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Abstract This article presents a novel model management technique to be imple-
mented in population-based heuristic optimization. This technique adaptively selects
different computational models (both physics-based models and surrogate models)
to be used during optimization, with the overall objective to result in optimal designs
with high fidelity function estimates at a reasonable computational expense. For
example, in optimizing an aircraft wing to obtain maximum lift-to-drag ratio, one
can use low fidelity models such as given by the vortex lattice method, or a high
fidelity finite volume model, or a surrogate model that substitutes the high-fidelity
model. The information from these models with different levels of fidelity is inte-
grated into the heuristic optimization process using the new adaptive model switching
(AMS) technique. The model switching technique replaces the current model with
the next higher fidelity model, when a stochastic switching criterion is met at a
given iteration during the optimization process. The switching criterion is based on
whether the uncertainty associated with the current model output dominates the latest
improvement of the relative fitness function, where both the model output uncertainty
and the function improvement (across the population) are expressed as probability
distributions. For practical implementation, a measure of critical probability is used
to regulate the degree of error that will be allowed, i.e., the fraction of instances
where the improvement will be allowed to be lower than the model error, without
having to change the model. In the absence of this critical probability, model man-
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agement might become too conservative, leading to premature model-switching and
thus higher computing expense. The proposed AMS-based optimization is applied
to two design problems through Particle Swarm Optimization, which are: (i) Airfoil
design, and (ii) Cantilever composite beam design. The application case studies of
AMS illustrated: (i) the computational advantage of this method over purely high
fidelity model-based optimization, and (ii) the accuracy advantage of this method
over purely low fidelity model-based optimization.

1 Introduction

Population-based heuristic optimization algorithms, such as evolutionary algorithms
and swarm optimization algorithms have been applied to diverse areas of science
and engineering over the past few decades. They have been proven to be very effec-
tive in solving complex design optimization problems, especially those involving
highly nonlinear functions. However, considering the computational cost of the high
fidelity simulation models typically used to represent system behavior (e.g., CFD,
FEA models), the large number of function evaluations often demanded by heuristic
algorithms limit their applicability to practical complex system design (e.g., wing
design of a high speed civil transport aircraft [1]). One approach to address this
issue is variable fidelity optimization. In this approach, model management strate-
gies adaptively integrate models of different fidelity and cost into the optimization
process.

1.1 Variable Fidelity Models

Variable fidelity models refer to models with different levels of fidelity, where the
computational cost of the model is generally related to the accuracy of the model
estimation. In addition to low, medium, and high fidelity physics-based models, surro-
gate models (or mathematical approximation models) can also be used as candidates
within a set of variable fidelity models. Surrogate models are purely mathematical
models (i.e., not derived from the system physics) that are used to provide a tractable
and inexpensive approximation of the actual system behavior. They are commonly
used as an alternative to expensive computational simulations (e.g., CFD [2]) or to
the lack of a physical model in the case of experiment-derived data (e.g., creation
and testing of new metallic alloys [3]). Further description of the state of the art
in surrogate modeling can be found in the following literature [4-6]. Major surro-
gate modeling methods include Polynomial Response Surfaces [7], Kriging [8, 9],
Moving Least Square [10, 11], Radial Basis Functions (RBF) [12], Support Vec-
tor Regression(SVR) [13], Neural Networks [14] and hybrid surrogate models [15].
These methods have been applied to a wide range of disciplines, from aerospace
design and automotive design to chemistry and material science [6, 16, 17].
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Besides direct implementation of a surrogate model as a black-box function
(directly substituting a high fidelity model or data), low fidelity physic-based models
can also be combined with a surrogate model to achieve a hybrid model of greater
accuracy than its individual components (as illustrated in Fig. 1). Low fidelity physic-
based models (e.g., the vortex lattice computational fluid dynamics method) are
generally less complex than a high fidelity model and often provide a less faithful
representation of the system behavior [18]. These models can be obtained by simpli-
fying either the analysis model (e.g., using coarse finite element mesh) or the original
physical formulation (e.g., using simplified boundary conditions or geometry). To
their advantage, low fidelity physics-based models often inherit the major features of
true models, while being significantly less expensive. Hence, these models could pro-
vide a reliable foundation for the construction of high-quality hybrid approximation
models. These hybrid models, also called tuned low fidelity models, are expected to
reflect the most prominent physical features of the system behavior, while preserv-
ing computational efficiency. Two well-known approaches for constructing tuned
low fidelity (TLF) models are multiplicative and additive approaches, as given in
Egs. 1 and 2, respectively [19].

Multiplicative approach: y,,, = A X y, . (1)
Additive approach:  y,,, =B+ y,, 2)

In both of these approaches, the tuning functions (A and B) are trained using the
associated values of the high and low fidelity models for a given DoE, as shown
below:
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Yur (X)

Yer(X)

B(X) = yup (X) =y, (X)

where X = {X1, X2, X3,..., Xn,}

Ng: Number of sample points 3)

A(X) =

and where ygr(.) and yp r(.) respectively represent the functional responses of the
low and the high fidelity models (where in the multiplicative scenario, yr r is only
allowed to take non-zero values). In surrogate-based tuned low fidelity models, the
tuning (or correction) of a low fidelity model is performed using a surrogate model
constructed through a DoE of the high fidelity model [20-22].

