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Abstract Response surface methodology is widely used for developing, improv-
ing and optimizing processes in various fields. In this paper, we present a general
algorithmic method for constructing 2q -level design matrices in order to explore
and optimize response surfaces where the predictor variables are each at 2q equally
spaced levels, by utilizing a genetic algorithm. We emphasize on various properties
that arise from the implementation of the genetic algorithm, such as symmetries in
different objective functions used and the representation of the 2q levels of the design
with a q-bit Gray Code. We executed the genetic algorithm for q = 2, 3 and the pro-
duced four and eight-level designs achieve both properties of near-rotatability and
estimation efficiency thus demonstrating the efficiency of the proposed heuristic.

Keywords Response surface designs ·Genetic algorithms · Efficiency ·Optimiza-
tion

1 Introduction

Response surface methodology is used in experiments in which the main interests
are to determine the relationship between the response and the settings of a group of
experimental factors and to find the combination of the factor levels that gives the
best expected response. Response surfaces can also provide information about the
rate of change of the response variable and indicate the interactions between the treat-
ment factors. This class of designed experiments has a wide range of applications in
industrial and chemical engineering, agricultural experiments and biotechnological
processes [1, 10, 12, 13, 18, 25].

In this paper we focus on the construction of 2q -level response surface designs
by emphasizing on an algorithmic perspective of the problem. In such designs the
design matrix columns are constituted of combinations of 2q distinct symbols and
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correspond to the treatment factors, each at 2q equally spaced quantitative levels.
Any combination of the levels of all factors under consideration is called a treatment
combination. Let X = [x1, x2, . . . , xk] be the design matrix of the experiment in
which, each row represents the n treatment combinations and each column gives the
sequence of factor levels. For each factor, all level values are of equal interest and
each experimental result should have equal influence. Thus we consider designs with
the equal occurrence property, when for example we construct four-level designs we
have that all columns consist of n/4 elements equal to 1, n/4 elements equal to −1,
n/4 elements equal to 1/3, n/4 elements equal to−1/3, if n is a multiple of four. The
designs with the equal occurrence property are called balanced designs. Although
2q -level factors appear often in experimental problems, a minor work has be done in
this specific area of response surface designs [10, 12, 15, 24].

The paper is organized as follows. In Sect. 2 the concepts and the measures of
rotatability and efficiency of response surface designs are defined. A genetic algo-
rithm approach for the construction of 2q -level response surface designs is presented
in Sect. 3, while the obtained results are given in Sect. 4.

2 Model and Design Optimality Criteria

Suppose we want to test the effects of k predictor variables, coded to x1, x2, . . . , xk ,
on a response variable y subject to random error. Generally the first attempt is to
approximate the shape of the response surface by fitting a first-order model to the
response,

y = β0 +
k∑

j=1

β j x j + ε, (1)

where β0, β j , j = 1, . . . , k are unknown parameters and ε is a random error term.
When the first-order model appears inadequate to describe the true relationship
between the response and the predictor variables due to the existence of surface
curvature, it is upgraded to a second-order model

y = β0 +
k∑

j=1

β j x j +
k∑

j=1

β j j x2j +
k∑

i=1

k∑

j=1︸ ︷︷ ︸
i< j

βi j xi x j + ε, (2)

whereβ0,β j , j = 1, . . . , k,βi j , i = 1, . . . , k, j = 1, . . . , k, are unknownparameters
and ε is a random error term.

Two of the most important characteristics that a response surface design should
possess is rotatability and efficiency.
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The concept of rotatabilitywas introducedbyBoxandHunter [3].A k-dimensional
design is called rotatable if the variance of the response estimated by the fitted poly-
nomial at the point (x1, ..., xk), Var[Ŷ (x)], is a function only of ρ2 = ∑k

i=1 x2i . Such
a design insures that the estimated response has a constant variance at all points that
are equidistant from the design center. One of the desirable features of rotatability
is that the quality of the prediction, as measured by the magnitude of Var[Ŷ (x)], is
invariant to any rotation of the coordinate axes in the space of the input variables. In
cases where exact rotatability is unattainable, it is important to measure how rotat-
able a design is. Khuri [17], Draper and Guttman [8] and Draper and Pukelsheim
[9] proposed measures to test the near rotatability of a design. In this framework we
use the rotatability measure Q∗ provided by Draper and Pukelsheim [9] and given
by the equation

