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Memoriam

In Memoriam to a Great Scientist, An Excellent Educator
and a Beloved Friend

Professor Matthew G. Karlaftis
21 December 1969–4 June 2014

Asklepieion, Kos Island, 3rd of June 2014. Professor Matthew G. Karlaftis (second from the right)
and his friends Iordanis, Christos and Nikos (left to right).
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It is always very difficult to bid farewell a dear friend, a mentor, a part of your
life. Professor Matthew G. Karlaftis (Matt) met an untimely death at the age of 45,
while at the OPT-i 2014 conference. Matt was the heart of the OPT-i conference; he
envisaged it to be a leading scientific event and a unique stage for sharing and
exchanging research ideas in the field of optimization and its applications in
Engineering and Applied Sciences. This volume is by all means the “capping stone”
of that vision. Eleni and I had the privilege of being Matt’s first Ph.D. students,
closest research associates and academic colleagues, since his first steps at the
NTUA in the early 2000s. We were extremely fortunate to share Matt’s academic
vision and his passion for research and development, his teaching charisma and,
foremost, his friendship and support. For us, Matt was, before everything else,
family.

Professor Karlaftis was born in Athens, in 1969. He received his B.Sc. and
M.Sc. degrees in Civil Engineering from the University of Miami and his Ph.D. in
Transportation Engineering from Purdue University, in 1996. After completion of
his graduate studies, he had the appealing option of applying for a faculty in a top
US University. Nonetheless, he decided to return to Greece and, following the
completion of mandatory military service, to seek for a faculty position in a Greek
University. While he rarely expressed it, Matt was very fond of his origins and
national heritage and, as such, returning to his home land seemed the logical option.
He became a faculty member at the National Technical University of Athens in
2001, and, tragically, he was about to officially advance to a Full Professor position,
shortly after his death. Despite the strict national legislation and procedures regu-
lating promotion and tenure of faculty members, he managed to become Full
Professor in less than 14 years. In parallel to his academic activities, Matt served as
the vice-president of the Athens Urban Transport Organization, during the critical
period of the 2004 Athens Olympics and as the elected President of the Hellenic
Institute of Transportation Engineers.

We could spend numerous pages talking about Matt and his academic
achievements; a leading scholar, a charismatic teacher, a prolific writer, a pioneer in
the field of quantitative methods and their applications in Engineering were
indicative aspects of his academic profile. With over 120 publications in peer-
reviewed journals, authorship of six books, several book chapters, and the scientific
leadership of over 45 research projects in almost 15 years, Matt was an academic
“rock star” in the areas of transportation and traffic planning, civil infrastructure
design, and management. His editorial involvement was also impressive; he was the
editor in chief for Transportation Research Part C, European editor of ASCE’s
Journal of Transportation Engineering, Associate Editor of ASCE’s Journal of
Infrastructure Systems, and an editorial board member for eight other journals.
During his short career, he received a number of prestigious awards, including the
Fulbright Scholar Grant (2006–2007), the ASCE Walter L. Huber Civil
Engineering Research Prize (2005), the TRB ABJ80 Best Paper Award (2009), and
the ASCE State-of-the-Art Paper Award (2011). His international bestselling book
on transportation econometrics and statistics is a standard text for many scholars
and students worldwide.
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Matt was a gifted scholar. He had this rare ability of analyzing complex prob-
lems in a simple, yet, elegant and robust way. This, along with his extensive
knowledge of quantitative methods, as well as transportation planning and engi-
neering topics, allowed him to successfully apply advanced optimization, statistical
and econometric models in difficult engineering problems. But, above all his virtues
and accomplishments, was his exceptional ability to reach to his students. Matt was
an excellent teacher and mentor for many undergraduate and graduate students,
among which are five faculty members in Greece and abroad. Most importantly
though, Matt was a fascinating person, a man of honor, an open-hearted, devoted,
and trustworthy friend. We will miss you dearly Matt.

Konstantinos L. Kepaptsoglou, Ph.D.
Lecturer

National Technical University of Athens

Eleni I. Vlahogianni, Ph.D.
Assistant Professor

National Technical University of Athens
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Preface

Engineering and Applied Sciences Optimization:
Dedicated to the memory of Professor M.G. Karlaftis

This volume is published to commemorate the life and memory of Prof. Matthew G.
Karlaftis. Numerous memorial events have been organized and acclamations have
been written about Matt since his untimely passing on June 4, 2014, a few hours
before his opening speech at the First International Conference on Engineering and
Applied Sciences Optimization (OPT-i) that we were co-organizing. He was a very
special person who will be long remembered as a great scientist and educator as
well as a beloved friend.

The subject areas of the volume ranges from Structural Optimization, Logistics,
Transportation, Traffic and Telecommunication Networks to Operational Research,
Metaheuristics, Multidisciplinary and Multiphysics Design Optimization, etc. The
chapters which appear in this volume are selected studies presented at OPT-I and
works written by his friends and former colleagues and students; all in the area of
optimization that Matt loved and was so quantitatively driven. All contributions
reflect the warmth and genuine friendship which Matt enjoyed from his associates
and show how much his scientific contribution has been appreciated. He will be
greatly missed and we hope that this volume will be proven as a suitable memorial
to his life and achievements.

The volume consists of 25 chapters which are grouped into three categories, in
the first category, the chapters deal with optimization studies related to logistics,
transportation and traffic and telecommunication networks; in the second, various
works are presented where metaheuristic optimization methods are used for solving
various engineering problems and in the third, structural optimization and opera-
tional research problems are solved.

First Part: In the work of Roncoli et al., it is described a novel approach for
defining optimal strategies in motorway traffic flow control, considering that a portion
of vehicles are equipped with vehicle automation and communication systems; an
optimization problem, formulated as a convex quadratic programming problem, was

ix



developed with the purpose of minimizing traffic congestion. Qian et al. make a
comprehensive use of the large-scale taxi trip data and present a three-fold study on
urban dynamics pattern in NYC. First, the spatiotemporal pattern of urban activities
are examined from trip dynamics by aggregating pick-up and drop-off locations;
second, they explore the inherent similarities among taxi trips and reveal the
underlying connections among detached places using two-step clustering algorithms.
Paz et al. proposed a methodology aiming to calibrate microscopic traffic flow sim-
ulation models, which was found to be capable to calibrate simultaneously all the
calibration parameters as well as demand patterns for any type of network.
Gkiotsalitis and Stathopoulos investigated the importance of big-data in improving
the organizational efficiency of physical meetings among multiple travelers in urban
environments. In particular, they examined the state-of-the-art on capturing travelers’
patterns based on their data traces and the expected gains from leveraging user-
generated data for optimizing leisure travel. In the work of Cruciol et al. it is intro-
duced the application of the methods of data mining to get the knowledge from air
traffic big-data in management processes. The proposed approach uses a Bayesian
network for data analysis to reduce the costs offlight delay. Papathanasopoulou and
Antoniou enhance the capabilities of an existing data-driven approach while it is
further validated using another training dataset; in addition, the methodology is
enriched and an improved methodological framework is suggested for the optimi-
zation of car-following models. Vlahogianni presents a detailed review of the unique
opportunities provided by ITS and big data and discuss the emerging approaches for
transportation modeling; furthermore, the challenges and emerging opportunities
posed for researchers working with such approaches are also discussed.

Second Part: Yang presents the key features of nature-inspired metaheuristic
algorithms by analyzing their diversity and adaptation, exploration and exploitation,
attractions and diffusion mechanisms. The author also highlights the success and
challenges concerning swarm intelligence, parameter tuning, and parameter control
as well as some open problems. Saka et al. used five optimum design algorithms for
cold-formed steel frames made of thin-walled sections using the recent metaheu-
ristic techniques. The algorithms considered are firefly, cuckoo search, artificial bee
colony with levy flight, biogeography-based optimization, and teaching-learning-
based optimization algorithms. Mehmani et al. present a new model management
technique to be incorporated into population-based heuristic optimization; accord-
ing to this technique different computational models are selected adaptively in order
to be used during optimization, with the overall objective to result in optimal
designs with high fidelity function estimates at a reasonable computational expense.
Simos presents a general algorithmic method for constructing 2q-level design
matrices in order to explore and optimize response surfaces where the predictor
variables are each at 2q equally spaced levels, by utilizing a genetic algorithm.
Hosseini et al. present a new optimization technique named as mesh adaptive direct
search (MADS) that is used to solve optimal steady-state performance of power
systems. MADS is utilized to determine the optimal settings of control variables,
such as generator voltages and transformer taps for optimal reactive power and
voltage control of IEEE 30-bus system.
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Last Part: Murakami et al. propose a new optimization procedure including a
variable adaptive step length for shear buildings with hysteretic dampers when
subjected to a set of design earthquake ground motions under a constraint on total
cost. The response sensitivity of buildings including hysteretic dampers is high and
a devised algorithm of adaptive step-length is useful to obtain a smooth and reliable
response sensitivity. Nigdeli and Bekdaş present an optimization methodology for
tuning of tuned mass dampers on structures subjected to seismic loading for two
different objectives, such as reducing the displacement of first story and absolute
acceleration of top story of the structure. Alexandersen and Lazarov present a
methodology for tailoring macroscale response by topology optimizing micro-
structural details, where the microscale and macroscale response are completely
coupled by treating the full model. Giannakoglou et al. present adjoint methods for
the computation of the first- and higher-order derivatives of objective functions
used in optimization problems governed by the Navier–Stokes equations in aero/
hydrodynamics. Gogarty and Pasini present a 2D hierarchical topology optimiza-
tion scheme aiming to design a cellular scaffold that optimally reconciles bone
resorption and permeability, two antagonist objectives of bone tissue scaffolds.
Gandomi et al. study the method of evolutionary boundary constraint handling that
is very easy to implement and very effective. In particular, they intended to improve
the optimization results by means of evolutionary boundary constraint handling
scheme on slope stability optimization problem. Talgorn et al. present different
formulations for the surrogate problem considered at each search step of the mesh
adaptive direct search algorithm using a surrogate management framework. Bekas
et al. aim to couple the problem of structural optimization of building frames, with
that of the optimization of design options for their energy efficiency. Bekdaş and
Nigdeli in their work iteratively search to find the flexural moment capacity of
columns under axial loading. Waycaster et al. propose a framework for under-
standing the types of interactions that may take place and their effect on design
optimization formulation by means of game theory. These effects were considered
as an economic uncertainty that arises due to limited information about interactions
between stakeholders. Antoni and Giannessi present a new approach for handling
bilevel multi-objective problems. The advantage of this new approach consists
of the following characteristics, for solving the upper level, it does not require to
know explicitly the lower level. Georgioudakis et al. integrated the extended finite
element into a shape design optimization framework aiming to improve the service
life of structural components subject to fatigue. Charmpis and Dimitriou developed
an optimal budget allocation framework and stress-tested for the optimal scheduling
of a bridges upgrading program. A suitable test case is developed for performing in-
depth analysis that takes into consideration the most important features involved.

The editors of the volume would like to express their deepest gratitude to all the
contributors for their most valuable support during the preparation of this volume,
for their time and effort devoted to the completion of their contributions, and for
their expert help in the reviewing process. We are also grateful to all the colleagues
who, although they did not contribute chapters to the volume, were kind enough to
offer their expert help during the reviewing process. Finally, we would also like to
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thank all the personnel of Springer Publishers, especially Johanna F.A. Pot
(Editorial Assistant in Engineering) and Nathalie Jacobs (Senior Publishing Editor
in Engineering), for their most valuable continuous support with the publication of
this volume.

March 2015 Nikos D. Lagaros
Manolis Papadrakakis
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Motorway Traffic Flow Optimisation
in Presence of Vehicle Automation
and Communication Systems

Claudio Roncoli, Markos Papageorgiou and Ioannis Papamichail

Abstract This paper describes a novel approach for defining optimal strategies in
motorway traffic flow control, considering that a portion of vehicles are equipped
with Vehicle Automation and Communication Systems (VACS). An optimisation
problem, formulated as a convexQuadratic Programming (QP) problem, is developed
with the purpose of minimising traffic congestion. The proposed problem is based
on a first-order macroscopic traffic flow model able to capture the lane changing and
the capacity drop phenomena. An application example demonstrates the achievable
improvements if the vehicles travelling on themotorway are influenced by the control
actions computed as a solution of the optimisation problem.

1 Introduction

The mitigation of traffic congestion on motorway systems is a useful but complex
task that could generate significant economical and environmental advantages for the
modern society. As a matter of fact, motorways, particularly in and around metropol-
itan areas, suffer from congestion for long periods during every day and, ironically,
the major congestion and related infrastructure degradation appear during the period
of maximum traffic demand. Despite the huge improvements achieved in Informa-
tion Technology during the last decades, a smart and widespread application of these
technologies to alleviate traffic congestion is still not fully achieved.

On the other hand, there has been an enormous interdisciplinary effort by the
automotive industry as well as by numerous research institutions around the world
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Dynamic Systems and Simulation Laboratory, Technical University of Crete,
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2 C. Roncoli et al.

to plan, develop, test, and start deploying a variety of Vehicle Automation and
Communication Systems (VACS) that are expected to revolutionise the features and
capabilities of individual vehicles within the next decades. Several research works
were realised in the past, sometimes foreseeing future scenarios where self-driving
vehicles are part of a completely connected road infrastructure. The seminal work
[13] introduced the concept of highly automated Intelligent Vehicle Highway System
(Smart-IVHS), introducing a possible hierarchical control structure with the purpose
of increasing highway capacity and safety. The authors defined simple policies for
prescribing and regulating lane-changing policies and desired speeds in an intercon-
nected control system. Further studies exploited the concept of Automated Highway
System (AHS), defining a set of layers and developing control strategies for each
one of them. In this context, an interesting work was presented in [9], where the
authors analysed specifically the link-layer control problem and proposed a control
law for the stabilisation of traffic conditions. It must be highlighted that the con-
cept of platooning (i.e. the organisation of vehicles into closely spaced groups) is
often considered as a good approach, capable of increasing the motorway capacity
and reducing instability. Another interesting research work is described in [6]; the
authors defined a model based on linear programming for assigning traffic to lanes.
TheAHSwasmodelled as a static trip-basedmulti-commodity network, in which the
objective was to maximise the total outflow subject to predetermined O/D patterns.

It is a common opinion that an extensive use of VACS will cause an improvement
of traffic conditions, however a lot of effort is required in order to define models and
strategies that could generate the expected enhancement. In this paper, it is assumed
that the use of VACS permits to exploit new control actions, allowing to achieve
higher improvement of traffic conditions.

The paper is written according to the following structure: in Sect. 2, the proposed
traffic flow model is described, whereas Sect. 3 presents the formulation of the opti-
misation problem. In Sect. 4, the proposed problem is applied to an example network,
stating the obtained improvements and highlighting some aspects to be considered
for practical purposes. Section5 concludes the paper and proposes possible future
extensions.

2 A Traffic Flow Model for Multiple-Lane Motorways

2.1 Multiple-Lane Traffic Flow Models

The motorway traffic flow models that are commonly studied in literature (e.g., the
Cell TransmissionModel-CTM [2] andMETANET [11]) take into account aggregate
dynamics for all the lanes of each modelled motorway stretch. This simplification is
reasonable formost of the control purposes since the control actions normally involve
all the lanes together. However, having vehicles equipped with intelligent devices
creates the possibility of defining more customised control strategies (e.g. assigning
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to each equipped vehicle corresponding tasks to be performed). For this reason, the
proposedmodel is defined considering the lanes of themotorway network as different
entities, characterised by their own state and control variables while developing the
dynamic equations.

Only a few works on multiple-lane motorways have been carried out in past
research. In the first main work [4], it is assumed that lane densities on a multi-lane
highway oscillate around an equilibrium density; the authors developed a method-
ology to attenuate the disturbances and tried to increase the stability of the system.
That work inspired the authors of [10], that proposed three models for capturing
the lane changing behaviour. The first model is a continuum model based on the
assumption that vehicles change lanes according to the difference of the deviations
of their densities from equilibrium values. The second model extends the first one,
taking also into account acceleration and inertia effects, obtaining a second-order
model. A third extension is also proposed, considering also the street width. How-
ever, these models were formulated without applying any discretisation scheme. In
the more recent work [7], the authors exploited the kinematic wave (KW) theory,
proposing a multi-lane KW-based model as a first module of a more complex model
that considers also moving blockages treated as particles characterised by bounded
acceleration rates; lane changings are assigned according to the difference of mean
speed between two adjacent lanes.

2.2 Model Formulation

The multiple-lane motorway is represented introducing the indices j = 1, . . . , J
for lanes and i = 1, . . . , I for segments. The simulation time t = kT is defined
considering the discrete time step T and the simulation index k = 1, . . . , K , where
K defines the simulation horizon. The motorway is spatially subdivided introducing
the segment-lane entities (see Fig. 1), characterised by the following variables:

• the density ρi, j (k) [veh/km], i.e. the number of vehicles in the segment i , lane j ,
at time step k, divided by the segment length Li ;

Fig. 1 The segment-lane variables used in the model formulation
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• the longitudinal flow qi, j (k) [veh/h], i.e. the traffic volume leaving segment i and
entering segment i + 1 during time interval (k, k + 1], remaining in lane j ;

• the lateral flow fi, j, j̄ (k) [veh/h] ( j̄ = j ± 1), i.e. the traffic volume moving from

lane j to lane j̄ (vehicles changing lane remain in the same segment during the
current time interval); and

• the demand flow Di, j (k) [veh/h], i.e. the flow entering from the on-ramp located
at segment i , lane j , during the time interval (k, k + 1].
The off-ramp flow is determined as a percentage of the total flow passing through

all the lanes of the segment, defined by the given turning rates γi, j (k):

qof f
i, j (k) = γi, j (k)

J∑

j=1

qi, j (k). (1)

The following conservation equation is introduced, defining the dynamics of traffic
density ρi, j (k):

ρi, j (k + 1) = ρi, j (k) + T

Li

[
qi−1, j (k) + Di, j (k) − qi, j (k) − qof f

i, j (k)

+ fi, j+1, j (k) + fi, j−1, j (k) − fi, j, j−1(k) − fi, j, j+1(k)
]
. (2)

In order to ensure numerical stability, the time step T must be selected so as to
respect the Courant-Friedrichs-Lewy (CFL) condition [1]:

T ≤ min
i, j

Li

v f ree
i, j

(3)

where v f ree
i, j is the free speed defined for segment i , lane j .

The next modelling issue to address is the specification of bounds for the longitu-
dinal flow. The starting basis for this is the well-known CTM [2, 3], that nevertheless
does not take into account the capacity drop phenomenon, i.e. the reduction of dis-
charge flow once a congestion is formed. The reasons for this phenomenon are not
exactly known, however it seems to be caused by the limited acceleration of vehicles
while exiting a congested area. In second-order models, such asMETANET [11], the
capacity drop is generated by the equations describing the spatiotemporal evolution
of speed. This option is not available for first-order LWR models, and, in order to
overcome this shortcoming, several attempts have been made. The chosen approach
is based on [8], where the problem is addressed by imposing an upper bound to
the acceleration depending on the traffic phase, distinguishing between LWR and
maximum acceleration. The proposed modelling approach, that is represented only
by (piecewise) linear equations, is thus represented by a modification of the demand
part of the Fundamental Diagram (FD) in the following way: in case of conges-
tion (ρi, j (k) > ρcr

i, j , where ρcr
i, j is the critical density), the demand flow is linearly
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Demand part

Supply part

Fig. 2 Graphical representation of the proposed Fundamental Diagram

decreased according to a fixed slope −w′. This leads to a flow q jam
i, j that is allowed

to leave a segment in a completely congested state (ρi, j (k) = ρ
jam
i, j ). A graphical

representation of the proposed FD is depicted in Fig. 2. A more extensive description
of the macroscopic model can be found in [14].

3 The Optimisation Problem

The model described in Sect. 2 is exploited for the formulation of an optimisation
problem with the aim of improving the motorway conditions by reducing traffic
congestion. It is supposed that the following control actions are utilised:

• Ramp Metering (RM) is currently applied on many motorways (see e.g. [12]) and
does not necessarily require any additional equipment to be performed.

• Mainstream Traffic Flow Control (MTFC) via Variable Speed Limits (VSL): it is
assumed that the exiting flows (and consequently the speeds) are controlled for
each segment-lane; thus all equipped vehicles travelling on a segment-lane will
receive and apply the respective speed as a speed limit. For a sufficient penetration
of equipped vehicles, this will result in the observance of the speed limit by non-
equipped vehicles as well.

• Lane-Changing Control: the optimal lateral flows are computed for each segment-
lane, but the implementation of this control action is more cumbersome and uncer-
tain than the previous two, unless all vehicles are under full guidance by the control
center; in this latter case, it is not difficult to implement the control action by send-
ing lane-changing orders to an appropriate number of vehicles. In all other cases, an
intermediate algorithm should decide on the number and ID of equipped vehicles
that should receive a lane-changing advice, taking into account the compliance
rate and the spontaneous lane-changings; the latter may be reduced by involv-
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ing additional “keep-lane” advice to other vehicles. These issues are currently in
course of investigation and development.

Since RM actions are applied, the following variables are added considering the
creation of queues at on-ramps:

• the queue length wi, j (k) [veh], i.e. the number of vehicles queuing at on-ramp
located in segment i , lane j , at time step k; each queue is characterised by a
maximum length wmax

i, j ;
• the on-ramp flow ri, j (k) [veh/h], as the flow entering the network, leaving the
queue generated in segment i , lane j , during the time interval (k, k + 1]; this
variable replaces the demand flow Di, j (k) in (2);

• the extra-queue length Wi, j (k) [veh], that represents an additional state variable
considering vehicles that cannot enter the queue because it has reached its maxi-
mum length; the introduction of this variable permits to avoid the infeasibility of
the optimisation problem in scenarios with very high demand; and

• the flow di, j (k) [veh/h], i.e. the demand flow that is capable to enter the real queue;
therefore in case the maximum size is not reached, it results di, j (k) = Di, j (k).

The problem is formalised as a convex Quadratic Program (QP), characterised
by a convex quadratic cost function and uniquely linear constraints, allowing its
application also for large networks.

min
ρ, w, W,
q, r, f

Z = T
K∑

k=1

I∑

i=1

J∑

j=1

[
Li ρi, j (k) + wi, j (k)

]

+ M
K∑

k=1

I∑

i=1

J∑

j=1

Wi, j (k)

+
K∑

k=1

I∑

i=1

J∑

j=1

[
βi, j, j−1 fi, j, j−1(k) + βi, j, j+1 fi, j, j+1(k)

]

+ λr
K∑

k=2

I∑

i=1

J∑

j=1

[
ri, j (k) − ri, j (k − 1)

]2

+ λ f
K∑

k=2

I∑

i=1

{ J∑

j=2

[
fi, j, j−1(k) − fi, j, j−1(k − 1)

]2

+
J−1∑

j=1

[
fi, j, j+1(k) − fi, j, j+1(k − 1)

]2}

+ λst
K∑

k=2

I∑

i=1

J∑

j=1

{
qi, j (k) − qi, j (k − 1) + v f ree

[
ρi, j (k) + ρi, j (k − 1)

]}2

(
ρcr

i, j

)2

+ λsl
K∑

k=1

I∑

i=2

J∑

j=1

{
qi, j (k) − qi−1, j (k) + v f ree

[
ρi, j (k) + ρi−1, j (k)

]}2

(
ρcr

i, j

)2 (4)
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Subject to:

ρi, j (k + 1) = ρi, j (k) + T

Li

[
qi−1, j (k) + ri, j (k) − qi, j (k) − qof f

i, j (k)

+ fi, j+1, j (k) + fi, j−1, j (k) − fi, j, j−1(k) − fi, j, j+1(k)
]

(5)

wi, j (k + 1) = wi, j (k) + T
[
di, j (k) − ri, j (k)

]
(6)

Wi, j (k + 1) = Wi, j (k) + T
[
Di, j (k) − di, j (k)

]
(7)

qi, j (k) ≤ v f ree
i, j ρi, j (k) (8)

qi, j (k) ≤
v f ree

i, j ρcr
i, j − q jam

i, j

ρ
jam
i, j − ρcr

i, j

ρi, j (k) +
ρcr

i, j

(
v f ree

i, j ρ
jam
i, j − ρ

jam
i, j

)

ρ
jam
i, j − ρcr

i, j

(9)

qi, j (k) ≤ v f ree
i+1, j ρ

cr
i+1, j (10)

qi, j (k) ≤ −
v f ree

i+1, j ρ
cr
i+1, j

ρ
jam
i+1, j − ρcr

i+1, j

ρi+1, j (k) +
v f ree

i+1, j ρ
cr
i+1, j ρ

jam
i+1, j

ρ
jam
i+1, j − ρcr

i+1, j

(11)

[
fi, j, j−1(k) + fi, j, j+1(k)

] ≤ Li

T
ρi, j (k) (12)

[
fi, j−1, j (k) + fi, j+1, j (k)

] ≤ Li

T

[
ρ

jam
i, j − ρi, j (k)

]
(13)

fi, j, j−1(k) ≤ f max , fi, j, j+1(k) ≤ f max (14)

ρi, j (k) ≤ ρ
jam
i, j , wi, j (k) ≤ wmax

i, j , ri, j (k) ≤ rmax
i, j (15)

The cost function (4) to be minimised is composed by various terms:

• the first and most important one is the Total Time Spent (TTS), that considers the
overall time spent by vehicles both travelling and queuing at the on-ramps;

• the other linear terms are penalty terms defined with the purpose of reducing extra
queues and lateral flows; and

• the quadratic terms are introduced in order to penalise time and space oscillations
in the control values: ramp outflow, lateral movements, and the speed values;
as a matter of fact, the last two terms represent a linearisation of the non-linear
constraints that consider speed variation; these oscillations are penalised with
respect to time and to space.

The first set of constraints represents the dynamics for the densities (5), that
derives from (2), however replacing the external demand with the on-ramp flow;
for the queues generated at on-ramps because of the RM actions (6); and for the
extra-queues (7).

The following set of constraints corresponds to the FD described in Sect. 2, result-
ing in two equations for the demand term (8, 9) and two equations for the supply
term (10, 11); it is important to highlight that, having the possibility of controlling the
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flow (and indirectly the speed) of vehicles, the constraints could simply be described
by linear inequalities that represent upper-bounds for the segment outflow.

The third set of constraints is related to the lateral flows. In this case, they appear
only in the form of upper-bounds, representing the available vehicles (12) and the
available space (13), allowing the optimiser to assign the best lateral flow.

The last set of constraints contains the upper-bounds for lateral flows (14), den-
sities, on-ramp queues, and ramp flows (15).

4 Application Example

In order to evaluate and illustrate the potential improvements that could be obtained
by applying the described methodology, a stretch of the motorway A20 from Rotter-
dam to Gouda, the Netherlands, taken from [17], is used. The topological character-
istics of this network (lane-drops, on-ramps and off-ramps) make it a very interesting
test-bed for evaluating the results of the proposed optimisation problem.

The stretch, about 12km in length, is subdivided into 27 segments of 450m in
average, as shown in Fig. 3. The time step is set to T = 15s. The lanes are numbered
j = 1, . . . , 4 from the inner lane (close to the roadside) to the outer lane (close to
the road median).

It is supposed that both the densities and ramp queues are initialised to 0 at the
beginning of the simulation. All links have the same characteristic values: the critical
density is set to ρcr

i, j = 22veh/km, the jam density is set to ρ
jam
i, j = 180veh/km, the

maximum speed is vmax
i, j = 100km/h, and the maximum flow at jam density is

q jam
i, j = 1467.4veh/h (obtained by setting a slope w′ = w/3). The exit rates at
off-ramps are set as follows: γ2,1(k) = 0.2, γ8,2(k) = 0.0085, γ14,2(k) = 0.3, and
γ19,2(k) = 0.2, for all k = 1, . . . , K .

A significant aspect is the tuning of the cost function weights: once a proper
value of M is determined in order to avoid extra-queues (in this case, M = 10),
the tuning procedure is focused on keeping virtually the same TTS while, at the
same time, trying to obtain reduced lateral flows and smooth control actions. For the
linear penalty term related to lateral flow, an important aspect is also related to the
locations of these control actions. In locations where strong lateral flow actions are

Fig. 3 The A20 motorway stretch from Rotterdam to Gouda used to test the proposed approach
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Table 1 Comparison of computation time with respect to the optimisation horizon (and conse-
quently the size of the optimisation problem)

Optimisation
horizon (min)

Number of
variables

Number of
equalities

Number of
inequalities

Computation
time (s)

60 206820 77760 308880 ∼20

45 154980 58320 96660 ∼13

30 103340 38880 64260 ∼7

expected (e.g. at lane-drops and on-ramps), vehicles are encouraged to change lane
in the segment immediately upstream by setting the weight βi, j, j̄ = 0; in all other
segments, the values are set to βi, j, j̄ = 0.01. As a last step, the weigh parameters of

quadratic terms were tuned, obtaining the following values: λ f = 10−5, λr = 10−7,
λst = 10−5, and λsl = 10−6.

For the resolution of the optimisation problem the solver Gurobi [5] has been
utilised, choosing a barrier method algorithm for QP solving. Despite the consider-
able size of the optimisation problem that is obtained even for small networks, the
solution is achieved in a reasonable time. In fact, as it is shown in Table1, setting
an optimisation horizon of 45min or less, the solution is achieved in a computation
time that is smaller than the simulation step, making this approach feasible also for
real-time control, e.g. using this problem as a module in a Model Predictive Control
(MPC) framework, as proposed in [16].

In order to highlight the computed control actions, the following example is exam-
ined considering an optimisation horizon of 60 minutes. The utilised demand profile
is shown in Fig. 4, where the reduced entering flows during the last 20min represent
a cool down period that will ensure the dissolution of any congestion at the end of
the simulation.

It should be highlighted that, thanks to the realistic modelling of the motorway
traffic and the inherent intelligence of optimisation algorithms, the optimisation prob-
lem solution leads automatically to a plethora of complex, interrelated, and highly
efficient control actions that have to be unveiled via careful observation, analysis,
and interpretation of the obtained solution. A guiding principle while analysing the
obtained optimal results is the attempt to maximise the flows at bottlenecks, i.e. at
on-ramp merge segments and at the lane-drop segment. Bottleneck flow would be
reduced if the corresponding merge segment density becomes overcritical, leading to
reduced outflow due to capacity drop according to Fig. 2; maximum bottleneck flow
is achieved if the density of themerge segment ismaintained at its critical value. If the
overall upstream and on-ramp demand can be accommodated via appropriate lane
assignments, corresponding lane changing orders are produced to avoid any over-
critical densities. On the other hand, if the demand exceeds the bottleneck capacity,
this may call for holding back traffic at the on-ramp, via appropriately timed and
sized RM actions; and, if the on-ramp storage is not sufficient, additional MTFC
actions may be needed to also hold back traffic upstream of the bottleneck. In other
words, unavoidable (due to high demand) queueing, congestion, and delays need to
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Fig. 4 Demand profiles at on-ramps; “Gas station” is omitted due to the very low entering flow (a
maximum value of 30veh/h)

be placed intelligently in space and time, so as to maximise throughput and hence
efficiency of the traffic system. The following specific actions could be identified in
the optimal control solution:

• Whenever the all-lanes segment capacity is sufficient to accommodate the flow
entering at the on-ramp, the required space at the merge segment is created by
assigning inward lateral flow actions just upstream of the on-ramp merge area.
This happens at on-ramp “Prins Alexander”, as depicted in Fig. 5. It is interesting
to highlight that these lane-changing actions lead to achieve the maximum flow at
merging segment 6 (that includes also the flow entering from the on-ramp “Prins
Alexander”). Since the lateral movements are performed in the upstream segment,
it is also worthwhile to point out that the phenomenon of having vehicles entering
the motorway and changing lane in the same segment is avoided, as it is visible in
Fig. 5f.

• In the lane-drop area of segment 14, the space for vehicles that have to change
lane is created through some MTFC actions in the upstream segments, as shown
in Fig. 6, thus avoiding an excessive increase of density and excessive vehicle
movements at the segment of the lane-drop.
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Fig. 5 A potential congestion forming at the merge area “Prins Alexander” (segment 6) is avoided
by creating some “space” in lane 2 (shoulder lane) for traffic entering from the on-ramp, as can
be seen from the density plot (a) and the corresponding flow (c). This is achieved by assigning
lateral flow from lane 2 to lane 3 (e); in contrast, no lane-changes are ordered at the merge segment
(f). After vehicles have entered from the on-ramp, the flow reaches its capacity value (d), and the
density is at the critical value (b)

• In case the demand flow is higher than the segment overall capacity, RM and VSL
actions are jointly applied, allowing to maintain capacity flow and to avoid any
speed breakdown. These actions appear both at the on-ramp “Nieuwerkerk a/d
IJssel” (see Fig. 7) and “Moordrecht” (see Fig. 8).
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Fig. 6 At the lane-drop area (segment 14), the space necessary for vehicles moving from lane 4 to
lane 3, is created performing VSL actions in the upstream segment (e); this leads to an increase of
density (a) but also to the reduction of the corresponding flow (c); these actions permit to achieve
the critical density (b), and, consequently, the capacity flow (d) at segment 13

It is interesting to point out that MTFC actions are performed only in the lanes which
face a capacity problem due to merging, i.e. lane 2 for all on-ramps and lane 3 for the
lane-drop location; whereas in the other lanes the flow (and consequently the speed)
remains constantly at the maximum value. In addition, some minor VSL actions are
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Fig. 7 At the “Nieuwerkerk a/d IJssel” on-ramp, strong RM actions are performed leading to
maximum ramp queue length over an extended period of time (g). As soon as the ramp queue
reaches its maximum value (at t = 15 min), MTFC via VSL (e) is activated in the upstream
segment to limit the mainstream slow that enters the merge area (c). This leads to an upstream
congestion (a), but enables to obtain the critical density (b) and the capacity flow (d) at the merge
area, while the speed continues to be high (f)
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Fig. 8 Similarly to the case illustrated in Fig. 7, also at the “Moordrecht” on-ramp, a combined
use of RM (g) and MTFC via VSL (c, e) is performed, achieving again flow maximisation (d) and
critical density (b) at segment 22
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Fig. 9 The contour plots show the decrease of speed due to MTFC actions in the proximity of
on-ramps, appearing only during the period of higher demand

taken in order to help vehicles that are changing lanes in proximity of the on- and
off-ramps, as well as because of the lane drop. Space-time contour plots of speeds are
displayed in Fig. 9. The visible congestion areas are unavoidable due to high demand
(exceeding capacity), but are placed optimally (in space and time) for maximum
throughput.

Interested readers may consult [15] for optimal control results obtained with the
same methodology, but for a different (real) motorway infrastructure that features
partly different phenomena and control actions.

5 Conclusions

The paper describes a novelmultiple-lane traffic flowmodel onwhich an optimisation
problem is based. The model includes some simplifications that have allowed to
obtain a QP with only linear constraints. The low required computation time makes
thismethodology suitable for real-time applications, aswell as usable in a hierarchical
control approach. The exploitation of this work as the optimisation module in aMPC
scheme is the subject of ongoing research activities [16]. However, in order to make
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possible to implement this strategy also in case of mixed traffic (that contains both
vehicles equipped with VACS and traditional ones), the design of an appropriate
hierarchical control structure seems to be necessary.
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Characterizing Urban Dynamics Using
Large Scale Taxicab Data

Xinwu Qian, Xianyuan Zhan and Satish V. Ukkusuri

Abstract Understanding urban dynamics is of fundamental importance for the
efficient operation and sustainable development of large cities. In this paper, we
present a comprehensive study on characterizing urban dynamics using the large
scale taxi data in New York City. The pick-up and drop-off locations are firstly ana-
lyzed separately to reveal the general trip pattern across the city and the existence of
unbalanced trips. The inherent similarities among taxi trips are further investigated
using the two-step clustering algorithm. It builds up the relationship among detached
areas in terms of land use types, travel distances and departure time.Moreover, human
mobility pattern are inferred from the taxi trip displacements and is found to follow
two stages: an exponential distribution with short trips and a truncated power law
distribution for longer trips. The result indicates that the taxi trip may not fully rep-
resent human mobility and is heavily affected by trip expenses and the urban form
and geography.

1 Introduction

The rapid urbanization process gives birth to megacities cities such as Tokyo, Shang-
hai and New York City (NYC). Not only are megacities big in terms of population
density, they also bring up unprecedented opportunities and challenges. With large
population density and tremendous human activities, one critical challenge is how to
manage the giant urban system efficiently and sustainably. Urban dynamics repre-
sents the spatiotemporal principles followed by urban functioning evolvements [21].
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Understanding urban dynamics helps to capture the pulse of urban activities, which
undoubtedly provides a huge step forward to address the problem.

In the past few decades, efforts have been made in modeling and simulating urban
dynamics using data from transportation systems [1, 2, 8, 9]. However, the inher-
ent complexity such as random behavior and the impact of geographical boundary
can hardly be described properly using mathematical models. In the era of big data,
we are widely exposed to various data sources and data-driven methods start to
gain popularities. Compared with traditional data collected from surveys and ques-
tionnaires, the pervasive computing devices are able to collect abundant data in an
efficient and accurate manner. Moreover, the digital footprints from mobile sensors
such as GPS device and cellular mobile provides an opportunity to learn in-depth
fundaments of humanmobility. Several pioneering studies have implemented various
data sources to reveal urban activity participation and individual mobility patterns
[4, 7, 18, 19]. A case study in Milan discovered the urban spatiotemporal varia-
tions of activity intensity [18]. The intensity of activity locations is further used to
locate hot spots and identify city structure by analyzing spatiotemporal signatures
of Erlang data, which is a measurement of network bandwidth [19]. Gonzlez et al.
revealed a highly regulated human mobility pattern [7] from 100,000 mobile phone
users trajectories, and Calabrese et al. established a multivariate regression model
to predict daily human mobility [4]. Hasan et al. [10] examined both aggregate and
individual activity patterns from social media check-in data. Brockmann et al. [3]
studied the distance of human travel from the distribution of bank notes. They found
that distance distribution follows a power law and can be well approximated using
continuous-time random walk.

In large cities, public transportation is the direct carrier of urban life and taxicab
is an indispensable component of it. As of 2007, 10% of total passenger volume are
served by 18,000 taxicabs in Hong Kong [23]. By the end of 2012, 55,000 of taxis
transport 1.5 million passengers daily [15]. Equipped with GPS devices, the taxi
trip data enjoys the merit of sufficient temporal and spatial coverage due to the large
passenger volume and 24-7 operation hours. Therefore, it is an advantageous data
source for urban studies and has already received great attentions from researches.
The pick-up and drop-off locations are processed with data mining and clustering
algorithms to reveal urban activity patterns such as hotspots information for taxi
drivers [5, 12, 24] and land use inference [14, 16]. However, urban dynamics are
merely understood on the surface if pick-up/drop-off locations are only analyzed
separately. Taxicab provides door-to-door service and is often used as a non-stop
transportation tool. Therefore, the joint analysis of pick-up and drop-off location
builds up a direct bridge between origin and destination and can aggregately reveal
the underlying connections among detached urban places. Moreover, since each taxi
trip is a form of human movement, the taxi trip data is also analyzed to disclose the
uniformity of human mobility in large cities [11, 13, 17]. However, result discrep-
ancies result are observed among very limited works. As a special case of human
mobility, the displacement of taxi trips is restrained by the trip expenses and more
importantly, the functionality structure of a city. Therefore the relationship between
taxi trips and human mobility requires further investigation. In this paper, we make
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a comprehensive use of the large scale taxi trip data and present the study on urban
dynamics pattern in NYC from three aspects. First, the spatiotemporal pattern of
urban activities is examined from trip dynamics by aggregating pick-up and drop-
off locations. Secondly, we explore the inherent similarities among taxi trips and
reveal the underlying connections among detached places using two-step clustering
algorithms. In the end, we investigate the relationship between the taxi trips and
uniformity of human mobility.

The rest of the paper is organized as follows. Section 2 gives an overview of the
data and Sect. 3 analyzes the demand pattern of overall study area and several hot
spots. Then the similarity among different trips is captured and the mobility pattern
of taxicabs is presented. Conclusions and limitations are discussed in the final part.

2 Data

The taxi trip data used in this research is collected by New York City Taxi & Limou-
sineCommission (NYCTLC) fromDecember, 2008 to January, 2010.About 300,000
to 500,000 daily trips are recorded during the time and an overview of the annual trip
distribution in 2009 is given in Fig. 1. A repeated and stable pattern is observed for
weekly trips over the year and drastic drops are detected on holidays such as Thanks
Giving and Christmas. Approximately 300,000 to 500,000 daily trips are recorded
during the study period.

Fig. 1 Annual daily distribution of taxi trips
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Table 1 Taxi data statistics

Date Number of trips recorded Number of trips after cleaning

10.5.2009 431,828 428,553

10.6.2009 467,649 464,273

10.7.2009 492,914 488,895

10.8.2009 517,079 512,781

10.9.2009 536,039 531,965

10.10.2009 532,179 528,032

10.11.2009 454,573 451,059

The dataset contains complete trip information, including the pick-up and drop-off
timestamps and locations, the number of passengers onboard, the travel distance and
the trip expense. Detailed trip trajectories are not available due to privacy concerns.

In addition to taxi data, census tract geography and land use information are also
introduced in the analysis. The census tracts are extracted from the census tract area
file provide in TRANSCAD. There are 2,211 census tracts within the study area,
which cover Manhattan, Bronx, Queens, Brooklyn, Long Island, and a small portion
of New Jersey. The land use map implemented in the study is obtained from New
York City Department of City Planning (NYCDCP), which divides the city into three
fundamental zoning districts: commercial (C), residential (R) and manufacturing
(M). The three types are further categorized from low density to high density.

The taxi trip data fromOctober 5th–11th are processed for further analysis, where
nomajor social events were recorded during the period. The statistics of the oneweek
data is presented in Table1. Erroneous trip records are firstly removed, such as trips
with zero travel distance or fare less than the initial price. Then all pick-up and drop-
off locations are coupled with geography map to eliminate trips outside the study
area. Finally, the remaining trips in the dataset are viewed as qualified and tagged
with the overlaid census tract ID and land use type.

3 Trip Dynamics

3.1 Overall Pattern

In this section, patterns of urban activity participation are examined from the arrival
and departure dynamics of taxi trips. NYC is one of the busiest cities in the world.
Around 5.7 million passengers moving around the city during the study period,
generating more than 3.4 million taxi trips. The pick-up and drop-off location of all
trips are aggregated at the census tract level based on the geographical coordinates
and the overall geographical distributions of taxi trips are visualized in Fig. 2.
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Fig. 2 Aggregated weekly density plot

The most appealing observation is that both trip origins and trip destinations
exhibit highly centralized distribution towards Manhattan area. The result is not
surprising since Manhattan serves as the business center of NYC. The number of
trips decreases significantly with the increase of the distance to the city center, which
reflects the typical sprawl of urban forms. While most places far from Manhattan
have very low amount of trips, patterns at LaGuardia airport (LGA) and John F.
Kennedy international airport (JFK) are entirely different. Approximately 90% of
total trips are associated with Manhattan area. While majority of the trips congregate
at midtownManhattan and lower Manhattan, the upper Manhattan area is apparently
less preferred by both passengers and drivers.

3.2 Hot Spots

Hot spots refer to the most frequent visited places in a city and usually have great
activity intensity. The analysis of hotspots dynamics helps to understand the urban
functionality in depth. By ranking total trip frequencies, most popular places are
identified and five specific tracts are selected which cover the LGA, JFK, Penn Sta-
tion, Central Park and the Fifth Avenue (the segment between 49th street and 56th
street). Each individual hotspot has indispensable functionality including transporta-
tion terminals (with different purposes), recreational place and commercial area. To
analyze the dynamics at hotspots, the temporal patterns across the week are plotted
in Fig. 3. Penn Station and Madison Square Garden locate in the census tract where
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Fig. 3 Weekly trip pattern at hotspots x-axis is the time horizon and y-axis represents the number
of trips a LaGuardia Airport, b JFK Airport, c Pen Station, d Central Park, e 5th Avenue
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the greatest number of taxi trips are generated. Penn Station is not only the terminal
for Amtrak trains, it also serves as the connection station for multiple subway lines.
According to themorning arrival (trip origin) and evening departure (trip destination)
peaks in weekdays, taxicab is very likely to function as the last and first mile trans-
portation. Over the weekend, most arrivals and departures take place within daytime
and at night. The pattern coincides with the functionality ofMadison Square Garden,
which is an entertainment place and is surrounded by many hotels.

Trip patterns at airports are distinct from that in central part. For both airports,
while arrival curves are comparatively smooth, departure curves are observed to be
noisy due to the periodical entry of flights. Besides, the intrinsic differences between
the two airports are also disclosed from trip dynamics. Due to the effect of travel
distance, the trip amount at JFK is significant lower than that at LGA. Secondly, since
LGA are mainly used for domestic flights, the apparent morning peaks for flight
arrivals during weekdays and the drop of trip amount on weekends. Moreover, as an
airport mainly for international flights, JFK has more arrivals in the afternoon and
the pattern is surprisingly consistent over the week. The result suggests that, during
the week, the trip purpose is stable for international flights but varying significantly
for domestic flights.

The Central Park is a recreational place. It occupies a larger area compared with
other census tracts which contributes to its trip frequency. The comparison of trip
dynamics between at the Central Park and at the Fifth Avenue perfectly interprets the
functionality of corresponding land use attributes. The Fifth Avenue is a remarkable
business street at midtown Manhattan and morning taxi arrival and evening taxi
departure peaks are unsurprisingly retrieved. Reversely, due to the large portion of
residential areas around the Central Park, most departures take place in the morning
and majority of taxi arrivals are observed during evening rush hours.

3.3 Unbalanced Taxi Trip

Except for being able to capture activity dynamics at hotspots, the data also carries
implicit yet significant insights such as the existence of unbalanced taxi trip. The
number of taxi trips is closely associated with the level of economic development
and the variation of urban functionality. Due to concerns such as trip margins and
safety issues, taxi drivers usually have their preferred destinations, which eventually
leads to the geographical discrimination. For example, taxi drivers may be unwilling
to make trips to destinations where it is hardly possible to find potential passengers.
The second type of unbalanced taxi trips is usually caused by sudden fluctuations in
passenger demand.While the supply of taxis is fixed, the influx of commuters during
peak hours makes it extremely hard to hail a vacant taxi.
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Fig. 4 Inward/outward-manhattan unbalanced trips a Weekday, b Weekend

From the overall spatial distribution, we observe a tremendous centrality of taxi
trips at the developed Manhattan area. The great trip density suggests the easiness
of finding passengers in Manhattan and stickiness of drivers to Manhattan area. As a
result, we start looking into phenomenon and plot the temporal distributions for trips
inwards and outwards Manhattan in Fig. 4. During daytime, the overall pattern for
inward and outward trips turns out to be stable and balanced. However, when time
goes to late night, we surprisingly witness an enormous gap: the highest amount
of outward trips and the lowest amount of inward trips take place simultaneously.
People may stay at Manhattan very late for entertainments and relaxations, while
buses and metros having a reduced accessibility at the time. As taxi becomes very
popular at a late time, drivers may refuse to leave Manhattan as they have to run the
risk of returning empty. Hence, the unbalanced trip pattern implies the existence of
geographical discrimination and a reduced level of service for taxi industry.

In order to reveal the unbalanced condition inbound Manhattan, we extract only
weekday trips and spatial distributions of trip origins and destinations are presented
in Fig. 5. Three typical time intervals are selected which cover off-peaks andmorning
and evening rush hours. Both morning peak and evening peak display eminent differ-
ences between trip origins and destinations and their patterns appear to be symmetric.
Moreover, trips are found to be unbalanced with notable geographic characteristics.
The northeastern part of midtown Manhattan is a large residential area and the mid-
town is mainly covered by commercial floors. As a result, most taxi trips inflow into
midtown during morning peak and dissipate from the center area in the evening.

The existence of unbalanced taxi trips suggests an imminent need of designing
policies to mitigate negative impacts. An additional fee can be charged or a subsidy
can be assigned for trips outward Manhattan only after midnight as taxi drives are
less likely to leaveManhattan at that time.Moreover, sincemorning and evening trips
have distinct origins and destinations, the shuttle service following the direction of
human migration should be to be effective. It can narrow the demand-supply gap of
taxi service and reduce congestion at the same time.
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Fig. 5 Trip density plot inbound manhattan density increases from blue to red

4 Trip Classification

4.1 Clustering Algorithm

It is recognized that dynamics of trip origins and destinations are largely influenced
by the geographical location, land use pattern and functionality of a particular place.
Moreover, unlike other public transportation modes, the door-to-door service of taxi-
cab builds up the straightforward connection between trip origin and destination.
Therefore, how different urban areas are related can be understood by exploring the
inherent similarities of taxi trips. Clustering algorithms are widely used to classify
individual cases in large database into homogeneous groups. Considering spatial and
temporal characteristics of taxi trips, each piece of taxi trip xi can be represented as
an eight dimensional tuple which takes the form:

xi = (lato
i , longo

i , latd
i , longd

i , po
i , pd

i , di , ti ) (1)
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Where o, d represent the trip origin and destination respectively, lat and long are
the latitude and longitude of trip locations, p refers to the land use attribute, d is the
trip distance and t stands for the trip starting time. The clustering problem cannot be
tackled by popular approaches such as k-means and DBSACN due to the presence
of categorical variables (land use attribute).

Alternatively, the two-step clustering algorithm[6] is implemented to address the
mixed variable clustering problem following two stages. The first stage is a pre-
clustering approach which uses a sequential clustering method to generate initial
sub-clusters. The second stage uses the agglomerative hierarchical approach which
processes the sub-clusters from in the first stage recursively. The number of clusters
is determined automatically by comparing BIC values. For interested readers, the
detailed description for each step of the algorithm can be referred to SPSS manual
[20].

4.2 Clustering Result

An overview of the clustering result is presented in Fig. 6. For both weekday and
weekend taxi trips, the exactly same configuration with 7 distinct trip groups is
obtained. Moreover, the percentage for the same cluster is pretty close. We name
each cluster by its land use feature accordingly, including C-C, R-C, C-R, R-R, Mul
(Mixed land use type)-Mul-S (short trip distance), Mul-Mul-L (long trip distance),
and Mul-M trips. To better understand the characteristics of each cluster, the spa-
tial distributions of trip origins and destinations in each cluster on weekdays are
visualized in Fig. 7.

In general, C-C trips contribute to over one-third (36.0% for weekday and 34.9%
forweekend) of the total taxi trips inNYC. Further, there are another 30%of trips that

Fig. 6 Clustering resultC-Commercial, R-Residential,M-Manufacturing,Mul-Mixture of the three
Short/Long-Short/Long travel distance a Weekday, b Weekend
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Fig. 7 Spatial density plot of cluster origins and destinations a for trip origin and b for destination;
i:commericial to commercial; ii: residential to commercial; iii: mixed to mixed with short travel
distance; iv:commercial to residential; v: mixed to mixed with long travel distance; vi: residential
to residential; vii: mixed to manufacturing; density increases from blue to red
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Fig. 8 Travel distance and trip starting time distribution for 7 clusters

are associated with commercial area (with either origin or destination in commercial
area). This suggests the significant impact of land use pattern, especially commercial
floors, on the amount of taxi trips. More specifically, commercial areas where trip
originated from and arrived at cover the entire midtown and lower Manhattan. As a
result, it is believed thatmost activities and functionalities of the city are concentrated
in these places. Viewing the distribution of residential related trips, one can tell that
there are considerable amount of people living on the peripheral area and they are
connected to the city center by taxicab.

We also plot distributions of travel distance and trip starting time as important
attributes for each cluster in Fig. 8. Apparently, the distance distribution suggests
that taxi trips are heavily used for short-range travel, especially for trips less than 5
miles. Such pattern is mainly determined by the urban structure of NYC, as majority
activities and functional places are agglomerated in a small area. While the distance
distribution is stable over the week, there are prominent discrepancies observed for
trip starting time between weekday and weekend. Firstly, all clusters except C-R
and Mul-Mul-L trips have morning and evening peaks, reflecting that taxicabs are
heavily used for work commuting in urban areas. Secondly, the temporal pattern of
most urban activity is shifted from daytime to late night, as the trip intensity remains
at a high level until 3 am.

Though taxi trips are mostly commercial and residential related, we observe that
the Mul-Mul-L group is a very special type of taxi trips with unique characteristics.
Based on the trip location distribution, these trips connect midtownManhattan, LGA
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and JFK to the rest of NYC.While all other clusters have very short trip distance, the
mean travel distance of the group is approximately 11 miles. Two peaks are revealed
from the distance distribution, which locate at 10 miles and 17 miles. The two points
are matched with the travel distance from Manhattan to LGA and JFK respectively.
As a result, the exclusive pattern is largely caused by the urban forms, as airports are
usually far from the city center but with very high passenger volumes. The group of
trip should be treated separately during urban studies as it is heavily biased from the
general mobility pattern of taxi trips.

5 Taxi Mobility

Individual mobility pattern have been realized barely random. Several studies using
data from the movement of an online game [22], the dispersal of bank notes [3],
as well as trajectories from cellular data [7] have found highly regulated pattern in
human movement. And the human movement is observed to follow a heavy-tailed
plot under logarithmic scale and can be well approximated by scaling law. With
human beings as the main participants, the taxi trips are results of human movement
in an urban context as well. Hence, we try to reveal the taxi mobility and examine
the relationship with individual mobility.

To uncover the taxi mobility, we first plot the distribution of travel distance under
logarithmic scale in Fig. 9a. From the observation, the distribution of travel distance
can be divided into parts: an ascending ranges from 0 to 0.8 mile, and then gradually
descending as trip distance increases. Twominor peaks around 10miles and 20miles
in the distribution aremainly causedby trips toLGAand JFKairport. The interference
of airport trips has been discussed in previous section. We remove the trips to and
from the two airports as they have specific purposes and unique characteristics. A
refined distribution is generated in Fig. 9b.

Trips with distance less than 0.8 mile take 16.89% of total trips. As very short
trips within walking radius, these trips differ from the general pattern of taxi mobility
on a decision making process of whether to take taxis. The first part of the trips can
be approximated with distribution:

P(d) ∝ dβ (2)

Where exponent β = 1.2505.
The distribution resembles a power-law like distribution (straight line under loga-

rithmic scale), however, the exponent takes a positive value. Asmentioned earlier this
phenomenon captures model choice process in whether take a taxi. And it is intuitive
that with the increase in distance, the probability of taking a taxi also increases until
attaining its maximum around 0.8 miles.

The refined second part is used to capture urban mobility features of taxi trips.
The trips greater than 0.8 mile contribute 83.11% of total trips. It is found that the
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Fig. 9 Taxi trip distance distribution. a Distance distribution of all trips. bDistance of all but airport
trips

distributionof taxi trip distance iswell approximatedby apower-lawwith exponential
cut-off (also known as truncated power-law):

P(d) ∝ d−αe−λd (3)

With exponent α = 0.7285 and λ = 0.3682. The distribution is found to be heavy-
tailed. Unlike the power-law distribution of human movement reported (8, 18, 19),
the taxi trip distance distribution has a faster probability decay in the tail part (the
effect of the exponential cut-off term). This indicates that the unique effects of urban
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environment on the distribution of taxi trip distance. Since the underlying size of
urban area limits the distance of taxi trip, very long trips (e.g.>30 miles) are less
likely to happen, and the scale-free property of a typical power-law distribution fails.
It is notable that as taxi trips are important component of urban human movement,
the trip distance distribution reflects a unique perspective of human mobility. That
is, the taxi mobility pattern reveals the hidden role of urban geographical boundaries
in limiting urban human movement.

6 Conclusion and Future Work

In this paper, we exploit NewYork taxi trip data and comprehensively explore under-
lying patterns of urban taxi trips.We first look at the general level of demand and find
out the spatial and temporal patterns for the most popular places. A potential unbal-
anced trip pattern is further discussed. Next, we use the two-step clustering algorithm
to figure out the intrinsic taxi trip classes. Differences are discussed based on land
use, travel distance and starting time distributions. In the end, taxi trip mobility is
analyzed from the overall travel distance distribution.

Taxi data has been proved to be an efficient tool to understand urban dynamics
and several interesting insights are raised in our paper. Unbalanced trips are common
in taxi industry and should be carefully investigated to improve the level of service.
Airport trips is a special part of taxi trips and differ from regular taxi trip patterns.
Land use has significant impact on taxi trip types, and different types of taxi trips
are able to uncover the structure of a city. Moreover, we find that the mobility of taxi
trips are restricted by the urban geographical boundaries.

However, the paper also has several limitations. The current paper is primarily
focused on exploring patterns. The following study will build a model from the
patterns discovered to account for humanmovement within urban context.Moreover,
more information such as social economics can be combined into the data analysis to
providemore insights. Furthermore, it would be interesting to develop amethodology
to infer urban land use type from taxi patterns. Also, attentions can be paid on
extracting travel information from taxi dynamics and provide feedbacks to users.
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Holistic Calibration of Microscopic Traffic
Flow Models: Methodology and Real World
Application Studies

Alexander Paz, Victor Molano and Javier Sanchez-Medina

Abstract This study proposes and applies a methodology to calibrate microscopic
traffic flow simulation models. The proposed methodology has the capability to
calibrate simultaneously all the calibration parameters as well as demand patterns
for any type of network. Parameters considered include global and local as well as
driver behaviour and vehicle performance parameters. Demand patterns, in terms of
turning volumes, are included in the calibration framework. Multiple performance
measures involving link counts and speeds are used to formulate and solve the pro-
posed calibration problem. In addition, multiple time periods were considered. A
Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm is used to
search for the vector of themodel’s parameters thatminimizes the difference between
actual and simulated network states. (Punzo V, Ciuffo B, Montanino M Transp Res
Rec J Transp Res Board 2315(1):11–24 2012, Punzo et al. [1]) commented on the
uncertainties present in many calibration methodologies. The motivation to consider
simultaneously all model parameters is to reduce that uncertainties to a minimum, by
leaving to the experience of the engineers as little parameter tuning as possible. The
effects of changing the values of the parameters are taken into consideration to adjust
them slightly and simultaneously. This results in a small number of evaluations of
the objective function. Three networks were calibrated with excellent results. The
first network was an arterial network with link counts and speeds used as perfor-
mance measurements for calibration. The second network included a combination
of freeway ramps and arterials, with link counts used as performance measurements.
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The third network was an arterial network, with time-dependent link counts and
speed used as performance measurements. The experimental results illustrate the
effectiveness and validity of this proposed methodology. The same set of calibration
parameters was used in all experiments.

1 Introduction

Micro-simulationmodels provide tremendous capabilities tomodel, at a high level of
resolution, complex systems in a broad range of fields, including economy, sociology,
physics, chemistry, and engineering [2].

In the context of vehicular traffic systems, microscopic traffic flow models enable
the modelling of many aspects of the actual system, including the manoeuvres of
individual vehicles and their interactions, the various types and characteristics of
facilities, and the vast number of control settings. These capabilities are associated
with a large number of modelling parameters that typically need to be tailored for
each vehicular system. For example, driver behaviour includes parameters associated
with car following, lane-changing manoeuvres, and gap acceptance.

In, Punzo et al. reflect on the uncertainties present in many of the current car-
following based traffic flow simulation calibration methodologies. It is a fact that
the accuracy of a model and the validity of its results are highly dependent on the
correctness of the chosen parameters [3–9].

Punzo et al. [1] discussed uncertainties present in many of the existing method-
ologies for the calibration of car-following-based traffic flow simulation models. It is
clear that the accuracy of a model and the validity of its results are highly dependent
on the correctness of the chosen parameters [3–9].

Hence, it is important to consider all these model parameters simultaneously
with the aim to capture their intricate interactions, thereby seeking convergence and
stability of the solutions.

In [10] we drafted a method for the simultaneous calibration of all of the parame-
ters of a CORSIMmodel. In the present work we have sharpen, extended and applied
that methodology to three different big test cases with excellent results: (i) Pyramid
Highway, in Reno, Nevada, USA; (ii) Interstate-75 in Miami, Florida, USA; and (iii)
a Network of McTrans Sample Data Sets.

This study proposes a methodology to calibrate simultaneously all model para-
meters and demand patterns based on link counts and speeds. In addition, multiple
performancemeasures were used, demand patterns were not pre-calibrated, andmul-
tiple time periods were explicitly considered with target performance values for each
period. That is, the proposed methodology implements a Simultaneous Perturbation
Stochastic Approximation (SPSA) algorithm to determine an adequate set for all
model parameters and turning volumes for multiple time periods using multiple per-
formance measures. Even though there is a significant body of literature around the
proposed problem context, to the best of the authors knowledge, no study has con-
sidered simultaneously all the aspects listed in this paragraph and included in our
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implementation and experimental framework. The state-of-the-art is summarized in
the following subsection.

TheSPSAwas chosen based on its computationally efficiency and ability to handle
large numbers of parameters [11–18]. Only two traffic flow simulation evaluations
per iteration of the SPSA are required to update all model parameters. Running a
low number of traffic flow simulations represents important savings in terms of time
and other resources. However, the SPSA algorithm performs better when the initial
model parameters relatively close to the optimal solution.

Comparative studies between SPSA and other algorithms could be found in the
literature [11, 12, 18]. In addition, the SPSA algorithm has been used to calibrate
and optimize various transportation applications [13, 19, 20].

The rest of this paper is organized as follows:We do a brief literature review in the
next subsection. We expose the proposed methodology in Sect. 2. Then we share the
experiments performed alongside with the corresponding results in Sect. 3. Finally
we put together some concluding remarks in section .

1.1 State of the Art

Abroad number of optimization algorithms, ranging fromgenetic algorithms to finite
difference stochastic approximation, have been used to determine an adequate set of
model parameters for a particular traffic system [3, 4, 6, 21, 22].

For example, the sequential simplex algorithmwas used to calibrate parameters for
car-following, acceleration/deceleration, and lane-changing behaviour [6]. However,
only a subset of parameters was considered, maybe because of the lack of enough
computing power in 2002. Moreover, parameters associated with infrastructure and
vehicle performance were not considered. The algorithm provided adequate results
under congested conditions. However, under low-congestion conditions, manual cal-
ibration provided better results [6].

In [23] they calibrate the VISSIM model of the NGSIM corridor, using a quite
limited optimization technique, exploring only the limits. They calculate a number
of restrictions for some parameters and accept values only if they satisfy all the
restrictions. Additionally, they are only tuned to a specific period of the day.

In a recent study, [24], Markov Chain Monte Carlo (MCMC) method using
Bayesian estimation theory. Only five parameters of a linear car following model
[25] are calibrated.

Genetic Algorithms (GA) has been extensively used to calibrate traffic simulation
parameters. In [26] the use a simpleGA to calibrate the parameters of aCORSIM [27]
based simulation of a 5.8km expressway in Singapore. In [28], a freeway segment in
California was used as a test example to attempt the optimization of two PARAMICS
calibration parameters.

In both cases, the results proved limited success reducing discrepancies between
real word and simulations.
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Genetic Algorithms were used for the calibration of global and local capacity and
occupancy parameters [20, 29]. A sequential approach was used to update global
and local parameters.

In [30] a Genetic Algorithm was used to calibrate a small subset of all the
PARAMICS [31] parameters.

In [32] aMultiobjective version of the Non-dominated Sorting Genetic Algorithm
(NGSA-II, [33]) was applied to solve the multi-objective optimization task of para-
meter calibration. Results are modest and they were optimizing or calibrating a very
few, only five of VISSIM’s [34].

In [35] five PARAMICS [31] parameters were optimized for a larger model of
down town Toronto, Canada. They tested three different GA approaches but they
finally did not obtained significant improvements in the accuracy of the model.

In [8] they tuned 11 CORSIM [36] parameters of a 22.4km segment of Interstate
10 inHouston, Texas. The authors used aGeneticAlgorithm to perform an automated
calibration of these parameters. Their results were remarkable, including a sensitivity
analysis. As happens for every GA approach to traffic simulation calibration, there
were a few set-up parameters in theGeneticAlgorithm thatmust be carefully selected,
because the quality of results is very dependent on them. There was no computing
performance information provided for such work, which should be a very interesting
element for comparisonwith SPSA-based approaches, likely to be faster, more suited
to real world on-line applications.

In [37] yet another GA based PARAMICS parameter calibration was proposed.
The authors only calibrate 5 parameters that needed to be initialized at “default
values”. In addition, there were eight additional configuration parameters that need
to be tuned for the Genetic Algorithm to obtain better performance. This parameter
adjustment required significant trial-and-error and experience by the researcher.

Regarding specifically SPSA algorithms we have selected a few interesting and
related studies. In [13]Lee usedSPSAalgorithms to calibratemodel parameters using
distributions to generate input for various stages. The calibration capabilities of GA
and SPSA algorithms were shown to be similar in [20]; however, SPSA algorithms
were less computationally expensive.

In [38], the authors proposed a SPSA algorithm for the calibration of a simulation
model of the Massachusetts Bay Transportation Authority (MBTA) Red Line. The
authors used a generic simulator, SimMETRO. The effort involved a multiple objec-
tive function and simultaneous parameter calibration. It is important to notive that
the simulation of one Metro line involves less parameters compared to a vehicular
traffic system. This makes the problem more computationally affordable and less
complex.

In they proposed a rail simulation SPSA based parameters calibration for the
test case of the Massachusetts Bay Transportation Authority (MBTA) Red Line,
using a generic simulator they called SimMETRO. Even when it is not exactly the
same problem to solve than in our case, this is a remarkable application of multiple
objective simultaneous parameter calibration. It is also true, though, that a oneMetro
line simulation has not as many calibration parameters as a vehicular simulation like
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CORSIM may include, making the problem more computationally affordable and
also less complex.

Another very interesting application of a SPSA algorithm to Intelligent Trans-
portation Systems was published in [39]. A dynamical emission model was opti-
mized to estimate aggregate emission patterns for traffic fleets so as to predict local
air conditions.

SPSA and Finite Difference Stochastic Approximation algorithms have been pro-
posed for the calibration of time depending Origin-Destination matrices. For exam-
ple, in [11] driver behaviour parameters where pre-calibrated considering various
time intervals. Other important performance measures, such as speed, were not con-
sidered.

In [40], a SPSA algorithm is used for the simultaneous adjustment of a dynamic
traffic O-D matrix using traffic counts and speeds. However, the author states that
some parameters must be tuned by hand to get close to the desired solutions. Hence,
the proposed approach is infeasible for a large amount of calibration parameters as
it requires significant user involvement and experience.

Min. N RM S = 1√
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W ×
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√
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Ben-Akiva et al. worked on the calibration of a dynamic traffic O-D matrix [41]
for a large network in Beijing. The SPSA algorithm was used given its capability to
address noise. The significant work conducted using the SPSA algorithm to perform
related research motivated its use in the proposed study.

are

2 Methodology

2.1 Formulation of the Calibration Problem

The calibration problem for all model parameters, θ , is formulated using a mathe-
matical programming approach. The analysis period is divided into a number T of
discrete time periods. The objective function, normalized root mean square (NRMS),
as denoted by Eq.1, is the sum over all calibration time-periods of the average of the
sum over all links I of the root square of the square of the normalized differences
between actual and simulated link counts and speeds. The normalization enables
the consideration of multiple performance measures, in this case, link counts and
speeds. In our experimental set-up, the initial parameters for a model are selected as
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the default values used in CORSIM models. The calibration problem is formulated
as shown in Eq.1, where:

• Vi = actual link counts for link i
• Ṽ (θ)i = simulated link counts for link i
• Si = actual speeds for link i
• S̃(θ)i = simulated speeds for link i
• N = total number of links in the model
• T = total number of time periods t
• W = weight used to assign more or less value to counts or speeds

gkθk = y(θk + ckΔk) − y(θk − ckΔk)

2ck
[Δ−1

k1 ,Δ−1
k2 ,Δ−1

k3 , . . . , Δ−1
kp ]T (2)

2.2 Calibration Criteria

The calibration criteria for this study were based on guidelines from the Federal
Highway Administration. The difference between actual and simulated link counts
should be less than 5% for all links; and, the GEH statistic, in Eq.3, should be less
than 5 for at least 85% of the links [27].

G E H =
√

2(Vi −Ṽ (θ)i )
2

Vi +Ṽ (θ)i

Vi = actual link counts at the link i.
Ṽ (θ)i = simulated link counts at the link i.

(3)

2.3 Simultaneous Perturbation Stochastic Approximation
Algorithm

The SPSA algorithm is an iterative approach that uses gradient estimations of the
objective function to determine an optimal solution. Details of its implementation are
provided by Spall [15–18]. In each iteration of SPSA, the vector of model parameters
is updated using Eq.4; where:

θk+1 = θk − ak gkθk (4)

• θk+1= vector of updated parameters at iteration k+1
• θk= vector of initial parameters at iteration k+1
• ak= gain coefficient at iteration k+1 calculated using Eq.5
• gkθk= estimated gradient at iteration k+1.
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ak = a

(k + 1 + A)α
(5)

where a, A, and α are empirical non-negative coefficients. These coefficients affect
the convergence of the SPSA algorithm. The simultaneous perturbation and gradient
estimate are represented by gkθk , and is calculated using Eq.2.

Here, ck is calculated using Eq.6 where c and γ are empirical non negative
coefficients.

ck = c

(k + 1)γ
(6)

where, c = 2.7598 and γ = 0.1666.

The elements in the random perturbation vector are Bernoulli-distributed, with a
probability of one-half for each of the two possible outcomes (Eq.7).

Δk = [Δ−1
k1 ,Δ−1

k2 ,Δ−1
k3 , . . . , Δ−1

kp ]T (7)

The SPSA algorithm is implemented using the following steps [18]:

• Step 1: Set counter k equal to zero. Initialization of coefficients for the gain function
a, A, and α and calibration parameters θ0.

• Step 2: Generation of the random perturbation vector Δk .
• Step 3: Evaluation of the objective function plus and minus the perturbation.
• Step 4: Evaluation of the gradient approximation gkθk .
• Step 5: Update the vector of calibration parameters using Eq.4 along with the
corresponding constraints denoted by Eq.3.

• Step 6: Check for stopping criteria. If criteria is achieved, stop; otherwise, set
counter k = k + 1 and repeat Steps 1–6.

• Convergence is achievedwhen all the criteria in Table1 is satisfied or themaximum
number of iterations is reached.

2.4 Stopping Criteria

Stopping criteria is reached when the inequality in Eq. (4) is satisfied or a user pre-
specified maximum number of iterations is reached. At convergence, the calibration
criteria are expected to be satisfied or a significantly better model is obtained.

∑k
k−n+1

√
(N RM SAV − N RM Sk)2

n
< ρ (8)
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where,

• N RM SAV = average NRMS of the last n iterations
• N RM Sk = NRMS at k iteration
• k = iteration counter
• n = pre-specified integer = 10, and
• ρ = pre-specified convergence condition = 0.015.

3 Experiments and Results

3.1 Micro-simulation Model

The proposed methodology was tested using CORSIM, a tool that integrates two dif-
ferent models to represent a complete traffic system, FRESIM for freeways andNET-
SIM for surface streets [36, 42]. The TrafficAnalysis ToolboxVolume IV:Guidelines
for Applying CORSIM Micro-simulation Modelling Software [5] describes a pro-
cedure for the calibration of micro-simulation traffic flow models, with a focus on
CORSIM. The suggested procedure in these guidelines uses three sequential and
iterative steps, including the calibration of (i) capacity at key bottlenecks, (ii) traffic
volumes, and (iii) system performance. However, the guidelines do not suggest any
particular methodology to perform the calibration in an efficient and effective man-
ner. For example, issues associated with convergence and stability of the solutions
are not discussed. Nevertheless, alternative studies have proposed and developed
practical procedures to accelerate the calibration process, which typically is time
consuming [43]. However, stability and convergence still are issues.

3.2 Calibration Parameters for CORSIM Models

The calibration ofCORSIMmodels can involveDriverBehaviour andVehicle Perfor-
mance parameters [36, 42]. These parameters can be defined exclusively for surface
streets or freeways or both models simultaneously. In addition, the resolution of
these parameters can be global or link-based defined. This study considered all types
of parameters and levels of resolution. In addition, parameters related to demand
patterns were included. Table1 shows all the different parameters used for the cali-
bration of CORSIM models. Several studies have conducted sensitivity analysis for
the calibration of CORSIM models [8]. These studies have showed that the maxi-
mum non-emergency deceleration rate, for example, does not affect the outcomes of
a specific FRESIM model. However, the specific vehicle distributions improve the
accuracy of the model [8]. Driver behaviour parameters were found to affect the time
to breakdown and the flow on ramps. Flow related parameters showed low effects.
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Table 1 Calibration parameters for NETSIM and FRESIM models

NETSIM model surface streets

Driver behaviour Vehicle performance Demand patterns

• Queue discharge headway • Speed and acceleration
characteristics

• Surface street turn movements

• Start-up lost time • Fleet distribution and passenger
occupancy

• Distribution of free-flow speed by
driver type

• Mean duration of parking
manoeuvres

• Lane change parameters

• Maximum left and right turning
speeds

• Probability of joining spillback

• Probability of left turn jumpers and
laggers

• Gap acceptance at stop signs

• Gap acceptance for left and right
turns

• Pedestrian delays

• Driver familiarity with their path

FRESIM model-freeways

• Mean start-up delay at ramp meters • Speed and acceleration
characteristics

• Freeway turn movements

• Distribution of free flow speed by
driver type

• Fleet distribution and passenger
occupancy

• Incident rubbernecking factor • Maximum deceleration

• Car-following sensitivity factor

• Lane change gap acceptance
parameters

• Parameters that affect the number
of discretionary lane changes

The calibration parameters have different effects for specific networks and condi-
tions. The interaction between these parameters is very complex andmight vary from
model to model. As a starting point, the proposed methodology uses a set of default
CORSIM values for the parameters listed in Table1. This decreases the effort during
the selection of the calibration parameters and set-up. During calibration, the value
of the selected parameters is adjusted while constraining their boundaries in order to
avoid unrealistic values.

3.3 Experimental Set-Up and Results

Three experiments were designed to test the capabilities of the proposed methodol-
ogy to calibrate simultaneously, using vehicle counts and speeds. A software tool
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was developed to implement the proposed calibration methodology. The tool was
developed using a basic layered architecture were each layer handles a group of
related functions. A Graphical User Interface (GUI) provides access to the entire
software capabilities. The entire software was developed in Java; it includes more
than 5,000 lines of code.

System Specifications

• Operative System:Windows Server, Standard Edition, 2007, Service Pack 2 64Bit
• System: Intel Xeon CPU E7450 2.4GHz (4 processors)
• Ram memory: 32 GB

First Experiment: Pyramid Highway in Reno, Nevada, USA

In this experiment a CORSIM model for a portion of the Pyramid Highway in
Reno, Nevada, was calibrated. This portion of highway is located between Milepost
1.673 and 5.131. This calibration focused on speeds and link counts for the entire
simulation. The weight factor in the objective function was set to 0.7. This value
is constant for the first two experiments because link counts were obtained using
more accurate data collection methods compared to speeds. The model included 126
arterial links, and no freeways were included. Link counts and speeds were only
available for 45 of these links. Coefficients for the SPSA algorithm were selected
using guidelines from the literature [18]). These values affected the convergence of
the algorithm. The time required for calibration was 25.5min.

Figure1a shows a Google map of the Pyramid Highway. Figure1b illustrates the
corresponding CORSIM model. Figure2 illustrates how the objective function was
minimized. The noisy trajectory was a consequence of the stochastic perturbation
applied to all calibration parameters to obtain the gradient approximation at each
iteration. The characteristics of the traffic model made the function noisier due to
rounding. The NRSM was 0.042 before calibration and 0.010 after calibration. The
calibration process stopped around the 80th iteration,when a stable regionwas found.

Figure3a shows the actual and simulated counts and speeds before calibration.
These values present poor initial conditions, especially for the volumes over 1500
vehicles per hour (vph). Figure3b shows the actual and simulated counts and speeds
after calibration. The proposed methodology is able to reduce the gap between actual
and simulated counts. The results illustrate larger improvements for the large counts.
Figure3a clearly shows that links with counts over 1500 vph were improved, while
the values with good initial conditions were slightly modified.

As illustrated in Fig. 3a, simulated speeds are far from actual speeds. The simula-
tion model underestimates many speed values. After calibration (Fig. 3a), the speeds
were improved for 23 of the links. The rest of the speeds were kept close to the initial
values with a variation less than 1 mile per hour (mph). This can be associated to the
relative large value of the weight assigned to the counts in the objective function (W
= 0.7). In addition, the experimental results show that link counts are more sensi-
tive than speeds to changes in the calibration parameters. The GEH statistics for the
models before and after calibration are shown in Table2. This statistic is included in
our analysis because it is recommended by the Traffic Analysis Tool-box [5]. It is
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Fig. 1 Pyramid highway, Reno, Nevada, USA (a) google map and CORSIMmodel (b) for the first
experiment

Fig. 2 Objective function
for the first experiment

clear that the calibrationmodel significantly improves the GEH statistic. All the links
reach a GEH statistic less or equal to 5, thereby satisfying the calibration criteria. The
results show that the three calibration criteria are satisfied. In general, the proposed
methodology was able to improve significantly the model outcomes.