1.2 Model Management in Optimization

The major pitfall in using low fidelity models in optimization is that they can often
mislead the search process, leading to suboptimal or infeasible solutions. To address
this issue and provide optimum designs with high fidelity system evaluations, model
management strategies can be applied. Different model management approaches have
been reported in the literature, for integrating low fidelity models within optimization
algorithms. One class of model management strategies are developed based on the
Trust-Region methods [23-27]. The basic idea of the Trust-region is to solve an
optimization problem, Mﬂi{l} f (x),using the high fidelity model ( f (x)). In solving this
xXe

optimization problem using a gradient-based algorithm, the kth iteration is computed
as x*T1 = x¥ 4 A Ax, where A is the step length and Ax is the decent direction.
As Ax is fixed, the problem reduces to a one-dimensional optimization problem:
Mkin f(x* 4+ 1 Ax). To improve the computational efficiency of the problem, the low

fidelity model, f (x), can be used in the latter optimization problem. Assuming the
low fidelity model is only valid in the vicinity of x¥ (e.g., x* + y), the optimization
search for A is changed to the following constrained optimization problem:

N&in f(x + AAx), subjectto: |[LAx|| <y 4@

where y is the trust-region radius. In the Trust-Region based model management
methods developed by Alexandrov et al. [28] and by Toropove and Alvarez in
1998 [29], the parameter y is adaptively increased (or decreased) depending on
how well the low fidelity model, f (x), predicts the improvement in the high fidelity
model. This criterion is estimated by computing the ratio of the actual to the predicted
improvement in the objective function, as given by

FORy — Fk + 2k Axk)
Fxky = F(xk 4+ 2k Axk)

®)
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The Trust-Region method seeks the agreement of the function and its gradient values
estimated by the low fidelity model with those estimated by the high fidelity model.
However, these techniques may not be directly applicable in problems where gra-
dients are expensive to evaluate, or where zero-order algorithms are being used for
optimization.

In another class of model management strategies, developed for non-physics-
based low fidelity models (e.g., surrogate model and tuned-low fidelity model) the
accuracy of the surrogate model (or metamodels) is improved during the optimiza-
tion process by adding infill points, where additional evaluations of the high fidelity
model is then performed. Infill points are generally added in (i) the region where the
optimum is located (local exploitation); and/or (ii) the entire design space to improve
the global accuracy of the surrogate (global exploration) [20, 30, 31]. Trosset and
Torczon in 1997 [32] proposed an approach where the balance between exploitation
and exploration was considered using the aggregate merit function, f (x) — pdpin(x),
where, dpyin(x) = I\/Ecin |x — x%|l, p > 0.Itis important to note that, this technique

is independent of the type of surrogate modeling technique being considered. Over
the last two decades, different statistical model management strategies have been
developed [33-36]. Among them, Jones et al. in 1998 [35] developed a well-known
model management strategy that is based on an Expected Improvement (EI) criterion,
and is called Efficient Global Optimization (EGO). This powerful approach is how-
ever generally limited to surrogate models based on Gaussian processes. Assuming
Jfmin 18 the objective function value of the optimum in the training data, the expected
improvement in an infill point x is given by E(/ (x)) = E(max(finin — F(x)), 0). In
this case, F'(x) is a Gaussian distribution, F'(x) ~ ./\f(f(x), o2(x)), where the poste-
rior mean, f (x), is used as a surrogate model, and the posterior variance 02(x) gives
an estimate of the uncertainty involved in the surrogate prediction. The expected
improvement can be estimated by

E(1 () = fnim — Fen@ L=y | g fmin =T )

o(x) o(x)

where @ (.) and ¢ (.) denote the standard normal density and distribution functions,
respectively [34]. Subsequently, an infill point can be found by maximizing the
expected improvement, X infill — argmax (E(/(x))).

The model management strategies flsed in heuristic optimization algorithms can
be broadly classified into two different approaches which are (i) individual-based
evolution control, and (ii) generation-based evolution control [37]. In the individual-
based approach, selected individuals (controlled individuals) within a generation are
evaluated using a high fidelity model. In the generation-based approach, the whole
population at a certain generation (controlled generation) is evaluated using the
high fidelity model. Graning et al. [38] explored different individual-based evolution
frameworks such as (i) the Best Strategy [39], where the best individuals at each
generation are selected as controlled individuals, (ii) the Pre-Selection method [40],
where the offspring of the best individuals are selected as controlled individuals,
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and (iii) the Clustering Technique [41], where the k-means clustering technique is
used to find the “controlled individual cluster” based on the distance from the best
individual.

In this section, a survey of existing model management strategies for integrating
models with different levels of fidelity into an optimization process was provided.
Several of the existing strategies are found to be defined for specific types of low
fidelity model, e.g., EGO works primarily for Gaussian process-based surrogate
models. On the other hand, existing techniques generally consider the combination
of only two models of different fidelities (e.g., Trust-region methods, and individual-
and generation-based techniques). This article seeks to address some of the above-
stated crucial gaps in the variable-fidelity optimization paradigm. Specifically, the
development of a model management strategy that can be coherently applied to
different types of low fidelity models (i.e., physics-based and non-physics-based low
fidelity models), and allows adaptive switching between more than two models is
being pursued in this article.

1.3 A New Approach to Global Model Switching

The primary objective of this article is to investigate a new adaptive model man-
agement strategy that significantly reduces the computational cost of optimization
while converging to the optimum with high fidelity model evaluation; in its current
form, this method is designed to work with population-based optimization algorithms
(e.g., GAs, PSOs). Additionally, this method assumes that models of different levels
of fidelity are available to the user. Specifically, a new stochastic model switching
metric, called Adaptive Model Switching (AMS), is formulated in this article. The
AMS technique is implemented through a powerful version of the Particle Swarm
Optimization (PSO) algorithm that involves explicit diversity preservation, called
Mixed-Discrete PSO [42]. The effectiveness of this implementation is investigated
by application to two engineering design optimization problems.

