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Abstract The aim of this book chapter is to demonstrate amethodology for tailoring
macroscale response by topology optimizing microstructural details. The microscale
and macroscale response are completely coupled by treating the full model. The
multiscale finite element method (MsFEM) for high-contrast material parameters is
proposed to alleviate the high computational cost associated with solving the discrete
systems arising during the topology optimization process. Problemswithin important
engineering areas, heat transfer and linear elasticity, are considered for exemplifying
the approach. It is demonstrated that it is important to account for the boundary effects
to ensure prescribed behavior of the macrostructure. The obtained microstructures
are designed for specific applications, in contrast to more traditional homogenization
approaches where the microstructure is designed for specific material properties.

1 Introduction

The focus of this book chapter is on the topology optimization of microstructural
details for tailoring the macroscale response of mechanical and heat transfer sys-
tems. Topology optimization [7] is an iterative design process which distributes
material in a design domain by optimizing a prescribed objective and satisfying a
set of constraints. In mechanical and structural engineering applications, the typi-
cal objective is to maximize structural stiffness subjected to material constraints, or
minimize material volume subjected to stiffness constraints. Over the last decade
topology optimization has become one of the preferred design tools in the auto-
motive and aerospace industries. In addition, the method has spread to other dis-
ciplines for design of optical crystals and circuits, antennas and fluid mechanics
systems [14, 30].
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The main burden in topology optimization is the computational cost associated
with modeling the physical behavior of the optimized system. The system response
is evaluated for each optimization iteration. Relatively coarse discretizations are uti-
lized in order to save computational time. Refining the discretization improves the
physical model and provides a larger solution space for the optimization process.
Therefore, one of the main goals in the development of the methodology is to
reduce the computational complexity without restricting the design freedom. Several
approaches like material homogenization, coupled and decoupled multiscale models
and efficient state solvers, discussed below, are suggested in the literature.

The systematic design of novel materials with extremal properties using topology
optimization has been demonstrated in several papers starting with the pioneering
work for 2D designs presented in [28, 29] to the recent manufacturable 2/3Dmaterial
designs with negative Poisson’s ratio [5, 35]. The optimization is performed on peri-
odic microstructures with the aim to achieve prescribed effective properties. Such
optimization affects indirectly the macroscopic response and an alternative multi-
scale approach to the topological design is to introduce homogenizedmicrostructural
properties in the optimization of a macrostructural response. This coincides with the
original homogenization approach to topology optimization presented in [6]. The
macroscale design is realizedwith homogenizedmaterial properties without the need
to precisely specify the unit cell topology. Later a hierarchical optimization strategy
has been applied to bone modeling [12, 13] where the microscopic structure and
the macroscopic density are designed simultaneously. The macroscale response is
decoupled from the microscale and the microstructural details affect the macroscale
response through the homogenized material properties. The scale separation reduces
the computational cost, however, the design often lacks connectivity between the
varying microstructural details. Furthermore, practical realizations of such designs
with modern manufacturable technologies (e.g. [5]) lead to finite size periodic cells,
which contradict the infinite periodicity assumption applied in the homogenization
process.

Here, themacroscale response of the system is completely coupled to the structural
response at the microscale. The fine discretization of the physical system requires the
solution of large linear systems of equations. The system response can be obtained
using direct or iterative solvers. Direct solvers are often preferable due to their robust
behavior, however, for large 3D problems, the computational time becomes pro-
hibitive even on large parallel systems. On the other hand, even though they lack
the robustness of direct solvers, iterative solvers provide scalable and easy to imple-
ment parallel solutions. Their convergence is improved by utilizing precondition-
ing techniques [26] which in the context of topology optimization are discussed in
[1, 2, 4].

Here iterative solvers with preconditioning using the multiscale finite element
method (MsFEM) for high-contrast media are utilized, in order to speed up the
design process and to allow the optimization of large scale problems without com-
promising the resolution. The original MsFEM [19] represents the system behavior
by constructing basis functions on a coarse grid. The coarse basis functions provide
a good approximation to the system response and reduce significantly the problem
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size. Themethod has been appliedmainly to scalar problems, and recently extensions
to elasticity [11] and problems modeled by positive definite bilinear forms [17], have
been demonstrated as well. The MsFEM for high-contrast media [18] constructs
several basis functions per coarse node, which represents well the important features
of the solution with a convergence rate independent of the contrast. The method has
been extended and applied to topology optimization problems in linear elasticity in
[3, 22] and is presented in details in Sect. 5.