Table2 summarizes the calibration results for the first experiment. The total dif-
ference between actual and simulated link counts is 6% for all links in the network.

A sensitivity analysis was conducted using the Pyramid Highway model. With
W = 0.5 and W = 1.0 the difference between simulated and link counts increased
significantly.
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Fig. 3 Actual versus simulated counts and speeds before (a) and after (b) calibration, for the first
experiment

Table 2 Summary of calibration results for the first experiment

NRMS Total link counts GEH

Before calib. 0.042 45,359 <5 for 74% of the cases

After calib. 0.010 55,882 <5 for 100% of the cases

Actual 59,610

Second Experiment: I-75 in Miami, Florida, USA

In this experiment, a portion of I-75 in Miami, Florida was calibrated. A total
of 375 freeway ramps and 334 arterial links were included in the model. Data was
available for 353 freeway ramps and 59 arterial links for a morning peak period of
one hour. The coefficients of the SPSA algorithm were the same as those used in the
first experiment. All the calibration parameters in the network were included as well
as the turning volumes for freeways and arterials. The weight factor in the objective
function was set to 0.7. The time required for calibration was 125min.

Figure4a shows the Google map of I-75 highway in Miami, Florida, USA.
Figure4b illustrates the corresponding CORSIM model.

Figure5 illustrates the trajectory of the objective function for this experiment. The
NRMS goes from 0.270 to 0.245.
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Fig. 4 I-75 in Miami, Florida, USA (a) google map and CORSIM model (b), for the second
experiment

Fig. 5 Objective function
for the second experiment

Figure6a illustrates the link counts for the ramp segments in the model before
calibration. Figure6b shows the link counts for the ramps after calibration. These
results clearly show that the calibration process significantly reduces the difference
between actual and simulated link counts. It is clear that the calibration model sig-
nificantly improves the GEH statistic. 99.6% of the links reach a GEH statistic less
or equal to 5, thereby satisfying the calibration criteria.
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Fig. 6 Links counts before
(a) and after (b) calibration
for freeway ramps in the
network (second experiment)

Fig. 7 Links counts before
(a) and after (b) calibration
for arterials in the network
(second experiment)

Figure7a illustrates the link counts for the arterials before calibration. Figure7b
shows the link counts for the ramps after calibration. These results show that there
is significant improvement for links with large link counts. The calibration model
significantly improves the GEH statistic. Seventy-six percent (76%) of the freeway
ramp links reach a GEH statistic less or equal to 5.

Figures6 and 7 together show that the calibration methodology provides better
results for freeway ramps than for arterials. This could be a consequence of having
more data available for freeway ramps than for arterials, thereby giving more weight
to the ramps.

Table3 shows the ‘before’ and ‘after’ GEH statistics. As illustrated, the calibration
improves the statistics, especially for the highest GEHs. However, some GEH values
need to be improved because they are over 5.

Table 3 Summary of calibration results for the second experiment

Total link counts (vph) GEH

Freeway Before calib. 234,928.2 <5 for 86% of the cases

After calib. 257,454.1 <5 for 99.6% of the cases

Actual 271,908

Arterials Before calib. 61,097 <5 for 66% of the cases

After calib. 68,927 <5 for 76% of the cases

Actual 80,524
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Fig. 8 CORSIM Model for the third experiment: network from McTrans sample datasets

Third Experiment: Network from McTrans Sample Datasets

In this experiment, a network with arterials from McTrans official web page was
calibrated. A total of 20 arterial links were included in the model. Data was available
for all arterial links. Figure 8 shows the CORSIM model for this experiment. The
time required for calibration was 10min.

The total simulation time was 1 h divided in 4 time periods t of 15min each (T
= 4). In this experiment, all parameters for all links for all four time periods were
updated. The coefficients of the SPSA algorithm were the same as those used in the
previous experiments. All the calibration parameters in the network as well as the
turning volumes were included. The weight factor in the objective function was set
to 0.7.

Figure 9 illustrates the trajectory of the objective function corresponding to the
third experiment. The initial NRMS value is 0.51, while the minimum obtained after
100 iterations of the optimization algorithm is 0.09.

Fig. 9 Objective function
for the third experiment
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Fig. 10 Actual versus simulated counts and speeds before (a) and after (b) calibration for time
period 1, (third experiment)

Figure10 illustrates the link counts and speeds before and after the calibration
results for all links in the network for the first time period of the simulation. These
results clearly show that the calibration process significantly reduces the difference
between actual and simulated link counts and speeds.

Similar to Fig. 10, Table4 shows the summary of link counts and speeds for all
links in the network for the second, third, and fourth simulation time period, respec-
tively. The calibrated results are significantly closer to the actual values, relative
to the ‘before calibration’ results. In addition, all links have a GEH statistic below
the threshold limit of 5 for all time periods. Speeds were improved for most links
especially for values less than 20 mph.

In this experiment, optimal parameters for the model were determined in order
to reproduce time-dependent link counts and speeds. The calibrated parameters took
a single value during the entire simulation process; that is, they were not time-
dependent. In contrast, the link counts and speedswere time-dependent. These results
illustrate the ability of the proposed calibration methodology to adjust model para-
meters so as to calibrate the time-dependent link counts and speeds.

The summary of the results are showed in Table4.
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Table 4 Summary of the calibration results for the third experiment

Goalkeeper GK Total link counts (vph) GEH

Time period 1 Before calib. 10,126 <5 for 10% of the cases

After calib. 17,136 <5 for 100% of the cases

Actual 17,276

Time period 2 Before calib. 13,498 <5 for 10% of the cases

After calib. 22,625 <5 for 100% of the cases

Actual 22,891

Time period 3 Before calib. 10,502 5 for 0% of the cases

After calib. 17,820 <5 for 100% of the cases

Actual 18,767

Time period 4 Before calib. 10,533 <5 for 0% of the cases

After calib. 17,939 <5 for 95% of the cases

Actual 19,013

4 Conclusions

This study proposed a methodology for the calibration of micro-simulation traffic
flow models. The design and implementation of this methodology seeks to enable
the calibration of generalized models. The proposed calibration methodology was
developed independent of characteristics for any particular microscopic traffic flow
simulation model. It minimizes the difference between actual and simulated time
dependent link counts and speeds by considering all model parameters and turning
volumes simultaneously.

The methodology used the Simultaneous Perturbation Stochastic Approximation
(SPSA) algorithm to determine the calibrated set of model parameters. Previous
studies have proposed the use of the SPSA algorithm for the calibration of vehic-
ular traffic systems; however, few parameters were considered, and the calibration
typically was based on a single performance measure, usually link counts. During
the experiments developed, the proposed algorithm always reached convergence and
stability.

The proposed methodology was tested using CORSIM models. However, there
is nothing preventing the implementation of the proposed methodology for the cal-
ibration of other models. Three different vehicular traffic systems were calibrated,
taking into consideration all their model parameters by using various performance
measures, including link counts and speeds. The first experiment included arterials,
using as performance measures link counts and speeds. The second system included
both arterials and freeways. Considering arterials and freeways represented a sig-
nificant challenge because two different models with different parameters needed to
be considered simultaneously. The third experiment included time-dependent link
counts and speeds for four time periods during this experiment; in addition, global,
individual, and time-dependent parameters were considered. Further analysis was
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required to determine the weight factor, W. This value was set constant because
link counts were obtained using more accurate data collection methods compared to
speeds. Information about the data collection and data quality can be used to set the
weight factor.

The experimental results illustrated the effectiveness of the proposed methodol-
ogy. The three vehicular traffic systems used in this study were successfully cali-
brated; specifically, the calibration criteria were satisfied after the calibration was
performed. The results from the first and third experiment showed that speeds were
improved after the calibration. The quality of the second vehicular traffic system
improved significantly. However, further sensitivity analysis of the parameters used
by the SPSA algorithm is required to achieve better results and satisfy the calibra-
tion criteria. These parameters were chosen using sensitivity analysis. A pattern to
find optimal values for the SPSA parameters was not found. Further, as the number
of parameters required for calibration increases, the complexity of the optimization
problem also increases as well as the complexity to determine the set of required
optimization coefficients.

The same set of calibration parameters was used in all the experiments. There-
fore, any effort during parameter selection has been reduced. The results were
improved for the entire model. All calibrated parameters were within reasonable
boundaries. Similarly, no irregularities were observed using the graphical user inter-
face. The calibration software developed in this study can be downloaded, along
with a user’s guide and examples, using this link: http://faculty.unlv.edu/apaz/files/
CalibrationToolDemo.zip. Hence, the reviewers can replicate the results from this
study.

The calibration tool developed as part of this study used an optimization algorithm
that required a set of coefficients to find the appropriate set of CORSIM model
parameters. A time-consuming sensitivity analysis of these coefficients was required
to achieve desired results.

A bi-level optimization framework is required to enable the simultaneous calibra-
tion of traffic flow and SPSA parameters. The first level of the bi-level framework
represents the existing calibration tool developed as part of the existing project,whose
objective was the calibration of CORSIM models under saturated conditions. Here,
andSimultaneous Perturbation StochasticApproximation (SPSA) optimization algo-
rithmwas used to determine the appropriate calibration parameters. The second level
of the proposed bi-level framework corresponds to future research, whose objective
is to automate the sensitivity analysis that is required to find the right set of optimiza-
tion coefficients for the SPSA algorithm. A parallel paper currently under review
describes the proposed bi-level framework.
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Optimizing Leisure Travel: Is BigData Ready
to Improve the Joint Leisure Activities
Efficiency?

K. Gkiotsalitis and A. Stathopoulos

Abstract Over the past years we are witnessing an upsurge on the volume of trav-
elers’ generated data. The upsurge of user-generated data from Smart Cards, Smart
phones, personal navigators and social media has drawn the attention of the scientific
community and new methods for utilizing such data in the areas of citizen-sensing,
mobility understanding and travelers’ behavioral analysis have been developed and
tested. Stepping ahead from the central problem of leveraging user-generated data for
improving the scheduling of transport services, this survey paper tries to investigate
the importance of big-data on improving the organizational efficiency of physical
meetings among multiple travelers in urban environments. First, this work examines
the state-of-the-art on capturing travelers’ patterns based on their data traces and
the expected gains from leveraging user-generated data for optimizing leisure travel.
Then, the problem of optimizing joint leisure travel is formulated and presented in an
algorithmic form concluding to the suggestion of new research directions for future
work.

1 Introduction

Today’s metropolis with complex transport networks and numerous places for leisure
activities pose great challenges to individuals who are willing to organize and partici-
pate in joint activities. In this study, we consider as joint leisure activities all activities
conducted out-of-work involving the participation of two or more travelers.

Transport for London [1] posed that 29.2 % of all daily trips are related to leisure
activities, while 28 % were conducted for shopping and personal business and 10.7 %
for other activities including escort. Similar results were observed on the New York
Regional Travel survey [2]. Given the surveys’ insights, it is evident that almost
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70 % of all conducted trips (typical weekday trips = 2.51 × number of inhabitants
in the city of London) can strengthen agents’ interpersonal relations via shifting
the general, non-recurrent trips to joint leisure trips. The aforementioned action is
expected to promote the interpersonal relations among agents via increasing the
number of physical meetings and improving the planning efficiency of out-of-work
activities.

Fixed trips with recurrent characteristics (i.e., trips to work/school) can be eas-
ily recorded enabling the central transport authority or the individual agent to act
on easing congestion or reducing traveling times via altering the transport/working
schedules or shifting the departure times respectively. In contrary, leisure trips have
a non-recurrent nature and that complicates the implementation of policy measures
for congestion relief beforehand.

In the case of recurrent trips, travelers observe the repeated congestion patterns
since they confront them on a daily basis while traveling over similar areas and
adapt their schedules in order to reduce their waiting times. For instance, travelers
are well-informed regarding the traffic conditions for trips to/from work due to their
prior experience on traversing the same path on a daily basis, while they are less
aware of the feasible set of trip-selection options when planning their out-of-work
or other non-recurrent trips. Consequently, the lack of information yields three main
inefficiencies:

• Fluctuation of Travel Demand: Out-of-work trips cannot be easily predicted from
the central operator since travelers’ actions cannot be forecasted and vary heavily
from day to day

• Interpersonal Activities Loss: Not aware of the daily schedules of other individuals,
one examined agent is either not able to schedule a joint leisure activity or schedules
an inefficient one with high opportunity cost and limited participants

• Trip Selection Inefficiency: Agents enumerate a number of possible trips and select
a most-preferred option via simple permutation or perceived utility-maximization
without holding perfect information during the decision-making process

To that point, it should be stated that the individual-level planning of trips in
metropolitan areas cannot be perceived as fully inefficient since it is based on a per-
ceived utility-maximization approach; however, the lack of perfect information on
the decision-making phase affects the efficiency of trip selection while attempting
to maximize the utility function. Failure to construct a utility function which corre-
sponds to the real-world conditions leads to the maximization of a non well-defined
problem.

In this paper, it is assumed that the utility function is perceived correctly if the
individual is well-informed during the trip-selection via holding information over
three separate dimensions (refer to Fig. 1):

• The current traffic on the road network and delays on public transport services
• The exact location of all places of interest for leisure activities in the examined

metropolis (i.e., location of bars, restaurants, cinemas)
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Fig. 1 The three dimensions of information flow for trip selection at the individual level

• The daily schedules and the preferences of all friends and acquaintances with
whom a joint leisure activity can be organized (the degrees of freedom might
differ depending on the social network of the examined agent)

Several attempts have been made to define special laws to model and explain
the movement of people (refer to [3]). However, the lack of information at the trip-
selection phase hinders the maximization of utility. At this stage, the utilization
of new information streams can be seen as a valuable resource for improving the
awareness of agents over the three dimensions of the decision-making process. In
an example of improving a service via raising the level information dissemination,
early research in a survey with bus riders demonstrated various positive effects such
as increased ridership and traveler satisfaction attributed to enhanced information
availability pointing out that easy access to relevant travel information is a decisive
factor for the success and adoption of public transport systems (refer to [4]).

Given the above, this study examines the state-of-the-art in the area of non-
recurrent trips which can be turned to opportunities for leisure joint activities with
the use of insights from user-generated data. Attention is given to searching for
studies on utilizing near real-time user-generated data (i.e., data from smartphones,
smartcards, PDAs) for tackling transportation problems. The aim is to formulate the
problem of optimizing leisure travel considering the provision of user-generated data,
present the direction of the state-of-the-art, understand why user-generated data has
not been used for increasing the volume and the efficiency of joint leisure activities
and propose actions to move towards this direction.

In Sect. 2, the utilization of user-generated Cellular Data (CD) in transportation
problems is examined. In Sect. 3, we are investigating works utilizing Social Media
(SM) data and in Sect. 4 works in the area of Smart Card (SC) data. In Sect. 5, the
use of Geo-location data via personal navigators and smartphones is examined. In
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Sect. 6, a problem formulation for the joint leisure travel optimization with the use
of user-generated data is proposed. Finally, the use of data from personal navigators
is examined and a detailed catalog with future work directions is presented.

2 Utilizing Cellular Data in Transportation Problems

Cellular data is the form of user-generated data which have been studied the most for
predicting individuals’ mobility patterns even if the mobile tracking via cell towers
is not as accurate as the satellite-based positioning. Regardless the posed challenges,
cellular data have been utilized to improve the understanding on human mobility
and develop individual-level models for capturing the mobility and activity habits of
individuals.

The most common individual-level models for predicting the mobility of
individuals-which are not based solely on spatio-temporal travel pattern recognition-
are the activity-based models (refer to [5–8]). Those models are the basis for fore-
casting individuals’ daily trip schedules from cellular data and perceive each trip as
a means to participate at pre-scheduled activities.

In the literature, Musolesi and Mascolo [9] utilized Cellular data logs for corre-
lating the mobility patterns of an individual with the mobility patterns of his friends
and acquaintances. The underpinning theory of the correlation process includes the
assumption that users’ travel patterns do not depend on time and space, but also on
the travel patterns of other individuals inside their social network. The findings of the
research showed that the mobility patterns of one examined agent can be predicted
more accurately when the mobility patterns of his/her social network are considered
as explanatory variables. De Domenico et al. [10] worked also on the same direction
using data from the Nokia Mobile Data Challenge dataset. The work of Musolesi and
Mascolo [9] can provide some evidence on the theoretical concepts developed by
Carrasco et al. [11], Arentze and Timmermans [12] and Chen et al. [13] on predicting
agents’ mobility based on their social networks. Those theoretical concepts place the
traveler to the center of decision-making (ego-centric approaches) and offer a new
framework for microsimulation, while harvesting large-scale user-generated data is
expected to facilitate their implementation.

In addition, Carrasco et al. [14, 15], Gonzàlez et al. [3], Zhang et al. [16], Pan et al.
[17] and White and Wells [18] utilized cellular data for predicting the mobility pat-
terns of individuals in urban scenarios over time and space. Those studies, including
studies of White and Wells [18] and Djuknic and Richton [19], attempted to exploit
the emergence of cell tower positioning and the market penetration of mobile phones
by developing methods for estimating the OD matrices in study areas. In the same
way, Sohn and Kim [20] used cellular communication system and cell phone tower
to transfer information and estimate OD matrices. To give a practical example, in
the work of Calabrese et al. [14], an algorithm for estimating a population’s travel
demand in terms of ODs from aggregating the trips of individual mobile phone users
in the Boston Metropolitan area was developed. During the validation, it was shown
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also that the OD flows correlated well with the US Census estimates.
The limits of predictability in human dynamics by analyzing mobility patterns

of mobile phone users were also analyzed and evaluated by Song et al. [21]. More
recently, Dong et al. [22] and Wu et al. [23] proposed a methodology for using mobile
phone data to analyze the mechanism of trip generation, trip attraction and the OD
information with a pilot study at Beijing via using the K means clustering algorithm
to divide the traffic zones. In addition, Ohashi et al. [24] worked on a method for
separating trips (capturing the starting and ending points of a trip) on the basis of
GPS data collected from smartphones by considering that even when the subject
stays into a place, the collected GPS coordinates are not always exactly the same
according to the surrounding environment assuming 81 % percision and recall rate
of 62 %. Apart from detecting departure and arrival times, methods for classifying
automatically modes of transportation on the basis of smartphone GPS data were
also proposed by Ohashi et al. [25].

Finally, in another set of studies from [26, 27], Bluetooth devices were distributed
to people to collect mobility data and study the characteristics of co-location patterns
among them.

To summarize, works on utilizing cellular data in transportation have been focused
on different areas:

• Estimating the OD matrix in a study area
• Exploring the mobility patterns of one individual based on the mobility patterns

of his/her social network
• Extracting the current mode of transportation
• Extracting the starting and ending time of a trip

However, there is no work in our knowledge in the area of activity-participation
analysis which can facilitate the development of new applications for suggesting
common activities to users with social ties based on their willingness to participate
simultaneously in similar activities in close proximity locations.

3 User-Generated Data from Social Media
and Its Applications in Transportation

The research on data from social networks on understanding users’ mobility is in its
early stages. The first studies focused on the power of micro-blogging on offering
near real-time insights on crisis events when all other means of communication
have failed. Routinely, the importance and the volume of the crisis event is captured
through the magnitude of micro-blogging messages and their content information.
A study from [28] explored crisis informatics using Twitter data after the Oklahoma
Moore tornado demonstrating the potential of social media data on extracting relevant
information during natural disasters.

In a similar fashion, social media data from social networks like Facebook, Twitter,
and the image sharing service, Flickr, have already been used in research works
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describing crisis or natural disasters such as Virginia Tech shooting ([29]), Southern
California wildfires ([30]), major Earthquakes in China ([31, 32]), Red River floods
and Oklahoma grassfires ([33]).

In another set of works, [34] utilized the Internet as resource to capture the crowd
levels during planned special events. In general, local events are not tracked from
transport authorities since manual, labor-intensive tracking is needed. Pereira et al.
[34] utilized the Internet as a resource for contextual information about special events
and developed a model that predicts public transport arrivals in event areas. The
results were demonstrated with a case study from the city-state of Singapore using
public transport tap-in/tap-out data coupled with local event information obtained
from the Internet performing primitive data fusion.

In another work, Gkiotsalitis and Alexandrou [35] focused on developing and test-
ing analytic techniques for fusing user-generated data from Social Media and smart-
cards in order to capture the mobility patterns in urban areas. Automatic models for
retrieving users’ mobility patterns from historic, user-generated data logs, comparing
user’ profiles based on the similarity of their observed mobility patterns and catego-
rizing users in clusters were developed. During the testing phase, user-generated data
from London Smart Card and Social Media users collected between November 2012
and February 2014 were utilized to cluster users based on their mobility-activity pat-
tern similarities. Results showed that it is possible to integrate data logs from multiple
sources to capture the main mobility-activity patterns observed in an area. However
the topic of joint participation in non-recurrent activities has not been addressed until
now.

Social media have also been used for capturing the activity types performed by
users at different locations via advanced spatio-temporal analysis and educated rules
(refer to [36]). In the same work, techniques for estimating individuals’ daily sched-
ules and the sequence of activities were developed. Alesiani et al. [37] focused also
on the same topic introducing a probabilistic model for modeling individuals’ daily
schedules based on input data from several sources (i.e., Social Media, Cellular Data).

Summarizing, social media data which is individualistic in nature has been utilized
for:

• Capturing the volume and the effects of crisis events
• Estimating individuals’ mobility patterns and correlating them with with patterns

observed with the use of other datasets
• Retrieving activity types of users
• Capturing the arrival times and the expected demand at local events

4 User-Generated Data from Smart Cards

With the deployment of automatic fare collection systems, large-scale data becomes
available for real-world transport usage ([38]). As more and more sensors have been
integrated into public transport infrastructures, large-scale transport data is produced
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at high rates ([39]). Nonetheless, studies of estimating individual travel patterns with
smartcard data are sparse in public transport research compared to studies on cellular
data and social media.

In the past, research has mainly focused on aggregate demand forecast ([40]).
Based on a gravity model, Smith et al. [41] showed that some of the variation in
mobility flows is influenced by distance and population of local residents via ana-
lyzing smartcard data, while Ceapa et al. [42] analyzed time series of automated
fare collection data to identify events of overcrowding at public transport stations.
Morency et al. [43] and Jang [44] also measured the transit use variability with
smart-card data.

The potential of smart card data for travel behavior analysis in Britain was studied
by Bagchi and White [45] where the pensioner concessionary pass in Southport,
Merseyside, and the commercially operated scheme in Bradford were examined.
There was stated that the nature of smart card data puts an emphasis on concept
definition and rules-based processing; but limitations, such as the trip lengths which
are not recorder to the system, were also recognized. The latter implicates also the
efforts on performing individual-level analysis and predicting individuals daily travel
schedules.

Foell et al. [46] utilized travel card data from a large population of bus riders from
Lisbon, Portugal. The main intention of the work was to predict the future bus stops
accessed by individual drivers and it was demonstrated that accurate predictions can
be delivered by combining knowledge from personal ride histories and the mobility
patterns of other riders. In another work, Ivanchev et al. [47] utilized smart card
data from a bus line in Singapore for developing a modeling platform for testing bus
transportation.

Finally, as discussed before, in the work of Gkiotsalitis and Alexandrou [35] a
more individual-based approach was considered for clustering users based on the
similarities of their mobility patterns as they were retrieved from pattern recognition
on their historic smart card data logs. For the case study, data from 200 Oyster card
users in London were utilized.

It is evident that smartcard data offers less qualitative information compared to
social media or cellular data generating problems for predicting the daily schedules
and the social networks of individuals. Nevertheless, it has great potential on the first
scale of information retrieval: “Capture in real-time the traffic on road networks and
the dealys on public transport”.

5 Use of Geo-Location Data via Personal Navigators
and Smartphones in Transportation

More classic methods on dynamic OD estimation using automatic vehicle identifica-
tion data can be found in the work of Zhou and Mahmassani [48] and Baek et al. [49].
Schuessler and Axhausen [50], Zheng et al. [51], and Brunauer et al. [52] proposed
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methods for distinguishing pedestrians, bicycles, cars, buses, and trains on the basis
of GPS data only. Stenneth et al. [53] introduced an idea of using GIS information to
enhance the accuracy of classification. They utilized information about the real-time
location of buses and locations of rail lines and bus stops where they reported that
they could improve the classification accuracy by 17 %.

Nitsche et al. [54] and Feng and Timmermans [55] proposed methods that use
acceleration data together with GPS data following the work of Wu et al. [56] on
estimating individuals’ activity patterns. Wu et al. [56] attempted to estimate the
activity patterns of smartphone users. They developed a method for classifying
“indoor”, “outdoor static”, “outdoor walking”, and “in-vehicle” status. Similarly,
Hato [57] developed a special device, called a behavioral context addressable logger
(BCALs), for collecting various kinds of data such as GPS coordinates, acceleration,
atmospheric pressure, angular velocity, UV index, direction, and loudness. BCALs
can distinguish situations in which smartphone users are classified as “walking”,
“up/down-staircase”, “bicycling”, and “in-store”.

There are also studies on trip-separation methods (mainly by capturing the starting
and ending time of a trip) by Li et al. [58], Bohte et al. [59], Chen et al. [60] and Li et
al. [61]. Among these studies, only Witayangkurn et al. [62] reported an evaluation of
a trip-separation method. The basic idea forming the basis of their method is to find
the so-called “stay points”. They regard consecutive GPS coordinates as stay points if
they satisfy the following two conditions: (i) they fall within a circle with diameter of
196 m; and (ii) the time difference between the first and last stay points is more than
14 min. The key idea behind this stay-point detection is that it eliminates outliers,
which can cause mis-detection. This trip-separation method achieved precision of
92.4 % and recall rate of 90.5 %.

Given the above, one can conclude that geo-location data from smartphones or
personal navigators have been mainly utilized for:

• Estimating OD matrices
• Capturing the type of utilized transportation
• Activity-pattern estimation
• Separation of trips

6 Optimizing Joint Leisure Travel with BigData

Continuous updated, user-generated data can be utilized to capture less frequent trips
and improve the understanding of individuals’ mobility behavior. Collected data from
Smartphones, Social Media, personal navigators and Smartcards has an individual-
istic nature since it is generated from distinct users. In a generalized example, it is
assumed that the generated data footprint from an individual at each time instance
returns information about the timestamp of data publishing, the utilized transport
mode, the geo-location and the user ID.
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δi,t =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t

ζ

L

i

where δi,t is agent’s i generated data footprint, t the timestamp, ζ the transport mode,
where ζ ∈ Z and L the geo-location where L ∈ Λ and Λ is the set of geo-locations
defined by a pair of coordinates.

Following the above notation, individuals’ data generation can offer mobility
insights regarding his/her daily mobility patterns via utilizing un-supervised pattern
recognition models. Those models can be trained on datasets containing historical
data from one individual’s data footprints accumulated over a significant time period
(i.e., more than 6 months). The outcome of the pattern recognition phase can be
summarized in a probability matrix with spatio-temporal characteristics, Pi,t [L , ζ ],
which returns the probability of individual, i , to be at location, L , and use trans-
port mode, ζ , at time t . Since individuals mobility patterns can vary significantly on
weekends, for each individual, i , two matrices can be assigned—one capturing the
travel patterns of the user during the week and one during the weekend. Further dis-
cretization is allowed and can be decided in a case by case basis if certain individuals
have significantly different mobility patterns over some days of the week.

Each matrix Pi,t [L , ζ ] has [T × λ × Z ] elements, where T is the sum of time
instances over a day and Z the set of available transport modes including on foot
travel. Having calculated one individual’s probability matrix at day type k, the daily
mobility plan of the individual can be estimated with deterministic modeling via
using single point estimates. For each single-point estimate the matrix Pi,t is utilized
and the output is a sequence of states, qi,ρ(t), where ρ the list of feasible states at time
t and day type k as they are derived from the analysis of individual’s data footprints
δi,t (refer to Fig. 2).

Fig. 2 Estimating the daily
evolution of states over a
weekday with the use of
probability matrix Pi,t
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Apart from the probabilistic matrix, historical, user-generated data can offer
insights on the social network of individuals. For instance the list of friends, acquain-
tances and common preferences can be retrieved from user-generated data analysis
(refer for instance to the released dataset from [63] using data from Facebook.com).
Golder et al. [64] showed also that users only message to a small number of friends on
Facebook (close friends) while they have a large number of declared friends (acquain-
tances) and Huberman et al. [65] showed that most of the links declared in Twitter
are meaningless from an interaction point of view but hidden social networks can be
revealed when tracing the spread of ideas. In the same direction, different forms of
user-generated data can be utilized to identify the social network of one individual
(ego-centric approach) and attach a weight representing the strength of bonds among
individuals:

Wi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wi, j

...

...

wi,N

where { j, ..., N } is the set of individuals having social ties with user i and Wi ≥ 0
the weight symbolizing the connection strength among them.

On another note, the preferred undertaken activity of one individual i at one re-
visited location L ∈ Λ can be estimated after analyzing historical user-generated
data. In the work of Gkiotsalitis and Stathopoulos [66] empirical rules for allocating
one activity Am ∈ A at one re-visited location L were defined by categorizing
all activities in a discrete set of four (Fixed; Quasi-Fixed; Flexible; Home-related).
Hence, each re-visited location L by one individual i is associated to one and only
one activity Am :

i[L] = Am ∈ A (1)

For allocating activities to locations, one can utilize spatio-temporal analysis on
historical data. Such approach had been used in the case of user-generated data from
social media ([36]) and cellular data ([67]).

Moving further towards that direction, user-generated data can also provide infor-
mation on how far one individual can travel to participate at a leisure activity at
different day times and day types. For instance, one individual might not be will-
ing to travel more than 500 m at working hours during the week for participating in
leisure activities. In an attempt to model one individual’s choice of traveling a cer-
tain distance for participating in a leisure activity, a utility function can be defined.
After applying a time discretization scheme t = {1, ..., T }, the choice options can be
indexed by j = {1, ..., J } where Fj is the traveled distance between two consecutive
activities. The distance between two consecutive activities can be either calculated
with the Haversine formula (Great-circle distance) or via the map-based shortest path
distance with the use of a shortest path algorithm (refer to [68] for such algorithms).
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j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 : Fj ≤ 250 m

2 : 250 m < Fj ≤ 500 m

3 : 500 m < Fj ≤ 750 m

4 : 750 m < Fj ≤ 1 km

5 : ....

6 : ....

For each day type, k, an index of satisfaction for participating in different activity
types with respect to their distance from the previous location can be defined in the
form of a linear utility function:

Vt j (k) = α j (k) + β j (k)At (k) (2)

where At (k) varies across different times of the day and represents the activity type
(i.e., home, fixed, quasi-fixed or flexible) in the form of a categorical variable. In
addition, α is a scalar utility term representing individual’s preference for alterna-
tive j .

The random utility of traveling distance Fj , for an individual can be described by
a random utility model:

Ut j (k) = Vt j (k) + εt j (k) (3)

where εt j (k) is the unobserved component of the utility function and can be treated
as a random variable since it includes the impact of all the unobserved variables
which influence the utility of selecting a specific alternative.

With the assumptions that errors follow a Gumbel distribution, are independent
and identically distributed, the probability of selecting an alternative λ = Fj at a
certain point in time, ρtλ(k), can be expressed via a multinomial logit model:

ρtλ(k) = ρ

(
Vtλ + εtλ(k) ≥ max j∈{1,...,J }Vjt (k) + εt j (k)

)

= eVtλ(k)

∑J
j=1 eVt j (k)

(4)

The parameters α j (k), β j (k) can be estimated for each individual as the values
that maximize the log-likelihood function:

max
α j (k),β j (k)



(
α j (k), β j (k)

)
(5)

resulting to a non-linear optimization problem for which the optimization algorithm
BHHH proposed by Berndt et al. [69] can be applied. The coefficient values are
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updated in an iterative approach beginning with a starting set of values and iterations
continue until convergence.

To summarize, pattern recognition models can be applied to generate some value
from user-generated data:

• Estimate individuals’ daily schedule over different day types via single-point esti-
mates of their state evolution over time

• Capture the gravity of personal relationships and assign weights to friends and
acquaintances of each individual

• Replicate the decision-making process of each individual and return their willing-
ness to travel certain distances at different times of the day to participate in leisure
activities

To optimize joint leisure travel, a time and place for a joint leisure activity which
maximizes the gain of all attendees should be defined. For such undertaking, the
perceived utility of all individuals participating at one activity L ∈ Λ at each point
in time t over a day should be estimated for selecting the spatio-temporal set L∗, t∗
which maximizes the perceived utility among all attendees. The computational cost
of it is λ × T × N 2 where T is the discretized time scheme and N the number of
individuals (refer to Fig. 4). Although the effect of time discretization to the overall
time complexity is linear, a discretization every 30 min to one hour is proposed to
avoid significant computational cost increases. Therefore, the time should be dis-
cretized and at each step the utility of attending one location of leisure activity can
be computed (refer to Fig. 3).

In the problem of estimating the location of a leisure activity and the time of
day that maximizes the utility of performing a joint leisure activity, the relationship
weights among the attendees can be perceived as positive factors while the required
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Fig. 3 Selecting place of interest L∗ among a set of locations L ∈ λ at time instance t which
maximizes the perceived utility among all attendees
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travel distance from each individual’s current location to the meeting place can be
perceived as negative.

Let us assume that the probability of individual i to travel a certain distance τi ∈ Fj

at time instance t is ρt j (k) as it is already derived from his/her utility-maximization
model. Then, a threshold value Υ can be introduced and if ρt j (k) < Υ for one place
of interest L ∈ Λ for which the distance from the previous individual’s location is
within Fj , then location L is perceived as non-feasible place for transition. Hence,
for each individual i the distance between his/her current location, c, and a place of
interest L ∈ Λ is calculated. Then, if distance τ(c, L) ∈ Fj and ρt j (k) < Υ or L
is not a leisure activity location for individual i , the place of interest L is assigned
to the list of in-feasible transitions for time t : φi,t = φi,t + {L}. Then, a location
L∗ ∈ Λ and time t∗ ∈ T is the optimal joint leisure activity set if:

{L∗, t∗} = argmax(α

N∑

i=1

N∑

m=1

1

2
wi,m(L , t) − β

N∑

i=1

τi (L , t)) (6)

where:

wi,m(L , t) =
{

wi,m ≥ 0: weight of connection strength between users i, m

0 if L ∈ φi,t or L ∈ φm,t

τi (L , t) =
{

τi ≥ 0: the traveled distance between the current location and L

0 if L ∈ φi,t

and α, β > 0 objective function coefficients. It is evident that α is more significant
than β if one considers the activity participation of attendees with strong social ties
as the main objective, while β is more significant if the scope is to reduce the covered
travel distance. Algorithm 1 summarizes the optimization procedure.

The computational cost of Algorithm 1 for joint leisure travel optimization was
tested on a 2556 MHz processor machine with 1024 Megabytes RAM. During the
testing, the number of locations was, Λ = 200 locations, and the time was discretized
into ninety-six periods of 30-min. duration, T = 96. The main variable is the number
of friends and acquaintances for which Algorithm 1 computes the location and time
for a leisure activity and the computational cost is plotted in Fig. 4. Figure 4 provides
an indication of the number of individuals which can be served within a reason-
able time frame. Finally, it should me mentioned that Algorithm 1 runs centrally to
avoid unnecessary re-computations (in general, the approach follows a central archi-
tecture where user-generated data is stored centrally and the travel patterns, list of
friends and acquaintances and willingness to travel certain distances to participate at
leisure activities are estimated after processing the stored data; therefore, enabling
the implementation of Algorithm 1 at a central level.
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for each user i ∈ N do
for each time instance t ∈ T do

Estimate location Li,t where individual i is expected to be located at time t using the
single-point estimate based on matrix Pi,t ;
for each location L ∈ Λ do

if transition from Li,t to L ∈ Fj and ρt+1, j (k) < Υ then
φi,t+1 = φi,t+1 + {L};

end
end

end
end
Set the cost of optimal solution Q = −∞;
Set optimal meeting location L∗ = � and optimal timing as t∗ = �; for each time instant
t ∈ T do

for each location L ∈ Λ do
Set E = 0;
for each user i ∈ N do

for each user m ∈ N do
if location L �∈ φi,t and L �∈ φm,t then

E = E + (
1

2
αwi,m(L , t) − βτi (L , t));

end
end

end
if E > Q then

Q = E ;
L∗ = L;
t∗ = t ;

end
end

end
Algorithm 1: Calculate the optimal cost for participation in a joint leisure activity

7 Discussion and Conclusions

This survey study attempted to investigate how different forms of user-generated data
(cellular, social media, smart card and personal navigator data) have been utilized
until now and examine if the data sources and the developed techniques have some
potential on increasing the efficiency of joint leisure activities in today’s metropolis.

In a first attempt to summarize the results, Table 1 provides aggregated information
on the usage of user-generated data from different sources according to the state-of-
the-art studies.

In the introduction section of the survey paper, three information dimensions
were considered for assuming that an individual is perfectly informed for making an
optimal decision on selecting a leisure joint activity. In Table 2, we show which kind
of information is expected to be retrieved from different sources of user-generated
data. From Tables 1 and 2 one can observe that although the full information for
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Fig. 4 Computaional cost
considering Λ = 200 and
T = 96 for different
numbers of individuals
(tested on a 2556 MHz
processor machine with 1024
Megabytes RAM).
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Table 1 Aggregated information on the usage of user-generated data from different sources accord-
ing to the state-of-the-art studies

Cellular Social media Smart card GPS
positioning

Estimating OD matrices � × � �

Extracting the utilized mode of
transportation

� × � ×

Capturing the trip separation × × � �

Real-time traffic estimation � × × �

Estimating the daily schedule of
agent’s social network

× � × ×

Crisis events analysis × � × ×
Capturing individuals’ mobility
patterns

� � × ×

Retrieving the performed activities
by users

� � × ×

Forecasting the expected demand at
local events

× � × ×

Separating trips � × × �

Activity-pattern estimation � � � �

forming an objective function is obtainable, research work has not been focused on
that direction.

Due to the above, the importance of developing new models for tapping the poten-
tial of user-generated data for improving the efficiency of joint leisure activity plan-
ning is highlighted. New models and techniques are recommended to focus on the
following:
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Table 2 Potential of user-generated data on providing information for joint leisure activity planning

Cellular Social media Smart card GPS
positioning

Real-time traffic and public
transport schedules

× � � �

Location of places of interest × � × �

Daily schedules of agent’s
social network

× � × ×

• Data processing tools
• Algorithmic tools for data aggregation and fusion
• Processing tools that can calculate the maximum of the utility function and return

an optimal joint leisure activity to the traveler

Considering those issues, we tried to formulate the problem of optimizing joint
leisure travel by taking into consideration the special characteristics of user-generated
data. The proposed formulation is flexible and can handle inputs even after data fusion
since it requires a minimum information set (UserID; Timestamp; Geo-location;
transport mode). The proposed algorithm is also designed to ensure scalability by
enabling the computation of leisure travel optimization for up to 30 individuals in less
than 20 minutes considering a 15-minute time discretization and up to 200 locations
to choose from.

Proceeding towards this direction, around 70 % of the total number of trips in
metropolitan areas can be planned more efficiently and the interpersonal activities
can be heavily increased in numbers yielding remarkable gains for both the individual
traveler and the central transport authorities.
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Air Traffic Flow Management Data Mining
and Analysis for In-flight Cost Optimization

Leonardo L.B.V. Cruciol, Li Weigang, John-Paul Clarke and Leihong Li

Abstract As the air traffic volume has increased significantly over the world, the
great mass of traffic management data, named as Big Data, have also accumulated
day by day. This factor presents more opportunities and also challenges as well in
the study and development of Air Traffic Management (ATM). Usually, Decision
Support Systems (DSS) are developed to improve the efficiency of ATM. The main
problem for these systems is the data analysis to acquisition sufficient knowledge for
the decision. This paper introduces the application of the methods of Data Mining to
get the knowledge from air traffic Big Data in management processes. The proposed
approach uses a Bayesian network for the data analysis to reduce the costs of flight
delay. The process makes possible to adjust the flight plan such as the schedule of
arrival at or departure from an airport and also checks the airspace control measure-
ments considering weather conditions. An experimental study is conducted based on
the flight scenarios between Los Angeles International Airport (LAX) and Miami
International Airport (MIA).

1 Introduction

Air Traffic Management (ATM) is a complex process involving many attributes
with on-line operation. Moreover, it is a chain with various factors that impacts
the environment. A wrong or not previously evaluated decision in an interval could
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generate unexpected or unknown results in future instants. Hence, ATM is time
contingent. Air traffic controllers do not have enough time to discover, analyze and
evaluate potential impacts of previous decisions. Using well developed decision
support system (DSS), the suggested actions to air traffic controllers can improve the
air traffic flow management, safety, and also reducing the operational costs, etc.

To illustrate the possible chained impacts could be cited the overloadedmaneuver-
ing area, remote boarding and landing when this procedure is possible at the airport,
retention of flights at the origin airport to wait for the flight crew or while the delayed
flights are properly accommodated within the available air traffic flow. As the need
to hold or forward aircraft in flight or wait on the runway, the operational cost with
fuel and crew is affected and causes circular waiting en route near the airport until
get authorization to land, and others.

Thedevelopment of knowledgemanagement has influencedmanyareas.However,
there are two opportunities to scientific community: how lead with an amount of
data so big in real-time and achieve useful results; and with Big Data available how
improve the real-time decision support systems using historical information.

In the last decade, there has been a large increase in the number of databases,
especially the unstructured data. To discover useful knowledge from these data is
the new task for the government organizations and enterprises. This great mass of
data, called Big Data, is presented in ATM environment too, which are from air
traffic control process, whether information and airlines. In ATM systems, the study
of Big Data is with the focus on the following two aspects: (1) ATM creates a huge
amount of digital data such as radar data, restrict measurements applied by air traffic
controllers, communication between pilots and controllers, flight plans, etc. [1]; (2)
ATM needs to use information from various data sources such as meteorological
data, GPS guidance, historical monitor images, etc.

Some approaches can be integrated to solve ATM problems such as to reduce
operational in-flight costs for the airlines and passengers, improve airspace manage-
ment and control with safety and cheaper air traffic fluency and reduce impact of
decisions in airspace scenarios. Nowadays, there are conditions, data and knowledge
to be used as input for intelligent systems to support decision process in air traffic
management. The increasing amount of historical data provides both opportunities
and challenges to improve the decision support systems.

The DSS comes as a great tool in the whole ATM environment, which can sup-
port in the automation processes with quick and easy information to controllers by
impact evaluations, prediction analysis, improve the control on chained processes,
and others. An important point of success in this domain is the air traffic controller
confidence about each suggestion made by the system.

Considering the proposed suggestions are based on historical information, it will
improve the acceptance by specialists day-by-day and also the speed of knowledge
acquiring by new controllers. Hence, the knowledge acquired by the controller is
transferred to the knowledge base. So, DSS will learn, adapt and suggest more
appropriate decisions based on historical actions applied. The learning process of
the system can be accomplished either on daily tasks as with the previously acquired
knowledge.
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This paper presents an approach in which Big Data structures are used to compile
an appropriated knowledge for DSS in a real-timemanner. The presented approach is
developed in two steps. First, Bayesian network is used to conduct data mining in Big
Data; second, a prediction rule structure is constructed in a real-time environment.
The two-step approach involves the proposal of adjustment in a flight plan such as
schedule of arrival/departure airport and checking in airspace controls considering
schedule and/or weather conditions. The approach is demonstrated with air traffic
between Los Angeles International Airport (LAX) and Miami International Airport
(MIA).

The paper is organized in the following structure. Section2, briefly reviews rele-
vant research and concepts of Data Mining, Big Data, Bayesian network and ATFM.
Section3 proposes a DataMiningmodel for ATFM. Section4 presents the case study
and results. Section5 concludes the paper with summaries and the direction of future
study.

2 Related Concepts

This section briefly describe the related concepts of Data Mining, Big data, Bayesian
network and also Air Traffic Flow Management.

2.1 Data Mining

Datamining is a process that aims to discover useful patterns and correlations through
historical data [2–4]. This techniquemakes possible to discover relationships between
business attributes and understand its process to take better actions based on real and
specific knowledge for each situation.

The steps of data mining can be summarized such as business and data under-
standing; data preparation, selection, cleaning and modeling; knowledge discovery
and evaluation; and data availability for use of specialists and/or decision support
systems.

The Fig. 1 presents a basic Data Mining flow. It is possible to verify the process
interactivity, which it is continuously improved, i.e., each phase or whole process
is repeated according to how satisfactory it was the results or looking for business
improvements.

Through Data Mining process is essential that DM experts work together with
business specialists to achieve a better understanding about the business particulari-
ties. These specialists will interpret the achieved results, support the data correlation
process, and others. The DM process can be explained in the following six steps.
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Fig. 1 Data mining flow

1. Business Understanding: This process will discover which goals might be
achieved. The initial analysis of available data can determine which strategy
will be used to select interest variables, evaluate information subgroups that are
needed to develop the relationship among the data, and others.

2. Data Understanding: This step will analyze the data structures which will be
processed and its computational requirements to be handled. Considering Big
Data structures, it is important to perform tests in a reduced case study to evaluate
and demonstrate that achieved results are relevant. Therefore, it will be possible a
better data and business understanding about how all data are related and reduces
the effort and time to develop the DM model.

3. Data Preparation, Selection and Cleaning: Considering Big Data structures, this
step is the longest andhardest to complete due some reasons such asmanydifferent
data sources, notations, values and meanings. The cleaning process will deal with
missing, errors, outliers and integrity of preloaded data. This data processingmust
consider the business goals and its relationship among data.

4. Data Modeling: Considering Big Data structures, this step will create some Data
Marts, which it will make possible to handle easier the data. These new structures
organize the data as a Data Mining goal, which it can exists two or more goals in
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the same DM process. Each Data Mart has all necessary related information to
achieve the results of DM process.

5. Data Mining: This step is responsible to discover useful information in databases
by data mining process and generate knowledge for decision process [4–8]. It is
possible to be more specific about the tasks and its results such as description,
classification, prediction, group and/or link. DM is a general concept which it
can use many strategies and approaches to execute chosen task [9, 10]. There is
a high computational demand to process all information in this phase.

6. Knowledge Discovery, Evaluation and Data Availability: After the Data Mining
step, the information discovered will need to be analyzed by a business specialist
to judge and understand the achieved results. This evaluation will determine if
the process will need to be repeated from some specific step or the whole DM
process again. In the evaluation task, it is possible to use statistics methods to
prove and explain some discovered information which it will base the decision
process with more confidence.

2.2 Big Data

The amount of available data is so big in many companies and authorities that a
special term Big Data is referred to those data. Basically, Big Data is historical and
useful data. As the time accumulated, the scale of data is so big and relates to many
ones in the society. Data Mining can be used as a powerful technique to analyze and
learn with Big Data and make structures that could be used as input for decision
support system.

Themajor concern of usingBigData in real-time situations is howquick to achieve
acceptable results. As it is necessary analyze so big and not-structured data or from
many data sources, the DSS does not get to read these data andmake available for the
specialist in a real-time and critical environment, if it not be analyzed in a previous
moment.

There is not a formal and unique Big Data definition for while. It can be described
as a formal manner for knowledge discovery in so big data structures. Another way
to explain this definition it is a manner used by companies to define strategies and
tools to structure, handle, analyze and present the achieved results, expected or not,
which it was discovered from big data structures. The complexity of analyzing big
data is based on three factors: volume, velocity and variety, in order to base business
specialists in their decision process.

• Volume: The size of data.
• Velocity: The speed of change in historical data.
• Variety: The number of data sources and how hard is to understand and merge.

These three factors make possible a better understanding about data fast increas-
ing, variety about how these data are created, storage and made available for use and
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Fig. 2 Big data dimensions
related with ATM

the impact of velocity on data that will be analyzed [11, 12]. Figure2 presents the
relationship of Big Data dimensions related with ATM.

To improve the data processing results, one manner is making the knowledge
discovery process before the necessary time in two steps. First, it used a technique
called Bayesian network that it will mining all available data and discover useful
patterns and correlations. Second, it is created simple and fast structures to be used
by decision support system in real-time. By this process, it will be created a prediction
database, which contains rules identified by the first step ready to be read by DSS.

The use of historical data is an important step to improve and achieve a next step
in decision support system. It is common using Data Mining techniques to acquire
knowledge, however these data could be useful as input for other kind of systems,
as it is proposed in this paper [13–15].

In the Air Traffic Management domain exists many opportunities to improve the
decision support systems. Considering the critical real-time environment, the DSS
suggestions might be clear and self-explained for air traffic controllers. Thus, the
historical actions can improve the confidence of suggestions, once it is based on
better similar historical actions.

2.3 Bayesian Network

Bayesian network is a structure which represent the correlations between attributes,
in a specific domain, by using conditional probabilities [16–19]. Through these
correlations are possible identify and understand how the domain is based on
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Fig. 3 Example of bayesian network

probability model and use this knowledge to take actions in similar situations.
Figure3 presents a basic example of how a Bayesian network could be constructed
using ATM domain.

As it is detected probable association among variables and related uncertainty,
Bayesian network arises as an important tool to identify and infer useful correlations
which can be definitive, it usually happens due some aspects, or temporal, it was
happening due some unusual environment.

To construct the network, it is necessary to perform a priori probability attribution
for each correlation or use a learning algorithm. A Bayesian network is composed
by following aspects [20]:

• Set of variables defined on a directed acyclic graph.
• The variables states are finite and mutually exclusive.
• For each variable X , with ascending Y1, . . . ,Yn , There is a conditional probability
associated in P(X − Y1, . . . ,Yn).

The Bayes’ Theorem can be applied as a way to calculate the posterior probability
distribution based on the product proportion of priori distribution and the similarity
function [21].

The priori distribution is an ad-hoc probability associated based on usual events
in the environment, so using the theorem is possible to get a normalized probability
which will represent better the probability for data analyzed.
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Pr(A|B) = Pr(B|A)Pr(A)

Pr(B|A)Pr(A)+ Pr(B|¬A)Pr(¬A)
(1)

where:

Pr(A|B) it is the posterior probability distribution
Pr(A) it is the priori probability distribution

Pr(B|A) it is the conditional probability

2.4 Air Traffic Flow Management

ATM focuses on providing means to manage air traffic, taking into consideration
factors such as security, planning, justice, finance and meteorology [22, 23]. By
ATM the airspace can be monitored, controlled and the aircraft flow can be managed
in an integrated manner. The ATM environment can be divided into three sectors:

• Air Space Management: ASM focuses on increasing the capacity of aircraft in the
airspace, with the purpose of provide sufficient services for demand within the
available structure.

• Air Traffic Control: ATC focuses on controlling the aircraft flight, providing
mandatory information to preserve the safety.

• Air Traffic Flow Management: ATFM focuses on providing information to main-
tain the air traffic flow with safety and reduced impact on future scenarios.

ATFM is a complex procedure to avoid exceeding air traffic capacity and focuses
on the supply of information to maintain the traffic flow with safety and less impact
on scenarios that are necessary to take unexpected actions. The ATFM environment
can be organized into three phases:

• Strategic Level: Considering tactical planning of flights and covering the period
of forty-eight hours until the time before the flight.

• Operational Level: Focusing on strategic decision making and covering the period
from forty-eight to two hours before the flight.

• Tactical Level: Considering tactical decision making and covering the period from
2h before the flight until the aircraft arrives at its destination.

ATFM is responsible to assure aircraft traveling in a safe, quick, and economic
way. It is responsible to avoid overloading facility capacity, optimize airspace usage,
and provide information to responsible authority.

ATFM can guarantee that flights are conducted in a safe, quick, orderly and
economic way. It is possible to avoid overloading in the air traffic capacity, opti-
mize airspace and provide information to responsible authority [24–30].

Some activities from ATFM can be automate, partially or not, or improve using
DSS. So, air traffic controller canmonitor and analyze all aspects involved in the envi-
ronment, such as meteorological aspects, evaluation of restrictive measures before
to take some action, and verify alternatives for air traffic flows.
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3 ATFM Data Mining Model

We proposed to use Big Data structures to discover an appropriated knowledge that
is applied in real-time DSS for ATFM. The proposed method has two steps. First,
Bayesian network is used to conduct data mining in Big Data; second, a prediction
rule structure is constructed for real-time application environment. Figure4 presents
architecture that integrates Big Data analysis in decision support system for ATFM.

These rules are used to provide real-time knowledge for DSS in future times in
order to reduce operating costs and increase safety with better-informed decisions.
The proposed approach is performed in two stages: Preliminary Analysis and Data
Analysis in Real Time.

It was developed a mechanism to discover patterns from historical information,
considering big volume of data partial available. It aims to identify patterns on flights
based on schedule, weather conditions, airports, and others, to use this information
to conduct predictions.

Fig. 4 ATFM data mining model overview
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In the pre data analysis schema it is possible to develop a model which previous
knowledge is analyzed offline with more time to create as many rules predictions
as possible from data. During this first stage, Big Data structures are organized and
analyzed to be handling by data mining process which uses Bayesian network to
create this data prediction database. This step will be responsible for cleaning, orga-
nizing and structuring data and execute the processes of knowledge discovery to
create forecasting rules, this will be used for Data Mining (DM) with the technique
of Bayesian network. Data Analysis will use the knowledge generated in the previous
step through the identified prediction rules. These structured rules will assist the deci-
sion making process of air traffic controller to be used, such as Multiagent Systems
(MAS), Reinforcement Learning (RL) and Markov Decision (MDP) Processes.

Thus, it will be stored prediction rules based on historical information. The major
objective is to discovery patterns that could be used to improve suggestions fromDSS
to airspace controllers. The model will combine the prediction rules and flight plans
in a DSS simulated environment and suggest integrated actions to better decisions,
i.e., considering the smallest impact on future scenarios. The smallest impact will be
based on safety and reduce operating costs by improving the knowledge acquisition
process in Big Data structures by own adaptation of decision support systems in
real-time environments and improving on air traffic flow management.

At the end of this process, it had been created a data prediction database. Second
phase will receive a group of flight plans to be analyzed in real-time environment.
The prediction analysis process will verify the initial flight plans and compare with
data prediction database, which it had been stored prediction rules based on acquired
knowledge from Data Mining process.

At this moment, it generated updated flight plans that it could be used as input for
DSS, which it can search more rules and create optimized flight plan as output from
process.

The second phase aims to discovery similar situations and its variables looking
for possible correlations between current situations and probability of achieve the
results again. Considering this correlation, it is possible to select some actions as
suggestions for airspace controllers, which will store all decisions taken to improve
suggestions and learn with specialists.

4 Case Study

An experimental study is demonstrated with air traffic between Los Angeles Inter-
national Airport (LAX) and Miami International Airport (MIA). This experiment is
to identify patterns and correlations between departing and arriving flights in those
two airports, and to update flight plans so that delay costs associated with extra crew
hours and fuel burned.
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More than600,000flights between50USairportswere processed for this research,
it was generated 25 tables with 25GB of data. 719 flights from available data were
analyzed. The major objective of this experiment is to create a schema that works
and to achieve great results from a piece of big data, due the high cost of processing
in this kind of structures. In this case study a big data structure was studied, however
tests with a really big amount of data will be studied in future works.

The software were chosen with WEKA as it is one of the most popular applica-
tions in Data Mining area and the UnBBayes to generate the network. The task was
association with Apriori algorithm, minimum support equals 90% and minimum
confidence equals 80%. It was identified 42 attributes and chosen 7 to be used in
first study: temperature, original departure, estimated departure, published departure,
original arrival, estimated arrival and published arrival.

4.1 Results

The first study achieved promising results by identifying 6 rules from database struc-
ture available. These rules will compose data prediction database, which will be
responsible to provide fast knowledge for DSS in real-time.

1. Original arrival between 5 and 7:30pm and published departure delayed between
3 and 9min, the published arrival delayed between 3 and 5min in 64% of cases.

2. Temperature is lower 55F in arrival airport and published departure is delayed
more than 4min, the published arrival time increase about 20%.

3. Estimated arrival is between 7 and 11am and published departure was delayed
until 7min, the estimated arrival will be same as estimated arrival in 59%of cases.

4. Temperature is lower 40F in departure airport, the published departure increase
more than 5min in 27% of cases.

5. Original departure between 6 and 8:15pm, the flight period increases about 4min
in 70% of cases.

6. Published arrival is delayed until 6min from original arrival and temperature is
higher 62F, the aircraft will arrive in original time.

When initial flight plans are inside prediction analysis process, it will be evalu-
ated if some flight plans match with some rule. In positive case, it will be adjusted
by creating updated flight plans. This will be used in decision support system as
suggestions for airspace controller verify and compare with original plan and take
needed actions based on previous knowledge.

Considering these relationships the Bayesian network was developed. Figure5
presents the influence correlation between each attribute. It is possible to verify that
all attributes are much related, and this is a point that confirms a great chosen of
attributes but this could limit more important and different patterns to be discovered.
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Fig. 5 Bayesian network

5 Conclusions

As the air traffic controller daily tasks are complex, there is necessary to provide
decision support systems that could assists and provide suggestions and knowledge
data to support their decisions. Nowadays, there are big amount of historical data
which can be used to improve the decision process. Thus, it is possible to learn with
this history, identify useful patterns, and make forecasts based on statistical events.

This proposal for ATFM domain is an experiment research to model these com-
plex attributes and variables, which aims to create a fast process of data clean and
load; data mining process that could identify attributes correlated as the influence of
temperature, wind speed and forward a delayed flight in order to reduce operational
costs; create a robust schema of predictions rules to support DSS operation; Based
on these steps, the statistic makes better suggestions and adjustment in flight plans
initially defined.

From the results achieved initially, it promises how to evaluate the complexprocess
and to get the solutions for this kind of applications. It was identified 6 rules in the first
study that it will be used to reduce in-flight costs considering costs of fuel and crew.
When it is identified that some weather conditions repeats with great probability, the
air traffic controller could take actions to make previous adjustment before aircraft
take off, which will reduce many related risks.

The next steps for this research include more attributes for Bayesian network to
identify new useful patterns and correlations, improve tests about minimum confi-
dence and support to catch more possible patterns, increase amount of airports and
flights, include more attributes and reports from METAR and TAF, and others. The
DSS to support this kind of task will be developed based on presented approach,
and used Reinforcement Learning and Multiagent System to model this approach.
Moreover it will be created functions related with effectively crew and fuel cost to
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verify the financial impact of delays. Also, include the knowledge of the aircraft
manufacturers, e.g., the speed at which the aircraft must fly at a certain altitude to
have a great fuel consumption.
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Simulation Optimization of Car-Following
Models Using Flexible Techniques

Vasileia Papathanasopoulou and Constantinos Antoniou

Abstract Car-following behavior is a key component of microscopic traffic
simulation. Numerous models based on traffic flow theory have been developed for
decades in order to represent the longitudinal interactions between vehicles as realis-
tically as possible. Nowadays, there is a shift from conventional models to data-driven
approaches. Data-driven methods are more flexible and allow the incorporation of
additional information to the estimation of car-following models. On the other hand,
conventional car-following models are founded on traffic flow theory, thus providing
better insight into traffic behavior. The integration of data-driven methods in appli-
cations of intelligent transportation systems is an attractive perspective. Towards
this direction, in this research an existing data-driven approach is further validated
using another training dataset. Then, the methodology is enriched and an improved
methodological framework is suggested for the optimization of car-following mod-
els. Machine learning techniques, such as classification, locally weighted regression
(loess) and clustering, are innovatively integrated. In this chapter, validation of the
proposed methods is demonstrated on data from two sources: (i) data collected from
a sequence of instrumented vehicles in Naples, Italy, and (ii) data from the NGSIM
project. In addition, a conventional car-following model, the Gipps’ model, is used as
reference in order to monitor and evaluate the effectiveness of the proposed method.
Based on the encouraging results, it is suggested that machine learning methods
should be further investigated as they could ensure reliability and improvement in
data driven estimation of car-following models.
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1 Introduction

Simulation models play an important role in traffic engineering and recently in
the development of Intelligent Transportation Systems [45]. They are divided into
microscopic, mesoscopic and macroscopic models according to the modeling detail.
Microscopic models describe in high level of detail interactions between individual
vehicles, including interactions between vehicles and roads as well [11]. They consist
of lane changing, gap-acceptance, overtaking, speed adaptation, ramp merging and
car-following models [57]. On the other hand, macroscopic models represent traffic
states in a lower level of detail using aggregated variables (traffic flow, density, speed)
and theories of fluid dynamics [15]. Mesoscopic models provide an intermediate level
of detail using speed-density relationships and queuing models [15].

Appropriate models are chosen according to the requirements of each application.
This research is directed at microscopic traffic simulation, which gives the oppor-
tunity of detailed analysis required in the development of Intelligent Transportation
Systems. Focusing on optimization of car-following models and the key elements of
microscopic simulation [7, 16, 45] an alternative methodological framework is sug-
gested. Car-following models generally represent driving behavior influenced by the
preceding vehicle moving in the same lane so as a crash to be avoided. According to
[57], they are grouped into categories such as Gazis-Herman-Rothery models [33],
safe distance models [34, 44], psycho-physical models [32, 87], and fuzzy logic
models [2, 43].

Over the years, many researches have been demonstrated aiming at the optimiza-
tion of car-following models. Recently, it has been clarified that driving behavior
varies in different traffic conditions, such as free-flowing, approaching, emergency
braking, and stop-and-go [1, 45, 75, 85, 88]. Therefore, there has been a shift from
single state models [61, 67] to more flexible models. The lack of models capable of
capturing various traffic states and correspondingly various driving behaviors has led
to the development of multi-regime approaches [48]. Nowadays, the generalization
of these multi-regime approaches is a challenge issue.

Restrictions, related to the number of regimes and their complexity, have been
the motivation for this research on estimation of car-following models. An alterna-
tive methodology based on data-driven approaches is proposed; actually an existing
methodology has been modified to address these problems. Data-driven methods have
been already used in applications in the field of transportation (e.g. [5, 26, 81–84]).
These methods are more flexible than conventional models and allow the incorpo-
ration of additional information. The development of data-driven methods has also
been benefited from technological advancements such as differential GPS and real
time kinematic, which allow the collection and the availability of high quality traffic
data [3, 66].

In this chapter, an existing methodology based on a machine learning method is
further validated and enriched for optimization of car-following models. The his-
torical background of car-following models and the development of data-driven
approaches is first presented. The existing methodology is applied to a number of
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available NGSIM data sets and the different nature of data is discussed regarding
the impact on the efficiency of the method. In addition, the existing methodology is
further extended and improved for the development of more reliable car-following
models. The revised innovative methodology integrates data-driven methods such as
loess method, clustering and classification, and is validated to Naples data.

2 Historical Background

A historical review of car-following models has been performed by Brackstone and
McDonald [16]. Reuschel [67] and Pipes [61] introduced the idea of car-following
models. Representative microscopic traffic models between the 1950s and the 1970s
have been developed by Bifulco et al. [14], Chandler et al. [17], Colombaroni and
Fusco [23], Kometani and Sasaki [44] and Zhang et al. [90], Herman et al. [40], [27,
35, 55, 79]. Most of them are defined by an acceleration function, which includes the
difference of position xi+1−xi and the difference of speed vi+1−vi between a vehicle
i and its lead vehicle i + 1: the difference of position xi+1 − xi and the difference of
speed vi+1 −vi . Other models have been developed including only one variable such
as the difference of speed [17, 90] or the difference of position [35]. Gazis et al. [33]
proposed a General Motors model (GM) with doubtful efficiency both in low and
high-speed networks [48]. Several extensions to the GM framework followed [13].
Leutzbach [47] and Wiedemann [86] introduced psycho-physical models in order
to address restrictions of GM models. Wiedemann and Reiter [87] suggested that
there are longitudinal interactions in four traffic states: free flowing, approaching,
car-following and emergency situation.

After 1990, [76] identified a different tendency in car-following models due to
technological advancements. New microscopic methods are considered as multi-
agent and are defined by a system of differential equations, each of which captures
a different state. Treiber et al. [78] clarified that reaction time and time steps should
have various values in the simulation process. Gipps’ model [34] is a safety distance
model described by two speed equations correspondingly to free flowing and car fol-
lowing state [71]. In this research this model is used as a reference for the framework
developed in this research. Rakha and Wang [65] tried to modify Gipps’ model. A
detailed analysis of the model evolution is presented by [18]. Bando et al. [8] and
Bando et al. [9] developed a nonlinear model, the Optimal Velocity model, to deal
with stop-and-go traffic states. Further research was performed later [24, 39, 42, 46,
58, 69, 91].

According to Subramanian, [45, 73], drivers’ reaction time is differentiated under
acceleration or deceleration conditions. Ahmed [1] suggested an acceleration model
both for free-flowing and car-following situations. Newell [56] clarified that the
trajectory of a vehicle depends on a time and a minimum distance of spacing.
Treiber et al. [77] proposed the Intelligent Driver Model, which determines driver’s
acceleration in relation with the gap, the speed and the speed difference between a
pair of vehicles moving in sequence. Aw et al. [6] proposed a new general model.
Zhang and Kim [89] developed a multi-regime car-following model, which is deter-
mined by a gap-distance function and the traffic state. Hamdar and Mahmassani [36]
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demonstrated calibration and validation of existing car-following models using
NGSIM data. Tordeux et al. [76] proposed the impact of the vehicle type on driving
behavior. Moreover, the assumption of the GM model that a driver will accelerate if
the speed of the preceding vehicle is higher is re-examined.

More and more parameters and traffic states should be integrated in simulation
process. This need has led to the development of multi regime models and by exten-
sion to data-driven approaches. A multimodal regression to speed-flow data has been
performed by Einbeck and Tutz [28]. Sun and Zhou[73] used cluster analysis in order
to determine the regime boundaries for traditional speed–density models. [4] sug-
gested a data-driven approach as an alternative to the classic speed–density models.
Zhang et al. [90] have demonstrated the use of machine learning methods to sup-
port the development of data-driven intelligent transportation system. Data-driven
approaches have already been used in a fully adaptive cruise control system by [14] or
in car-following modeling with artificial neural networks by Colombaroni and Fusco
[23]. Finally [59] have performed a data-driven approach based on loess method for
speed estimation using Naples data. This research is further extended in this chapter.

3 Methodology

3.1 Methodological Framework

Two data-driven approaches are presented, outlined in Fig. 1. Regarding the first one
approach is an existing method based on locally weighted regression (loess), which
has been already proposed and analyzed in an earlier research [59]. The second data-

Mclust, k-means, etc.

Loess

K- nearest neighbors

Clustering

Fitting

Classification

Loess Estimation

Training data
(Speeds/ Distances/…)

Explanatory data
(Speeds/ Distances/…)

Estimated 
speeds

Loess

Loess

Training

Application

1st approach 2nd approach

Fig. 1 Overall methodology framework for data-driven estimation of car-following models with
machine learning approaches
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driven method is an extension and improvement of the earlier method and comprises a
combination of computational methods, such as locally weighted regression, model-
based clustering and classification.

Both methodological approaches include two parts: training and application. In
the training step the estimation of car-following models is achieved using a training
dataset with triples <vi, vi−1, di,i−1> (leader and follower speed and their distance)
per each time instant. The problem to be addressed is the speed estimation of the
third vehicle when there are available the speeds of the preceding and the following
vehicle and its distance from them. In the application process, when new observations
arise, the appropriate calibrated models are retrieved from the knowledge base and
are applied to provide speed predictions vi for the following vehicle and the next
time instant. The proposed methods rely on non-parametric approaches and do not
include any fixed functional form. They might be considered as generalization of the
multi-regime approaches [4, 5].

As concerns as the second methodological approach, it includes a clustering step
to identify portions of the available data that correspond to traffic states with similar
characteristics. Then, a locally weighted regression is applied to each cluster sepa-
rately and representative models are formed for each group fitting to the data (fitting).
The application step follows, when new measurements arise. New data are classified
to the appropriate classes based on their characteristics. The flexible model that has
been estimated for that class is then retrieved from the knowledge base and applied
to the new data for the estimation of the speeds of the following vehicle.

The performance of the each approach is evaluated using the root-mean square
error (RMSN) of speeds. This assesses the overall error of each method estimating
the difference between the observed (Yobs) and simulated values (Ysim), N is the
number of observations [41, 60]:

RM SN =
√

N · ∑N
n=1(Y

obs
n − Y sim

n )2

∑N
n=1 Y obs

n

(1)

3.2 Methodological Components

Locally weighted regression could be considered as a generalization of the k-nearest
neighbor method [53]. It was firstly introduced by Cleveland [19] and the follow-
ing analysis is based on [20]. Locally weighted regression yi = g(xi) + εi, where i
= 1, . . . , n index of observations, g is the regression function and εi are residual
errors, provides an estimate g(x) of each regression surface at any value x in the d-
dimensional space of the independent variables. Correlations between observations
of the response variable yi and the vector with the observations d-tuples xi of d pre-
dictor variables are identified. Local regression provides an estimation of function
g(x) near x = x0 according to its value in a particular parametric class. This esti-
mation could be achieved by adapting a regression surface to the data points within
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a neighborhood of the point x0, which is bounded by a smoothing parameter: span
α. The span determines the percentage of data that are considered for each local fit
and hence the smoothness of the estimated surface is influenced [22]. Each local
regression uses either a first or a second degree polynomial that is specified by the
value of the “degree” parameter of the method.

The data are weighted according to their distance from the center of neighborhood
x, therefore a distance and a weight function are required. As a distance function p,
Euclidean distance could be used for a single independent variable; otherwise, for the
multiple regression case, any variable should be evaluated on a scale before applying
a standard distance function [21].

A weight function defines the size of influence on fit for each data point taking
for granted that nearby points have higher influence than the most distant. Therefore
the weight function calculates the distances between each point and the estimation
point and higher values in a scale from 0 to 1 are set for the nearest observations.
A weight function should meet the requirements determined by Chandler et al. [17]
and the most common one is the tri-cube function:

W (u) =
⎧
⎨

⎩

(1 − u3)3, 0 ≤ u ≤ 1

0, otherwise

⎫
⎬

⎭ (2)

The weight of each observation (yi, xi) is defined as following:

wi (x) = W [p(x, xi )/d(x)] = (1 − (
(xi − x)

d(x)
)3)3 (3)

where d(x) is the distance of the most distant predictor value within the area of
influence.

In the loess method, weighted least squares are used so as linear or quadratic
functions of the independent variables could be fitted at the centers of neighborhoods
[17]. The objective function that should be minimized is:

n∑

i=1

wi · ε2
i (4)

Fraley and Raftery [30, 31] suggest a model based clustering which combines hier-
archical clustering, expectation-maximization algorithm (EM algorithm) for mixture
models and Bayesian information Criterion (BIC) for selection of models and number
of classes [70]. Hierarchical clustering, used for model-based hierarchical agglom-
eration, is initialized by default with each observation of the data in a cluster by itself
and finished when all observations have been merged into a cluster. A classifica-
tion maximum likelihood approach is required to determine which two groups are
merged at each stage [10, 29, 52]. EM algorithm is included in the R Mclust pack-
age and is applied for maximum likelihood clustering with parameterized Gaussian
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mixture models [25, 52]. The EM algorithm is implemented in two steps: E-step
which calculates a matrix zik, which corresponds to the likelihood of an observation
i to be merged into a cluster k given the current parameter estimates, and M-step,
which calculates maximum likelihood parameter estimates given z. Each cluster is
represented by a Gaussian model ϕκ (x|μκ ,�κ), where x are the data, k an integer
indicating a cluster centered at means μκ and covariances �κ . Then the maximum
likelihood values for the Gaussian mixture model is given by Eq. (5) [30], where τκ

are the mixing proportions.

n
�

i=1

G∑

k=1

τκφκ(xi/μκ,�κ) (5)

Banfield and Raftery [10] suggested a clustering strategy based on a maximization
algorithm and Bayes factors. This strategy was upgraded by Fraley [29], Fraley and
Raftery [30, 31] and could be carried out with the following steps:

• A maximum number of clusters and a subset of covariance structures are consid-
ered

• A hierarchical agglomeration that maximizes the classification likelihood for each
model is performed and the appropriate classifications are illustrated up to M
groups.

• The EM algorithm is applied for each model and each number of clusters 2, . . . ,M.
The procedure is initialized from the classification result of hierarchical agglom-
eration.

• The Bayesian information Criterion BIC is calculated for the one-cluster case for
each model and for the mixture model with the optimal parameters from EM for
2, . . . , M clusters. Each combination corresponds to a unique probability model.

• The model with the highest BIC is selected and the best classification is recovered.
Although in such a way the optimal number of classes is determined, a lower num-
ber of classes could be chosen, aiming at the development of more parsimonious
models.

Another clustering algorithm is k-means. As its name suggests, the k-means algo-
rithm Hartigan [37], Hartigan and Wong [38] and MacQueen [49] minimizes the
distance between each point and the center of its cluster for k given clusters. This is
achieved by assigning each point to the nearest mean and re-estimating or moving the
mean to the center of its cluster. It is regarded as a maximum likelihood clustering.
The objective function to be minimized is:

minμ1,...,μk �h=1�x∈Xh ‖x − μh‖2 (6)

where μi is the mean of cluster i
A hypothesis h1=<μ1, . . . , μκ> with the means of the k different normal dis-

tributions is requested. A random hypothesis is assumed for the initialization of the
procedure. Each instance could be written as <xi, zi1, zi2,. . . , zik> where xi is
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the observed variable and zij is equal to 1 if it was obtained by the jth normal dis-
tribution or 0 otherwise. A maximum-likelihood hypothesis is sought after iterative
re-estimations of the expected values of zij. Then, a new maximum likelihood hypoth-
esis h2 is calculated using the expected values in the previous step. Finally, the new
hypothesis replaces the earlier one and iterations are going on until the algorithm
converges to a value for the hypothesis.

One of the most common methods of classification is k-nearest neighbors [53].
According to this method, all observations correspond to points in n-dimensional
space. Future data points are registered in the class of nearest neighbors of the
already grouped data. Especially, the point of the nearest neighbor classification
is the calculation of the correlation map:

f (z) = arg min
y∈M

d(z, y) (7)

In a pattern space P, where M ⊆ P, z ∈ P and d( ) is a metric in P-dimensional
space. The evaluation of Eq. (7) could be easily achieved on a computer following
three steps: computation of an array with distances from z to each y ∈ M, finding the
minimum distance after comparisons and exporting the final result y* ∈ M [54].

The nearest neighbors could be defined according to the Euclidean distance [68],
if a point x is described as <a1(x), a2(x), . . . , an(x)> where ar(x) corresponds to the
value of the rth attribute of x. Attributes of x could include density, traffic flow, and
time. The distance between two points is defined by Eq. 8 [53]. Thus the class of a
new observation xi is the same as the class of point xj, which minimizes the distance
‖xi −xj‖.

d(xi , x j ) =
√√√√

n∑

r=1

[ar (xi ) − ar (x j )]2 (8)

4 Experimental Set-Up

The data used in this survey are available from two sources: (i) an experiment carried
out in Naples, Italy [63] and (ii) from the “Next Generation SIMulation (NGSIM)
program” [80]. Naples Data are used for the validation of the second methodolog-
ical approach, while NGSIM data for further validation of the first methodological
approach.

4.1 Naples Data

A series of data-collection experiments were carried out on roads surrounding the
city of Naples, in Italy [62]. All data were collected under real traffic conditions in
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October 2002. Although traffic conditions and driving routes may be different in each
dataset, the platoon consisted of four vehicles is unchanged regarding the vehicles, the
drivers and the sequence. Datasets with index A, C correspond to one-lane urban road,
while datasets with index B to a two-lane extraurban highway. However, all selected
roads have one lane per direction in order to avoid effects on driving behavior by
lane changing. GPS receivers located on the vehicles were recording the coordinates
X, Y, Z of each vehicle per 0.1 s (in 10 Hz). Thus, the speed of each vehicle and the
distances between each pair of vehicles could be calculated at each moment. The
setup included five dual frequency GPS+GLONASS receivers (1 base station + 4
rovers) with expected accuracy in real time kinematic 10 mm+ 1.0 ppm horizontally
and 15 mm + 1.0 ppm vertically.

In this research, data used are readily available observations from the field. No
corrections and no interpolation have been occurred. Therefore, only segments with
consecutive measurements have been considered. Six data series were used, one for
calibration and five for validation. A detailed description of the data could be found
in [62], who kindly provided the data for this research.