The remainder of the article is organized as follows: Sect. 2 presents the concept
and the formulation of the new Adaptive Model Switching (AMS) metrics. Descrip-
tion of the model error quantification methods used in this article, including Predic-
tive Error Estimation of Model Fidelity (PEMF), is provided in Sect.2.3. Section 3
describes the practical problems to which AMS is applied; the numerical settings
and case study results are illustrated and discussed in Sect. 3. Section4 provides the
concluding remarks.
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2 Variable Fidelity Optimization with Adaptive Model
Switching (AMS)

2.1 Major Steps in Optimization with AMS

In optimization based on variable fidelity models, the important question is when
and where to integrate the models with different levels of fidelity. In this article, the
“when to integrate” question is particularly addressed. Increasing fidelity too early
in the design process can be computationally expensive while wasting resources
to explore undesirable regions of the design domain. On the other hand, switching
to a higher fidelity model too late might mislead the search process early on to
suboptimal regions of the design domain (especially in multimodal problems), i.e.,
leading to scenarios where the global optimum is outside of the region spanned by
the population of candidate solutions in later iterations. In this section, a novel model
management strategy called, Adaptive Model Switching (AMS) metric is developed to
avoid both these undesirable scenarios. AMS can be perceived as a decision-making
tool for the timing of model-switching or model integration. The implementation of
the proposed AMS in population-based algorithm involves the following five major
steps:

Step 1 Assuming the available models are non-dominated w.r.t. each other in terms
of fidelity and computational expense, the models are first ranked from the
lowest fidelity to the high fidelity, based on the error associated with each
model-M;j for i = 1, ..., n. where model M has the lowest fidelity and model
M,, has the highest fidelity. Assuming the distribution of model error is known
for each model, the ranking is performed using the modal values of the error
distributions.

Step 2 The initial population is then generated at t = 1, using M.

Step 3 At every iteration () of the heuristic optimization algorithm, the current
model, Mj, is used to update the function values of the population, and then
set + = t + 1. In this article, Particle Swarm Optimization is the chosen
heuristic optimization algorithm.

Step 4 The following stopping criteria is checked after every iteration.

The optimization algorithm stops when the relative changes in the fitness
function value is less than a predefined function tolerance, §r. To avoid ter-
mination before reaching the high fidelity model (M,,), the function tolerance
must be specified to be less than the modal error of the last but one model
(Mn-1).

IF the termination criteria is satisfied, the current optimum (the best global
solution in the case of PSO) is identified as the final optimum and the opti-
mization process is terminated.

ELSE, Go To Step 5

Step 5 The switching metric (AMS metric) is evaluated in this step.

IF the AMS metric is satisfied, a switching event occurs, and the algorithm
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Fig. 2 Adaptive model switching in population-based optimization

switches from model M; to M.
Go To Step 3

A flowchart of the algorithm for optimization with AMS is shown in Fig.2. In
practice, the AMS technique (Step 5) need not be applied at every iteration; the user
can specify it to be applied after every K iteration (where K is a small positive
integer). In the flowchart, AMS is shown to be applied at every iteration, for the sake
of simplicity.

In the following subsection, the novel components of the AMS method (Fig.2) are
described. Subsequently, an overview of the Mixed-Discrete PSO algorithm, which
is used for implementing and testing the AMS method, is provided.

2.2 The Adaptive Model Switching (AMS) Metric

In this article, it is assumed that the uncertainty associated with each model (M;; i =
1, ..., n)is known or can be evaluated in the form of an error distribution, IP;. Under
this assumption, the fitness function values evaluated using the ith model can be
related to the corresponding high fidelity estimation as

Vp =Vip+e (7)

In Eq.7, &’L r and ¢! respectively represent the response of the ith low fidelity
model and the stochastic error associated with it; and yi,  1s the corresponding high
fidelity model response. The relative improvement in the fitness function value (Af)
can be considered to follow an unknown distribution, ®, over the population of
solutions. Here, Af in the tth iteration (¢ > 2) can be expressed as
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Fig. 3 The illustration of the
AMS metric
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The model switching criteria is then defined based on “whether the uncertainty
associated with a model response is higher than the observed improvement in the
relative fitness function of the population”. Due to the practical unavailability of
reliable local measures of model error (i.e., € as a function of x), the model switching
criteria is designed using the stochastic global measures of model error and the
distribution of solution improvement. Based on prior experience or practical design
requirements, the designer is likely to be cognizant of what levels of global model
error, 17, is acceptable for a particular low fidelity model in an optimization process.
Hence, 1 can be perceived as a user-preference. The critical probability, p., for that
low fidelity model with an error distribution PP is then defined as the probability of
the model error to be less than 7. This definition can be expressed as

n ! I
DPer = Prle <] =/ P(e ) de )
0

The critical probability (p.,) essentially indicates a critical bound in the error
distribution P (0 < ¢ < n). If the predefined cut-off value (8) of the & distribution
lies inside this region, the current low fidelity model is considered to be no more
reliable for use in the optimization process. As illustrated in Fig.3, assuming that
©® and P follow a log-normal distribution, p., = Pr[e < n*]; and B* is the pre-
computed cut-off value in the ® distribution. The model with the P error distribution
can be used in the optimization process provided that n* < §*.