2 Physical Models

The partial differential equations (PDEs) governing the physical behavior for heat
transfer and linear elasticity are introduced for 2D in the following subsections. The
presented examples follow this simplification. However, the approach considered in
this book chapter can be extended to 3Dwithout any significant modifications, which
will be demonstrated in following works.

2.1 Heat Transfer

The system response for heat transfer problems in a conductive medium distributed
in a given domain Ω is governed by the following PDE

− ∇Tq + p (x) = 0 x ∈ Ω (1)

where q is the heat flux per unit area and p (x) is a source term. The conductive heat
flux q is obtained from Fourier’s law as

q = −κ∇θ (2)

where κmin ≤ κ (x) ≤ κmax is a spatially-varying conduction coefficient and θ

is a scalar temperature field defined over the domain Ω . The boundary Γ = ∂Ω is
decomposed into disjoint subsetsΓ = ΓD ∪ ΓN . The following boundary conditions
are prescribed on the different subsets

θ = 0 on �D (3)

qn = g on �N (4)

where qn = qTn.
The variational formulation [9] of the above problem is to find u ∈ H0 (Ω) such

that

a (u, v) = l (v) for all v ∈ H1
0 (Ω) (5)
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where the bilinear form a and the linear functional l are defined as

a (u, v) =
∫

Ω

κ (x) ∇u (x) ∇v (x) dx for all u, v ∈ H1
0 (Ω) (6)

l (v) =
∫

Ω

p (x) v (x) dx +
∫

ΓN

κ (x) gv (x) dx for all v ∈ H1
0 (Ω) (7)

and H1
0 (Ω) is defined as

H1
0 (Ω) =

{
v ∈ H1 (Ω) : v = 0 on ΓD

}
(8)

H1 (Ω) is a standard Sobolev space on Ω . The Galerkin formulation of Eq.5 is
obtained using the finite element spaceVh (Ω) ⊂ H1

0 (Ω)with test and trial functions
u, v ∈ Vh (Ω). The space Vh (Ω) consists of standard Lagrange shape functions
defined on a uniform rectangular meshT h with characteristic length h. TheGalerkin
formulation leads to a linear system of equations of the form

Ku = f (9)

where the vector u consists of all nodal values of the temperature field θ and f is a
vector with the supplied input to the system.

2.2 Linear Elasticity

The response of a linear elastic system is governed by the Navier-Cauchy partial
differential equation, e.g. [9], given as

∇ · σ (u) + f(x) = 0, x ∈ Ω (10)

σ (u) = C : ε (u) (11)

where σ is the stress tensor, ε is the linearized strain tensor, the vector u consists
of the displacements in the coordinate directions and C is the linear elastic stiffness
tensor. The vector function f (x) represents the system input. The mechanical system
occupies the bounded domainΩ , where the boundaryΓ = ΓDi ∪ ΓNi is decomposed
into two disjoint subsets for each component ui , i = 1, 2. ΓDi is the part of the
boundary where ui = 0 and ΓNi denotes the part with prescribed traction ti . The
stiffness tensor is isotropic with predefined Poisson’s ratio ν < 0.5 and spatially-
varying Young’s modulus Emin ≤ E (x) ≤ Emax.

The weak formulation of the linear elasticity problem is to find u ∈ V0 such that

a (u, v) = l (v) for all v ∈ V0 (12)
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with bilinear form a and linear functional l defined as

a (u, v) =
∫

Ω

(C : ε (u)) : ε (v) dx for all v ∈ V0 (13)

l (v) =
∫

Ω

f · vdx +
∫

ΓN

t · vdx for all v ∈ V0 (14)

where the space V0 is defined as

V0 =
{

v ∈
[

H1 (Ω)
]2 : vi = 0 on ΓDi , i = 1, 2

}
(15)

The weak formulation is discretized using standard finite element functions defined
on uniform rectangular mesh T h . Similar to the heat transfer case, the discrete
formulation results in a linear system of the form given by Eq.9 with vector u
consisting of all nodal displacements.

3 Topology Optimization Formulation

Topology optimization is an iterative method that seeks to distribute material in
a given design domain by optimizing an objective functional and fulfilling a set
of design constraints [7]. The material distribution is represented by a density field
0 ≤ ρ (x) ≤ 1.Thedensityfield takes values one for all points in the designdomainΩ

occupiedwithmaterial and zero for the void regions. In order to utilize gradient-based
optimization techniques, the density field is allowed to take intermediate values.