4.2 NGSIM Data

The “Next Generation SIMulation (NGSIM)” program (http://ngsim.fhwa.dot.gov.)
includes vehicle trajectories in real traffic conditions, which—along with other output
of the project- have become available to the scientific community for research of
microscopic driving behavior. As this data-set is rather different than the Naples data
(different road type, vehicle fleet composition and driving population) it provides an
opportunity to assess the transferability of the car-following models estimated on the
Naples data.

The considered NGSIM data were collected on eastbound I-80 in the San Fran-
cisco Bay area in Emeryville on April 13, 2005 [80]. The study area extends approx-
imately 500 m in length and consists of six freeway lanes. Seven modern digital
cameras were mounted on the top of a 30-story-building adjacent to the freeway and
were recording passing vehicles. The custom NG-VIDEO software application trans-
formed video to vehicle trajectories data (also at 10 Hz). These data were recorded
mainly in congested conditions. 45 min of data are available in a data set divided
into three periods of 15 min and particularly in accordance with the register time,
4:00–4:15 pm, 5:00–5:15 pm, and 5:15–5:30 pm.

For each vehicle the available data which are taken into account are: vehicle ID,
type of vehicle (only cars are taken into consideration), time (ms), global coordinate X
(feet), global coordinate Y (feet), length of vehicle, vehicle velocity (feet/s), distance
between the front side of a vehicle and the front side of the preceding vehicle, number
of the preceding vehicle, number of the following vehicle, lane identification. (The
data were converted to SI units prior to our application). Due to the large amount of
available NGSIM data, 17 tetrads of vehicles moving consecutively were selected
randomly for this analysis. The vehicles, which compose a tetrad, are considered
only when they are moving in the same lane and in sequence one after the other.

http://ngsim.fhwa.dot.gov


96 V. Papathanasopoulou and C. Antoniou

This is easily recognizable from the lane identification and the number of preceding
and following vehicles.

NGSIM data have been used in many studies for calibration or validation of
existing models (e.g. [12]). In the years 2007–2008 more than 30 studies used the
NGSIM data [63]. However, only few studies have raised the issue of their accuracy
[36, 63, 74]. Although the way that the velocities and accelerations of vehicles were
calculated and the errors were reduced is not known, studies suggest the existence
of residual noise and errors in the data [12, 63]. In the context of this work the
existence of noise in data is not addressed, presuming that if there are errors, they
are included in both methods (model Gipps, proposed method) and therefore may
not affect the comparison but the result of each method separately. Also, this implies
that the presented approach can work directly with collected data, without requiring
copious data-cleaning efforts.

5 Validation Results

The first methodological approach has been already demonstrated using Naples data
by [59]. The authors have presented a sensitivity analysis both of Gipps’ model and
Loess method and their calibration process as well. For Gipps’ model the following
two combinations of parameters have been chosen as optimal: τ = 0.4 s, Vn =
14 m/s, αn = 0.8 m/s2, sn−1 = 5.6 m, bn = −5.2 m/s2 and b̂ = −3.0 m/s2 or
τ = 1.0 s, Vn = 16 m/s, αn = 1.6 m/s2, sn−1 = 5.6 m, bn = −5.2 m/s2 and
b̂ = −3.0 m/s2. For Loess method degree = 1 and span = 0.75 have been specified.

Both methods have been calibrated using the most representative data series B1695
and for the speed estimation the same factors have been used (speed v2(t) and v3(t) of
vehicles 2 and 3 and distance D23(t) between vehicles 2 and 3). The results encourage
the application of the data-driven approaches and are summarized in Table 1. Loess
method outperforms Gipps’ model for all the available data series.

Table 1 Results for speed estimation for all Naples data sets using the first methodological approach

Data series Reaction time τ = 0.4 s Reaction time τ = 1.0 s

RMSN (%) Improvement of
estimation (%)

RMSN (%) Improvement of
estimation (%)

Gipps’ Loess Gipps’ Loess

model method model method

B1695 2.7 1.6 40.7 4.9 3.0 38.8

C621 6.6 4.3 34.8 14.4 6.7 53.5

A358 2.7 2.1 22.2 12.7 3.7 70.9

A172 4.6 3.4 26.1 16.0 6.3 60.6

C168 2.3 1.8 21.7 4.9 3.1 36.7

C171 7.2 6.2 13.9 31.6 6.7 78.8
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The calibrated models are now validated to another data set from the US (NGSIM
data) and it is demonstrated how the different nature of data affect the accuracy of
speed estimation. NGSIM data and data from Naples are of different nature, as the
former refer to freeway in congestion conditions and the latter to roads with one
lane per direction. Moreover, as [51] suggested, differences between car-following
headways and times-to-collision are identified between different sites. In this section,
the transferability of the models estimated in Naples to the NGSIM data set is tested.
Two models are presented: (i) Gipps’, (ii) a loess model with the same data as those
used by Gipps’ model.

The results are presented in Figs. 2 and 3 for time reaction 0.4 s and 0.1 s accord-
ingly and several observations can be drawn. As expected, the RMSN values are
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Fig. 2 Comparison of RMSN by applying Gipps’ model and loess method for NGSIM data for
reaction time τ = 0.4 s
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higher than in the Naples data, as model calibration and validation/application was
performed on dissimilar data. The proposed loess method seems to provide better
results than Gipps’ model. The machine learning approach seems to be more robust,
while the effectiveness of the conventional car-following models may depend sig-
nificantly on the chosen parameter values. Using additional data would be easy with
the proposed data-driven model and improves the performance even further; on the
other hand, reformulating Gipps’ model to consider additional parameters would be
a tedious exercise.

The degree by which the proposed approach outperforms the reference model
varies across data series. In order to develop some insight into this, an exploration
of the speed profiles of the various vehicles was performed.

Figure 4 presents the speed profile for the considered vehicle in the longest
sequence of the Naples data-set (B1695) used for calibration, while Figs. 5 and 6
present similar speed profiles for data series that showed satisfactory performance
(Fig. 5) and less satisfactory performance (Fig. 6). Data series with lower performance
have high frequency of low speeds (0–2 m/s), reflecting congested conditions, while
data series with higher speeds naturally provided better fits. This could be addressed
by using clustered models, in which individual sub-models are estimated on suitable
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Fig. 4 Histogram of speeds for data series B1695
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Fig. 5 Histogram of speeds for data series 2, 14 for which satisfactory speed estimation is achieved
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Fig. 6 Histogram of speeds for data series 10, 16 for which unsatisfactory speed estimation is
produced

data series with similar characteristics. An approach to accomplish this is presented
in the next section.

6 Application of Clustered Model

6.1 Model-Based Clustering

The limitation of dealing with heterogeneous data can be addressed by the second
methodological approach, presented in Fig. 1, which comprises methods such as
clustering, loess and classification and allows the adaptation of more flexible and
case-specific car-following models. In this section, we use data from Naples to verify
that this approach could indeed provide better results than the first methodological
approach.

First, a model-based clustering is applied to the longest data series (B1695). Traffic
states with different characteristics are recognized and data are divided into groups.
The factors which are taken into account for the clustering are the speeds of the
second and third vehicle (v2 and v3) and their distance D23, since they are considered
as the most relevant for driving behavior according to the preceding analysis. In the
clustering algorithm various combinations of models were examined and the optimal
number of classes was researched. The BIC index [70] was calculated and the number
of classes, which minimizes the index was selected. The classification results for
different combinations of models and different number of classes (components) are
illustrated in Fig. 7. Although the lowest value of BIC index corresponds to 9 classes,
the fit on the data is similar for classes between 7 and 9 classes. In addition, even for 4
classes there is not a great loss in relation to the optimal number of classes; therefore
the performance of fewer classes could be tested aiming at parsimonious models.

Figure 8 presents the results of clustering for different number of classes. As
expected, fewer classes result in simpler clustering, in which case the characteris-
tics of each class are more distinct and easily recognizable. In contrast, the traffic
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Fig. 8 Clustering results for different number of classes

characteristics of each class appear subtler when a greater number of classes (eg. 6
or 9) is used.

Specific loess models are then calibrated for each traffic state, resulting in a number
of models. The other available datasets are then classified into the existing classes
created by the B1695 data set. The classification is implemented using the k-nearest
neighbor method. Then, the appropriate flexible model is retrieved and applied to
the new data for speed estimation.
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Table 2 Results for speed estimation for all Naples data sets using the second methodological
approach and mclust package (τ = 0.4 s)

Data
series

RSMN (%)

Gipps’
model

Loess
method

Clustered method (Number of classes)

2 3 4 5 6 7 8 9

B1695 2.70 1.59 1.55 1.53 1.48 1.48 1.46 1.42 1.40 1.37

C621 6.60 4.34 4.37 4.41 3.99 4.59 4.54 4.10 3.99 5.36

A358 2.70 2.08 2.10 2.31 3.10 2.34 2.25 2.33 2.33 3.61

A172 4.60 3.40 3.48 3.06 2.44 3.14 2.85 3.30 3.13 9.39

C168 2.30 1.78 1.87 2.04 1.95 2.02 2.05 2.09 2.08 2.08

C171 7.20 6.23 6.31 6.60 7.35 6.50 6.47 8.22 8.19 8.73

The expected result would be that the estimation error would be reduced over the
previous case, as a higher number of classes would lead to a more precise estimate,
because the models are applied to more homogeneous sub-data-sets. On the other
hand, in this case less data per group are available and the calibrated models may
be too “narrow” to have a good fit to other data, possibly indicating over-fitting.
Furthermore, a larger number of classes would lead to difficulties in identifying the
distinct underlying behaviors.

The results are summarized in Table 2, indicating that the expected result is not
achieved for all datasets. The B1695 data series, which was used for model calibra-
tion, provides the best correspondence between the traffic states. For three of the
other datasets the best performance was obtained by a single class (and a model
with two classes provided very similar results), while for the remaining two the best
performance was achieved with four classes. Overall, the clustered approach appears
to outperform the simpler loess approach in some cases, and perform similarly in the
remaining cases.

6.2 K-Means Algorithm

The second methodological approach was revised using the k-means algorithm for the
clustering step. The optimal number of clusters was determined using the NbClust
package [50] in R software [64]. Twenty six indices were taken into account for
determining the optimal number of clusters. The results are presented in Fig. 9 for
dataset B1695. According to the majority of indices estimated by NbClust algorithm
the optimal number of clusters are four.

The results are summarized in Table 3, indicating probably a slightly clearer
clustering using the k-means algorithm than the model-based one. The behavior
of the B1695 data series is similar with the model based clustering. For three of the
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Fig. 9 Optimal number of
clusters chosen by 26 criteria
for dataset B1695 using
NbClust package
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Table 3 Results for speed estimation for all Naples data sets using the second methodological
approach and k-means algorithm (τ = 0.4 s)

Data
series

RSMN (%)

Gipps’
model

Loess
method

Clustered method (Number of classes)

2 3 4 5 6 7 8 9

B1695 2.70 1.59 1.55 1.51 1.45 1.46 1.43 1.39 1.46 1.31

C621 6.60 4.34 4.75 3.99 4.16 5.24 5.01 5.41 5.44 5.47

A358 2.70 2.08 2.91 2.11 2.60 3.17 2.84 2.45 3.42 3.42

A172 4.60 3.40 3.28 3.56 3.12 3.68 5.00 5.09 6.03 6.03

C168 2.30 1.78 1.84 1.78 1.78 1.79 2.10 1.79 1.81 1.86

C171 7.20 6.23 6.56 7.10 6.69 6.00 5.94 8.08 8.08 7.61

other datasets a better performance was achieved using the second methodological
approach but for different number of clusters (3–6 clusters). However, the number
of four classes seems to be the most appropriate overall. For the remaining two data
series there was almost the same result for the simple loess method and the clustered
model with three classes.

Both methods indicate that four clusters are indeed the most effective, though
generating gain in some cases and loss in other cases. There is need for further
investigation of the best clustering method.

7 Discussion and Conclusion

Data driven approaches could be a promising tool for optimization of car-following
models, as it may lead to more robust and reliable representation of driving behavior.
In this research, an existing methodology for estimation of car-following models
has been validated to some NGSIM datasets. This simpler approach outperforms
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the reference (Gipps’) model for all available datasets. The extended methodology,
more elaborate approach, combines clustering, loess and classification, and further
improves the performance of the simpler approach in some cases (while providing
essentially the same performance as the simpler approach in the remaining cases).

Additional testing on richer data should be performed to determine the factors
that determine its performance, as well as develop guidelines for the selection of one
or the other approach and the best way of clustering. The proposed methodological
framework is more flexible, less time-consuming and allows the incorporation of
additional parameters that may influence driving behavior (such as drivers’ age, road
infrastructure etc.). Resorting cumbersome reformulations of a fixed model form
could be impractical. However, conventional models such as Gipps’ model may
provide better insight into driving behavior, as they are relied on traffic flow theory.
The integration of data-driven methods in traffic micro simulation could be very
helpful, though additional research should be conducted.

Acknowledgments The authors would like to thank Prof. Vincenzo Punzo from the University of
Napoli–Federico II for kindly providing the data collected from Napoli and the FHWA for making
the NGSIM data-sets freely available. This research has been supported by the Action: ARISTEIA-
II (Action’s Beneficiary: General Secretariat for Research and Technology), co-financed by the
European Union (European Social Fund – ESF) and Greek national funds project.

References

1. Ahmed KI (1999) Modeling drivers’ acceleration and lane changing behavior. Ph.D. thesis,
Massachusetts Institute of Technology, Cambridge, Mass

2. Al-Shihabi T, Mourant RR (2003) Toward more realistic driving behavior models for
autonomous vehicles in driving simulators. In: 82nd annual meeting of the transportation
research board, Washington, DC

3. Antoniou C, Balakrishna R, Koutsopoulos HN (2011) A synthesis of emerging data collection
technologies and their impact on traffic management applications. Eur Trans Res Rev 3(3):139–
148. doi:10.1007/s12544-011-0058-1

4. Antoniou C, Koutsopoulos HN (2006) Estimation of traffic dynamics models with machine
learning methods. Transp Res Rec: J Transp Res Board 1965:103–111 (Washington, DC)

5. Antoniou C, Koutsopoulos HN, Yannis G (2013) Dynamic data-driven local traffic state esti-
mation and prediction. Transp Res C: Emerg Technol 34:89–107

6. Aw A, Klar A, Rascle M, Materne T (2002) Derivation of continuum traffic flow models from
microscopic follow-the-leader models. SIAM J Appl Math 63(1):259–278

7. Aycin MF, Benekohal RF (1999) Comparison of car-following models for simulation. Transp
Res Rec: J Transp Res Board 1678(1):116–127

8. Bando M, Hasebe K, Nakayama A, Shibata A, Sugiyama Y (1995) Dynamical model of traffic
congestion and numerical simulation. Phys Rev E 51(2):1035–1042

9. Bando M, Hasebe K, Nakanishi K, Nakayama A (1998) Analysis of optimal velocity model
with explicit delay. Phys Rev E 58(5):5429–5435

10. Banfield JD, Raftery AE (1993) Model-based gaussian and non gaussian clustering. Biometrics
49:803–821

11. Bellemans T, De Schutter B, De Moor B (2002) Models for traffic control. J A 43(3–4)13–22
12. Bevrani K, Chung E (2011) Car following model improvement for traffic safety metrics repro-

duction. In: Proceedings of the Australasian transport research forum 2011. PATREC, Adelaide
Hilton Hotel, Adelaide, SA, pp 1–14

http://dx.doi.org/10.1007/s12544-011-0058-1


104 V. Papathanasopoulou and C. Antoniou

13. Bierley RL (1963) Investigation of an inter vehicle spacing display. Highw Res Rec 25:58–75
14. Bifulco GN, Pariota L, Simonelli F, Di Pace R (2013) Development and testing of a fully

adaptive cruise control system. Transp Res C 29(2013):156–170
15. Boxill SA, Yu L (2000) An evaluation of traffic simulation models for supporting ITS devel-

opment. Center for Transportation Training and Research, Texas Southern University
16. Brackstone M, McDonald M (1999) Car-following: a historical review. Transp Res F 2(4):181–

196
17. Chandler RE, Herman R, Montroll EW (1958) Traffic dynamics: studies in car following. Oper

Res 6(2):165–184
18. Ciuffo B, Punzo V, Montanino M (2012) 30 years of the gipps’ car-following model: applica-

tions, developments and new features. TRB 2012 Ann Meet, Paper number: 12–3350
19. Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am

Stat Assoc 74(1978):829–836
20. Cleveland WS, Devlin SJ (1988) Locally weighted regression: an approach to regression analy-

sis by local fitting. J Am Stat Assoc 83(1988):596–610
21. Cleveland WS, Devlin SJ, Grosse E (1988) Regression by local fitting: methods, properties

and computational algorithms. J Econometrics 37(1988):87–114
22. Cohen RA (1999) An Introduction to PROC LOESS for local regression. In: Proceedings of

the 24th SAS users group international conference, Paper 273
23. Colombaroni C, Fusco G (2013) Artificial neural network models for car following: experi-

mental analysis and calibration issues. J Int Transp Syst 18(1) (2014)
24. Davis LC (2003) Modifications of the optimal velocity traffic model to include delay due to

driver reaction time. Phys A: Stat Mech Appl 319:557–567
25. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the

E-M algorithm (with discussion). J R Stat Soc Ser B 39:1–38
26. Dunne S, Ghosh B (2012) Regime-based short-term multivariate traffic condition forecasting

algorithm. J Transp Eng 138(4):455–466
27. Edie LC (1961) Car-following and steady-state theory for non-congested traffic. Oper Res

9(1):66–76. doi:10.2307/167431
28. Einbeck J, Tutz G (2004) Modelling beyond regression functions: an application of multimodal

regression to speed-flow data. SFB Discussion Paper 395
29. Fraley C (1998) Algorithms for model-based gaussian hierarchical clustering. SIAM J Sci

Comput 20:270–281
30. Fraley C, Raftery AE (2002) Model-based clustering. Discriminant analysis and density esti-

mation. J Am Stat Assoc 97(458):611–631
31. Fraley C, Raftery AE (2003) Enhanced software for model-based clustering, density estimation,

and discriminant analysis: MCLUST. J Class 20(263–286):2003
32. Fritzsche HT (1994) A model for traffic simulation. Traffic Eng Control 5:317–321
33. Gazis DC, Herman R, Rothery RW (1961) Nonlinear follow-the-leader models of traffic flow.

Oper Res 9(4):545–567. http://www.jstor.org/stable/167126
34. Gipps PG (1981) A behavioral car-following model for computer simulation. Transp Res B

15:105–111
35. Greenberg H (1959) An analysis of traffic flow. Oper Res 7:79–85
36. Hamdar SH, Mahmassani HS (2008) Driver car-following behavior: from discrete event process

to continuous set of episodes. In: Proceedings of the 87th annual meeting of the transportation
research board (CD, Paper No. 08-3134), January, Washington, DC

37. Hartigan JA (1975) Clustering algorithms. Wiley, New York
38. Hartigan JA, Wong MA (1979) A K-means clustering algorithm. Appl Stat 28:100–108
39. Helbing D, Tilch B (1998) Generalized force model of traffic dynamics. Phys Rev E

58(1):133–138
40. Herman R, Montroll EW, Potts RB, Rothery RW (1959) Traffic dynamics: analysis of stability

in car following. Oper Res 7(1):86–106
41. Huang E, Antoniou C, Wen Y, Ben-Akiva M, Lopes J, Bento J (2009) Real-time multi-sensor

multi-source network data fusion using dynamic traffic assignment models. In: 12th interna-
tional IEEE conference on intelligent transportation systems, ITSC’09, 2009. IEEE, pp 1–6

http://dx.doi.org/10.2307/167431
http://www.jstor.org/stable/167126


Simulation Optimization of Car-Following Models Using Flexible Techniques 105

42. Jiang R, Wu Q, Zhu Z (2001) Full velocity difference model for a car-following theory. Phys
Rev E 64(1):017101

43. Kikuchi C, Chakroborty P (1992) Car following model based on a fuzzy inference system.
Transp Res Rec 1365:82–91

44. Kometani E, Sasaki T (1958) On the stability of traffic flow. Report no. 1. J Oper Res Jpn
2(1):11–26

45. Koutsopoulos NH, Farah H (2012) Latent class model for car following behavior. Transp Res
B 46(2012):563–578

46. Lenz H, Wagner CK, Sollacher R (1999) Multi-anticipative car-following model. Eur Phys J
B 7(2):331–335

47. Leutzbach W (1988) Introduction theory traffic flow. Springer, Berlin
48. Liu R, Li X (2013) Stability analysis of a multi-phase car-following model. Phys A: Stat Mech

Appl 392(11):2660–2671
49. MacQueen J (1967) Some methods for classification and analysis of multivariate observa-

tions. In: Le Cam LM, Neuman J (eds) Proceedings 5th Berkeley symposium on mathematical
statistics and probability, vol 1. University of California Press, Berkeley, pp 281–297

50. Malika C, Nadia G, Veronique B, Azam N (2014) NbClust package for determining the best
number of clusters, R package version 2.0.2. http://CRAN.R-project.org/package=NbClust

51. Marsden GR, McDonald M, Brackstone M (2003) A comparative assessment of driving behav-
iours at three sites. Eur J Transp Res 3(1):5–20. ISSN 1567–7141

52. McLachlan GJ, Krishnan T (1997) The EM algorithm and extensions. Wiley, New York
53. Mitchell T (1997) Machine learning, McGraw Hill, New York
54. Muezzinoglu MK, Zurada JM (2005) A recurrent RBF network model for nearest neighbor

classification, IJCNN ’05. In: Proceedings of the 2005 IEEE international joint conference on
neural networks 1:343–348

55. Newell GF (1961) Nonlinear effects in the dynamics of car following. Oper Res 9:209–229
56. Newell GF (2002) A simplified car-following theory: a lower order model. Transp Res B:

Methodol 36(3):195–205
57. Olstam JJ, Tapani A (2004) Comparison of Car-following models. Swedish National Road and

Transport Research Institute, VTI meddelande 960A
58. Orosz G, Krauskopf B, Wilson RE (2005) Bifurcations and multiple traffic jams in a car-

following model with reaction-time delay. Phys D: Nonlinear Phenom 211(3):277–293
59. Papathanasopoulou V, Antoniou C (2015) Towards data-driven car-following models. Transp

Res C: Emer Technol
60. Pindyck RS, Rubinfeld DL (1997) Econometric models and economic forecasts, 4th edn. Irwin

McGraw-Hill, Boston
61. Pipes LA (1953) An operational analysis of traffic dynamics. J Appl Phys 24(3):274–281
62. Punzo V, Formisano DJ, Torrieri V (2005) A non-stationary kalman filter for the estimation

of accurate multiple car-following data. In: Proceedings of the 84th annual meeting TRB,
Washington, D.C

63. Punzo V, Borzacchiello MT, Ciuffo B (2011) On the assessment of vehicle trajectory data
accuracy and application to the next generation simulation (NGSIM) program data. Transp
Res C: Emer Technol 19(6):1243–1262

64. R Development Core Team (2014) R: a language and environment for statistical computing. R
foundation for statistical computing, Vienna, Austria. www.R-project.org. Accessed 26 Sept
2014

65. Rakha H, Wang W (2009) Procedure for calibrating Gipps car-following model. Transp Res
Rec 2124:113–124

66. Ranjitkar P, Suzuki H, Nakatsuji T (2005) Microscopic traffic data with real-time kinematic
global positioning system. In: Proceedings of annual meeting of infrastructure planning and
management, Japan Society of Civil Engineer, Miyazaki, Preprint C.D., Dec 2005

67. Reuschel R (1950) Fahrzeugbewegungen in der Kolonne. Osterreichisches Ing Archiv 4:193–
215

http://CRAN.R-project.org/package=NbClust
www.R-project.org


106 V. Papathanasopoulou and C. Antoniou

68. Roughan M, Sen S, Spatscheck O, Duffield N (2004) Class-of-service mapping for QoS: a
statistical signature-based approach to IP traffic classification. In: Proceedings of the 4th ACM
SIGCOMM conference on Internet measurement. ACM, pp 135–148

69. Sawada S (2002) Generalized optimal velocity model for traffic flow. Int J Mod Phys C
13(01):1–12

70. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464
71. Spyropoulou I (2007) Gipps car-following model—an in-depth analysis. Transportmetrica

3(3):231–245
72. Subramanian H (1996) Estimation of car-following models (Doctoral dissertation, Massa-

chusetts Institute of Technology)
73. Sun L, Zhou J (2005) Development of multiregime speed-density relationships by cluster

analysis. Transp Res Rec: J Trans Res Board 1934(1):64–71
74. Thiemann C, Treiber M, Kesting A (2008) Estimating acceleration and lane-changing dynamics

from next generation simulation trajectory data. Transp Res Record 90–101
75. Toledo T (2003) Integrated driving behaviour modelling. Ph.D. thesis, Massachusetts Institute

of Technology
76. Tordeux A, Lassarre S, Roussignol M (2010) An adaptive time gap car-following model. Transp

Res B 44(8–9):1115–1131
77. Treiber M, Hennecke A, Helbing D (2000) Congested traffic states in empirical observations

and microscopic simulations. Phys Rev E 62(2):1805
78. Treiber M, Kesting A, Helbing D (2006) Delays, inaccuracies and anticipation in microscopic

traffic models. Phys A 360(1):71–88
79. Underwood RT (1961) Speed volume and density relationships: quality and theory of traffic

flow. Bureau of highway traffic, Yale University, New Haven, pp 141–188
80. US Department of Transportation (2012) NGSIM—Next generation simulation. http://www.

ngsim.fhwa.dot.gov
81. van Lint JWC (2005) Accurate freeway travel time prediction with state-space neural networks

under missing data. Transp Res C: Emer Technol 13:347–369
82. van Lint JWC (2008) Online learning solutions for freeway travel time prediction. IEEE Trans

Intell Transp Syst 9(1):38–47
83. Vlahogianni EI, Karlaftis MG, Golias JC (2005) Optimized and meta-optimized neural net-

works for short-term traffic flow prediction: a genetic approach. Transp Res C 13(3):211–234
84. Vlahogianni EI, Karlaftis MG, Golias JC (2008) Temporal evolution of short-term urban traffic

flow: a nonlinear dynamics approach. Comput Aided Civ Infrastruct Eng 23:536–548
85. Wang L, Rong J, Liu X (2005) The classification of car-following behavior in urban express-

way based on fuzzy clustering analysis. In: Proceedings of the 84th annual meeting of the
transportation research board, Washington, DC

86. Wiedemann R (1974) Simulation des Straenverkehrsflusses. Schriftenreihe des Instituts fuer
Verkehrswesen, Universitaet Karlsruhe Heft 8

87. Wiedemann R, Reiter U (1992) Microscopic traffic simulation: the simulation system MIS-
SION, background and actual state. CEC Project ICARUS (V1052), Final Report, vol 2. CEC,
Brussels (Appendix A)

88. Yang Q, Koutsopoulos HN (1996) A microscopic traffic simulator for evaluation of dynamic
traffic management systems. Transp Res C 4(3):113–129

89. Zhang HM, Kim T (2005) A car-following theory for multiphase vehicular traffic flow. Transp
Res B 39:385–399

90. Zhang J, Wang FY, Wang K, Lin WH, Xu X, Chen C (2011) Data-driven intelligent transporta-
tion systems: a survey. IEEE Trans Int Transp Syst 12(4):1624–1639

91. Zhao X, Gao Z (2005) A new car-following model: full velocity and acceleration difference
model. Eur Phys J B-Condens Matter Complex Syst 47(1):145–150

http://www.ngsim.fhwa.dot.gov
http://www.ngsim.fhwa.dot.gov


Computational Intelligence and Optimization
for Transportation Big Data: Challenges
and Opportunities

Eleni I. Vlahogianni

Abstract With the overwhelming amount of transportation data being gathered
worldwide, Intelligent Transportation Systems (ITS) are faced with several mod-
eling challenges. New modeling paradigms based on Computational Intelligence
(CI) that take advantage of the advent of big datasets have been systematically pro-
posed in literature. Transportation optimization problems form a research field that
has systematically benefited from CI. Nevertheless, when it comes to big data appli-
cations, research is still at an early stage. This work attempts to review the unique
opportunities provided by ITS and big data and discuss the emerging approaches for
transportation modeling. The literature dedicated to big data transportation applica-
tions related to CI and optimization is reviewed. Finally, the challenges and emerging
opportunities for researchers working with such approaches are also acknowledged
and discussed.

1 Introduction

With a vast number of diverse Intelligent Transportation Systems (ITS) operating
Worldwide, web-based, mobile, and sensor generated data arrive at and overwhelm-
ing scale. This availability allows for new science paradigms to be introduced and
novel insights to be gained. Traditionally, turning data into knowledge relies on clas-
sical statistical analysis and interpretation; this fundamentally requires analysts to
become intimately familiar with the data and serve as an interface between the data
and the users. With the recent availability of very large data sets (big data), this form
ofmanual probing becomes slow, expensive, and frequently unfeasible.Methodolog-
ically, new approaches are needed to efficiently deal with some of the challenging
issues related to big data; some of them are data size, high dimensionality, overfitting,
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assessing statistical significance, rapidly changing, missing and noisy data, complex
relationships between fields, user interaction and prior knowledge, and system inte-
gration.

Big Data is growing exponentially due to the growth of both existing and new
data sources (e.g. geospatial, social media comments, mobile). To build a smarter
planet, we need smarter computing—computing that is tuned to operate, managed
through the cloud and, importantly, designed for big data. Novel modeling paradigms
will have to: i. Capture and manage high volume multi-source data encompassing
text, images, sounds, generated impulses etc. ii. Understand patterns unfolding in
time across a complex transportation system (spatial unfolding) and produce critical
information and alerts.

In this context, Computational Intelligence (CI) offers an excellent alternative to
traditional hypothesis-driven (i.e. deductive) statistical data analyses and attempts to
extract meaningful patterns in big data. In Transportation, there has been increased
interest among both researchers and practitioners in exploring the feasibility of CI
algorithms in transportation problems, especially related to optimization. The advan-
tage of CI data analysis applications over other alternatives lies in their flexibility,
their ability to discover unknown mechanisms and covariations elusive to statisti-
cal approaches, their accuracy, and their ability to handle dynamically changing big
data. Still, the development of efficient CI applications in Transportation is complex,
rarely taught in transportation programs in Academia, while model development
and validation are frequently done ad hoc and do not follow universally accepted
procedures.

In this paper, the unique opportunities created by the data obtained from modern
ITS are discussed and some of the emerging approaches for handling big data are
reviewed. The literature dedicated to big data transportation applications related to
CI and optimization is reviewed. Finally, the challenges and emerging opportunities
for researchers working with such approaches are also acknowledged and discussed.

2 The “New” Transportation Landscape

Urbanization, smart cities and disruptive technologies may be considered as the
three pillars transforming the transportation arena. Urban areas are, nowadays, con-
sidered as the dominant type of settlement for humanity. In this context, optimizing
transportation and mobility play an imperative role in sustainable urban develop-
ment. Second, cities are becoming smarter, in terms of their infrastructure, with the
aim to maximize resources and actively support sustainable growth and high qual-
ity of life, through participatory action and engagement, while preserving natural
resources [18].

To be able to fully benefit of the above, a transportation system should be instru-
mented, interconnected and intelligent. In this context, there is an increasing inter-
est in finding novel technologies to support the transportation arena. Some of the
most prominent are mobile communications, cloud technologies, energy storage,
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autonomous vehicles and the Internet of Things (IoT). The latter is a novel concept
straightforwardly applicable to transportation applications; IoT consists of a variety
of devices or objects—such as Radio-Frequency IDentification (RFID) tags, sensors,
actuators, mobile phones, and so on—which, through unique addressing schemes,
are able to interact with each other and cooperate with their neighbors to reach
common goals [4, 106]. By continuously collecting, analyzing and redistributing
transportation information, IoT networks can offer valuable, real time information to
both travelers and operators, and, thus, support and improve the operations of ITS,
traffic and public transportation systems.

3 Big Data and Transportation

3.1 A Definition

Most widely available definitions of “big data” converge to the following: any col-
lection of data is big or may become big, when it becomes difficult or impossible
to model its complexity using traditional data processing tools. This definition leave
much room for arguments and misconceptions about what data can be considered as
big and how big are the available data.

A more scrutinized look at big data introduces the concept of three V’s: big
data are quantities amounts (Volume), of any type (Variety), that are collected at
unprecedented speed and must be dealt with in a timely manner (Velocity) [71]. The
V’s can be extended to include acyclic or irregular temporal data (Variability), the
uncertainty stemming from the difficulty in controlling the quality and accuracy of
the data (Veracity).

3.2 Sources and Applications of Big Data in Transportation

The big data phenomenon is not new in Transportation and Traffic Engineering. The
leading edge of transportation data has for long been streaming data coming for a
variety of sensors (loop detectors, video cameras, weather stations etc.). What has
changed over the years is the cost of new monitoring systems (more economic ways
of producing streaming data, such as the passive data produced by personal GPS), the
data granularity (very detailed information collected in real time) and the availability
of new sources of unstructured or semi-structured data, such as logs, clickstreams,
and social media data (tweets, Facebook posts etc.). A detailed classification of Big
Data sources may be found in Hashem et al. [50].

The intrusion of big data and analytics to the transportation research and industry
is significant. Large companies including Google, IBM, SAS, INRIX etc. system-
atically fund research and applications on how to leverage big data of all forms
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(structured and unstructured) to improve transportation services and customer sat-
isfaction, manage transportation infrastructure, as well as predict or estimate traffic
conditions. The gains from using big data in transportation are numerous for road
users, authorities and private sector. Road users can make informed decisions to
save time and reduce their personal trip cost based on continuously available traffic
information from various sources of the road network with extended spatio-temporal
coverage. Road authorities may take advantage of big data to understand travel pat-
terns to identify policy interventions, control traffic andmanage demand and conges-
tion, or even change the users’ behavior. Finally, private sector may gain significant
competitive advantage by identifying prevailing trends or increase productivity by
improving their route planning and logistics.

A field that has profited the most from the advent of big data is travel demand
estimation; various approaches to derive OD matrix and mobility patterns have been
based onmobile phone and personal GPS data [16, 42, 61, 74, 76, 88]. Papinski et al.
[89] andBierlaire et al. [13] developed a route choice behavior based on personalGPS
traces, whereas Hood et al. [53] used GPS traces to develop a bicycle route choice
model. Liu et al. [76, 79] studied land uses based by analyzing GPS-enabled taxi
data in Shanghai. Cai et al. [17] analyzed the manner travel patterns may influence
the electric vehicle charging infrastructure development using trajectory data from
taxis in Beijing. Chen and Chen [24] utilized taxi GPS traces for nigh bus routes
planning.

Regarding traffic, mobile phone counts have been systematically used for extract-
ing traffic information in the form of volume, speed and density in both urban and
suburban road networks [3, 9, 10, 51]. Castro et al. [19] used taxi GPS traces to
estimate the traffic flow conditions in urban areas. Guido et al. [47] attempted to
infer speeds using GPS smartphone traffic probes.

Location based services and social media are the new hype for collecting trans-
portation related data. Cheng et al. [27] and Cheng et al. [28] addressed issues
of urban mobility by analyzing twitter and social networking data. Collins et al.
[33] proposed a sentiment analysis approach to measure transit rider satisfaction by
quantifying twitter feeds. Hasan and Ukkusuri [49] demonstrated the use of a large-
scale geo-location data set to analyze and understand individual activity patterns.
Recently, Yang et al. [122] analyzed Foursquare data to derive OD information for
non-commuting trips.

A new field of research that emerged from gathering individual data collection—
either through smartphones or instrumented vehicles—is the extraction of driver’s
profiles during driving [5, 83, 84, 95, 100, 104, 110, 115, 119]. The scope of such
profiles is to improve the efficiency during driving and mitigate risky behaviors that
may lead to near misses or crashes. Driving big data has also been systematically
used to develop advanced insurance systems based on the time and manner a user
drives (pay as you drive, pay how you drive) [6, 85, 86].
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4 Transportation Big Data Analytics

Analyses based on data, regardless of being big or not, have been recognized as a
valuable tool for transportation operations. The stake when using big data is to be
able to transform data into knowledge. Transforming data into knowledge involved
a set of processes that are described in Fig. 1.

Each step towards the ultimate goal involves a set of tasks. For example data
capturing and management involves indexing, searching, querying and visualiza-
tion. The analysis stage may target to detect anomalies, reveal patterns and complex
relationships. The prediction step entails complex and flexible data driven models
that may consistently and accurately provide information on the future conditions,
whereas mechanisms to create and disseminate information are the final step.

From a modeling standpoint, the problem faced with big data are numerous; first,
these datasets are frequently of high dimensionality, meaning that they are difficult
to visualize and understand. Moreover, having and extended dataset may not always
mean having a representative dataset or a dataset with “perfect” information. The
latter signifies that there is a need for a powerful preprocessing stage to assure that the
models developed may be estimated and generalize real world conditions. Finally,
assessing the statistical fit in big multi-dimensional datasets is not an easy task. Even
when using data drivenmodels, the surplus of datamay lead to overfitting andmodels
with reduced generalization power.

4.1 From Statistics to Computationally Intelligent Models

Usually, the statistical tools implemented entail several structural constraints and are
unable to work on quirky and messy data with little or no structure. The lack of
diversified statistical tools for big data analyses lead statisticians to see big data as a
burdensome rather than a source of valuable information. A typical example is the
time series of road traffic characteristics; typical autoregressive statistical models
suppress or ignore nonlinearity and irregularities, whereas literature has systemati-
cally underlined the usefulness of these irregularities to understand the transitional
nature of traffic flow [64, 107, 110, 111, 113, 114].

Evidently, with the advent of multi-source data collection systems, transportation
datasets will not become perfect. Treating big data brings forward the focus on size,

Fig. 1 Processes in big data
analytics
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the ability to model messiness and multi-dimensionality in datasets, as well as the
importance of correlations alongwith causation; we do not have to always understand
the underlying mechanisms of the data to make them work to our benefit. To this
end, new flexible and powerful modeling paradigms are imperative that are robust to
imperfections and hypothesis free. The need to develop new analysis paradigms for
the rapidly growing datasets has been underlined since the late 90s’ [39]. This road
contains either new forms of statistical thinking or data mining and computational
intelligent models. Computational intelligence (CI) is the new hype in transportation
modeling. CI includes neural networks, fuzzy logic, swarm intelligence, evolutionary
algorithms, expert systems, agent based modeling etc. These models are applicable
tomany datamining problems, fromwarehousing to prediction and decisionmaking,
and may be proven more efficient due to their non-parametric hypothesis free nature.

Contrary to common thinking, some CI tools may bare significant similarities to
classical statistical models, an issue frequently disregarded by connectionists that are
more interested in producing accurate results rather than judging on the quality of
their models and the properties of the error [15]. With the use of statistical inference,
researchers may construct CI models equivalent to many popular statistical models
[66]. For example, a single Perceptron is a linear regression model [93], while a
Multilayer Perceptron with one hidden unit and a logistic function at the output layer
is equivalent to a logit model [107].

The importance of CI to transportation is significant; CI may be used to develop
scalable, manageable, adaptable and affordable transportation systems using com-
mon sense reasoning, perception and learning, as well as autonomy. One of the many
advantages of CI, which is among themain differences with statistical thinking, is the
ability of the latter to treat many “non-algorithmizable” problems (natural language
processing, visual perception, character recognition etc.). Their ability to augment
or replace human skills reflects to gains in computations, accelerates processing and
increases productivity. These features may lead to providing results with improved
accuracy and quality in a timely manner.

5 Computational Intelligent Optimization for Big Data
Problems

In the entire process of mining knowledge from data, several modeling stages may
be formulated as optimization problems. Optimization targets the “optimum” solu-
tion(s) for a given problem within allowable time. The issue is that each problem
may have several local optimal solutions. The difficulty in converging relates to the
problem’s dimension and the number of objectives (large-scale multi-objective opti-
mization). Evidently, large-scale optimization processes are affected by the curse of
dimensionality in numerous ways [29]; the larger the dimensions of the phenom-
enon, the larger the solution space will be. The larger the dimension of a problem,
the greater the risk of some problem characteristics to be altered with the scale.
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Moreover, most traditional methods can only be applied to continuous and differen-
tiable functions. Nevertheless, these conditions do not hold for most real world. The
above complexities may be treated by problem decomposition strategies, surrogate-
based fitness evaluations, data transformations etc. [58]. Another issue that may
increase the complexity of the optimization problems is the spatio-temporal evolu-
tion of the datasets. In non-stationary environments and transportation problems (e.g.
traffic flow) the dynamics may impose different optimal solutions in relation to time
and space. This means that an optimization strategy should be able to treat dynamic
problems and continuously converge to a solution.

CI approaches have both the structural flexibility and learning capability to
deal with complex, time varying multi-objective problems [128]. CI applications
to transportation include nature-inspired algorithms (evolutionary algorithms, par-
ticle swarm optimization etc.) and non-linear mapping and knowledge embedding
approaches (neural networks, fuzzy algorithms etc.). CI have been found to per-
form well in non-stationary and highly nonlinear problems due to their robustness
(impose little or no requirements on the objective function) and flexibility to handle
highly non-linear mappings [54]. Moreover, self-adaptation and parallel operation
are among the most important characteristics that enable CI to improve their per-
formance and decompose complex tasks into simpler ones. Nevertheless, literature
systematically underlines the need to cautiously apply CI to transportation problems
as their proper development is frequently tedious and involves significant parame-
trization [66].

5.1 Computational Intelligent Optimization in Transportation
Problems

Numerous efforts dedicated to CI optimization approaches to transportation appli-
cations can be traced in literature. Table1 is a non-exhaustive list of the most recent
research attempts related to CI and optimization. These applications are categorized
by the transportation problem they aim to solve, the CI algorithms implemented, as
well as the type of data used to evaluate the proposed approach. Special attention is
given to whether the listed applications involve the full big data perspective (5Vs).

Genetic algorithmsmay be considered the first and leading CI techniques in trans-
portation optimization problems systematically applied to network design problems
[67], vehicle routing and allocation problems [2, 44, 65, 78], signalization optimiza-
tion [21, 22, 91, 99, 101] and highway alignment optimization [55, 63], pricing [68]
and so on.

Significant interest from transportationmodelers has been placed on Swarm Intel-
ligence (SI). SI is an innovative branch of meta-heuristics derived from imitating
the behavioral pattern of natural insects. Teodorović [102] reviews the literature on
swarm intelligence and transportation and traffic engineering applications, whereas
Zhang et al. [127] conduct a thorough review on the swarm intelligence applications
to transportation logistics.
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Table 1 Classification of literature on computational intelligent application to transportation opti-
mization problems

Authors Date Problem CI method Data

Bai et al. [7] 2014 Transportation asset
management

NSGA II Numerical example

Chen et al. [25, 26] 2014 Trip planning Heuristic Algorithm Location-based
social network, taxi
GPS digital
footprintsa

Chira et al. [31] 2014 Vehicle routing Evolutionary
algorithms, ant
colony

Real world case
study

Danalet et al. [36] 2014 Pedestrian routing Bayesian networks Wi-fi dataa

Doolan and
Muntean [37]

2014 Vehicle routing Ant-colony
optimization

Simulation

Fagnant and
Kockelman [38]

2014 Share autonomous
vehicles

Agent-based model Simulation

Forcael et al. [40] 2014 Tsunami evacuation
routes

Ant colony Real world case
study

Galland et al. [43] 2014 Car pooling Agent-based model Simulation

Kallioras et al. [59] 2014 Emergency
inspection
scheduling

Harmony search Real world case
study

Kammoun et al. [60] 2014 Traffic routing Ant-hierarchical
fuzzy model

Simulation

Lin and Ku [75] 2014 Stopping patterns
for passenger rail
transportation

Genetic algorithm Real world case
study

Liu et al. [78] 2014 Emergency medical
service allocation

Genetic algorithms Real world case
study

Pahlavani and
Delavar [87]

2014 Route planning Weed colonization Simulation

Stolfi and Alba [98] 2014 Traffic routing Evolutionary
algorithm

Simulation

Terzi and Serin
[103]

2014 Maintenance works
on pavements

Ant colony Numerical example

Yang et al. [122,
123]

2014 Highway alignment
optimization

Genetic algorithm Real world case
study

Yin et al. [124] 2014 Hurricane
evacuation

Agent-based model Simulation

Zhang et al. [125] 2014 Transit network
design

Agent-based model Simulation

Zhou et al. [128] 2014 Mobile traffic
sensor routing

Ant colony, PSO Simulation

Arango et al. [2] 2013 Berth allocation Genetic algorithms Simulation

(continued)
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Table 1 (continued)

Authors Date Problem CI method Data

Chevrier et al. [30] 2013 Railway scheduling Evolutionary
algorithm

Real world case
study

Cong et al. [34] 2013 Traffic routing Ant colony
algorithm

Simulation

Goksal et al. [46] 2013 Vehicle routing PSO algorithm Numerical example

Jia et al. [56] 2013 Transportation-
distribution
planning

NSGA II algorithm Numerical example

Kontou et al. [69] 2013 Transit depot
allocation

Genetic algorithm Real world case
study

Lagaros et al. [70] 2013 Fund allocation PSO algorithm Real world case
study

Levin and Kanza
[73]

2013 Vehicle routing Heuristic algorithm Location-based
networka

Liu et al. [77] 2013 Freeway corridor
diversion control

Genetic algorithms Real world case
study

Shafahi and
Bagherian [94]

2013 Highway alignment
optimization

PSO algorithm Numerical example

Ceylan and Ceylan
[20]

2012 Signalization
optimization

Harmony search
algorithm

Simulation

D’Acierno et al.
[35]

2012 Signalization
optimization

ACO-based
algorithm

Simulation

Kang et al. [61, 62] 2012 Highway alignment
optimization

Genetic algorithm Real world case
study

Putha et al. [91] 2012 Traffic signal
optimization

Ant colony, GA Numerical example

Balseiro et al. [8] 2011 Vehicle routing Ant colony Numerical example

Geroliminis et al.
[44]

2011 Transit mobile
repair units
allocation

Genetic algorithm Real world case
study

Mesbah et al. [82] 2011 Transit priority Genetic algorithm Numerical example

Deshpande et al.
[122]

2010 Scheduling
pavement
rehabilitation

Multi-objective
genetic algorithm

Numerical example

García-Nietoa et al. 2010 Traffic light
scheduling

PSO algorithm Simulation

Kepaptsoglou et al.
[68]

2010 Pricing policy
optimization

Genetic algorithm Real world case
study

Meng and Khoo
[81]

2010 Ramp metering NSGA-II Real world case
study

(continued)
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Table 1 (continued)

Authors Date Problem CI method Data

Pishvaee et al. [90] 2010 Logistics network
design

Memetic algorithm Numerical example

Shimamoto et al.
[96]

2010 Transit network
design

NSGA-II Ticket-based travel
dataa

Kang et al. [63] 2009 Highway alignment
optimization

Genetic algorithm Real world case
study

Karlaftis et al. [65] 2009 Vehicle routing Genetic algorithm Real world case
study

Kepaptsoglou and
Karlaftis [67]

2009 Transit network
design

Genetic algorithm Real world case
study

Lau et al. [72] 2009 Vehicle routing Genetic algorithm,
fuzzy algorithm

Simulation

aBig data applications

Another domain of CI that has attracted significant attention in transportation and
traffic engineering is agent based modeling. Agent and multi-agent systems have
been applied to many traffic and transportation fields including dynamic routing and
congestion management. Chen et al. [24] and Bazzan and Klüge [12] reviewed the
literature related to agent-based traffic modelling and simulation, and agent-based
traffic control and management. However, as stated in Bazzan [11], the “agentifi-
cation” of transportation problems may hinder several challenging issues (e.g. the
number of agents is high, the extent and magnitude of collective behavioral patterns
is immense and probably unpredictable etc.) that should be carefully examined and
taken into consideration.

A significant portion of literature refers to the optimization of leaning processes
involved in transportation models. Learning from extensive transportation and traffic
datasets involve multi-source data distributed in many different locations and involve
toomany data points and extensive spatial coverage. Learning strategies inside traffic
and transportation predictionmodels, aswell as dimensionality reduction approaches
and imputation problems have been systematically addressed using computationally
intelligent techniques [23, 52, 80, 105, 107, 108, 110, 112, 118].

The analysis of literature indicates that there are very few big data applications to
transportation optimization problems that are treated with CImethods. Shimamoto et
al. [96] introduce a NSGA II algorithm to solve the transit assignment problem using
ticket-based travel data. Levin and Kanza [73] implemented heuristic algorithms for
the vehicle outing problem using location based data. Danalet et al. [36] leveraged
campus wi-fi data to solve the pedestrian routing problem, whereas Chen et al.
[26] used GPS traces and location based data for trip planning. The limited number
of studies on transportation optimization using big data does not signify limited
interest on the specific subject, but reflects two distinct challenges: first, large-scale
optimization problems involving a significant number of modeling parameters are
difficult to be estimated in a global search context; even CI that are more robust that
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classical approaches, may fail or become extremely time consuming, especially in a
multi-objective framework [128]. Second, transportation optimization problems are
complex and involve a tedious procedure for evaluating the quality of solutions when
dealing with global population based search algorithms.

6 Opportunities and Challenges

6.1 The Changing Nature of Transportation Problems

Conceptually, the methodological change that big data brings to transportation is
the need to automatically process and analyze data. This has significant effects on
the knowledge that may be or needs to be extracted from the available data. Several
solutions to problems in transportation science that were founded on static univariate
data may not be applicable to dynamically changing multivariate datasets leading
to the need to reexamine several phenomena or even change the way we think of
transportation problems.

Three promising research fields that will most likely benefit from the data deluge
area are:

• User experience mining for improving transportation services,
• Naturalistic driving experiments for monitoring driver’s behavior, constructing
driver’s profile and identifying risk in driving, and

• Autonomous driving for congestion mitigation and safety.

The deluge of big data may not signify that some scientific questions are to be bet-
ter modeled, but, a more detailed modeling approach to various phenomena may be
accomplished [97]; some examples are OD surveys home interviews, census surveys,
and so on. The ability to monitor the transportation and traffic related characteristics
of individual road users will significantly affect the manner transportation research
problems are articulated. Nevertheless, to turn data into knowledge some old dilem-
mas and challenges extend to big data science. These refer to model selection, real
time operation, the quality and availability of the data, the quality of optimization
solutions, the inference mechanisms, as well as ethical and social issues.

6.2 Big Data Analytics Versus Models

The changing nature of transportation problems often drives the need to test and
evaluate new modeling paradigms robust to big data and imperfections. CI and data
mining has taken a large part of the related transportation literature frequently leaving
less ground to classical statistics and models. This may hinder the danger to consider
thatmodels, either statistics or borrowed by laws of physics, traditionally used to treat
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transportation problems are now obsolete. The truth is rather in themiddle and relates
to the type and extent of information needed. Evidently, a deeper understanding of
the transportation problems will dictate the use of models that may translate data
into causal relationships. Towards this direction, literature has emphasized the need
to develop synergies with statistics to enhance the explanatory power of many CI
applications [66]. Statisticsmay enhance the inferencemechanisms of CI approaches
and assure the reliability of the models developed and their generalization power.

6.3 From Batch to Real-Time Computations

The challenging task in big data analysis is not only to produce knowledge, but
to produce it in a timely manner. The time to produce results relates to the size
and the complexity of the datasets. Processes that may take long, but can claim
increase accuracy and reliability are of limited use, if they are provided with delay.
Batch model building with either data mining or statistical approaches has been
the dominant approach to transportation problems. Modeling has been traditionally
based on historical data, that where leveraged using different modeling paradigms to
extract knowledge. In this framework, by the time new data arrive, these were batch
processed to produce the output. This approach seems to be conceptually at arms
with the computational needs ofmodern ITS systems that require timely and accurate
information to disseminate to centers and users in a highly dynamic transportation
environment. Data driven ITS and individual driven ITS systems are founded on
real time computations, developing real-time new models that may not only respond
in real-time, but learn to change their behavior in real-time (retraining strategies
for CI short-term forecasting models) [108, 117]. In such conditions, optimization
challenges are numerous and involve optimizing models to include new phenomena
and forget past—probably incorrect or trivial—knowledge.

6.4 Data Quality, Availability, Representativeness
and Relevance

Data unceasingly coming from multiple sources, at a variety of forms and in high
resolutions are inhomogeneous and may contain noise and erroneous values. Noise
and errors mask the significant information hindering in the data. The usual approach
is to filter and apply data reduction techniques to eliminate the effect of noise and
errors [48]. Data cleaning is a long standing problem but with significance in cases of
big data. Data cleaning may include several tasks, such as irregularities (anomalies)
detection, incomplete data filling, duplicates removal, conflicting values detection
and so on. Nevertheless, these tasks are not so easy to be accomplished in the big
data framework [121]; first, becausemany data cleaning strategies are not suitable for
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big data, and second, because in the big data framework, many error types (incom-
plete data, missing data, erroneous data duplicate data etc.) coexist, while existing
techniques are focused on treating a specific error type at a time.

Furthermore, there is a thin line between information and extreme data. Noise and
extreme values may contain useful information for the phenomenon under investi-
gation. The use of advanced techniques to automatically preprocess the data and
transform them to a more “analyzable” form may lead to datasets that have signifi-
cantly distorted information about real world conditions [109].

Having large datasets may not always mean having a representative sample to
study a phenomenon. Quality is linked to the sample size that needs to be accounted
for. The collected data may account for a small part of the phenomenon both spatially
and demographically. A typical example is data gathered from tweets and Facebook
posts; those that do not possess a profile in social media will not be captured and
included in big datasets.

The big data frequently dictate the modeling approach to follow. Nevertheless
caution should be given to the modeling strategy; the belief that analyses suited
for small datasets may be done with the same or better accuracy to larger datasets is
misleading. There are models that have traditionally work well for small datasets, but
could become unfeasible with more massive data, whereas in some modeling cases
with clear underlyingdynamics, simplemodels, such as linear regressionwith distinct
causal implications could approximate with comparable accuracy and effectiveness
the given data. Hand [48] defines the unintelligent data analysis as the one that results
to over-specified models or over-idealized problems and underlines that intelligent
analysis is dependent of a “good” strategy that defines the steps, decisions and actions
taken to analyze a given dataset.

6.5 Inference from Data: Correlations and Causation

In the era of “big data” several researchers may claim that correlations will be enough
to provide information and a deeper look to causations that may help researcher to
acquire a thorough understanding of the different phenomena may not be necessary.
This misconception deriving from data enthusiasts is tricky and contradicts the true
intentions of data analytics. With data analytics we aim to extract information for
making better and more informed decisions. Such decision based solely on correla-
tions and deprived from causalities may be far from being accurate and intelligent.

Even if CI approaches are to be implemented, interpretation remain a focal point
in transportation engineering. CI using big data can easily reveal correlations; the
larger the datasets the greater number of correlations between different variables may
be revealed. This does not, however, imply that causations may be achieved [116].
Moreover, several correlations may be also coincidental (spurious) [1]. The lack of
straightforward inference mechanisms in CI approaches may lead to misinterpreta-
tions and erroneous results. This is a major shortcoming of applying CI methods to
transportation data and should be taken into consideration. Big data are complex and
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causation can be distorted by various factors such as latent variables, indirect influ-
ences imposed by various systems acting simultaneously, multi-collinearity, missing
values and so on.

6.6 Quality of Optimization Solutions and Uncertainties

Evaluating optimization solutions is a time consuming and costly task. The more
complex the optimization problems the less efficient the global population based
approaches become. To reduce the time and effort needed to provide optimization
solutions of high quality, surrogate modeling often qualifies as a viable solution.
Surrogate modeling is a macro-modeling technique that aims to minimize the time
and computational load to develop simulations to replicate input-output relationships
[41]. The aim is to produce a faster and simpler approximation of a simulator to make
optimization, design space exploration, etc. feasible.

Another critical issue to consider is the robustness of the produced solutions over
time. Most transportation phenomena has significant spatio-temporal dependencies
that may influence the quality and consistency of the produced solutions. As such,
robustness over time is a critical characteristics of the optimization strategies. This
may be tackled by selecting the optimization approach that produces results that are
the least affected by the varying conditions (changes in variables etc.). The use of
dynamic optimization strategies that are computationally intensive seem to be out
of the context of real-time ITS applications. Evidently, achieving a tradeoff between
the best solution and the optimum solution over time—that will change only when
a solution will provide results that are no longer acceptable—is a viable approach
[57, 128].

6.7 Ethics, Privacy, Inequalities

The big data deluge in transportation comes with significant ethical and institutional
challenges. As in all disciplines, big data, especially those coming from participatory
sensing, have serious ethical and privacy issues that are frequently addressed but
rarely understood. Nowadays, a legislative framework that will dictate the ethical
boundaries of using personal data streams is missing.

Moreover, until recently, data was a key advantage of a scientific work because
several phenomena, especially those dealing with behavioral aspects, were difficult
to be monitored. Nowadays, having data still provides a competitive advantage,
but for different reasons. Although the technological means to achieve a detailed
monitoring of complex phenomena exist, they are not accessible to everyone. The
digital divides created by those who possess technology and data are significant
for achieving innovation [14]. Moreover, inequalities will progressively extend to
research institutions and Academia between those that may fund big data systems
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and those that do not possess the economic means to penetrate the market of big
data and use them to their benefit. Significant competitive advantage will have those
companies and organizations that may not only possess big data, but also can analyze
them.

7 The Road Ahead

In the near future, every moving object (both humans and machines) is planned to
have a unique identity and operate in a smart social and environmental setting. In
this framework, advanced skills in data analytics and optimization will be required
to solve complex problems and materialize advanced transportation ideas. The road
ahead contains CI, but they have to be applied with caution. Some drivers for success
will be: i. develop real-time modeling efforts and efficient solutions to complex
phenomena and settings, ii. the development of synergies and the use of intuition to
enhance explanatory power, iii. the development of test beds and test data to battle
inequalities and evaluate ongoing development, iv. the integration of nature inspired
algorithms to enable the full abilities of CI, v. cloud and parallel computing for
increasing computational power and reducing the cost of transportation services, and
vi. the development of new educational paradigms so as transportation researchers
and practitioners can cope with the demanding algorithms for treating big data.

The rapid growing of transportation data impose delivering computations and
results that reflect the dynamically evolving transportation phenomena in real-time.
In this framework researchers should focus on responsive new methods and model
building techniques. Moreover, the spatio-temporal complexity seen in most trans-
portation datasets impose the decomposition of a problem to many simpler ones; this
decomposition should extend to model building. Ensembles of models rather than
a single approach should be evaluated to deliver reliable and accurate models and
predictions. As for optimization, literature review underlined that although CI global
optimization techniques may well cope with the complexities seen in transporta-
tion datasets, they have been rarely used in big transportation data due to the high
computational cost they entail. It is of great importance to use big data to develop
more flexible and computationally less costly CI meta-optimization techniques—for
example surrogates—or improve the manner to formulate optimization problems.

The rise of CI techniques to handle big data does not make statistics obsolete.
Several researchers have systematically underlined that the statistical thinking is
the means to justify the inferential leap from data to knowledge. Possible synergies
between these two different schools of thought will increase the explanatory power
of CI models and their transparency [66]. Statistics may be useful for enhancing the
clarity about the modeling goals, assessing for the reliability of the model developed,
accounting for sources of uncertainty in the underlying data mechanism and models
[45]. In the model development and evaluation stages, statistics can provide the
theoretical means for testing for optimality and suitability of the learning algorithms.
Moreover, statistics may be used to extract causalities, if necessary, an issue largely



122 E.I. Vlahogianni

disregarded in the CI literature. In this spirit, intuition has a great role to play in
the understanding of the huge streams of data. The CI approaches should be tied
to human intuition so as results to be reflect reality and not a myopic look at the
different phenomena.

Research using big data in transportation should be supported by publically avail-
able testbeds and test data. Test beds of varying size and complexity are a critical
tool for reducing inequalities, supporting innovation, but also evaluating ongoing
research and may serve as a proof-of-concept tool [115]. To this end, open data
is considered today as the greatest enabler of research in intelligent transportation
systems. A typical example of the direction towards freely available data is the Euro-
pean Open Government Data Initiative (EU OGDI). This initiative targets to create
a transparent environment without discrimination and exclusivity constraints where
both data and software can be freely stored to improve practices and implemented
policies across EU member countries. The concept of open big data multiplies the
sources of creativity and collective innovation, as new applications and algorithms
are produced by both established providers (e.g. Google, IBM, SAS etc.) and public
authorities, but also by individual initiatives from programmers (e.g. applications on
smart phones).

Another critical issue that will dictate the future of CI in transportation is the abil-
ity to fully benefit from artificial intelligence (AI), a key technology to improve the
efficiency, safety, and environmental-compatibility of transportation systems [92].
Until now, CI and AI applications have been limited to specific modules of ITS
applications, especially for data analysis and prediction disregarding their power-
ful capabilities for data managing and decision making [32]. Extended usage of CI
and AI techniques is needed to fully benefit from their unique capabilities. Towards
this direction, concepts such as cloud (computation, software, data access, and stor-
age services) that do not require end-user knowledge of the physical location and
configuration of the system that delivers the services, and parallel computing (clus-
ters of computers), can enable the implementation of complex network level ITS
[50, 120, 126].

In the instrumented future, transportation engineers and researchers are chal-
lenged to be capable of applying both transportation science and interdisciplinary
data analyses for the realization and evaluation of their advanced ideas. Evidently,
the advent of the new “big data” area in transportation dictates the need to develop
new educational paradigms to produce qualified transportation researchers and prac-
titioners able copewith the demanding algorithms for treating big data. The aim is not
to replace other disciplines but to be able to produce engineers that may understand
and efficient use the full potential of big datasets and the accompanying modeling
tools.
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Nature-Inspired Algorithms: Success
and Challenges

Xin-She Yang

Abstract The simplicity and flexibility of nature-inspired algorithms have made
them very popular in optimization and computational intelligence. Here, we will
discuss the key features of nature-inspired metaheuristic algorithms by analyzing
their diversity and adaptation, exploration and exploitation, attractions and diffu-
sion mechanisms. We also highlight the success and challenges concerning swarm
intelligence, parameter tuning and parameter control as well as some open problems.

Keywords Algorithm · Adaptation · Bat algorithm · Cuckoo search · Diversity ·
Firefly algorithm · Metaheuristic · Optimization

1 Introduction

Many applications concern hard optimization problems, which may require sophis-
ticated optimization techniques to deal with. However, traditional algorithms usually
cannot cope with such highly nonlinear and multimodal problems. Alternative ap-
proaches have to be found. In recent years, nature-inspired metaheuristic algorithms
have gained huge popularity, and these algorithms include ant colony optimization,
particle swarm optimization, cuckoo search, firefly algorithm, bat algorithm, bee
algorithms and others [4, 14, 17, 28]. There are many reasons for such popularity.
From the algorithm analysis point of view, these algorithms tend to be flexible, effi-
cient and highly adaptable, and yet easy to implement. The high efficiency of these
algorithms makes it possible to apply them to a wide range of problems in diverse
applications.

The main purpose of this chapter is to highlight some key issues in adaptation
and diversity in swarm intelligence. Therefore, the chapter is organized as follows.
Section2 outlines some widely used nature-inspired algorithms, followed by a brief
discussion of the main mechanisms of generating new solutions in Sect. 3. Section4
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analyzes adaptation and diversity in swarm intelligence in detail. Section5 discusses
the parameter tuning and control, and finally some conclusions will be drawn briefly,
with some discussions for open problems in Sect. 6.

2 Some Recent Algorithms Based on Swarm Intelligence

Before we proceed to carry out any analysis, let us briefly introduce some popular
nature-inspired, swarm-intelligence-based algorithms for global optimization.

From a mathematical point of view, an algorithm A is an iterative process, which
aims to generate a new and better solution xt+1 to a given problem from the current
solution xt at iteration or (pseudo)time t . In general, an algoirthm can be written as

xt+1 = A(xt , p), (1)

where p is an algorithm-dependent parameter. A good example is the so-called quasi-
Newton method with a step size parameter.

The above formula is for a trajectory-based, single agent system. For population-
based algorithms with a swarm of n solutions (x1, x2, . . . , xn), we can extend the
above iterative formula to a more general form

⎛

⎜⎜⎜⎝

x1
x2
...

xn

⎞

⎟⎟⎟⎠

t+1

= A
(
(xt

1, xt
2, . . . , xt

n); (p1, p2, . . . , pk); (ε1, ε2, . . . , εm)
)

⎛

⎜⎜⎜⎝

x1
x2
...

xn

⎞

⎟⎟⎟⎠

t

,

(2)
where p1, . . . , pk are k algorithm-dependent parameters and ε1, . . . , εm are m ran-
dom variables. An algorithm can be viewed as a dynamical system, Markov chains
and iterative maps [28], and it can also be viewed as a self-organized system [1].

Most nature-inspired algorithms nowadays are swarm intelligence based. Their
updating equations vary significantly.However,most algorithms have linear updating
equations. For example, particle swarm optimization has two linear equations in
terms of x. On the other hand, some algorithms such as the firefly algorithm use
nonlinear updating equations, which can lead to rich characteristics and potentially
higher efficiency.

Linear systems are easier to analyze, while nonlinear systems can be more chal-
lenging to analyze. At the moment, it still lacks in-depth understanding how different
systems work. In the rest of this section, we will introduce some nature-inspired al-
gorithms.
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2.1 PSO

Particle swarm optimization (PSO) is one of the first algorithms that are based on
swarm intelligence. PSOwas developed byKennedy andEberhart in 1995 [14], based
on the swarm behaviour of fish or bird schooling in nature. Each particle updates
its position xi and velocity vi , and their evolution is controlled by two learning
parameter α and β with typical values of α ≈ β ≈ 2 and two random vectors ε1
and ε2 that are uniformly distributed in [0,1]. Briefly speaking, the main equations
of PSO are as follows:

vt+1
i = vt

i + αε1[g∗ − xt
i ] + βε2[x∗

i − xt
i ], (3)

xt+1
i = xt

i + vt+1
i . (4)

There are more than two dozen variants of PSO. For example, Yang et al. developed
the accelerated PSO [20], while Fister Jr. et al. used some reasoning techniques to
improve the efficiency of PSO [11].

2.2 Firefly Algorithm

The firefly algorithm (FA) is simple, flexible and easy to implement. FA was devel-
oped by Yang in 2008 [17], which was based on the flashing patterns and behaviour
of tropical fireflies.

One of the main advantages of the FA is that FA can naturally deal with nonlinear
multimodal optimization problems. Themovement of a firefly i is attracted to another
more attractive (brighter) firefly j is determined by

xt+1
i = xt

i + β0e−γ r2i j (xt
j − xt

i ) + α εt
i , (5)

where the second term is due to the attraction, and β0 is the attractiveness at r = 0.
The third term is randomization with α being the randomization parameter, and εt

i
is a vector of random numbers drawn from a Gaussian distribution at time t . Other
studies also use the randomization in terms of εt

i that can easily be extended to other
distributions such as Lévy flights.

A comprehensive review of the firefly algorithm and its variants has been carried
out by Fister et al. [6–8]. One novel feature of FA is that attraction is used, and this
is the first of its kind in any SI-based algorithms. Since local attraction is stronger
than long-distance attraction, the population in FA can automatically subdivide into
multiple subgroups, and each group can potentially swarm around a local mode.
Among all the local modes, there is always a global best solution which is the true
optimality of the problem. Thus, FA can deal with multimodal problems naturally
and efficiently.
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2.3 Cuckoo Search

The cuckoo search (CS)was developed in 2009 byYang andDeb [23]. CS is based on
the brood parasitism of some cuckoo species. In addition, this algorithm is enhanced
by the so-called Lévy flights [15], rather than by simple isotropic random walks.

Recent studies show that CS is potentially far more efficient than PSO and genetic
algorithms [24, 25]. Mathematically speaking, CS uses a balanced combination of a
local randomwalk and the global explorative randomwalk, controlled by a switching
parameter pa . The local random walk can be written as

xt+1
i = xt

i + αs ⊗ H(pa − ε) ⊗ (xt
j − xt

k), (6)

where xt
j and xt

k are two different solutions selected randomly by random permu-
tation, H(u) is a Heaviside function, ε is a random number drawn from a uniform
distribution, and s is the step size. On the other hand, the global random walk is
carried out by using Lévy flights:

xt+1
i = xt

i + αL(s, λ), (7)

where

L(s, λ) = λΓ (λ) sin(πλ/2)

π

1

s1+λ
, (s > 0). (8)

Here α > 0 is the step size scaling factor, which should be related to the scales of
the problem of interest.

If we look at the CS equations from a mathematical point of view, we can analyze
their key features and characteristics, and thus highlight their advantages. CS has two
distinct advantages over other algorithms such as GA and SA, and these advantages
are: efficient random walks and balanced mixing. Since Lévy flights are usually far
more efficient than any other random-walk-based randomization techniques, CS can
be efficient in global search. In fact, recent studies show that CS can have guaranteed
global convergence [28].

On the other hand, the similarity between eggs can produce better new solutions,
which is essentially fitness-proportional generation with a good mixing ability. In
other words, CS has a varying mutation rate realized by Lévy flights, and the fitness-
proportional generation of new solutions based on the solution similarity provides
a subtle form of crossover. In addition, simulations also show that CS can have an
autozooming ability in the sense that new solutions can automatically zoom into the
region where the promising global optimality is located.

Using the framework of Markov chains and probability, we can see that equation
(7) is essentially simulated annealing in the framework of Markov chains. In Eq. (6),
if pa = 1 and αs ∈ [0, 1], CS can degenerate into a variant of differential evolution.
Furthermore, if we replace xt

j by the current best solution g∗, then (6) can further
degenerate into accelerated particle swarm optimization (APSO) [20]. This means
that SA, DE and APSO are special cases of CS, and that is one of the reasons why
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CS is so efficient. A brief literature review has been carried out by Yang and Deb
[26] and Fister Jr. et al. [9].

2.4 Bat Algorithm

The bat algorithm (BA) is the first algorithm of its kind to use frequency tuning for
the optimization purpose. BA was developed by Yang in 2010 [18], inspired by the
echolocation behavior of microbats. Each bat is associated with a velocity vt

i and a
location xt

i , at iteration t , in a d-dimensional search or solution space. Among all the
bats, there exists a current best solution x∗. Therefore, the updating equations for xt

i
and velocities vt

i can be written as

fi = fmin + ( fmax − fmin)β, (9)

vt
i = vt−1

i + (xt−1
i − x∗) fi , (10)

xt
i = xt−1

i + vt
i , (11)

where β ∈ [0, 1] is a random vector drawn from a uniform distribution.
The motion of bats are updated by the above equations, but when to update and

which branch is updated first are controlled by the loudness and pulse emission rate
of each bat. In the most simplest case, the loudness and pulse emission rates are
regulated by the following equations:

At+1
i = αAt

i , (12)

and
r t+1

i = r0i [1 − exp(−γ t)], (13)

where 0 < α < 1 and γ > 0 are constants. Loosely speaking, here α is similar to
the cooling factor of a cooling schedule in simulated annealing.

There have been a lot of interest in the study of BA in recent years, and BA has
been extended tomultiobjective optimization [19] and various variants. For example,
Fister et al. have extended to a hybrid bat algorithm [10, 12]. The preliminary results
suggested that they are very efficient [21].

Obviously, there are other nature-inspired algorithms such as the flower pollina-
tion algorithm [22]. However, as the main purpose of this chapter is to analyze adap-
tation and diversity in metaheuristic algorithms, we will now focus on the analysis
and discussion of the forms of adaptation and diversity and their roles/representations
in the actual algorithms.
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3 Mechanisms for Generating New Solutions

There are many ways for generating new solutions. However, from the locality point
of view, they can be divided into the following subcategories:

• Modification of selected solutions (from the existing population).
• Local modifications.
• Global modifications.
• Mixed (both local and global as well as selected).

One of the most widely used methods for generating new solutions is to select
a subset of existing solutions from the evolving population. For example, if two
solutions are randomly selected from the existing population, they can be combined
to form two new solutions by crossover or recombination. This is one of fundamental
mechanisms in genetic algorithms andmany evolutionary algorithms. In the simplest
case when one solution is selected, some modification on a part (or a few parts) of
the solution can be carried out. This is the main mechanism for mutation in genetic
algorithms. In fact, these two ways of generating new solutions have paved the ways
for most modern evolutionary algorithms.

The aboveoperations canbe converted tomathematical equations.Mathematically
speaking, crossover can be written as

⎛

⎝
xt+1

i

xt+1
j

⎞

⎠ = C(xt
i , xt

j , pc), (14)

where pc is the crossover probability, though the exact form of C( ) depends on the
actual crossover manipulations. Mutation can be written schematically as

xt+1
i = M(xt

i , pm), (15)

where pm is the mutation rate. However, the form M( ) depends on the coding and
the number of mutation sites.

On the other hand, the fitness-dependent reproduction of the offsprings may de-
pend on the relative fitness of the parents in the population. In this case, the function
form can be even more complex. For example, C( ) can depend on all the individuals
in the population, whichmay lead toC(xt

1, xt
2, . . . , xt

n, pc)where n is the population
size.

From the mathematical point of view, local modifications are local randomwalks,
which can take many different forms and are usually around an existing solution.
For example, from an existing solution xt

i , new solutions can be generated locally
by using

xt+1
i = xt

i + s(xi , α), (16)
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where s(xt
i , α) is a step size function that can depend on the current solution and

a parameter α. If s is small enough, the distance d = ||xt+
i − xi || is small, which

means the new solutions are limited to a neighborhood of the existing solution xt
i . As

random walks are widely used for randomization and local search in metaheuristic
algorithms [17, 18], a proper step size is very important. As different algorithms use
different forms of randomization techniques, it is not possible to provide a general
analysis for assessing randomness. In addition, the above form of equation can in
general be written in a more compact form as

xt+1
i = N (xt

i , w, α), (17)

where N ( ) depends on the random variable w with a parameter α.
Here, randomness increases the diversity of the solutions and thus enables an

algorithm to have the ability to jump out of any local optimum. However, too much
randomness may slow down the convergence of the algorithm and thus can waste a
lot of computational efforts. Therefore, there is some tradeoff between deterministic
and stochastic components, though it is difficult to gauge what is the right amount
of randomness in an algorithm? In essence, this question is related to the optimal
balance of exploration and exploitation, which still remains an open problem.

Global modifications can also take many forms. For example, the simplest form
of global modification or global randomization is

xi = L + (U − L)ε, (18)

where ε is a random number drawn in [0, 1]. This equation gives new solutions
between the lower bound L and the upper bound U . On the other hand, random
walks can be both local and global simultaneously. For example, the method in the
cuckoo search uses Lévy flights in terms of

xt+1
i (new solution) = xt

i (old solution) + αL(s, λ), (19)

which can generate both local and global solutions, controlled by α and the intrinsic
nature of Lévy flights that provides occasional long-jumps. However, this is just a
simple case where the new solution only depends on one existing solution and the
randomization term. In general, the solutions can be generated in parallel by random
permutation, and thus we may have a more generic form

⎛

⎜⎜⎜⎜⎜⎝

xt+1
1

xt+1
2
...

xt+1
n

⎞

⎟⎟⎟⎟⎟⎠
= G(xt

1, xt
2, . . . , xt

n, w, β), (20)
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where G( ) can be very complex, which also depends on the random variable and
parameter β. For example, the mutation operator in differential evolution takes the
form

xt+1
k = xk + F(xi − x j ), (21)

where i , j and k are random permutations among 1, 2, . . . , n, and F is a parameter
or constant.

It is worth pointing out that the difference between global or local modifications
are subtle. When the step sizes are large enough, local modifications can be become
global. Furthermore, these mechanisms for generating new solutions do not always
belong to a single mechanism, and they can be a mixture of two or more components.
For example, Lévy flights in the cuckoo search can be considered as amixture of both
local and global modifications, while the bat algorithm uses a combination of simple
global randomization in one branch and the local modification in another branch,
with the additional control for switching between these two branches depending on
the loudness and pulse emission rate.

In fact, all good algorithms uses a combination of the above components, not just
a simple component. However, how to combine different modification methods is a
challenging problem and what is the most efficient combination is yet to be discov-
ered (if it ever exists). Furthermore, such effective combinations may be problem
dependent and should be adaptive as well.

4 Adaptation and Diversity in Swarm Intelligence

Adaptation and diversity in metaheuristic algorithms can take many forms, including
the balance of exploration and exploitation, generations or moves of new solutions,
the right amount of randomness, parameter adjustment and parameter control, and
other subtle forms. We will discuss the role of adaptation and diversity in such cases.

4.1 Diversity and Adaptation

The effectiveness of swarm intelligence based algorithms can be attributed to two
important characteristics: adaptation and diversity of nature-inspired optimization
algorithms.