The Adaptive Model Switching (AMS) metric is formulated as a hypothesis testing
that is defined by a comparison between

(I) the distribution of the relative fitness function improvement (&) over the entire
population, and

(I) the distribution of the error associated with the ith model (IP;) over the entire
design space.
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(@) pDF

Fig. 4 The illustration of the AMS hypothesis test (comparing the model error distribution (P;)
and the distribution of fitness function improvement (€)); a Rejection of the text; don’t change a
model. b Acceptance of the text; change a model

This statistical test for the ith model can be stated as

Hp: QIP’; (Per) =2 Qo (1 = per)
Hy: Qp, (per) < Qo (1 — per)
0<per<1 (10)

where Q represents a quantile function of a distribution; The p-quantile, for a given
distribution function, ¥, is defined as

Qu(p) =infix e R: p < Wca.r)(0)} (11)

In Eq. 10, p., or the critical probability is an Indicator of Conservativeness (IoC).
The IoC is based on user preferences, and regulates the trade-off between optimal
solution reliability and computational cost in the AMS-based optimization process.
Generally, the higher the IoC (closer to 1), the higher the solution reliability and the
greater the computational cost; under these conditions, model switching events will
occur early on in the optimization process.

For the sake of illustration, assume ® and P; follow a log-normal distribution,
and p.r = p*. In this case, the null hypothesis will be rejected, and the optimization
process will use the current model (M;) if Qg > Qp,, as illustrated in Fig.4a.
Conversely, if Qo < Qp,, the null hypothesis will be accepted, and the optimization
process will switch to the next higher fidelity model (M;1), as shown in Fig. 4b.

In this article, Kernel Density Estimation (KDE) is adopted to model the dis-
tribution of the relative improvement in the fitness function over consecutive kf
iterations. Since the distribution of fitness function improvement over the population
(for different problems) may not follow any particular probability model, and is also
observed to be multimodal at times, KDE is a suitable choice in this context. KDE is
a standard non-parametric approach to estimate the probability density function of
random variables. Here, it is assumed that Af = (Af1, Afa, Af3, ..., Aprop) is
an independent and identically distributed sample drawn from a distribution with an
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unknown density @ 4y. The kernel density estimator can then be used to determine
O 4y, as given by
. Npop
Oap(xi H) = Npo, > Kplx — x;) (12)
i=1

Here, the kernel K (x) is a symmetric probability density function, H is the band-
width matrix which is symmetric and positive-definite, and Ky (x) = |H|~'/2K
(H~'2x). The choice of K is not as crucial as the choice of the H estima-
tor for the accuracy of the KDE [43]. In this article, we consider K(x) =
(27r)_d/ 2e)cp(_Tle)c), the standard normal throughout. The Mean Integrated
Squared Error (MISE) method is used as a criterion for selecting the bandwidth
matrix, H [44], where

MISE(H) = ]E(/[@Af(x; H) = 025 (X)) 13)

2.3 Quantifying Model Uncertainties

In this article, the uncertainties associated with surrogate models and surrogate-
based tuned low fidelity models are determined using an advanced surrogate error
estimation method, called Predictive Estimation of Model Fidelity or PEMF [45]. The
PEMF method is derived from the hypothesis that “the accuracy of approximation
models is related to the amount of data resources leveraged to train the model”.
A brief description of the PEMF method is provided in the following sub-section
(Sect.2.3.1). In the case of physics-based low fidelity (PLF) models, the uncertainty
in their output is quantified through an inverse assessment process, by comparing the
physics-based low fidelity model responses with the high fidelity model responses.
In this case, the relative absolute error (RAE,, ) of a PLF model is estimated as

|HFi _ PLF"| if HF; #0
oo TRy :
RAE = HF: | 14
PLE: =1 |HF;, — PLF;| if HF; =0 (14)
wherei =1,2,3,..., N; (Number of sample points)

A DoE of Ng high fidelity evaluations is used to perform the above-stated error
quantification, and also to train a surrogate models and a tuned low fidelity models.
The uncertainty of a low fidelity physics-based models is represented by a log-normal
distribution, In N'(wp F, opLF), Where the p-quantile of this distribution is defined
as
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Qe,,,(P) = IP;LlF Pliprrs Oprr) = exp(ipp + P71 (D) 0py)
where
MR ARpLF VRARpLF
Wp, p = In( > : ) Opp = \/ln(l + mz—) (15)
\/VRARPLF + MRARpLE RARpLF

In Eq. 15, @71(.) is the inverse of the c.d.f of the standard normal distribution
with zero mean and unit variance, and mgaRp; » and VRag,, » are the mean and the
variance of RAE;—1 23, N, respectively.

2.3.1 Predictive Estimation of Model Fidelity (PEMF)

In concept, the PEMF method [45] can be perceived as a novel sequential imple-
mentation of k-fold cross-validation, with carefully constructed error measures that
are significantly less sensitive to outliers and the DoE (compared to Mean or Root
Mean Square error measures). The PEMF method predicts the error by capturing the
variation of the surrogate model error with an increasing density of training points
(without investing any additional test points).

In the PEMF method, for a set of Ny sample points, intermediate surrogates
are constructed at each iteration, r, using S” heuristic subsets of n” training points
(called intermediate training points), where n” < Ns. These intermediate surrogates
are then tested over the corresponding remaining Ny —n” points (called intermediate
test points). The median error is then estimated for each of the S” intermediate
surrogates at that iteration, and a parametric probability distribution is fitted to yield
the modal value, E),'7/, and the median value, En":jfil’r, of the model error at that
stage. The smart use of the modal value of the median error significantly reduces
the occurrence of oscillations in the variation of error with sample density, unlike
mean or root mean squared error which are highly susceptible to outliers [46]. This
approach gives PEMF an important advantage over conventional cross-validation-
based error measures, as illustrated by Mehmani et al. [45-47]. It is important to
note that all error quantifications are performed in terms of the relative absolute error
(ERAE), which is given by:

F(X) - F(X)) .
U i F(X) #0
Erae(X;i) = F(X;) (16)

|F(Xi) — F(X))|  if F(X;) =0

where F is the actual function value at X;, given by high fidelity model, and Fis
the function value estimated by the surrogate model.