The main steps in the topology optimization algorithm will be demonstrated first
for thermal compliance minimization, which coincides with the first example in
Sect. 6. The optimization problems is defined as

min
ρ∈Qad

:c (ρ, u) =
∫

Ω

κ (ρ (x)) ∇u (x) ∇u (x) dx (16)

s.t. a (ρ; u, v) = l (v)∫
Ω

ρdx ≤ V ∗

whereQad is the space of admissible densitymaterial distributions, V ∗ is the allowed
volume of material and a (ρ; u, v) is the bilinear from given by Eq.6. In the opti-
mization problem, the bilinear form Eq.6 depends on the density field ρ. The heat
conduction coefficient in Eq. 2 is interpolated between κmin and κmax using the mod-
ified SIMP scheme [7] given as

κ = κmin + (κmax − κmin) ρ p (17)
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where p is the penalization parameter, κmax is the conduction coefficient of the solid
material, and κmin is set to be a very small number in order to ensure that the bilinear
form is coercive. The above optimization problem can be written in discrete form
using the finite element discretization given byEq.9. The design fieldρ is represented
using independent design variables associated to each element. The discrete problem
is given as

min
ρ

: c = fTu (18)

s.t. Ku = f

ρTv ≤ V ∗

0 ≤ ρi ≤ 1 i = 1, . . . , nel

where the vector ρ consists of all design variables and v is a vector with element vi

equal to the volume of the i th finite element.
The optimization problem is solved using the so-called nested formulation, where

the discrete system of equations for the state problem is solved during each opti-
mization step. The gradients of the objective with respect to the design variables are
computed using adjoint sensitivity analysis [7] and are given as

∂c

∂ρe
= −pρ p−1

e (κmax − κmin) uT
e K0,eue, e = 1, . . . , Nel (19)

The design update is performed using the method of moving asymptotes (MMA)
[31].

The optimization problem defined by Eq.18 is mesh dependent. Instead of obtain-
ing a better representation of a coarse optimized topology, the optimization might
result in a completely different topology by refining the mesh. Such behavior is
avoided here by utilizing density filtering [8, 10]. The filtered density ρ f (x) at a
point x in the design domain is obtained using convolution of the original design
field ρ and a filter function

ρ f (x) =
∫

Ω

F (x − y) ρ (y) dy (20)

The filter function is chosen to be

F (x) = 1

R

(
1 − |x |

R

)
, x ∈ [−R, R] (21)

where R is the filter radius, which controls the length scale. Instead of using an
explicit weighting function F (·), the filtered field can be obtained as a solution of a
PDE [24] given as

− r2 � ρ f + ρ f = ρ (22)
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with r = R/(2
√
3). The PDE filter simplifies the enforcement of different boundary

conditions on the density field, reutilizes the already developed discretization frame-
work for solving the state problem, simplifies large scale parallel implementations
of the topology optimization process, and reduces the computational cost in 3D [1,
2, 24]. The classical filter is utilized for the heat transfer example and the PDE filter
is utilized for the linear elastic designs.

4 Robust Design

The filtered field consists of large gray regions which require post-processing of the
optimized results. Such a transformation can affect the optimality of the solution
and in many cases [34] completely destroy the performance of the optimized design.
These post-processing effects are alleviated here by using projection and introducing
a requirement on the performance to be insensitive with respect to uncertainties in
the geometry [23, 34]. The physical density in this case is represented by a projected
density field obtained as

ρp = tanh (βη) + tanh
(
β

(
ρ f − η

))
tanh (βη) + tanh (β (1 − η))

(23)

where η is a selected threshold and β controls the sharpness of the projections. For
β → ∞ the above expression approaches a Heaviside function. The gradients of the
objective functional and the constraints with respect to the original design field ρ are
obtained by the chain rule.

The projection improves the contrast in the design, however, the length scale
imposed from the filter is lost. All manufacturing processes introduce uncertainties
in the realizations of the optimized designs, whichmight result in complete loss of the
performance [21, 34, 36]. Imperfections along the design perimeter can be modeled
by varying the threshold η in Eq.23, and for cases with non-uniform uncertainties
the threshold can be replaced with spatially-varying random field [27].