Q∗ = ||Ā − V0||2
||A − V0||2 = tr(Ā − V0)

2

tr(A − V0)2
, (3)

where Ā is the rotatable component of the moment matrix A = n−1X′X and V0
consists of a one in the (1, 1) position and zeros elsewhere. It is Q∗ ≤ 1 and equality
stands when the design is rotatable. For more details see [9].

Beyond testing the near rotatability of the designs in order to compare them, it
is also needed to have an estimation efficiency measure for the same purpose. Box
and Draper [4] discussed as a measure of design efficiency the choice of a design on
the basis of maximizing the determinant of the information matrix. In this paper we
adopt the following D criterion for determining the overall efficiency for estimating
the set of the effects

|W′W|1/k, (4)

where W = [x0/||x0||, x1/||x1||, . . . , xk/||xk ||], x0 stands for the vector with all
elements equal to 1, and xi is the coefficient vector of the i th effect, i = 1, . . . , k.
Since the columns of W are standardized, the D criterion achieves its maximum
value, which equals to 1, if and only if the xi are orthogonal to each other. More
details can be found in [26].

3 Optimization of Response Surface Designs by Means
of Genetic Algorithms

Genetic algorithms form a powerful metaheuristic that mimicks processes from the
Theory of Evolution to establish search algorithms by defining algorithmic ana-
logues of biological concepts such as reproduction, crossover and mutation. Genetic
Algorithms were introduced in 1970 by Holland [16] aiming to design an artifi-
cial system having properties similar to natural systems. In this paper, we assume
some basic familiarity with Genetic Algorithm concepts. The concepts necessary
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for a description of the Genetic Algorithm (GA) can be found in Goldberg [14], in
Forrest’s article [11] and in the Handbook of Genetic Algorithms edited by Davis [6].

GAs are attractive because of their robustness andflexibility in terms of a computer
implementation and, mathematically, they do not require a differentiable objective
function thereby reducing the chance of reporting local optima. Some earlier attempts
utilizing aGA in the construction of response surface designs has been given byDrain
et al. [7]. However, this approach, while promising, lacked of an efficient coding of
the chromosomes i.e. the number of the experimental runs forming the design. In
particular, the authors proposed utilizing and constructing the whole design; thus
restricting the GA to evolve in finding optimal response surface designs in several
cases. A successful reduction in terms of computational complexity of an efficient
representation of the candidate design, has been proposed in [21–23] in a similar field
of computational design theory with strong connection to statistical applications. In
these applications, the authors integrated as a core ingredient of the GA the use of
sequential juxtaposition of suitable generators, either forming circulant matrices [21]
or block circulant matrices [22, 23].

3.1 A Genetic Algorithm Framework for Response Surface
Designs

Chromosomes Representation
The respective generators considered in the case of response surface designs are the
n/2q column vectors which in the process form block circulant matrices of order k,
when constructing an n ×k response surface design. This construction, is valid when
n is a multiple of 2q . In particular, we form n/4 and n/8 column vectors when we
consider four and eight-level response surface designs, respectively. However, in all
previous constructions the generators, more precisely the genes forming a generator,
consisted of binary variables since a two-level design was under development. In
the case of response surface designs, the genes constitute of 2q possible values
representing the 2q -levels of the designs.