In order to control the computational expense of PEMF, the lognormal distribution
is used to represent the surrogate model error; this distribution has been previously
observed (from numerical experiments) to be one of the most effective choice in
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representing the surrogate model error distribution. The PDFs of the median error,
Pmed, can thus be expressed as

Pomed = 1 exp( (In(Eea — and))z
med =
EnedOmea~ 21

In the above equation, E,,.4 represents the median of the relative errors estimated
over a heuristic subset of training points at any given iteration in PEMF. The para-
meters, (Umed, Omed) are the generic parameters of the log-normal distribution. The
modal and median values of the median error distribution at any iteration, r, can then
be expressed as

) a7)

2
2O—m ed

E:Z:d|r = exp(Mmed — przlgd)|r
E;nngg|r = exp(imed)r (18)

Once the history of modal and median errors at different sample size (<N;) are
estimated, the variation of the modal and median values of the errors with sample
density are then modeled using the multiplicative (E = agn®' ) or the exponential
(E = ape™"™) regression functions (depending on the best least-square fit). These
regression functions are then used to predict the modal and the median values of the
error distribution in the final surrogate, where the final surrogate is trained using all
the N, sample points. The predicted modal and the median error values, &,,,4 and
Emed, are then used to define the distribution of the error in the final surrogate model,
or in other words the response uncertainty of the surrogate model. The location and
scale parameters of the error distribution is then given by

m, =Inégpeq

0. = [In(Zmed) (19)
Emod

Subsequently, the p-quantile of the error distribution associated with the surrogate
model is given by

Qe,, (p) =P (pli,. 0,) = exp(u, + &' (p) 0,) (20)

2.4 Optimization Algorithm: Particle Swarm Optimization

In the proposed model management methodology, optimization is performed using an
advanced implementation of the Particle Swarm Optimization (PSO). PSO was origi-
nally developed for solving continuous nonlinear optimization problems by Eberhart
and Kennedy in 1995 [48]. Several advanced versions of this algorithm have been
reported in the literature since its inception. In this article, one particular advanced
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implementation of the PSO algorithm called Mixed-Discrete PSO (MDPSO), which
was developed by Chowdhury et al. [42], is used. The advantages that the MDPSO
algorithm provides over a conventional PSO algorithm include: (i) an ability to deal
with both discrete and continuous design variables, and (ii) an explicit diversity
preservation capability that mitigates the possibility of premature stagnation of par-
ticles. Further description of the MDPSO algorithm can be found in the paper by
Chowdhury et al. [42].

3 Numerical Case Studies

3.1 Aerodynamic Shape Optimization of 2D Airfoil

This section describes a 2D airfoil design problem where the ratio of the coeffi-
cients of lift and drag (Cr/Cp) of the Wortmann FX60.126 2D airfoil [49] is to
be maximized. The lift-to-drag ratio (Cr/Cp) is expressed as a function of four
design variables, which include the angle of incidence (ranging from O to 10) and the
three normalized shape variables (each ranging from —0.01 to 0.01). As illustrated
in Fig. 5, the three shape variables define the distances (i) between the middle of the
suction side and the horizontal axis (x1), (ii) between the middle of pressure side and
the horizontal axis (x;), and (iii) between the trailing edge and the horizontal axis
(x3). These three shape variables allow a modification of the un-deformed airfoil
profile. With respect to the initial airfoil design, two cubic splines are added to the
suction and the pressure sides. Each of these splines is characterized by 3 points,
defined on the leading edge, the middle span, and the trailing edge. The chord length
of the airfoil is equal to 1 m. The design constraints are the side constraints on the
design variables which are listed in Table 1.

0.10
0.08
0.06
0.04
0.02
0.00
-0.02
-0.04 4

0 01 02 03 04 05 06 07 08 09 1

X

Fig. 5 Design variables governing the geometry of the airfoil
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Table 1 Design variables in airfoil optimization problem

Description Notation | Lower limit Upper limit

Distance between the middle of suction side and | x; —0.01 0.01

horizontal axis

Distance between the middle of pressure side and | x» —0.01 0.01

horizontal axis

Distance between the trailing edge and horizontal | x3 —0.01 0.01

axis

Incidence angle X4 0° 10°

3.1.1 Aerodynamic Models with Different Level of Fidelity

To develop a high fidelity aerodynamic model for determining C; and Cp (MﬁF),
the commercial Finite Volume Method package, FLUENT, is used. The Reynolds-
averaged Navier-Stokes (RANS) formulation is used along with a Reynolds model
to represent the turbulence. The CFD mesh is constructed using quadrangular cells

[49], characterized by 9,838 quadrangular cells and 10,322 grid points (Fig. 6a).

The low fidelity physics-based model (MQLF) is constructed based on the assump-
tions that the fluid is steady, incompressible, and irrotational. In this model, the
Navier-Stokes equations are solved using the Finite Element method. Triangular T3
elements are used for demonstration, as shown in Fig. 6b. The incoming velocity in
the analysis is set to 25 m/s. The computational time of the High and Low fidelity
physics-based models are approximately 300 and 30s, respectively (i.e., an order of
magnitude apart). The pressure field around the airfoil for the low and high fidelity
aerodynamic models at a baseline design (x; =0, x =0, x3 =0, and x4 = 5°)

are illustrated in Fig.7.