Here the threshold is assumed to be a random variable with uniform distribution
η ∈ [ηd; ηe], where the threshold ηd corresponds to the most dilated design and ηe

corresponds to the most eroded case. The optimization problem is posed as follows

min
ρ

: c = E
[
fTu

]
+ w

√
Var

[
fTu

]
(24)

s.t. Ku = f

E
[
ρTv

]
≤ V ∗

0 ≤ ρi ≤ 1 i = 1, . . . , nel
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where E [·] and Var [·] denote the expected value and the variance of a given quan-
tity, and w is a weight factor. The state problem in the above formulation becomes
stochastic and approximations to expectation and the variance are obtained using
Stochastic collocation and Monte Carlo sampling [25]. The gradients are computed
as described in [23].

5 Multiscale Finite Element Method

Topology optimization is an iterative approach which requires the computation of
the state solution, and possibly adjoint solution also, at every design iteration. Often,
the required state and adjoint field computations account for more than 95–99% of
the total computational time [2]. The solution for small problems is usually obtained
using direct solvers due to their robustness. Realistic 3D and large 2D designs with
fine details require fine resolutions, which makes the computational cost prohibitive.
An alternative is to use iterative solution techniques [26] also known as Krylov iter-
ative methods. Iterative solvers alleviate some of the issues observed with direct
solvers in terms of memory utilization and parallel scalability. However, their con-
vergence speed is determined by the condition number of the system matrix, which
can be improved by preconditioning.

Classical preconditioners such as incomplete factorization, diagonal scaling and
successive over-relaxation, cannot provide mesh independent convergence. Further-
more, for problems with high contrast between material parameters, as the ones
arising in topology optimization, the number of iterations increases with increas-
ing contrast [2, 4]. Mesh independent convergence can be obtained using geometric
multigrid (MG) [33], if the coarse grid is capable of resolving the fine scale details.
Such a condition cannot be guaranteed in the topology optimization process which
results in deteriorated convergence. A compelling alternative demonstrated in [15,
18, 20] is the multiscale finite element method (MsFEM) with spectral basis func-
tions.

MsFEM with spectral bases has initially been developed for diffusion type prob-
lems [18, 20], for general bilinear forms [17], and extended later for topology opti-
mization problems in linear elasticity [3, 22]. Here the method is presented for heat
transfer problems and follows closely [18]. The idea is to construct a coarse space
capable of representing the important features of the solution.

The fine mesh T h utilized for the discretization of Eq.1 and 2 is assumed to be
obtained by a refinement of a coarser one T H = {

K j
}Ncc

j=1, where K j denotes a
coarse mesh cell and Ncc the number of coarse cells (e.g. Fig. 1). The nodes of the
coarse mesh are denoted as {yi }Nc

i=1, where Nc denotes the number of coarse nodes.
The neighborhood of node yi is defined as

ωi =
⋃ {

K j ∈ T H : yi ∈ K j

}
(25)
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H

h

q

ωi

Fig. 1 Illustration of fine, coarse mesh and several agglomerates for cantilever beam subjected to
distributed load q

The neighborhoods ωi , i = 1, . . . , Nc, will be called agglomerates as they can be
viewed as a group of coarse elements agglomerated together.

A set of coarse basis functions
{
φi, j , j = 1, . . . , Nc

}
, defined with respect toT h ,

is introduced for each coarse node y j . An approximation to the solution in the coarse
space is sought as uc = ∑

i, j ci, jφi, j . The coefficients ci, j are determined by solving
the coarse problem Kcuc = fc, with

Kc = RcKRT
c (26)

fc = Rcf (27)

where Rc = [
φi,1, φi,2, . . . , φNc,1, φNc,2, . . .