Adaptation in nature-inspired algorithms can take many forms. For example, the
ways to balance exploration and exploitation are the key form of adaptation [2]. As
diversity can be intrinsically linked with adaptation, it is better not to discuss these
two features separately. If exploitation is strong, the search process will use problem-
specific information (or landscape-specific information) obtained during the iterative
process to guide the new search moves; this may lead to the focused search and thus
reduce the diversity of the population, which may help to speed up the convergence
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of the search procedure.However, if exploitation is too strong, it can result in the quick
loss of diversity in the population and thus may lead to the premature convergence.
However, if new search moves are not guided by local landscape information, it can
typically increase the exploration capability and generate new solutions with higher
diversity. However, too much diversity and exploration may result in meandered
search paths, thus lead to the slow convergence. Therefore, adaptation of search
moves so as to balance exploration and exploitation is crucial. Consequently, to
maintain the balanced diversity in a population is also important.

On the other hand, adaptation can also be in terms of the representations of solu-
tions of a problem. In genetic algorithms, representations of solutions are usually in
binary or real-valued strings [2, 13], while in swarm-intelligence-based algorithms,
representations mostly use real number solution vectors. For example, the population
size used in an algorithm can be fixed or varying. Adaptation in this case may mean
to vary the population size so as to maximize the overall performance. For a given
algorithm, adaptation can also occur to adjust its algorithm-dependent parameters.
As the performance of an algorithm can largely depend on its parameters, the choice
of these parameter values can be very important.

Parameter values can be varied so as to adapt the landscape type of the problem
and thus may lead to better search efficiency. Such parameter tuning is in essence
parameter adaptation. Once a parameter is tuned, it can remain fixed. However,
there is no particular reason why parameters should be fixed. In fact, adaptation in
parameter can be extended to parameter control. That is to control the parameter
values in such a way that their values vary during the iterations so that optimal
performance of the algorithm can be achieved.

Similarly, diversity in metaheuristic algorithms can also take many forms. The
simplest diversity is to allow the variations of solutions in the population by random-
ization. For example, solution diversity in genetic algorithms is mainly controlled by
the mutation rate and crossover mechanisms, while in simulated annealing, diversity
is achieved by random walks. In most swarm-intelligence-based algorithms, new so-
lutions are generated according to a set of deterministic equations, which also include
some random variables. Diversity is represented by the variations, often in terms of
the population variance. Once the population variance is getting smaller (approach-
ing zero), diversity also decreases, leading to converged solution sets. However, if
diversity is reduced too quickly, premature convergencemay occur. Therefore, a right
amount of randomness and the right form of randomization can be crucial.

From a different perspective, we can also say that adaptation and diversity can
also be related to the selection of solutions among the population and the replacement
of the old population. If the selection is based on the fitness, parent solutions with
a higher level of fitness will be more likely to pass onto the next generation. In the
extreme case, only the best solutions can be selected, which is a kind of elitism. If the
replacement of worst solutions by new (hopefully better) solutions, this will ensure
that better solutions will remain in the population. The balance of what to replace
and what to pass on can be tricky, which requires good adaptation so as to maintain
good diversity in the population.
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4.2 Exploration and Exploitation

Adaptation and diversity are just one side of the coin. In the context of nature-
inspired metaheuristics, the characteristics of an algorithm can also be analyzed in
terms of basic components: exploitation and exploration, which are also referred to
as intensification and diversification [3, 17].

Roughly speaking, exploitationuses any informationobtained from theproblemof
interest so as to help to generate new solutions that are better than existing solutions.
However, this process is typically local, and information (such as gradients) is also
local. Therefore, it is for local search. For example, hill-climbing is a method that
uses derivative information to guide the search procedure. In fact, new steps always
try to climb up the local gradient. The advantage of exploitation is that it usually
leads to very high convergence rates, but its disadvantage is that it can get stuck
in a local optimum because the final solution point largely depends on the starting
point. On the other hand, exploration makes it possible to explore the search space
more efficiently, and it can generate solutions with enough diversity and far from the
current solutions. Therefore, the search is typically on a global scale. The advantage
of exploration is that it is less likely to get stuck in a local mode, and the global
optimality can be more accessible. However, its disadvantages are slow convergence
and waste of lot computational efforts because many new solutions can be far from
global optimality.

Therefore, a fine balance is required so that an algorithm can achieve the best
performance. Too much exploitation and too little exploration means the system
may converge more quickly, but the probability of finding the true global optimality
may be low. On the other hand, too little exploitation and too much exploration can
cause the search path meander with very slow convergence. The optimal balance
should mean the right amount of exploration and exploitation, which may lead to
the optimal performance of an algorithm. Therefore, a proper balance is crucially
important.

In essence, the optimal balance is itself a higher-level optimization problem.
However, how to achieve such a balance is still an open problem. In fact, no algorithm
can claim to have achieve such an optimal balance in the current literature. In essence,
the balance itself is a hyper-optimization problem, because it is the optimization of
an optimization algorithm. In addition, such a balance may depend on many factors
such as the working mechanism of an algorithm, its setting of parameters, tuning and
control of these parameters and even the problem to be considered. Furthermore, such
a balance may not universally exist [16], and it may vary from problem to problem,
thus requiring an adaptive strategy.

4.3 Attraction and Diffusion

The novel idea of attraction via light intensity as an exploitation mechanism was first
used by Yang in the firefly algorithm (FA) in 2007 and 2008. In FA, the attractiveness
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(and light intensity) is intrinsically linked with the inverse-square law of light inten-
sity variations and the absorption coefficient. As a result, there is a novel but nonlinear
term of β0 exp[−γ r2]where β0 is the attractiveness at the distance r = 0, and γ > 0
is the absorption coefficient for light [17]. The main function of such attraction is to
enable an algorithm to converge quickly because these multi-agent systems evolve,
interact and attract, leading to some self-organized behaviour and attractors. As the
swarming agents evolve, it is possible that their attractor states will move towards to
the true global optimality.

The novel attraction mechanism in FA is the first of its kind in the literature
of nature-inspired computation and computational intelligence. This also motivated
and inspired others to design similar or other kinds of attraction mechanisms. Other
algorithms that were developed later also used inverse-square laws, derived from
nature. For example, the charged system search (CSS) used Coulomb’s law, while
the gravitational search algorithm (GSA) used Newton’s law of gravitation.

Whatever the attraction mechanism may be, from the metaheuristic point of view,
the fundamental principles are the same: that is, they allow the swarming agents to
interact with one another and provide a forcing term to guide the convergence of the
population. Attraction mainly provides the mechanisms for exploitation, but, with
proper randomization, it is also possible to carry out some degree of exploration.
However, the exploration is better analyzed in the framework of random walks and
diffusive randomization. From the Markov chain point of view, random walks and
diffusion are both Markov chains. In fact, Brownian diffusion such as the dispersion
of an ink drop in water is a random walk. Lévy flights can be more effective than
standard random walks. Therefore, different randomization techniques may lead to
different efficiency in terms of diffusive moves. In fact, it is not clear what amount
of randomness is needed for a given algorithm.

All these unresolved issues and problems discussed so far may motivate more
research in this area and thus the relevant literature can be expected to expand in the
near future.

5 Parameter Tuning and Parameter Control

Adaptation and diversity can also take the form of parameter tuning and parameter
control. In fact, one of the most challenging issues when designing metaheuristic
algorithms is probably to control exploration and exploitation properly in terms of
controlling algorithm-dependent parameters, which is still an open question. It is
possible to control attraction and diffusion in algorithms that use such features so
that the performance of an algorithm can be influenced in the right way.

Ideally we should have some mathematical relationships that can explicitly show
how parameters can affect the performance of an algorithm, but this is an un-resolved
problem. In fact, unless for very simple cases under very strict, (often) unrealistic
assumptions, no theoretical results exist at all. Obviously, one of the key questions
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is how to tune parameters to gain the best parameter values so that an algorithm can
perform in the most effective way.

5.1 Parameter Tuning

As an algorithm is a set of interacting Markov chains, we can in general write an
algorithm as

⎛

⎜⎜⎜⎝

x1
x2
...

xn

⎞

⎟⎟⎟⎠

t+1

= A[x1, . . . , xn, p1(t), . . . , pk(t), ε1, . . . , εm]
⎛

⎜⎝
x1
...

xn

⎞

⎟⎠

t

, (22)

which generates a set of new solutions (x1, . . . , xn)
t+1 from the current population

of n solutions. In principle, the behaviour of an algorithm is largely determined by
the eigenvalues of the matrix A that are in turn controlled by the parameters pk(t)
and the randomness vector ε = (ε1, . . . , εm).

From the Markovian theory, we know that the first largest eigenvalue is typically
1, and therefore the convergence rate of an algorithm is mainly controlled by the
second largest eigenvalue 0 ≤ λ2 < 1 of A. However, it is extremely difficult to
find this eigenvalue in general. Therefore, the tuning of parameters becomes a very
challenging task. In fact, parameter tuning, or tuning of parameters, is an important
topic under active research [5, 27]. The aim of parameter tuning is to find the best
parameter setting so that an algorithm can perform most efficiently for a wider range
of problems. At the moment, parameter tuning is mainly carried out by detailed,
extensive parametric studies, and there is no efficient method in general.

In essence, parameter tuning itself is an optimization problem which requires
higher-level optimization methods to tackle. However, a recent study shows that
a framework for self-tuning algorithms can be established with promising results
[27]. For example, Yang et al. used the firefly algorithm to tune itself so that the
firefly algorithm can achieve optimal performance for a given set of problems. This
framework can be expected to be applicable to other algorithms and a range of
applications.

5.2 Parameter Control

Related to parameter tuning, there is another issue of parameter control. Parameter
values after parameter tuning are often fixed during iterations, while parameters
should vary for parameter control.
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The main idea of parameter control is to vary the parameters so that the algorithm
of interest can provide the best convergence rate and thus may achieve the best
performance. Again, parameter control is another tough optimization problem to
be yet resolved. In the bat algorithm, some basic form of parameter control has
been attempted and found to be very efficient [18]. By controlling the loudness and
pulse emission rate, BA can automatically switch from explorative moves to local
exploitation that focuses on the promising regions when the global optimality may
be nearby. Similarly, the cooling schedule in simulated annealing can be considered
as a form of basic parameter control.

Both parameter tuning and parameter control are crucial to the performance of all
algorithms, and thus deserve more research attention.

6 Discussions and Open Problems

Aswe have seen from the above detailed analysis, proper adaptation and diversity are
crucial to ensure the good performance of an algorithm.Adaptation can be carried out
in different components (of an algorithm), such as the generation of the population,
selection of solutions, elitism, replacement of solutions, adjustment of parameters
and overall balance of exploration and exploitation. Diversity can also appear in
many places such as the ways to generate new solutions, selection and replacement
of existing solutions, explorative moves, randomization, and most importantly to
maintain a good balance in exploration and exploitation.

Despite the success of nature-inspired algorithms, there are still some challenging,
open problems that need to be addressed. These open problems include the balance of
exploration and exploitation, selection mechanisms, right amount of randomization,
and parameter tuning as well as parameter control.

As mentioned in the main text, one of the most challenging problems is how to
balance exploration and exploitation in an algorithm so that it can deal with a vast
range of problems efficiently. In reality, the amount of exploration and exploitation
may depend on the type of problem, and therefore, some a priori knowledge of the
problem to be solved can help to determine such a balance. However, it is not known
how to incorporate such knowledge effectively. For example, gradient/derivative
information obtained from the objective function can be very useful for exploitation,
but if such exploitation is too strong, it can cause the system to be trapped in a
local optimum, thus sacrificing the possibility of finding the true global optimality.
In order to balance exploration and exploitation, a right amount of randomness is
needed. However, no one knows what amount is the right amount. At one extreme,
if there is no randomness, an algorithm becomes a deterministic algorithm, and thus
loses the ability to explore. At the other extreme, if the search is dominated by a high
level of randomness, the algorithm becomes a random search, and thus significantly
reduces its ability to exploit the landscape information. In fact, it is not known how
to control randomness properly so as to balance exploration and exploitation most
effectively.
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Another important issue is the selection mechanism and it is not known what se-
lection is most effective. A proper selection pressure is crucial to maintain a healthy
population. For example, when many solutions have similar fitness, numerically
speaking, their fitness values may almost be the same, thus how to select certain so-
lutions becomes tricky. Typical approaches include re-scaled fitness values, ranking
of solutions, and adaptive elitism [2]. However, it is not clear if they can work for all
algorithms and if there is other better ways to handle selection.

On the other hand, as the performance of almost any algorithm will depend on its
parameter settings, how to tune these parameters to achieve the best performance is a
higher level optimization problem. In fact, this is the optimization of an optimization
algorithm. It is still an open question. Similarly, how to control the parameters by
varying their values to achieve the best overall performance is also a key challenging
issue.

From the landscape point of view, the problems that have been solved in the
current literature usually have fixed landscape. That is, once the problem is defined,
its landscape in the search space remain unchanged. However, for dynamic problems
and problems with noise, the search landscape can change with time. In such cases,
adaptation can be more sophisticated and challenging. It is not clear if most current
methods can still work well in such time-dependent, noisy environments.

It is worth pointing out that whatever the algorithmsmay be, the role of adaptation
and diversity may be subtle in affecting the performance of an algorithm. Therefore,
in-depth understanding and theoretical results are needed. Possible research routes
may require a combination of mathematical analysis, numerical simulations, empir-
ical observations as well as other tools such as dynamical system theories, Markov
theory, self-organization theory and probability. It may even require a paradigm shift
in analyzing metaheuristic algorithms.

Obviously, there are other issues and open problems as well. The above discussion
has just focused a few key issues. All these challenges can present golden oppor-
tunities for further research in analyzing adaptation and diversity in metaheuristic
algorithms. It can be expected more theoretical results will appear in the future, and
any theoretical results will provide tremendous insight into understanding metaheur-
sitic algorithms. It is hoped that efficient tools can be developed to solve a wide range
of large-scale problems in real-world applications. Future research directions should
focus on such key issues and challenges.
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Comparative Study on Recent Metaheuristic
Algorithms in Design Optimization
of Cold-Formed Steel Structures
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Abstract Sustainable construction aims at reducing the environmental impact of
buildings on human health and natural environment by efficiently using energy,
resources and reducing waste and pollution. Building construction has the capacity
to make a major contribution to a more sustainable future of our World because
this industry is one of the largest contributors to global warming. The use of cold-
formed steel framing in construction industry provides sustainable construction
which requires less material to carry the same load compare to other materials and
reduces amount of waste mimum design algorithms are developed for cold-formed
steel frames made of thin-walled sections using the recent metaheuristic techniques.
The algorithms considered are firefly, cuckoo search, artificial bee colony with levy
flight, biogeography-based optimization and teaching-learning-based optimization
algorithms. The design algorithms select the cold-formed thin-walled C-sections
listed in AISI-LRFD (American Iron and Steel Institution, Load and Resistance
Factor Design) in such a way that the design constraints specified by the code are
satisfied and the weight of the steel frame is the minimum. A real size cold-formed
steel building is optimized by using each of these algorithms and their performance
in attaining the optimum designs is compared.
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1 Introduction

Structural optimization aims at producing buildings that can be built by using the
least amount of materials. This aim is of prime importance today because of the
reason that buildings and construction works have the largest single share in global
resource use and pollution emission [1]. World’s climate is visible changing and its
ecosystem is currently leading towards irreversible damages due to global warming.
Carbondioxide is the primarygreenhousegas emitted throughhumanactivitieswhich
is blamed for the global warming. Although energy production and transportation
are two of the major source of carbon dioxide emissions, the construction industry
also play important role in this respect. The importance of sustainable construction
becomes even more apparent when one considers the fact that urban population
swells by around one million people every week.

Steel is one of the most sustainable materials in the world. Since the early 1990s,
the steel industry has reduced its energy use to produce a ton of steel by approximately
one third. More than 95% of the water used in the steel making process is recycled
and returned. Every piece of steel used in construction contains recycled content.
Further, all steel can be recovered and recycled again and again into new high quality
products. Steel structures require less material to carry the same load as concrete or
masonry or wood structures. The use of cold-formed steel framing in the construction
industry even provides further economy. Furthermore cold-formed steel framing
construction reduces the amount of waste generated at a site. This is due to the fact
that almost the entire building project is pre-engineered and prepared using modern
and efficient technology as framing members and panels in workshops or factories
which are then transported and assembled in the site [2]. Cold-formed steel framing
refers specifically to members in light-frame building construction that are made
entirely of sheet steel formed to various shapes at ambient temperatures. The most
common shape for cold-formed steel framing members is a lipped channel section
although “Z”, “C”, “tubular”, “hat” and other shapes have been used. Figure1 shows
an example of such construction which is environmentally friendly and has high
sound and heat insulation.

Cold-formed members are produced from very thin steel sheets where the thick-
ness varies between 0.4 and 6.4mm. This thickness is very small compare to the
widths of walls of member that they buckle before the stresses reach to yield stress
when they are subjected to axial load, shear, bending or bearing. Therefore one of
their major design criteria is based on the local buckling of walls of these sections [3,
4]. Furthermore open sections whether hot-rolled or cold-formed in general has rela-
tively small torsional rigidity compare to closed sections. Plane sections donot remain
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Fig. 1 Steel building of cold-formed thin-walled open sections

plane andwarping distortion takes place when subjected to torsional moments. Large
warping deformations cause normal stresses in the cross section in addition to shear
stresses. Vlasov’s theory provides simple way of calculating these stresses [5, 6].
This theory extends the simple bending stress formula to cover the normal stresses
that come out due to warping by just adding a similar term to the same formula.
This additional term necessitates computation of two new cross sectional properties
that are called the sectorial coordinate and warping moment of inertia of the cross-
section. Normal stresses develop in thin-walled open section due to warping can be
larger than the bending stress depending on the magnitude of the torsional moment
section subjected to [7, 8]. It is shown in the literature that warping has substantial
effect in the optimum design of steel frames made of thin-walled open sections [9].
In [10] strength and stability problems of mono-symmetrical complex thin-walled
open section are studied using Vlasov’s theory. Local instability is described accord-
ing to the theory of thin plates and shells. The analytical solution is compared with
the one attained from the finite element model constructed using shell elements. It is
stated that the analytical results differ from that of finite element model on the stress
distribution. However, the differences between maximum stress values are not so
large. Lateral buckling of thin-walled beam under uniformly distributed transverse
load, small longitudinal force and two different moments located at its both ends is
studied in [11].

Several studies are carried out on the optimum shape design of thin-walled open
sections of different shapes in last decade [12, 13]. In [14] cross-sectional design
optimization is carried out for cold-formed steel channel and lipped channel columns
under axial compression passing through the centroid of the cross-section. The design
problem is formulated according to the provisions of AISI (American Iron and Steel
Institute) [15, 16]. Flexural, torsional and torsional-flexural buckling of columns and
flat-width-to-thickness ratio of web, flange and lip are considered as constraints as
they are described in [15]. Micro-genetic algorithm is used in obtaining the solution
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of design optimization problem. Micro-genetic algorithm uses relatively smaller
population size compare to genetic algorithm which results in less computational
time. In [17] three optimizationmethods steepest descent, genetic algorithm and sim-
ulated annealing are applied to obtain the optimum shape of cold-formed thin-walled
steel columns under AISI provisions. Interesting optimum shapes are obtained by
the algorithms developed and performances of optimization methods are compared.
This work is extended to cover different cross-sectional geometries and boundary
conditions in [18]. The literature review carried out reveals the fact that deterministic
as well as stochastic optimization techniques are used to determine the solution of the
shape optimization problem of cold-formed thin-walled sections. Furthermore, it is
also noticed that most of the research has considered cold-formed single beam with
different boundary conditions subjected to axial force, bi-axial bending moment and
torsional moment. There are not many works on steel frames made of cold-formed
sections. In one of the recent study real-coded genetic algorithm is utilized to develop
optimum design algorithm for cold-formed steel portal frames which minimizes its
cost [19]. The design variables consist of continuous and discrete variables. The
spacing between main frames and pitch of the frame are taken as continuous design
variables while the section sizes are to be selected from cold-formed steel section list
are treated as discrete design variables. Constraints are implemented fromAustralian
Code of Practice for cold-formed steel.

In this study the optimum design algorithm is developed for cold-formed steel
frames made of thin-walled open sections. The design constraints are implemented
from AISI-LRFD (American Iron and Steel Institute, Load and Resistance Fac-
tor Design, American Institute of Steel Construction) [20, 21]. Design constraints
include the displacement limitations, inter-story drift restrictions, effective slender-
ness ratio, strength requirements for beams and combined axial and bending strength
requirements which includes the elastic torsional lateral buckling for beam-columns.
Furthermore additional constraints are considered to satisfy practical design require-
ments. The design algorithm selects the cold-formed sections for the frame members
from the cold-formed thin-walled C-sections listed in AISI [22] such that the design
constraints are satisfied and the weight of the steel frame is the minimum. Five
recent metaheuristic algorithms are employed to determine the optimum solution of
the design problem formulated and their performance is compared.

2 Discrete Optimum Design of Cold-Formed Steel
Frames to AISI-LRFD

The selection of cold-formed thin-walled C-sections for the members of steel frame
is required to be carried out in such a way that the frame with the selected C-sections
satisfies the serviceability and strength requirements specified by the code of practice
while the economy is observed in the overall or material cost of the frame. When the
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constraints are implemented from AISI-LRFD [15] in the formulation of the design
problem the following discrete programming problem is obtained.

Find a vector of integer values I (Eq. 1) representing the sequence numbers of
C-sections assigned to ng member groups

IT = [
I1, I2, . . . , Ing

]
(1)

to minimize the weight (W) of the frame

Minimize W =
ng∑

k=1

mk

nk∑

i=1

Li (2a)

Subject to

• Serviceability Constraints:

δ jl

L/Ratio
− 1.0 ≤ 0 j = 1, 2, . . . , nsm, l = 1, 2, . . . , nlc (2b)

�
top
jl

H/Ratio
− 1.0 ≤ 0, j = 1, 2, . . . , njtop, l = 1, 2, . . . , nlc (2c)

�oh
jl

hsx/Ratio
− 1.0 ≤ 0, j = 1, 2, . . . , nst , l = 1, 2, . . . , nlc (2d)

where, δ jl is the maximum deflection of j th member under the lth load case, L is the
length of member, nsm is the total number of members where deflections limitations
are to be imposed, nlc is the number of load cases, H is the height of the frame,
njtop is the number of joints on the top story, Δtop

jl is the top story displacement of
the j th joint under lth load case, nst is the number of story, nlc is the number of
load cases and Δoh

jl is the story drift of the j th story under lth load case, hsx is the
story height and Ratio is limitation ratio for lateral displacements described in ASCE
Ad Hoc Committee report [23]. According to this report, the accepted range of drift
limits by first-order analysis is 1/750 to 1/250 times the building height H with a
recommended value of H/400. The typical limits on the inter-story drift are 1/500
to 1/200 times the story height. 1/400 is used in this study.

• Strength Constraints: Combined Tensile Axial Load and Bending

It is stated inAISI-LRFD that when a cold-formedmembers are subject to concurrent
bending and tensile axial load, the member shall satisfy the interaction equations
given C5.1 of [15] which is repeated below.

Mux

φb Mnxt
+ Muy

φb Mnyt
+ Tu

φt Tn
≤ 1.0 (2e)
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Mux

φb Mnx
+ Muy

φb Mny
− Tu

φt Tn
≤ 1.0 (2f)

where,

Mux , Muy the required flexural strengths [factored moments] with respect to cen-
troidal axes.

Øb for flexural strength [moment resistance] equals 0.90 or 0.95 [21].
Mnx t , Mnyt SftFy (where, Sft is the section modulus of full unreduced section

relative to extreme tension fiber about appropriate axis and Fy is the
design yield stress).

Tu required tensile axial strength [factored tension].
Øt 0.95 [21].
Tn nominal tensile axial strength [resistance].
Mnx , Mny nominal flexural strengths [moment resistances] about centroidal axes.

• Strength Constraints: Combined Compressive Axial Load and Bending

It is stated in AISI-LRFD that when a cold-formed members are subject to concur-
rent bending and compressive axial load, the member shall satisfy the interaction
equations given in C5.2 of [15] which is repeated below.

For Pu
φc Pn

> 0.15,

Pu

φc Pn
+ Cmx Mux

φb Mnxαx
+ Cmy Muy

φb Mnyαy
≤ 1.0 (2g)

Pu

φc Pno
+ Mux

φb Mnx
+ Muy

φb Mny
≤ 1.0 (2h)

For Pu
φc Pn

≤ 0.15,
Pu

φc Pn
+ Mux

φb Mnx
+ Muy

φb Mny
≤ 1.0 (2i)

where,

Pu required compressive axial strength [factored compressive force].
Øc 0.85 [21].
Mux , Muy the required flexural strengths [factored moments] with respect to cen-

troidal axes of effective section.
Øb for flexural strength [moment resistance] equals 0.90 or 0.95 [21]
Mnx , Mny the nominal flexural strengths [moment resistances] about centroidal

axes.

and

αx = 1 − Pu

PEx

> 0.0, αy = 1 − Pu

PEy

> 0.0 (2j)
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where,

PEx = π2E Ix

(Kx Lx )2
, PEy = π2E Iy

(Ky L y)2
(2k)

where,

Ix moment of inertia of full unreduced cross section about x axis.
Kx effective length factor for buckling about x axis.
Lx unbraced length for bending about x axis.
Iy moment of inertia of full unreduced cross section about y axis.
Ky effective length factor for buckling about y axis.
L y unbraced length for bending about y axis.
Pno nominal axial strength [resistance] determined in accordance with

Section C4 of AISI [22], with Fn = Fy.
Cmx , Cmy coefficients taken as 0.85 or 1.0.

• Allowable Slenderness Ratio Constraints:

The maximum allowable slenderness ratio of cold-formed compression members
has been limited to 200.

Kx
∗Lx

rx
or

Ky
∗L y

ry
< 200 (2l)

where,

Kx effective length factor for buckling about x axis
Lx unbraced length for bending about x axis
Ky effective length factor for buckling about y axis
L y unbraced length for bending about y axis
rx , ry radius of gyration of cross section about x and y axes.

• Geometric Constraints:

Geometric constraints are required to make sure that C-section selected for the
columns of two consecutive stories are either equal to each other or the one above
storey is smaller than the one in the below storey. Similarly when a beam is connected
to flange of a column, the flange width of the beam is less than or equal to the flange
width of the column in the connection. Furthermore when a beam is connected to
the web of a column, the flange width of the beam is less than or equal to (D − 2tb)
of the column web dimensions in the connections where D and tb are the depth and
the flange thickness of C-section as shown in Fig. 2.
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Fig. 2 Typical beam-column
connection of C-section

Da
i

Db
i

− 1 ≤ 0 and
ma

i

mb
i

− 1 ≤ 0, i = 1, . . . , nccj (2m)

Bbi
i

Dci
i − 2tci

b

− 1 ≤ 0, i = 1, . . . , n j1 (2n)

Bbi
f

Bci
f

− 1 ≤ 0, i = 1, . . . , n j2 (2o)

where nccj is the number of column-to-column geometric constraints defined in the
problem, ma

i is the unit weight of C-section selected for above story, mb
i is the unit

weight of C-section selected for below story, Da
i i is the depth of C-section selected

for above story, Db
i is the depth of C-section selected for below story, n j1 is the

number of joints where beams are connected to the web of a column, n j2 is the
number of joints where beams connected to the flange of a column, Dci

i is the depth
of C-section selected for the column at joint i, tci

b is the flange thickness of C-section
selected for the column at joint i, Bci

f is the flange width of C-section selected for

the column at joint i and Bbi
f is the flange width of C-section selected for the beam

at joint i .
Computation of nominal axial tensile strength Tn , nominal axial compressive

strength Pn , nominal flexural strengths about centroidal axis Mnx and Mny are
given in [15] which requires consideration of elastic flexural buckling stress, elastic
flexural-torsional buckling stress and distortional buckling strength. Each of these is
calculated through use of certain expression given in the design code. Repetition of
these expressions is not possible due to lack of space in the article. Hence reader is
referred to references [3, 4, 15]. The design problem described through Eqs. 2a–2o



Comparative Study on Recent Metaheuristic Algorithms … 153

turns out to be discrete programming problem. The solution of the design program
necessitates selection of cold-formed C-sections from the available list such that
the design constraints (2b)–(2o) which are implemented from the design code are
satisfied and the objective function given in Eq.2a has the minimum value.

3 Metaheuristic Algorithms

Obtaining the solution of optimization problems with discrete variables is much
harder than solving the optimization problems with continuous variables. Although
mathematical programming techniques such as integer programming, branch and
bound method and dynamic programming are available for attaining the solution of
discrete programming problems, the literature survey related with these techniques
reveals the fact they present numerical adversities in finding the solution of large
and complex design optimization problems designer face in practice [24, 25]. On
the other hand stochastic search methods that are known as metaheuristic techniques
are quite efficient in determining the solution of discrete programming problems
[26–31]. The fundamental properties of metaheuristic algorithms are that they imi-
tate certain strategies taken from nature, social culture, biology or laws of physics
which are used to direct the search process. Their goal is to efficiently explore the
search space using these governing mechanisms in order to find near optimal solu-
tions if not global optimum. They also utilize some strategies to avoid getting trapped
in confined areas of search space. Furthermore they do not even require an explicit
relationship between the objective function and the constraints. They are not problem
specific and proven to be very efficient and robust in obtaining the solution of prac-
tical engineering design optimization problems with both continuous and discrete
design variables [32–34]. In this study the solution of the design optimization prob-
lem described in the previous section is obtained by using five recent metaheuristic
algorithms and their performance is compared. These are firefly algorithm, cuckoo
search algorithm, artificial bee colony algorithm, biogeography-based optimization
algorithm and teaching-learning-based optimization algorithms which are developed
after 2005. Brief description of each algorithm is given in the following.

3.1 Firefly Algorithm

Firefly algorithm is originated by Yang [35–37] and it is based on the idealized
behaviour of flashing characteristics of fireflies. These insects communicate, search
for pray and find mates using bioluminescence with varying flaying patterns. The
firefly algorithm is based on three rules. These are:
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1. All fireflies are unisex so they attract one another.
2. Attractiveness is propositional to firefly brightness. For any couple of flashing

fireflies, the less bright one moves towards the brighter one. Attractiveness is
proportional to the brightness and they both decrease as their distance increases.
If there is no brighter one than a particular firefly, it will move randomly.

3. The brightness of a firefly is affected or determined by the landscape of the
objective function.

Attractiveness: In the firefly algorithm attractiveness of a firefly is assumed to be
determined by its brightness which is related with the objective function. The bright-
ness i of a firefly at a particular location x can be chosen as I (x) ∝ f (x) where
f (x) is the objective function. However, the attractiveness β is relative; it should be
judged by the other fireflies. Thus, it will vary with the distance ri j between firefly i
and firefly j . In addition, light intensity decreases with the distance from its source,
and light is also absorbed in the media. In the firefly algorithm the attractiveness
function is taken to be proportional to the light intensity by adjacent fireflies and it
is defined as;

β(r) = β0e−γ rm
, (m ≥ 1) (3)

where β0 is the attractiveness at r = 0.
Distance: The distance between any two fireflies i and j at xi and x j is calculated as

ri j = ∥∥xi − x j
∥∥ =

√√√√
d∑

k=1

(
xi,k − x j,k

)2 (4)

where xi,k is the kth component of the spatial coordinate xi of the i th firefly.
Movement: The movement of a firefly i which is attracted to another brighter firefly
j is determined by

xi = xi + β0e−γ r2i j (x j − xi ) + α

(
rand − 1

2

)
(5)

where the second term is due to the attraction while the third term is randomization
with α being the randomization parameter. “rand” is a random number generator
uniformly distributed in [0, 1].

The values of parameters in the above equations are generally taken as β0 = 1 and
α ∈ [0, 1]. Randomization term can be extended to a normal distribution N(0, 1) or
other distributions. γ characterizes the variation of the attractiveness, and its value
determines the speed of convergence and performance of the firefly algorithm. In
most applications its value is taken between 0 and 100. The pseudo code of the
algorithm is given in [35–37] which is repeated in Fig. 3.

The firefly algorithm is applied to determine engineering as well as structural size,
shape and topology design optimization problems [37–39]. In [37] firefly algorithm
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Firefly Algorithm

Objective function { } { }( ), , .......,1
T

f x x x xd=

Generate initial population of  fireflies ( ), 1, ......,x i ni =

Light intensity Ii at xi is determined by ( )f xi

Define light absorption coefficient 
while (until the termination criteria is satisfied) 

for i = 1 : n all n fireflies
for j = 1 : i all n fireflies

if (Ij > Ii)
Move firefly i towards j in d-dimension
end if
Attractiveness varies with distance r via exp[ r2] 
Evaluate new solutions and update light intensity

end for j 
end for i 

Rank the fireflies and find the current best
end while
Postprocess results and visualization

Fig. 3 Pseudo code of firefly algorithm

is used to determine optimum solution of six engineering design problems that are
taken from the literature and its performance is compared with other metaheuristic
algorithms such as particle swarm optimizer, differential evolution, genetic algo-
rithm, simulated annealing, harmony search method and others. It is stated that the
results attained from the optimum solutions of these design examples firefly algo-
rithm is more efficient than particle swarm optimizer, genetic algorithm, simulated
annealing and harmony search method.

3.2 Cuckoo Search Algorithm

Cuckoo search algorithm is originated by Yang and Deb [40] which simulates repro-
duction strategy of cuckoo birds. Some species of cuckoo birds lay their eggs in the
nests of other birds so that when the eggs are hatched their chicks are fed by the
other birds. Sometimes they even remove existing eggs of host nest in order to give
more probability of hatching of their own eggs. Some species of cuckoo birds are
even specialized to mimic the pattern and color of the eggs of host birds so that host
bird could not recognize their eggs which give more possibility of hatching. In spite
of all these efforts to conceal their eggs from the attention of host birds, there is
still a possibility that host bird may discover alien eggs. In such cases the host bird
either throws these alien eggs away or simply abandons its nest and builds a new
one somewhere else. In cuckoo search algorithm cuckoo egg represents a potential
solution to the design problem which has a fitness value. The algorithm uses three
idealized rules as given in [40]. These are: (a) each cuckoo lays one egg at a time
and dumps it in a randomly selected nest. (b) the best nest with high quality eggs
will be carried over to the next generation. (c) the number of available host nests is
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Cuckoo Search Algorithm
Begin;

Initialize a population of n host nests , 1, 2,....,ix i n= ; 

while (until the termination criterion is satisfied);

Get a cuckoo randomly, (let it be  ix ) 

and generate a new solution by Levy flights;

Evaluate its fitness (let it be iF );

Choose a nest among n nests randomly, (let it be jx );

if ( )i jF F>
replace jx by the new solution ix ; 

end

Abandon a fraction ( aP ) of worse nests and

built new ones at new locations via levy flights;
Keep the best nests (or solutions);
Rank  the solutions and find the current best;

end while
Post process results;

end procedure;

Fig. 4 Pseudo code for cuckoo search algorithm

fixed and a host bird can discover an alien egg with a probability of pa ∈ [0, 1].
In this case the host bird can either throw the egg away or abandon the nest to build
a completely new one in somewhere else. The pseudo code of the cuckoo search
algorithm is given in Fig. 4.

Cuckoo search algorithm initially requires selection of a population of n eggs each
of which represents a potential solution to the design problem under consideration.
This means that it is necessary to generate n solution vector of x = {

x1, . . . , xng
}T

in a design problem with ng variables. For each potential solution vector the value
of objective function f (x) is also calculated. The algorithm then generates a new
solution xν+1

i = xν
i + βλ for cuckoo i where xν+1

i and xν
i are the previous and new

solution vectors. β > 1 is the step sizewhich is selected according to the design prob-
lem under consideration. λ is the length of step size which is determined according to
random walk with Levy flights. A random walk is a stochastic process in which par-
ticles or waves travel along random trajectories consists of taking successive random
steps. The search path of a foraging animal can be modeled as random walk. A Levy
flight is a random walk in which the steps are defined in terms of the step-lengths
which have a certain probability distribution, with the directions of the steps being
isotropic and random. Hence Levy flights necessitate selection of a random direction
and generation of steps under chosen Levy distribution.

Mantegna [41] algorithm is one of the fast and accurate algorithmswhich generate
a stochastic variable whose probability density is close to Levy stable distribution
characterized by arbitrary chosen control parameter α (0.3 ≤ α ≤ 1.99). Using the
Mantegna algorithm, the step size λ is calculated as

λ = x

|y|1/α (6)
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where x and y are two normal stochastic variables with standard deviation σx and
σy which are given as

σx (α) =
[

� (1 + α) sin (πα/2)

� ((1 + α) /2) α2(α−1)/2

]1/α
and σy (α) = 1 for α = 1.5 (7)

in which the capital Greek letter � represents the Gamma function (�(z) =∫ ∞
0 t z−1e−zdt) that is the extension of the factorial functionwith its argument shifted
down by 1 to real and complex numbers. If z= k is a positive integer�(k) = (k−1)!.

Cuckoo search algorithm is applied to structural optimization problems as well
as optimum design of steel frames in [42–44]. It is shown in these applications that
cuckoo search algorithm performs better than particle swarm optimizer, big bang-
big crunch algorithm and imperialist competitive algorithm. It finds lighter optimum
designs.

3.3 Artificial Bee Colony Algorithm with Levy Flight

The artificial bee colony algorithm is suggested byKaraboga et al. [45–50]. It mimics
the foraging behaviour of a honey bee colony. In a honey bee colony, there are three
types of bees which carry out different tasks. The first group of bees are the employed
bees that locate food source, evaluate its amount of nectar and keep the location of
better sources in their memory. These bees when fly back to hive they share this
information to other bees in the dancing area by dancing. The dancing time represents
the amount of nectar in the food source. The second group are the onlooker bees who
observe the dance andmay decide to fly to the food source if they find it is worthwhile
to visit the food source. Therefore food sources that are rich in the amount of nectar
attract more onlooker bees. The third group are scout bees that explore new food
sources in the vicinity of the hive randomly. The employed bee whose food source
has been abandoned by the bees becomes a scout bee. Overall, scout bees carry out
the exploration, employed and onlooker bees perform the task of exploitation. Each
food source is considered as a possible solution for the optimization problem and
the nectar amount of a food source represents the quality of the solution which is
identified by its fitness value.

The artificial bee colony algorithm consists of four stages. These stages are ini-
tialization phase, employed bees phase, onlooker bees’ phase and scout bees phase.
These stages are summarized below for the optimization problem of Min. z = f (x)

where x is vector of n design variables.

1. Initialization phase: Initialize all the vectors of the population of food sources,
xp, p = 1, . . . , np by using Eq.8 where np is the population size (total number
of artificial bees). Each food source is a solution vector consisting of n variables
(x pi , i = 1, . . . , n) is a potential solution to the optimization problem.
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x pi = xi + rand(0, 1)(xui − xi ) (8)

where xi and xui are upper and lower bound on xi . rand(0, 1) is a random number
between 0 and 1.

2. Employed bees phase: Employed bees search new food sources by using Eq.9.

vpi = x pi + ϕpi (x pi − xki ) (9)

where k �= i is a randomly selected food source, ϕpi is a random number in
range [−1, 1]. After producing the new food source (solution vector) its fitness is
calculated. If its fitness is better than x pi the new food source replaces the previous
one. The fitness value of the food sources is calculated according to Eq.10.

fitness(x p) = 1

1 + f (x p)
(10)

where f (x p) is the objective function value of food source x p.
3. Onlooker bees’ phase: Unemployed bees consist of two groups. These are

onlooker bees and scouts. Employed bees share their food source information
with onlooker bees. Onlooker bees choose their food source depending on the
probability value P which is calculated using the fitness values of each food
source in the population as shown in Eq.11.

P = fitness(x p)
np∑

p=1
fitness(x p)

(11)

After a food source x pi for an onlooker bee is probabilistically chosen, a neigh-
bourhood source is determined by using Eq.8 and its fitness value is computed
using Eq.10.

4. Scout bees phase: The unemloyed bees who choose their food sources randomly
called scouts. Employed bees whose solutions cannot be improved after predeter-
mined number of trials (PNT) become scouts and their solutions are abondoned.
These scouts start to search for new solutions.

The pseudo code of the artfical bee colony algorithm is given in Fig. 5.
Artificial bee colony algorithm is widely used to obtain the solutions of structural

optimization problems [51–57]. It is concluded in these studies that artificial bee
colony algorithm is robust and efficient technique that performsbetter than someother
metaheuristic algorithms such as genetic algorithm, ant colony algorithm, particle
swarm optimizer, big bang-big crunch and imperialist competitive algorithms.
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Artificial Bee colony Algorithm

Initialize the population of solutions ijx and evaluate the population

while (until termination criteria is satisfied)

• Produce new solutions ijv in the neighbourhood of ijx for the employed bees using (9) 

• Apply the greedy selection process between ix and iv

• Calculate the probability values Pi for the solutions ix using (11) 

• Normalize Pi values into [0,1]

• Produce the new solutions iv for the onlookers from solutions ix selected depending on P i and 

evaluate their fitness

• Apply the greedy selection process for the onlookers between ix and iv
• Determine the abandoned solution, if exists, and replace it with a new randomly produced solution 

ix for the scout using (8) 

• Memorize the best food source position (solution) achieved so far
end while

Fig. 5 Pseudo code of the artificial bee colony algorithm

3.4 Biogeography-Based Optimization Algorithm

Biogeography-based optimization algorithm is developed by Simon [58] which is
based on the theory of island biogeography. Mathematical model of biogeography
describes the migration and extinction of species between islands. An island is any
area of suitable habitat which is isolated from the other habitats. Islands that are
friendly to life are said to have high habitat suitability index (HIS). Features that
correlate with HSI include such factors as rainfall, diversity of vegetation, diversity
of topographic features, land area, and temperature. The variables that characterize
habitability are called suitability index variables (SIV). SIVs can be considered the
independent variables of the habitat, and HSI can be considered the dependent vari-
able. Naturally habitats with a high HIS tend to have a large number of species while
those with a low HSI have a small number of species. Habitats with a high HSI have
many species that emigrate to nearby habitats, simply by virtue of the large number of
species that they host. Habitats with a high HSI have a low species immigration rate
because they are already nearly saturated with species. Therefore, high HSI habitats
are more static in their species distribution than low HSI habitats. This fact is used in
biogeography based optimization for carrying out migration. Relationship between
species count, immigration rate, and emigration rate is shown in Fig. 6 [58], where
I refers to the maximum immigration rate, E is the maximum emigration rate, S0 is
the equilibrium number of species and Smax is the maximum species count.

The decision to modify each solution is taken based on the immigration rate of
the solution. λk is the immigration probability of independent variable xk . If an
independent variable is to be replaced, then the emigrating candidate solution is
chosen with a probability that is proportional to the emigration probability μk which
is usually performed using roulette wheel selection.
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Fig. 6 Species model of a single habitat where λ is immigration rate and μ is emigration rate

P(x j ) = μ j∑N
i=1 μi

for j = 1, . . . ,N (12)

where N is the number of candidate solutions in the population.
Mutation is also another factor which is used to increase the species richness of

islands. This increases the diversity among the population. Each candidate solution
is associated with a mutation probability defined by

m(s) = mmax

(
1 − Ps

Pmax

)
(13)

mmax is a user defined parameter. Ps is the species count of the habitat, Pmax is the
maximum species count. Mutation is carried out on the mutation probability of each
habitat. The steps of the biogeography based optimization algorithm can be listed as
follows [59].

1. Set up initial population; define the migration and mutation probabilities.
2. Calculate the immigration and emigration rates for each candidate solution in the

population
3. Select the island to be modified based on the immigration rate.
4. Using roulette wheel selection on the emigration rate, select the island fromwhich

the SIV is to be immigrated.
5. Randomly select an SIV from the island to be emigrated.
6. Perform mutation based on the mutation probability of each island.
7. Calculate the fitness of each individual island
8. If the fitness criterion is satisfied go to step 2.

The pseudo code of biogeography-based optimization algorithm is given in Fig. 7
[60].
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Biogeograpy-Based Optimization Algorithm

For each solution { }Nkyk ,....,1, ∈ , define emigration probability ∝kμ fitness of [ ]1,0, ∈kky μ

For each solution ky define immigration probability kk μλ −=1
yz ←

For each solution kz

For each solution feature s

Use kλ to probabilistically decide whether to immigrate to kz

If immigrating then
Use { }iμ to probabilistically select the emigrating solution jy

( ) ( )sysz jk ←

end if
next solution feature

Probabilistically mutate kz

next solution
zy ←

Fig. 7 Pseudo code for one generation of biogeography-based optimization algorithm

3.5 Teaching-Learning-Based Optimization Algorithm

Teaching-learning-based optimization algorithm is also population based process
which mimics the influence of a teacher on learners [61]. The population repre-
sents class of learners. Different design variables in an optimum design problem
are considered as different subjects offered to the learners. Learners’ achievement
is analogous to the fitness value of the objective function. In the entire population
the best solution is considered as the teacher. The algorithm consists of two phases;
teacher phase and learner phase. In the teacher phase class learns from a teacher and
in the learner phase learning takes place through the interaction among the learners.

In the teacher phase the learning process of learners through a teacher is repli-
cated. A good teacher puts an effort to bring the level of learners higher in terms of
knowledge. However, in reality it is not only the effort of a teacher which can raise
the level of knowledge of learners. The capability of learners also plays an important
role in this process. Hence it is a random process. Supposing there are “m” number
of subjects (design variables) offered to “n” number of learners (population size, k
= 1, 2,…, n). At any sequential teaching-learning cycle i , let Ti be the teacher and
Mi be the mean of learners’ achievements. Ti will try to move mean Mi to a higher
level. After the teaching of Ti there will be a new mean, say Mnew. The solution is
updated according to the difference between the existing and the new mean as:

Difference_Mean = ri (Mnew − TF Mi ) (14)

where TF is a teaching factor that decides the value of mean to be changed, ri is a
random number in the range of [0, 1]. The value of TF can be either 1 or 2. It is not
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a parameter in the algorithm which is computed randomly as TF = round [1 + rand
(0,1) {2-1}]. The difference calculated in Eq.14 modifies the existing solution as

xnew,i = xold,i + Difference_Mean (15)

In learners’ phase the learning process of learners through interaction among
themselves is imitated. A learner interacts randomly with other learners with the
help of group discussions, presentations, and formal communications. It should be
noticed that a learner can learn more unless the other learner has more knowledge
than her or him. In this phase randomly two learners say xi and x j are selected where
i �= j . Learner modification is then expressed as follows:

xnew,i = xold,i + ri
(
xi − x j

)
if f (xi ) < f (x j ) (16)

xnew,i = xold,i + ri
(
x j − xi

)
if f (xi ) > f (x j ) (17)

xnew,i is accepted if it gives a better function value. This process is repeated for the
learners in the population. The pseudo code of the algorithm is given in Fig. 8.

Teaching-learning-based optimization algorithm is used to develop structural opti-
mization algorithms in [62–64]. It is shown in these studies that teaching-learning-
based optimization algorithm is robust and efficient algorithm that produced better
optimum solutions that those metaheuristic algorithms considered for comparison.

Teaching-Learning-Based Optimization Algorithm

Initialize the population size and number of generations. 
Generate a random population. Calculate the values of objective function for each learner.

While (number of generation is not reached)

Calculate the mean of each design variable; meanx

Identify the best solution as teacher [ ( )minxfwithxxteacher ⇒ ]

nifor →= 1
Calculate teaching factor  TF,i = round [1 + rand(0,1){2-1}]

Modify solutions based on teacher   [ ]meaniFteacheriinew xTxrandxx ,, )1,0( −+=
Calculate the objective function value ( )inewxf , for inewx ,

If )()( , iinew xfxf < then  replace inewi xx ,=
Select a learner randomly, say jx such that ij ≠

If  )()( ji xfxf < then 

( )jiiioldinew xxrxx −+= ,,

Else

( )ijiioldinew xxrxx −+= ,,

End if

If )()( , iinew xfxf < then  replace inewi xx ,=
End for 

End while

Fig. 8 Pseudo code for teaching-learning-based optimization algorithm
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4 Constraint Handling

Metaheuristic algorithms are developed to obtain the solution of unconstrained opti-
mization problems. However, almost all of the structural design problems are con-
strained optimization problems. It is apparent that it becomes necessary to transform
the constrained optimum design problem into unconstrained one if one intends to
use metaheuristic algorithms for obtaining its solution. One way to achieve this is
to utilize a penalty function. In this study the following function is used in this
transformation.

Wp = W (1 + C)ε (18)

where W is the value of objective function of optimum design problem given in 2a.
Wp is the penalized weight of structure, C is the value of total constraint violations
which is calculated by summing the violation of each individual constraint. ε is
penalty coefficient which is taken as 2.0 in this work.

C =
nc∑

i=1

ci (19)

ci =
{
0 i f g j ≤ 0
g j i f g j > 0

j = 1, . . . , nc (20)

where g j is the j th constraint function and nc is the total number of constraints in
the optimum design problem. Constraint functions for the steel frame made of cold-
formed sections are given through in Eqs. 2b–2o. It should be reminded that all the
constraints are required to be normalized similar to constraint given in Eq.2n before
they are used in the metaheuristic algorithms.

5 Optimum Design Algorithms with Discrete Variables

Five optimum design algorithms are coded each of which is based on the metaheuris-
tic algorithms summarized above. The solution of the discrete optimum design prob-
lem given in Eqs. 2a–2o is obtained using these algorithms. In all the optimum design
techniques the sequence number of the steel C-sections in the standard list is treated
as design variable. For this purpose complete set of 85 C-sections starting from
4CS2x059 to 12CS4x105 as given in AISI [22] is considered as a design pool from
which the optimum design algorithms select C-sections for frame members. Once
a sequence number is selected, then the sectional designation and properties of that
section becomes available from the section table for the algorithm. The metaheuris-
tic algorithms mentioned in Sect. 3 assume continuous design variables. However
the design problem considered requires discrete design variables. This necessity is
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resolved by rounding the numbers obtained through each algorithm. For example
Eq.8 of artificial bee colony algorithm is written as

Ipi = Imin + INT[rand(0, 1)(Imax − Imin)], i = 1, . . . , ng, p = 1, . . . , np
(21)

where Ipi is the integer value for x pi , the term rand(0,1) represents a random number
between 0 and 1, Imin is equal to 1 and Imax is the total number of values in the discrete
set for C-section respectively which is equal to 85. ng is the total number of design
variables and np is the number of bees in the colony which is equal to (neb+nob)
where (neb) is the number of employed bees and (nob) is the number of onlooker bees.
The similar adjustments are carried out in other metaheuristic algorithms wherever
discrete value are needed for a design variable

The analysis of steel frames is achieved by using matrix displacement method.
Noticing the fact that steel frames made of cold-formed thin-walled sections are
quite slender structures, large deformations compare to their initial dimensions may
take place under external loads. In structures with large displacements, although
the material behaves linear elastic, the response of the structure becomes nonlinear
[65]. Under certain types of loading, namely, even when small deformations are pre-
sumed, nonlinear behavior can be predicted. Changes in stiffness and loads occur as
the structure deforms. In such structures, it is necessary to take into account the effect
of axial forces to member stiffness. This is achieved by carrying out P-δ analysis in
the application of the stiffness method. In each design cycle when the cross sec-
tional properties of members is changed, steel frame is analyzed by constructing the
nonlinear stiffness matrix where the interaction between bending moments and axial
forces is considered through the use of stability functions. The details of the deriva-
tion of the nonlinear stiffness matrix and consideration of geometric nonlinearity in
the analysis of steel frames made of thin-walled sections are given in [66].

6 Design Example

Two-storey, 1211-member lightweight cold-formed steel space frame shown in Fig. 9
is selected to study the performance evaluation of five different metaheuristic algo-
rithms. 3-D, plan and floor views of the frame are shown in the same figure respec-
tively. The spacing between columns is decided to be 0.6m span and each floor has
2.8m height. The total height of the building is 5.6m. The space frame consists of
708 joints (including supports) and 1211 members that are grouped into 14 indepen-
dent member groups which are treated as design variables. The member grouping
of the frame is illustrated in Table1. The frame is subjected to gravity and lateral
loads, which are computed as per given in ASCE 7-05 [67]. The loading consists of
a design dead load of 2.89kN/m2, a design live load of 2.39kN/m2, a ground snow
load of 0.755kN/m2. Unfactored wind load values are taken as 0.6kN/m2. The load
and combination factors are applied according to code specifications of LRFD-AISC
[21] as; Load Case 1: 1.2D+1.6L+0.5S, Load Case 2: 1.2D+0.5L+1.6S and Load
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a 3-D view from front and left shot                                              

b 3-D view from back and right shot

c3-D view from back and left shot

3m

1.8m

1.8m

1.8m

1.8m

1.8m

y

0.6m
 x 23 =

 13.8m

0.6m x 18 = 10.8m

x

(a) (b)

Fig. 9 1211-member three dimensional lightweight cold-formed steel frame, a 3-D views from
different shots, b Plan views, c First and second floors top views without slabs

Case 3: 1.2D+1.6WX+1.0L+0.5S where D represents dead load, L is live load, S
is snow load and WX is the wind load applied on X global direction respectively.
The top story drift in both X and Y directions are restricted to 14mm and inter-story
drift limitation is specified to 7mm. The complete single C-section with lips list
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a First floor top view without slabs

b Second floor top view without slabs

(c)

Fig. 9 (continued)

given in AISI Design Manual 2007 [22] which consists of 85 section designations is
considered as a design pool for design variables.

The light weight cold-formed steel frame is designed by using five different opti-
mum design algorithm each of which is based on one of the metaheuristic algorithms
summarized in Sect. 3. Eachmetaheuristic algorithm has certain parameters to be ini-
tially decided by users. The values adopted for these parameters are given in Table2
related to each metaheuristic algorithm. Maximum number of iterations is taken as
20,000 for all the algorithms to provide equal opportunity for these techniques. The
optimum solutions are obtained after the number of iterations that is much smaller
than 20,000.

The optimum designs determined by these five different optimization algorithms
are listed in Table3. It is interesting to notice that all the algorithms have almost found
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Table 1 The member grouping of 1211-member lightweight cold-formed steel frame

Storey Beams outer
short

Beams inner
short

Beams inner
gates

Beams
windows

Beams outer
gate

1 1 2 3 4 5

2 1 2 3 4 –

Storey Columns
connected
short beams

Columns
connected
long beams

Columns near
inner gates

Columns
windows

Braces

1 6 7 8 9 14

2 10 11 12 13 14

Table 2 Algorithm parameter values used in the design example

Firefly Algorithm (FFA) Number of fireflies = 50,
α = 0.5, γ = 1, βmin = 0.2, β = 1.0

Cuckoo Search Algorithm (CSA) Number of nests = 40, pa = 0.90

Artificial Bee Colony (ABC) Total number of bees = 50, Maximum cycle
number = 400 Limiting value for number of
cycles to abandon food source = 250

Biogeography-Based Optimization (BBO) Population size = 20, Maximum number of
generation = 400, Elitism parameter = 2,
Mutation probability = 0.01

Teaching-learning-based Optimization (TLBO) Number of students = 50, Maximum number
of generations = 200

optimum designs that are very close to each others. Among all, the Biogeography-
Based Optimization (BBO) has attained the best global optimum design with the
minimum weight of 53.584kN (5464.05kg). The second best solution is determined
by Teaching-Learning-Based Optimization (TLBO) where the optimum weight of
the frame is 53.677kN (5473.53kg) which is only 0.17% heavier than the optimum
design attained by BBO. In fact the difference between the lightest and the heaviest
optimumdesigns is only 1.2%.This indicates the fact that all these recentmetaheuris-
tic algorithms namely firefly algorithm, cuckoo search algorithm, artificial bee colony
algorithm, biogeography-based optimization algorithm and teaching-learning-based
optimization algorithm are robust and efficient metaheuristic algorithms that are can
be used in confidence in solving structural design optimization problems. Inspection
of the constraint values given in Table3 clearly shows that the strength constraints
are dominant in the design optimization problem. Almost in all the algorithms the
maximum strength ratio is very close to 1.0 while displacement and inter-story drift
constraints are much less than their upper bounds.

The convergence history of each algorithm is shown in Fig. 10. It is apparent
from this figure that BBO and TLBO have much better convergence rate than firefly
(FFA) and artificial bee colony (ABC) algorithms. Although it exhibits rapid conver-
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Fig. 10 Search histories of
1211-member lightweight
cold-formed steel frame

gence performance to reach optimum solution, the worst design is yielded by CSA
producing optimum frame weight as 54.228kN (5529.74kg). However considering
the fact that the difference between the lightest and heaviest optimum designs is only
1.2%, it can be concluded that the performance of the all metaheuristic algorithms
considered in this study is efficient in this particular design optimization problem.

7 Conclusions

The use of cold-formed thin-walled steel framing in construction industry provides
sustainable construction requiring less material to carry the same load. The con-
cept of sustainable building has become quite important due to the rapid increase
of human population. The optimum design algorithm developed for cold-formed
light weight steel buildings reduces the required amount of material even further
level helping the sustainability of the construction. The design procedure selects the
optimum cold-formed C-section designations from the section list such that design
constraints described in AISI-LRFD are satisfied and the light weight steel frame
has the minimum weight. In view of the results obtained it can be concluded that the
metaheuristic algorithms considered in this study that are firefly algorithm, cuckoo
search algorithm, artificial bee colony optimization algorithm, biogeography-based
optimization and teaching-learning-based optimization algorithm all yield an effi-
cient and robust design optimization technique that can successfully be employed in
optimum design of light weight cold-formed steel frames. The difference between
the heaviest and the lightest optimum designs attained by these algorithms is only
1.2% which is not significant. The metaheuristic algorithms selected do not require
initial selection of too many parameters. Except the firefly algorithm, the rest of
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the metaheuristic techniques considered needs selection of two parameters, namely
population size and maximum number of generations which is the minimum num-
ber of parameters that would be required in such procedures. The total number of
structural analysis required to reach the optimum design is high similar to most
of metaheuristic algorithms. This number may be reduced by carrying out some
enhancements in these algorithms such as adding levy flights for random walk. It
was not possible to perform comparison of the optimum designs attained in this study
with other designs due to the fact that there is no other publication in literature that
considers the same design code provisions.
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Adaptive Switching of Variable-Fidelity
Models in Population-Based Optimization

Ali Mehmani, Souma Chowdhury, Weiyang Tong and Achille Messac

Abstract This article presents a novel model management technique to be imple-
mented in population-based heuristic optimization. This technique adaptively selects
different computational models (both physics-based models and surrogate models)
to be used during optimization, with the overall objective to result in optimal designs
with high fidelity function estimates at a reasonable computational expense. For
example, in optimizing an aircraft wing to obtain maximum lift-to-drag ratio, one
can use low fidelity models such as given by the vortex lattice method, or a high
fidelity finite volume model, or a surrogate model that substitutes the high-fidelity
model. The information from these models with different levels of fidelity is inte-
grated into the heuristic optimization process using the new adaptivemodel switching
(AMS) technique. The model switching technique replaces the current model with
the next higher fidelity model, when a stochastic switching criterion is met at a
given iteration during the optimization process. The switching criterion is based on
whether the uncertainty associatedwith the current model output dominates the latest
improvement of the relative fitness function, where both themodel output uncertainty
and the function improvement (across the population) are expressed as probability
distributions. For practical implementation, a measure of critical probability is used
to regulate the degree of error that will be allowed, i.e., the fraction of instances
where the improvement will be allowed to be lower than the model error, without
having to change the model. In the absence of this critical probability, model man-

A. Mehmani · S. Chowdhury (B)

Department of Mechanical and Aerospace Engineering, Syracuse University,
Syracuse, NY 13244, USA
e-mail: amehmani@syr.edu

S. Chowdhury
e-mail: chowdhury@bagley.msstate.edu

W. Tong · A. Messac
Department of Aerospace Engineering, Mississippi State University,
Mississippi State, MS 39762, USA
e-mail: wtong@syr.edu

A. Messac
e-mail: messac@ae.msstate.edu

© Springer International Publishing Switzerland 2015
N.D. Lagaros and M. Papadrakakis (eds.), Engineering and Applied
Sciences Optimization, Computational Methods in Applied Sciences 38,
DOI 10.1007/978-3-319-18320-6_10

175



176 A. Mehmani et al.

agement might become too conservative, leading to premature model-switching and
thus higher computing expense. The proposed AMS-based optimization is applied
to two design problems through Particle Swarm Optimization, which are: (i) Airfoil
design, and (ii) Cantilever composite beam design. The application case studies of
AMS illustrated: (i) the computational advantage of this method over purely high
fidelity model-based optimization, and (ii) the accuracy advantage of this method
over purely low fidelity model-based optimization.

1 Introduction

Population-based heuristic optimization algorithms, such as evolutionary algorithms
and swarm optimization algorithms have been applied to diverse areas of science
and engineering over the past few decades. They have been proven to be very effec-
tive in solving complex design optimization problems, especially those involving
highly nonlinear functions. However, considering the computational cost of the high
fidelity simulation models typically used to represent system behavior (e.g., CFD,
FEA models), the large number of function evaluations often demanded by heuristic
algorithms limit their applicability to practical complex system design (e.g., wing
design of a high speed civil transport aircraft [1]). One approach to address this
issue is variable fidelity optimization. In this approach, model management strate-
gies adaptively integrate models of different fidelity and cost into the optimization
process.

1.1 Variable Fidelity Models

Variable fidelity models refer to models with different levels of fidelity, where the
computational cost of the model is generally related to the accuracy of the model
estimation. In addition to low,medium, andhighfidelity physics-basedmodels, surro-
gate models (or mathematical approximation models) can also be used as candidates
within a set of variable fidelity models. Surrogate models are purely mathematical
models (i.e., not derived from the system physics) that are used to provide a tractable
and inexpensive approximation of the actual system behavior. They are commonly
used as an alternative to expensive computational simulations (e.g., CFD [2]) or to
the lack of a physical model in the case of experiment-derived data (e.g., creation
and testing of new metallic alloys [3]). Further description of the state of the art
in surrogate modeling can be found in the following literature [4–6]. Major surro-
gate modeling methods include Polynomial Response Surfaces [7], Kriging [8, 9],
Moving Least Square [10, 11], Radial Basis Functions (RBF) [12], Support Vec-
tor Regression(SVR) [13], Neural Networks [14] and hybrid surrogate models [15].
These methods have been applied to a wide range of disciplines, from aerospace
design and automotive design to chemistry and material science [6, 16, 17].
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Besides direct implementation of a surrogate model as a black-box function
(directly substituting a high fidelity model or data), low fidelity physic-based models
can also be combined with a surrogate model to achieve a hybrid model of greater
accuracy than its individual components (as illustrated in Fig. 1). Low fidelity physic-
based models (e.g., the vortex lattice computational fluid dynamics method) are
generally less complex than a high fidelity model and often provide a less faithful
representation of the system behavior [18]. These models can be obtained by simpli-
fying either the analysis model (e.g., using coarse finite element mesh) or the original
physical formulation (e.g., using simplified boundary conditions or geometry). To
their advantage, low fidelity physics-based models often inherit the major features of
truemodels, while being significantly less expensive. Hence, thesemodels could pro-
vide a reliable foundation for the construction of high-quality hybrid approximation
models. These hybrid models, also called tuned low fidelity models, are expected to
reflect the most prominent physical features of the system behavior, while preserv-
ing computational efficiency. Two well-known approaches for constructing tuned
low fidelity (TLF) models are multiplicative and additive approaches, as given in
Eqs. 1 and 2, respectively [19].

Multiplicative approach: yT L F = A × yL F (1)

Additive approach: yT L F = B + yL F (2)

In both of these approaches, the tuning functions (A and B) are trained using the
associated values of the high and low fidelity models for a given DoE, as shown
below:
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A(X) = yH F (X)

yL F (X)

B(X) = yH F (X) − yL F (X)

where X = {X1, X2, X3, . . . , X Ns }
NS : Number of sample points (3)

and where yH F (.) and yL F (.) respectively represent the functional responses of the
low and the high fidelity models (where in the multiplicative scenario, yL F is only
allowed to take non-zero values). In surrogate-based tuned low fidelity models, the
tuning (or correction) of a low fidelity model is performed using a surrogate model
constructed through a DoE of the high fidelity model [20–22].

1.2 Model Management in Optimization

The major pitfall in using low fidelity models in optimization is that they can often
mislead the search process, leading to suboptimal or infeasible solutions. To address
this issue and provide optimum designs with high fidelity system evaluations, model
management strategies canbe applied.Differentmodelmanagement approaches have
been reported in the literature, for integrating low fidelitymodels within optimization
algorithms. One class of model management strategies are developed based on the
Trust-Region methods [23–27]. The basic idea of the Trust-region is to solve an
optimization problem, Min

x∈RP
f (x), using the highfidelitymodel ( f (x)). In solving this

optimization problem using a gradient-based algorithm, the kth iteration is computed
as xk+1 = xk + λ Δx , where λ is the step length and Δx is the decent direction.
As Δx is fixed, the problem reduces to a one-dimensional optimization problem:
Min

λ
f (xk +λΔx). To improve the computational efficiency of the problem, the low

fidelity model, f̂ (x), can be used in the latter optimization problem. Assuming the
low fidelity model is only valid in the vicinity of xk (e.g., xk + γ ), the optimization
search for λ is changed to the following constrained optimization problem:

Min
λ

f (x + λΔx), subject to: ||λΔx || < γ (4)

where γ is the trust-region radius. In the Trust-Region based model management
methods developed by Alexandrov et al. [28] and by Toropove and Alvarez in
1998 [29], the parameter γ is adaptively increased (or decreased) depending on
how well the low fidelity model, f̂ (x), predicts the improvement in the high fidelity
model. This criterion is estimated by computing the ratio of the actual to the predicted
improvement in the objective function, as given by

f (xk) − f (xk + λkΔxk)

f̂ (xk) − f̂ (xk + λkΔxk)
(5)
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The Trust-Region method seeks the agreement of the function and its gradient values
estimated by the low fidelity model with those estimated by the high fidelity model.
However, these techniques may not be directly applicable in problems where gra-
dients are expensive to evaluate, or where zero-order algorithms are being used for
optimization.

In another class of model management strategies, developed for non-physics-
based low fidelity models (e.g., surrogate model and tuned-low fidelity model) the
accuracy of the surrogate model (or metamodels) is improved during the optimiza-
tion process by adding infill points, where additional evaluations of the high fidelity
model is then performed. Infill points are generally added in (i) the region where the
optimum is located (local exploitation); and/or (ii) the entire design space to improve
the global accuracy of the surrogate (global exploration) [20, 30, 31]. Trosset and
Torczon in 1997 [32] proposed an approach where the balance between exploitation
and exploration was considered using the aggregatemerit function, f̂ (x)−ρdmin(x),
where, dmin(x) = Min

x
‖x − xi‖, ρ > 0. It is important to note that, this technique

is independent of the type of surrogate modeling technique being considered. Over
the last two decades, different statistical model management strategies have been
developed [33–36]. Among them, Jones et al. in 1998 [35] developed a well-known
model management strategy that is based on anExpected Improvement (EI) criterion,
and is called Efficient Global Optimization (EGO). This powerful approach is how-
ever generally limited to surrogate models based on Gaussian processes. Assuming
fmin is the objective function value of the optimum in the training data, the expected
improvement in an infill point x is given by E(I (x)) = E(max( fmin − F(x)), 0). In
this case, F(x) is a Gaussian distribution, F(x) ∼ N ( f̂ (x), σ 2(x)), where the poste-
rior mean, f̂ (x), is used as a surrogate model, and the posterior variance σ 2(x) gives
an estimate of the uncertainty involved in the surrogate prediction. The expected
improvement can be estimated by

E(I (x)) = ( fmin − f̂ (x))Φ(
fmin − f̂ (x)

σ (x)
) + σ(x)φ(

fmin − f̂ (x)

σ (x)
) (6)

where Φ(.) and φ(.) denote the standard normal density and distribution functions,
respectively [34]. Subsequently, an infill point can be found by maximizing the
expected improvement, Xin f ill = argmax

x
(E(I (x))).

The model management strategies used in heuristic optimization algorithms can
be broadly classified into two different approaches which are (i) individual-based
evolution control, and (ii) generation-based evolution control [37]. In the individual-
based approach, selected individuals (controlled individuals) within a generation are
evaluated using a high fidelity model. In the generation-based approach, the whole
population at a certain generation (controlled generation) is evaluated using the
high fidelity model. Graning et al. [38] explored different individual-based evolution
frameworks such as (i) the Best Strategy [39], where the best individuals at each
generation are selected as controlled individuals, (ii) the Pre-Selection method [40],
where the offspring of the best individuals are selected as controlled individuals,
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and (iii) the Clustering Technique [41], where the k-means clustering technique is
used to find the “controlled individual cluster” based on the distance from the best
individual.

In this section, a survey of existing model management strategies for integrating
models with different levels of fidelity into an optimization process was provided.
Several of the existing strategies are found to be defined for specific types of low
fidelity model, e.g., EGO works primarily for Gaussian process-based surrogate
models. On the other hand, existing techniques generally consider the combination
of only two models of different fidelities (e.g., Trust-region methods, and individual-
and generation-based techniques). This article seeks to address some of the above-
stated crucial gaps in the variable-fidelity optimization paradigm. Specifically, the
development of a model management strategy that can be coherently applied to
different types of low fidelity models (i.e., physics-based and non-physics-based low
fidelity models), and allows adaptive switching between more than two models is
being pursued in this article.

1.3 A New Approach to Global Model Switching

The primary objective of this article is to investigate a new adaptive model man-
agement strategy that significantly reduces the computational cost of optimization
while converging to the optimum with high fidelity model evaluation; in its current
form, thismethod is designed toworkwith population-based optimization algorithms
(e.g., GAs, PSOs). Additionally, this method assumes that models of different levels
of fidelity are available to the user. Specifically, a new stochastic model switching
metric, called Adaptive Model Switching (AMS), is formulated in this article. The
AMS technique is implemented through a powerful version of the Particle Swarm
Optimization (PSO) algorithm that involves explicit diversity preservation, called
Mixed-Discrete PSO [42]. The effectiveness of this implementation is investigated
by application to two engineering design optimization problems.

The remainder of the article is organized as follows: Sect. 2 presents the concept
and the formulation of the new Adaptive Model Switching (AMS) metrics. Descrip-
tion of the model error quantification methods used in this article, including Predic-
tive Error Estimation of Model Fidelity (PEMF), is provided in Sect. 2.3. Section3
describes the practical problems to which AMS is applied; the numerical settings
and case study results are illustrated and discussed in Sect. 3. Section4 provides the
concluding remarks.
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2 Variable Fidelity Optimization with Adaptive Model
Switching (AMS)

2.1 Major Steps in Optimization with AMS

In optimization based on variable fidelity models, the important question is when
and where to integrate the models with different levels of fidelity. In this article, the
“when to integrate” question is particularly addressed. Increasing fidelity too early
in the design process can be computationally expensive while wasting resources
to explore undesirable regions of the design domain. On the other hand, switching
to a higher fidelity model too late might mislead the search process early on to
suboptimal regions of the design domain (especially in multimodal problems), i.e.,
leading to scenarios where the global optimum is outside of the region spanned by
the population of candidate solutions in later iterations. In this section, a novel model
management strategy called,Adaptive Model Switching (AMS)metric is developed to
avoid both these undesirable scenarios. AMS can be perceived as a decision-making
tool for the timing of model-switching or model integration. The implementation of
the proposed AMS in population-based algorithm involves the following five major
steps:

Step 1 Assuming the available models are non-dominated w.r.t. each other in terms
of fidelity and computational expense, the models are first ranked from the
lowest fidelity to the high fidelity, based on the error associated with each
model-Mi for i = 1, . . . , n.wheremodelM1 has the lowest fidelity andmodel
Mn has the highest fidelity. Assuming the distribution ofmodel error is known
for each model, the ranking is performed using the modal values of the error
distributions.

Step 2 The initial population is then generated at t = 1, using M1.
Step 3 At every iteration (t) of the heuristic optimization algorithm, the current

model, Mi, is used to update the function values of the population, and then
set t = t + 1. In this article, Particle Swarm Optimization is the chosen
heuristic optimization algorithm.

Step 4 The following stopping criteria is checked after every iteration.
The optimization algorithm stops when the relative changes in the fitness
function value is less than a predefined function tolerance, δF . To avoid ter-
mination before reaching the high fidelity model (Mn), the function tolerance
must be specified to be less than the modal error of the last but one model
(Mn−1).
IF the termination criteria is satisfied, the current optimum (the best global
solution in the case of PSO) is identified as the final optimum and the opti-
mization process is terminated.
ELSE, Go To Step 5

Step 5 The switching metric (AMS metric) is evaluated in this step.
IF the AMS metric is satisfied, a switching event occurs, and the algorithm
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Fig. 2 Adaptive model switching in population-based optimization

switches from model Mi to Mi+1.
Go To Step 3

A flowchart of the algorithm for optimization with AMS is shown in Fig. 2. In
practice, the AMS technique (Step 5) need not be applied at every iteration; the user
can specify it to be applied after every K iteration (where K is a small positive
integer). In the flowchart, AMS is shown to be applied at every iteration, for the sake
of simplicity.

In the following subsection, the novel components of the AMSmethod (Fig. 2) are
described. Subsequently, an overview of the Mixed-Discrete PSO algorithm, which
is used for implementing and testing the AMS method, is provided.

2.2 The Adaptive Model Switching (AMS) Metric

In this article, it is assumed that the uncertainty associated with each model (Mi ; i =
1, . . . , n) is known or can be evaluated in the form of an error distribution, Pi . Under
this assumption, the fitness function values evaluated using the i th model can be
related to the corresponding high fidelity estimation as

yi
H F = ŷi

L F + εi (7)

In Eq.7, ŷi
L F and εi respectively represent the response of the i th low fidelity

model and the stochastic error associated with it; and yi
H F is the corresponding high

fidelity model response. The relative improvement in the fitness function value (Δ f )
can be considered to follow an unknown distribution, Θ , over the population of
solutions. Here, Δ f in the t th iteration (t ≥ 2) can be expressed as
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Fig. 3 The illustration of the
AMS metric pcr
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The model switching criteria is then defined based on “whether the uncertainty
associated with a model response is higher than the observed improvement in the
relative fitness function of the population”. Due to the practical unavailability of
reliable local measures of model error (i.e., ε as a function of x), the model switching
criteria is designed using the stochastic global measures of model error and the
distribution of solution improvement. Based on prior experience or practical design
requirements, the designer is likely to be cognizant of what levels of global model
error, η, is acceptable for a particular low fidelity model in an optimization process.
Hence, η can be perceived as a user-preference. The critical probability, pcr for that
low fidelity model with an error distribution P is then defined as the probability of
the model error to be less than η. This definition can be expressed as

pcr = Pr [ε ≤ η] =
∫ η

0
P(ε

′
) dε

′
(9)

The critical probability (pcr ) essentially indicates a critical bound in the error
distribution P (0 ≤ ε ≤ η). If the predefined cut-off value (β) of the Θ distribution
lies inside this region, the current low fidelity model is considered to be no more
reliable for use in the optimization process. As illustrated in Fig. 3, assuming that
Θ and P follow a log-normal distribution, pcr = Pr [ε ≤ η∗]; and β∗ is the pre-
computed cut-off value in theΘ distribution. The model with the P error distribution
can be used in the optimization process provided that η∗ ≤ β∗.

TheAdaptiveModel Switching (AMS)metric is formulated as a hypothesis testing
that is defined by a comparison between

(I) the distribution of the relative fitness function improvement (Θ) over the entire
population, and

(II) the distribution of the error associated with the i th model (Pi ) over the entire
design space.
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Fig. 4 The illustration of the AMS hypothesis test (comparing the model error distribution (Pi )
and the distribution of fitness function improvement (Θ)); a Rejection of the text; don’t change a
model. b Acceptance of the text; change a model

This statistical test for the i th model can be stated as

H0: QPi (pcr ) ≥ QΘ(1 − pcr )

H1: QPi (pcr ) < QΘ(1 − pcr )

0 < pcr < 1 (10)

where Q represents a quantile function of a distribution; The p-quantile, for a given
distribution function, Ψ , is defined as

QΨ (p) = in f {x ∈ R: p ≤ Ψ(c.d. f.)(x)} (11)

In Eq.10, pcr or the critical probability is an Indicator of Conservativeness (IoC).
The IoC is based on user preferences, and regulates the trade-off between optimal
solution reliability and computational cost in the AMS-based optimization process.
Generally, the higher the IoC (closer to 1), the higher the solution reliability and the
greater the computational cost; under these conditions, model switching events will
occur early on in the optimization process.

For the sake of illustration, assume Θ and Pi follow a log-normal distribution,
and pcr = p∗. In this case, the null hypothesis will be rejected, and the optimization
process will use the current model (Mi ) if QΘ > QPi , as illustrated in Fig. 4a.
Conversely, if QΘ < QPi , the null hypothesis will be accepted, and the optimization
process will switch to the next higher fidelity model (Mi+1), as shown in Fig. 4b.