Chromosomes Encoding and Decoding
A suitable encoding to binary variables was needed since the genetic operators
behave better in binary arithmetic (Goldberg [14]). The answer to this vital ques-
tion found in the field of Combinatorics and Computer Science in terms of rep-
resenting a 2-bit Gray Code, GC2 = {00, 01, 11, 10} when considering four-
level designs; while in the case of eight-level designs we used a 3-bit Gray Code,
GC3 = {000, 001, 011, 010, 110, 111, 101, 100}. For more details, on Gray Codes
we refer the interested reader to Carla [5]. More precisely, we mapped each level of
a four-level design to a codeword of the 2-bit Gray Code, i.e. {−1,−1/3, 1/3, 1} →
{00, 01, 11, 10}, and each level of an eight-level design to a codeword of the 3-bit
Gray Code i.e. {−1,−1/3,−1/6,−1/9, 1/9, 1/6, 1/3, 1} → {000, 001, 011, 010,
110, 111, 101, 100}, thus transforming the problem on its binary equivalent which
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allowed us to carry on with the next stages of utilizing a GA. It is made clear that
we could repeat this procedure for 2q -level response surface designs by using a q-bit
Gray Code. Details for constructing a q-bit Gray Code can be found in Knuth [19].

Initial Population
consists of random chromosomes.We found it useful to generate these chromosomes
by retrieving samples of binary sequences, after random permutations where applied
to each of them.

An Objective function for Response Surface Designs
The crucial choice of the objective function (OF) subject to be optimized arise natu-
rally from the theoretical framework of rotatable and efficient designs. In particular,
we have developed two versions of the algorithm each one depending on one of the
two optimality design criteria, the rotatability measure Q∗ and the D criterion. The
genetic algorithm attempts in both cases to maximize the value of each criterion with
respect to its upper bound which is equal to 1. Due to the theoretical background and
statistical justifications when a value of Q∗ was detected in the range of [0.95, 1.00]
we considered we have found a global optimum solution, while in the case of D cri-
terion wemade some ramifications to accept a lower bound for the range of optimum
solutions, i.e. [0.65, 1.00]. Thus we were able to detect both rotatable and efficient
designs. In the following figure we give a comparison of the genetic algorithm per-
formance in terms of contrasting the Q∗ versus the D criterion by scaling on the
evolving generations. From the figure we can conclude that we can use the Q∗ and
D criterion interchangeably as objective functions, since the fitness values for each
case are similar.

We are now able to describe the three genetic operators of reproduction, crossover
andmutation as specifically have been applied by the genetic algorithmwe have used.

Crossover
We defined the basic genetic operation, crossover, that splits a pair of binary integers
at a random position and combines the head of one with the tail of the other and vice
versa.

Mutation
Additional operations, such as inverting a section of the binary representation (inver-
sion) or randomly changing the state (0 or 1) of individual bits (mutation), also
transform the population (Fig. 1).

Selection and Reproduction
Before each such cycle (generation), population members are selected on the basis of
their fitness (the value of the objective function for that solution) to be the “parents”
of the new generation.

Termination Condition
of the genetic algorithm was set a predefined number of evolved generations. This
number of generations was proportional to the size of the response surface design
that the genetic algorithm was searching for in each case. Thus the GA required only
a few generations to find a small sized optimal response surface design, while a larger
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Fig. 1 Symmetries on objectives functions for optimization of response surface designs

design required additional generations to be evolved. Since GA is a heuristic process,
the time complexity of the algorithm was relatively small compared to exhaustive
search algorithms.

4 New Four and Eight-Level Response Surface Designs

In this Section we present the results of the construction method for four and eight-
level response surface designs as described previously.

4.1 New Four-Level Response Surface Designs

In Table1, k stands for the number of the experimental factors and n for the number
of the performed runs, while in the next two columns the achieved values for the Q∗
and the D criterion are listed.
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Table 1 Some new four-level response surface designs with k factors

