂Uk
= 0 (32)

and the equations to be solved for L j
n and M i

n can be found in [24].

According to Eq.31, dUk
dc j

and d2Uk
dci dc j

must be available. These are computed by
twice applying the DD technique, practically by solving Eqs. 24 and 28. This is the
costly part of the algorithm, since it costs as many as M + M(M+1)

2 EFS. However,
in the majority of cases, the environmental variables are much less than the design
ones, M 
 N . The computation ofK i, j

N , i, j ∈ [1, M] costs M+ M(M+1)
2 EFS and

that of M i
n , i ∈ [1, M] M EFS. The overall cost per optimization cycle becomes

M2+3M +2 EFS; where the last two EFS correspond to the solution of the primal
and adjoint (i.e. Eq. 32 for N ) equations. The aforementioned technique, which is
referred to as DDc-DDc-AVb (subscripts denote whether the differentiation is made
w.r.t. c or b) has the minimum computational cost, provided that M < N .

3.3 Robust Design Using Continuous Adjoint

This section aims at briefly demonstrating that thematerial presented in Sects. 3.1 and
3.2 can also be based on the continuous, rather that the discrete, adjoint. Without loss
in generality, this will be demonstrated in an inverse design problem, by assuming
inviscid flow of a compressible fluid.

The steady–state 2D Euler equations of a compressible fluid are given by

∂ fnk

∂xk
= 0 (33)
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where k = 1, 2 (for the Cartesian components) and n = 1, . . . , 4 (four equations in
2D). The inviscid fluxes fnk are

[ f1k, f2k, f3k, f4k] = [ρυk, ρυkυ1 + pδk1, ρυkυ2 + pδk2, υk(E + p)]

where ρ, p, υk and E stand for the density, pressure, Cartesian velocity components
and total energy per unit volume, respectively. The array of conservative flow vari-
ables is [U1, U2, U3, U4] = [ρ, ρυ1, ρυ2, E]. For the inverse design problem, the
objective function is

F = 1

2

∫
Sw

(p− ptar )
2d S (34)

where ptar is the target pressure distribution along the solid wall.
In this problem, it is straightforward to derive the continuous adjoint PDEs which

take the form

−Anmk
∂Nn

∂xk
= 0, m = 1, . . . , 4 (35)

where Anmk = ∂ fnk
∂Um

(n = 1, 4, m = 1, 4, k = 1, 2) are the Jacobian matrices of

the inviscid fluxes. Eq.35 is equivalent to Eq.32 in the continuous sense, considering
that, in continuous adjoint, ∂ F

∂Uk
appears in the application of boundary conditions.

In the continuous approach, the DDc-DDc approach can also be formulated by

setting up, discretizing and numerically solving PDEs for δUm
δci

and δ2Um
δci δc j

. The M

systems of PDEs, to be solved for δUm
δci

, result from the first-order sensitivities of the
Euler equations w.r.t. the environmental variables,

∂

∂xk

(
Anmk

δUm

δci

)
= 0 , n = 1, . . . , 4 i = 1, . . . , M (36)

along with appropriate boundary conditions. For the M(M+1)
2 systems of equations,

to be solved for δ2Um
δci δc j

, i = 1, M , j = 1, M , Eq. 36 are differentiated once more to
give

∂

∂xk

(
Anmk

δ2Um

δciδc j
+ δAnmk

δc j

δUm

δci

)
= 0 , n = 1, . . . , 4; i, j = 1, . . . , M (37)

With known δUm
δci

and δ2Um
δci δc j

fields, the first- and second-order sensitivities of F w.r.t.
the environmental variables are given by

δF

δci
=

∫
Sw

(p− ptar )
δp

δci
d S (38)
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and

δ2F

δciδc j
=

∫
Sw

[
δp

δci

δp

δc j
+ (p− ptar )

δ2 p

δciδc j

]
d S (39)

where δp
δci

and δ2 p
δci δc j

can be expressed in terms of the corresponding derivatives of
the conservative flow variables Um .

The highest-order mixed derivatives are computed through the solution of addi-
tional adjoint PDEs, similar to the corresponding discrete equations. For instance,
the third-order mixed sensitivity derivatives of F , required in Eq.30, are given by

δ3F

δciδc jδbq
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δp

δci

δp

δc j
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where the additional adjoint fields L i
n = δNn

δci
and K

i, j
n = δL i

n
δc j

are computed by
solving the adjoint equations

−Anmk
∂L i

n

∂xk
− δAnmk

δci

∂Nn

∂xk
= 0 (41)
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and

−Anmk
∂K

i, j
n

∂xk
− δAnmk

δc j

∂L i
n

∂xk
− δAnmk

δci

∂L
j

n

∂xk
− δ2Anmk

δciδc j

∂Nn

∂xk
= 0 (42)

as explained in [25]. Similarities between the discrete and continuous variants of the
DDc-DDc-AVb method can easily be identified.

An application of the robust design algorithm is illustrated in Fig. 8; it is related to
the inverse design of a 2D cascade, [25, 26]. The airfoil shape controlling parameters
are the design variables and the inlet/outlet flow conditions are the environmental
ones.
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steps per cycle) with other second-order methods (BFGS and exact Newton). From [27]

3.4 Other Usage of the DD and AV Method

Apart from robust design applications, the developedmethods for the computation of
higher-order derivatives of F can also be used to support more efficient optimization
methods, such as the (exact) Newton method. In such a case, however, the cost per
optimization cycle depends on N and this may seriously hinder the use of such a
method in industry. To cope with large scale optimization problems, the Newton
equations can be solved through the CG method with truncation. By doing so, the
Hessian matrix itself is not needed anymore, [27]. The adjoint approach followed by
the DD of both the flow and adjoint equations (AV-DD) is the most efficient way to
compute the product of the Hessian matrix with any vector required by the truncated
Newton algorithm. The cost per Newton iteration scales linearly with the number of
CG steps, rather than the much higher number of the design variables (if the Hessian
itself was computed in the “exact” Newton method). The efficiency of the truncated
Newton method is demonstrated in Fig. 9, in a problem with 42 design variables.

4 Industrial Applications

In Fig. 10, the application of the developed adjoint-based software to four industrial
problems is presented. The first case deals with the blade optimization of a 3D
peripheral compressor cascade in which the objective is the minimization of entropy
losses within the flow passage, [28]. The second case is concerned with the shape
optimization of a Francis turbine runner targeting cavitation suppression, [29], the
third one with an air-conditioning duct targeting minimum total pressure losses and
the last one with the shape optimization of a Volkswagen concept car, targeting
minimum drag force, [30]. More comments can be found in the caption [31].
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Fig. 10 Row 1 Shape optimization of a 3D peripheral compressor cascade, targeting minimum
entropy generation rate within the flow passage with constraints on the blade thickness. Pressure
distributions over the initial (left) and optimal (right) blade geometries; from [28]. Row 2 Opti-
mization of a Francis runner blade for cavitation suppression. Pressure distribution over the initial
blading (left); areas within the white isolines are considered to be cavitated; surface deformation
magnitude over the optimized blading (right), after eliminating cavitation; from [29]. Row 3 Topol-
ogy optimization of an air-conditioning duct, used in a passenger car, targeting minimum total
pressure losses. Porosity field at the last optimization cycle. The topology optimization led to the
solidification of areas (in red) where, in the starting geometry, intense flow recirculation appeared.
Row 4 Optimization of the VW L1 concept car targeting minimum drag force. Primal velocity field
calculated using the RANS equations along with the low-Re Spalart–Allmaras model (left) and
adjoint velocity field calculated by using the “turbulent” adjoint method (right); from [30]
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