In this article, Kernel Density Estimation (KDE) is adopted to model the dis-
tribution of the relative improvement in the fitness function over consecutive kt
iterations. Since the distribution of fitness function improvement over the population
(for different problems) may not follow any particular probability model, and is also
observed to be multimodal at times, KDE is a suitable choice in this context. KDE is
a standard non-parametric approach to estimate the probability density function of
random variables. Here, it is assumed that Δ f = (Δ f1, Δ f2, Δ f3, . . . , Δ fNpop ) is
an independent and identically distributed sample drawn from a distribution with an
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unknown density ΘΔ f . The kernel density estimator can then be used to determine
ΘΔ f , as given by

Θ̃Δ f (x; H) = N−1
pop

Npop∑

i=1

K H (x − xi ) (12)

Here, the kernel K (x) is a symmetric probability density function, H is the band-
width matrix which is symmetric and positive-definite, and K H (x) = |H |−1/2K
(H−1/2x). The choice of K is not as crucial as the choice of the H estima-
tor for the accuracy of the KDE [43]. In this article, we consider K (x) =
(2π)−d/2exp(−1

2 xT x), the standard normal throughout. The Mean Integrated
Squared Error (MISE) method is used as a criterion for selecting the bandwidth
matrix, H [44], where

M I SE(H) = E(

∫
[Θ̃Δ f (x; H) − ΘΔ f (x)]2) (13)

2.3 Quantifying Model Uncertainties

In this article, the uncertainties associated with surrogate models and surrogate-
based tuned low fidelity models are determined using an advanced surrogate error
estimationmethod, calledPredictive Estimation of Model Fidelity orPEMF [45]. The
PEMF method is derived from the hypothesis that “the accuracy of approximation
models is related to the amount of data resources leveraged to train the model”.
A brief description of the PEMF method is provided in the following sub-section
(Sect. 2.3.1). In the case of physics-based low fidelity (PLF) models, the uncertainty
in their output is quantified through an inverse assessment process, by comparing the
physics-based low fidelity model responses with the high fidelity model responses.
In this case, the relative absolute error (R AEP L F ) of a PLF model is estimated as

R AEP L Fi =
{ | H Fi − P L Fi

H Fi
| if H Fi �= 0

|H Fi − P L Fi | if H Fi = 0

where i = 1, 2, 3, . . . , Ns (Number of sample points)

(14)

A DoE of NS high fidelity evaluations is used to perform the above-stated error
quantification, and also to train a surrogate models and a tuned low fidelity models.
The uncertainty of a lowfidelity physics-basedmodels is represented by a log-normal
distribution, lnN (μP L F , σP L F ), where the p-quantile of this distribution is defined
as
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QPP L F
(p) = P

−1
P L F

(p|μP L F , σP L F ) = exp(μP L F + Φ−1(p) σP L F )

where

μP L F = ln(
m2

R ARP L F√
v2R ARP L F

+ m2
R ARP L F

) σP L F =
√
ln(1 + vR ARP L F

m2
R ARP L F

) (15)

In Eq.15, Φ−1(.) is the inverse of the c.d.f of the standard normal distribution
with zero mean and unit variance, and m R ARP L F and vR ARP L F are the mean and the
variance of R AEi=1,2,3,...,Ns , respectively.

2.3.1 Predictive Estimation of Model Fidelity (PEMF)

In concept, the PEMF method [45] can be perceived as a novel sequential imple-
mentation of k-fold cross-validation, with carefully constructed error measures that
are significantly less sensitive to outliers and the DoE (compared to Mean or Root
Mean Square error measures). The PEMFmethod predicts the error by capturing the
variation of the surrogate model error with an increasing density of training points
(without investing any additional test points).

In the PEMF method, for a set of Ns sample points, intermediate surrogates
are constructed at each iteration, r , using Sr heuristic subsets of nr training points
(called intermediate training points), where nr < Ns . These intermediate surrogates
are then tested over the corresponding remaining Ns −nr points (called intermediate
test points). The median error is then estimated for each of the Sr intermediate
surrogates at that iteration, and a parametric probability distribution is fitted to yield
the modal value, Emo,r

med , and the median value, Emed,r
med , of the model error at that

stage. The smart use of the modal value of the median error significantly reduces
the occurrence of oscillations in the variation of error with sample density, unlike
mean or root mean squared error which are highly susceptible to outliers [46]. This
approach gives PEMF an important advantage over conventional cross-validation-
based error measures, as illustrated by Mehmani et al. [45–47]. It is important to
note that all error quantifications are performed in terms of the relative absolute error
(ER AE ), which is given by:

ER AE (Xi ) =
{ | F(Xi ) − F̂(Xi )

F(Xi )
| if F(Xi ) �= 0

|F(Xi ) − F̂(Xi )| if F(Xi ) = 0

(16)

where F is the actual function value at Xi , given by high fidelity model, and F̂ is
the function value estimated by the surrogate model.

In order to control the computational expense of PEMF, the lognormal distribution
is used to represent the surrogate model error; this distribution has been previously
observed (from numerical experiments) to be one of the most effective choice in
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representing the surrogate model error distribution. The PDFs of the median error,
pmed , can thus be expressed as

pmed = 1

Emedσmed
√
2π

exp(
(ln(Emed − μmed))2

2σ 2
med

) (17)

In the above equation, Emed represents the median of the relative errors estimated
over a heuristic subset of training points at any given iteration in PEMF. The para-
meters, (μmed , σmed ) are the generic parameters of the log-normal distribution. The
modal and median values of the median error distribution at any iteration, r , can then
be expressed as

Emo
med |r = exp(μmed − σ 2

med)|r
Emed

med |r = exp(μmed)|r (18)

Once the history of modal and median errors at different sample size (<Ns) are
estimated, the variation of the modal and median values of the errors with sample
density are then modeled using the multiplicative (E = a0na1 ) or the exponential
(E = a0ea1n) regression functions (depending on the best least-square fit). These
regression functions are then used to predict the modal and the median values of the
error distribution in the final surrogate, where the final surrogate is trained using all
the Ns sample points. The predicted modal and the median error values, εmod and
εmed , are then used to define the distribution of the error in the final surrogate model,
or in other words the response uncertainty of the surrogate model. The location and
scale parameters of the error distribution is then given by

με = ln εmed

σε =
√
ln(

εmed

εmod
) (19)

Subsequently, the p-quantile of the error distribution associatedwith the surrogate
model is given by

QPSM
(p) = P

−1
SM

(p|με, σε ) = exp(με + Φ−1(p) σε ) (20)

2.4 Optimization Algorithm: Particle Swarm Optimization

In the proposedmodelmanagementmethodology, optimization is performedusing an
advanced implementation of the Particle SwarmOptimization (PSO). PSOwas origi-
nally developed for solving continuous nonlinear optimization problems by Eberhart
and Kennedy in 1995 [48]. Several advanced versions of this algorithm have been
reported in the literature since its inception. In this article, one particular advanced
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implementation of the PSO algorithm called Mixed-Discrete PSO (MDPSO), which
was developed by Chowdhury et al. [42], is used. The advantages that the MDPSO
algorithm provides over a conventional PSO algorithm include: (i) an ability to deal
with both discrete and continuous design variables, and (ii) an explicit diversity
preservation capability that mitigates the possibility of premature stagnation of par-
ticles. Further description of the MDPSO algorithm can be found in the paper by
Chowdhury et al. [42].

3 Numerical Case Studies

3.1 Aerodynamic Shape Optimization of 2D Airfoil

This section describes a 2D airfoil design problem where the ratio of the coeffi-
cients of lift and drag (CL/CD) of the Wortmann FX60.126 2D airfoil [49] is to
be maximized. The lift-to-drag ratio (CL/CD) is expressed as a function of four
design variables, which include the angle of incidence (ranging from 0 to 10) and the
three normalized shape variables (each ranging from −0.01 to 0.01). As illustrated
in Fig. 5, the three shape variables define the distances (i) between the middle of the
suction side and the horizontal axis (x1), (ii) between the middle of pressure side and
the horizontal axis (x2), and (iii) between the trailing edge and the horizontal axis
(x3). These three shape variables allow a modification of the un-deformed airfoil
profile. With respect to the initial airfoil design, two cubic splines are added to the
suction and the pressure sides. Each of these splines is characterized by 3 points,
defined on the leading edge, the middle span, and the trailing edge. The chord length
of the airfoil is equal to 1m. The design constraints are the side constraints on the
design variables which are listed in Table1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.04
-0.02
0.00 
0.02 
0.04 
0.06 
0.08 
0.10 

X

Y

x1

x2
x3

Fig. 5 Design variables governing the geometry of the airfoil
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Table 1 Design variables in airfoil optimization problem

Description Notation Lower limit Upper limit

Distance between the middle of suction side and
horizontal axis

x1 −0.01 0.01

Distance between the middle of pressure side and
horizontal axis

x2 −0.01 0.01

Distance between the trailing edge and horizontal
axis

x3 −0.01 0.01

Incidence angle x4 0◦ 10◦

3.1.1 Aerodynamic Models with Different Level of Fidelity

To develop a high fidelity aerodynamic model for determining CL and CD (MA
HF),

the commercial Finite Volume Method package, FLUENT, is used. The Reynolds-
averaged Navier-Stokes (RANS) formulation is used along with a Reynolds model
to represent the turbulence. The CFD mesh is constructed using quadrangular cells
[49], characterized by 9,838 quadrangular cells and 10,322 grid points (Fig. 6a).

The low fidelity physics-based model (MA
PLF) is constructed based on the assump-

tions that the fluid is steady, incompressible, and irrotational. In this model, the
Navier-Stokes equations are solved using the Finite Element method. Triangular T3
elements are used for demonstration, as shown in Fig. 6b. The incoming velocity in
the analysis is set to 25 m/s. The computational time of the High and Low fidelity
physics-based models are approximately 300 and 30s, respectively (i.e., an order of
magnitude apart). The pressure field around the airfoil for the low and high fidelity
aerodynamic models at a baseline design (x1 = 0, x2 = 0, x3 = 0, and x4 = 5◦)
are illustrated in Fig. 7.

The third model is a surrogate model (MA
SM) constructed using a DoE of high

fidelity evaluation involving 30 sample points. The fourth model is a tuned low

−2 −1 0 1 2 3
−2

−1

0

1

2

X

Y

(a) (b)

Fig. 6 Fine and coarse mesh for CFD of airfoil [49]; a High fidelity model mesh; b Low fidelity
model mesh
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1.0126

1.0128

1.013

1.0132

1.0134

1.0136

1.0138

x 10
5

(b)(a)

Fig. 7 Pressure field around the airfoil at a baseline design; a High fidelity model, b Low fidelity
physics-based model

fidelity model (MA
TLF). In this article, the tuned low fidelity model is constructed

using the Multiplicative approach, as given by

F̃(x, a) = f (x) × C(x) (21)

where F̃ is a tuned lowfidelitymodel; f (x) is a lowfidelitymodel;C(x) is an explicit
tuning surrogate constructed using the high fidelity samples, as shown below:

C(x) =
CL
CD

|HF
CL
CD

|PLF
(22)

where CL and CD are respectively the lift and drag coefficients.
The surrogate model (MA

SM) and the surrogate component of the tuned low fidelity
model (MA

TLF) are both constructed using Kriging with a Gaussian correlation func-
tion [8, 9]. Kriging is an interpolating method that is widely used for representing
irregular data. Under the Kriging approach, the zero-order polynomial function is
used as a regression model. In this article the Optimal Latin Hypercube is adopted
to determine the locations of the sample points. The PEMF method is then applied
to estimate the error in the surrogate models constructed using the high fidelity
responses, and the tuned low fidelity model. To estimate the error in the physics-
based low fidelity FEA model, the inverse assessment process defined in Sect. 2.3, is
applied. Figure8a–c illustrate the distributions of the error in the tuned low fidelity
model, the surrogate model, and the physics-based low fidelity model. It is observed
from Fig. 8 that the accuracy of the physics-based low fidelity model is less than that
of the surrogate model. It is also readily evident that the computational cost of the
physics-based low fidelity model is more than that of the surrogate model. There-
fore, in this problem, the physics-based low fidelity model is dominated by the other
three models and is hence not included as a model choice in the variable fidelity
optimization.
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(a) (b)

(c)

Fig. 8 Distribution of the model errors in evaluating the aerodynamic CL/CD ratio of the 2D
airfoil: a Tuned LF model, b Surrogate model, c Physics-based LF model

3.1.2 Airfoil Optimization Problem: Results and Discussion

In the airfoil optimization problem, the initial population of particles is generated
using the fastest model, which is the surrogatemodel. TheAMS technique adaptively
switches the model type twice during optimization (over a total of 22 iterations),
resulting in an optimum design with a high fidelity function estimate.

The model types, the error distribution parameters associated with each model,
and the number of calls made to each model in this optimization are listed in Table2.

Table 2 Models with different levels of fidelity used in the airfoil optimization problem (the high
fidelity model is assumed to be a true representation of the system behavior)

Model Location parameter
μ

Scale parameter
σ

Q(pcr )

pcr = 0.3
No. of calls made
Npop × # Iter.

Surrogate −2.6793 0.9628 0.0414 30 × 13

Tuned LF −3.3197 0.9547 0.0219 30 × 6

High fidelity − − − 30 × 3
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(a) (b)

(d)(c)

(e) (f)

Fig. 9 Distribution of the fitness function improvements in different iterations of the airfoil opti-
mization with PSO-AMS (also showing the model error distributions); a 5th iteration, b 10th
iteration, c 15th iteration, d 18th iteration, e 20th iteration, f 22th iteration

The total number of calls made to each model is equal to the product of the particle
population and the number of iterations duringwhich that particularmodel is used for
system evaluation. In this problem, the AMS technique is applied at every iteration.

Figure9a–f illustrate the distribution of the fitness function improvement at differ-
ent iterations during the optimization process. In these figures,Q represents (1− pcr )-
quantile of the Θ distribution. The error distributions of the surrogate model and the
tuned low fidelity model, which are determined apriori, are also shown in these fig-
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Fig. 10 Optimization
history of the airfoil design
problem

ures. Through AMS, model switching from the surrogate model to the tuned low
fidelity model and from the tuned low fidelity model to the high fidelity model occur
at the 13th and the 19th iteration, respectively.

The convergence history of the airfoil optimization is illustrated in Fig. 10. This
figure also indicates which model is active at each iteration. It is observed that, from
the first iteration till the 13th iteration the surrogate model (MA

SM) is active, before
switching to the tuned low fidelity model that remains active till the 19th iteration.
Interestingly, most of the objective function improvement occurs under the tuned
low fidelity model (more than 10% increase in the CL/CD ratio). The optimization
uses the high fidelity model in the last 3 iterations before reaching convergence. In
this case, the algorithm converges by satisfying the predefined function tolerance,
δ f = 10−5.

Next, the performance of the AMS method is investigated and compared with
the performances of running optimizations that solely rely on a low fidelity model
or a high fidelity model. The results yielded by the PSO-AMS thus compared with
the results yielded by separately running MDPSO solely using the surrogate model
(PSO-SM), solely using the tuned lowfidelitymodel (PSO-TLF), and solely using the
high fidelitymodel (PSO-HF). The optimum results thus obtained, the computational
cost, and the total number of function evaluations in each case are reported in Table3.
The final columnof this table shows the high fidelity function estimate at the optimum
design obtained under each optimization run (e.g., y∗

H F
(x∗

SM
) and y∗

H F
(x∗

T L F
)). It is

observed that the PSO-AMS not only requires 185% less computing time compared
to PSO-HF, it also provides the best optimum value that is 5% better that the next
best value (where the 2nd best is obtained by PSO-TLF). It is also observed that, in
the PSO-TLF approach, the optimum is located in the region where the TLF model
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(a) (b)

Fig. 11 Percentage of resources used by each model in the airfoil optimization problem performed
through PSO-AMS: a Computing time resources; b Function evaluation resources

has more than 8% error. This optimum is in the vicinity of the high fidelity optimum
yielded by the AMS method. The optimization performed solely using the tuned
low fidelity model (PSO-TLF) also incurs a slightly higher computational time in
comparison with that performed using the AMS method, which is attributed to the
high number of function evaluations invested to satisfy the termination criterion in
the former (1380 evaluations vs. 660 evaluations).

Figure11a, b illustrate the resources used in terms of computing time and func-
tion evaluations, by the three different models in the airfoil design optimization
performed by PSO-AMS. These figures show that the overall computational cost is
highly sensitive to the number of high fidelity model evaluations, which is expected.
It is also observed that the surrogate model dominates the optimization process in
terms of function calls, while the computational expense of this model is signifi-
cantly lower than that of the tuned low fidelity and the high fidelity models. This
observation supports the hypothesis that a probabilistic AMS technique can provide
a significantly better balance between accuracy of the optimum and computational
efficiency, compared to purely low fidelity or purely high fidelity optimizations.

3.2 Shape Optimization of a Cantilever Composite Beam

In the second optimization test problem, the maximum deflection of a cantilever
composite beam (as shown in Fig. 12) is minimized. This beam is subjected to a
parabolically-distributed load, q(x) = q0(1 − x2

L2 ) [22]. In this problem, the fiber
direction Young’s modulus, EL , and the composite weight density, ρ, are given by

EL = E f ν f + Em(1 − ν f )

ρ = ρ f ν f + ρm(1 − ν f )

where

ν f + νm = 1 (23)
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Fig. 12 Cantilever
composite beam subjected to
a parabolic distributed load

q(x)

x = 0 x = L

In Eq.23, E f and Em are the elastic modulus for graphite and epoxy resin, respec-
tively; ρ f and ρm are the weight density of the graphite fiber and epoxy resin, respec-
tively; and ν f and νm respectively represent the fiber volume fraction and the matrix
volume fraction in the continuous fiber composite material.

The design variables include (i) the second moment of area (x1), (ii) the depth
of the beam (x2), and (iii) the fiber volume fraction (x3). The side constraints on
the design variables and the values of the prescribed design parameters are listed in
Table4 and Table5, respectively.

The beam optimization problem is defined as

Table 4 Design variables for the beam design problem

Description Notation Lower limit Upper limit

Second moment of area, I [mm4] x1 3.3E4 20.8E4

Depth of the beam, h [mm] x2 20 50

Fiber volume fraction, ν f x3 0.40 0.90

Table 5 Prescribed design parameters for the beam design problem

Parameter Value

Parabolic distributed load, q0 [N/mm] 1

Length of the beam, L [mm] 1000

Elastic modulus of graphite fiber, E f [N/mm2] 2.30E5

Elastic modulus of epoxy resin, Em [N/mm2] 3.45E5

Weight density of graphite fiber, ρ f [N/mm3] 1.72E − 5

Weight density of epoxy resin, ρm [N/mm3] 1.20E − 5
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Minimize: δmax

δ0
, [δ0] = 12.93 (24)

subject to

W/W0 ≤ 1, [W0] = 2.9E4 (25)

σmax/σ0 ≤ 1, [σ0] = 200 (26)

x42
1.2E6x1

≤ 1 (27)

xmin
i ≤ xi ≤ xmax

i , i = 1, 2, 3 (28)

In this optimization formulation, the inequality constraints (Eqs. 25, 26, and 27)
are related to the allowable weight, the maximum stress, and a geometric restriction
on the beam design (depth ≤ 10× width). The weight and the maximum stress are
given by

W = AρL = 12I

h2 × (12 + 5.2ν f )10
−6 × L = x1

x2
(1440 + 624x3) (29)

σmax = q0L2h

8I
= 1E6x2

8x1
(30)

The models used to estimate the maximum deflection, dmax , are described next.

3.2.1 Structural Models with Different Levels of Fidelity

To develop the high fidelity physics-based structuralmodel (MB
HF
) and the lowfidelity

physics-based or PLF structural model (MB
PLF

), the Finite Element Analysis package
ANSYS is used. In ANSYS, the PLF Finite Element model is constructed using 2
beam elements, while the HF Finite Elemet model comprises 1000 beam elements.
The thirdmodel (MB

SM
) in this problem is a surrogatemodel constructed usingKriging

with Gaussian correlation function. A set of 30 high fidelity function evaluations
are used for this purpose. The fourth model (MB

TLF
) is a tuned low fidelity model

constructed using the Multiplicative form where

C(x) = δmax |HF
δmax |PLF

(31)

The distribution of the error in the tuned lowfidelitymodel (TLF) and the surrogate
model (SM) are estimated using PEMF (Sect. 2.3.1) and are illustrated in Fig. 13a,
c, respectively. The distribution of the error in the Physics-based low fidelity model
(PLF) is estimated using the inverse assessment process, by leveraging the same 30
high fidelity samples that were used to construct the TLF and SM; the PLF error
distribution is shown in Fig. 13b.
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(a) (b)

(c)

Fig. 13 Distributions of the model errors for the cantilever beam design problem; a Tuned LF
model, b Physics-based LF model, c Surrogate model

Table 6 Models with different levels of fidelity used in the cantilever beam optimization problem
(the high fidelity model is assumed to be a true representation of the system behavior)

Model Location
parameter μ

Scale
parameter σ

Q(pcr )

pcr = 0.3
Number of
calls made
Npop ×
No. of I ter.

Surrogate 1.22 1.20 1.75 30 × 3

Physics-based LF −2.30 0.001 0.097 30 × 6

Tuned LF −12.52 0.99 0.0001 30 × 7

High fidelity − − − 30 × 4

3.2.2 Cantilever Beam Design: Results and Discussion

For the cantilever beam design problem, the four model types, the error distribution
parameters and Q(pcr ) associated with each model, and the number of calls made
by AMS to each model are listed in Table6. It can be seen from Fig. 13 and Table6
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(a) (b)

(d)(c)

Fig. 14 Distribution of the fitness function improvements in different iterations of the beam opti-
mizationwith PSO-AMS (also showing themodel error distributions); a 3rd iteration,b 8th iteration,
c 10th iteration, d 14th iteration

that the tuned low fidelity model provides the highest degree of accuracy and the
surrogate model is the least accurate among the three low fidelity models. Hence, the
initial population of particles is generated using the surrogate model in this case.

Figure14a–d illustrate the distribution of the relative fitness function improve-
ments (QΘ ) at different iterations during the optimization process. The (1 − pcr )-
quantile of the QΘ distribution, and the pcr -quantile of the error distributions of the
tuned low fidelity model, the surrogate model, and the physics-based low fidelity
model are also shown in these figures.

The convergence history of the cantilever beam optimization performed by PSO-
AMS is illustrated in Fig. 15. The AMS technique adaptively switches the model
type three times (SM -> LF -> TLF -> HF) during the optimization process at the
3rd, the 9th, and the 16th iteration, therefore resulting in an optimum design with a
high fidelity function estimate. There is a substantial discontinuity in the estimated
function value at the first switching event (3rd iteration), which can be attributed to
the significant uncertainty in the surrogate model—theQ(pcr ) value of the surrogate
model (MB

SM
) is orders of magnitude higher than those of the other models (MB

PLF

and MB
TLF

). To avoid the termination of PSO before reaching the high fidelity model
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Fig. 15 Optimization
history of the cantilever
beam optimization with
PSO-AMS

M
ax
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um
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(MB
HF
), the relative function tolerance is set to δ = 10−5, which is smaller than the

modal error of the tuned low fidelity model.
In Table7, the optimization results obtained by PSO-AMS is compared with the

results yielded by running MDPSO solely using the surrogate model (PSO-SM),
solely using the physics-based low fidelity model (PSO-PLF), solely using the tuned
low fidelity model (PSO-TLF), and solely using the high fidelity model (PSO-HF).
Interestingly, the PSO-AMS, PSO-TLF, and PSO-HF arrive at the same optimum
design with f ∗ = 0.5435. It is seen from Table7 that PSO-AMS reaches this opti-
mum design at a 33% lower computational expense compared to PSO-TLF and a
119% lower computational expense compared to PSO-HF (both expense differences
are estimatedwith respect to PSO-AMS expense). It is important to note fromTable7
that the performance of the surrogate model-based optimization (PSO-SM) is sig-
nificantly worse than that of the others. The error in the surrogate model (MB

SM
) at its

optimum (X∗
SM

) is more than 99%, which is expected based on the predicted PEMF
error of this model (Fig. 13c).

The resources used by the four different models, in terms of computing time
and function calls, in the beam optimization performed by PSO-AMS are illustrated
in Fig. 16a, b. It is observed that, unlike the airfoil problem, the surrogate model
does not have a significant contribution in the beam optimization process in terms
of function calls. Due to its high inaccuracy (Q(pcr ) = 1.75), the fitness function
improvement of the particles is quickly dominated by the error distribution of the
surrogate model (in only 3 iterations). In this optimization process, the tuned low
fidelity model (MB

TLF
) makes the highest contribution in terms of computing time and

function calls. This case study again shows that the uncertainty in the lower fidelity
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(a) (b)

Fig. 16 Percentage of resources used by each model in the cantilever beam optimization problem
using PSO-AMS : a Computing time resources; b Function evaluation resources

models could exceed the relative function improvement across constitutive iterations
way ahead of reaching convergence in practical optimization, and this behavior is
also highly problem dependent. Such likely scenarios make this variable fidelity
optimization technique (AMS) a unique and essential tool for designing complex
systems, where fast low fidelity models are almost indispensable.

4 Conclusion

This article presented a novel model management technique that is implemented in
population-based optimization algorithms to provide high fidelity optimum designs
at a reasonable computational expense. The model pool is created with models that
offer different (non-dominated) trade-offs between computational cost and fidelity.
The optimization process is started using the model with the highest computational
efficiency, which could be a physics-based low fidelity model or a surrogate model.
A novel switching metric (called Adaptive Model Switching or AMS) is then used to
determine when to switch to the next higher fidelity model during the optimization
iterations. Assuming that the uncertainties associated with the lower fidelity models
follow a probabilistic distribution (lognormal pdf is used here), the proposed model
switching metric is defined as: “a probability estimate of whether the uncertainty
associated with amodel exceeds the improvement in the relative fitness function over
the population of solutions”. The new adaptive model switching technique (AMS) is
applied to: (i) 2D Airfoil design and (ii) Cantilever composite beam design. A pow-
erful version of the Particle Swarm Optimization (mixed-discrete PSO) algorithm
is used to implement and investigate the performance of AMS. The results indicate
that AMS along withMixed Discrete PSO improve the efficiency of the optimization
process significantly when compared to optimization performed solely using high
fidelity models, with up to 185% reduction in computing time, while reaching the
same or a better optimum. The value of the optimum with AMS is also better than
that accomplished using only single low fidelitymodels for optimization. The current
version of AMS is implemented primarily for optimization problems where multiple
physics-based and/or surrogate models exist to represent the physical system behav-
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ior. Future work will focus on problems where only a high fidelity physics-based
model or experimental data is available, which can be used to construct different
surrogates. A related notion is that of Surrogate-based design optimization, where
surrogate models are improved through adaptive or sequential sampling during the
optimization process. A more intuitive definition of the Indicator of Conservative-
ness (IoC) as a function of user’s preferences regarding computational expense and
robustnesswould further establish thewide potential ofAMS for optimizing complex
practical systems.
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Genetic Algorithms for the Construction
of 22 and 23-Level Response Surface Designs

Dimitris E. Simos

Abstract Response surface methodology is widely used for developing, improv-
ing and optimizing processes in various fields. In this paper, we present a general
algorithmic method for constructing 2q -level design matrices in order to explore
and optimize response surfaces where the predictor variables are each at 2q equally
spaced levels, by utilizing a genetic algorithm. We emphasize on various properties
that arise from the implementation of the genetic algorithm, such as symmetries in
different objective functions used and the representation of the 2q levels of the design
with a q-bit Gray Code. We executed the genetic algorithm for q = 2, 3 and the pro-
duced four and eight-level designs achieve both properties of near-rotatability and
estimation efficiency thus demonstrating the efficiency of the proposed heuristic.

Keywords Response surface designs ·Genetic algorithms · Efficiency ·Optimiza-
tion

1 Introduction

Response surface methodology is used in experiments in which the main interests
are to determine the relationship between the response and the settings of a group of
experimental factors and to find the combination of the factor levels that gives the
best expected response. Response surfaces can also provide information about the
rate of change of the response variable and indicate the interactions between the treat-
ment factors. This class of designed experiments has a wide range of applications in
industrial and chemical engineering, agricultural experiments and biotechnological
processes [1, 10, 12, 13, 18, 25].

In this paper we focus on the construction of 2q -level response surface designs
by emphasizing on an algorithmic perspective of the problem. In such designs the
design matrix columns are constituted of combinations of 2q distinct symbols and

D.E. Simos (B)

SBA Research,Favoritenstrasse 16, 1040 Vienna, Austria
e-mail: dsimos@sba-research.org

© Springer International Publishing Switzerland 2015
N.D. Lagaros and M. Papadrakakis (eds.), Engineering and Applied
Sciences Optimization, Computational Methods in Applied Sciences 38,
DOI 10.1007/978-3-319-18320-6_11

207



208 D.E. Simos

correspond to the treatment factors, each at 2q equally spaced quantitative levels.
Any combination of the levels of all factors under consideration is called a treatment
combination. Let X = [x1, x2, . . . , xk] be the design matrix of the experiment in
which, each row represents the n treatment combinations and each column gives the
sequence of factor levels. For each factor, all level values are of equal interest and
each experimental result should have equal influence. Thus we consider designs with
the equal occurrence property, when for example we construct four-level designs we
have that all columns consist of n/4 elements equal to 1, n/4 elements equal to −1,
n/4 elements equal to 1/3, n/4 elements equal to−1/3, if n is a multiple of four. The
designs with the equal occurrence property are called balanced designs. Although
2q -level factors appear often in experimental problems, a minor work has be done in
this specific area of response surface designs [10, 12, 15, 24].

The paper is organized as follows. In Sect. 2 the concepts and the measures of
rotatability and efficiency of response surface designs are defined. A genetic algo-
rithm approach for the construction of 2q -level response surface designs is presented
in Sect. 3, while the obtained results are given in Sect. 4.

2 Model and Design Optimality Criteria

Suppose we want to test the effects of k predictor variables, coded to x1, x2, . . . , xk ,
on a response variable y subject to random error. Generally the first attempt is to
approximate the shape of the response surface by fitting a first-order model to the
response,

y = β0 +
k∑

j=1

β j x j + ε, (1)

where β0, β j , j = 1, . . . , k are unknown parameters and ε is a random error term.
When the first-order model appears inadequate to describe the true relationship
between the response and the predictor variables due to the existence of surface
curvature, it is upgraded to a second-order model

y = β0 +
k∑

j=1

β j x j +
k∑

j=1

β j j x2j +
k∑

i=1

k∑

j=1︸ ︷︷ ︸
i< j

βi j xi x j + ε, (2)

whereβ0,β j , j = 1, . . . , k,βi j , i = 1, . . . , k, j = 1, . . . , k, are unknownparameters
and ε is a random error term.

Two of the most important characteristics that a response surface design should
possess is rotatability and efficiency.
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The concept of rotatabilitywas introducedbyBoxandHunter [3].A k-dimensional
design is called rotatable if the variance of the response estimated by the fitted poly-
nomial at the point (x1, ..., xk), Var[Ŷ (x)], is a function only of ρ2 = ∑k

i=1 x2i . Such
a design insures that the estimated response has a constant variance at all points that
are equidistant from the design center. One of the desirable features of rotatability
is that the quality of the prediction, as measured by the magnitude of Var[Ŷ (x)], is
invariant to any rotation of the coordinate axes in the space of the input variables. In
cases where exact rotatability is unattainable, it is important to measure how rotat-
able a design is. Khuri [17], Draper and Guttman [8] and Draper and Pukelsheim
[9] proposed measures to test the near rotatability of a design. In this framework we
use the rotatability measure Q∗ provided by Draper and Pukelsheim [9] and given
by the equation

Q∗ = ||Ā − V0||2
||A − V0||2 = tr(Ā − V0)

2

tr(A − V0)2
, (3)

where Ā is the rotatable component of the moment matrix A = n−1X′X and V0
consists of a one in the (1, 1) position and zeros elsewhere. It is Q∗ ≤ 1 and equality
stands when the design is rotatable. For more details see [9].

Beyond testing the near rotatability of the designs in order to compare them, it
is also needed to have an estimation efficiency measure for the same purpose. Box
and Draper [4] discussed as a measure of design efficiency the choice of a design on
the basis of maximizing the determinant of the information matrix. In this paper we
adopt the following D criterion for determining the overall efficiency for estimating
the set of the effects

|W′W|1/k, (4)

where W = [x0/||x0||, x1/||x1||, . . . , xk/||xk ||], x0 stands for the vector with all
elements equal to 1, and xi is the coefficient vector of the i th effect, i = 1, . . . , k.
Since the columns of W are standardized, the D criterion achieves its maximum
value, which equals to 1, if and only if the xi are orthogonal to each other. More
details can be found in [26].

3 Optimization of Response Surface Designs by Means
of Genetic Algorithms

Genetic algorithms form a powerful metaheuristic that mimicks processes from the
Theory of Evolution to establish search algorithms by defining algorithmic ana-
logues of biological concepts such as reproduction, crossover and mutation. Genetic
Algorithms were introduced in 1970 by Holland [16] aiming to design an artifi-
cial system having properties similar to natural systems. In this paper, we assume
some basic familiarity with Genetic Algorithm concepts. The concepts necessary
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for a description of the Genetic Algorithm (GA) can be found in Goldberg [14], in
Forrest’s article [11] and in the Handbook of Genetic Algorithms edited by Davis [6].

GAs are attractive because of their robustness andflexibility in terms of a computer
implementation and, mathematically, they do not require a differentiable objective
function thereby reducing the chance of reporting local optima. Some earlier attempts
utilizing aGA in the construction of response surface designs has been given byDrain
et al. [7]. However, this approach, while promising, lacked of an efficient coding of
the chromosomes i.e. the number of the experimental runs forming the design. In
particular, the authors proposed utilizing and constructing the whole design; thus
restricting the GA to evolve in finding optimal response surface designs in several
cases. A successful reduction in terms of computational complexity of an efficient
representation of the candidate design, has been proposed in [21–23] in a similar field
of computational design theory with strong connection to statistical applications. In
these applications, the authors integrated as a core ingredient of the GA the use of
sequential juxtaposition of suitable generators, either forming circulant matrices [21]
or block circulant matrices [22, 23].

3.1 A Genetic Algorithm Framework for Response Surface
Designs

Chromosomes Representation
The respective generators considered in the case of response surface designs are the
n/2q column vectors which in the process form block circulant matrices of order k,
when constructing an n ×k response surface design. This construction, is valid when
n is a multiple of 2q . In particular, we form n/4 and n/8 column vectors when we
consider four and eight-level response surface designs, respectively. However, in all
previous constructions the generators, more precisely the genes forming a generator,
consisted of binary variables since a two-level design was under development. In
the case of response surface designs, the genes constitute of 2q possible values
representing the 2q -levels of the designs.

Chromosomes Encoding and Decoding
A suitable encoding to binary variables was needed since the genetic operators
behave better in binary arithmetic (Goldberg [14]). The answer to this vital ques-
tion found in the field of Combinatorics and Computer Science in terms of rep-
resenting a 2-bit Gray Code, GC2 = {00, 01, 11, 10} when considering four-
level designs; while in the case of eight-level designs we used a 3-bit Gray Code,
GC3 = {000, 001, 011, 010, 110, 111, 101, 100}. For more details, on Gray Codes
we refer the interested reader to Carla [5]. More precisely, we mapped each level of
a four-level design to a codeword of the 2-bit Gray Code, i.e. {−1,−1/3, 1/3, 1} →
{00, 01, 11, 10}, and each level of an eight-level design to a codeword of the 3-bit
Gray Code i.e. {−1,−1/3,−1/6,−1/9, 1/9, 1/6, 1/3, 1} → {000, 001, 011, 010,
110, 111, 101, 100}, thus transforming the problem on its binary equivalent which
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allowed us to carry on with the next stages of utilizing a GA. It is made clear that
we could repeat this procedure for 2q -level response surface designs by using a q-bit
Gray Code. Details for constructing a q-bit Gray Code can be found in Knuth [19].

Initial Population
consists of random chromosomes.We found it useful to generate these chromosomes
by retrieving samples of binary sequences, after random permutations where applied
to each of them.

An Objective function for Response Surface Designs
The crucial choice of the objective function (OF) subject to be optimized arise natu-
rally from the theoretical framework of rotatable and efficient designs. In particular,
we have developed two versions of the algorithm each one depending on one of the
two optimality design criteria, the rotatability measure Q∗ and the D criterion. The
genetic algorithm attempts in both cases to maximize the value of each criterion with
respect to its upper bound which is equal to 1. Due to the theoretical background and
statistical justifications when a value of Q∗ was detected in the range of [0.95, 1.00]
we considered we have found a global optimum solution, while in the case of D cri-
terion wemade some ramifications to accept a lower bound for the range of optimum
solutions, i.e. [0.65, 1.00]. Thus we were able to detect both rotatable and efficient
designs. In the following figure we give a comparison of the genetic algorithm per-
formance in terms of contrasting the Q∗ versus the D criterion by scaling on the
evolving generations. From the figure we can conclude that we can use the Q∗ and
D criterion interchangeably as objective functions, since the fitness values for each
case are similar.

We are now able to describe the three genetic operators of reproduction, crossover
andmutation as specifically have been applied by the genetic algorithmwe have used.

Crossover
We defined the basic genetic operation, crossover, that splits a pair of binary integers
at a random position and combines the head of one with the tail of the other and vice
versa.

Mutation
Additional operations, such as inverting a section of the binary representation (inver-
sion) or randomly changing the state (0 or 1) of individual bits (mutation), also
transform the population (Fig. 1).

Selection and Reproduction
Before each such cycle (generation), population members are selected on the basis of
their fitness (the value of the objective function for that solution) to be the “parents”
of the new generation.

Termination Condition
of the genetic algorithm was set a predefined number of evolved generations. This
number of generations was proportional to the size of the response surface design
that the genetic algorithm was searching for in each case. Thus the GA required only
a few generations to find a small sized optimal response surface design, while a larger
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Fig. 1 Symmetries on objectives functions for optimization of response surface designs

design required additional generations to be evolved. Since GA is a heuristic process,
the time complexity of the algorithm was relatively small compared to exhaustive
search algorithms.

4 New Four and Eight-Level Response Surface Designs

In this Section we present the results of the construction method for four and eight-
level response surface designs as described previously.

4.1 New Four-Level Response Surface Designs

In Table1, k stands for the number of the experimental factors and n for the number
of the performed runs, while in the next two columns the achieved values for the Q∗
and the D criterion are listed.



Genetic Algorithms for the Construction of 22 and 23 … 213

Table 1 Some new four-level response surface designs with k factors

k n Q∗ D k n Q∗ D

2 48 0.989625 0.730767 3 76 0.990628 0.751091

2 52 0.989279 0.730478 3 80 0.988196 0.748842

2 56 0.989625 0.730767 3 84 0.986588 0.749383

2 60 0.989282 0.730437 4 72 0.979375 0.753859

2 64 0.989625 0.730767 4 76 0.982954 0.757085

2 68 0.989051 0.730598 4 80 0.979180 0.759259

2 72 0.989625 0.730767 4 84 0.978854 0.759373

2 76 0.989166 0.730632 4 88 0.983253 0.759436

2 80 0.989539 0.730718 5 84 0.972752 0.752474

3 52 0.986202 0.746648 5 88 0.959241 0.754575

3 56 0.988977 0.748505 5 92 0.966673 0.757510

3 60 0.987961 0.748139 6 92 0.965235 0.748283

3 64 0.989528 0.747663 6 96 0.973121 0.745234

3 68 0.988830 0.748171 7 96 0.956693 0.720159

3 72 0.987170 0.748501 7 100 0.962628 0.726570

From the above results we note that the Q∗ values fluctuate between 95.67% and
99.06% and the arithmetical mean equals to 98.20%, while the maximum and the
minimum values of the D-criterion are 75.94% and 72.02%, respectively, with
the arithmetical mean equal to 74.36%. Also, Koshal’s designs (see [2, 20]) are
occasionally of use in response surface work. For the third-order Koshal design in 3
four-level predictor variables with 20 runs, given in page 504 of [2], we calculate the
corresponding values of Q∗ and D-criterion, which are equal to 0.3150 and 0.2613,
respectively. In general, high values of the two criteria, Q∗ and D, ensure that the
designs are near-rotatable and efficient for estimating the set of the effects.

4.2 New Eight-Level Response Surface Designs

In this section we present the results of the construction method for eight-level
response surface designs. In Table2, k stands for the number of the experimental
factors and n for the number of the performed runs, while in the next two columns
the achieved values for the Q∗ and the D criterion are listed.
From the above results we note that the Q∗ values fluctuate between 95.30% and
99.99% and the arithmetical mean equals to 98.13%, while the maximum and the
minimum values of the D-criterion are 87.95% and 65.28%, respectively, with the
arithmetical mean equal to 78.06%.

As a conclusion, our construction method manages to generate near-rotatable and
efficient response surface designs with a small number of required runs for both
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Table 2 Some new eight-level response surface designs with k factors

k n Q∗ D k n Q∗ D

2 8 0.984915 0.680165 5 32 0.962000 0.652791

2 16 0.996432 0.867841 5 40 0.969055 0.727856

2 24 0.996035 0.867885 5 48 0.972596 0.758961

2 32 0.998573 0.874306 5 56 0.978982 0.740121

2 40 0.999523 0.875252 5 64 0.978354 0.784608

2 48 0.999696 0.875406 5 72 0.981888 0.803481

2 56 0.999929 0.876042 5 80 0.984097 0.819177

2 64 0.999974 0.876227 5 88 0.985177 0.821409

3 16 0.990309 0.673609 6 40 0.952993 0.676931

3 24 0.991651 0.827829 6 48 0.963848 0.688760

3 32 0.990673 0.815758 6 56 0.967265 0.682539

3 40 0.995118 0.865237 6 64 0.972076 0.717860

3 48 0.994795 0.844095 6 72 0.972703 0.740062

3 56 0.995701 0.871523 6 80 0.975458 0.766400

3 64 0.997662 0.867527 6 88 0.975989 0.748631

3 72 0.998499 0.879501 6 96 0.976775 0.801824

4 24 0.970440 0.727679 7 48 0.956076 0.658748

4 32 0.980760 0.773002 7 56 0.958585 0.690182

4 40 0.984617 0.791023 7 64 0.957366 0.659179

4 48 0.987015 0.821650 7 72 0.959647 0.694141

4 56 0.990165 0.827778 7 80 0.966887 0.712859

4 64 0.991205 0.831423 7 88 0.970750 0.724768

4 72 0.992321 0.852958 7 96 0.969300 0.726233

4 80 0.993720 0.860543 7 104 0.973606 0.746514

cases of four and eight-level designs thus demonstrating the efficiency of the genetic
algorithm used. From these experimental results, it is anticipated that the proposed
formulation for 2q -level response surface designs should produce similar results for
higher number of levels when combined with a genetic algorithm utilized with the
aid of a q-bit Gray Code.
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Reactive Power and Voltage Control Based
on Mesh Adaptive Direct Search Algorithm

Seyyed Soheil Sadat Hosseini, Amir H. Gandomi, Alireza Nemati
and Seyed Hamidreza Sadat Hosseini

Abstract This is a pioneer study that presents a new optimization algorithm called
mesh adaptive direct search (MADS) to solve optimal steady-state performance of
power systems. MADS is utilized to specify the optimal settings of control variables,
i.e. transformer taps and generator voltages for optimal reactive power and voltage
control of IEEE 30-bus system. Covariance matrix adaptation evolution strategy
(CMAES) algorithm is utilized as a strong search strategy in the MADS technique
to enhance its effectiveness. The results acquired by the hybrid search algorithm
coupling MADS and CMAES, called MADS-CMAES, and the MADS algorithm
itself without any search method are compared with multi-objective evolutionary
and particle swarmoptimization algorithms, demonstrating the superiority ofMADS.
The proposed MADS-based techniques are very robust against their parameters and
changing the search space because of their inherent adaptive tuning.

Keywords Mesh adaptive direct search algorithm · Covariance matrix adaptation
evolution strategy · Reactive power control · Voltage control

1 Introduction

A number of optimization problems have to be solved in order to the economic
and secure operation of large-scale power systems. The optimal power flow (OPF)
problem, introduced in 1960s by Carpentier, [1] is a powerful and critical tool in
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power system operation and planning field. The reactive power dispatch (RPD) is a
sub-problem of optimal power flow (OPF) calculation, which is generally a highly
constrained non-linear non-convex optimization problem. The reactive power dis-
patch problem has a considerable effect on economic and secure operation of power
systems. Maintaining the load bus voltages within the limits for high quality con-
sumer services is a major task of a power system. Since the electric power loads vary
from time to time, any change in the power demand results in lower or higher voltages
[2]. This sub-problem specify all kinds of controllable variables, such as tap ratios
of transformers and generator voltages. RPD optimizes transmission losses or other
appropriate fitness functions, while satisfying a given set of operating and physical
constraints. Another objective function with the same physical and operating con-
straints as RPD is voltage profile of the power system. In this problem, the main
aim is to optimize the voltage deviations (VD) at load buses. Several conventional
optimization algorithms such as linear programming, Newton method, quadratic
programming, dynamic programming and interior point methods [3–7] have been
developed to solve the reactive power dispatch problem. In general, most of these
methods suffer from insecure convergence, algorithmic complexity, sensitivity to
initial search point, etc. [8].

In recent years, global optimization algorithms (e.g. [9–12]) and specially a partic-
ular family introduced and developed by researchers in 1960 (e.g. [13]), has received
great attentions. This family of techniques is named direct search techniques. Direct
search algorithms search a set of point, around the current point, looking for a point
that has less fitness function value than the current one does. This family contains
powell optimization (PO), simplexmethods (SM) (different form the simplex used in
linear programming), pattern search (PS) techniques, and others [14]. Many interest-
ing results come from the usage of PS methods in the optimization area [15]. Direct
search algorithms are called derivative-free optimization techniques, where they do
not need any further information about the gradient or even higher derivative of the
fitness function to search for an optimal solution. Therefore, direct search methods
may very well be used to solve non-continues, non-differentiable and multimodal,
i.e. multiple local optima, optimization problem.

At this stage,mesh adaptive direct search (MADS) [16, 17] is one of themost pow-
erful optimization techniques that has recently developed. MADS is supported by a
thorough convergence analysis [18]. The reason for the using of MADS is that math-
ematical optimization algorithms, such as quadratic programming, nonlinear pro-
gramming, Newton-based techniques, sequential unconstrained minimization, and
interior point methods, have failed in handling non-smoothness and non-convexities
in engineering optimization problems. Despite significant advantages ofMADS over
other optimization methods, there have been some little scientific efforts directed at
applying it to practical and academic problems [18, 19].

The main goal of this study is to introduce the MADS method to find out the
optimal settings of control variables, such as transformer taps and voltage magni-
tudes for two optimization problems, namely optimization of (a) real power losses
in transmission lines and (b) sum of voltage deviations on load busses. Results of
the MADS algorithm without any search strategy (MADS-N) and with covariance
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matrix adaptation evolution strategy (MADS-CMAES) on the networks of IEEE
30-bus are presented. The results are compared with by other evolutionary compu-
tational algorithms such as multi-objective EA [20], global variant (PSO-PC) based
on passive congregation [21] and local variant (CLONEPAC) PSO based on passive
congregation [21]. The comparison shows the better performance ofMADS-CMAES
in locating optimal solutions. This paper is organized as follows: the problems of
reactive power and voltage control are formulated in Sect. 2. Section3 deals with
the MADS method, which is effectively utilized in power engineering problems.
Section4 presents performance evaluation of MADS in comparison with the evolu-
tionary computational techniques. Finally, Sect. 5 concludes this paper.

2 Optimal Power Flow

Optimal power flow is a static constrained nonlinear optimization problem, the solu-
tionofwhich specifies the optimal settings of control variables in a network respecting
several constraints. Therefore, the goal is to determine a set of nonlinear equations
illustrating the optimal solution of power system. It is described as:

min f (x, u)

s.t. h(x, u) = 0
g(x, u) ≤ 0

(1)

where, f is the fitness function that usually contains total generation cost, losses
in transmission system etc. In general, h(x, u) represents the nonlinear power flow
equations and g(x, u) represents transmission line limits and other security limits.
The dependent and control variables vectors are respectively denoted by x and u.
Generally, the dependent vector contains load bus voltagemagnitudesVL , bus voltage
angles θ andgenerator reactive power outputs Qg , i.e., x = [θ, VL , Qg]T . The control
variable vector includes real power generation Pg , generator voltage Vg , transformer
tap settings t and shunt VAR compensations Qc, i.e., u = [Pg, Vg, t, Qc]T . Of the
mentioned control variable, Pg and Vg are continuous variables, while tap ratio, t , of
tap changing transformers and reactive power output of compensation devices, Qc,
are discrete in nature.

Minimization of loss is required when cost minimization is the main aim with
active power generation. A subsequent loss minimization will not yield enhance-
ments, when all control variables are utilized in a cost optimization. Therefore,
active power generation of all generators is fixed during the optimization proce-
dure in reactive power dispatch problem, such as loss minimization, except slack
generator.
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3 Problem Formulation

MADS is tested and compared with the evolutionary computational techniques on
optimal steady state performance in terms of optimization of (a) losses in transmis-
sion lines and (b) sum of voltage deviations on load busses while meeting various
inequality and equality constraints. Since the main goal of this paper is the per-
formance evaluation of MADS algorithm, two nonlinear optimization problems are
individually studied. The first objective is to minimize the active power loss in the
transmission network given as below:

f1 = Ploss(x, u) =
Nl∑

l=1

Pl (2)

In which u is the vector of control variables, x is the vector of dependent variables,
Pl is the real power losses at line-l and Nl is the number of transmission lines. The
second fitness function is to minimize the voltage profile of the power system. The
objective is to optimize the voltage deviations at load buses that can be described as:

f2 = V D(x, u) =
Nd∑

i=1

∣∣Vi − V sp
i

∣∣ (3)

where V sp
i is the pre-specified reference value at load bus-i , which is usually set at

the value of 1.0 pu, and is the number of load buses. The equality constraints of both
optimization problems are load flow equations as follows:

Pgi − Pdi − Vi

Nb∑

j=1

Vj (gi j cos θi j + bi j sin θi j ) = 0 (4)

Qgi − Qgi + Qci − Vi

Nb∑

j=1

Vj (gi j cos θi j − bi j sin θi j ) = 0 (5)

where, gi j , bi j are real and imaginary parts of (i, j) element of bus admittancematrix;
Pgi and Qgi are, respectively, the generator real and reactive power at bus i ; Pdi and
Qdi are, respectively, the load real and reactive power at bus i , respectively. Qci is the
reactive power compensation source. The system operating constraints the inequality
constraints for both of these problems are as follows.

• Generation constraints: Generators voltages and reactive power outputs are limited
by their lower and upper limits as:

Vmin
gi

≤ Vg ≤ Vmax
gi

(6)
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Qmin
gi

≤ Qg ≤ Qmax
gi

(7)

• ShuntVAR constraints: ShuntVAR compensations are limited by their limits given
as below:

Qmin
ci

≤ Qc ≤ Qmax
ci

(8)

• Transformer constraints: Transformer tap settings t are limited given as follows:

tmin
i ≤ ti ≤ tmax

i (9)

• Functional operating constraints: This term refers to the constraints of loadvoltages
at load buses VL and transmission line loadings Sl as follows:

Vmin
Li

≤ VL ≤ Vmax
Li

(10)

Sl ≤ Smax
l (11)

4 Mesh Adaptive Direct Search Algorithm

The mesh adaptive direct search method for nonlinear optimization develops the
generalized pattern search (GPS) [22, 23] methods. A major advantage of MADS
over the GPS technique for both linearly constrained optimization and unconstrained
is that the space of variables is not limited to a finite number of directions, named
POLL directions. This is the prime drawback of the GPS methods, and the crucial
motivation in developing MADS was to conquer this limitation [16].

Notation. R, Z, and N indicate the sets of real numbers, integers, and nonnegative
integers respectively. For a matrix D, the notation d ∈ D shows that d is a column
of D. Index i is denoted the iteration numbers.

4.1 Features of the MADS Method

The MADS technique is an iterative one. The MADS method begins with an initial
point with finite objective value. TheMADSmethod is derivative-free. This is crucial
when ∇ f is inaccessible, either it does not exist, or it cannot be precisely computed
because of noise in f or other reasons. A finite number of trial points are made at
each iteration to determine an enhanced mesh point, that is, one with a lower fitness
function value than that of the current incumbent.
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Each iteration is split into two steps. The first step is named the search step.
Any finite set of mesh points can be calculated in this step. This step lets great
flexibility to choose strategies. When no trial points are considered, the search step
is expressed to be empty. The search step adds nothing to the convergence theory,
except to provide counterexamples as in [24]. It is notable that well-chosen search
techniques can improve method performance (see [25–28]). The aim of iteration is
to locate unfiltered points in X. If search fails to done an unfiltered point, then the
second step, POLL is applied, and if POLL fails, then the mesh is modified.

4.2 Description of MADS Algorithm

The steps in the procedure ofMADSare displayed in Fig. 2. These steps are explained
in the next five subsections.

4.2.1 Initialization

In initialization step, a starting point x0 is chosen, and an initial mesh size parameter
�m

0 . The superscripts m and p stand for mesh and poll, respectively.
The algorithm parameters are defined as follows.

• �
p
i = √

�m
i : the poll size parameter;

• D = {±ek, k = 1, 2, ..., n} : to create polling direction, the basis is used, where
ek is the kth coordinate direction;

• Mi = {x ∈ Si } ∪ {xi + �m
i Dz : z ∈ N 2n}; the mesh is defined with Si which is

the set of points, and the fitness function had been computed by the initialization.
This mesh is to be generated by adding the current point to a set of independent
vectors forming a certain pattern for the direction of the search towards optimality.

4.2.2 Search Step

The search step can be empty. This means that the algorithm can be implemented
as a sequence of poll steps only. The search strategy utilized in the present study is
briefly described in the following subsections.

Covariance Matrix Adaptation Evolution Strategy

Thefirst evolutionarymethods come from themid-60swith genetic algorithms (GAs)
[29], evolutionary programming (EP) from Fogel et al. [30] and independently evo-
lution strategy (ES) from Rechenberg [31]. Their studies brought a variety class
of optimization techniques for difficult problems where few are famous about the
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underlying search space. Facing a multitude of methods, the attention is focused on
the evolution techniques branch of evolutionary methods. First, ES was advanced by
Rechenberg [31] and Schwefel [32] and have developed into the cumulative step-
path adaptation algorithm (CSAES) [33, 34] and the CMAES [35, 36]. CMAES [35,
37, 38] is an evolution technique that adapts the full covariance matrix of a normal
search distribution.

Similar to quasi-Newton techniques, the CMAES computes the inverse Hessian
matrix. As opposed to quasi-Newton methods the CMAES does neither calculate
nor utilize gradients. The former makes the method feasible on non-separable and/or
ill conditioned problems. The latter method makes the technique feasible on multi-
modal and/or noisy problems. TheCMAES efficientlyminimizes unimodal objective
functions and is particularly superior on ill-conditioned and non-separable problems
[35, 39]. CMAES has been utilized to solve many optimization problems [36] and
successfully applied to a number of real world problems [40].

4.2.3 The POLL Step

Whenever the search step fails to make an improved mesh point, then the poll step
is implemented before terminating the iteration. The poll step consists of a local
exploration of the space of optimization variables near the current incumbent solution
xi (called the frame center). The set of trial points considered during the poll step
is called a frame. If the poll step fails to produce an improved mesh point, Pi is
expressed as a minimal frame with minimal frame center xi . If both the search and
poll steps are successful in finding an enhanced mesh point, the improved mesh point
turns into the new current iterate xi+1 and the mesh is either retained or coarsened.
If none of the steps are successful, then the minimal frame center is retained as the
current iterate ( i.e., xi+1 = xi ) and the method continues to the parameters update
step.

For MADS, the poll size parameter �
p
i ∈ R+ for iteration i is presented. This

new parameter regulates the magnitude of the distance from the trial points made by
the poll step to the current incumbent solution xi . The MADS frame is built by the
usage of a current incumbent solution xi and the poll and mesh size parameters �

p
i

and �m
i to obtain a positive spanning set of directions Di . Generally, the MADS set

of directions Di is not a subset of D.
At iteration i , the MADS frame is described to be the set

Pi = {xi + �m
i d : d ∈ Di } ⊂ Mi , (12)

where Di is defined as a positive spanning set such that 0 /∈ Di and for each d ∈ Di ,

• each direction, d, can be computed using a nonnegative integer combination of
the directions in D:
d = Du for some vector u ∈ N nDi that may change in some iteration
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• the distance from the current point xi to a frame point xi + �m
i d ∈ Pi is lim-

ited and it is determined by a constant times the poll size parameter: �m
i ‖d‖ ≤

�
p
i max{∥∥d ′∥∥ : d ′ ∈ D}

4.2.4 Parameters Update

Themesh size parameter�m
i is updated based on given a fixed rational number τ 	 1

and two integers w− ≤ −1 and w+ ≥ 0 as follows.

�m
i+1 = rwi �m

i for some

wi ∈
{{

0, 1, ..., w+}
i f an improved mesh point is f ound{

w−, w− + 1, ...,−1
}

otherwise

}
(13)

4.2.5 Termination

Some termination criteria must be specified, such as a minimal value on the mesh
size parameter �m

i , a maximal number of fitness function evaluations, or a maximal
number of consecutive unsuccessful function evaluations. It is described in [41]
that the mesh size parameter is a measure of first-order stationary for GPS in the
unconstrained case. Themethod ends, as soon as one termination criterion is attained.
Otherwise, it returns to step 2.

5 Numerical Results and Performance Evaluation

In this study, MADS is utilized to solve the nonlinear optimization problems. Two
approaches were considered for the implementation of the MADS algorithm. First,
the MADS algorithm itself without any search method (MADS-N) was applied
to the problems. Thereafter, CMAES was utilized as a strong search strategy in
the MADS method (MADS-CMAES) to enhance its effectiveness. MADS-N and
MADS-CMAES were applied on the standard IEEE 30-bus 6-generator test system
to determine their effectiveness. The topology of the IEEE 30-bus test is given in
Fig. 2 and the detailed information is provided in [20]. The network includes 48
branches, six generator-buses, and 22 load-buses. Four branches, 6–9, 6–10, 4–12
and 27–28, are under load tap setting transformer branches. The system has 6 gener-
ators at buses 1, 2, 5, 8, 11, and 13. The others are load-buses. The lower and upper
limits of the transformer tapings are respectively 0.9 and 1.1 pu. The capacitor banks
are connected to buses 10 and 24 respectively and fixed at 19.0 and 4.3 MVAr. All
bus voltages are needed to be maintained within the range of 0.95–1.1pu. The initial
values of the control variables and the fitness functions are provided in Table2. In
the test system, the base MVA is taken as 100.
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Table 1 Parameter settings for the MADS-N and MADS-CMAES algorithms

Parameters Setting

Termination parameters

Mesh size tolerance 10−4

Maximum number of iterations 1000

Maximum number of function evaluations 1000

Maximum number of consecutive POLL failures 50

Mesh parameters

Initial mesh size 1

Mesh refinement factor 0.5

Mesh coarsening factor 1

Cache tolerance 10−4

CMAES parameters

Population size (P S)∗ 4 + �3 ∗ log(N )
Parents �P S/2
Recombination weighting Superlinear

∗N Number of objective variables/problem dimension

For theMADS analysis, the POLL directions can be chosen eitherMADSPositive
basis N + 1 or 2N points, where N is the number of independent variables for the
fitness function. At each iteration, the MADS Positive basis 2N directions explore
more points around the current point. In order to avoid finding a local minimum
rather than the global minimum, the Positive basis 2N directions are considered as
the POLL technique in the present study. Consecutive order is the natural order that
the points are stored in. Consecutive polling is also considered to solve the problems.
Table1 shows the other parameter settings for the MADS-N and MADS-CMAES
algorithms. The MADS algorithm was implemented on a Dell Inspiron 6400 with a
2.00GHz processor and 2 GB of RAM using Nomadm optimization software [42].

In this case, the MADS-N algorithm converges after 1189 function evaluations
and in 138 iterations and the final minimum value of power losses is 4.8128 MW.
TheMADS-CMAES algorithm converges after 1420 function evaluations and in 150
iterations with the final minimum value of power losses equal to 4.8119 MW. The
CLONEPAC-PSO [21] algorithm converges in 13 iterations and the final minimum
value of power losses is 5.0949MW. The PSOPC [43] converges in 48 iterations and
its final optimum value is also the global best of 5.0960 MW. The EA [17] converges
in about 70 iterations and its optimum value is 5.1065 MW. Table2 summarizes the
results of the optimal settings obtained by different methods. This table also shows
the optimal settings and initial settings of decision variables for the same case study
as proposed by PSOPC [43] and EA [20]. These results show that the minimum dis-
patch solutions found out by MADS-CMAES lead to lower active power loss than
that found by other techniques. These results display that maximum saving is also
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Fig. 1 Convergence of
MADS-N and
MADS-CMAES in reactive
power control

acquired by the MADS-CMAES algorithm. According to the results, the MADS-N
algorithm has provided reasonable outcomes. The comparisons confirm that MADS
is capable of locating the near-global or global optimum dispatch solution. The pro-
posed algorithms simultaneously succeed in maintaining the dependent variables
within their limits. It is notable that the MADS-N and MADS-CMAES results were
acquired with the default parameters. While most of the previously presented opti-
mization algorithms are significantly sensitive to their parameter settings changes,
the proposed MADS-based algorithms are very robust against their parameters and
changing the search space. Convergence nature of theMADS-NandMADS-CMAES
algorithms are shown in Fig. 1.

The feasibility of MADS in voltage control of IEEE 30-bus system is also stud-
ied. In this case, the MADS-N converges after 2715 function evaluations and 205
iterations achieving the voltage deviation (VD) of 0.1397 pu. The MADS-CMAES
converges after 2480 function evaluations and 172 iterations achieving the lowest
sum of VD of 0.1389 pu. CLONEPAC-PSO [21] converges in 49 iterations, and its
final optimum value of VD is 0.1400 pu. The PSOPC [43] converges in 27 iterations
and its minimum fitness value is 0.1410 pu. The EA [20] converges in about 110
iterations and its optimum fitness value is 0.1477 pu. Table3 presents the best solu-
tion of this problem acquired utilizing the MADS method and those given by other
researchers. It can be seen from Table3 that the result obtained using the MADS-
CMAES algorithm is better than the best known solution reported previously in the
literature [21]. This table shows the initial settings of decision variables for compari-
son purposes. Convergence nature of the MADS-N and MADS-CMAES algorithms
are shown in Fig. 2.
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Fig. 2 Convergence of
MADS-N and
MADS-CMAES in voltage
control

6 Conclusion

This paper has studied a new optimization technique called MADS for the opti-
mal steady-state performance of power systems. The MADS-based techniques were
applied to the voltage control and reactive power problems of IEEE 30-bus sys-
tems. The CMAES algorithm is employed as an effective search strategy in MADS
to improve its performance. The results show that the MADS-based algorithms are
practical and valid for the investigated problems. The MADS-CMAES and MADS-
N algorithms also provide superior compared with the other techniques reported
in the literature. The presented numerical results were obtained with the standard
default algorithmic parameters. Unlike many of the metaheuristic optimization algo-
rithms that are significantly sensitive to their parameter settings changes, the proposed
MADS-based algorithms are very robust against their parameters and changing the
search space due to their inherent adaptive tuning. The comparisons confirm the
efficiency of MADS for its future applications to the real problems with non-convex
decision and space more hard constraints.
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Optimal Placement of Hysteretic Dampers
via Adaptive Sensitivity-Smoothing
Algorithm

Yu Murakami, Katsuya Noshi, Kohei Fujita, Masaaki Tsuji
and Izuru Takewaki

Abstract Since hysteretic dampers have nonlinear restoring-force characteristics
with sensitive plastic flow and input earthquake ground motions propagating random
media are extremely random in time and frequency domains, the seismic response
of a building structure with hysteretic dampers deviates greatly depending on the
installed quantity and location of dampers. This characteristic could become a barrier
and difficulty to the reliable formulation of optimal placement problems of such
dampers. In order to overcome such difficulty, a new optimization method including a
variable adaptive step length is proposed. The proposed method to solve the optimum
design problem is a successive procedure which consists of two steps. The first step
is a sensitivity analysis by using nonlinear time-history response analyses, and the
second step is a modification of the set of damper quantities based upon the sensitivity
analysis. Numerical examples are presented to demonstrate the effectiveness and
validity of the proposed design method.

1 Introduction

The concept of performance-based design is becoming popular worldwide and plays
a key role in the current structural design practice of buildings. In earthquake-prone
countries, the philosophy of earthquake-resistant design to resist ground shaking
with sufficient stiffness and strength of a building itself has also been accepted as a
relevant structural design concept for many years. On the other hand, a new strategy
based on the concept of active and passive structural control including base-isolation
has been introduced rather recently in order to provide structural designers with
powerful tools for performance-based design.

While active control has some issues to be resolved from the viewpoint of reli-
ability, feasibility and cost during severe earthquake ground motions, passive con-
trol is being widely accepted and used for building structures under earthquake
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ground motions [9, 15, 17, 29, 32, 35]. Hysteretic steel dampers (shear deformation
type, buckling restrained type), viscous wall-type dampers, viscous oil dampers [40],
visco-elastic dampers, friction dampers, tuned mass dampers, inertial mass dampers
[37] are representative ones. Recently viscous oil dampers (called oil dampers here-
after) are often used based on their stable mechanical properties, low frequency and
temperature dependencies and cost effectiveness, etc. together with low cost hys-
teretic steel dampers. Compared to oil dampers, hysteretic steel dampers suit the
strength-type performance check and are often preferred in the retrofit of buildings.
It should be emphasized that, during the 2011 Tohoku (Japan) earthquake, the Osaka
WTC building of 256 (m) high was shaken so hard irrespective of its long distance
(800 km) from the epicenter [36]. It is said that this results from the resonance of
the building with the so-called long-period ground motion [33, 36]. To respond to
this unfavorable situation, the retrofit of this building is being conducted with oil
dampers and hysteretic steel dampers. It should be remembered that the oil dampers
and inertial mass dampers do not change the natural period of a building which may
cause a resonance with the long-period ground motion stated above. On the other
hand, the hysteretic steel dampers can change the natural period of a building by
yielding even in the early vibration process.

Many research works have been accumulated so far on the damper optimization
[5, 6, 8, 10–12, 14, 16, 17, 20, 22, 24, 27, 28, 30, 31, 34, 38, 39, 41, 43]. While
most of them deal with linear responses, quite a few treat non-linear responses in
building structures or dampers [1, 2, 5, 13, 17–19, 21, 23, 25, 26, 41, 42]. However,
there is no research on the optimization of location and quantity of dampers which
deals with non-linear responses and includes simple and systematic algorithms.

The purpose of this paper is to propose a new optimization method including a
variable adaptive step length for shear buildings with hysteretic dampers subjected
to a set of design earthquake ground motions under a constraint on total cost. The
response sensitivity of buildings including hysteretic dampers is high and a devised
algorithm of adaptive step-length is useful to obtain a smooth and reliable response
sensitivity. The high response sensitivity of buildings including hysteretic dampers
may result from the timing of fast plastic flow and random process of input and the
change of the natural period of a building depending on the installed quantity and
location of hysteretic dampers. The proposed procedure enables structural designers
to derive a series of optimal distribution of damper quantities with respect to the level
of the total cost of dampers which is useful in seeking for the relation between the
optimal response level and the quantity and placement of passive dampers. Numerical
examples reveal some features of the optimal distribution of various passive dampers.

2 Optimal Hysteretic Damper Placement Problem

Consider an N-story shear building model with interstory-type hysteretic steel
dampers as shown in Fig.1. A stiffness proportional viscous damping is employed
here in the main frame (damping ratio = 0.02).
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Fig. 1 N -story planar frame with hysteretic steel dampers and its modeling into shear building
model with hysteretic springs

Fig. 2 Force-deformation
relation of hysteretic damper

djk

yu

F

u

2.1 Modeling of Hysteretic Dampers

Steel hysteretic dampers are used in this paper. The initial stiffness kd j and the yield
displacement uy are the major parameters to characterize the present steel hysteretic
dampers. An elastic-perfectly plastic restoring force characteristic as shown in Fig. 2
is assumed. Figure 3 shows the story shear force with respect to interstory drift
in which the part of the total system and those of frame and damper systems are
illustrated. An example of hysteresis loop in the story shear force-interstory drift
relation under an earthquake ground motion is presented in Fig. 4.

2.2 Design Earthquake Ground Motions and Envelope
Response

Two representative recorded ground motions, i.e. El Centro NS 1940 (maximum
velocity = 0.5 m/s; impulsive type ground motion) and Hachinohe NS 1968
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(maximum velocity = 0.5 m/s; slightly long-period motion), are employed as the
design earthquake ground motions. The maximum value D̂max in the envelope
response δ̂ j max of the maximum interstory drift for multiple candidate ground
motions as shown in Fig. 5 is used for the demand in this paper. Although an example
for two ground motions is presented here, this is applicable to a more general case
for multiple ground motions without difficulty.
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2.3 Optimal Damper Placement Problem

The design problem of hysteretic dampers may be stated as follows.
[Problem] Find kd = {kd j } so as to minimize the selected seismic response F
subject to

N∑

j=1

kd j = C̄d (1)

In this problem, C̄d is the specified sum of stiffnesses of hysteretic dampers. It can
be shown after some examination that the initial stiffness of hysteretic dampers
is directly related to the quantity (and cost) of hysteretic dampers irrespective of
its installation type (axial-type or shear type). D̂max is employed here as F . For
simplicity of expression, D̂max is expressed simply as Dmax later.

Since hysteretic dampers have nonlinear restoring-force characteristics with sud-
den, large stiffness change and input earthquake ground motions are random (because
of propagation in random media), the seismic response of a building with hysteretic
dampers deviates greatly depending on the installed quantity and location of dampers.
The timing of fast plastic flow and random process of input may be the main reason
of the response randomness. This characteristic disturbs a reliable formulation of the
optimal damper placement different from other dampers [1, 2, 32, 35].

Figure 6 shows an example of variation of the maximum interstory drift with
respect to the sum of hysteretic damper stiffnesses. The initial design of the hys-
teretic damper stiffness is proportional to the main frame stiffness and the stiffness
ratio to the main frame is 5. In Fig. 6, the hysteretic damper stiffnesses (distribution
with respect to height) have been changed keeping the hysteretic damper stiffness
proportional to the main frame stiffness. The main causes of response irregularity
may be (i) irregularity of ground motions, (ii) sudden change of stiffness due to
yielding, (iii) irregularity of maximum response (change of story number, time of
the maximum response and direction of the maximum interstory drfit).

Fig. 6 Maximum interstory
drift with respect to sum of
hysteretic damper stiffness
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Fig. 7 Maximum interstory
drift and variation of
maximum interstory drift to
change (decrease) of damper
stiffness in story marked by
circle
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Fig. 8 Maximum interstory
drift with respect to step
number
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In order to overcome such difficulty, a new optimization method including a
variable adaptive step length for sensitivity smoothing is proposed. Although a con-
straint on accumulated plastic deformation ratio is sometimes required in hysteretic
dampers for long-duration earthquake ground motions [3, 4, 7, 36], this is not taken
into account here because of a simple, essential presentation of a new optimization
procedure.

Figure 7 shows the maximum interstory drift and the variation of the maximum
interstory drift to the change (decrease) of damper stiffness in the story marked by
circle. The first, fourth, seventh and tenth-story damper stiffnesses have been varied.
It can be observed that it is difficult to predict the variation of the maximum interstory
drifts from the story number with the stiffness variation.

Figure 8 illustrates the maximum interstory drift with respect to step number. It
can also be confirmed that the seismic response of a building with hysteretic dampers
deviates greatly depending on the installed quantity and location of dampers.
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2.4 Optimization Algorithm Including Variable Adaptive Step
Length

Figure 9 shows a schematic diagram of the proposed sensitivity evaluation algorithm
including variable adaptive step length. The response of candidate design in Fig. 9
is obtained by minimizing the maximum interstory drift for variation of damper
stiffness in respective story. This procedure is aimed at finding the most inactive
damper and reducing the quantity of such damper. Among several candidates of the
decreased hysteretic damper cost, the decreased hysteretic damper cost attaining the
lowest value of the maximum interstory drift is employed as the next-step sensi-
tivity (also next-step design). Figure 10 presents the flowchart of hysteretic damper
optimization-1. Although the minimum value is used in this example, the maxi-
mum value (with respect to several step lengths) among the candidate designs for
the maximum interstory drift can be employed alternatively in consideration of the
safety level of the passively controlled buildings (worst-case scenario). An example
using this maximum value of the maximum interstory drifts will be shown later. The
average value of the maximum interstory drift may be another possibility.

A practical procedure for optimal oil damper design without laborious mathe-
matical programming techniques has been proposed for reducing the computational
load [2]. A similar procedure can be developed for hysteretic dampers. There are
two practical aspects: (1) use of a reduced model (static condensation) from a frame
model for computational efficiency, (2) search of a series of optimal damper dis-
tribution for different total damper quantities. Although a shear building model is
used here, the reduced model (static condensation) developed by [2] can be used
if desired. Figure 11 illustrates the conceptual approximate solution procedure. The
design algorithm may be summarized as follows:

Step 1 The along-height sum of hysteretic damper stiffnesses is determined (as the
stiffness ratio to the main frame stiffness).

Fig. 9 Sensitivity evaluation
algorithm including variable
adaptive step length-1
(Selection of candidate
design with minimum among
minimums for respective
reduced damper levels)
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(step1) Set the initial damper stiffness and initial total cost[ ]0
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Fig. 10 Flowchart of hysteretic damper optimization-1
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Fig. 11 Conceptual diagram of hysteretic damper optimization

Step 2 Produce N×5 candidates in which damper stiffnessses�Cd, 2�Cd, 3�Cd,

4�Cd, 5�Cd are reduced from the present hysteretic damper stiffness in
each story. Compute the objective function for each model constructed in
Step 2 through nonlinear time-history response analysis.
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Step 3 Select the design with the minimum drift as the candidate design in each
story.

Step 4 Select the best candidate with the minimum objective function (drift
change) from the candidates produced in Step 3.

Step 5 Decrease the damper stiffness in the story selected in Step 4. Then go to
Step 2.

3 Numerical Examples

The main structure has been designed so that it has a fundamental natural period =
1.05 (s) and a realistic stiffness distribution as shown in Fig. 12. The constant mass
is 1.0 × 106 kg which corresponds approximately to 30 m × 30 m floor plan and the
structural damping ratio (stiffness-proportional viscous damping) is assumed to be
0.02. The yield displacement of hysteretic dampers is 0.005 m and the stiffness ratio
of hysteretic dampers to the main frame stiffness in the initial design is 5.

3.1 Example 1 (Employment of Minimum Value Among
Maximum Interstory Drifts in Algorithm of Variable
Adaptive Step Length)

An example using the algorithm explained in Sect. 2.4 is presented here. Figure 13a
shows the plot of the maximum interstory drift with respect to the sum of hysteretic
damper stiffnesses. The sum of hysteretic damper stiffnesses is decreased gradu-
ally. Figure 13a indicates clearly the effect of upper limit of damper variation. The
smoothing process due to change of upper limit of damper variation is illustrated in
Fig. 13b.

Fig. 12 Story stiffness of
ten-story main frame

0 5 10 15 20
0

2

4

6

8

10

Story stiffness (x108N/m)

S
to

ry
 n

um
be

r



242 Y. Murakami et al.

0

0.01

0.02

0.03

0 1 1010 2 1010 3 1010 4 1010 5 1010

5
10
15

m
ax

im
um

 in
te

rs
to

ry
 d

rif
t [

m
]

sum of hysteretic damper stiffnesses [N/m]

upper limit of 
damper variation

starting point

0

0.01

0.02

0.03

0 2 1010 4 1010

m
ax

im
um

 in
te

rs
to

ry
 d

rif
t [

m
]

sum of hysteretic damper stiffnesses [N/m]

0

0.01

0.02

0.03

0 2 1010 4 1010

m
ax

im
um

 in
te

rs
to

ry
 d

rif
t [

m
]

sum of hysteretic damper stiffnesses [N/m]

Starting point

Sensitive and 
irregular smoothing

No damper
Starting point

direction direction

(a)

(b)

Fig. 13 a Effect of upper limit of damper variation on damper optimization. b Smoothing process
due to change of upper limit of damper variation

Figure 14a illustrates the distribution of hysteretic damper stiffnesses and Fig. 14b
shows the distributions of the maximum interstory drifts. It can be understood from
Fig. 14a that the first-story damper is reduced fast in the increasing step. This may
result from the fact that the interstory drift in the first story is smaller compared
to other stories and the installation of hysteretic dampers in the first story is not
effective in this example. It can also be observed from Fig. 14b that the maximum
ductility factor of hysteretic dampers is about 4–5 in later steps. Figure 15 shows
the characteristics of optimal damper variation. It should be noted that Fig. 15 is
a little bit different from Fig. 14 because of the difference of pick-up points. The
early removal of top-story damper and the reduction of the first-story damper can be
observed.