]
consists of all coarse basis functions

defined on the fine scale grid, and uc consists of all coefficients ci, j . The matrix
Rc provides a map between temperature fields defined on the fine and the coarse
grids. An approximation to the nodal solution in the fine space can be obtained as
ua = RT

c uc.
The set of coarse basis functions is built using the set of eigenmodes of local

eigenvalue problems [18] defined on each agglomerate ωi . The eigenvalue problem
for agglomerate ωi is given as

− ∇Tκ (x) ∇u = λκ (x) u, x ∈ ωi (28)

with homogeneous Neumann boundary conditions on the agglomerate boundary if
∂ωi ∩Γ = ∅, and boundary conditions applied to Eq.1 on ∂ωi ∩Γ �= ∅, where Γ is
the boundary of the design domainΩ and ∂ωi is the boundary of the agglomerateωi .
The eigenvalue problem is discretized using Vh (ωi ) = {vh ∈ Vh : supp vh ⊂ ωi }
and in matrix vector form is given as

Kωi ψ
ωi
j = λ

ωi
j Mωi ψ

ωi
j (29)
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where Kωi is the stiffness matrix, Mωi is a mass matrix, ψ
ωi
j is the j th eigenvec-

tor, and λ
ωi
j is the j th eigenvalue. The eigenvalues are ordered as λ

ωi
1 ≤ λ

ωi
2 ≤

· · · ≤ λ
ωi
j ≤ . . . , and the first eigenvectors corresponding to eigenvalues smaller

than a selected threshold λΩ are selected to form the coarse basis. The coarse basis
functions, represented on the fine grid, are defined as φi, j = ξiψ

ωi
j , i.e., they are con-

structed by multiplication of the eigenfunctions ψ
ωi
j with a partition of unity {ξi }Nc

i=1

subordinated to ωi such that ξi ∈ H1 (Ω) and |∇ξi | ≤ 1/H, i = 1, . . . , Nc, where
H is the characteristic length of a coarse element K . Hence, for each coarse node,
the basis functions

{
φi, j

}
are defined as the fine space finite element interpolants

of ξiψ
ωi
j , j = 1, . . . , Ni , where Ni is determined as the number of eigenvalues

smaller than the globally selected threshold λΩ . It is important to note that, since
the eigenvalue problem defined on agglomerate ωi and the full problem share the
same boundary conditions on the common boundaries, the eigenfunctions and hence
the coarse basis functions automatically fulfill the boundary conditions of the global
problem. The construction process of several coarse basis functions is exemplified
in Fig. 2.

In [18] the coarse system is utilized as a solver, where the accuracy of the coarse
approximation depends on the global threshold λΩ , which controls the number of
the basis functions and the computational cost. For topology optimization problems

Eigenmodes:

Partition of unity:

Coarse basis:

Fig. 2 Illustration of spectral basis construction
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using the nested formulation, the optimizer can take advantage of the approxima-
tion error. As discussed in [22], the optimization for linear elasticity might result
in isolated islands of material. Such topologies are not optimal and appear due to
the homogenization effect of the approximation. Therefore, here the coarse solver
is utilized as a preconditioner for iterative solvers applied to the fine-scale problem.
Using the coarse systemas a preconditioner results inmesh- and contrast-independent
number of iterations for the Preconditioned Conjugate Gradient (PCG) and the Gen-
eralized Minimal Residual Method (GMRES). In [20] the coarse space is utilized
in a two-level additive Schwarz preconditioner. Instead of implementing local sub-
domain solvers for the Schwarz preconditioner, here, the coarse space is utilized as
a coarse-level in a two-level multigrid preconditioner for GMRES (e.g. [33]). The
smoothing is performed by a single symmetric Gauss-Seidel step.

The time consuming part of the MsFEM algorithm is the construction of the
coarse basis and the projection given by Eq.26. Several strategies for reducing the
computational cost are discussed in [3, 22]. The main idea utilizes the fact that
the design changes during the optimization process are relatively slow and hence
consecutive design realizations can share the same coarse basis. When the difference
in the topologies for the reference and the current design becomes large, the basis
is updated. A heuristic rule is suggested in [3] where the basis is updated when the
solver iterations exceed the previous iteration number by more than a given limit.
More rigorous criteria is a subject of future research. In the stochastic case, the basis is
constructed for the most dilated design and utilized for all realizations which further
reduces the computational cost. For linear elastic problems, theMsFEM coarse basis
algorithm follows the same steps and is demonstrated in [3, 22].