The third model is a surrogate model (M?M) constructed using a DoE of high
fidelity evaluation involving 30 sample points. The fourth model is a tuned low

.
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Fig. 7 Pressure field around the airfoil at a baseline design; a High fidelity model, b Low fidelity
physics-based model

fidelity model (M?LF). In this article, the tuned low fidelity model is constructed
using the Multiplicative approach, as given by

F(x,a) = f(x) x C(x) (1)

where F is a tuned low fidelity model; f (x) is alow fidelity model; C(x) is an explicit
tuning surrogate constructed using the high fidelity samples, as shown below:

Clx) = Cp lur (22)

where Cy, and Cp are respectively the lift and drag coefficients.

The surrogate model (M‘g‘M) and the surrogate component of the tuned low fidelity
model (Mi‘f‘LF) are both constructed using Kriging with a Gaussian correlation func-
tion [8, 9]. Kriging is an interpolating method that is widely used for representing
irregular data. Under the Kriging approach, the zero-order polynomial function is
used as a regression model. In this article the Optimal Latin Hypercube is adopted
to determine the locations of the sample points. The PEMF method is then applied
to estimate the error in the surrogate models constructed using the high fidelity
responses, and the tuned low fidelity model. To estimate the error in the physics-
based low fidelity FEA model, the inverse assessment process defined in Sect. 2.3, is
applied. Figure 8a—c illustrate the distributions of the error in the tuned low fidelity
model, the surrogate model, and the physics-based low fidelity model. It is observed
from Fig. 8 that the accuracy of the physics-based low fidelity model is less than that
of the surrogate model. It is also readily evident that the computational cost of the
physics-based low fidelity model is more than that of the surrogate model. There-
fore, in this problem, the physics-based low fidelity model is dominated by the other
three models and is hence not included as a model choice in the variable fidelity
optimization.
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Fig. 8 Distribution of the model errors in evaluating the aerodynamic C; /Cp ratio of the 2D
airfoil: a Tuned LF model, b Surrogate model, ¢ Physics-based LF model

3.1.2 Airfoil Optimization Problem: Results and Discussion

In the airfoil optimization problem, the initial population of particles is generated
using the fastest model, which is the surrogate model. The AMS technique adaptively
switches the model type twice during optimization (over a total of 22 iterations),
resulting in an optimum design with a high fidelity function estimate.

The model types, the error distribution parameters associated with each model,
and the number of calls made to each model in this optimization are listed in Table 2.

Table 2 Models with different levels of fidelity used in the airfoil optimization problem (the high
fidelity model is assumed to be a true representation of the system behavior)

Model Location parameter | Scale parameter | Q(pc,) No. of calls made
I o Per = 0.3 | Npop x # Iter.

Surrogate —2.6793 0.9628 0.0414 30 x 13

Tuned LF —3.3197 0.9547 0.0219 30 x 6

High fidelity - - - 30x3
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The total number of calls made to each model is equal to the product of the particle
population and the number of iterations during which that particular model is used for
system evaluation. In this problem, the AMS technique is applied at every iteration.

Figure 9a—f illustrate the distribution of the fitness function improvement at differ-
ent iterations during the optimization process. In these figures, Q represents (1—p,, )-
quantile of the ® distribution. The error distributions of the surrogate model and the
tuned low fidelity model, which are determined apriori, are also shown in these fig-
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ures. Through AMS, model switching from the surrogate model to the tuned low
fidelity model and from the tuned low fidelity model to the high fidelity model occur
at the 13th and the 19th iteration, respectively.

The convergence history of the airfoil optimization is illustrated in Fig. 10. This
figure also indicates which model is active at each iteration. It is observed that, from
the first iteration till the 13th iteration the surrogate model (MSAM) is active, before
switching to the tuned low fidelity model that remains active till the 19th iteration.
Interestingly, most of the objective function improvement occurs under the tuned
low fidelity model (more than 10 % increase in the CL/CD ratio). The optimization
uses the high fidelity model in the last 3 iterations before reaching convergence. In
this case, the algorithm converges by satisfying the predefined function tolerance,
8f =107.

Next, the performance of the AMS method is investigated and compared with
the performances of running optimizations that solely rely on a low fidelity model
or a high fidelity model. The results yielded by the PSO-AMS thus compared with
the results yielded by separately running MDPSO solely using the surrogate model
(PSO-SM), solely using the tuned low fidelity model (PSO-TLF), and solely using the
high fidelity model (PSO-HF). The optimum results thus obtained, the computational
cost, and the total number of function evaluations in each case are reported in Table 3.
The final column of this table shows the high fidelity function estimate at the optimum
design obtained under each optimization run (e.g., y7,,. (x;‘M) and y¥ (x7 ). Itis
observed that the PSO-AMS not only requires 185 % less computing time compared
to PSO-HEF, it also provides the best optimum value that is 5 % better that the next
best value (where the 2nd best is obtained by PSO-TLF). It is also observed that, in
the PSO-TLF approach, the optimum is located in the region where the TLF model
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Fig. 11 Percentage of resources used by each model in the airfoil optimization problem performed
through PSO-AMS: a Computing time resources; b Function evaluation resources

has more than 8 % error. This optimum is in the vicinity of the high fidelity optimum
yielded by the AMS method. The optimization performed solely using the tuned
low fidelity model (PSO-TLF) also incurs a slightly higher computational time in
comparison with that performed using the AMS method, which is attributed to the
high number of function evaluations invested to satisfy the termination criterion in
the former (1380 evaluations vs. 660 evaluations).