3.2 Example 2 (Employment of Maximum Value Among
Maximum Interstory Drifts in Algorithm of Variable
Adaptive Step Length)

In place of the algorithm in Sect. 2.4, another one is employed here, i.e. the selec-
tion of the design with the maximum drift among minimum interstory drifts as the
candidate design in each story in Step 3. Figure 16 presents the sensitivity evaluation
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Fig. 14 Optimal design (Example 1: Minimum drift-sensitivity criterion). a Distribution of hys-
teretic damper stiffness, b Maximum interstory drift
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Fig. 16 Sensitivity
evaluation algorithm
including variable adaptive
step length-2 (Selection of
candidate design with
maximum among minimums
for respective reduced
damper levels)
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Fig. 17 Flowchart of hysteretic damper optimization-2

Fig. 18 Effect of upper limit
of damper variation on
damper optimization
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algorithm including variable adaptive step length (Selection of candidate design with
the maximum among minimum interstory drifts for design variation). This proce-
dure can be conducted by changing ‘minimum’ to ‘maximum’ in Step 4 in Sect. 2.4.
Figure 17 illustrates the flowchart of hysteretic damper optimization-2.

Figure 18 shows the plot of the maximum interstory drift with respect to the
sum of hysteretic damper stiffnesses. The sum of hysteretic damper stiffnesses is
decreased gradually. The plot for δ is the same as that for δ in Fig. 13a because the
minimization or maximization procedure is not applied to the case for δ (only one
case for δ). Figure 18 indicates clearly the effect of upper limit of damper variation,
i.e. smoothing of variation. While Fig. 19a illustrates the distribution of hysteretic
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Fig. 19 Optimal design (Example 2: Maximum drift-sensitivity criterion). a Distribution of hys-
teretic damper stiffness, b Maximum interstory drift

damper stiffnesses, Fig. 19b shows the distributions of the maximum interstory drifts.
It can be observed from Fig. 19a that the maximum interstory drift distributions of
the models obtained in this new algorithm are not different so much from those in
Fig. 14a. Although Fig. 19b is also similar to Fig. 14b, a slight change can be observed
in upper stories.

4 Conclusions

The following conclusions have been derived.

(1) The proposed method for optimal placement of hysteretic dampers takes full
advantage of a sensitivity-based redesign algorithm including nonlinear time-
history response analysis in the optimization process. The method enables struc-
tural designers to find an optimal quantity and location of hysteretic dampers in
each design step. The method is general and applicable to any type of passive
dampers and any classes of design earthquake ground motions.

(2) The response sensitivity of buildings including hysteretic dampers is high
because of the timing of fast plastic flow and random process of input and the
change of the natural period of a building depending on the installed quantity
and location of hysteretic dampers. A devised algorithm of adaptive step-length
in the response sensitivity computation is useful to obtain a smooth and reliable
response sensitivity.

(3) Employment of the minimum or maximum value of the maximum interstory
drift can be used in the algorithm of variable adaptive step length. First select the
design with the minimum drift as the candidate design in each story and select the
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best candidate with the minimum or maximum objective function (drift change)
from the candidates produced in this step. Both algorithms provide similar results
on the optimal damper placement.
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Design of Tuned Mass Dampers via Harmony
Search for Different Optimization Objectives
of Structures

Sinan Melih Nigdeli and Gebrail Bekdaş

Abstract In this chapter, an optimization methodology for tuning of tuned mass
dampers (TMDs) on seismic structures was presented for two different objectives
such as reducing the displacement of first story and absolute acceleration of top
story of the structure. A metaheuristic method; harmony search (HS) was employed
for optimization according to the time history analyses of structure under several
earthquake excitations. Harmony search inspires musical performances in order to
find optimum design variables according to optimization objective. Step by step, the
methodology of the optimization process is explained in the chapter. Themethodwas
applied to find an optimum TMD for a seven story shear building and the optimum
results were compared for the two cases considering displacement objective and
acceleration objective. According to the results, optimum TMDs for both objectives
are effective on both displacements and accelerations. But for acceleration objective,
a small benefit for accelerations can be seen although the optimum mass of TMD is
very heavy according to displacement objective.

Keywords Tuned mass dampers · Earthquake · Harmony search · Optimization ·
Time domain analyses · Metaheuristic methods

1 Introduction

Tuned mass dampers (TMDs) are vibration absorber devices used in all types of
mechanic systems. The first type of this device was a mass connected with springs
to the main system needs to be stabilized. The invention of this vibration absorber
device was done by Frahm [1]. Since this device designed without inherent damping,
absorbing of vibrations resulting from random excitations was not possible. Ormon-
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Fig. 1 Berlin TV tower

droyd and Den Hartog implemented dampers to the absorber device [2]. Thus, the
new form of the absorber device was regarded as tuned mass damper (TMD) and it
is also effective on structures subjected to earthquake and wind loads with changing
frequency, but an effective tuning of TMDs must be done for the best performance.
Optimization methods are an important issue for the TMD tuning problem.

In practice, several high-rise structures and bridges were designed by including
TMDs.Also, TMDswere installed after the construction of the structures after several
negative experiences resulting from the disturbing sway of the structures. The sway
of the structure may be a treat to the security of the structure or prevent people to
live in comfort. One Wall Centre in Vancouver, Shanghai World Financial Center
in Shanghai, Berlin TV Tower in Berlin, Dublin Spire in Dublin, Akashi-Kaikyō
Bridge in Japan, Tokyo Skytree in Tokyo, Yokohama Landmark Tower in Yokohama,
Sakhalin-I offshore drilling platform in Russia, Taipei 101 in Taipei, Burj al-Arab in
Dubai, 731 Lexington, Citigroup Center, Trump World Tower and Random House
Tower in New York, Comcast Center in Philadelphia, Grand Canyon Skywalk in
Arizona, John Hancock Tower in Boston, One Rincon Hill Tower in San Francisco,
Park Tower in Chicago, Theme Building in Los Angeles and Millennium Bridge
in London are the example structures including a type of TMD. Berlin TV tower
shown in Fig. 1 was renovated by installing a TMD because of strong and disturbing
vibrations resulting from wind forces. In the seismic retrofit of Theme Building in
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Fig. 2 Theme building in Los Angeles under renovation for seismic retrofit [3]

Table 1 The frequency and damping ratio expressions of TMDs

Method fopt = wd,opt
ws

ξd,opt = cd,opt
2mdwd,opt

Den Hartog [4] 1
1+µ

√
3µ

8(1+µ)

Warburton [5]
√
1−(µ/2)
1+µ

√
µ(1−µ/4)

4(1+µ)(1−µ/2)

Sadek et al. [6] 1
1+µ

[
1 − ξ

√
µ

1+µ

]
ξ

1+µ
+

√
µ

1+µ

Los Angeles (seen in Fig. 2), a TMDwith 20%mass ratio and supported by 8 rubber
bearings was installed on the main core of the structure in order to obtain 30–40%
response reduction [3].

Several closed form expressionswere proposed for optimum frequency and damp-
ing ratio of TMDs [4–8]. Several expressionwere given in Table1. The expressions of
Den Hartog [4] are theoretically derived for undamped main system under harmonic
excitation. Warburton [5] proposed several expressions for different excitations. In
Table1, the optimum expressions for white noise base excitation were given for
Warburton [5]. The expression of Den Hartog and Warburton are depended to a
preselected mass ratio (µ) of TMD and main structure. Sadek et al. [6] performed
numerically searched optimum TMD values for damped main system and obtained
the expression depending on the damping of the main system (ξ) by using curve
fitting. The optimum frequency ratio (fopt) is defined as the ratio of the optimum
frequency of TMD (wd,opt) and the frequency of SDOF structure (ws). The optimum
damping coefficient of TMD (cd,opt) is formulated by the multiplication of the mass
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of TMD (md), optimum frequency of TMD (wd,opt) and damping ratio of TMD
(ξd,opt). The study of Sadek et al. [6] also contains several modifications for multiple
degree of freedom structures.

By using curve fitting and modification for multiple degree of freedom systems,
optimumTMDparameters cannot be exactly found. For that reason, numerical search
algorithms have been employed for the optimization problem. Thus, all design vari-
ables including the mass of TMD are optimized by considering all modes of struc-
tures. Metaheuristic algorithms, which are developed by the inspiration of natural
phenomena, have been employed in the optimization methods for TMD optimization
problem of civil structures [8–23].

In this chapter, the TMD optimization method employing harmony search (HS)
algorithm is explained The methodology is demonstrated by optimizing TMDs for
a seven-story structure for two cases considering different objectives such as mini-
mization of maximum first story displacement and absolute acceleration of top story
of the structure. The optimization process considers time domain analyses for several
earthquake excitations in the presented method.

2 Metaheuristic Algorithms in TMD Optimization

In the optimization of TMDs, different metaheuristic algorithms such as Particle
Swarm Optimization (PSO) [8, 9], Genetic Algorithm (GA) [10–14], Bionic Algo-
rithm (BA) [15], Harmony Search (HS) [16–20], Ant Colony Optimization (ACO)
[21], Artificial Bee Colony Optimization (ABC) [22] and Shuffled Complex Evo-
lution (SCE) [23] have been employed. Generally, different design variables were
optimized by considering different objectives depending to time domain or frequency
domain responses.

PSOwas developed by Kennedy and Ebarhart formulated the movement behavior
of organisms in a swarm [24]. Leung developed an optimization approach based on
PSO for TMD tuning for structures under non-stationary base excitation [9]. Also,
PSOwas employed by Leung and Zang in development of TMD design formulas [8].

GA is the most known metaheuristic algorithm and it also belongs to evolution-
ary algorithm class. GA is inspired from the process of natural selection [25, 26].
Hadi and Arfiadi employed GA in search of stiffness and damping properties of
TMD for seismic structures [10]. The optimization of the mass of TMDs were taken
into consideration by Marano et al. in the study employing GA [11]. The response
of torsionally irregular structure were reduced by TMDs optimized a methodology
employing GA [12, 13]. Together by Fuzzy logic, GA is employed for active tuned
mass damper optimization problem [14]. BA, which is also belongs to evolution-
ary algorithm class, was used in the optimization of high-rise structures excited by
earthquakes [15].

HS imitates musical performances in search of optimum design variables [27].
In search of optimum mass, stiffness and damping coefficient of TMDs, HS based
methodology was developed for the seismic structures [16, 17]. Mass ratio factor
and comparison of HS with closed form TMD formulas were done by Bekdaş and
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Nigdeli [18]. Also, Nigdeli and Bekdaş used HS in preventing of brittle fracture
of Reinforced Concrete (RC) structure by using optimum TMDs [19]. Nigdeli and
Bekdaş investigated different objectives for TMD optimization problem by using the
HS employed method [20].

Dorigo et al. developed ACO by the behavior of the ants [28]. Farshidianfar and
Soheili employed ACO for the TMD optimization of high-rise structure including
soil-structure interaction (SSI) [21]. Also, Farshidianfar and Soheili employed ABC
optimization and SCE for the same problem considering SSI effects [22, 23].

3 Equations for TMD Installed Structure

The physical model of an N -storey structure with a TMD is shown in Fig. 3. The
equations of motion of the structure in matric form can be written as

Mẍ(t) + Cẋ(t) + K x(t) = −M {1} ẍg(t) (1)

for ground acceleration excitation. The M , C and K matrices are diagonal lumped
mass (Eq. (2)), damping (Eq. (3)) and stiffness matrices (Eq. (4)), respectively. The
x(t), ẍg(t) and {1} represents the vector containing structural displacements (Eq.
(5)), ground acceleration and a vector including ones with a dimension of (N+1, 1),
respectively.

M = diag[m1 m2 . . . m N md ] (2)

C =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

(c1 + c2) −c2
−c2 (c2 + c3) −c3

. .

. . .

. . .

−cN (cN + cd) −cd

−cd cd

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

K =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

(k1 + k2) −k2
−k2 (k2 + k3) −k3

. .

. . .

. . .

−kN (kN + kd) −kd

−kd kd

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

x(t) = [x1 x2 . . . xN xd ]T (5)

In the equations, mi , ci , ki and xi represent mass, damping coefficient, stiffness
coefficient and displacement of i th storey of structure. The parameters of theTMDare
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Fig. 3 Physical model of
N-story shear building
including a TMD

mass (md), damping coefficient (cd) and stiffness coefficient (kd). The displacement
of the TMD is shown as xd .

In the optimizationmethodology, the equations ofmotion given inEq. (1) is solved
for all iterations of the optimization process. Details of the optimization process are
explained in Sect. 4.

4 Harmony Search Based TMD Optimization

The Harmony Search (HS) algorithm developed by Geem et al. [27] is a memory
based random search method. It imitates the music performance process in which a
musician tries to find a pleasing harmony that is a perfect state for appreciation of
the audience. Like musicians, researchers try to find a global solution as a perfect
state for maximum performance with a low cost.
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Comparing to other metaheuristic algorithms, the usage of HS is not complex
because a stochastic random search is used instead of a gradient search. Also, it is
not a hill- climbing algorithmFor that reason, the local optima problemdoes not occur
in solving problems. HS is suitable to solve problems with discrete and continuous
variables [29, 30]. By using stochastic derivatives, the number of iteration can be
reduced in the HS algorithm. When the function’s mathematical derivative cannot
be analytically obtained or function’s type is step-wise or condition-wise, the usage
of stochastic derivatives is important [31].

A musician can choose three possible options during a performance in order to
gain the admiration of audience. Thefirst option is to play a famous part ofmusic from
their memory. This option can be simulated as the usage of harmony memory (HM)
in theHS algorithm. TheHMmay be constructed as amatrix for engineering problem
searching for optimum design variables. This matrix contain harmony vectors and
the number of these vectors are known as Harmony Memory Size (HMS). In that
matrix, possible design variables will be stored to reach the optimum. In generation
of a new harmony after the HM matrix initially constructed, a special parameter is
used. This parameter is Harmony Memory Considering Rate (HMCR) and by using
this rate parameter, it is possible to control the acceptance of the new harmonies.

Anewharmony is generated according to the other twooption of themusician. The
second option is to play something similar to a famous part ofmusic. By imitating this
option, a new harmony can be generated from the HM. The HMCR is the possibility
of a vector being selected from the existing HM. The third option is to compose
a new or random note. According to this option, a new harmony can be randomly
generated. If the value of HMCR is near to 1, a new harmony is strongly generated
from the HM. In that case, the search will cover only the specific part of the range.
The other parts in the solution domain can be missed. If the HMCR is too small, the
optimization process will be long.

The randomization is the main source of the harmony search when generating a
new harmony vector. As shown in Eq. (6). A random solution (Sr) can be generated
within a selected range defined by lower and upper limits named with Slower and
Supper, respectively. Rand is a random number which is generated between 0 and 1.

Sr = Slower + Rand(Supper − Slower) (6)

Also, the adjusting of the pitches is related with the second option of musician.
A parameter called Pitch Adjusting Rate (PAR) is utilized to adjust the range when
the HM is chosen as the source of generation. The new harmony is searched in a
smaller range around the values of HM. PAR can be accepted as the ratio between
the smaller range around the stored values in HM and the whole range. Thus, it is
possible to check the values which are close to existing ones in HM to find exact
optimum values of design variables.

HS has several similarities with GA. As the usage of harmony memory, the least
fit individuals are chosen in GA. The parameter, PAR is similar to mutation operator
used in GA [32].
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Fig. 4 The flowchart of the optimization process

The flowchart of the optimization process is given in Fig. 4. The process of TMD
optimization employing HS can be summarized in six steps including the parameter
setting procedure.
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i. In the first step, HS algorithm parameters; HMS, HMCR and PAR are defined.
Also, the solution ranges for the design variables are defined. Selecting a wide
range can increase the optimization time and a tight rangemayprevent to findbest
optimum solution. Termination criterion or criteria must be selected in this step
according to the main purpose of the optimization problem. The main structure
properties (design constants) must be also defined in this step.

ii. The main purpose of using a TMD on a structure is to reduce an objective
response. In order to make comparisons of optimization objective and termina-
tion criterion or criteria, themaximumobjective response of the structurewithout
TMDmust be found. In the optimization process, several earthquake records are
used in the dynamic analyses at the same run of the optimization code. In the
dynamic analyses, the equations of motion given in Eq. (1) is solved by using
Matlab with Simulink [33]. Runge-Kutta method with 0.001s was chosen as a
solver in the numerical analyses.

iii. After the definition of known properties and dynamic analyses of the structure
without TMD, the initial harmony memory (HM) matrix is generated with the
combination of harmony vectors containing the unknown design variables. The
number of the harmony vectors (HV1 to HVHMS) stored in HMmatrix is defined
withHMS.Theharmonyvectors contain randomnumbers selected by the defined
ranges. These possible optimum values are for mass (md), period (Td) and
damping ratio (ξd) of the TMD. HM matrix and HV are defined in Eqs. (7)
and (8), respectively. For each set of design variables, dynamic analyses are
done for the structure including a TMD on the top of the structure. The value
of objective function (OF) of the optimization is also stored in a vector for each
set of design variables. The objective functions are given for displacement and
acceleration objectives in Eqs. (9) and (10), respectively. Equation (9) is the ratio
of maximum first story displacements of the structure with and without TMD
and Eq. (10) is ratio of maximum absolute acceleration of the top story. The aim
of the optimization is to minimize these objective functions.

HM = [
HV1 HV2 . . . . . . HVHMS

]
(7)

HV =
⎡

⎣
mdi

Tdi

ξdi

⎤

⎦ (8)

OF = max(x1)withTMD

max(x1)withoutTMD
(9)

OF = max(ẍN + ẍg)withTMD

max(ẍN + ẍg)withoutTMD
(10)
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iv. In the fourth step, a new harmony vector is randomly generated according to the
rules of HS. This vector can be generated in two ways as explained before. It
can be created around a randomly chosen existing vector, which is stored in the
HM, or randomly generated within the initial solution range. In order to find best
optimum solutions and escape local optima problem, the new vector is generated
from the neighbouring values of a chosen vector in HM. The algorithm generates
neighbouring values with a defined parameter called PAR. The parameter; PAR
defines the ratio of the small range (the range modified according to the results
of an existing HV in HM matrix) and initial range.

v. In this step, HM matrix is modified. If the new harmony vector has lower OF
value than the worst harmony vector in the HM, the worst one is replaced with
the newly generated HV.

vi. In the last step, if corresponding OF results of HVs in HM satisfy the termination
criterion or criteria, the optimization process is ended. If not, iterations must
continue from the fourth step where a new harmony vector is generated. The
optimization process continue until termination criterion or criteria are satisfied.
Two different criteria were used in this study. One of the criteria is to reduce
the OF values under a user defined value. If the solution range is not suitable to
reduce the OF value below the value entered by the user, the user defined value is
iteratively increased after several attempts. For the minimization of the objective
function, the user defined valuemay be entered as zero and the value of this value
may be updated according to the values of the best harmony vector after several
iterations. The other criterion is related with frequency domain results. For both
objectives, acceleration transfer function of the first story must be smaller than
the uncontrolled structure.

5 Numerical Example

The numerical example is a seven story building. The properties of all stories are the
same. The mass, rigidity and damping coefficient of a story are 180 t, 400MN/m and
3MNs/m, respectively. The period at the first mode is 0.64 s. The natural frequencies
of the seven degrees of freedom structure are 1.57, 4.64, 7.5, 10.04, 12.14, 13.71 and
14.68Hz.

During the optimization process, six different earthquake record were used. The
optimization earthquakes have different characteristics and these earthquake records
were downloaded from Pacific Earthquake Engineering Resource Center (PEER)
NGA database [34]. Date, station and component information of earthquake records
are given in Table2.

In order to check the robustness of the optimum results for different excitations,
the optimum TMD parameter were also tested on different records which were not
considered in the optimization process. These earthquake records are BOL090 com-
ponent of Bolu record of 1999 Duzce earthquake, PET090 component of Petrolia
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Table 2 Earthquake records used in the HS optimization [34]

Earthquake Date Station Component

Loma Prieta 1989 16 LGPC LGP000

Gazli 1976 9201Karakyr GAZ090

Erzincan 1992 95 Erzincan ERZ-NS

Imperial valley 1940 El Centro Array #9 I-ELC180

Northridge 1994 24514 Sylmar SYL360

Kobe 1995 0 KJMA KJM000

record of 1992 Cape Mendocino earthquake and LCN000 component of Lucerne
record of 1992 Landers earthquake.

In optimization of numerical example, mass, damping ratio and period of TMD
are optimized. The range of the mass ratio (µ) of TMD and the total mass of the
structure is between 1 and 5%. The period of TMD is search between 0.8–1.2 times
of the superstructure critical period. The lower and upper damping ratio limits are
taken as 5 and 40%, respectively.

The best and the worst harmony vectors are chosen according to ratios of maxi-
mumfirst story displacement in Case 1 andmaximum top story acceleration in Case 2
between TMDcontrolled and uncontrolled structure. For all cases, frequency domain
criterion defined in Sect. 4 was also used. The user defined value used for OF was
taken as a small value in order to minimize the objective function. HS parameters;
HMS, HMCR and PAR are taken as 5, 0.5 and 0.2, respectively.

For the displacement objective (Case 1), the optimum TMD parameters were
found as 29.5 t (µ = 2.34%), 0.666 s (kd = 2625.63 kN/m) and 0.398 (cd =
221.53 kNs/m) for the mass, period and damping ratio of TMD, respectively. The
performance of TMD on reducing structural displacements is between 22 and 72%
for the optimization earthquakes and Case 1 results. The optimum results are also
effective for the benchmark earthquakes. The maximum and minimum reductions
are 58 and 27%, respectively for these earthquake records.

TheTMD is predominantly effective under LomaPrieta excitation. This excitation
is the record under that the maximum structural displacements are observed. The first
story displacement plots are given in Fig. 5. According to these plots, the TMD is
optimally effective on reducing structural vibrations occurred under optimization
earthquakes.

For the acceleration objective (Case 2), the optimumTMDparameters were found
as 62.9 t (µ = 4.99%), 0.687 s (kd = 561.35 kN/m) and 0.4 (cd = 460.22 kNs/m)

for the mass, period and damping ratio of TMD, respectively. The performance of
TMDon reducing top story accelerations is between 22 and 75% for the optimization
earthquakes and between 25 and 59% for the benchmark earthquakes.

The maximum structural responses for uncontrolled structure and both cases are
given and discussed in the last section of the chapter.
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Fig. 5 The first story displacement plots under earthquakes (Case 1)

6 RESULTS and Conclusions

The maximum values of the displacements can be seen in Table3 for both cases.
Table4 shows the maximum absolute accelerations for all stories.

According to the maximum displacement results the optimum TMD is effective
to reduce all story displacement under all optimization and benchmark earthquakes
for all cases. Another important factor is the maximum displacement of the TMD in
design. The stroke of the TMDmust be suitable to sustain themaximumdisplacement
value without limiting the displacement of TMD. If the displacement of TMD is
limited, the damping and tuning frequency of TMD is affected. In that reason, the
optimum effectiveness of the TMD is lost.

For the maximum displacements, the most critical excitation is Loma Prieta
record. The optimum TMDs are very effective to reduce the maximum displace-
ment for that excitation, but the critical excitation is different for the TMD con-
trolled structure. For the structures with optimum TMD, the most critical excitation
is Kobe. For that excitation, case 1 in which the displacement objective is employed,
the maximum displacement is lower than the results of case 2, although case 2 using
an heavy mass comparing to case 1 for the other excitations including optimization
and benchmark ones. These results show us the importance of using several records
and a time-domain based optimization technique, since the critical excitation may
differ according to the randomization of TMD parameters. Another conclusion of
the numerical example is related with the robustness of the TMD for different exci-
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tations. The TMD with the heavy mass (case 2) is more effective on reducing of
maximum responses including displacement and acceleration, but another factor;
economy is in progress of the optimum designs. By the increase of the mass, the
damping coefficient of the TMD is also increased. The damper of the TMD is the
most expensive component of TMD. Design engineers must find a balance between
performance and economy according to the requirements and opportunities in their
hands. Also, the balance between performance and economy can be formulated to
use in the optimization process.

Another important conclusion is the acceleration increase for low stories for TMD
controlled structure. This situation is observed under several excitations such as
Gazli, Northridge, Kobe and Düzce. For that reason, first story acceleration at which
the absolute acceleration value is minimum cannot be taken as an optimization objec-
tive since the accelerations of the top stories are critical. In displacement objective,
the drift of the first stories are generally critical and the displacement of the top
stories are generally related with the displacement of lower stories. Thus, first story
displacements and top story accelerations were considered as objective function in
this study. Consequently, both approaches for different objective are suitable for tun-
ing of TMDs.Both approach have negatives and positives as explained in the previous
paragraphs of the Sect. 6. Metaheuristic methods and harmony search algorithm is a
feasible approach for employing in optimization approaches of tuning of TMDs for
seismic structures and similar problems.
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Tailoring Macroscale Response
of Mechanical and Heat Transfer Systems
by Topology Optimization of Microstructural
Details

Joe Alexandersen and Boyan Stefanov Lazarov

Abstract The aim of this book chapter is to demonstrate amethodology for tailoring
macroscale response by topology optimizing microstructural details. The microscale
and macroscale response are completely coupled by treating the full model. The
multiscale finite element method (MsFEM) for high-contrast material parameters is
proposed to alleviate the high computational cost associated with solving the discrete
systems arising during the topology optimization process. Problemswithin important
engineering areas, heat transfer and linear elasticity, are considered for exemplifying
the approach. It is demonstrated that it is important to account for the boundary effects
to ensure prescribed behavior of the macrostructure. The obtained microstructures
are designed for specific applications, in contrast to more traditional homogenization
approaches where the microstructure is designed for specific material properties.

1 Introduction

The focus of this book chapter is on the topology optimization of microstructural
details for tailoring the macroscale response of mechanical and heat transfer sys-
tems. Topology optimization [7] is an iterative design process which distributes
material in a design domain by optimizing a prescribed objective and satisfying a
set of constraints. In mechanical and structural engineering applications, the typi-
cal objective is to maximize structural stiffness subjected to material constraints, or
minimize material volume subjected to stiffness constraints. Over the last decade
topology optimization has become one of the preferred design tools in the auto-
motive and aerospace industries. In addition, the method has spread to other dis-
ciplines for design of optical crystals and circuits, antennas and fluid mechanics
systems [14, 30].
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The main burden in topology optimization is the computational cost associated
with modeling the physical behavior of the optimized system. The system response
is evaluated for each optimization iteration. Relatively coarse discretizations are uti-
lized in order to save computational time. Refining the discretization improves the
physical model and provides a larger solution space for the optimization process.
Therefore, one of the main goals in the development of the methodology is to
reduce the computational complexity without restricting the design freedom. Several
approaches like material homogenization, coupled and decoupled multiscale models
and efficient state solvers, discussed below, are suggested in the literature.

The systematic design of novel materials with extremal properties using topology
optimization has been demonstrated in several papers starting with the pioneering
work for 2D designs presented in [28, 29] to the recent manufacturable 2/3Dmaterial
designs with negative Poisson’s ratio [5, 35]. The optimization is performed on peri-
odic microstructures with the aim to achieve prescribed effective properties. Such
optimization affects indirectly the macroscopic response and an alternative multi-
scale approach to the topological design is to introduce homogenizedmicrostructural
properties in the optimization of a macrostructural response. This coincides with the
original homogenization approach to topology optimization presented in [6]. The
macroscale design is realizedwith homogenizedmaterial properties without the need
to precisely specify the unit cell topology. Later a hierarchical optimization strategy
has been applied to bone modeling [12, 13] where the microscopic structure and
the macroscopic density are designed simultaneously. The macroscale response is
decoupled from the microscale and the microstructural details affect the macroscale
response through the homogenized material properties. The scale separation reduces
the computational cost, however, the design often lacks connectivity between the
varying microstructural details. Furthermore, practical realizations of such designs
with modern manufacturable technologies (e.g. [5]) lead to finite size periodic cells,
which contradict the infinite periodicity assumption applied in the homogenization
process.

Here, themacroscale response of the system is completely coupled to the structural
response at the microscale. The fine discretization of the physical system requires the
solution of large linear systems of equations. The system response can be obtained
using direct or iterative solvers. Direct solvers are often preferable due to their robust
behavior, however, for large 3D problems, the computational time becomes pro-
hibitive even on large parallel systems. On the other hand, even though they lack
the robustness of direct solvers, iterative solvers provide scalable and easy to imple-
ment parallel solutions. Their convergence is improved by utilizing precondition-
ing techniques [26] which in the context of topology optimization are discussed in
[1, 2, 4].

Here iterative solvers with preconditioning using the multiscale finite element
method (MsFEM) for high-contrast media are utilized, in order to speed up the
design process and to allow the optimization of large scale problems without com-
promising the resolution. The original MsFEM [19] represents the system behavior
by constructing basis functions on a coarse grid. The coarse basis functions provide
a good approximation to the system response and reduce significantly the problem
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size. Themethod has been appliedmainly to scalar problems, and recently extensions
to elasticity [11] and problems modeled by positive definite bilinear forms [17], have
been demonstrated as well. The MsFEM for high-contrast media [18] constructs
several basis functions per coarse node, which represents well the important features
of the solution with a convergence rate independent of the contrast. The method has
been extended and applied to topology optimization problems in linear elasticity in
[3, 22] and is presented in details in Sect. 5.

2 Physical Models

The partial differential equations (PDEs) governing the physical behavior for heat
transfer and linear elasticity are introduced for 2D in the following subsections. The
presented examples follow this simplification. However, the approach considered in
this book chapter can be extended to 3Dwithout any significant modifications, which
will be demonstrated in following works.

2.1 Heat Transfer

The system response for heat transfer problems in a conductive medium distributed
in a given domain Ω is governed by the following PDE

− ∇Tq + p (x) = 0 x ∈ Ω (1)

where q is the heat flux per unit area and p (x) is a source term. The conductive heat
flux q is obtained from Fourier’s law as

q = −κ∇θ (2)

where κmin ≤ κ (x) ≤ κmax is a spatially-varying conduction coefficient and θ

is a scalar temperature field defined over the domain Ω . The boundary Γ = ∂Ω is
decomposed into disjoint subsetsΓ = ΓD ∪ ΓN . The following boundary conditions
are prescribed on the different subsets

θ = 0 on �D (3)

qn = g on �N (4)

where qn = qTn.
The variational formulation [9] of the above problem is to find u ∈ H0 (Ω) such

that

a (u, v) = l (v) for all v ∈ H1
0 (Ω) (5)
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where the bilinear form a and the linear functional l are defined as

a (u, v) =
∫

Ω

κ (x) ∇u (x) ∇v (x) dx for all u, v ∈ H1
0 (Ω) (6)

l (v) =
∫

Ω

p (x) v (x) dx +
∫

ΓN

κ (x) gv (x) dx for all v ∈ H1
0 (Ω) (7)

and H1
0 (Ω) is defined as

H1
0 (Ω) =

{
v ∈ H1 (Ω) : v = 0 on ΓD

}
(8)

H1 (Ω) is a standard Sobolev space on Ω . The Galerkin formulation of Eq.5 is
obtained using the finite element spaceVh (Ω) ⊂ H1

0 (Ω)with test and trial functions
u, v ∈ Vh (Ω). The space Vh (Ω) consists of standard Lagrange shape functions
defined on a uniform rectangular meshT h with characteristic length h. TheGalerkin
formulation leads to a linear system of equations of the form

Ku = f (9)

where the vector u consists of all nodal values of the temperature field θ and f is a
vector with the supplied input to the system.

2.2 Linear Elasticity

The response of a linear elastic system is governed by the Navier-Cauchy partial
differential equation, e.g. [9], given as

∇ · σ (u) + f(x) = 0, x ∈ Ω (10)

σ (u) = C : ε (u) (11)

where σ is the stress tensor, ε is the linearized strain tensor, the vector u consists
of the displacements in the coordinate directions and C is the linear elastic stiffness
tensor. The vector function f (x) represents the system input. The mechanical system
occupies the bounded domainΩ , where the boundaryΓ = ΓDi ∪ ΓNi is decomposed
into two disjoint subsets for each component ui , i = 1, 2. ΓDi is the part of the
boundary where ui = 0 and ΓNi denotes the part with prescribed traction ti . The
stiffness tensor is isotropic with predefined Poisson’s ratio ν < 0.5 and spatially-
varying Young’s modulus Emin ≤ E (x) ≤ Emax.

The weak formulation of the linear elasticity problem is to find u ∈ V0 such that

a (u, v) = l (v) for all v ∈ V0 (12)
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with bilinear form a and linear functional l defined as

a (u, v) =
∫

Ω

(C : ε (u)) : ε (v) dx for all v ∈ V0 (13)

l (v) =
∫

Ω

f · vdx +
∫

ΓN

t · vdx for all v ∈ V0 (14)

where the space V0 is defined as

V0 =
{

v ∈
[

H1 (Ω)
]2 : vi = 0 on ΓDi , i = 1, 2

}
(15)

The weak formulation is discretized using standard finite element functions defined
on uniform rectangular mesh T h . Similar to the heat transfer case, the discrete
formulation results in a linear system of the form given by Eq.9 with vector u
consisting of all nodal displacements.

3 Topology Optimization Formulation

Topology optimization is an iterative method that seeks to distribute material in
a given design domain by optimizing an objective functional and fulfilling a set
of design constraints [7]. The material distribution is represented by a density field
0 ≤ ρ (x) ≤ 1.Thedensityfield takes values one for all points in the designdomainΩ

occupiedwithmaterial and zero for the void regions. In order to utilize gradient-based
optimization techniques, the density field is allowed to take intermediate values.

The main steps in the topology optimization algorithm will be demonstrated first
for thermal compliance minimization, which coincides with the first example in
Sect. 6. The optimization problems is defined as

min
ρ∈Qad

:c (ρ, u) =
∫

Ω

κ (ρ (x)) ∇u (x) ∇u (x) dx (16)

s.t. a (ρ; u, v) = l (v)
∫

Ω

ρdx ≤ V ∗

whereQad is the space of admissible densitymaterial distributions, V ∗ is the allowed
volume of material and a (ρ; u, v) is the bilinear from given by Eq.6. In the opti-
mization problem, the bilinear form Eq.6 depends on the density field ρ. The heat
conduction coefficient in Eq. 2 is interpolated between κmin and κmax using the mod-
ified SIMP scheme [7] given as

κ = κmin + (κmax − κmin) ρ p (17)
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where p is the penalization parameter, κmax is the conduction coefficient of the solid
material, and κmin is set to be a very small number in order to ensure that the bilinear
form is coercive. The above optimization problem can be written in discrete form
using the finite element discretization given byEq.9. The design fieldρ is represented
using independent design variables associated to each element. The discrete problem
is given as

min
ρ

: c = fTu (18)

s.t. Ku = f

ρTv ≤ V ∗

0 ≤ ρi ≤ 1 i = 1, . . . , nel

where the vector ρ consists of all design variables and v is a vector with element vi

equal to the volume of the i th finite element.
The optimization problem is solved using the so-called nested formulation, where

the discrete system of equations for the state problem is solved during each opti-
mization step. The gradients of the objective with respect to the design variables are
computed using adjoint sensitivity analysis [7] and are given as

∂c

∂ρe
= −pρ p−1

e (κmax − κmin) uT
e K0,eue, e = 1, . . . , Nel (19)

The design update is performed using the method of moving asymptotes (MMA)
[31].

The optimization problem defined by Eq.18 is mesh dependent. Instead of obtain-
ing a better representation of a coarse optimized topology, the optimization might
result in a completely different topology by refining the mesh. Such behavior is
avoided here by utilizing density filtering [8, 10]. The filtered density ρ f (x) at a
point x in the design domain is obtained using convolution of the original design
field ρ and a filter function

ρ f (x) =
∫

Ω

F (x − y) ρ (y) dy (20)

The filter function is chosen to be

F (x) = 1

R

(
1 − |x |

R

)
, x ∈ [−R, R] (21)

where R is the filter radius, which controls the length scale. Instead of using an
explicit weighting function F (·), the filtered field can be obtained as a solution of a
PDE [24] given as

− r2 � ρ f + ρ f = ρ (22)
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with r = R/(2
√
3). The PDE filter simplifies the enforcement of different boundary

conditions on the density field, reutilizes the already developed discretization frame-
work for solving the state problem, simplifies large scale parallel implementations
of the topology optimization process, and reduces the computational cost in 3D [1,
2, 24]. The classical filter is utilized for the heat transfer example and the PDE filter
is utilized for the linear elastic designs.

4 Robust Design

The filtered field consists of large gray regions which require post-processing of the
optimized results. Such a transformation can affect the optimality of the solution
and in many cases [34] completely destroy the performance of the optimized design.
These post-processing effects are alleviated here by using projection and introducing
a requirement on the performance to be insensitive with respect to uncertainties in
the geometry [23, 34]. The physical density in this case is represented by a projected
density field obtained as

ρp = tanh (βη) + tanh
(
β

(
ρ f − η

))

tanh (βη) + tanh (β (1 − η))
(23)

where η is a selected threshold and β controls the sharpness of the projections. For
β → ∞ the above expression approaches a Heaviside function. The gradients of the
objective functional and the constraints with respect to the original design field ρ are
obtained by the chain rule.

The projection improves the contrast in the design, however, the length scale
imposed from the filter is lost. All manufacturing processes introduce uncertainties
in the realizations of the optimized designs, whichmight result in complete loss of the
performance [21, 34, 36]. Imperfections along the design perimeter can be modeled
by varying the threshold η in Eq.23, and for cases with non-uniform uncertainties
the threshold can be replaced with spatially-varying random field [27].

Here the threshold is assumed to be a random variable with uniform distribution
η ∈ [ηd; ηe], where the threshold ηd corresponds to the most dilated design and ηe

corresponds to the most eroded case. The optimization problem is posed as follows

min
ρ

: c = E
[
fTu

]
+ w

√
Var

[
fTu

]
(24)

s.t. Ku = f

E
[
ρTv

]
≤ V ∗

0 ≤ ρi ≤ 1 i = 1, . . . , nel
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where E [·] and Var [·] denote the expected value and the variance of a given quan-
tity, and w is a weight factor. The state problem in the above formulation becomes
stochastic and approximations to expectation and the variance are obtained using
Stochastic collocation and Monte Carlo sampling [25]. The gradients are computed
as described in [23].

5 Multiscale Finite Element Method

Topology optimization is an iterative approach which requires the computation of
the state solution, and possibly adjoint solution also, at every design iteration. Often,
the required state and adjoint field computations account for more than 95–99% of
the total computational time [2]. The solution for small problems is usually obtained
using direct solvers due to their robustness. Realistic 3D and large 2D designs with
fine details require fine resolutions, which makes the computational cost prohibitive.
An alternative is to use iterative solution techniques [26] also known as Krylov iter-
ative methods. Iterative solvers alleviate some of the issues observed with direct
solvers in terms of memory utilization and parallel scalability. However, their con-
vergence speed is determined by the condition number of the system matrix, which
can be improved by preconditioning.

Classical preconditioners such as incomplete factorization, diagonal scaling and
successive over-relaxation, cannot provide mesh independent convergence. Further-
more, for problems with high contrast between material parameters, as the ones
arising in topology optimization, the number of iterations increases with increas-
ing contrast [2, 4]. Mesh independent convergence can be obtained using geometric
multigrid (MG) [33], if the coarse grid is capable of resolving the fine scale details.
Such a condition cannot be guaranteed in the topology optimization process which
results in deteriorated convergence. A compelling alternative demonstrated in [15,
18, 20] is the multiscale finite element method (MsFEM) with spectral basis func-
tions.

MsFEM with spectral bases has initially been developed for diffusion type prob-
lems [18, 20], for general bilinear forms [17], and extended later for topology opti-
mization problems in linear elasticity [3, 22]. Here the method is presented for heat
transfer problems and follows closely [18]. The idea is to construct a coarse space
capable of representing the important features of the solution.

The fine mesh T h utilized for the discretization of Eq.1 and 2 is assumed to be
obtained by a refinement of a coarser one T H = {

K j
}Ncc

j=1, where K j denotes a
coarse mesh cell and Ncc the number of coarse cells (e.g. Fig. 1). The nodes of the
coarse mesh are denoted as {yi }Nc

i=1, where Nc denotes the number of coarse nodes.
The neighborhood of node yi is defined as

ωi =
⋃ {

K j ∈ T H : yi ∈ K j

}
(25)
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H

h

q

ωi

Fig. 1 Illustration of fine, coarse mesh and several agglomerates for cantilever beam subjected to
distributed load q

The neighborhoods ωi , i = 1, . . . , Nc, will be called agglomerates as they can be
viewed as a group of coarse elements agglomerated together.

A set of coarse basis functions
{
φi, j , j = 1, . . . , Nc

}
, defined with respect toT h ,

is introduced for each coarse node y j . An approximation to the solution in the coarse
space is sought as uc = ∑

i, j ci, jφi, j . The coefficients ci, j are determined by solving
the coarse problem Kcuc = fc, with

Kc = RcKRT
c (26)

fc = Rcf (27)

where Rc = [
φi,1, φi,2, . . . , φNc,1, φNc,2, . . .

]
consists of all coarse basis functions

defined on the fine scale grid, and uc consists of all coefficients ci, j . The matrix
Rc provides a map between temperature fields defined on the fine and the coarse
grids. An approximation to the nodal solution in the fine space can be obtained as
ua = RT

c uc.
The set of coarse basis functions is built using the set of eigenmodes of local

eigenvalue problems [18] defined on each agglomerate ωi . The eigenvalue problem
for agglomerate ωi is given as

− ∇Tκ (x) ∇u = λκ (x) u, x ∈ ωi (28)

with homogeneous Neumann boundary conditions on the agglomerate boundary if
∂ωi ∩Γ = ∅, and boundary conditions applied to Eq.1 on ∂ωi ∩Γ �= ∅, where Γ is
the boundary of the design domainΩ and ∂ωi is the boundary of the agglomerateωi .
The eigenvalue problem is discretized using Vh (ωi ) = {vh ∈ Vh : supp vh ⊂ ωi }
and in matrix vector form is given as

Kωi ψ
ωi
j = λ

ωi
j Mωi ψ

ωi
j (29)
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where Kωi is the stiffness matrix, Mωi is a mass matrix, ψ
ωi
j is the j th eigenvec-

tor, and λ
ωi
j is the j th eigenvalue. The eigenvalues are ordered as λ

ωi
1 ≤ λ

ωi
2 ≤

· · · ≤ λ
ωi
j ≤ . . . , and the first eigenvectors corresponding to eigenvalues smaller

than a selected threshold λΩ are selected to form the coarse basis. The coarse basis
functions, represented on the fine grid, are defined as φi, j = ξiψ

ωi
j , i.e., they are con-

structed by multiplication of the eigenfunctions ψ
ωi
j with a partition of unity {ξi }Nc

i=1

subordinated to ωi such that ξi ∈ H1 (Ω) and |∇ξi | ≤ 1/H, i = 1, . . . , Nc, where
H is the characteristic length of a coarse element K . Hence, for each coarse node,
the basis functions

{
φi, j

}
are defined as the fine space finite element interpolants

of ξiψ
ωi
j , j = 1, . . . , Ni , where Ni is determined as the number of eigenvalues

smaller than the globally selected threshold λΩ . It is important to note that, since
the eigenvalue problem defined on agglomerate ωi and the full problem share the
same boundary conditions on the common boundaries, the eigenfunctions and hence
the coarse basis functions automatically fulfill the boundary conditions of the global
problem. The construction process of several coarse basis functions is exemplified
in Fig. 2.

In [18] the coarse system is utilized as a solver, where the accuracy of the coarse
approximation depends on the global threshold λΩ , which controls the number of
the basis functions and the computational cost. For topology optimization problems

Eigenmodes:

Partition of unity:

Coarse basis:

Fig. 2 Illustration of spectral basis construction
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using the nested formulation, the optimizer can take advantage of the approxima-
tion error. As discussed in [22], the optimization for linear elasticity might result
in isolated islands of material. Such topologies are not optimal and appear due to
the homogenization effect of the approximation. Therefore, here the coarse solver
is utilized as a preconditioner for iterative solvers applied to the fine-scale problem.
Using the coarse systemas a preconditioner results inmesh- and contrast-independent
number of iterations for the Preconditioned Conjugate Gradient (PCG) and the Gen-
eralized Minimal Residual Method (GMRES). In [20] the coarse space is utilized
in a two-level additive Schwarz preconditioner. Instead of implementing local sub-
domain solvers for the Schwarz preconditioner, here, the coarse space is utilized as
a coarse-level in a two-level multigrid preconditioner for GMRES (e.g. [33]). The
smoothing is performed by a single symmetric Gauss-Seidel step.

The time consuming part of the MsFEM algorithm is the construction of the
coarse basis and the projection given by Eq.26. Several strategies for reducing the
computational cost are discussed in [3, 22]. The main idea utilizes the fact that
the design changes during the optimization process are relatively slow and hence
consecutive design realizations can share the same coarse basis. When the difference
in the topologies for the reference and the current design becomes large, the basis
is updated. A heuristic rule is suggested in [3] where the basis is updated when the
solver iterations exceed the previous iteration number by more than a given limit.
More rigorous criteria is a subject of future research. In the stochastic case, the basis is
constructed for the most dilated design and utilized for all realizations which further
reduces the computational cost. For linear elastic problems, theMsFEM coarse basis
algorithm follows the same steps and is demonstrated in [3, 22].

6 Numerical Examples

6.1 Heat Sink Design

The first example is the topology optimization of thermal compliance. The design
domain is shown in Fig. 3. The temperature T0 is set to zero. The conduction coeffi-
cient of the solid material is set to one and the conduction of the void region is 10−6.
The volume occupied with solid material is restricted to be 50% of the total volume.
Uniform heat flux is supplied over the design domain. The penalization factor p is
increased from 1.2 to 3.0 after the first 100 iterations. The projection coefficient β is
increased from 8 to 32 after the first 200 iterations. The optimization is performed
with three realizations ηe = 0.7, ηi = 0.5 and ηd = 0.3 of the threshold projec-
tion η ∈ [0.3, 0.7] and are verified by Monte Carlo simulations. Four coarse cell
configurations with 4 × 4, 8 × 8, 16 × 16 and 32 × 32 coarse cells, are selected.
Each coarse cell consists of 40 × 40 elements. The filtering step is performed with
standard hat filter function with radius R = 3h. All coarse cells are kept identical.
The optimization problem in discrete form is given by Eq.24 with w = 1.
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Fig. 3 Heat sink optimization problem—design domain with dimensions L and B = L/2. Unit
heat flux is applied uniformly over the design domain

Fig. 4 Optimized heat sink topology for 4 × 4, 8 × 8, 16 × 16 coarse cells

Fig. 5 Optimized heat sink coarse cell topology for 4× 4, 8× 8, 16× 16 and 32× 32 coarse cells

Optimized topologies for the heat sink design problem are shown in Fig. 4 and
enlarged cell designs are shown in Fig. 5. The mean objective values for the four con-
sidered cases are 46.3; 12.8; 7.3; 3.7. The decrease in the compliance is due to the
nature of the problem.Theoptimal designwill consists of smaller and smaller features
coveringmore uniformly the design domain due to the distributed flux. Increasing the
number of coarse cells with a constant relative length scale at the microscale, results
in a smaller overall design length scale which improves the objective. The length
scale is imposed with respect to the cell characteristic length and is not related to the
global macroscale. It can be observed that the cell topology is not preserved during
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Fig. 6 GMRES iterations for relative tolerance 10−5. The circles denote the basis updates

the refinement. The GMRES iteration number is kept under 20 with the selected
eigenvalue threshold. Increasing the threshold, decreases the iteration number. How-
ever, as the cost for computing the basis increases, it also results in an increase of
the total computational time [3]. The basis is obtained for the dilated realization,
and thus the GMRES iterations differ between the realizations, as seen in Fig. 6.
An alternative is the reduced basis approach as suggested in [16], which provides
good coarse space for all realizations. However, this increases the computational cost
related to the eigenproblems and results in longer optimization time.

The selection of the eigenvalue threshold is a non-trivial task and needs further
investigations. The value and the computational time depend on the CPU architec-
ture, the implementation of the preconditioner, the eigenvalue solver and the num-
ber of unique agglomerates in the design. For the selected example only ten unique
agglomerates can be identified. As demonstrated in [22],MsFEM can also be applied
to general problems without microstructure. Such an approach removes the restric-
tions on the design space and the design performance is expected to improve further.
However, the design freedom comes at higher computational cost due to the large
number of local eigenvalue problems. All of them are completely independent. Thus,
the MsFEM preconditioner will excel in parallel implementations which are subject
to future research. It should be noted that for the small 2D problems, the total compu-
tational time becomes larger compared to the total time with direct solvers. However,
increasing the problems size leads to shorter computational times for the proposed
approach [3].
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Fig. 7 Boundary conditions
and design domain of
layered cantilever beam
problem with multiple load
cases. The vertical
dimension is B = L/2

6.2 Linear Elastic Designs with Multiple Load Cases

The second example, shown in Fig. 7, is the design of a cantilever beam with two
load cases. For the first load case the only active force is P1 and for the second case
P2. The coarse mesh consists of 16× 8 coarse cells and periodicity is enforced only
in the horizontal direction. The filtering step is performed using the PDE filter with
filter parameter R = 4h, where h is the characteristic length of the fine mesh. Each
coarse cell consists of 40 × 40 elements. The weight coefficient in the stochastic
formulation is set to 1.0. The volume fraction is 30% of the design domain volume.
The Poisson’s ratio is set to ν = 0.3, the modulus of elasticity for the solid is set to
Emax = 1, and the modulus of elasticity for the void material is set to Emin = 10−9.
The rest of the parameters are set to be the same as for the thermal case, except that
the final value of p is set to 5.0. The optimization problem is given as

min
ρ

: c =
nl∑

i=1

E
[
fT
i ui

]
+ w

√
Var

[
fT
i ui

]
(30)

s.t. Kui = fi , i = 1, . . . , nl

E
[
ρTv

]
≤ V ∗

0 ≤ ρi ≤ 1 i = 1, . . . , nel

where nl is the number of load cases.
The optimized design is shown in Fig. 8. In contrast to the designs obtained for a

single active loadpresented in [3], the obtaineddesign is symmetricwith respect to the
horizontal mid-axis and the microstructural details closely resembles triangular truss
structures. Triangular truss-like structures are optimal for problems with changes
of the principal stress orientation for the different load cases. For a single load
case without any restrictions on the design pattern, the optimal design will follow
the principal stress trajectories. The mean compliance is 2.9 for both load cases.
Optimization for a single load case resulted in a mean compliance of 2.5 which as
expected is better for that particular load case, and worse for the load in the other
direction yielding a compliance of 3.8.
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Fig. 8 Intermediate design
realization η = 0.5 for
optimized multiple load
cases cantilever beam
problem

Fig. 9 Boundary conditions
and design domain of
layered beam problem with
multiple load cases

Fig. 10 Intermediate design
realization η = 0.5 for
optimized multiple load case
beam problem

The third example, shown in Fig. 9, is the design of a simply supported beam with
three load cases. The optimization setup parameters are the same as for the previous
example. The optimized intermediate design realization is shown in Fig. 10. The
multiload case design shares some similarities to the single load case with central
active force P2 = 1 shown in Fig. 11. However, a cross-check of the designs show
that it performs better for all three cases in contrast to the single load designs which
perform well only for the corresponding design case. Requiring periodicity in the
horizontal direction implicitly ensures some robustness of the P2 single load case
with respect to a shift of the applied load with a single or multiple coarse cells.
This property is not shared for the single load designs obtained for P1 or P3. The
microstructural details vary along in the vertical direction, however, some of the
layers show similar topology with small variations.

The periodicity requirement implicitly imposes a maximum length scale on the
design [3] as it requires the material to be distributed regularly along the design
domain. Removing the periodicity requirement in the horizontal direction would
provide additional freedom to the optimizer and would allow more material to be
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Fig. 11 Intermediate design realization η = 0.5 for optimized single load case beam problems—P1
is active on the first design (left) and P2 is active on the second design (right)

concentrated in the central areas of the beam, which will result in better performance.
Therefore, such restrictions on the design space should be imposed only for man-
ufacturing, aesthetic or other reasons not related directly to the optimality of the
design. As mentioned earlier, the computational cost of the coarse basis increases
with increasing the design freedom. However, for multiple load cases the basis is
utilized for multiple solutions which makes the approach even more competitive
compared to the alternatives.

6.3 Linear Elastic Designs with Zero and Negative Expansion

The final example is topology optimization of a linear elastic compression test with
restrictions on the horizontal displacements. The boundary conditions and the design
domains are shown in Fig. 12. Two cases are considered: for the first, a solid region
of thickness t = 0.0125 is enforced only on the top of the design domain, and for
the second, the solid region is enforced on the horizontal edges as well. The design
domain is partitioned using 8 × 8 coarse cells with design symmetry with respect
to the vertical axis. Each coarse cell is discretized using 40 × 40 finite elements.
The filtering is performed by the PDE filter with parameter R = 5h. The dilated,
intermediate and eroded design thresholds are set to 0.4, 0.5 and 0.6, respectively.

Fig. 12 Boundary
conditions and design
domains for compression
tests with restrictions on the
horizontal displacements.
Solid regions marked with
thick black line are enforced
on the top edge in the first
case (left) and also on the
horizontal edges in the
second case (right)
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The dimension of the design domain is set to L = 2. Distributed load of total size
10−3 is applied on the upper edge of the design for the two cases. The material
volume is restricted to be 50% of the design domain volume. The penalization is set
to p = 5 and the projection parameter β is increased from 8 to 32 after the first 150
iterations. The rest of the optimization parameters are the same as for the previous
example.

The optimization formulation in discrete form is given as

min
ρ

: c = E
[
fTu

]
+ w

√
Var

[
fTu

]
(31)

s.t. Ku = f

E
[
ρTv

]
≤ V ∗

ū j + σ j − uref ≤ εcon, j = e, i, d

ū j − σ j − uref ≥ εcon, j = e, i, d

0 ≤ ρi ≤ 1 i = 1, . . . , nel

where the expectation and the variance in the objective are approximated using
only three realizations: the most eroded case ηe = 0.6, the most dilated case ηd =
0.4 and the intermediate case for ηi = 0.5. The final results are verified using
Monte Carlo simulations. The objective is to minimize the compliance of the system
with constraints on the horizontal displacements along the vertical edges, where
ū j , j = e, i, d, is the average displacement along the horizontal edge for the eroded,
intermediate and dilated realizations, respectively, σ j is the standard deviation of the
horizontal displacements along the edge for realization j , and εcon is a prescribed
tolerance.

The initial design is obtained by repetition of a unit cell negative Poisson’s ratio
design from [35]. The unit cell design is robust with respect to uniform erosion and
dilation. Deformed structures for the considered cases are shown in Fig. 13. The
global behavior of the two structures differs significantly due to the difference in the
boundaries. For the first case of unframed design, the bulk material is free to contract
and the negative Poisson’s effect can be clearly seen. In the second case, the stiff
frame around the bulk material restrains the horizontal movement which lowers the
Poisson’s effect and adds additional stiffness to the structure in the vertical direction.
This results in lower vertical displacements of the upper edge. The displacements
along the vertical edge for framed and unframed designs are shown in Figs. 14 and 15.
For the unframed design, the horizontal displacements for the three realizations are
large and negative as expected from the homogenized material properties. However,
for the framed design, shown in Fig. 15, the horizontal displacements for the eroded
and dilated cases are significantly smaller.

As demonstrated above, optimized microstructure designs for a selected material
property might lead to different global responses for equivalent load patterns due to
small differences in cells close to boundaries of the design. Classical homogenization
theory [32] does not take into account the boundary conditions and localized effects.
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Fig. 13 Deformed structures for unframed (left) and boxed (right) design domainswithmicrostruc-
tural pattern optimized for negative Poisson’s ratio
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Fig. 14 Horizontal displacements along the vertical edge of the design domain with unframed
boundaries for design realizations with thresholds 0.4, 0.5 and 0.6 (dilated, intermediate, and
eroded)
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Fig. 15 Horizontal displacements along the vertical edge of the design domain with framed bound-
aries for design realizations with thresholds 0.4, 0.5 and 0.6 (dilated, intermediate, and eroded)

Hence, in all cases where the global structural response is of interest, the boundary
effects should be taken into account during the optimization process.As demonstrated
here, the proposed MsFEM methodology provides such solution at a relatively low
computational cost.
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Fig. 16 Deformed structures for unframed (left) and framed (right) design domains with
microstructural patterns optimized for tailoring macroscale response. The reference horizontal dis-
placement along the vertical edge is zero

Topology optimized design, using the formulation given by Eq.31, with zero ref-
erence displacement uref = 0 and εcon = 10−4, are shown in Fig. 16. Themicrostruc-
tures differs significantly close to the vertical edges, which demonstrates the need to
account for boundary effects in the design process. In the first case, the optimization
utilizes the fact that solid material is not required along the vertical edge and shifts
the force transmitting structure from the boundary. In the second case, a complex
microstructure is designed around the solid frame in order to avoid displacements
in the horizontal direction. Another important feature observed during the design
process, is that the eroded, dilated and intermediate designs might not share the
same topology. In such cases length scale cannot be guaranteed on the intermedi-

Fig. 17 Dilated (left) and intermediate (right) deformed structures realizations for framed design
domain with microstructural patterns optimized for tailoring macroscale response. The reference
horizontal displacement along the vertical edge is uref = −0.01 and εcon = 10−3
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ate design [34], however, since the design performance is insensitive with respect
to small imperfections, removing or adding small features along the perimeter will
not change significantly the optimized performance. This property can be clearly
observed for the case with negative reference displacement shown in Fig. 17.

7 Conclusions

In this book chapter, a methodology has been demonstrated for tailoring macroscale
responses of mechanical and heat transfer systems by topology optimization of
microstructural details. These details are herein restricted to full periodicity or grad-
ing in a single direction. For a heat transfer problem, increased periodicity is shown
to aid the optimization objective, and for certain elastic structures with multiple load
cases it is shown that partial periodicity can provide an implicit robustness to load
position. Finally, it has been demonstrated that it is important to take the boundary
effects and finite size microstructural details into account during the optimization
process in order to tailor the macroscopic response. These details can be easily
accounted for by the proposed multiscale approach. The spectral MsFEM for high-
contrast problems reduces the computational cost and allows for the optimization of
large resolution models within a reasonable amount of time.
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“Turbulent” Adjoint And Robust Design
in Fluid Mechanics

Kyriakos C. Giannakoglou, Dimitrios I. Papadimitriou,
Evangelos M. Papoutsis-Kiachagias and Ioannis S. Kavvadias

Abstract This article presents adjoint methods for the computation of the first-
and higher-order derivatives of objective functions F used in optimization problems
governed by the Navier–Stokes equations in aero/hydrodynamics. The first part of
the chapter summarizes developments and findings related to the application of the
continuous adjoint method to turbulence models, such as the Spalart-Allmaras and
k-ε ones, in either their low- or high-Reynolds number (with wall functions) vari-
ants. Differentiating the turbulence model, over and above to the differentiation of
the mean–flow equations, leads to the computation of the exact gradient of F , by
overcoming the frequentlymade assumption of neglecting turbulence variations. The
second part deals with higher-order sensitivity analysis based on the combined use of
the adjoint approach and the direct differentiation of the governing PDEs. In robust
design problems, the so-called second-moment approach requires the computation of
second-order derivatives of F with respect to (w.r.t.) the environmental or uncertain
variables; in addition, any gradient-based optimization algorithm requires third-order
mixed derivatives w.r.t. both the environmental and design variables; various ways to
compute them are discussed and the most efficient is adopted. The equivalence of the
continuous and discrete adjoint for this type of computations is demonstrated. In the
last part, some other relevant recent achievements regarding the adjoint approach are
discussed. Finally, using the aforementioned adjoint methods, industrial geometries
are optimized. The application domain includes both incompressible or compressible
fluid flow applications.
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1 Flow Equations and Objective Function

In this section, the equations governing the state (i.e. flow) problem for incom-
pressible fluid flows, using either the one-equation Spalart-Allmaras [1] or the two
equation Launder-Sharma k − ε [2] turbulence models, are briefly presented. The
mean–flow state equations are

R p = −∂υ j

∂x j
= 0 (1)

Rυi = υ j
∂υi

∂x j
+ ∂p

∂xi
− ∂

∂x j

[
(ν+νt )

(
∂υi

∂x j
+ ∂υ j

∂xi

)]
= 0 (2)

where υi are the velocity components, p the static pressure divided by the density,
ν and νt the bulk and turbulent viscosities. The turbulence model (TM) equation(s)
is/are

Rν̃ = υ j
∂ν̃

∂x j
− ∂

∂x j

[(
ν+ ν̃

σ

)
∂ν̃

∂x j

]
− cb2

σ

(
∂ν̃

∂x j

)2

− ν̃ P (̃ν) + ν̃D (̃ν)=0 (3)

for the Spalart-Allmaras model (TM=SA) and

Rk =υ j
∂k

∂x j
− ∂

∂x j

[(
ν+ νt

Prk

)
∂k

∂x j

]
−Pk +ε + D = 0

Rε =υ j
∂ε

∂x j
− ∂

∂x j

[(
ν+ νt

Prε

)
∂ε

∂x j

]
−c1Pk

ε

k
+ c2 f2

ε2

k
− E = 0 (4)

for the Launder-Sharma k-ε (TM=KE) one. ν̃ is the turbulence state variable if
TM=SA (νt = ν̃ fv1 ) and k, ε are the corresponding quantities (turbulent kinetic

energy and turbulent energy dissipation) if TM=KE (νt = cμ
k2
ε
). In both cases,

the boundary conditions and the model constant values are omitted in the interest of
space; see [1] and [2].

In general, the objective function may comprise both surface (S) and volume (Ω)
integrals, as follows

F =
∫

S
FSd S+

∫

Ω

FΩdΩ =
∫

S
FSi ni d S+

∫

Ω

FΩdΩ (5)

where ni are the components of the normal to the boundary outward unit vector.
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2 The Adjoint Method for Shape Optimization
in Turbulent Flows

In discrete adjoint, the differentiation of the turbulencemodel equations is straightfor-
ward and can be found in several published works, [3, 4]. In contrast, the majority of
existing continuous adjoint methods/codes rely on the so-called “frozen turbulence”
assumption, in which the sensitivities of the turbulence quantities w.r.t. the design
variables are neglected [5–9]. The first continuous adjoint to the Spalart-Allmaras
model, for incompressible flows, was presented by the current group of authors in
[10] and was extended to compressible flows in [11]. Regarding the adjoint approach
to high-Reynolds turbulence models, the continuous adjoint to the k-ε model with
wall functions has recently been published, [12], whereas the continuous adjoint
to the low-Reynolds Launder-Sharma k -ε model can be found in [13]. All these
adjoint approacheswhich rely upon the differentiated turbulencemodelwill hereafter
be referred to as “turbulent” adjoint, to distinguish it from the “frozen turbulence”
approach.

2.1 Continuous Adjoint to Low-Re Turbulence Models

In the continuous adjoint approach for shape optimization problems, the total deriva-
tive (symbol δ) of any functionΦ w.r.t. the design variables bn must be distinguished
from the corresponding partial sensitivity (symbol ∂) since

δΦ

δbn
= ∂Φ

∂bn
+ ∂Φ

∂xl

δxl

δbn
(6)

where δxl
δbn

are the sensitivities of nodal coordinates. In case Φ is defined along

a surface, Eq.6 becomes δsΦ
δbn

= ∂Φ
∂bn

+ ∂Φ
∂xk

nk
δxm
δbn

nm . Since any sufficiently small
surface deformation can be seen as a normal perturbation, only the normal part of
the surface deformation velocity δxm/δbnnm contributes to changes in Φ.

In order to formulate the adjoint method, the augmented objective function Faug

is defined as the sum of F and the field integrals of the products of the adjoint variable
fields and the state equations, as follows

Faug = F +
∫

Ω

ui Rυ
i dΩ +

∫

Ω

q R pdΩ + ET M (7)

where ui are the adjoint velocity components, q the adjoint pressure and the extra
terms ET M depend on the turbulence model (T M). If T M = S A,

ES A =
∫

Ω

ν̃a Rν̃dΩ (8)
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whereas if T M = K E ,

EK E =
∫

Ω

(
ka Rk + εa Rε

)
dΩ (9)

where ν̃a , ka and εa are the adjoints to ν̃, k and ε, respectively.
Based on the Leibniz theorem, the derivative of Faug w.r.t. bn is

δFaug

δbn
= δF

δbn
+

∫

Ω

ui
∂ Rυ

i

∂bn
dΩ +

∫

Ω

q
∂ R p

∂bn
dΩ (10a)

+
∫

SWp

(
ui Rυ

i + q R p) δxk

δbn
nkd S + δ(ET M )

δbn

δ(ES A)

δbn
=

∫

Ω

ν̃a
∂ Rν̃

∂bn
dΩ+

∫

SWp

ν̃a Rν̃ δxk

δbn
nkd S (10b)

δ(EK E )

δbn
=

∫

Ω

ka
∂ Rk

∂bn
dΩ+

∫

Ω

εa
∂ Rεa

∂bn
dΩ+

∫

SWp

(
ka Rk + εa Rε

) δxk

δbn
nkd S

(10c)

where SWp is the parameterized (in terms of bn) part of the solid wall. The develop-
ment of the volume integrals in Eqs. 10a, b, based on the Green-Gauss theorem and
the elimination of terms depending on the variations of themean–flow and turbulence
model variables, lead to the adjoint mean–flow equations

Rq = ∂u j

∂x j
= 0 (11)

Ru
i = u j

∂υ j

∂xi
− ∂(υ j ui )

∂x j
− ∂

∂x j

[
(ν+νt )

(
∂ui

∂x j
+ ∂u j

∂xi

)]
+ ∂q

∂xi
+ AM Si =0 (12)

The extra terms AM Si arise from the differentiation of the turbulence model, see
[10, 13]. The adjoint turbulence model variables fields ν̃a, ka and εa are governed
by the “turbulent” adjoint PDEs, which are

Rν̃a =−∂(υ j ν̃a)

∂x j
− ∂

∂x j

[(
ν+ ν̃

σ

)
∂ν̃a

∂x j

]
+ 1

σ

∂ν̃a

∂x j

∂ν̃

∂x j
+ 2

cb2

σ

∂

∂x j

(
ν̃a

∂ν̃

∂x j

)

+ ν̃a ν̃Cν̃ + ∂νt

∂ν̃

∂ui

∂x j

(
∂υi

∂x j
+ ∂υ j

∂xi

)
+ (−P+D) ν̃a = 0 (13a)

Rka =−∂(υ j ka)

∂x j
− ∂

∂x j

[(
ν + νt

Prk

)
∂ka

∂x j

]

+
(

B1

Prk
− ν

k

)
∂k

∂x j

∂ka

∂x j
+ B1

Prε

∂ε

∂x j

∂εa

∂x j
+B1

(
∂υi

∂x j
+ ∂υ j

∂xi

)
∂ui

∂x j
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+
[

ν

2k2

(
∂k

∂x j

)2
− ν

k

∂2k

∂x2j
−P B1

]
ka

−
⎡

⎣c1
ε

k
P B1 + 2ν

(
∂2υk

∂xi ∂x j

)2

B1+c2 f2
ε2

k2
− 1.2c2

k2

ν2
e−Re2t −c1Pk

ε

k2

⎤

⎦ εa =0

(13b)

Rεa =−∂(υ j εa)

∂x j
− ∂

∂x j

[(
ν + νt

Prε

)
∂εa

∂x j

]

+ B2

Prε

∂ε

∂x j

∂εa

∂x j
+ B2

Prk

∂k

∂x j

∂ka

∂x j
+B2

(
∂υi

∂x j
+ ∂υ j

∂xi

)
∂ui

∂x j
+ (1−P B2) ka

+
⎡

⎣−2ν
(

∂2υk

∂xi ∂x j

)2

B2 − c1
ε

k
P B2+2c2 f2

ε

k
− 0.6c2

k3

ν2ε
e−Re2t − c1Pk

1

k

⎤

⎦ εa = 0

(13c)

The detailed derivation of the adjoint PDEs, the various terms or constants inEqs. 13a,
b, c and the corresponding adjoint boundary conditions can be found in [10] or [13].

After satisfying the field adjoint equations, the sensitivity derivatives of Faug are
given by

δFaug

δbn
=

∫

S
BCu

i
∂υi

∂bn
d S+

∫

S
(u j n j + ∂ FSi

∂p
ni )

∂p

∂bn
d S+

∫

S
(−ui n j + ∂ FSk

∂τi j
nk)

∂τi j

∂bn
d S

+
∫

SWp

ni
∂ FSWp ,i

∂xm
nm

δxk

δbn
nkd S+

∫

SWp

FSWp ,i

δni

δbn
d S+

∫

SWp

FSWp ,i ni
δ(d S)

δbn

+
∫

SWp

(ui Rυ
i + q R p)

δxk

δbn
nkd S+SD (14)

where, depending on the turbulence model, terms BCu
i and SD can be found in [10]

or [13]. The gain from using the “turbulent” adjoint approach and overcoming the
“frozen turbulence” assumption, at the expense of additionally solving the adjoint
to the turbulence model PDEs, is demonstrated below in a few selected cases. The
“frozen turbulence” assumptionmay lead to wrongly signed sensitivities, misleading
or delaying the optimization process. As an example, the optimization of a 90◦ elbow
duct, targeting minimum total pressure losses, minF = − ∫

SI

(
p + 1

2υ
2
)
υi ni d S −∫

SO

(
p + 1

2υ
2
)
υi ni d S, where SI and SO are the inlet to and outlet from the flow

domain, with a Reynolds number equal to 3.5× 104, modeled using TM=SA model
is demonstrated in Fig. 1, [10]. Comments can be found in the caption.

The shape optimization of an S-shaped duct, with the same target as before,
is demonstrated in Fig. 2. The flow Reynolds number based on the inlet height is
Re = 1.2 × 105 and TM=KE is used. The upper and lower duct contours are para-
meterized using Bézier–Bernstein polynomials with 12 control points each. The
Fletcher-Reeves Conjugate Gradient (CG) method is used. The gradients used by
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Fig. 1 Adjoint to the low-Re Spalart–Allmaras model: Left adjoint pressure field in a 90◦ elbow
duct with constant cross-section. Right sensitivity derivatives of the total pressure losses function
(δF/δbn), where bn are the normal displacements of the solid wall grid nodes. Two sensitivity
distributions, close to the 90◦ bend, are compared. The abscissa stands for the nodal numbers
of the wall nodes. By making the “frozen turbulence” assumption, wrongly signed sensitivities
between nodes 20 and 50 are computed. Extensive validation of the adjoint solver against direct
differentiation is conducted in [10]
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Fig. 2 Adjoint to the low-Re Launder–Sharma k−ε model: Shape optimization of an S-shaped duct
targeting minimum total pressure losses. Left Starting duct shape compared to the optimal shapes
resulting from a “turbulent” adjoint and b adjoint based on the “frozen turbulence” assumption;
axes not in scale. Right Convergence history of the CG algorithm driven by the two different adjoint
methods. From [13]

each method to update the design variables are based on (a) “turbulent” adjoint and
(b) adjoint with the “frozen turbulence” assumption. The starting duct shape along
with the optimal ones computed by CG, based on the two variants of the adjoint
formulation, are presented in Fig. 2. The shape resulting from (a) has an F value by
about 3% lower than that of (b) and reaches the optimal solution after ∼20% less
cycles.



Aerodynamic Shape Optimization Using “Turbulent” … 295

Fig. 3 The adjoint technique with wall functions: A vertex-centered finite volume ΩP associated
with the “wall” (horizontal line) at node P . The real solid wall lies underneath P , at a distance Δ

2.2 Continuous Adjoint to High-Re Turbulence Models

In industrial projects, many analysis codes rely on the use of the wall function (WF)
technique, due to the less stretched and generally coarser meshes required close to
the walls and the resulting economy in the overall CPU cost. The development of
the adjoint approach to the wall function model is, thus, necessary. This is briefly
presented below for the k-ε and the Spalart-Allmaras models. The two developments
differ since the first was based on the in-house GPU-enabled RANS solver, [14], with
slip velocity at thewall, [15], while the second on theOpenFOAMcodewith a no-slip
condition at the wall. Note that these differences in the primal boundary conditions
at the wall cause differences in the corresponding adjoint boundary conditions.

Regarding the k-ε model, the development, which was carried out by the authors’
group [12] was based on vertex-centered finite volumes with non-zero slip velocity
at the wall. The real solid wall is assumed to lie at a distance Δ underneath SW .
Integrating the state equations over the finite volume of Fig. 3, the diffusive flux
across segment αβ depends on the friction velocity υτ ,

υ2
τ = (ν + νt )

(
∂υi

∂x j
+ ∂υ j

∂xi

)
n j ti (15)

and υt = υi ti ; υt computed via the local application of the law of the wall.
With known υτ , the k and ε values at P are

kP = υ2
τ√
cμ

, εP = υ3
τ

κΔ
, if y+ ≥ y+

c

kP = υ2
τ√
cμ

(
y+
y+

c

)2
, εP = k

3
2
P

1+ 5.3ν√
kP Δ

κc
− 3
4

μ Δ

, if y+ < y+
c

(16)

where y+ = υτ Δ
ν

, υ+ = υt
υτ
, which result from the expressions υ+ = 1

κ
lny++B, with

κ = 0.41 and B = 5.5, if y+ ≥ y+
c or υ+ = y+ if y+ < y+

c .
Similar to the definition of υτ , Eq. 15, the development of the adjoint equations

introduces the adjoint friction velocity uτ at each “wall” node (such as P) defined
by, [12],
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u2
τ = (ν + νt )

(
∂ui

∂x j
+ ∂u j

∂xi

)
n j ti (17)

Attention should be paid to the close similarity of Eqs. 17 and 15. During the solution
of the adjoint PDEs (TM=KE), the value of uτ , which contributes to the adjoint
viscous fluxes at the “wall” nodes, is expressed in terms of the gradients of k, ka , ε
and εa , as follows

u2
τ = 1

cv

[
2uktkυτ −

(
ν + νt

Prk

)
∂ka

∂x j
n j

δk

δυτ

−
(

ν + νt

Prε

)
∂εa

∂x j
n j

δε

δυτ

]
(18)

On the other hand, if TM=SA (based on a cell-centered finite-volume schemewith
a no-slip condition at the solid wall boundary faces), the wall function technique is
based on a single formula modeling both the viscous sublayer and the logarithmic
region of the boundary layer

fW F = y+ − υ+ − e−κ B
[

eκυ+ − 1 − κυ+ − (κυ+)2

2
− (κυ+)3

6

]
= 0 (19)

In this case, the adjoint friction velocity must be zeroed. This is the major difference
between the two finite–volume approaches (cell– and vertex–centered); despite this
difference and any difference in the interpretation of the adjoint friction velocity,
both will be referred to as “adjoint wall function” technique. Here, also, the role of
(zero) uτ is to complete the adjoint momentum equilibrium at the first cell adjacent to
the wall. The development is omitted in the interest of space. Applications, including
validation, of the “adjoint wall function” technique are shown in Figs. 4 and 5, with
comments in the caption.
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Fig. 4 Adjoint to the high-Re k-ε model: Optimization of an axial diffuser, for minimum total
pressure losses, using the “adjoint wall function” technique. Left Friction velocity υτ and adjoint
friction velocity uτ distributions along its lower wall. Right Sensitivity derivatives of F w.r.t. the
design variables, i.e. the coordinates of Bézier control points parameterizing the side walls. The
“adjoint wall function” method perfectly matches the sensitivity derivatives computed by finite
differences. From [12]
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Fig. 5 Adjoint to the high-Re Spalart–Allmarasmodel, flow around the isolatedNACA0012 airfoil,
α∞ =3◦, Re = 6× 106: Drag sensitivities computed using the “adjoint wall function” method are
compared to finite-differences (FD), the adjoint method using the “frozen turbulence” assumption
and the adjoint method with the “low–Reynolds” approach. The latter implies that the turbulence
model is differentiated but the differentiation of the wall functions is disregarded. Only the latest
24 design variables, namely the y coordinates of the control points, where the magnitude of the
computed derivatives is greater, are considered; the first 12 correspond to the suction side and the
other to the pressure side. It is interesting to note that the “low-Re” adjoint approach performs
even worse than the “frozen turbulence” one. In other words, the incomplete differentiation of the
turbulence model produces worse results than its complete omission!