k n Q∗ D k n Q∗ D

2 48 0.989625 0.730767 3 76 0.990628 0.751091

2 52 0.989279 0.730478 3 80 0.988196 0.748842

2 56 0.989625 0.730767 3 84 0.986588 0.749383

2 60 0.989282 0.730437 4 72 0.979375 0.753859

2 64 0.989625 0.730767 4 76 0.982954 0.757085

2 68 0.989051 0.730598 4 80 0.979180 0.759259

2 72 0.989625 0.730767 4 84 0.978854 0.759373

2 76 0.989166 0.730632 4 88 0.983253 0.759436

2 80 0.989539 0.730718 5 84 0.972752 0.752474

3 52 0.986202 0.746648 5 88 0.959241 0.754575

3 56 0.988977 0.748505 5 92 0.966673 0.757510

3 60 0.987961 0.748139 6 92 0.965235 0.748283

3 64 0.989528 0.747663 6 96 0.973121 0.745234

3 68 0.988830 0.748171 7 96 0.956693 0.720159

3 72 0.987170 0.748501 7 100 0.962628 0.726570

From the above results we note that the Q∗ values fluctuate between 95.67% and
99.06% and the arithmetical mean equals to 98.20%, while the maximum and the
minimum values of the D-criterion are 75.94% and 72.02%, respectively, with
the arithmetical mean equal to 74.36%. Also, Koshal’s designs (see [2, 20]) are
occasionally of use in response surface work. For the third-order Koshal design in 3
four-level predictor variables with 20 runs, given in page 504 of [2], we calculate the
corresponding values of Q∗ and D-criterion, which are equal to 0.3150 and 0.2613,
respectively. In general, high values of the two criteria, Q∗ and D, ensure that the
designs are near-rotatable and efficient for estimating the set of the effects.

4.2 New Eight-Level Response Surface Designs

In this section we present the results of the construction method for eight-level
response surface designs. In Table2, k stands for the number of the experimental
factors and n for the number of the performed runs, while in the next two columns
the achieved values for the Q∗ and the D criterion are listed.
From the above results we note that the Q∗ values fluctuate between 95.30% and
99.99% and the arithmetical mean equals to 98.13%, while the maximum and the
minimum values of the D-criterion are 87.95% and 65.28%, respectively, with the
arithmetical mean equal to 78.06%.

As a conclusion, our construction method manages to generate near-rotatable and
efficient response surface designs with a small number of required runs for both
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Table 2 Some new eight-level response surface designs with k factors

k n Q∗ D k n Q∗ D

2 8 0.984915 0.680165 5 32 0.962000 0.652791

2 16 0.996432 0.867841 5 40 0.969055 0.727856

2 24 0.996035 0.867885 5 48 0.972596 0.758961

2 32 0.998573 0.874306 5 56 0.978982 0.740121

2 40 0.999523 0.875252 5 64 0.978354 0.784608

2 48 0.999696 0.875406 5 72 0.981888 0.803481

2 56 0.999929 0.876042 5 80 0.984097 0.819177

2 64 0.999974 0.876227 5 88 0.985177 0.821409

3 16 0.990309 0.673609 6 40 0.952993 0.676931

3 24 0.991651 0.827829 6 48 0.963848 0.688760

3 32 0.990673 0.815758 6 56 0.967265 0.682539

3 40 0.995118 0.865237 6 64 0.972076 0.717860

3 48 0.994795 0.844095 6 72 0.972703 0.740062

3 56 0.995701 0.871523 6 80 0.975458 0.766400

3 64 0.997662 0.867527 6 88 0.975989 0.748631

3 72 0.998499 0.879501 6 96 0.976775 0.801824

4 24 0.970440 0.727679 7 48 0.956076 0.658748

4 32 0.980760 0.773002 7 56 0.958585 0.690182

4 40 0.984617 0.791023 7 64 0.957366 0.659179

4 48 0.987015 0.821650 7 72 0.959647 0.694141

4 56 0.990165 0.827778 7 80 0.966887 0.712859

4 64 0.991205 0.831423 7 88 0.970750 0.724768

4 72 0.992321 0.852958 7 96 0.969300 0.726233

4 80 0.993720 0.860543 7 104 0.973606 0.746514

cases of four and eight-level designs thus demonstrating the efficiency of the genetic
algorithm used. From these experimental results, it is anticipated that the proposed
formulation for 2q -level response surface designs should produce similar results for
higher number of levels when combined with a genetic algorithm utilized with the
aid of a q-bit Gray Code.
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