6 Numerical Examples

6.1 Heat Sink Design

The first example is the topology optimization of thermal compliance. The design
domain is shown in Fig. 3. The temperature T0 is set to zero. The conduction coeffi-
cient of the solid material is set to one and the conduction of the void region is 10−6.
The volume occupied with solid material is restricted to be 50% of the total volume.
Uniform heat flux is supplied over the design domain. The penalization factor p is
increased from 1.2 to 3.0 after the first 100 iterations. The projection coefficient β is
increased from 8 to 32 after the first 200 iterations. The optimization is performed
with three realizations ηe = 0.7, ηi = 0.5 and ηd = 0.3 of the threshold projec-
tion η ∈ [0.3, 0.7] and are verified by Monte Carlo simulations. Four coarse cell
configurations with 4 × 4, 8 × 8, 16 × 16 and 32 × 32 coarse cells, are selected.
Each coarse cell consists of 40 × 40 elements. The filtering step is performed with
standard hat filter function with radius R = 3h. All coarse cells are kept identical.
The optimization problem in discrete form is given by Eq.24 with w = 1.
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Fig. 3 Heat sink optimization problem—design domain with dimensions L and B = L/2. Unit
heat flux is applied uniformly over the design domain

Fig. 4 Optimized heat sink topology for 4 × 4, 8 × 8, 16 × 16 coarse cells

Fig. 5 Optimized heat sink coarse cell topology for 4× 4, 8× 8, 16× 16 and 32× 32 coarse cells

Optimized topologies for the heat sink design problem are shown in Fig. 4 and
enlarged cell designs are shown in Fig. 5. The mean objective values for the four con-
sidered cases are 46.3; 12.8; 7.3; 3.7. The decrease in the compliance is due to the
nature of the problem.Theoptimal designwill consists of smaller and smaller features
coveringmore uniformly the design domain due to the distributed flux. Increasing the
number of coarse cells with a constant relative length scale at the microscale, results
in a smaller overall design length scale which improves the objective. The length
scale is imposed with respect to the cell characteristic length and is not related to the
global macroscale. It can be observed that the cell topology is not preserved during
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Fig. 6 GMRES iterations for relative tolerance 10−5. The circles denote the basis updates

the refinement. The GMRES iteration number is kept under 20 with the selected
eigenvalue threshold. Increasing the threshold, decreases the iteration number. How-
ever, as the cost for computing the basis increases, it also results in an increase of
the total computational time [3]. The basis is obtained for the dilated realization,
and thus the GMRES iterations differ between the realizations, as seen in Fig. 6.
An alternative is the reduced basis approach as suggested in [16], which provides
good coarse space for all realizations. However, this increases the computational cost
related to the eigenproblems and results in longer optimization time.

The selection of the eigenvalue threshold is a non-trivial task and needs further
investigations. The value and the computational time depend on the CPU architec-
ture, the implementation of the preconditioner, the eigenvalue solver and the num-
ber of unique agglomerates in the design. For the selected example only ten unique
agglomerates can be identified. As demonstrated in [22],MsFEM can also be applied
to general problems without microstructure. Such an approach removes the restric-
tions on the design space and the design performance is expected to improve further.
However, the design freedom comes at higher computational cost due to the large
number of local eigenvalue problems. All of them are completely independent. Thus,
the MsFEM preconditioner will excel in parallel implementations which are subject
to future research. It should be noted that for the small 2D problems, the total compu-
tational time becomes larger compared to the total time with direct solvers. However,
increasing the problems size leads to shorter computational times for the proposed
approach [3].
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Fig. 7 Boundary conditions
and design domain of
layered cantilever beam
problem with multiple load
cases. The vertical
dimension is B = L/2

6.2 Linear Elastic Designs with Multiple Load Cases

The second example, shown in Fig. 7, is the design of a cantilever beam with two
load cases. For the first load case the only active force is P1 and for the second case
P2. The coarse mesh consists of 16× 8 coarse cells and periodicity is enforced only
in the horizontal direction. The filtering step is performed using the PDE filter with
filter parameter R = 4h, where h is the characteristic length of the fine mesh. Each
coarse cell consists of 40 × 40 elements. The weight coefficient in the stochastic
formulation is set to 1.0. The volume fraction is 30% of the design domain volume.
The Poisson’s ratio is set to ν = 0.3, the modulus of elasticity for the solid is set to
Emax = 1, and the modulus of elasticity for the void material is set to Emin = 10−9.
The rest of the parameters are set to be the same as for the thermal case, except that
the final value of p is set to 5.0. The optimization problem is given as

min
ρ

: c =
nl∑

i=1

E
[
fT
i ui

]
+ w

√
Var

[
fT
i ui

]
(30)

s.t. Kui = fi , i = 1, . . . , nl

E
[
ρTv

]
≤ V ∗

0 ≤ ρi ≤ 1 i = 1, . . . , nel

where nl is the number of load cases.
The optimized design is shown in Fig. 8. In contrast to the designs obtained for a