Recently, the “turbulent adjoint” method for the k − ω SST turbulence model
with wall functions was published by the same group, [16].

2.3 Other Applications of the Continuous Adjoint Methods

The continuous adjoint method is a low-cost tool to derive information regarding
the optimal location and type of steady suction/blowing jets, used to control flow
separation, [13]. In unsteady flows, the adjoint method, [17], can also be used to
compute the optimal characteristics of unsteady jets, such as pulsating or oscillating
ones. Such an application, where the optimal amplitudes of pulsating jets have been
computed using the unsteady continuous adjoint method is presented in Fig. 6.

An inherent difficulty of the adjoint method, applied to unsteady flows, is the need
of having the primal solution field available for the solution of the adjoint equations in
each time-step. Since the adjoint solution evolves backwards in time, the need to store
every primal solution arises. Since storing everything is expensive memory-wise,
some turnaround is often used instead. A very common approach is the checkpointing
technique, [18], where selected primal flow fields are stored (checkpoints) and the
rest are recomputed starting from the checkpoints. Checkpointing is much cheaper
memory-wise, at the expense of extra CPU time, needed for the re-computations of
the primal fields.



298 K.C. Giannakoglou et al.

Fig. 6 Time-averaged dragminimization of the unsteady flow around a cylinder at Re = 100, using
pulsating jets: Optimal amplitudes for the symmetrically placed jets computed by the continuous
adjoint method

Another way to overcome this is to use an approximation to the time evolution
of the primal fields, such as the proper orthogonal decomposition (POD) technique,
[19]. Approximating the primal field of each iteration bears no extra CPU cost.

On the other hand, topology optimization in fluid mechanics exclusively relies
upon the adjoint method. In these problems, a real-valued porosity (α) dependent
term is introduced into the flow equations. Based on the local porosity values, domain
areas corresponding to the fluid flow are identified as those with nodal values α≤ε,
where ε is a user-defined infinitesimally small positive number. All the remaining
areas where α>ε define the part of the domain to be solidified. The goal of topology
optimization is to compute the optimal α field in order to minimize the objective
function under consideration. Since the number of the design variables is equal to
the number of mesh cells (and thus, very high), the adjoint method is the perfect
choice for computing δF/δα, as its cost is independent of the number of design
variables. Continuous adjoint methods for solving topology optimization problems
for laminar and turbulent ducted flows, with or without heat transfer, are described in
[20]. For turbulent flows, the adjoint approach is exact, i.e. includes the differentiation
of the turbulence model (“turbulent” adjoint), (Fig. 7).

3 Robust Design Using High-Order Sensitivity Analysis

In aerodynamics, robust designmethods aim at optimizing a shape in a range of possi-
ble operating conditions or by considering environmental uncertainties, such as man-
ufacturing imprecisions or fluctuations of flow conditions, etc. The latter depend on
the so-called environmental variables c (ci , i ∈ [1, M]). In robust design problems,
the function to be minimized can be expressed as F̂ = F̂ (b, c, U(b, c)), to denote
the dependency of F̂ on the flow variables U, the design variables b (bl , l ∈ [1, N ])
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Fig. 7 Topology optimization of a plenum chamber targeting minimum fluid power losses (F),
subject to a constraint requiring half of the plenum chamber volume to be flled by fluid. Primal
velocity streamlines computed in the starting (left) and optimized geometries (right). Streamlines
are colored based on the the primal velocity magnitude. A 29% reduction in F was achieved after
a 12hour computation on 40 cores of 5 Intel Xeon E5620 CPUs (2.40GHz)

which parameterize the aerodynamic shape and the uncertain environmental vari-
ables c. A probability density function g(c) can be associated with c. In the so-called
Second-Order Second-Moment (SOSM) approach, F̂ combines the mean value μF

and variance σF
2 of F

μF (b, c) =
∫

Fg(c)dc 	 F + 1

2

[
δ2F

δc2i

]

c

σ 2
i (20)

σF
2(b, c) =

∫
(F − μF )2g(c)dc 	

[
δF

δci

]2

c
σ 2

i + 1

2

[
δ2F

δciδc j

]2

c
σ 2

i σ 2
j (21)

where the gradients are evaluated at themean values c of the environmental variables.
Based on the previous definitions, in robust design, F̂ becomes

F̂(b, c)=wμF + (1 − w)σ 2
F (22)

where w is a user-defined weight. To compute F̂ , efficient and accurate methods for
first- and second-order derivatives of F w.r.t. the environmental variables are needed.

3.1 Computation of Second-Order Moments

In aerodynamic optimization, the computation of the Hessian of F , subject to the
constraint of satisfying the flow equations, can be conducted in at least four different
ways. All of them can be set up in either discrete or continuous form [21–23]. The
presentation is always much more synoptic in the discrete sense. In this case, the
first-order variation rate of F w.r.t. ci , i =1, . . . , M is given by
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d F

dci
= ∂ F

∂ci
+ ∂ F

∂Uk

dUk

dci
(23)

whereas the sensitivities of the discretized residuals Rm of the flow equations w.r.t. ci

are given by

d Rm

dci
= ∂ Rm

∂ci
+ ∂ Rm

∂Uk

dUk

dci
= 0 (24)

whereUk are the discretized field of the flow variables. Solving Eq.24 for dUk
dci

, at the
cost of M equivalent flow solutions (EFS; this is approximately the cost of solving the
primal equations) and, then, computing d F

dci
from Eq.23 is straightforward but costly

and will be referred to as Direct Differentiation (DD). Since the cost to compute the
gradient of F using DD scales with M , the Adjoint Variable (AV) method can be
used instead. The adjoint equations to be solved for the adjoint variables Ψm are

RΨ
k = ∂ F

∂Uk
+ Ψm

∂ Rm

∂Uk
= 0 (25)

and d F
dci

are computed as

d F

dci
= ∂ F

∂ci
+ Ψm

∂ Rm

∂ci
(26)

To compute the Hessian of F , starting from Eq.23, the so-called DD-DD approach
is set up, so that

d2F

dci dc j
= ∂2F

∂ci∂c j
+ ∂2F

∂ci∂Uk

dUk

dc j
+ ∂2F

∂Uk∂c j

dUk

dci

+ ∂2F

∂Uk∂Um

dUk

dci

dUm

dc j
+ ∂ F

∂Uk

d2Uk

dci dc j
(27)

where d2Uk
dci dc j

is computed by first solving the following DD equations

d2Rn

dci dc j
= ∂2Rn

∂ci∂c j
+ ∂2Rn

∂ci∂Uk

dUk

dc j
+ ∂2Rn

∂Uk∂c j

dUk

dci

+ ∂2Rn

∂Uk∂Um

dUk

dci

dUm

dc j
+ ∂ Rn

∂Uk

d2Uk

dci dc j
= 0 (28)

Note that dUk
dci

are already known from the solution of Eq. 24.
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The DD-DD approach requires upon the computation of dUk
dci

and d2Uk
dci dc j

and

its CPU cost is M + M(M+1)
2 EFS in total (excluding the cost of solving the flow

equations). So, the overall CPU cost scales with M2 and becomes too expensive for
use in real–world optimization.

Two less expensive approaches to compute the Hessian of F are the AV-DD (AV
for the gradient and DD for the Hessian) and AV-AV ones. As shown in [23], both
cost an many as 2M+1 EFS. It can be shown that the fourth alternative way, i.e. the
DD-AV approach (DD for the gradient and AV for the Hessian), is the most efficient
one to compute the Hessian matrix. In DD-AV, the Hessian matrix is computed by

d2F

dci dc j
= ∂2F

∂ci∂c j
+ Ψn

∂2Rn

∂ci∂c j
+

(
∂2F

∂Uk∂Um
+ Ψn

∂2Rn

∂Uk∂Um

)
dUk

dci

dUm

dc j

+
(

∂2F

∂ci∂Uk
+ Ψn

∂2Rn

∂ci∂Uk

)
dUk

dc j
+

(
∂2F

∂Uk∂c j
+ Ψn

∂2Rn

∂Uk∂c j

)
dUk

dci
(29)

where dUk
dci

result from Eq.24 and Ψm is computed by solving the adjoint equation,
Eq.25 (same as before). The total CPU cost of DD-AV is equal to M+1 EFS being,
thus, the most economical approach.

3.2 Robust Shape Optimization Using Third-Order
Sensitivities

If the problem of minimizing the combination of the two first statistical moments
is to be solved using a stochastic method such as an evolutionary algorithm, the
methods presented in Sect. 3.1 serve to provide μF and σF

2; no other derivation is
required. However, if a gradient-based method is used, the gradient of F̂ Eq.22 must
be differentiated w.r.t. bq ,

δ F̂

δbq
= w

(
δF

δbq
+ 1

2

δ3F

δc2i δbq
σ 2

i

)
+ (1 − w)

2 δF
δci

δ2F
δci δbq

σ 2
i + δ2F

δci δc j

δ3F
δci δc j δbq

σ 2
i σ 2

j

2

√[
δF
δci

]2
σ 2

i + 1
2

[
δ2F

δci δc j

]2
σ 2

i σ 2
j

(30)
From Eq.30, the computation of δ F̂

δbq
involves up to third-order mixed sensitivities

w.r.t. ci and bq , such as δ3F
δci δc j δbq

. The computation of the second and third-order
sensitivity derivatives is presented in detail in [24–26]. For instance, in the discrete
sense, the highest-order derivative d2F

dci dc j dbq
is computed using the expression
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d3F

dci dc j dbl
= ∂3F

∂ci∂c j∂bl
+ ∂3F

∂ci∂bl∂Uk
· dUk

dc j
+ ∂3F

∂c j∂bl∂Uk
· dUk

dci

+ ∂3F

∂bl∂Uk∂Um
· dUk

dci
· dUm

dc j
+ ∂2F

∂bl∂Uk
· d2Uk

dci dc j

+ K
i, j

n
∂ Rn

∂bl
+ L

j
n

(
∂2Rn

∂ci∂bl
+ ∂2Rn

∂bl∂Uk
· dUk

dci

)

+ M i
n

(
∂2Rn

∂c j∂bl
+ ∂2Rn

∂bl∂Uk
· dUk

dc j

)

+ Nn

(
∂3Rn

∂ci∂c j∂bl
+ ∂3Rn

∂ci∂bl∂Uk
· dUk

dc j
+ ∂3Rn

∂c j∂bl∂Uk
· dUk

dci

+ ∂3Rn

∂bl∂Uk∂Um
· dUk

dci
· dUm

dc j
+ ∂2Rn

∂bl∂Uk
· d2Uk

dci dc j

)
(31)

where the adjoint variables Nn satisfy the equation

∂ F

∂Uk
+ Nn

∂ Rn

∂Uk
= 0 (32)

and the equations to be solved for L j
n and M i

n can be found in [24].

According to Eq.31, dUk
dc j

and d2Uk
dci dc j

must be available. These are computed by
twice applying the DD technique, practically by solving Eqs. 24 and 28. This is the
costly part of the algorithm, since it costs as many as M + M(M+1)

2 EFS. However,
in the majority of cases, the environmental variables are much less than the design
ones, M 
 N . The computation ofK i, j

N , i, j ∈ [1, M] costs M+ M(M+1)
2 EFS and

that of M i
n , i ∈ [1, M] M EFS. The overall cost per optimization cycle becomes

M2+3M +2 EFS; where the last two EFS correspond to the solution of the primal
and adjoint (i.e. Eq. 32 for N ) equations. The aforementioned technique, which is
referred to as DDc-DDc-AVb (subscripts denote whether the differentiation is made
w.r.t. c or b) has the minimum computational cost, provided that M < N .

3.3 Robust Design Using Continuous Adjoint

This section aims at briefly demonstrating that thematerial presented in Sects. 3.1 and
3.2 can also be based on the continuous, rather that the discrete, adjoint. Without loss
in generality, this will be demonstrated in an inverse design problem, by assuming
inviscid flow of a compressible fluid.

The steady–state 2D Euler equations of a compressible fluid are given by

∂ fnk

∂xk
= 0 (33)
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where k = 1, 2 (for the Cartesian components) and n = 1, . . . , 4 (four equations in
2D). The inviscid fluxes fnk are

[ f1k, f2k, f3k, f4k] = [ρυk, ρυkυ1 + pδk1, ρυkυ2 + pδk2, υk(E + p)]

where ρ, p, υk and E stand for the density, pressure, Cartesian velocity components
and total energy per unit volume, respectively. The array of conservative flow vari-
ables is [U1, U2, U3, U4] = [ρ, ρυ1, ρυ2, E]. For the inverse design problem, the
objective function is

F = 1

2

∫

Sw

(p− ptar )
2d S (34)

where ptar is the target pressure distribution along the solid wall.
In this problem, it is straightforward to derive the continuous adjoint PDEs which

take the form

−Anmk
∂Nn

∂xk
= 0, m = 1, . . . , 4 (35)

where Anmk = ∂ fnk
∂Um

(n = 1, 4, m = 1, 4, k = 1, 2) are the Jacobian matrices of

the inviscid fluxes. Eq.35 is equivalent to Eq.32 in the continuous sense, considering
that, in continuous adjoint, ∂ F

∂Uk
appears in the application of boundary conditions.

In the continuous approach, the DDc-DDc approach can also be formulated by

setting up, discretizing and numerically solving PDEs for δUm
δci

and δ2Um
δci δc j

. The M

systems of PDEs, to be solved for δUm
δci

, result from the first-order sensitivities of the
Euler equations w.r.t. the environmental variables,

∂

∂xk

(
Anmk

δUm

δci

)
= 0 , n = 1, . . . , 4 i = 1, . . . , M (36)

along with appropriate boundary conditions. For the M(M+1)
2 systems of equations,

to be solved for δ2Um
δci δc j

, i = 1, M , j = 1, M , Eq. 36 are differentiated once more to
give

∂

∂xk

(
Anmk

δ2Um

δciδc j
+ δAnmk

δc j

δUm

δci

)
= 0 , n = 1, . . . , 4; i, j = 1, . . . , M (37)

With known δUm
δci

and δ2Um
δci δc j

fields, the first- and second-order sensitivities of F w.r.t.
the environmental variables are given by

δF

δci
=

∫

Sw

(p− ptar )
δp

δci
d S (38)
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and

δ2F

δciδc j
=

∫

Sw

[
δp

δci

δp

δc j
+ (p− ptar )

δ2 p

δciδc j

]
d S (39)

where δp
δci

and δ2 p
δci δc j

can be expressed in terms of the corresponding derivatives of
the conservative flow variables Um .

The highest-order mixed derivatives are computed through the solution of addi-
tional adjoint PDEs, similar to the corresponding discrete equations. For instance,
the third-order mixed sensitivity derivatives of F , required in Eq.30, are given by

δ3F

δciδc jδbq
=

∫
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δp

δci

δp

δc j

δ(d S)

δbq
+
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+
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n
δ fnk

δc j

)
δ (nkd S)

δbq

+
∫

Sw

(
L

j
k+1

δp

δci
−L

j
n

δ fnk

δci

)
δ (nkd S)

δbq

+
∫

Sw

(
Nk+1

δ2 p

δciδc j
−Nn

δ2 fnk

δciδc j

)
δ (nkd S)

δbq

−
∫

Sw

K
i, j

n
∂ fnk

∂xl

δxl

δbq
nkd S−

∫

Sw

L i
n

∂

∂xl

(
δ fnk

δc j

)
δxl

δbq
nkd S

−
∫

Sw

L
j

n
∂

∂xl

(
δ fnk

δci

)
δxl

δbq
nkd S−

∫

Sw

Nn
∂

∂xl

(
δ2 fnk

δciδc j

)
δxl

δbq
nkd S

+
∫

Sw

L
j

n
∂

∂xk

(
δ fnk

δci

)
δxl

δbq
nld S+

∫

Sw

L i
n

∂

∂xk

(
δ fnk

δc j

)
δxl

δbq
nld S

+
∫

Sw

K
i, j

n
∂ fnk

∂xk

δxl

δbq
nld S+

∫

Sw

Nn
∂

∂xk

(
δ2 fnk

δciδc j

)
δxl

δbq
nld S (40)

where the additional adjoint fields L i
n = δNn

δci
and K

i, j
n = δL i

n
δc j

are computed by
solving the adjoint equations

−Anmk
∂L i

n

∂xk
− δAnmk

δci

∂Nn

∂xk
= 0 (41)
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and

−Anmk
∂K

i, j
n

∂xk
− δAnmk

δc j

∂L i
n

∂xk
− δAnmk

δci

∂L
j

n

∂xk
− δ2Anmk

δciδc j

∂Nn

∂xk
= 0 (42)

as explained in [25]. Similarities between the discrete and continuous variants of the
DDc-DDc-AVb method can easily be identified.

An application of the robust design algorithm is illustrated in Fig. 8; it is related to
the inverse design of a 2D cascade, [25, 26]. The airfoil shape controlling parameters
are the design variables and the inlet/outlet flow conditions are the environmental
ones.
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3.4 Other Usage of the DD and AV Method

Apart from robust design applications, the developedmethods for the computation of
higher-order derivatives of F can also be used to support more efficient optimization
methods, such as the (exact) Newton method. In such a case, however, the cost per
optimization cycle depends on N and this may seriously hinder the use of such a
method in industry. To cope with large scale optimization problems, the Newton
equations can be solved through the CG method with truncation. By doing so, the
Hessian matrix itself is not needed anymore, [27]. The adjoint approach followed by
the DD of both the flow and adjoint equations (AV-DD) is the most efficient way to
compute the product of the Hessian matrix with any vector required by the truncated
Newton algorithm. The cost per Newton iteration scales linearly with the number of
CG steps, rather than the much higher number of the design variables (if the Hessian
itself was computed in the “exact” Newton method). The efficiency of the truncated
Newton method is demonstrated in Fig. 9, in a problem with 42 design variables.

4 Industrial Applications

In Fig. 10, the application of the developed adjoint-based software to four industrial
problems is presented. The first case deals with the blade optimization of a 3D
peripheral compressor cascade in which the objective is the minimization of entropy
losses within the flow passage, [28]. The second case is concerned with the shape
optimization of a Francis turbine runner targeting cavitation suppression, [29], the
third one with an air-conditioning duct targeting minimum total pressure losses and
the last one with the shape optimization of a Volkswagen concept car, targeting
minimum drag force, [30]. More comments can be found in the caption [31].
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Fig. 10 Row 1 Shape optimization of a 3D peripheral compressor cascade, targeting minimum
entropy generation rate within the flow passage with constraints on the blade thickness. Pressure
distributions over the initial (left) and optimal (right) blade geometries; from [28]. Row 2 Opti-
mization of a Francis runner blade for cavitation suppression. Pressure distribution over the initial
blading (left); areas within the white isolines are considered to be cavitated; surface deformation
magnitude over the optimized blading (right), after eliminating cavitation; from [29]. Row 3 Topol-
ogy optimization of an air-conditioning duct, used in a passenger car, targeting minimum total
pressure losses. Porosity field at the last optimization cycle. The topology optimization led to the
solidification of areas (in red) where, in the starting geometry, intense flow recirculation appeared.
Row 4 Optimization of the VW L1 concept car targeting minimum drag force. Primal velocity field
calculated using the RANS equations along with the low-Re Spalart–Allmaras model (left) and
adjoint velocity field calculated by using the “turbulent” adjoint method (right); from [30]
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Hierarchical Topology Optimization
for Bone Tissue Scaffold: Preliminary
Results on the Design of a Fracture
Fixation Plate

Emily Gogarty and Damiano Pasini

Abstract A porous material can be designed to promote tissue regeneration as well
as satisfy mechanical and biological requirements. The porous microarchitecture
can be specifically tailored to locally match the specific properties of the host tissue
resulting in a biologically fixed implant. A 2D hierarchical topology optimization
scheme is presented here to design a cellular scaffold that optimally reconciles bone
resorption and permeability, two antagonist objectives of bone tissue scaffolds. The
implant is tailored to reproduce the variable stiffness properties of the surrounding
bone while maximizing its permeability for bone ingrowth. The procedure integrates
multi-objective optimization with multi-scale topology optimization. In particular,
the material layout is sequentially optimized at two length scales: (1) the property
distribution varying throughout the implant body, and (2) the topology of each pore
of the scaffold. In the first stage, an optimal material distribution is obtained to
generate a stiffness match between implant and bone tissue. In the second stage, the
optimal relative density distribution is used to interpolate target material properties at
each location of the implant domain. Target matching topology optimization is used
to obtain unit cells with desired stiffness and maximum permeability throughout
the implant. The procedure currently developed in 2D can be extended to produce
clinically relevant 3D implant models. As a case study, a 2D bone fracture fixation
plate under in-plane load is optimized at both the implant and cellular material level.
While the preliminary results presented here need further refinement, such as on
the filtering method and the calculation of permeability, the paper contributes to the
development of a method to design engineered scaffolds that are both mechanically
optimal and conducive to bone tissue regeneration.
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1 Introduction

Bone tissue serves four important functions in the body: (1) protection of organs,
(2) structural support of muscle attachment for locomotion, (3) generation of red
and white blood cells, and (4) calcium and other ion storage. It is apparent that any
damage to the skeletal system has widespread effects [1]. Damage due to disease,
abnormal development, or trauma can be addressed through artificial bone tissue
scaffolds. The design of such scaffolds is a multidisciplinary area with much research
potential. Currently, technological and scientific advances in areas such as additive
manufacturing and biomaterials enable the design and manufacturing of bone tissue
scaffolds with tunable properties. The scope of this paper is to present a design
methodology to improve upon the current state of the art of bone scaffold design. It
is therefore essential to first review the biology of bone before describing the design
requirements for bone tissue scaffolds.

1.1 Bone Tissue

On the macroscopic level, the human skeleton consists of long bones, flat bones, and
cuboid bones (femur, skull, and vertebrae respectively). The structure of bone can be
divided into two categories: cortical and trabecular (also referred to as cancellous).
In adults, approximately 80 % of bone is cortical and 20 % is trabecular, percentages
that vary throughout the body. Cortical bone is mainly located in the shafts of long
bones and peripheral linings of flat bones [2]. The structural arrangement of a bone
can be described as a hollow tube or bilaminar plate of cortical bone, with trabecular
“struts” reinforcing the architecture. The presence of cancellous bone allows for a
reduced-weight structure that contributes to satisfying mechanical requirements [3].

Bone has a hierarchical structure. On the microscopic level, bone structure can be
either woven or lamellar. Woven bone is immature and unorganized. A remodelling
process occurs to organize woven bone into a lamellar form, such as Haversian bone
[2]. Adult cortical bone has a lamellar collagen fibre arrangement, which is densely
packed and arranged both circumferentially and in a tubular formation. The tubular
formation is made of concentric lamellae layers, forming an osteon. Each osteon
surrounds a central Haversian canal, which contains blood vessels. The osteons are
arranged around branching blood vessels, oriented along the long axis of the bone.
Because of this orientation, the osteons act as fibres reinforcing the long bone and
are essential in resisting deformation. This hierarchical structure is both mechani-
cally and biologically significant [4]. It is thus critical to understand the mechanical
response of bone for the design of an implant with properties closely matching those
of the host bone tissue [3]

The biological composition of cortical and trabecular bone is very similar. How-
ever, the anisotropic structure of cortical bone consists of partial alignment of the
mineral hydroxyapatite in the longitudinal direction (fibre-like), making that the
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Table 1 Mechanical
properties of wet cortical
bone [3]

Property Value

Young’s modulus (GPa)

Longitudinal 17.0

Radial 11.5

Tangential 11.5

Compressive Strength (MPa)

Along 193

Normal 133

Tensile strength (MPa)

Along 148

Normal 49

stiffer and stronger axis. Table 1 summarizes the mechanical properties of wet cor-
tical bone [3]. When bone is dried, its elastic moduli increase, whereas its strength
and strain to failure decrease. In the case study examined in this work, we use the
properties of wet cortical bone (Table 1).

Bone remodelling is a dynamic and lifelong process of bone resorption (removal
from the skeleton) and ossification (formation of new bone). It has long been accepted
that bone grows in response to stress, as stated most notably by Wolff et al. [1], but the
mechanism is currently not fully understood. Wolff’s law states the following: “Every
change in the form and function of bone or of its function alone is followed by certain
definite changes in the bone internal architecture, and equally definite alteration in
its external conformation, in accordance with mathematical laws”. Essentially, the
skeleton adds or removes tissue in response to functional requirements with the
purpose of reducing stress or strain.

The mechanical behaviour of trabecular bone is typical of a cellular material,
as evident in the characteristic stress-strain plot of both materials. In addition, the
Young’s modulus, compressive and tensile strength of cancellous bone are highly
dependent on relative density. The shape and density of the trabecular cells are
biologically governed by the loads that bone must support. Cell walls of trabecular
bone tend to align and thicken in the direction which will best support load, and
the relative density of the cells depends on the load magnitude. The mechanical
behaviour of trabecular bone has been proven to follow that of a cellular material [3].

1.2 Design Requirements of Bone Tissue Scaffolds

Bone tissue scaffolds provide temporary or permanent support as tissue regenerates
and assumes primary function [5]. Scaffold architecture can be specifically tailored
to match the mechanical environment of bone tissue while concurrently providing
sufficient porosity for cell migration to achieve tissue regeneration [6]. Load bear-
ing bone tissue scaffolds present design challenges that soft tissue scaffolds do not
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necessarily need to address. In the case of a permanent, non-degradable bone tissue
scaffold, the implant must withstand relatively high physiological loading conditions
as well as promote tissue regeneration at the periphery of the implant for fixation [7].
At a given site, approximately 1 mm of bone ingrowth into the scaffold is required for
biological fixation. Advances in additive manufacturing make it possible to fabricate
scaffolds with such characteristics.

There are four fundamental requirements, 4F, that a bone tissue scaffold must sat-
isfy [8]: Form, Function, Formation, and Fixation. Form refers to scaffold shape
completely filling a complex 3D anatomical defect. Function means supporting
mechanical demands, i.e. normal physiological loading conditions. Formation refers
to the enhancing tissue regeneration by providing a sufficient mass transport environ-
ment for new tissue growth. Finally, fixation implies that the scaffold can be readily
implanted and attached to tissue at the defect site. To design a tissue scaffold, these
four requirements must be addressed in a quantitative manner [8].

With computer assisted design, the Form requirement can easily be fulfilled. For
example, a scaffold can be specifically designed to fit an anatomical defect based on
a patient CT scan [7]. Factors affecting Fixation include scaffold microarchitecture
(pore shape, size, interconnectivity), cellular interaction with the scaffold surface,
and release of growth factors. The basic requirements of a tissue scaffold often present
a design trade-off between Function and Formation: a denser, mechanically suitable
scaffold versus a more porous scaffold which would provide better mass transport
[5]. The requirements governing Formation are difficult to specify quantitatively.
Bone regeneration is influenced by mass transport and delivery of biologics. Mass
transport can be quantitatively expressed as permeability and diffusivity, which are
controlled by the scaffold microarchitecture.

It is therefore challenging to design a scaffold that addresses all four requirements
for a number of reasons. Properties such as elasticity, permeability, and diffusion are
related on a hierarchical scale (material and pore level) and require complex compu-
tational design and fabrication methods [9]. The main key players affecting the 4F
requirements are described in the following sections.

Microarchitecture Characteristics
Scaffold microarchitecture refers to the microscopic features of the scaffold that can
be tailored to achieve desired field properties. The need for a bone scaffold to match
complex anatomic shapes and desired physical properties requires the separation of a
scaffold into the microscopic (<1 mm feature size) and macroscopic scales (>1 mm).
The division of feature sizes into two scales allows the utilization of areas of the design
space which are not accessible with a solid material [7]. For example, the bounds
on effective mechanical and mass transport properties are defined by properties of
a completely solid material and no material at all. The range of possible effective
properties fall within these bounds and can be achieved through the design of the cell
topology. It has been proved that cell architecture tailoring permits the achievement
of target properties, such as elasticity, diffusion, and permeability, which meet the
4F requirements [10]. Some microarchitecture characteristics that are reported to
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influence tissue regeneration and vascularization include volume porosity, pore size,
pore interconnectivity, and pore geometry [11].

Combining computer-aided design with additive manufacturing technology allows
for a fine control of scaffold design at both the macro- and micro-architectural level.
Recent work on the design of hip implants has demonstrated that multi-scale and
multi-objective optimization allows to functionally grade a cellular domain to meet
specific mechanical and biological requirements [12–17].

Mechanical Properties
A bone implant must have appropriate mechanical properties to substitute for the loss
of function of the replaced bone tissue [7, 18]. It is widely accepted that scaffolds
should be designed to match healthy tissue stiffness and strength while providing
a suitable network of pores to allow for cell migration and nutrient transport [11].
Over-designing for mechanical loading can result in a scaffold that is too stiff com-
pared to the local tissue environment. In this case, a much stiffer scaffold can have
adverse effects on local tissue, such as bone tissue resorption. Titanium and stainless
steel are often used in orthopaedic implants because of their biocompatibility and
superior mechanical properties compared to bone. However, a solid metal implant
may absorb the forces that are required to stimulate bone remodelling, as discussed
in Sect. 1. This phenomenon is known as stress shielding. The stress shielding effect
can lead to bone resorption around the implant and prevent implant fixation [2]. Ide-
ally, the mechanical properties would be similar to those of the local environment,
so that scaffold failure would not occur, and structure stresses would be sufficiently
low to avoid tissue resorption [8].

Permeability/Diffusivity
A scaffold should provide a suitable environment for mass transportation of nutrients
and metabolic waste [7, 18]. Mass transport can be quantitatively expressed with
permeability and diffusivity. The former relates fluid velocity in a porous medium
to the pressure gradient, and the latter ion concentration to chemical concentration
gradients.

Porosity is crucial to bone growth. Porosity is measured as the ratio of void space
to the total bulk volume of a scaffold. High porosity increases surface area and allows
for mass transport of nutrients and metabolic waste [2]. The surface of a bone tissue
scaffold should be approximately 60–70 % porous to effectively promote bone in
growth. The optimal average size of a pore for bone tissue ingrowth in a scaffold
material is in the range of 50–400µm. Studies examining the effect of pore size found
that both amount and rate of bone growth increase with decreased pore size, when
comparing pores in the pore range 200–500µm [19]. In addition, an interconnected
porous architecture is essential to allow blood vessels and surrounding bone enter
the scaffold [2].
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Fig. 1 Conflict between
normalized diffusivity and
bulk modulus bounds for an
isotropic two-phase material
(e.g. solid-void) as a function
of volume fraction (relative
density) [20]
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1.2.1 Requirement Conflict: Mechanical Versus Mass Transport
Function

Scaffold design is challenging because effective properties for mechanical support
typically conflict with mass transport properties, which are essential for tissue regen-
eration. The increase in stiffness and strength of a scaffold comes at the expense of
mass transport, and the opposite is also true (Fig. 1). The cross property bounds
shown are those defined by Kang et al. [20].

Cellular material provides a unique advantage in addressing this trade-off because
both macroscopic and microscopic features can be specifically tailored for mechani-
cal and permeability properties [5]. Via multiobjective optimization we can determine
the material layout of a scaffold that can achieve these target effective properties [10].

The objective of this paper is to illustrate that a cellular material can be designed
to address the multi-scale requirements of a bone tissue scaffold. Via computational
methods, both the geometry and microarchitecture of the scaffold can be designed
to achieve specific effective mechanical and mass transport properties. A porous
scaffold with extremely fine features on the micrometer scale can be manufactured
using a biocompatible material (e.g. Ti-6Al-4V) by additive manufacturing, such as
electron beam melting and selective laser sintering. The next and following sections
present a hierarchical topology optimization scheme that uses multi-scale compu-
tations to design a bone tissue scaffold, and Sect. 4 illustrates its application to the
design a bone fracture fixation plate.

2 Methods and Theory

The hierarchical structure of bone necessitates multi-scale design of a bone tissue
scaffold. The hierarchical design of a cellular implant for bone tissue is treated here
as a material distribution problem at two geometric scales: (1) macro-architecture:
topology of the cellular implant, and (2) micro-architecture: topology of each unit
cell. We first determine the optimal macro topology of the scaffold. Then the homog-
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enized properties of each scaffold unit cell are tailored to locally yield the desired
mechanical properties of the implant. Finally, the optimal property distribution of
the implant is mapped with these unit cell geometries to create an optimal porous
architecture of the scaffold.

There is extensive work on the characterization and structural analysis of cellular
materials [6, 16, 18, 20–34]. The multi-objective optimization of both stiffness and
permeability has also been explored for bone tissue scaffolds [5, 6, 11, 20, 31, 35]
and methods have been developed to generate unit cells close to the theoretical cross
property bounds [20, 36]. Hierarchical topology optimization methods [37–42] have
been shown effective in problems involving target property matching. These works
are the foundation of the method presented here, where we combine a hierarchical
topology design with multi-objective optimization for bone tissue scaffold.

2.1 Computational Mechanics for Scaffold Material

2.1.1 Effective Properties

The macroscopic behaviour of a composite material is largely dependent upon its
microstructure. The analysis of the structural mechanics of a cellular material is chal-
lenging due to large geometric heterogeneity at the microscopic level [43]. The highly
complex geometry requires a large computational effort. Finite element analysis of
microscopic behaviour is generally unfeasible, as it would be very computationally
expensive to create, mesh, and analyse each strut of a discrete lattice [44]. As such,
homogenization methods are developed to accurately approximate the behaviour and
properties of a composite cellular structure based on the smallest repeating element
of the structure: the unit cell, or the RVE (representative volume element).

Asymptotic homogenization, which is used here, is one among several methods
available in literature to determine an equivalent homogenous structure represent-
ing its detailed cellular counterpart [30]. Asymptotic homogenization is based on
decoupling the analysis of a cellular material into analyses at the micro (local) level,
and the macro (global) level. The method involves first analyzing one unit cell to
determine its effective properties, by finding its unique behavioural response to a
specified loading condition under periodic boundary conditions. To determine the
effective stiffness matrix (CH ) of a unit cell, a load is applied in each of the unique
normal and shear directions, a process equivalent to imposing unit strains. The unit
cell can then be treated as an equivalent homogeneous structure with the behavioural
response equivalent to that of the detailed unit cell. Then, the entire macro structure
can be mapped with equivalent homogeneous cells. This allows for a much sim-
pler analysis of the structure at the global level. Homogenization can be used for
any periodic physical property, and is used here to calculate the effective stiffness
properties [44].
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2.1.2 Effective Permeability

Weissberg’s Approximation

A scaffold should provide an environment conducive to mass transportation of nutri-
ents and metabolic waste [7, 18]. Mass transport can be quantitatively expressed
as permeability and diffusivity. There are many ways to model the permeability of
a scaffold, such as Stoke’s flow homogenization, and various numerical approxi-
mations. Weissberg’s formula is an approximation that was originally derived to
determine the effective diffusion coefficient through a bed of randomly overlapping
spheres of uniform or non-uniform shape, and is solely a function of porosity, ε [45]:

De

D
= ε

[1 − 1
2 ln ε] (1)

It is valid to use Weissberg’s formula to approximate effective diffusivity in 2D
porous media if the following assumptions can be made: (1) the media is isotropic
and (2) the media porosity is above the percolation threshold. A study by Trinh et
al. shows that the effective diffusivity coefficient of a porous media can be compu-
tationally determined using Monte Carlo simulations [46]. The good agreement of
the simulation results to the theoretical predictions using Weissberg’s formula in the
range of 60–80 % porosity (in the required bone ingrowth range) leads to the choice
of using the latter to estimate the effective diffusivity of the scaffold. If the unit cells
of a designed scaffold are constrained to be isotropic then assumption (1) will hold.
The desired outcome of this research is to optimize an overall anisotropic cellular
medium with isotropic unit cells. Therefore, the Weissberg approximation will be
used in the proposed optimization procedure to calculate unit cell diffusivity.

2.2 Inverse Homogenization

Homogenization theory is used to calculate the effective properties of a bulk mate-
rial based on knowledge of the topology of a repeating unit cell. Recalling the goal
of designing a bone tissue scaffold with specific effective properties, it is there-
fore necessary to solve an inverse homogenization problem [47]. Inverse topology
optimization was originally formulated as a minimization of the difference between
homogenized material properties and target material properties of a unit cell. The goal
here is to seek a microstructural configuration that attains desired effective material
properties [47], as described below.

At the microscopic level, the problem aims at determining the material distribution
within the design domain of the unit cell. The unit cell is discretized into uniform
mesh elements, each of which possesses a relative density: a fraction indicating how
much solid material phase is present in that element. A relative density of 1 indicates
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completely solid material, and a relative density of 0 indicates a void element where
no material is present. The connection of solid elements defines the topology of the
unit cell and consequently the effective properties. Relative densities of the elements
of the unit cell are typically the design variables when topology optimization is used
to solve the inverse homogenization problem.

There are two common approaches to defining objective functions for finite ele-
ment based inverse homogenization. The first is minimizing or maximizing the crit-
ical components of a homogenized tensor. This is formulated for the stiffness tensor
as minimizing these parameters (or their reciprocal). For example maximizing bulk
modulus can be formulated as:

min
ρ

f (ρ) =
⎛

⎝1

9

3∑

i, j=1

C H
ii j j (ρ)

⎞

⎠
−1

(2)

where ρ is relative density and C H
ii j j is the homogenized stiffness tensor. The second

approach is to use the least squares formulation, where the square of the difference
between homogenized tensor and target tensor is minimized. It is mathematically
formulated in the following way:

min
ρ

f (ρ) =
3∑

i, j,k,l=1

wi jkl(C
∗
i jkl − C H

i jkl)
2 (3)

where wi jkl is a weighting factor to vary roles of different stiffness components and
C∗

i jkl is a target stiffness tensor.
The method of inverse homogenization is well suited for the design of a bone

tissue scaffold. The goal is typically to match the stiffness of the surrounding tissue
while maximizing permeability. The hierarchical design of the bone tissue scaffold
is addressed by using the multi-functional inverse homogenization at both the macro
and micro scales, with topology optimization used to solve the inverse homogeniza-
tion problem.

2.3 Topology Optimization for Bone Tissue Scaffold

Topology optimization refers to the determination of the connectivity of a design
domain, through features such as number, location, and shape of holes in a structure.
Topology optimization seeks to determine the optimal placement of an isotropic
material in a given design space. A set of distributed functions defined on a fixed
design domain are used to represent the topology, size, and shape of the structure.
Although the base material in classical topology optimization problems is isotropic,
this research deals with an anisotropic cellular material. Bendsøe and Sigmund
describe in detail the theoretical basis for topology optimization [48]. The follow-
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ing section and many published works in this area are based on their formulation
of the topology optimization problem, which is also the foundation of the work
presented here.

2.3.1 Definition and Derivation

The starting point for topology optimization is the formulation of a general shape
optimization problem in terms of material distribution, for a minimum compliance
structure with material constraints. The problem involves finding the optimal choice
of the stiffness tensor Ei jkl(x) of the solid body, which is variable over the domain
�mat, discretized using finite elements. To allow for the introduction of holes into
the structure, a fixed mesh can be used where void elements are assigned very low
stiffness properties, so that re-meshing is avoided [49]. Both the displacement and
stiffness fields are discretized using identical prescribed mesh. The minimization
problem is thus written as:

min
u,Ee

f T u

s.t K(Ee)u = f

Ee ∈ Ead (4)

where f and u are the load and displacement vectors respectively, the stiffness matrix
K is a function of Ee in an element e, and Ead is the set of admissible stiffness tensors
for the given problem. The stiffness matrix K can be written as a sum of the stiffness
of each element in the form:

K =
N∑

e=1

Ke(Ee) (5)

where element e is numbered as e = 1, . . . , N and Ke is the global level element
stiffness matrix.

In a discretized design space, the topology of a structure can be visually repre-
sented as a black and white rendering of pixels (or voxels, in 3D). In these terms, the
design problem involves finding the optimal subset �mat of material pixels. The set
of admissible stiffness tensors consists of those tensors for which:

Ei jkl = 1Ωmat E0
i jkl , 1Ωmat =

{
1 i f x ∈ Ωmat

0 i f x ∈ Ω\Ωmat (6)

∫

Ω

1Ωmat dΩ = V ol(Ωmat ) ≤ V (7)

The inequality expression [50] imposes a limit on the volume fraction V of material
that can be used in the design, resulting in a minimum compliance design for a fixed
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volume. The stiffness tensor E0
i jkl is for a given isotropic material, which varies with

point x over the domain. Solving this problem is most commonly achieved by replac-
ing the integer variables (1Ωmat ) with continuous variables, and applying a penalty
that can direct the solution to have a binary 0–1, void-solid material distribution. With
a fixed domain, the problem becomes a sizing problem by modifying the stiffness
matrix to depend on a continuous function representing the density of the material.
The function representing density is the design variable.

2.3.2 Solid Isotropic Material with Penalization Method

The introduction of a penalty allows for the design of a structure with regions of
either solid material or void space, as opposed to an intermediate value. A popular
and efficient penalization method is called “Solid Isotropic Material with Penaliza-
tion”, i.e. SIMP [51]. Using SIMP, the sizing problem would be reformulated with a
penalization factor p as:

Ei jkl = ρ(x)p E0
i jkl , p > 1 (8)

∫

Ω

ρ(x)dΩ ≤ V ; 0 ≤ ρ(x) ≤ 1, x ∈ Ω (9)

The continuous density function ρ(x) is the design variable and E0
i jkl is the isotropic

base material stiffness. The stiffness tensor Ei jkl interpolates between 0 (void space)
and E0

i jkl . The penalization method is commonly used in structural optimization
where intermediate values of material density do not have physical meaning, and a
completely solid-void design is desired. With the exponent on the density function
p ≥ 1, values of density that are in the intermediate range are penalized because a
smaller stiffness is obtained for a given material volume. Thus, it becomes uneco-
nomical to use intermediate density values [51] (Fig. 2).

Fig. 2 Effect of penalty
factor p in SIMP method
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Often, p ≥ 3 is used to obtain designs that are 0–1. Rietz shows that for a large
enough p, there is a global optimum solution in 0–1 form, as long as the volume
constraint is compatible [52]. Too severely penalizing the function, however, can
result in a design that is a local minimum which is overly sensitive to the choice of
the initial design. That is, the design skips too quickly to a 0–1 design. The choice
of p is dependent on the design problem [51].

The physical interpretation of SIMP can be visualized using a composite or cellular
material. If each pixel of a mesh is regarded as one unit cell, a design which has some
grey regions can be achieved by designing the topology of each unit cell to match
the required relative density.

2.3.3 Algorithms for Topology Optimization

Common algorithms specific to topology optimization include the Optimality Cri-
teria (OC), the Method of Moving Asymptotes (MMA), and the Level Set Method
(LSM) [53]. Evolutionary Structural Optimization (ESO) and Genetic Algorithms
(GA) are alternatives to gradient-based methods, but are currently not as commonly
used in topology optimization procedures for multi-functional bone tissue scaffolds.
In this paper, we use two gradient based optimization procedures: OC and MMA,
which are briefly explained below.

Optimality Criteria Method
In topology optimization, an iterative method is used to update relative density of
each mesh element. In the method used here, the conditions of optimality are sought
for the density of the minimum compliance design problem. For an iterative scheme
integrated with the SIMP interpolation scheme, the optimality criteria are used to
update the design variable ρ to achieve a stationary Lagrangian system. The rela-
tive densities are updated independently from the other elements and with respect
to conditions of optimality, based on a previously computed design. The optimality
criteria (OC) method is effective for large-scale topology optimization. However, the
algorithm is not suitable for certain problems. For example, multiple objectives and
constraints, and constraints of geometric nature, may require a more costly, and more
robust mathematical programming method. The method of moving asymptotes is a
versatile algorithm, well suited to address the limitations of the OC method.

Method of Moving Asymptotes
The method of moving asymptotes (MMA) is similar to Sequential Linear Pro-
gramming and Sequential Quadratic Programming, and is well suited for topology
optimization [48]. These methods solve smooth, non-linear optimization problems
by using a sequence of subproblems which are simpler approximations. The sen-
sitivity of a given design point and knowledge of previous iterations are used to
decompose the problem into separable and convex subtasks. Subproblems can be
solved each iteration using algorithms such as the dual method, or the interior point
algorithm. The separable property of the approximation subproblems means that the
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design variables are not coupled by the optimality conditions of the subproblems,
and subproblems have a unique solution. The convexity property of the subproblems
allows the use of dual methods or primal-dual methods. The combination of these
properties generally results in a computationally efficient method commonly used in
topology optimization [54].

While slower than OC, MMA offers an advantage because it can accommodate
geometric scenarios with limited knowledge of the physical space. In addition, MMA
can efficiently handle a large number of design variables and complex min-max func-
tions. MMA has, however, one main disadvantage: convergence cannot be guaranteed
[54]. A common experience with MMA is that if it converges, a solution is found
quickly with steadily improving designs.

Numerical instabilities in topology optimization
Topology optimization approaches often suffer from a variety of numerical instabil-
ity problems, such as checkerboard patterns, mesh dependence, and computational
inefficiency. Checkerboard patterns refer to the case where solid and void elements
appear in alternating fashion, only connected by a corner, and create artificially high
stiffness regions. To avoid this problem, higher order mesh elements can be used.
Techniques such as local gradient constraints, filtering, and various material interpo-
lation schemes, such as SIMP, are also used to eliminate the presence of checkerboard
regions [53].

Mesh dependency is a numerical instability where increased mesh refinement
results in a larger number of holes appearing in the optimal topology. Ideally, mesh
refinement would result in improved boundaries of the optimal topology. One way to
efficiently achieve mesh independent designs is to reduce the admissible design space
with a global or local restriction on the variation of density. This can be achieved by
either adding constraints to the optimization problem, reducing the parameter space
directly, or applying filters in the optimization method. Convergence of finite element
approximations can be found with the addition of one of these solutions [48].

One highly efficient filter to ensure mesh-independency is to modify design sen-
sitivity, such that the sensitivity of an element is determined from a weighted average
of the neighbouring element sensitivities. This filtering method is heuristic, but it is
computationally efficient and simple to implement. It is reported that results are very
similar to those obtained by a local gradient constraint [48].

3 Hierarchical Topology Optimization Algorithm

This section describes each step of the algorithm and discusses the model assump-
tions. Section 4 reports the application of the methodology to the design of a bone
fracture fixation plate with stiffness close to that of bone and maximum permeability.
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3.1 Algorithm Structure

The procedure is divided into sequential material layout problems at two scales: (1)
the topology of the implant, and (2) the topology of each unit cell to meet functional
requirements at each location of the cellular material. Although some methods in lit-
erature perform these searches in parallel, here the design of each unit cell is obtained
after the optimal topology of the scaffold is determined. The SIMP method is used to
interpolate target material properties for each unit cell based on the optimal material
distribution found at the implant optimization stage. The procedure is performed
with in-house scripts implemented in MATLAB, in combination with ANSYS for
finite element analysis. A detailed flowchart is shown in Fig. 3.

3.2 Implant Topology Optimization (1)

The first stage is to determine an optimal material layout for an implant with minimal
compliance (or strain energy), to reduce the difference between the strain energy of
the base material (in this case Ti-6Al-4V Ti6Al4V) and bone. Bone is much less stiff
than titanium alloys used in implant design. The objective function c(x) to minimize
compliance using a power based topology optimization is formulated as follows:

min
x

: c(x) = UT KU =
N∑

e=1

(xe)
puT

e keue

subject to : V (x)

V0
= V ∗

: KU = F

: 0 < xmin < x ≤ 1 (10)

where x is the design variable (relative density) of each element e, U is displacement
and K is the implant stiffness. The optimization scheme is governed by the structural
elasticity equation, where xe is the vector of design variables, relative density, ue

is the element displacement matrix, and ke is the element stiffness matrix [47]. A
volume fraction constraint is applied as an equality constraint, with target volume V ∗
defined by the user. Volume fraction is measured as the ratio of solid material V (x)

to the size of the design domain V0. An inequality constraint on the design variable
x is imposed to restrict values of relative density to lie between a value close to zero
and 1. A penalty factor p = 3 is chosen to ensure convergence [48].

Figure 3 illustrates topology optimization at the implant level. A design space is
first defined with both the displacement and stiffness fields discretized without mesh
change. Identical four-node quadrilateral mesh elements are used, and a uniform
relative density distribution is initially defined. Material properties of the solid phase
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=
Calculate target stiffness matrix with SIMP for each unit cell:

Fig. 3 Hierarchical topology optimization flowchart

are defined with Young’s modulus and Poisson’s ratio used to calculate the material
stiffness. Plane stress is assumed in this two-dimensional analysis.

As shown in Fig. 3, the iterative procedure begins with the evaluation of the objec-
tive function for the initial material distribution within the design space. The sensi-
tivity of the objective function is calculated, and a filtering technique is applied to
smooth the gradients. The design variables are updated based on the filtered sensi-
tivities, according to the Optimality Criteria (Sect. 2.3.3). A convergence check is
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performed to evaluate the maximum change in relative density for each element from
its current value to its value from the previous design. Convergence is found when
the maximum change in relative density of all elements is below a defined threshold,
in this case 0.02. When the design variables stabilize within the prescribed tolerance,
the optimal material distribution is achieved.
With the optimal relative density for each unit cell determined, the target stiffness at
each location of the implant is calculated. A relative density of 1 indicates that the
desired stiffness of that unit cell is equal to the predefined base material stiffness.
Similarly, a relative density near zero indicates that no stiffness is required at that
location. The SIMP relation is used to interpret intermediate values of relative density
as material properties for each unit cell:

C∗ = x pCbase (11)

where the penalty factor is p = 3, C∗ is the interpreted stiffness matrix of a unit
cell with a given relative density x, and Cbase is the solid material stiffness. With
target stiffness for each location of the implant defined, unit cells can be specifically
designed to match the local requirements in the next stage of the optimization loop.

3.3 Unit Cell Topology Optimization (2)

The second stage involves the design of unit cells to achieve local target stiffness
and permeability, based on bone ingrowth requirements. Each unit cell is designed
independently from its surrounding unit cells. The objective function is formulated
as follows:

min
ρ

: f (ρ) = w1‖CH − C∗‖L2 + w2

(
P H

P∗ − 1

)2

+ w3

(
C H

22

C H
11

− 1

)2

subject to : �min ≤ � ≤ �max

: 0 ≤ ρmin < ρ ≤ 1 (12)

where � is the unit cell porosity and ρ is the relative density of each mesh element.
The first term of the minimization problem represents the difference between target
stiffness and effective stiffness of the unit cell. The L2 norm is calculated as the
square of the difference between target (C∗) and homogenized (CH ) components.
The target stiffness matrix is determined from Eq. 11. The effective stiffness terms
are calculated using asymptotic homogenization (Sect. 2.1.1). The second term of the
objective function is the squared difference between target and effective permeability
of the unit cell. Effective permeability is calculated using Weissberg’s formula (Eq. 1).
The target permeability is also calculated using Weissberg’s formula, which is solely
a function of porosity, �. The acceptable range of porosity for bone ingrowth is 60–
80 %, so the maximum porosity (80 %) is used to determine the target permeability.
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The third term in the objective function ensures square symmetry of the unit cell.
The acceptable range of porosity is enforced using an inequality constraint, where
�min = 60 % and �max = 80 %. An inequality constraint is also used to ensure that
the relative density of each mesh element is between ρmin = 0.001 and 1.

The design space is initialized with a uniform finite element mesh of four-node
quadrilateral elements. In-plane stress is assumed. The iterative procedure begins
with evaluating the objective function for the initial material distribution, based on the
calculation of effective stiffness and permeability properties. The method of moving
asymptotes is used to update the design variables (Sect. 2.3.3). A convergence check
is performed to evaluate the maximum change in relative density for each element,
from its current value to its value from the previous design. Convergence is reached
when the maximum change in relative density of all elements is below a prescribed
tolerance of 1 %. This procedure is conducted for each unit cell, which can then be
mapped to their respective locations within the implant structure. Further discussion
on unit cell mapping is given in Sect. 4.

4 Application to Fracture Fixation Plate: Problem Definition

Before the problem definition describing the design requirements of fracture fixation
plate, background information on the clinical aspects is provided. Internal fracture
fixation plate and screw systems are a method of treating fractured long bones. The
purpose of the mechanism is to provide necessary stabilization and a critical amount
of compressive stress at the bone fracture site to facilitate healing. Additionally, the
plate must minimize devascularisation, and allow early motion and partial loading to
restore some load bearing capacity of the bone [55]. Compression also helps prevent
transverse displacement of bone fragments and torque about the long axis of the
bone [56]. The compression plate and screw components are typically made of solid,
rigid, biocompatible materials such as stainless steel, cobalt chromium, titanium, and
composites.

Ongoing concerns with fracture fixation plates are (1) excessive stiffness resulting
in stress shielding, and (2) osteoporosis of underlying bone. The resulting decrease
in bone mass and density increases the risk of re-fracture at the site [57]. One cause
of osteoporosis beneath a fracture fixation plate is the disruption of the periosteal
capillary network at the fracture site. Areas of bone in contact with the plate receive
insufficient blood supply and necrosis follows. Low contact surface plates and lim-
ited contact dynamic compression plates have previously been designed to reduce the
disruption of blood flow [57]. Stress shielding results from the mismatch of mechan-
ical properties between bone tissue and plate, resulting in bone resorption. Lower
stiffness and functionally graded bone plates have been investigated to address this
issue with varying success in results [58, 59].

It is hypothesized in this paper that a hierarchically designed plate of cellular
material can address both the stress shielding and osteoporosis problems currently
occurring in fracture fixation plates. The porous nature of the cellular material reduces
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Fig. 4 Schematic of fracture
fixation plate and a zoom of
its mesh [60]

disruption of blood flow to the bone, while the mechanical properties are specifically
tailored at the unit cell level to match that of the local tissue and reduce stress shield-
ing. The design and optimization are performed in two dimensions, as the dominant
forces acting on a fracture fixation plate are in-plane. First, the material distribution
of the plate is determined. Secondly, a sample of unit cells for various locations
throughout the plate are designed for target stiffness and permeability based on bone
ingrowth requirements (Fig. 4). Loading and boundary conditions are specifically
applied depending on the expected physiological loading of the implant. The topol-
ogy optimization procedure is highly sensitive to loading and boundary conditions,
so careful selection is essential. Finally, preliminary results on the mapping of unit
cells into the plate structure are illustrated and discussed.

4.1 Plate Topology Optimization

The plate design space is initialized from the dimensions of a small fragment locking
compression plate system by Synthes, Inc [60]. For an 8-screw plate with 3.5 mm
hole diameter, the plate length is 112 mm and width is 12 mm. It is reported that a
compression plate should provide approximately 600 N of compressive force [56].
In this analysis, a completely in-plane loading is assumed, and 600 N is distributed as
a tensile force on the outer face of each screw hole, as shown in Fig. 5. Symmetry is
exploited and only half of the plate is modeled, using a symmetric boundary condition
(right side in Fig. 5).

The mesh resolution was varied and finally chosen as 48 elements by 448 elements.
At higher mesh resolutions, no difference in topology was observed. One mesh ele-
ment is equivalent to 0.25 mm in length and width. Each hole is prescribed to have
void elements with a solid material boundary for screw threading. Elsewhere, the
initial material distribution has uniformly 50 % relative density. The target stiffness
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Fig. 5 Schematic of loading and boundary conditions for half of the fracture fixation plate

Table 2 Optimal plate topologies with 50 % material fraction
Design Optimal topology

(a) Solid 

(b) 

(c) 

(d) 

(e) 

for the implant is that of the in-plane tensile stiffness of cortical bone: approxi-
mately 20,092 N/mm. This was determined by a tensile stiffness analysis conducted
in ANSYS for a solid plate with cortical bone properties (E = 20 GPa, v = 0.3).

Table 2 shows the optimal Ti-6Al-4V plate topologies found using a 50 % material
fraction equality constraint, with various penalty factors used to interpolate material
properties. The first entry in the table shows a solid plate with 8 screw holes for
comparison. Table 3 summarizes the strain energy and stiffness for the optimal plates.
The solid plate has significantly higher stiffness than cortical bone, and is an order of
magnitude greater than the target. Intuitively, lower stiffness is observed with a 50 %
material fraction constraint. By using less material and allowing for intermediate
values of relative density, a titanium plate can be designed with stiffness much closer
to cortical bone.

For 50 % volume fraction, it appears that the penalty factor should lie between
1 and 1.1 in order to achieve the target stiffness of cortical bone. A change in the
material fraction can also result in plates with stiffness closer to the target. For
example, the optimal plates with a 45 % material fraction constraint are shown in
Tables 4 and 5, with the penalty factors of the 50 % volume fraction plates. Table 5
shows that with, the plate stiffness is 18,910 N/mm, which is approximately 6 % less
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Table 3 Strain energy and stiffness for 50 % material fraction plates

Design number and
penalty factor, p

Material fraction (%) Strain energy (N/mm) Tensile stiffness
(N/mm)

(a) Solid 94.11 10,974 204,857

(b) p = 3 50 4494 83,905

(c) p = 1.25 50 3215 60,013

(d) p = 1.1 50 1715 32,021

(e) p = 1 50 783 14,621

Table 4 Optimal plate topologies with 45 % material fraction
Design Optimal Topology

(a) Solid 

(b) 

(c) 

(d) 

(e) 

Table 5 Strain energy and stiffness for 45 % material fraction plates

Design number and
penalty factor, p

Material fraction (% ) Strain energy (N/mm) Tensile stiffness
(N/mm)

(a) Solid 94.11 10,974 204,857

(b) p = 3 45 4080 76,161

(c) p = 1.25 45 2654 49,555

(d) p = 1.1 45 1013 18,910

(e) p = 1 45 620 11,586

than that of cortical bone. The adjustment of input parameters allows for fine-tuning
of the optimal results, to achieve target stiffness.

In general, a lower penalty factor yields higher gradients in material distribution,
which can be realized by designing further at the unit cell level for each location, to
achieve target material properties. The SIMP relation is used to interpolate effective
material properties from intermediate values of relative density. This allows for new
areas of the design space to be explored, beyond what is achievable with a solid
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material. Design (d) in Table 4 is chosen as the optimal plate topology, and is further
designed at the unit cell level in Sect. 4.2.

4.2 Unit Cell Topology Optimization

The optimization of the unit cell was achieved for a range of input parameters. Target
stiffness properties were used for relative densities ranging from 10 to 90 %, with
increments of 10 %. A penalty factor p was also varied between 1 and 3 in increments
of 0.5, with the goal of achieving a completely solid void design. Each combination of
penalty factor and relative density was repeated three times to ensure the repeatability
of the procedure. Stiffness and permeability components of the object function were
initially weighted equally. A mesh size of 26 × 26 elements was used.

Convergence to an optimal topology was challenging to find. As reported in liter-
ature, convergence using the method of moving asymptotes is often not found [54].
Adjusting the MMA parameters, including step length for moving the asymptotes,
were ineffective in yielding converging results. The best convergence was found
with target stiffness properties determined by a relative density of 60 %. As shown
in Table 6, stiffness can be found within the range of 3–13 % of this target, and per-
meability is found within 0.5–3.5 %. Porosity is also within the acceptable range of
60–80 %.

It was observed that higher penalty factors lead to more checkerboard patterns
in the optimal design. The convergence to an optimal design with properties in the
approximate range of the target was achieved; however regions of disconnected
material within the unit cells and regions of intermediate material properties are
present. This is a problem that needs to be addressed in a future study.

An optimal unit cell that has a maximum percent difference in stiffness of 7.43 %
and a 1.43 % difference in permeability was compared to the Hashin-Shtrikman
theoretical bounds of bulk modulus and diffusivity (Table 7).

Figure 6 shows that the effective bulk modulus for this unit cell falls beneath the
theoretical bounds; however, the effective permeability lies well outside the predicted
maximum value. This may be indicative of the inappropriate method chosen to cal-
culate permeability solely as a function of porosity. The error may be reduced by
using a more robust approach, which can account for the geometric features of the
unit cell. Modifications to the permeability calculation method are further discussed
in Sect. 5.

4.3 Unit Cell Mapping

This section presents preliminary results on the procedure to map unit cells into the
optimal implant domain. As stated in Sect. 2, the optimal scaffold environment for
bone ingrowth has pore sizes of 50–400µm and is 60–80 % porous, where the poros-
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Table 6 Optimal unit cells with target stiffness determined by a relative density of 60 %

Porosity p % Difference in the stiffness 
matrix components

% Difference in 
permeability

65.23 1
-5.52 4.80 0
4.80 -5.52 0

0 0 2.14

-0.45

65.77 1.5
-10.98 5.16 0
5.16 -10.98 0

0 0 2.92

-1.42

65.50 2
-13.72 -3.87 0
-3.87 -13.72 0

0 0 -6.53

-0.91

66.95 2.5
-13.17 -10.22 0
-10.22 -13.17 0

0 0 -8.60

-3.46

Table 7 Optimal unit cell compared against Hashin Shtrikman bounds

Porosity p % Difference in the stiffness 
matrix components

% Difference in 
permeability

65.79 2
-7.43 -1.44 0
-1.44 -7.43 0

0 0 -1.56

-1.43

ity constraint is addressed in the unit cell optimization procedure. Theoretically, cell
size can be tailored to meet pore size constraints during the procedure of mapping unit
cells onto the optimal plate topology. Practically, manufacturing constraints on min-
imum allowable feature size govern the mapping procedure. Limits on the smallest
possible pore and strut size determine the allowable unit cell dimensions. Currently,
the nominal minimum strut size is approximately 200µm to be manufactured with
additive processes, such as Electron Beam Melting. To address these constraints,
instead of representing each mesh element as one unit cell, target material proper-
ties can be averaged over a region that has the size of the smallest manufacturable
cell. For example, assuming the minimum cell length is 1 mm and the mesh element
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Fig. 6 Comparison of optimal unit cell effective properties to theoretical bounds [20]

Table 8 CAD representation of optimal unit cells with tessellation
Optimized unit cell CAD unit cell Tessellation

1

2

3

length is 0.25 mm, 1 mm square unit cells are mapped into the implant based on the
average relative density over a 4 × 4 element region.

To create implant models for manufacturing, computer-aided design (CAD) can
be used to construct the optimized unit cells as solids. Table 8 shows three optimal unit
cells that have been recreated using SolidWorks 3D CAD design software. Refined
boundary interpretation methods, such as the level set method [61] can be used to
translate the optimal material distribution to a solid-void unit cell topology. However,
due to low mesh size and prevalence of a checkerboard pattern in the results shown,
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(a)

(b)

Fig. 7 CAD representation of optimized implant (material fraction 45 %, p = 1.1)

Fig. 8 a Optimized implant material layout where 1 mm × 1 mm region b is highlighted in red,
with mesh element relative density shown in (c)

Fig. 9 a 1 mm × 1 mm region of optimal material distribution, with average relative density 60 %.
b 1 mm × 1 mm region of uniform relative density 60 %. c Optimal unit cell with target material
properties based on relative density of 60 %

the implant topology is interpolated heuristically for simplicity. This poses major
problems that need to be addressed in a further work. A tessellation of each unit
cell is also shown to illustrate the respective scaffold topologies. In addition, it is
important to note that the relevance of the CAD models is limited by the filtering
technique used to interpolate the topology into a solid-void structure. In the results
presented here, the filtering technique used is simple and must be improved.

Figure 7 shows a CAD model prior to the mapping, with solid material tentatively
representing areas of relative density greater than ∼20 %, and all other regions con-
sidered void. An example of the mapping procedure is shown in Figs. 8, 9 and 10.
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Fig. 10 a CAD model of Fig. 8a. b Mapping of optimal unit cell

Once the procedure is capable of optimizing unit cells to meet target properties based
on the entire range of relative densities (from 0 to 100 %), the entire implant can be
mapped.

5 Discussion

5.1 Limitations and Outlook on Problem Resolution

This works is a preliminary step towards the development of a methodology for bone
tissue scaffold. Substantial work and adjustments are required to address a number
of issues, both computational and clinical, as described below.

Effective permeability calculation. As shown in Fig. 6, the method used to cal-
culate permeability leads to values outside of theoretical bounds of permeability and
stiffness. This indicates the Weissberg’s formula chosen for the calculation, while
simple as solely dependent on porosity, is not appropriate as expected. Alternative
methods, such as Stokes flow homogenization, can be used to take into account the
geometry of the unit cell. It is hypothesized that using Stokes flow homogeniza-
tion may alter calculations for the permeability objective function and its sensitivity,
thereby contributing to improve convergence.

Filtering. It is apparent that a more effective filtering technique is required at the
unit cell level. The sensitivity filtering method is highly effective with the optimality
criteria method used in the first stage of optimization. However, this filtering has been
less effective at the unit cell level with unacceptable checkerboard patterns. There are
other filtering techniques available that could be applied [47]. For example, limita-
tions can be imposed on the allowable variation in density distribution. Restrictions
to the gradient can be imposed with pointwise bounds on the derivatives of rela-
tive density with respect to mesh element location. Also, limits on the perimeter of
mechanical elements in the design space can prevent solid material from appear-
ing separately from the main structure [47]. While these techniques would have to
be specifically catered to this design problem, they have been proven successful in
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reducing checkerboard patterns [6, 20]. It is hypothesized that applying appropriate
filtering at the unit cell level will reduce checkerboard patterns and a more distinct
boundary between solid and void material will be produced.

Sensitivity of final solution to initial design. It is observed that the optimal mater-
ial distribution in the unit cell design space is highly dependent on the initial material
distribution at the beginning of the optimization. This dependency is not necessarily
a drawback in this case, because many local minima of the function may exist that
all exhibit target material properties. However, a search for a global minimum could
be conducted with various initial designs.

Connectivity of solid material within unit cell. At the unit cell level, some optimal
designs were achieved with disconnected solid material (Table 6), therefore unfeasi-
ble to manufacture. Connectivity of material within the unit cell can be imposed using
available software packages on the market, such as the visualization toolkit image-
processing library (vtkPolyData-ConnectivityFilter) by Kitware, Inc. This software
is used in the iterative design of unit cells by Lin et al. [6] to ensure inner structure
connectivity. One strategy is to identify the largest connected region in the design
space and treat it as the main unit cell topology, disregarding unconnected material.
FEA would be performed on this connected region and the material fraction con-
straint would be modified to apply to only the identified region. Connectivity between
cells can also be enforced with prescribed regions of solid and void material, which
are maintained throughout the iterative procedure. However, this limits the available
design space and convergence to a minimum might be more challenging. Alterna-
tively, a unit cell library with prescribed connectivity and optimized inner structures
could be compiled, as proposed by Hollister and Lin [10].

Translation of theoretical scaffold to CAD model. The translation of theoretical
optimal unit cells to CAD models for manufacturing can be eased by improving filter-
ing. An appropriate filter will reduce checkerboard patterns and result in a design with
a distinct boundary between solid and void regions. It was also shown that B-Spline
based parametric smoothing functions are effective filters in topology optimization
to control the size of the voids throughout the design domain, avoiding sharp changes
in topology [62]. Furthermore, Sigmund et al. propose to perform a secondary shape
optimization problem after topology optimization, with the optimal unit cell as an
input. The shape optimization problem would smooth sharp corners in the optimal
design, making manufacturing easier and eliminating stress concentrations [47].

Clinical considerations. There are many clinical considerations for the practical
implementation of the proposed fracture fixation plate. The scope of this work is
limited to two dimensions; hence comparing the stiffness and material properties to
a 3D plate is not suitable. The thickness of the plate is an important contributing
factor to stiffness, and bending and torsion should be accounted for too. However,
the benefit of a cellular material design is supported by showing an increase in the
accessible design space, allowing for specific tailoring of mechanical and permeabil-
ity properties. It is important to note that the optimal implant topology resulting from
this procedure is highly sensitive to the applied loads during optimization; hence a
more realistic loading scenario may improve the final design of the implant.
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5.2 Concluding Remarks

In conclusion, cellular materials provide a unique advantage in bone tissue scaf-
fold design because material properties can be tailored to match non-homogeneous
properties of bone. Inspired by the natural hierarchy of bone structure, a multi-scale
designed scaffold can be proposed to closely mimic the physiological and mechani-
cal response of bone tissue. Thus, controlling the hierarchical features of an artificial
scaffold can allow for the optimization of function and tissue regeneration [11].

Hierarchical topology optimization can be used to design a scaffold with stiffness
properties close to those of bone and high permeability for mass transport require-
ments. This was illustrated through the design of a fracture fixation plate in two
dimensions. The optimized cellular design can reduce stress shielding by tailoring
mechanical properties to match bone, and reduce the occurrence of osteoporosis by
minimizing disruption of blood flow. In the proposed method, optimization conver-
gence was not always found at the unit cell level, and several necessary improvements
to the procedure have been suggested for future work. Nevertheless, with the target
properties based on a relative density of 60 %, optimal unit cells have been found
within the range of 3–13 % of desired stiffness and within 0.5–3.5 % of desired per-
meability.
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Boundary Constraint Handling Affection
on Slope Stability Analysis

Amir H. Gandomi, Ali R. Kashani and Mehdi Mousavi

Abstract In an engineering optimization problem such as soil slope problem, each
design variable has permissible solution domain. Therefore, efficiency of an opti-
mization algorithm may be affected by the method used for keeping the solutions
within the defined boundaries or boundary constraint handling method. Despite
importance of selecting constraint handling approach, there aren’t adequate stud-
ies in this field. Heterogeneous slope stability optimization in the presence of a band
of weak soil layer is considered as a complex geotechnical problem that requires sat-
isfying boundary constraints. Evolutionary boundary constraint handling is one of
the recently proposed methods that is very easy to implement and very effective. The
present study intended to improve the optimization results by means of evolution-
ary boundary constraint handling scheme on slope stability optimization problem.
In the current chapter five benchmark problems are analyzed using absorbing and
evolutionary boundary constraint handling schemes and their results are compared
to check the validity of this method. Based on achieved results optimization algo-
rithm performance is improved by using the proposed boundary constraint handling
method.

1 Introduction

Newlyheuristic optimizationmethods have found a reliable position to solve geotech-
nical engineering problems. One of the most important geotechnical engineering
problems is slope stability analysis. The consideration of non-circular slip surface
has produced more efficient results in the heterogeneous soil slopes. The safety of
slope is expressed in term of the factor of safety (FOS) and the limit equilibrium
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approach has been the most popular method in computing this factor. This method
uses the plastic limit theorem of solid mechanics to analyze the stability of the poten-
tial slippery mass [33]. Large numbers of selective slip surfaces are required to be
tested to find location of minimum factor of safety in order to use limit equilibrium
method for slope stability analysis.

Slope stability analysis with non-circular slip surface is considered as a com-
plicated optimization problem. As Chen and Shao [5] demonstrated, the objective
function has a lot of local minimum within solution domain. Cheng et al. [8] also
pointed out the objective function is usually non-convex and discontinuous over the
search space. It is necessary to select a good initial failure surface to apply classical
optimization techniques.

Recently by developing metaheuristic optimization algorithms, it is possible to
overcome this issue. Severalmetaheuristic algorithms have been adopted to slope sta-
bility problems.Monte carlo randomwalk typewas used byGreco [20]; genetic algo-
rithm was applied by Goh [19], Das [12], McCombie and Wiklson [31], Zolfaghari
et al. [45], Jianping et al. [22] and Sengupta and Upadhyay [36]; leap frog was used
by Bolton et al. [3]; ant colony optimization selected by Kahatadenya et al. [23];
artificial neural network optimization technique was tried by Samui and Kumar [35];
fuzzy logic has also been adopted to find critical slip surface several simple slope
stability problems by Mathada et al. [30], Rubio et al. [34] and Giasi et al. [18].

Cheng [6] and Cheng et al. [7–9] studied simulate annealing, harmony search,
tabu search, particle swarm optimization and fish swarm for finding minimum FOS.
Newly Cheng et al. [10] utilized a hybrid approach for locating the critical failure
surface; Morgenstern and Price [32] used ant colony optimization for slope stability
optimization; Khajehzadeh et al. [26, 27] used gravitational search algorithm and
modified particle swarm optimization respectively; Zhao et al. [42] tried relevance
vector machine in slope stability analysis and Kaveh and Talatahari [25] studied
imperialistic competitive algorithm performance on 2-dimensional soil slopes.

Good optimization will be achieved by providing two requirements; a robust
algorithm and proper handling of constraints. Boundary constraint handling is one
of themost important parts of constraint handling that can affect power of algorithms.
Unlike the importance of constraint handling method, there are limited studies in this
area.

For the first requirement cuckoo search (CS) algorithm, proposed byYang andDeb
[41] is selected based on its satisfying records. CS is a newmetaheuristic optimization
technique inspired by reproduction strategy of some cuckoo species. The initial test
of CS algorithm shows that this algorithm is very efficient for some benchmark
optimization problems [41]. The CS algorithm has also been used to some structural
and geotechnical engineering problems to reach optimum design by Gandomi et al.
[15, 16], respectively.

Like most optimization algorithms, new produced solution of CS in each iteration
may be gone beyond the boundaries. In this case traditional absorbing scheme was
utilized by original CS. Recently Gandomi and Yang [17] developed a simple and
effective method for boundary constraint handling that is so-called evolutionary
boundary constraint handling (EBCH). This evolutionary scheme is also very easy
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to implement for any optimization algorithm. The results showed that EBCH can
outperform other existing methods. Therefore for the second requirement, EBCH is
selected to handle boundary constraints.

The current study is allocated to contrast the location of critical slip surface using
original CS and CS with EBCH called CS_EB. Assuming non-circular slip surface
for Morgenstern-Price [32] method, FOS is calculated. Five different case studies
are evaluated here to show the efficiency of the proposed method. As a result in all
cases, better results are gained using CS_EB than CS. This fact is magnified in more
complicated cases and CS_EB are capable to evade local minima far better than CS.

2 Slope Stability Analyzing

2.1 Generation of Trial Slip Surface

An acceptable slip surface is required to be generated to find critical failure surface.
A proper slip surface should be concave upward to be cinematically acceptable.
Procedure proposed by Cheng [6] is used to shape slip surface. Slope geometry in
Cartesian coordinate system XOY is shown as Fig. 1. Slope geometry and bedrock
are defined by y = g(x) and y = B(x) mathematical functions, respectively.

By dividing slippery mass into n vertical slices, (n + 1) edge coordinates of
each slice have to be determined. Therefore V vector, containing control variable, is
defined for optimization as follows:

V = [x1, y1, x2, y2, . . . , xn, yn, xn+1, yn+1] (1)

Fig. 1 Generation of Non-circular slip surface
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The widths of all the slices are considered to be equal for simplicity. Then xi can
be computed as follows:

xi+1 = xi + xn+1 − x1
n

× (i − 1) (2)

In this method upper and lower bound for yi value, yimax and yimin are defined as
slope geometry and bedrock, respectively. A random value between yimin and yimax

is selected for yi as Eq. (3).

yi = rand × (yi max − yi min) (3)

Finally a trial slip surface will be defined by using above mentioned control
variables.

2.2 Factor of Safety Calculation

A quantitative value is defined as FOS to explore the stability of a slope. In this study
a concise procedure proposed by Zhu et al. [44] is used. By considering effective
inter-slice forces as Fig. 2, FOS could be calculated by an iterative procedure as
follows:

First, calculate Ri and Ti using Eqs. 4 and 5;

Ri = [Wi cosαi − Wiαh sin αi + Qi cos(ωi − αi ) − Ui ] × tan φ′
i + c′

i bi secαi (4)

Ti = Wi sin αi + Wiαh cosαi − Qi sin(ωi − αi ) (5)

Fig. 2 a General failure surface, b Inter-slice forces in slice number i
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Second, specify inter slice force function, f (x) (it could be chosen constant, sine,
half sine), as Eq.6:

f (x) = sin(π × x − a

b − a
) (6)

where a and b are x-coordinates of two ends of slip surface. In this study constant
function is selected.

Third, consider initial values of Fs and λ so that Eq.7 will be satisfied.

Fs > − sin αi − λ fi cosαi

cosαi + λ fi sin αi
tan φ′ (7)

Fourth, calculate �i and �i−1 using Eqs. 8 and 9 for all the slices.

�i = (sin αi − λ fi cosαi ) tan φ′
i + (cosαi + λ fi sin αi )Fs (8)

�i−1 = [(sin αi − λ fi cosαi ) tan φ′
i + (cosαi + λ fi sin αi )Fs]/�i−1 (9)

Fifth, calculate Fs using Eq.10.

Fs =

n−1∑
i=1

(Ri

n−1∏
j=i

� j ) + Rn

n−1∑
i=1

(Ti

n−1∏
j=i

� j ) + Tn

(10)

Sixth, repeat forth step with new Fs and compute Fs again with new �i and �i−1
values using Eq.8.

Seventh, calculate Ei using Eq.11 by updated Fs value for all the slices.
Finally, calculate λ using Eq.12.