Figure 11a, b illustrate the resources used in terms of computing time and func-
tion evaluations, by the three different models in the airfoil design optimization
performed by PSO-AMS. These figures show that the overall computational cost is
highly sensitive to the number of high fidelity model evaluations, which is expected.
It is also observed that the surrogate model dominates the optimization process in
terms of function calls, while the computational expense of this model is signifi-
cantly lower than that of the tuned low fidelity and the high fidelity models. This
observation supports the hypothesis that a probabilistic AMS technique can provide
a significantly better balance between accuracy of the optimum and computational
efficiency, compared to purely low fidelity or purely high fidelity optimizations.

3.2 Shape Optimization of a Cantilever Composite Beam

In the second optimization test problem, the maximum deflection of a cantilever
composite beam (as shown in Fig. 12) is minimized. This beam is subjected to a

parabolically-distributed load, g(x) = go(1 — 2—22) [22]. In this problem, the fiber
direction Young’s modulus, £, and the composite weight density, p, are given by

Ep =Efvy+ En(1—vy)

p=prve+pm(l—vy)

where

Vi v, =1 (23)
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Fig. 12 Cantilever q(x)
composite beam subjected to
a parabolic distributed load

InEq.23, E s and E,;, are the elastic modulus for graphite and epoxy resin, respec-
tively; ps and p,, are the weight density of the graphite fiber and epoxy resin, respec-
tively; and v and vy, respectively represent the fiber volume fraction and the matrix
volume fraction in the continuous fiber composite material.

The design variables include (i) the second moment of area (x;), (ii) the depth
of the beam (x;), and (iii) the fiber volume fraction (x3). The side constraints on
the design variables and the values of the prescribed design parameters are listed in
Table 4 and Table 5, respectively.

The beam optimization problem is defined as

Table 4 Design variables for the beam design problem

Description Notation Lower limit Upper limit
Second moment of area, / [mm?*] X1 3.3E4 20.8E4
Depth of the beam, 4 [mm)] X2 20 50

Fiber volume fraction, vy X3 0.40 0.90

Table 5 Prescribed design parameters for the beam design problem

Parameter Value
Parabolic distributed load, gg [N/mm] 1

Length of the beam, L [mm] 1000
Elastic modulus of graphite fiber, E f [N/mm?] 2.30E5
Elastic modulus of epoxy resin, E,, [N /mmz] 3.45E5
Weight density of graphite fiber, o s [N/mm?] 1.72E -5
Weight density of epoxy resin, p,, [N/mm3] 1.20E -5
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b
Minimize: % [80] = 12.93 (24)
0
subject to
W/Wo <1, [Wo]l=29E4 (25)
o‘ma)c/O‘O <1, [o0] = 200 (26)
3
—2 <1 (27)
1.2E6x
XM < xp < xMY i =1,2,3 (28)

In this optimization formulation, the inequality constraints (Egs. 25, 26, and 27)
are related to the allowable weight, the maximum stress, and a geometric restriction
on the beam design (depth < 10 x width). The weight and the maximum stress are
given by

121
W= ApL = — x (124520010 x L = (1440 + 624x3)  (29)
x2

qoLzh _ 1E6x)
81  8x

(30)

Omax =

The models used to estimate the maximum deflection, d,,,.y, are described next.

3.2.1 Structural Models with Different Levels of Fidelity

To develop the high fidelity physics-based structural model (MEF) and the low fidelity
physics-based or PLF structural model (MELF), the Finite Element Analysis package
ANSYS is used. In ANSYS, the PLF Finite Element model is constructed using 2
beam elements, while the HF Finite Elemet model comprises 1000 beam elements.
The third model (M?M) in this problem is a surrogate model constructed using Kriging
with Gaussian correlation function. A set of 30 high fidelity function evaluations
are used for this purpose. The fourth model (MTBLF) is a tuned low fidelity model
constructed using the Multiplicative form where

Cx) = M (31)

Smax |pr

The distribution of the error in the tuned low fidelity model (TLF) and the surrogate
model (SM) are estimated using PEMF (Sect.2.3.1) and are illustrated in Fig. 13a,
¢, respectively. The distribution of the error in the Physics-based low fidelity model
(PLF) is estimated using the inverse assessment process, by leveraging the same 30
high fidelity samples that were used to construct the TLF and SM; the PLF error
distribution is shown in Fig. 13b.
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Fig. 13 Distributions of the model errors for the cantilever beam design problem; a Tuned LF
model, b Physics-based LF model, ¢ Surrogate model

Table 6 Models with different levels of fidelity used in the cantilever beam optimization problem
(the high fidelity model is assumed to be a true representation of the system behavior)

Model Location Scale Q(per) Number of
parameter ;0 | parameter o | po, = 0.3 calls made
Npop %
No. of Iter.
Surrogate 1.22 1.20 1.75 30 x 3
Physics-based LF —2.30 0.001 0.097 30 x 6
Tuned LF —12.52 0.99 0.0001 30 x 7
High fidelity — — — 30 x4

3.2.2 Cantilever Beam Design: Results and Discussion

For the cantilever beam design problem, the four model types, the error distribution
parameters and Q(p.,) associated with each model, and the number of calls made
by AMS to each model are listed in Table 6. It can be seen from Fig. 13 and Table 6
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Fig. 14 Distribution of the fitness function improvements in different iterations of the beam opti-
mization with PSO-AMS (also showing the model error distributions); a 3rd iteration, b 8th iteration,
¢ 10th iteration, d 14th iteration

that the tuned low fidelity model provides the highest degree of accuracy and the
surrogate model is the least accurate among the three low fidelity models. Hence, the
initial population of particles is generated using the surrogate model in this case.