single active loadpresented in [3], the obtaineddesign is symmetricwith respect to the
horizontal mid-axis and the microstructural details closely resembles triangular truss
structures. Triangular truss-like structures are optimal for problems with changes
of the principal stress orientation for the different load cases. For a single load
case without any restrictions on the design pattern, the optimal design will follow
the principal stress trajectories. The mean compliance is 2.9 for both load cases.
Optimization for a single load case resulted in a mean compliance of 2.5 which as
expected is better for that particular load case, and worse for the load in the other
direction yielding a compliance of 3.8.
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Fig. 8 Intermediate design
realization η = 0.5 for
optimized multiple load
cases cantilever beam
problem

Fig. 9 Boundary conditions
and design domain of
layered beam problem with
multiple load cases

Fig. 10 Intermediate design
realization η = 0.5 for
optimized multiple load case
beam problem

The third example, shown in Fig. 9, is the design of a simply supported beam with
three load cases. The optimization setup parameters are the same as for the previous
example. The optimized intermediate design realization is shown in Fig. 10. The
multiload case design shares some similarities to the single load case with central
active force P2 = 1 shown in Fig. 11. However, a cross-check of the designs show
that it performs better for all three cases in contrast to the single load designs which
perform well only for the corresponding design case. Requiring periodicity in the
horizontal direction implicitly ensures some robustness of the P2 single load case
with respect to a shift of the applied load with a single or multiple coarse cells.
This property is not shared for the single load designs obtained for P1 or P3. The
microstructural details vary along in the vertical direction, however, some of the
layers show similar topology with small variations.

The periodicity requirement implicitly imposes a maximum length scale on the
design [3] as it requires the material to be distributed regularly along the design
domain. Removing the periodicity requirement in the horizontal direction would
provide additional freedom to the optimizer and would allow more material to be
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Fig. 11 Intermediate design realization η = 0.5 for optimized single load case beam problems—P1
is active on the first design (left) and P2 is active on the second design (right)

concentrated in the central areas of the beam, which will result in better performance.
Therefore, such restrictions on the design space should be imposed only for man-
ufacturing, aesthetic or other reasons not related directly to the optimality of the
design. As mentioned earlier, the computational cost of the coarse basis increases
with increasing the design freedom. However, for multiple load cases the basis is
utilized for multiple solutions which makes the approach even more competitive
compared to the alternatives.

6.3 Linear Elastic Designs with Zero and Negative Expansion

The final example is topology optimization of a linear elastic compression test with
restrictions on the horizontal displacements. The boundary conditions and the design
domains are shown in Fig. 12. Two cases are considered: for the first, a solid region
of thickness t = 0.0125 is enforced only on the top of the design domain, and for
the second, the solid region is enforced on the horizontal edges as well. The design
domain is partitioned using 8 × 8 coarse cells with design symmetry with respect
to the vertical axis. Each coarse cell is discretized using 40 × 40 finite elements.
The filtering is performed by the PDE filter with parameter R = 5h. The dilated,
intermediate and eroded design thresholds are set to 0.4, 0.5 and 0.6, respectively.

Fig. 12 Boundary
conditions and design
domains for compression
tests with restrictions on the
horizontal displacements.
Solid regions marked with
thick black line are enforced
on the top edge in the first
case (left) and also on the
horizontal edges in the
second case (right)
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The dimension of the design domain is set to L = 2. Distributed load of total size
10−3 is applied on the upper edge of the design for the two cases. The material
volume is restricted to be 50% of the design domain volume. The penalization is set
to p = 5 and the projection parameter β is increased from 8 to 32 after the first 150
iterations. The rest of the optimization parameters are the same as for the previous
example.

The optimization formulation in discrete form is given as

min
ρ

: c = E
[
fTu

]
+ w

√
Var

[
fTu

]
(31)

s.t. Ku = f

E
[
ρTv

]
≤ V ∗

ū j + σ j − uref ≤ εcon, j = e, i, d

ū j − σ j − uref ≥ εcon, j = e, i, d

0 ≤ ρi ≤ 1 i = 1, . . . , nel

where the expectation and the variance in the objective are approximated using
only three realizations: the most eroded case ηe = 0.6, the most dilated case ηd =
0.4 and the intermediate case for ηi = 0.5. The final results are verified using
Monte Carlo simulations. The objective is to minimize the compliance of the system
with constraints on the horizontal displacements along the vertical edges, where
ū j , j = e, i, d, is the average displacement along the horizontal edge for the eroded,
intermediate and dilated realizations, respectively, σ j is the standard deviation of the
horizontal displacements along the edge for realization j , and εcon is a prescribed
tolerance.

The initial design is obtained by repetition of a unit cell negative Poisson’s ratio
design from [35]. The unit cell design is robust with respect to uniform erosion and
dilation. Deformed structures for the considered cases are shown in Fig. 13. The
global behavior of the two structures differs significantly due to the difference in the
boundaries. For the first case of unframed design, the bulk material is free to contract
and the negative Poisson’s effect can be clearly seen. In the second case, the stiff
frame around the bulk material restrains the horizontal movement which lowers the
Poisson’s effect and adds additional stiffness to the structure in the vertical direction.
This results in lower vertical displacements of the upper edge. The displacements
along the vertical edge for framed and unframed designs are shown in Figs. 14 and 15.
For the unframed design, the horizontal displacements for the three realizations are
large and negative as expected from the homogenized material properties. However,
for the framed design, shown in Fig. 15, the horizontal displacements for the eroded
and dilated cases are significantly smaller.

As demonstrated above, optimized microstructure designs for a selected material
property might lead to different global responses for equivalent load patterns due to
small differences in cells close to boundaries of the design. Classical homogenization
theory [32] does not take into account the boundary conditions and localized effects.
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Fig. 13 Deformed structures for unframed (left) and boxed (right) design domainswithmicrostruc-
tural pattern optimized for negative Poisson’s ratio
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Fig. 14 Horizontal displacements along the vertical edge of the design domain with unframed
boundaries for design realizations with thresholds 0.4, 0.5 and 0.6 (dilated, intermediate, and
eroded)
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Fig. 15 Horizontal displacements along the vertical edge of the design domain with framed bound-
aries for design realizations with thresholds 0.4, 0.5 and 0.6 (dilated, intermediate, and eroded)

Hence, in all cases where the global structural response is of interest, the boundary
effects should be taken into account during the optimization process.As demonstrated
here, the proposed MsFEM methodology provides such solution at a relatively low
computational cost.
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Fig. 16 Deformed structures for unframed (left) and framed (right) design domains with
microstructural patterns optimized for tailoring macroscale response. The reference horizontal dis-
placement along the vertical edge is zero

Topology optimized design, using the formulation given by Eq.31, with zero ref-
erence displacement uref = 0 and εcon = 10−4, are shown in Fig. 16. Themicrostruc-
tures differs significantly close to the vertical edges, which demonstrates the need to
account for boundary effects in the design process. In the first case, the optimization
utilizes the fact that solid material is not required along the vertical edge and shifts
the force transmitting structure from the boundary. In the second case, a complex
microstructure is designed around the solid frame in order to avoid displacements
in the horizontal direction. Another important feature observed during the design
process, is that the eroded, dilated and intermediate designs might not share the
same topology. In such cases length scale cannot be guaranteed on the intermedi-

Fig. 17 Dilated (left) and intermediate (right) deformed structures realizations for framed design
domain with microstructural patterns optimized for tailoring macroscale response. The reference
horizontal displacement along the vertical edge is uref = −0.01 and εcon = 10−3
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ate design [34], however, since the design performance is insensitive with respect
to small imperfections, removing or adding small features along the perimeter will
not change significantly the optimized performance. This property can be clearly
observed for the case with negative reference displacement shown in Fig. 17.

7 Conclusions

In this book chapter, a methodology has been demonstrated for tailoring macroscale
responses of mechanical and heat transfer systems by topology optimization of
microstructural details. These details are herein restricted to full periodicity or grad-
ing in a single direction. For a heat transfer problem, increased periodicity is shown
to aid the optimization objective, and for certain elastic structures with multiple load
cases it is shown that partial periodicity can provide an implicit robustness to load
position. Finally, it has been demonstrated that it is important to take the boundary
effects and finite size microstructural details into account during the optimization
process in order to tailor the macroscopic response. These details can be easily
accounted for by the proposed multiscale approach. The spectral MsFEM for high-
contrast problems reduces the computational cost and allows for the optimization of
large resolution models within a reasonable amount of time.
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