Figure 14a—d illustrate the distribution of the relative fitness function improve-
ments (Qp) at different iterations during the optimization process. The (1 — pe,)-
quantile of the Qg distribution, and the p.,-quantile of the error distributions of the
tuned low fidelity model, the surrogate model, and the physics-based low fidelity
model are also shown in these figures.

The convergence history of the cantilever beam optimization performed by PSO-
AMS is illustrated in Fig. 15. The AMS technique adaptively switches the model
type three times (SM -> LF -> TLF -> HF) during the optimization process at the
3rd, the 9th, and the 16th iteration, therefore resulting in an optimum design with a
high fidelity function estimate. There is a substantial discontinuity in the estimated
function value at the first switching event (3rd iteration), which can be attributed to
the significant uncertainty in the surrogate model—the Q(p,,) value of the surrogate

model (M]SSM) is orders of magnitude higher than those of the other models (ME’LF

and MTBLF). To avoid the termination of PSO before reaching the high fidelity model
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Fig. 15 Optimization t=0.6 [min] ¢ = 10.2 [min] t=13.7 [min] ¢ =10.6 [min]
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(MEF), the relative function tolerance is set to 8§ = 107>, which is smaller than the
modal error of the tuned low fidelity model.

In Table 7, the optimization results obtained by PSO-AMS is compared with the
results yielded by running MDPSO solely using the surrogate model (PSO-SM),
solely using the physics-based low fidelity model (PSO-PLF), solely using the tuned
low fidelity model (PSO-TLF), and solely using the high fidelity model (PSO-HF).
Interestingly, the PSO-AMS, PSO-TLF, and PSO-HF arrive at the same optimum
design with f* = 0.5435. It is seen from Table 7 that PSO-AMS reaches this opti-
mum design at a 33 % lower computational expense compared to PSO-TLF and a
119 % lower computational expense compared to PSO-HF (both expense differences
are estimated with respect to PSO-AMS expense). It is important to note from Table 7
that the performance of the surrogate model-based optimization (PSO-SM) is sig-
nificantly worse than that of the others. The error in the surrogate model (MEM) at its
optimum (X7 ) is more than 99 %, which is expected based on the predicted PEMF
error of this model (Fig. 13c).

The resources used by the four different models, in terms of computing time
and function calls, in the beam optimization performed by PSO-AMS are illustrated
in Fig. 16a, b. It is observed that, unlike the airfoil problem, the surrogate model
does not have a significant contribution in the beam optimization process in terms
of function calls. Due to its high inaccuracy (Q(p.,) = 1.75), the fitness function
improvement of the particles is quickly dominated by the error distribution of the
surrogate model (in only 3 iterations). In this optimization process, the tuned low
fidelity model (MB ) makes the highest contribution in terms of computing time and

TLF
function calls. This case study again shows that the uncertainty in the lower fidelity
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Fig. 16 Percentage of resources used by each model in the cantilever beam optimization problem
using PSO-AMS : a Computing time resources; b Function evaluation resources

models could exceed the relative function improvement across constitutive iterations
way ahead of reaching convergence in practical optimization, and this behavior is
also highly problem dependent. Such likely scenarios make this variable fidelity
optimization technique (AMS) a unique and essential tool for designing complex
systems, where fast low fidelity models are almost indispensable.

4 Conclusion

This article presented a novel model management technique that is implemented in
population-based optimization algorithms to provide high fidelity optimum designs
at a reasonable computational expense. The model pool is created with models that
offer different (non-dominated) trade-offs between computational cost and fidelity.
The optimization process is started using the model with the highest computational
efficiency, which could be a physics-based low fidelity model or a surrogate model.
A novel switching metric (called Adaptive Model Switching or AMS) is then used to
determine when to switch to the next higher fidelity model during the optimization
iterations. Assuming that the uncertainties associated with the lower fidelity models
follow a probabilistic distribution (lognormal pdf is used here), the proposed model
switching metric is defined as: “a probability estimate of whether the uncertainty
associated with a model exceeds the improvement in the relative fitness function over
the population of solutions”. The new adaptive model switching technique (AMS) is
applied to: (i) 2D Airfoil design and (ii) Cantilever composite beam design. A pow-
erful version of the Particle Swarm Optimization (mixed-discrete PSO) algorithm
is used to implement and investigate the performance of AMS. The results indicate
that AMS along with Mixed Discrete PSO improve the efficiency of the optimization
process significantly when compared to optimization performed solely using high
fidelity models, with up to 185 % reduction in computing time, while reaching the
same or a better optimum. The value of the optimum with AMS is also better than
that accomplished using only single low fidelity models for optimization. The current
version of AMS is implemented primarily for optimization problems where multiple
physics-based and/or surrogate models exist to represent the physical system behav-
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ior. Future work will focus on problems where only a high fidelity physics-based
model or experimental data is available, which can be used to construct different
surrogates. A related notion is that of Surrogate-based design optimization, where
surrogate models are improved through adaptive or sequential sampling during the
optimization process. A more intuitive definition of the Indicator of Conservative-
ness (IoC) as a function of user’s preferences regarding computational expense and
robustness would further establish the wide potential of AMS for optimizing complex
practical systems.
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