Ei�i = �i−1Ei−1�i−1 + Fs Ti − Ri (11)

λ =
∑ [bi (Ei + Ei−1) tan αi + Wiαhhi + 2Q sinωi hi ]∑ [bi ( fi Ei + fi−1Ei−1)] (12)

Repeat all the eight above mentioned steps to Fs and λ converge to nearly constant
values.
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3 Optimization Techniques

3.1 Cuckoo Search

Cuckoo search (CS) algorithm is one of the swarm intelligence metaheuristic opti-
mization algorithms. CS, inspired by cuckoo’s life, has been proposed by Yang and
Deb [41] recently. The cuckoos are fascinating because of their kind of reproduction
strategy. Their eggs are laid in the nest of other host birds, nearly other species. At
the same time they threw away host bird eggs to raise their egg hatching probabil-
ity. Cuckoos are able to select recently spawned nests. Generally the cuckoo chicks
are capable to hatch slightly earlier than host bird chickens. The cuckoo’s hatchling
will evict the other eggs by blindly propelling them instinctively. Also cuckoos are
specialized to mimic the call of its host bird. In this way cuckoo chick can increase
its share of food. However, some host birds can combat with infringing cuckoos. If
these birds discover alien egg either throw this egg away or abandon the whole nest
and build a new one.

In nature, animals and insects try to find food by following a random or quasi
random prototype. Based on random walk which can model animals foraging path,
the next move is derived from current position based on a probability which can be
modeled mathematically.

In order to ease three idealized regulations proposed by Gandomi et al. [16]:

• Each cuckoo flyblows one egg at a time, and leaves it in an arbitrarily chosen nest.
• The best nests (solution) with highest quality of eggs will usable over the next
generations.

• The number of available host nests is fixed, and a host can discover an alien egg
with a probability Pa ∈ [0, 1]. If this encroachment has occurred, the host bird goes
for either getting rid of the alien egg or leaving the nest and building a completely
new one in a new location.

Inductively, each solution (considered as nest) will be replaced by a new one with
a probability of Pa.

CSdefines themain problem that optimizationwill be done for; completely similar
to other popular optimization algorithms (i.e., GA, PSO and so on) as Objective
Function.

By considering above three rules, CS conform the following procedures:
New solution using Levy-Flight is related to the current solution by Eq.13.

x (t+1)
i = x (t)

i + α ⊕ Levy(λ) (13)

where α > 0 is step size parameter which is supposed to be change with the scales of
the problem.Mostly,α sets to unity. The product⊕means entry-wisemultiplications.
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The Levy term provides a random walk type search, and the probability distribu-
tion defined as Eq.14 that has an infinite variance with an infinite mean.

Levy ∼ u = t−λ, (1 ≤ λ ≤ 3) (14)

By implementing above procedure iteratively CS will approach the nearest best
solution for minimization problems. For more detail refer to the main source
(i.e., [41]).

3.2 Evolutionary Boundary Constraint Handling

Inmany optimization algorithms new solutionsmay be violated from allowable range
of variables within reproduction procedures. There are proposed several methods
to push the solution inside boundaries. The classical boundary constraint handling
method is absorbing which is presented in Eq.15. The other methods are random
scheme as Eq.16 and the toroidal space scheme as Eq.17 or some schemes like
replacing components with a mirror image relative to the boundary as Eq.18.

f (zi → xi ) =
{

lbi i f zi < lbi

ubi i f zi > ubi
(15)

f (zi → xi ) = lbi + rand × (ubi − lbi ) i f zi < lbi or zi > ubi (16)

f (zi → xi ) =
{

lbi − (zi − lbi ) i f zi < lbi

ubi − (zi − ubi ) i f zi > ubi
(17)

f (zi → xi ) =
{

ubi + zi − lbi i f zi < lbi

lbi + zi − ubi i f zi > ubi
(18)

where lbi and ubi are the i th lower bound and upper bound, by order, zi and xi are
violated component and corrected component and rand is a random number between
0 and 1.

Also some literature devoted to examine certain methods for boundary constraint
handling such as: Haung and Mohan [21] used damping scheme in particle swarm
(PSO), Xu and Rahmat-Samii [39] proposed some hybridmethods in PSO, Chu et al.
[4] proposed a method in PSO based on reducing velocity, Chu et al. [11] done a
comparative study using various boundary constraint handling methods in PSO and
Kaveh and Talatahari [25], proposed a harmony search-based method.

Recently Gandomi and Yang [17], developed an evolutionary boundary constraint
handling (EBCH) in Differential Evolution (DE) algorithm that is examined on wide
set of benchmark problems. Not only EBCH is simple and can be used in any opti-
mization algorithm, but also it is efficient and can simply outperform the other exist-
ing methods. In the current study, EBCH method adopted on CS algorithm and the
results are compared to original CS that is used classical absorbing scheme.
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Post process results and visualization

Discovering alien eggs with Pa probability and Produce new solution by Biased Random Walk

Replace the component outside of solution domain with a new produced one using evolutionary boundary 

constraint handling method.

Update current population position by Levy Flight and produ ce new Nest (solution)

Evaluate Objective Function and find best solution

K=K+1

K=1

Generate n initial solution in feasible solution boundary

Initialize the necessary parameters: number of Nest (n), Pa discovering 

alien eggs probability, Maximum iteration (Mi)

Evaluate objective Function and find best Nest and its Cost value

Replace the component outside of solution domain with a new produced one using evolutionary boundary 

constraint handling method.

Evaluate Objective Function and find best 
solution

K=K+1

K<Mi

Fig. 3 The CS_EB flowchart

In this method, if a component goes outside of boundaries, this component replace
with new one produced using the following mutation operator:

f (zi → xi ) =
{

α × lbi + (1 − α)xb
i i f zi < lbi

β × ubi + (1 − β)xb
i i f zi > ubi

(19)

in which xb
i is the related component of the best solution, and α and β are random

number between 0 and 1.
Representation of the CS_EB algorithm is presented in Fig. 3.
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4 Numerical Simulation

In order to compare proposed algorithmefficiency, five soil slope examples are solved
and final results are reported. In this chapter for evaluation of Factor of Safety number
of slices is considered equal to 25. Furthermore because of the chaotic operation of
optimization algorithm all the examples run about 20 times and results are reported
by the best value, mean and standard deviation to illustrate the performance of every
algorithm more efficient. The CS parameters used in this study are shown in Table1.
Number of nests is considered 50 and number of iteration is equal to 3000, therefore
the number of function evaluation will be 15,000 times.

4.1 Case I

The first case is a homogeneous slope with an effective friction angle φ of 10◦, an
effective cohesion intercept c of 9.8kPa, a unit weight γ of 17.64kN/m3 selected
from the work by Yamagami and Ueta [40]. The geometry of slope and slip surfaces
are as Fig. 4.

This example was analyzed byYamagami andUeta [40] for the first time, and then
it was analyzed in the works of Greco [20] by pattern search and the Monte-Carlo
methods, Solati and Habibagahi [37] by genetic algorithm, Kahatadeniya et al. [23]
by ant colony optimization (ACO). In the current study this example solved once
again by using CS and CS_EB to explore these algorithms efficiency. As shown in
Table1, the resulted FOS values from CS and CS_EB are equal, but the lower value
of standard deviation of CS_EB proves better performance of this algorithm respect
to the original CS. Table2 shows the previous studies in which FOS was computed.

4.2 Case II

The second case is selected from the work by Arai and Tagyo [1]. In this case, a
weak soil layer is stated between two stronger ones. The soil properties, geometry
of slope and slip surfaces are as Table3 and Fig. 5, respectively.

This example is surveyed in the literature, for example Arai and Tagyo [1]
used Janbu’s simplified method in combination with the conjugate gradient method,

Table 1 Values of FOS comparison for Case I

Optimization algorithm CS CS_EB

Mean 1.3206 1.3206

Best 1.3206 1.3206

Standard deviation 2.08E-08 1.05E-08
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Fig. 4 Slope geometry and critical slip surface for Case I

Table 2 Previous studies computed FOS for Case I

References Optimization algorithm FOS

Yamagami and Ueta [40] Broyden–Fletcher–Goldfarb–Shanno (BFGS) 1.338

Yamagami and Ueta [40] Davidon–Fletcher–Powell (DFP) 1.338

Greco [20] Pattern search 1.326–1.330

Greco [20] Monte Carlo 1.327–1.333

Malkawi et al. [29] Monte Carlo 1.238

Solati and Habibagahi [37] Genetic algorithm 1.380

Jianping et al. [22] Genetic algorithm (spline slip surface) 1.321

Jianping et al. [22] Genetic algorithm (line slip surface) 1.324

Kahatadeniya et al. [23] Ant colony optimization 1.311

Kashani et al. [24] Imperialistic competitive algorithm 1.3206

Table 3 Soil Layers properties for Case II

Layer γ (kN/m3) c(kPa) φ (◦)
1 18.82 29.4 12

2 18.82 9.8 5

3 18.82 294.0 40

Sridevi and Deep [38] and Malkawi et al. [29] applied the random search technique
(RST-2) and Monte Carlo method and Khajehzadeh et al. [27] utilized PSO and
MPSO optimization algorithms, respectively.
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Fig. 5 Slope geometry and critical slip surface for Case II

Table 4 Values of FOS comparison for Case II

Optimization algorithm CS CS_EB

Mean 0.409 0.392

Best 0.391 0.391

Standard deviation 0.0319 0.00016

In the present study CS and CS_EB are used to solve this problem and their
results are presented in Table4 by minimum FOS, mean and standard deviation. In
order to compare these algorithms results with previous studies all the results are
summarized in Table5. In this case the values of FOS are equal again and from the
SD it is concluded that the CS_EB is the best algorithm on this case among all the
past proposed ones.

4.3 Case III

The third case is a sample of more complicated slope geometry which a band of
weak soil layer is sandwiched between two strong layers borrowed fromSVSLOPE’s
manual [13] as Fig. 6. Soil layers properties are, also presented in Table6. In this case
water table is at the base of the weak layer. As shown in Fig. 6 the slip surface is laid
within weak layer. The factor of safety published by SVSLOPE’s manual was equal
to 1.26 and the one calculated here are depicted in Table7.Moreover this casewas the



352 A.H. Gandomi et al.

Table 5 Previous studies computed FOS for Case II

References Optimization algorithm FOS

Arai and Tagyo [1] Conjugate gradient 0.405

Sridevi and Deep [38] Random search technique 0.401

Malkawi et al. [29] Monte Carlo 0.401

Khajehzadeh et al. [27] Particle swarm optimization 0.393

Khajehzadeh et al. [27] Modified particle swarm optimization 0.391

Kashani et al. [24] Imperialistic competitive algorithm 0.392

Gandomi et al. [15] Particle swarm optimization 0.392

Gandomi et al. [15] Firefly algorithm 0.392

Gandomi et al. [15] Cuckoo search 0.391

Gandomi et al. [15] Levy-Flight Krill Herd 0.391

Fig. 6 Slope geometry and critical slip surface for case III

Table 6 Soil layers properties for Case III

Layer γ (kN/m3) c (kPa) φ (◦)
1 18.84 28.5 20

2 18.84 0 10

aim of study in the work done by Gandomi et al. [15] and the results are summarized
in Table8. As results show, the performance of CS is benchmarked better in this case
and CS_EB obtained a lower value for FOS.
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Table 7 Values of FOS for Case III

Optimization algorithm CS CS_EB

Mean 1.235279319 1.232020613

Best 1.226171806 1.223049725

Standard deviation 0.006388442 0.004708358

Table 8 Previous studies computed FOS for Case III

References Optimization algorithm FOS

Gandomi et al. [15] Particle swarm optimization 1.2462

Gandomi et al. [15] Firefly algorithm 1.466

Gandomi et al. [15] Cuckoo search 1.2261

Gandomi et al. [15] Levy-Flight Krill Herd 1.2237

4.4 Case IV

In this example, the dry case of slope problem proposed by Fredlund and Krahn [14]
is considered. Some researchers such as Kim et al. [28], Baker [2], and Zhu et al.
[43] solved this problem in their studies. The slope geometry, location of slip surface
and soil properties are shown in Fig. 7 and Table9, respectively.

Fig. 7 Slope geometry and critical slip surface for Case IV
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Table 9 Soil layers properties for Case IV

Layer γ (kN/m3) c (kPa) φ (◦)
1 19.22 28.73 20

2 19.22 0 10

Table 10 Values of FOS comparison for Case IV

Optimization algorithm CS CS_EB

Mean 1.341315805 1.33212733

Best 1.323208687 1.308168866

Standard deviation 0.011051164 0.013925208

Table 11 Previous studies computed FOS for Case IV

References Optimization algorithm FOS

Fredlund and Krahn [14] – 1.373

Zhu et al. [43] – 1.381

Kashani et al. [24] Imperialistic competitive
algorithm

1.3625

Abrief comparison of present study and previous results are presented in Tables10
and 11, respectively. From the results it is obvious that the CS and CS_EB reach the
best solution, and CS_EB does even better than CS.

4.5 Case V

For the last case study, to investigate algorithms efficiency more accurately, more
complicate example is selected from the literature of Zolfaghari et al. [45]. The soil
parameters and slope geometry and slip surfaces are shown in Table12 and Fig. 8,
respectively.

Table 12 Soil layers properties for Case V

Layer γ (kN/m3) c (kPa) φ (◦)
1 19.00 15.0 20

2 19.00 17.0 21

3 19.00 5.00 10

4 19.00 35.0 28
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Fig. 8 Slope geometry and critical slip surface for Case V

Table 13 Values of FOS comparison for Case V

Optimization algorithm CS CS_EB

Mean 1.11585765 1.0731675

Best 1.0635 1.0502

Standard deviation 0.034966155 0.025047471

This problem is analyzed in various studies such as: Zolfaghari et al. [45] by
using genetic algorithm, Cheng et al. [9] by using the artificial fish swarm algorithm
(AFSA), Kahatadeniya et al. [23] by using the ant-colony method and Cheng et al.
[10] by using HSPSO. The present study and latest studies results are summarized
in Tables13 and 14, respectively.

As a result, because of presence of thin weak soil layer between two strong ones
multiple strong local minima have occurred and ACO and GA fail to converge to
a very good solution. The computed FOS by CS and CS_EB demonstrate that the
present study provides a good solution in this example. Because of lower value of
FOSbyCS_EB, it is concluded that CS_EB is the best algorithm among other utilized
algorithms.
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Table 14 Previous studies computed FOS for Case V

References Optimization algorithm FOS

Zolfaghari et al. [45] Genetic algorithm 1.24

Cheng et al. [9, 10] Simulated annealing 1.2813

Cheng et al. [9, 10] Genetic algorithm 1.1440

Cheng et al. [9, 10] Particle swarm optimization 1.1095

Cheng et al. [9, 10] Simple harmony search 1.2068

Cheng et al. [9, 10] Modified harmony search 1.1385

Cheng et al. [9, 10] Tabu search 1.4650

Cheng et al. [9, 10] Ant colony optimization 1.5817

Khajehzadehet al. [26] Gravitational search algorithm 1.0785

Kashani et al. [24] Imperialistic competitive algorithm 1.0642

Gandomi et al. [15] Particle swarm optimization 1.1148

Gandomi et al. [15] Firefly algorithm 1.303

Gandomi et al. [15] Cuckoo search 1.0635

Gandomi et al. [15] Levy-Flight Krill Herd 1.0579

5 Conclusion

Effect of evolutionary boundary constraint handling scheme is assessed in com-
plex geotechnical problems. This scheme is one of the recently proposed methods
to implement boundary limitation on optimizations algorithms such as slope sta-
bility optimization problems. In this study a metaheuristic optimization algorithm
that traditionally uses absorbing scheme is adopted to optimize five slope stability
benchmark problems then their results are compared to the results with evolutionary
boundary constraint handling scheme. The obtained results, such as best FOS values
and standard deviation, using the classical and new proposed method prove the effi-
ciency of the new method on making better the location of critical slip surface. Refer
to the case studies; in the cases that obtained FOS are nearly equal, Case I and Case
II, the lower value of standard deviation is belong to CS_EB and from Case III to V,
the lower values of FOS yield by CS_EB. Altogether, the results declared the current
proposed algorithmCS_EB are capable to reach better solution than original CS. Not
only this new boundary constraint handling method is easy to implement, but also
it is efficient. This means evolutionary boundary constraint handling can make the
optimization algorithm performance better without complex action like hybridizing.
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Abstract Simulation-based design optimization relies on computational models to
evaluate objective and constraint functions. Typical challenges of solving simulation-
based design optimization problems include unavailable gradients or unreliable
approximations thereof, excessive computational cost, numerical noise, multi-
modality and even the models’ failure to return a value. It has become common
to use the term “blackbox” for a computational model that features any of these
characteristics and/or is inaccessible by the design engineer (i.e., cannot be modified
directly to address these issues). A possible remedy for dealing with blackboxes is
to use surrogate-based derivative-free optimization methods. However, this has to
be done carefully using appropriate formulations and algorithms. In this work, we
use the R dynaTree package to build statistical surrogates of the blackboxes and the
direct search method for derivative-free optimization. We present different formula-
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Direct Search (MADS) algorithm using a surrogate management framework. The
proposed formulations are tested on two simulation-based multidisciplinary design
optimization problems.Numerical results confirm that the use of statistical surrogates
in MADS improves the efficiency of the optimization algorithm.

1 Introduction

We consider the nonlinear and constrained design optimization problem

min
x∈X

f (x)

subject to cj(x) ≤ 0, j ∈ J,
(1)

where J = {1, 2, . . . , m} and X is a subset of Rn typically defined by bound con-
straints. The objective and constraint functions f and cj, j ∈ J , map Rn to R ∪ {∞},
and in simulation-based engineering design most, if not all, of them are evaluated
using blackboxes. A blackbox is a computational or simulation model whose inter-
nal structure is unknown and/or inaccessible. Typical challenges associated with
blackboxes include numerical noise, multi-modality, high computational cost, and
failure to return a value, e.g., when the simulation crashes. However, the most salient
feature of blackboxes is that gradients are unavailable and their approximations are
unreliable.

Derivative-free methods are developed to handle these issues [15] . Direct search
algorithms such as GPS [3, 40] or MADS [4] rely on the search-and-poll paradigm.
The search can implement any strategy (including none) to evaluate a finite number
of trial points. It typically favors global exploration of the design space and allows
users to implement any appropriate method that exploits their knowledge of the
problem. If the search fails to find an improvement, the poll proposes trial points
around the incumbent solution according to rigorous conditions. These points can
then be evaluated by the blackbox in any order, and the evaluation can be interrupted if
an improved solution is found. The poll ensures global convergence of the algorithm
toward a local optimum.

Surrogate-based optimization methods construct approximations of the objective
and constraint functions using the points evaluated by blackboxes during an iterative
algorithm [7, 14, 20, 23, 26, 27, 34, 36, 38, 44]. These approximations are then
used to propose promising candidates. This implies the formulation and solution of
an optimization problem called the surrogate problem. Much effort can be devoted
to solving this problem since the computational cost of a surrogate evaluation is
negligible compared to the blackbox. These methods have proved to be efficient, but
they have mostly been used on smooth or unconstrained problems.

Our work is based on the postulation that the use of surrogates would be more
efficient if they were integrated within direct search algorithms as described in the
surrogate management framework of Ref. [8]. The search would then involve build-
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ing or updating the surrogate models and solving the surrogate problem to propose
a candidate. Simple implementations of this framework have been presented for the
unconstrained case in [8, 37] and for the constrained case in [16, 22]. However, only
the simplest formulation of the surrogate problem was considered in these imple-
mentations, namely the optimization of a model of the objective function subject to
models of the constraint functions.

The contribution of this work consists of new formulations of the surrogate prob-
lem that exploit the different capabilities of statistical surrogate modeling methods
and in particular the dynaTree library [23, 39]. Our goal is to exploit the availability
of statistical information such as the mean, the standard deviation and the cumulative
density function of the dynaTree models, which are not restricted to be continuous
or stationary Gaussian processes. Consequently, they are non-interpolating, and thus
possibly better equipped to perform robust regression when using nonsmooth data.

Seven formulations are proposed. Three of them are constrained while the others
quantify the relevance of a candidate via a single statistical criterion. Six of these
formulations emphasize the exploration of the design space, and all of them handle
nonconvex and nonsmooth constrained problems.

The paper is organized as follows. Section2 describes the MADS algorithm, the
implementation of the surrogate-based search, and the dynaTree models. Section3
presents the seven new surrogate problem formulations. Section4 compares the per-
formance of the formulations by means of two simulation-based multidisciplinary
design optimization (MDO) problems related to aircraft design. Section5 provides
concluding remarks.

2 Background: MADS and dynaTree

2.1 Mesh Adaptive Direct Search (MADS)

Mesh adaptive direct search (MADS) [4] is an algorithm for blackbox optimization
that can handle nonlinear constraints. It ensures global convergence to a solution
satisfying local optimality conditions based on the Clarke calculus for nonsmooth
functions [13]. At each MADS iteration k, trial points are evaluated on the mesh Mk
defined as

Mk = {
x + Δm

k Dz : z ∈ N
nD , x ∈ Xk

} ⊂ R
n (2)

where Δm
k is a mesh size parameter, the columns of D ∈ R

n×nD form a positive
spanning set of nD directions in R

n [30], and Xk = {x1, x2, ...} ⊂ R
n denotes the

set of already evaluated points, called the cache. MADS relies on a search-and-poll
paradigm, named after the two steps that constitute each iteration.

The search is an optional step during which several different methods can be used
to propose candidates anywhere on the mesh Mk . These methods can be heuristic
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in the sense that they can be guided by user insight into the problem at hand.
Alternatively, more systematic methods, such as genetic algorithms [21], variable
neighborhood search [5], particle swarms [42], or Latin hypercube-based design
of experiments [32] can be used during the search step. In this work, we focus on
surrogate-based search methods [8, 16, 18, 22].

The data [Xk, f (Xk), c1(Xk), ..., cj(Xk)] are used to build statistical surrogate
models of f and cj, j ∈ J , by modeling each blackbox output as a random variable.
Statistical surrogate models provide information about the mean, variance, and prob-
ability density function of the modeled random variable. In this way, we can compute
statistical measurements of the relevance of each candidate of the search step. To
emphasize the global exploration of X , we favor areas with uncertain blackbox
outputs. Using the formulations presented in this paper (Sect. 3), we find a candidate
xSP

k (where SP denotes the surrogate problem) by solving a subproblem. This candi-
date is then projected onto the current mesh Mk to preserve the original convergence
properties described in [4].

Although dynaTree predictions are piecewise linear, most of the relevance cri-
teria used in the surrogate problem formulations are not. Moreover, the use of these
formulations is not limited to dynaTree: any modeling method able to provide the
necessary statistical information can be used. Surrogate models may have some of
the typical properties of a blackbox. In particular, they may fail to return a value or
derivatives may not be available. For these reasons, we solve the surrogate problem
using a direct search algorithm as well. Specifically, we use MADS both for solv-
ing the original blackbox optimization problem and the surrogate subproblem of the
search step in a nested optimization manner.

During the poll step, a set of candidates, called the poll set, is defined as Pk =
{xk + d : d ∈ Dk}, where Dk is a set of polling directions based on combinations of
directions in D. The poll size parameter Δ

p
k = max

d∈Dk

||d|| defines the maximum norm

of the directions of Dk . MADS controls Δm
k and Δ

p
k so that Δ

m
k decreases faster than

Δ
p
k , which causes the set of poll directions to grow dense in the unit sphere, once

normalized. This allows polling in all possible directions of Rn.
The set of trial pointsTk = xSP

k ∪Pk is evaluated by the blackbox opportunistically,
which means that if evaluating a point leads to an improvement, the evaluation of Tk
is interrupted. Since this strategy makes the evaluation order-critical, the relevance
criterion used in the search step is also used to sort the points in Tk . This is performed
via a filter-like mechanism described in [19].

After the trial-point evaluations,MADSupdates the poll andmesh size parameters
depending on the success of the iteration. The incumbent solution and the cache Xk
are then updated, and a new iteration begins. The optimization terminates when the
stopping criteria are satisfied, which means that the mesh size parameter is smaller
than the machine precision or the evaluation budget is exhausted. Figure1 illustrates
the complete algorithm.



Blackbox Optimization in Engineering Design … 363

Fig. 1 Optimization
algorithm

2.2 The dynaTree library

The dynaTree library [23, 39] is used in this work to build statistical surrogate
models. It is based on a Bayesian framework for parameter-free regression on non-
smooth data. From the data [X, y(X)], dynaTree provides statistical information on
y(x), namely the mean ŷ(x), the standard deviation σ̂y(x), and the cumulative density
function P[y(x) < y0],∀y0 ∈ R. Unlike Kriging, dynaTree does not consider y to
be a continuous or stationary Gaussian process. Consequently, dynaTree is a non-
interpolating method, which means that x ∈ X �⇒ ŷ(x) = y(x). Such methods are
best suited for the approximation of nonsmooth data [23, 25]. Specifically, dynaTree
implements a piecewise linear regression that allows global and robust regression in
the presence of noncontinuous data or first-order discontinuities.

This regression relies on trees. As illustrated in the one-dimensional example
(Fig. 2), a tree implements a partition of the design space X . Each interior node
implements a partitioning criterion, and each leaf represents a part ofX . In each leaf
η, a linear regression model is built using the data [Xη, y(Xη)]where Xη = X∩η. In
the one-dimensional example of Fig. 2, the plot shows 24 data points, the partitioning
of the design space, the piecewise linear prediction, and the standard deviation of
y(x). The diagram below the plot depicts the tree associated with the partition of the
interval [0, 25].

The Bayesian approach enables the computation of the likelihood L (η) of each
leaf η, which quantifies the ability of the model to fit the data in η. Then, a prior π(T)

allows us to penalize overly complicated arborescences [11, 12]. π(T) is defined by
considering that each leaf η can be split with a probability psplit(T , η) that grows
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Fig. 2 dynaTree regression on 24 data points in R

with the depth of the leaf. The prior is the likelihood of the tree in relation to this
splitting probability:

π(T) =
∏

η∈Leaves(T)

psplit(T , η)
∏

η∈Interior(T)

psplit(T , η). (3)

Finally, the likelihood L (T), which quantifies the quality of T , is defined as:

L (T) = π(T)
∏

η∈Leaves(T)

L (η). (4)

Although one tree is sufficient to build a surrogate model, dynaTree generates a
set of trees. This increases the likelihood of finding several efficient partitions and
allows more robust regression. A particle learning sequential Monte Carlo algorithm
[9, 10] adapts the set of trees to the observations, by reproducing and modifying the
trees with the best likelihood. The modifications consist of three equally probable
operations: splitting a leaf, merging two leaves, or making no change. Once the set
is built, predictions are made by averaging all the trees. The interested reader can
refer to [39] for more details.
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This method offers several advantages: the Bayesian framework can handle noisy
data and provides statistical information, while the space partitioning allows us to
refine the model in areas of interest. Moreover, the selection of the number of trees
allows us tofind a balance between accuracy and computational cost.However,dyna-
Tree is likely to be outperformed by Kriging and polynomial regression on smooth
functions (see Appendix 2.2.1). In addition, the complexity of the space partitioning
grows exponentially with the dimension of the design space. Thus, while dynaTree
can theoretically be used for any problem size, its practical use is recommended
for small to moderate size problems (not more than 10 to 20 variables depending
on problem complexity). In high or very high dimensions, other surrogate methods
such as Support Vector Machines [17] or Reduced Order Modeling [6, 31, 43] can
be used.

2.2.1 Comparison of dynaTree to Kriging and Polynomial Regression

The dynaTree method is compared here to two other surrogate modeling meth-
ods: Kriging and polynomial regression (with 9 coefficients). The comparison is
performed on 4 test functions:

y1(x) = cos(πx) (5)

y2(x) = cos(πx) + 0.2g(x) (6)

y3(x) = cos(πx)s(x) (7)

y4(x) = cos(πx)s(x) + 0.2g(x) (8)

where g(x) is a normalized centered Gaussian noise and s is defined as

s(x) =
{+1, x ≥ 0

−1, x < 0.
(9)

The models ŷi are built on 21 points regularly spaced in [−1,+1] (sampling period
of 0.1). Then the mean square error between ŷi and yi is computed on 2001 points
regularly spaced in [−1,+1] (sampling period of 0.001). Figure3 depicts the curves
of ŷi for the three modeling methods. Table1 shows the characteristics of each test
function and the means square error (MSE) for each modeling method.

The polynomial regression performs very well on the smooth and clean test func-
tion y1. It also returns the bestMSE for y2, but this error is not likely to decrease while
more data points are available, because polynomial regression is not able to refine
the model in well known area. The polynomial regression fails to fit the functions y3
and y4 due to the discontinuity in x = 0. Kriging also performs very well on y1 but is
outperformed by dynaTree as soon as the function is nonsmooth and/or noisy (y2,
y3 and y4). A comparison of surrogate modeling methods (including dynaTree) for
five-dimensional problems can be found in [39].
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Fig. 3 Comparison of different surrogate modeling methods using 4 test functions (left column:
models, right column: absolute errors)
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Table 1 Mean square errors on the 4 test functions

Modeling method

Function Properties dynaTree Kriging Polynomial

y1 Smooth Clean 0.0011 3.10−9 1.10−9

y2 Smooth Noisy 0.0183 0.0343 0.0125

y3 Nonsmooth Clean 0.0413 0.0709 0.0998

y4 Nonsmooth Noisy 0.0672 0.1047 0.1197

3 Formulations of the Surrogate Problem

The statistical information provided by the models built using dynaTree is used to
compute other measures of candidate relevance. At most1 m+1 surrogate models are
built to evaluate the objective function and the m constraints. The mean and standard
deviation of the surrogate objective and constraints are denoted f̂ and σ̂f and ĉj and
σ̂j, respectively.

3.1 Direct Surrogate of the Original Problem

The simplest surrogate formulation results from using surrogate models (in lieu of
blackboxes) to evaluate the objective and constraints of the original problem (1):

min
x∈X

f̂ (x)

subject to ĉj(x) ≤ 0 ∀j ∈ J.
(10)

This formulation can be generalized to perform exploration of the design space. In
[39], Taddy et al. propose solving unconstrained problems by sequentially solving
the surrogate problem

min
x∈X

− EI(x) − λσ̂f (x), (11)

where EI is some expected improvement function, and λ is an exploration para-
meter empirically chosen in [0, 1]. We use this concept to formulate the surrogate
problem Fσ :

(Fσ)

{
min
x∈X

f̂ (x) − λσ̂f (x)

subject to ĉj(x) − λσ̂j(x) ≤ 0 ∀j ∈ J.
(12)

1There may be situations where the properties of the objective function or some of the constraints
do not require the construction and use of surrogate models, e.g., if one of these functions is smooth
and inexpensive and has an analytical expression.
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This formulation is denotedFσ .F indicates that the objective of the surrogate problem
is based on the surrogate model of the objective function, and σ indicates that the
variance of the surrogate model is taken into account for the exploration.

Taddy et al. use the values λ ∈ {1/100, 1/10, 1} because the literature [26, 39]
considers searching with λ = 0 to be myopic. We will consider the values λ ∈
{0, 1/100, 1/10, 1}. Large values of λ imply that the search will favor candidates
with an uncertain objective, which are in the ill-explored or nonsmooth areas ofX ,
generally outside the current attraction basin. In this formulation, for λ > 0, the
feasible space is extended by the uncertainties in the constraints; the uncertainties
in the objective are considered as potential improvements of the objective. Note that
formulation Fσ (Eq. (12)) is equivalent to the problem of Eq. (10) when λ = 0.

3.2 Probability of Feasibility

Another way to handle the constraints is to use the cumulative density function
provided by the surrogate model to estimate the probability of a point being feasible.
The value P[cj(x) ≤ 0] is provided by the model and represents the probability that
the constraint cj is satisfied at x. An estimation of the probability that x is feasible is
computed by

P(x) =
∏

j∈J

P[cj(x) ≤ 0] ≈ P
[
cj(x) ≤ 0,∀j ∈ J

]
. (13)

If the constraints are statistically independent, the above approximation is exact.
Since we are considering blackbox output, it cannot be assumed that there is no
correlation between the constraints; however, P(x) is the best approximation avail-
able. It is worth mentioning that the probability of feasibility of a point can also be
estimated by building a model of an aggregate constraint h(x) and by computing
P(x) = P[h(x) ≤ 0]. Several definitions are possible:

h(x) =
∑

j∈J

max
{
cj(x); 0

}2
, (14)

h(x) = max
j∈J

{cj(x)}, or (15)

h(x) =
{
1 if cj(x) ≤ 0 ∀j ∈ J,

0 otherwise.
(16)

Aggregate constraints enable modeling feasibility by building just one surrogate
model rather than m. This can reduce the computational time and avoid the question
of the independence of the constraints. However, it also implies that fewer data con-
tribute to building the model, which makes it less accurate than multiple-constraint
surrogate models. Preliminary tests with dynaTreemodels have shown that building
one model per constraint is more efficient. Thus, we use Eq. (13) to treat the con-
straints in this study.
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This estimation of the probability of feasibility can be used as a chance constraint,
meaning that a candidate must satisfy a constraint onP(x), regardless of its objective.
This leads to the formulation FσP of the surrogate problem

(FσP)

{
min
x∈X

f̂ (x) − λσ̂f (x)

subject to P(x) ≥ pc.
(17)

This formulation indicates that only candidates likely to be feasible will be eval-
uated. As a consequence, the candidates will remain distant from the boundary of
the feasible domain and will approach it only when σj decreases. The choice of pc

can depend on the problem size and the number of constraints. If pc is too high, the
constraint on P can be impossible to satisfy, particularly at the beginning of the opti-
mization when the constraints are uncertain. However, if pc is too low, the candidate
will rarely be in the feasible domain, leading to an inefficient search. In this study,
we choose pc = 0.5, which means that after the entire optimization run half of the
points xSP

k will be feasible, ensuring improvement of the models inside and outside
the feasible domain.

3.3 Expected Improvement

Improvement is defined by

I(x) = max{fmin − f (x), 0}, (18)

where fmin is the objective function value of the currently best feasible point [36].
In the context of global optimization, evaluating a point that does not improve the
objective is not considered counterproductive since this evaluation enhances the
information about the problem [26, 27]. Evaluating apoint that improves the objective
is a step forward in the optimization and narrows the area where a global optimum
can be found. Thus, the utility of evaluating a new point is always positive. This
principle is manifested in the definition of EI , which is considered a major relevance
criterion in global optimization [26, 27, 39]:

EI(x) = E[I(x)] =
∫ +∞

0
Iφf (fmin − I)dI, (19)

where φf is the probability density function of f , provided by the surrogate model.
The formulation described in (11) can be adapted to handle constraints:

(EIσ)

{
min
x∈X

−EI(x) − λσ̂f (x)

subject to ĉj(x) − λσ̂j(x) ≤ 0.
. (20)
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The expected feasible improvement (EFI) considers in a single scalar criterion
the objective and feasibility of a candidate [36]:

EFI(x) = EI(x) P(x). (21)

The EFI represents a tangible measure of the relevance of a candidate in the context
of constrained optimization. A promising candidate can be found by maximizing the
EFI . This leads to an unconstrained formulation of the surrogate problem:

(EFI)

{
min
x∈X

− EFI(x). (22)

Maximizing the EFI is an efficient method, but it would also be interesting to incor-
porate the exploration term proposed in (11) and used in the previous formulations:

(EFIσ)

{
min
x∈X

− EFI(x) − λσ̂f (x). (23)

The drawback of the formulationEFIσ (Eq. (23)) is that the exploration term σ̂f (x)
does not take into account uncertainties in the constraints. To address this, σ̂f (x) could
be replaced by a norm on [σ̂f (x), σ̂1(x), ..., σ̂m(x)], but the uncertainty in the value of
cj is less significant than the uncertainty in the feasibility of the candidate. Given that
the event “x is feasible” follows a Bernoulli law of probability P(x), its variance is
P(x)P(x) ∈ [0, 1/4]. Thus, we propose a measure of the uncertainty in the feasibility
(μ):

μ(x) = 4 P(x) P(x). (24)

The multiplication by four is intended to normalize μ in [0, 1]. The larger μ is,
the more uncertain is the feasibility of the candidate, which means that we cannot
predict whether the candidate is feasible. μ(x) is maximal for P(x) = 1/2 and null
for P(x) ∈ {0, 1}. Figure4 illustrates this concept for a single constraint c(x).

Using this measure, two formulations are derived. In the formulation EFIμ, the
exploration term is multiplied by μ(x):

(EFIμ)

{
min
x∈X

− EFI(x) − λσ̂f (x) μ(x). (25)

This formulation encourages a search for candidates that are uncertain both in the
objective and the feasibility. The drawback is that a promising candidate that is uncer-
tain in only one of the two measures (objective or feasibility) will not be considered.
To address this, the crossed formulation EFIC is introduced:

(EFIC)

{
min
x∈X

− EFI(x) − λ
(

EI(x)μ(x) + P(x)σ̂f (x)
)
. (26)
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Fig. 4 Probability of feasibility and uncertainty in feasibility. μ(x) is maximal for x = 4, where
ĉ(x) = 0. In the neighborhood of x = 7, despite the sharp variation in c, the feasibility is predictable,
so μ(x) is small

Thefirst part of the exploration term,EI(x)μ(x), favors candidates that have a promis-
ing objective and unpredictable feasibility. In contrast, P(x)σ̂f (x) favors candidates
with an uncertain objective and good feasibility.

4 Multidisciplinary Design Optimization Examples

The proposed formulations are tested on 2 MDO applications related to aircraft
design. These 2 problems are constrained; they may involve nonsmooth functions,
may have several local optima, and may exhibit some numerical noise. To generate
more results for the 2MDOapplications, we run a total of 100 optimizations by speci-
fying 50 different feasible starting points for each application, using Latin hypercube
sampling [32]. Thus, each formulation is tested on two sets of 50 optimization runs.
For each optimization, we allow 1000 n blackbox evaluations, but the optimization
can stop earlier if the stopping criterion for the mesh size is satisfied. The two MDO
applications have a computational time of 60ms (SimplifiedWing) and 5ms (Aircraft
Range) per evaluation on a standard desktop PC (Intel Core i7-2600, 16Gb).

The numerical results were obtained using the MADS implementation of the
NOMAD software package [1, 30] and the R dynaTree library [23] for building
the statistical surrogate models. The different formulations are compared to MADS
without a search step, and toMADSwith the use of quadraticmodels inside the search
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Table 2 List of formulations

Name (Eq.) Section Formulation λ

MADS MADS with no search [4] N.A.

Quad MADS with quadratic model [16]

Fσ (12), Sect. 3.1

{
min
x∈X f̂ (x) − λσ̂f (x)

st : ĉj(x) − λσ̂j(x) ≤ 0

λ ∈{
0, 1

100 , 1
10 , 1

}

FσP (17), Sect. 3.2

{
min
x∈X f̂ (x) − λσ̂f (x)

st : P(x) ≥ pc

EIσ (20), Sect. 3.3

{
min
x∈X − EI(x) − λσ̂f (x)

st : ĉj(x) − λσ̂j(x) ≤ 0

EFI (22), Sect. 3.3
{
min
x∈X − EFI(x) λ = 0

EFIσ (23), Sect. 3.3
{
min
x∈X − EFI(x) − λ σ̂f (x)

λ ∈{ 1
100 , 1

10 , 1
}

EFIμ (25), Sect. 3.3
{
min
x∈X − EFI(x) − λ σ̂f (x) μ(x)

EFIC (26), Sect. 3.3
{
min
x∈X − EFI(x) − λ

(
EI(x)μ(x) + P(x)σ̂f (x)

)

step as defined in [16], which is denoted “Quad.” The formulations Fσ (Eq. (12)),
FσP (Eq. (17)), and EIσ (Eq. (20)) are tested for λ ∈ {0, 0.01, 0.1, 1}. The for-
mulations EFIσ (Eq. (23)), EFIμ (Eq. (25)), and EFIC (Eq. (26)) are equivalent to
formulationEFI (Eq. (22)) for λ = 0; therefore, they are tested for λ ∈ {0.01, 0.1, 1}.
A total of S = 25 formulations are tested in this work, as summarized in Table2.

4.1 Problem Description

The Simplified Wing problem [41] involves optimizing the geometry of a wing to
minimize drag.The two disciplines involved are wing structures and aerodynamics.
This problem is smooth but has many local minima. The best objective found in this
study (for all formulations and initial guesses) is f ∗ = −16.60. The best objective
value reported in [41] is f ∗ = −16.65. The problem can be summarized as

min Wing drag
subject to Shear stress ≤ 73,200 psi

Tensile stress ≤ 47,900 psi
Sum of the weights ≤ total lift.

(27)

Two structural constraints guarantee wing integrity, and a constraint on the lift
ensures sustentation. Table3 lists the n = 7 design optimization variables, their
bounds, and the known optimal values. Five of the variables are related to the aero-
dynamics properties of the wing; the two other describe its structure.
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Table 3 Design optimization variables for the simplified wing MDO problem

Variables Bounds x∗

Lower Upper

Wing span 30 45 44.132

Root chord 6 12 6.758

Taper ratio 0.28 0.50 0.282

Angle of attack at root −1 3 3.0

Angle of attack at tip −1 3 0.718

Tube external diameter 1.6 5.0 4.03

Tube thickness 0.3 0.79 0.3

The Aircraft Range problem [28] considers the design of a supersonic business
jet by taking into account aerodynamics, structure, and propulsion. The problem is
nonsmooth and has several local optima. The best objective value found in this work
for all formulations and initial guesses is f ∗ = −3964.20. The best objective value
reported in [41] is f ∗ = −3963.98. The range of the aircraft must be maximized
while satisfying m = 10 constraints related to structure, engine, and performance.
The problem can be summarized as

max Aircraft range
subject to Normalized stress ≤ 1.09 (5 constraints)

Pressure gradient ≤ 1.04 Pa m−1

0.5 ≤ Engine scale factor ≤ 1.5
Normalized engine temperature ≤ 1.02
Throttle setting ≤ max throttle,

(28)

where the max throttle is computed based on the altitude and Mach number using
polynomial regression on Pratt & Whitney data [2]. The problem has n = 10 design
optimization variables, listed in Table4 along with their bounds and known optimal
values. Seven of them describe the wing aerodynamic properties. The others describe
the flight conditions: engine command, altitude, and speed.

4.2 Comparison Metrics

Comparisons between the formulations are performed independently on the two sets
of optimization runs using statistics of deviation from the best known solution, data
profiles and performance profiles [33].

In each set, the optimization runs are denoted p ∈ {1, ..., P}, with P = 50 for
each of the MDO problems. The dimension of the design space is denoted n. f ∗

p is
the best feasible objective value found among all formulations for optimization run
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Table 4 Design optimization variables for the aircraft range MDO problem

Variables Bounds x∗

Lower Upper

Taper ratio 0.1 0.4 0.4

Wingbox cross-section 0.75 1.25 0.75

Skin friction coeff. 0.75 1.25 0.75

Throttle 0.1 1.0 0.156

Thickness/chord 0.01 0.09 0.06

Altitude 30,000 60,000 60,000

Mach number 1.4 1.8 1.4

Aspect ratio 2.5 8.5 2.5

Wing sweep 40 70 70

Wing surface area 50 1500 1500

p. The progress of the optimization is represented by the number i ∈ {1, ..., imax} of
groups of (n + 1) evaluations, which is equivalent to the number of simplex gradient
estimates (SGEs) [33]. The formulations are denoted by s ∈ {1, ..., S}, where S = 24.

4.2.1 Statistics of Deviation from the Best Known Solution

For each formulation s, the best value of the objective for optimization run p after
i SGEs is denoted fp,s,i, which is infinite if no feasible point has been found. The
relative deviation from the best known solution is defined as

dp,s,i = min

{
fp,s,i − f ∗

p

|f ∗
p | , 1

}
, (29)

where |f ∗
p | > 0. To remove outliers, the deviation is bounded. This allows us to

compute deviation statistics.
For formulation s, the average deviation from the best known solution of all

optimization runs is defined as

dmean
s = 1

P

P∑

p=1

dp,s,imax . (30)

The maximum deviation dmax
s and the standard deviation of the deviation dstd

s are
defined accordingly. Table5 reports deviation statistics (in %) for each formulation
and for the two sets of optimization runs. In each column, the formulations that are
better (worse) than MADS or Quad are followed by the sign (+) (preceded by the
sign (−)). The best value of each column is highlighted in bold.



Blackbox Optimization in Engineering Design … 375

Ta
bl

e
5

R
el
at
iv
e
de
vi
at
io
n
(%

)
fo
r
th
e
tw
o
se
ts
of

op
tim

iz
at
io
n
ru
ns

M
D
O
si
m
p.
w
in
g.

M
D
O
ai
rc
.r
an
ge

Fo
rm

ul
at
io
n

λ
R
el
at
iv
e
de
vi
at
io
n
(%

)
R
el
at
iv
e
de
vi
at
io
n
(%

)

d
m

ax
s

d
m

ea
n

s
d

st
d

s
d

m
ax

s
d

m
ea

n
s

d
st

d
s

M
A
D
S
[4
]

N
.A
.

11
.9

2.
17

1.
87

31
.7

0.
82
7

4.
52

Q
ua
d
[1
6]

N
.A
.

8.
79

2.
09

1.
58

37
.2

0.
99
9

5.
52

Fσ
E
q.
(1
2)
,S

ec
t.
3.
1

0
3.

37
(+

)
1.
72

(+
)

0.
91
6(

+)
22
.7

(+
)

0.
59
8(

+)
3.
24

(+
)

0.
01

6.
48

(+
)

1.
82

(+
)

1.
05

(+
)

(−
)
53
.7

(−
)
1.
33

(−
)
7.
67

0.
1

3.
59

(+
)

1.
60

(+
)

0.
96
8(

+)
8.
23

(+
)

0.
23
7(

+)
1.
22

(+
)

1.
0

(−
)
13
.0

1.
90

(+
)

1.
82

(−
)
77
.6

(−
)
1.
73

(−
)
11
.0

F
σ

P
E
q.
(1
7)
,S

ec
t.
3.
2

0
4.
40

(+
)

1.
59

(+
)

1.
05

(+
)

(−
)
86
.0

(−
)
1.
76

(−
)
12
.2

0.
01

11
.0

1.
83

(+
)

1.
64

3.
86

(+
)

0.
07
73

(+
)

0.
54
6(

+)

0.
1

4.
89

(+
)

1.
89

(+
)

1.
12

(+
)

(−
)
58
.7

(−
)
1.
71

(−
)
8.
93

1.
0

4.
07

(+
)

1.
67

(+
)

0.
90
9(

+)
(−

)
84
.8

(−
)
2.
29

(−
)
12
.3

E
Iσ

E
q.
(2
0)
,S

ec
t.
3.
3

0
3.
83

(+
)

1.
72

(+
)

1.
04

(+
)

(−
)
74
.2

(−
)
1.
74

(−
)
10
.5

0.
01

3.
87

(+
)

1.
54

(+
)

0.
82

3(
+)

(−
)
91
.5

(−
)
2.
17

(−
)
12
.9

0.
1

9.
30

1.
86

(+
)

1.
48

(+
)

2.
59

(+
)

0.
06
58

(+
)

0.
37
7(

+)

1.
0

(−
)
13
.2

(−
)
2.
18

1.
80

15
.0

(+
)

0.
83
2

2.
61

(+
)

E
F

I
E
q.
(2
2)
,S

ec
t.
3.
3

0
3.
47

(+
)

1.
74

(+
)

0.
91
6(

+)
5.
18

(+
)

0.
22
1(

+)
0.
87
3(

+) (c
on
tin

ue
d)



376 B. Talgorn et al.

Ta
bl

e
5

(c
on
tin

ue
d)

M
D
O
si
m
p.
w
in
g.

M
D
O
ai
rc
.r
an
ge

Fo
rm

ul
at
io
n

λ
R
el
at
iv
e
de
vi
at
io
n
(%

)
R
el
at
iv
e
de
vi
at
io
n
(%

)

d
m

ax
s

d
m

ea
n

s
d

st
d

s
d

m
ax

s
d

m
ea

n
s

d
st

d
s

E
F

Iσ
E
q.
(2
3)
,S

ec
t.
3.
3

0.
01

6.
11

(+
)

1.
67

(+
)

1.
20

(+
)

8.
84

(+
)

0.
23
9(

+)
1.
27

(+
)

0.
1

9.
89

1.
78

(+
)

1.
52

(+
)

1.
39

(+
)

0.
02

78
(+

)
0.

19
6(

+)

1.
0

5.
80

(+
)

2.
08

(+
)

1.
02

(+
)

(−
)
72
.9

(−
)
3.
30

(−
)
14
.1

E
F

Iμ
E
q.
(2
5)
,S

ec
t.
3.
3

0.
01

4.
52

(+
)

1.
85

(+
)

0.
92
3(

+)
1.
72

(+
)

0.
08
26

(+
)

0.
35
1(

+)

0.
1

4.
44

(+
)

1.
86

(+
)

1.
19

(+
)

3.
74

(+
)

0.
09
51

(+
)

0.
54
5(

+)

1.
0

4.
00

(+
)

1.
80

(+
)

1.
06

(+
)

(−
)
60
.6

(−
)
1.
30

(−
)
8.
57

E
F

IC
E
q.
(2
6)
,S

ec
t.
3.
3

0.
01

4.
60

(+
)

1.
79

(+
)

1.
02

(+
)

3.
53

(+
)

0.
07
06

(+
)

0.
49
9(

+)

0.
1

6.
39

(+
)

1.
82

(+
)

1.
17

(+
)

(−
)
50
.3

(−
)
1.
09

(−
)
7.
11

1.
0

9.
92

1.
89

(+
)

1.
47

(+
)

(−
)
90
.1

(−
)
1.
94

(−
)
12
.7

Fo
rm

ul
at
io
ns

th
at
ar
e
be
tte
r
(w

or
se
)
th
an

M
A
D
S
or

qu
ad

ar
e
fo
llo

w
ed

by
th
e
si
gn

(+
)
(p
re
ce
de
d
by

th
e
si
gn

(−
)
).
T
he

be
st
va
lu
e
in

ea
ch

co
lu
m
n
is
hi
gh

lig
ht
ed

in
bo

ld



Blackbox Optimization in Engineering Design … 377

4.2.2 Data and Performance Profiles

Data and performance profiles [33] allow the comparison of optimizationmethods on
a set of runs for the same problem using different parameters (such as initial guess)
and/or different problems. Instead of considering the mean (or other usual statistical
metrics) of the objective, they consider the ratio of runs to meet a given precision τ .
As an example, in an engineering design situation, this precision may be required
to consider the design as admissible or of practical use. Thus, data and performance
profiles express the ratio of solved problems, regarding to a precision τ .

This ratio, for formulation s, after i groups of (n + 1) evaluations and for a given
precision τ is defined as

rs,i(τ ) = 1

P
size

{
p ∈ {1, ..., P} : dp,s,i ≤ τ

}
, (31)

where τ represents the tolerance on the deviation dp,s,i. If the tolerance decreases, the
number of optimization runs p satisfying the condition dp,s,i ≤ τ will also decrease.
For a given τ , the proportion rs,i(τ ) varies depending on the formulation s and on the
number i of SGEs. As the optimization proceeds, the proportion is likely to increase
since more evaluations are performed. For a given τ and i, rs1,i(τ ) > rs2,i(τ ) means
that formulation s1 yields better results than s2. In each profile, the proportion rs,i(τ )

is plotted for several formulations s in order to compare them.
In the data profiles, the value of i varies in order to compare the formulations at

various times of the optimization. The tolerance τ is fixed and can take the values
{10−1, 10−3, 10−7}. Each curve in the profile represents the function i → rs,i(τ )

for a formulation s. The x-axis specifies the number i and the y-axis indicates the
ratio rs,i(τ ). On a graph showing several data profiles, a higher curve indicates a
more successful optimization method for a given number of blackbox evaluations.
It is possible that one method leads in the beginning of the optimization and that
another method (e.g., a method focusing more on exploration) becomes better as the
optimization progresses.

In the performance profiles, τ varies in order to compare the formulations for
various tolerances. Theprogress of the optimization is fixed at i = imax,which enables
a comparison of the formulations in terms of performance. The tolerance τ varies
in [10−7, 10−1]. Each curve in the profile represents the function τ → rs,imax (τ ) for
a formulation s. The x-axis represents the tolerance τ . As in the data profiles, the
y-axis indicates the proportion rs,i(τ ). A higher curve on a graph represents a more
successful optimization method for a given tolerance. It is possible however, that a
method has the best ratio for small tolerances but is surpassed by other methods for
large tolerances.

These profiles are linked since rs,imax (τ ) appears both at the end of the data profile
for the precision τ and in the performance profile at abscissa τ .

Given the number of formulations presented, the profiles can be displayed in a
visually meaningful manner only for a small number of formulations. Therefore,
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Fig. 5 Data and performance profiles for the simplified wing MDO problem. MADS and Quad are
used as a reference; EIσ , λ = 0.01, and EIσ , λ = 1.0, are the formulations with the best and worst
mean deviation, respectively

for each set of optimization runs, the data and performance profiles are plotted for
MADS, Quad, and two formulations: the best and the worst according to the mean
deviation dmean

s (Figs. 5 and 6).

4.3 Discussion

If the stopping criteria are met, the optimization algorithm stops before the budget of
evaluations is consumed. On the two sets of optimization runs, the mean number of
SGEs per run is 615, and 416, respectively. We observe a slight negative correlation
(−4, and −6% on the two sets) between the mean deviation of a formulation s and
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Data profile, τ = 10−1
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Fig. 6 Data and performance profiles for the aircraft-range MDO problem. MADS and Quad are
used as a reference; EFIσ , λ = 0.1, and EFIσ , λ = 1.0, are the formulations with the best and
worst mean deviation, respectively

the mean number of SGEs. This illustrates the need to explore the design space: if
no mechanism enables a search for a better solution outside the current attraction
basin, the algorithm may converge to a local optimum.

The statistical formulations exhibit a significant advantage for the simplified-
wing MDO runs. All but one of the formulations yield a smaller deviation than that
of MADS and Quad. Most formulations provide a reduction of more than 10% in
the mean deviation. The data and performance profiles show that Quad outperforms
MADS for large tolerances, but the opposite occurs for small tolerances. Similarly,
if we consider the best and worst statistical formulations according to the mean
deviation, formulation (EIσ, λ = 0.01) outperforms (EIσ, λ = 1) for large
tolerances, and conversely for small tolerances.
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The steep curves between τ = 10−1 and τ = 10−3 in the performance profile of
Fig. 5 illustrate the existence ofmultiple localminima. Since the problem is not noisy,
if the algorithm finds the proper attraction basin, it can quickly reach an accuracy of
10−7. Otherwise, it is unlikely to reach a deviation smaller than 10−3. There is no
variation in the proportion of solved problems below τ = 10−4.

Finally, for the aircraft-range MDO runs, the mean and maximum deviations
yielded by the statistical formulations can be up to three times higher than that of
MADS or Quad. However, some formulations are very efficient: 10 formulations are
better than MADS and Quad, 6 formulations reduce the deviation by five or more,
and (EFIσ , λ = 0.1) divides the maximum deviation by 22 and the mean deviation
by 29. This discrepancy is caused by a few underperforming runs which fail to find
the attraction basin of f ∗ and impact negatively the max and mean deviation. The
ratio of runs that find the proper attraction basin can better be described with data
and performance profiles. For the data profiles in Fig. 6, (EFIσ , λ = 0.1) shows
a significant advantage: for τ = 0.1, a proportion of 100% is reached in less than
100 SGEs. The worst formulation, (EFIσ , λ = 1) , is outperformed by MADS and
Quad for τ = 10−1 and τ = 10−3 but performs better for τ = 10−7. The data profile
with τ = 0.1 shows that 94% of the runs of (EFIσ , λ = 1) found the attraction
basin of f ∗, which is not far from (EFIσ , λ = 0.1)(100%), MADS (98%) and Quad
(96%). This illustrates the efficiency of a robust regression on noisy functions. In
this problem, the statistical formulations show a significant advantage over MADS
and Quad.

Based on the results of these numerical experimentations, it appears that mild
values of λ (0.01) should be usedwith formulationsEFIσ (Eq. (23)),EFIμ (Eq. (25))
or EFIC (Eq. (26)) to balance global exploration and computational time.

5 Concluding Remarks

This work introduced seven novel problem formulations for using statistical surro-
gates and theMADSderivative-free optimization algorithm for blackbox engineering
design. These formulations take advantage of the statistical features of the surrogate
and emphasize the exploration of the design space. The presented surrogate manage-
ment framework formulations can be usedwith any direct searchmethod based on the
search-and-poll paradigm. They have been implemented using the dynaTree library
to build the statistical surrogate models, and were tested on 2 simulation-basedMDO
problems. They generally perform as good as or better than existing formulations
but seem to exhibit significant advantages when used to solve nonsmooth, noisy and
nonconvex problems.

Thework emphasizes the appropriate use of statistical surrogatemodels during the
search step of MADS. However, the presented formulations can be employed in any
surrogate-based optimization method, for example search-and-poll methods [8] or
EGO (Efficient Global Optimization) [26]. Similarly, the surrogate modelingmethod
used in this work (dynaTree) can be replaced by any other modeling method that
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provides the necessary statistical information: predictive mean, predictive variance
and probabilistic distribution. Suitable methods include Kriging [29], Gaussian
Processes [35] and Treed Gaussian Processes [22, 24]. Non-statistical surrogates
cannot be used with these formulations.

In futurework, the surrogate search could be improved by updating the exploration
parameter λ depending on the result of the search and on the smoothness of the
blackbox outputs. A similar strategy could be applied to the parameter pc involved
in the chance constraint of formulation FσP (Eq. (17)). The correlation between the
constraints could be analyzed to provide amore accurate estimation of the probability
of feasibility. Further experimentationsmay allow to build a decision process to chose
the most promising formulation depending on the characteristics and features of
different problems and applications. Finally, wewould like to note that the integration
of the dynaTree statistical surrogate modeling tool with the MADS algorithm will
be available in a future release of the free NOMAD software package [1, 30].
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Life Cycle Analysis and Optimization
of a Steel Building

G.K. Bekas, D.N. Kaziolas and G.E. Stavroulakis

Abstract The present study seeks to couple the problem of the structural optimiza-
tion of building frames,with that of the optimization of design options for their energy
efficiency. The objective function is a cost function that takes into account both the
structural cost and energy performance along the whole life of the building. Conse-
quently, the following design parameters are involved: insulation thickness, wall and
window insulation profile, window sizes, heating and air conditioning system sizing,
sizing of steel cross-sections, as well as parameters related to the life cycle of the
building. Modeling is based on acceptable from national and European regulations
procedures. Optimization is solved using evolutionary algorithms. The optimization
problem is implemented on a steel office building (10 × 15m), in Chania, Crete,
at the south part of Greece. This is a first attempt to combine Life Cycle Cost and
Optimization with classical Structural Optimization for steel structures. Depending
on the requirements from the users of the building further evaluation using building
energy management system (BEMS) for the intelligent operation and management
of heating, ventilation and air-conditioning (HVAC) may be performed.
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1 Introduction

The total life cycle cost of a specific system depends on the most critical components
of the system. The most important parameters that are usually examined in life cycle
cost problems are the following [1, 2]:

• Construction costs
• Maintenance costs
• Operation costs
• Remaining cost at the end of the structure’s expected life cycle.

The formula below is a generalized approach for a system’s total life cycle cost
(Eq. 1):

LCC = C + PVRECURRING − PVRESIDUAL-VALUE (1)

Where:
LCC is the total life cycle cost.
C is the year 0 construction cost.
PVRECURRING is the present value of all recurring costs (utilities, maintenance

costs, replacements, service costs etc.).
PVRESIDUAL−VALUE is the present value of the residual value at the end of the

examined life cycle period, expressed at the reference year. The residual value is
either considered to be equal to zero or it can be calculated through the following
formula (Eq.2):

PVRESIDUAL−VALUE = Subsystem’s initial value∗(Current year)/( Subsystem’s total

life cycle (in years))∗Factor accounting for the inflation rates (2)

Nevertheless, since in optimization problems the above formula generally has little
practical importance, the present study will neglect the residual values in its opti-
mization calculations.

In order for the life cycle cost of a specific building to beminimized, it is important
to determine -during its design and construction stage- the subsystems that affect its
life cycle cost with the view of taking optimal design decisions.
In general, the following subsystems have a considerable impact on the life cycle
cost of a specific building [3]:

• Building Envelope (insulation profiles, shading systems, glazing, roofing etc.)
• Mechanical and Energy Systems (use of photovoltaic panels or alternative sources
of energy, ventilation systems, water distribution systems)

• Structural Systems (selection of appropriate frame materials, sizing of the frame
components)
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• Siting (landscaping and irrigation-related design decisions).
• Electrical Systems (lighting sources and control, distribution)

For typical cases of buildings in Greece, practical experience as well as data
derived from statutory sources in building construction cost analysis studies have
shown that the most critical subsystems that affect its total whole life cost are those
related to its structural and energy performance.

These subsystems also interact with one another as the building frame affects its
energy performance and the insulation plays a role on the frame’s structural design
loads. Furthermore, the other subsystems such as the water distribution systems,
landscaping options, electrical systems constitute an optimization problem that can
be examined separately.

Apart from that, it is also necessary to consider the average life cycle of the
above mentioned subsystems in order to predict any potential replacements that may
occur during the examined life cycle period. According to various sources (Technical
Chamber of Greece, Stanford university, CIBSE [4]), the average life cycle of the
examined building components is as follows:

• Structural steel: 80years (lifetime)
• Building Exteriors, Doors, and Windows: 80years (lifetime)
• EPS insulation profiles: 100years (lifetime)
• Mineral wool insulation profiles: 50years
• HVAC systems: 15–20 years

Critical information about the building subsystems’ service lives as well as their
maintenance rates can also be found in the following software: ATHENA, BEES,
Boustead, GaBi, SIMAPRO [5]. The purpose of this information is to reflect what
wouldmore likely happen in an average situation. It ismeaningful to note that the rates
are dependent on the geographic location of the building. In such software there is also
provision for various scenarios of life cycle design decisions reflecting combinations
of different scores of environmental friendliness and economic efficiency.

The methodology proposed in this paper can be extended to cover buildings made
of timber or reinforced concrete material and combinations of them. The interaction
between structural optimization and energy performance, in view of the whole life
cycle analysis, have not been studied in other sources and seems to be an interesting
and useful investigation.

2 Methodology

In terms of their contribution to total life cycle cost of typical building, the most
important subsystems are the structural systems and the systems related to the energy
design of a building. These ones can also be optimized from the early stages of the
design of a building.
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In order to test the capacity of software to optimize these subsystems together, it
was decided to develop an algorithm unifying the structural and energy performance
optimization of a building. This algorithm would also be one of the first published
attempts to optimize the energy performance of buildings according to KENAK; the
recent Greek code for the energy design of buildings, which is fully compatible with
European codes [6, 7].

At first, a market research took place in an attempt to discover average, real-
life cost figures of the subsystems that would be used in the algorithm. The market
research took into consideration the costs of the following building components:

• Metallic wall or roof panels.
• EPS or mineral wool insulation of various thicknesses.
• A+++ or A energy class air-conditioning systems.
• Structural steel cost per kg.
• Double and triple-glazed aluminum windows (with regular or low-e values).

In order to save computational time and unify parameters that have an impact on
each other and correlate the energy performance parameters with the resultant cost,
curve-fitting and multiple linear regression has been used. The cost functions below
are some of the ones that were used in the algorithms and they are demonstrated in
order for the reader to be able to understand the logic behind that idea:

costwindowseast = (218.376 - 38.931*Uwineast +
47.888*ggl)*Awineast
costinsulationwallwest = (5.603* Uwwestˆ-1.21)*Awwest

(mineral wool)
costAC = -3461.45 + 172.5595*Ptherm + 190.222*SEER +

674.565*SCOP (A energy class air conditioning systems)

The correlation results revealed (basing any judgment on the computed R-squared
values of the cost functions that were produced through multiple linear regression
[Bekas Ph.D., in preparation]), a relatively high degree of correlation implying a
logical relationship between cost and critical energy performance parameters. The
use of other methods of data fitting such as neural networks could also be an effective
alternative for the purpose of creating cost functions. Furthermore, the following
scenarios are examined, for a life cycle period of 10 or 30years:

Scenario 1:
-Mineral wool insulation profiles with A energy class A/C as HVAC system.

Scenario 2:
-EPS insulation profiles with A energy class A/C as HVAC system.

Scenario 3:
-EPS insulation profiles with A+++ energy class A/C as HVAC system.
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3 Optimization Procedure

After a finite element analysis, the building frame components were optimized along
with the following subsystems:

The steel frame cross-sections were modeled as discrete variables reflecting care-
fully selected predefined choices of cross-sections (In terms of the programming
approach that was used in the algorithms, the characteristic dimensions b, d, tw, tf
of each cross-section, derive from a multiple-if algorithmic structure that associates
each variable to the steel cross-section characteristic dimensions) [8].

• U-values of floor (the U-value measures the performance of a building element in
terms of heat transfer; it is assumed that the building floor has a reinforced concrete
slab (of 20cm thickness) and below that a u-value results from the optimization
procedure).

• U-values of walls (each orientation was examined separately).
• U-value of roof.
• Area of windows (south elevation).
• Area of windows (all other elevations; each orientation was examined separately).
• ggl value.
• Power of heating system.
• Power of cooling system.
• SCOP (Seasonal coefficient of performance of the thermal system).
• SEER (Seasonal coefficient of performance of the cooling system).

4 Constraints

The algorithm that was developed took into account the following constraints:

• Stress constraints were imposed on the steel frame cross-sections [8].
• The power of the heating system should be greater than the result of following
formula that is used for the sizing of heating systems by the Greek specifications.

P thermalsystem > 2.5 × Um× A ×�T
(Where: Um is the average u-value of the exposed (to the atmospheric air) building

envelope, A is the total area of the exposed building envelope, �T is a temperature
difference used for the sizing of the thermal system and is increased through the
multiplication by a coefficient that co-estimates losses etc.)

• The same should apply for the air conditioning system, whose power (in kilowatts)
must be sufficient for the most adverse day of the summer (21st of July) [9].

• All the components of the building envelope should have acceptable lower and
upper limits of u-values. Therefore:
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– U-values of walls:
0.20 < Uwalls < 0.60

– U-value of the floor:
0.20 < Ufloor < 1.20

– U-value of the roof:
0.20 < Uroof < 0.50

• The overall average u-value of the building should be lower than what is required
by the relevant specification (KENAK) [6, 7].

• The window u-values should be realistic and therefore they should not be lower
than what can be encountered in the market.

• The seasonal coefficients SCOP for the heating system and SEER for the air-
conditioning system should represent the upper and lower limits that are encoun-
tered in the Greek market.

• The total window area in themain elevation (therefore, the south oriented elevation
with an acceptable deviation equal to plus or minus 30 degrees (±30circ)) of
the building should be sufficiently big. Despite the fact that this consideration is
generally a choice dependent on the architectural designer, for the current building
it was decided that 45% of the total window area should have south orientation.

• The total area of the buildingwindows should ensure sufficient natural illumination
and ventilation. According to the Greek building codes, this area should represent
at least 10% of the total area of the building.

• The ggl values (hence, g values multiplied by 0.75; therefore reduced due to the
contribution of the window frame that was considered to approximately occupy
25% of their total area) of windows should have a value between 0.29 and 0.55.

5 Model

The building that was used in the simulation is a single-storey steel building located
on Chania, Crete. A plan view of the building -which has a 10 × 15m rectangular
shape, is shown below (Fig. 1).

At first it was assumed that the building will be used as an office building and this
influenced the considerations that were used in the calculations (thermal or cooling
loads generated by the theoretical population of building users, minimum required
ventilation, characteristic electrical appliances expected to be used in the building).

Apart from that, the following data were used for the optimization of energy
design of the building:

• The thermal bridges were calculated with the use of the approximate standardized
values of the national standards [6, 7].

• The outer and inner walls are made of metallic panels and their color is a nuance
of grey and the level of shading is considered to be known [6, 7].
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Fig. 1 Simplified plan view of the building

• The solar gains during the winter period (October to May) are not taken into
account in the calculation of the total thermal load. The opposite however, applies
for the summer period (May to October). The solar gains were calculated with
the use of the approximate standardized values of the national standards for the
specific geographic location [6, 7].

• Loads on the steel frame: 20.94kN/m (middle span along x-x axis, mineral wool
scenario).

• Loads on the steel frame: 10.24kN/m (side spans along x-x axis, mineral wool
scenario).

• Loads on the steel frame: 20.48kN/m (middle spans along y-y axis, mineral wool
scenario).

• Loads on the steel frame: 10.24kN/m (side spans along y-y axis, mineral wool
scenario).

• Loads on the steel frame: 18.76kN/m (middle span along x-x axis, EPS scenarios).
• Loads on the steel frame: 9.38kN/m (side spans along x-x axis, EPS scenarios).
• Loads on the steel frame: 18.76kN/m (middle spans along y-y axis, EPS scenarios).
• Loads on the steel frame: 9.38kN/m (side spans along y-y axis, EPS scenarios).
• Base temperature inside the building=25 ◦C.
• Heating Degree days (Geographic location: Chania)=2215.
• Cooling degree days (Geographic location: Chania)=218.
• Uniform building height=3m.
• Examined life cycle period in years: 10 & 30years
• Coefficient accounting for the electricity cost in Euros/kWh=0.012269.
• Illumination load per square meter: 0.05kWh/m2.
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In accordance with the relevant specifications, it was also taken into account that
the office building has an intermittent type of heating, a 5day working week and 4hr
occupancy and this consideration resulted in the selection of an appropriate correction
factor [4, 6, 7]. The heating and cooling costs derive from the energy balance of
the building (losses minus gains) [6, 7, 10] and are multiplied by the previously
mentioned coefficient that converts the energy needs (in kWh) into electricity costs.
The maintenance rates for the building are considered to be equal to 1% of its
initial value (therefore, unaffected by inflation rates) per year, with a start point five
years after its construction. As regards the HVAC systems, the maintenance rate is
considered to be equal to 2% of their initial value (unaffected by inflation rates) per
year [11]. An inflation rate with a constant value equal to 3% per year is also taken
into account in the calculation of the cost of their replacement at the end of their life
cycle (20years) [12].

As regards the heating and cooling costs, it is also possible to use the predicted
UPV values of the electricity costs 30years after the construction of the building,
however only predicted values from countries such as the USA, can be found.

The objective function is the sum of the cost of the following subsystems:

total cost = cost of insulation + Heating cost*Number
of years + Cooling cost*Number of years + cost of frame
+ cost of A/C system + cost of windows + cost of roof +
cost of walls + HVAC maintenance + general building
maintenance + cost of the floor slab

The constraints incorporated in the objective function describing the total life
cycle cost through the use of conditional penalty functions whose violation would
result in very high cost values.

6 Results and Discussion

The optimization problem is possible to be solvedwith the use of simulated annealing
andgenetic algorithms and thefirstmethod seems to constantly produce better results.

The energy performance optimization results that were produced by running sev-
eral scenarios for a life cycle period of 10 or 30years are shown in the appendix
(Tables1, 2 and 3).

As regards the optimized cross-sections of the frame components (Scenario 1):

• Middle span beams: IPE 240.
• Side span beams: IPE 200.
• Corner columns: HEB 140.
• Middle columns of the west and east elevation: IPE 300
• Middle columns of the north and south elevation: IPE 300.
• Interior columns: IPE 360.
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The optimized cross-sections of the frame components for the scenarios 2 & 3,
are as follows:

• Middle span beams: IPE 240.
• Side span beams: IPE 200.
• Corner columns: IPE 100.
• Middle columns of the west and east elevation: IPE 100.
• Middle columns of the north and south elevation: IPE 100.
• Interior columns: IPE 120.

An interpretation of the results can lead to the following conclusions:

• It seems to be a cost-effective decision to usewindow paneswith very low g values.
Nevertheless, for the examined life cycle periods of the building the triple glazed
window profiles with low g values, in no case constituted the optimal alternative.
The area occupied by the windows is every time dependent on the optimization
calculations.

• The floor generally seems to be the least important component to insulate and the
roof the most important to insulate. Furthermore, the optimal insulation thickness
of the walls slightly increases with the increase of the examined life cycle period.

• Subsystems with a high degree of homogeneity (e.g. A+++ or A energy class A/C
systems and insulation profiles where the thickness of -merely one- specific mate-
rial needs to be optimized) can be correlated with energy performance parameters
through multiple linear regression, attaining very high R-squared values. This can
save considerable computational time.

• The optimization program naturally selects larger -within reason- window areas
on the south elevation. It seems that it may be a redundant constraint to place a
lower bound on the window area of the south elevation.

• The heating and cooling requirements of the office building can be covered with
a typical 12000Btu, A/C system. The comparison of the market prices for the
current building showed that an A energy class A/C system is by 67% a cheaper
alternative in comparisonwith anA+++ energy class A/C system. It should be born
inmind that the algorithms also consider replacement of theHVACsystem20years
after the building construction [12]. It meaningful to note that the simulation logic
that was used in the algorithm considered that merely one A/C unit would be
used. Therefore, the cost function concerns only one unit of specific energy class.
Evidently, in larger buildings there is potential for different simulation approaches
and the number of the air conditioning system terminals could either be predefined
or it could be a variable of the optimization problem.

• The figure below (Fig. 2) displays several well-known upper limits of building
energy consumption levels. Level 1 is an approximate figure for current accept-
able consumption levels for buildings in Germany, level 2 stands for the Minergie
practice followed by Switzerland, levels 3 & 4 are regarded as low energy con-
sumption levels and buildings whose energy consumption is below 15kWh/m2
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Fig. 2 Well-known building energy consumption levels

are classified as passivhaus. The results showed that 10years after the construc-
tion of the building the optimal level is around 32kWh/m2, but 30years after the
construction of the building it escalates to slightly above 30kWh/m2 [13–16].

All in all, a life cycle analysis of a steel building has been performed that takes into
account energy considerations for both construction and material costs, as well as
the energy consumption during the whole life of the structure. In this sense structural
and energy optimization are combined and solved with practical global optimization
algorithms. It must be emphasized that the complexity of the model restricts the
applicability of classical, local numerical optimization algorithms.

By using the proposed model an optimal design of a new steel structure that takes
into account its energy consumption during its whole life cycle can be attempted.

The cost functions proposed here can also be used for the evaluation of several
alternative design scenarios, including the usage of different materials (for example,
timber or reinforced concrete structures).

Since almost all involved quantities are contaminatedwith uncertainties, extension
of the proposed method using fuzzy variables and fuzzy optimization seems to be
reasonable. This extension remains open for further investigation.

Acknowledgments This research has been co-financed by the European Union (European Social
Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong
Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program:
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Appendix: Results of the Optimization Calculations 1
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Optimization of Reinforced Concrete
Columns Subjected to Uniaxial Loading

Gebrail Bekdaş and Sinan Melih Nigdeli

Abstract The distance from extreme compression fiber to neutral axis (c) is
depended to combinations of axial load and flexural moment capacities of reinforced
concrete (RC) columns. Since c is depended to different internal forces, the value
of c cannot be found without assuming the final design. Thus, it can be iteratively
searched in order to find the flexural moment capacity of columns under an axial
loading. By using the presented method, the solution with the minimum cost ensur-
ingmaximum flexural moment and axial load is found. A random search technique is
explained in this chapter for optimum design of uniaxial RC columns with minimum
cost. In optimization, design of RC columns is done by considering the design rules
described in ACI 318- Building Code Requirements for Structural Concrete. The
random search technique (RST) for optimization of RC uniaxial columns is effective
on finding optimum cross-sections and reinforcement design with minimum cost.

Keywords Reinforced concrete · Columns · Random search technique ·Optimiza-
tion · ACI-318 · Cost optimization

1 Introduction

In design of reinforced concrete (RC) structures, structural members are defined
according the architectural designs. The main goal of the design engineer is to find
the solution by considering security measures given in design codes, esthetic and
comfort requirements of people and economy in material. Although the architectural
projects limit the independent design of engineer, the design is done by assuming
the design variables between these limits. Then, the assumed design is modified
according to design codes if the dimensions of the member are not suitable to carry
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out internal forces resulting from static and dynamic sources. The economy of the
design is depended to the experience of design engineers. Although the cross-section
dimensions are precisely assumed for RC members, the required reinforcement bar
can never be provided as calculated since the bars in the market are constant in
size. For these reasons, optimization is important for RC members. This chapter
represents a numerical optimization technique for uniaxial RC columns. The design
variable of RC columns such as cross-sectional dimensions and amount of steel
bars (detailed design with diameter size and numbers) are randomly searched in
the presented method for the minimum material cost ensuring the ACI-Building
Code Requirements for Structural Concrete requirements. For several RC structural
members, several optimization methodologies have been proposed. The reviews of
several studies are presented in Sect. 2.

2 Literature Survey for Optimization of RC Members

The recent approaches contain optimization of RC structures (2D or 3D) or a detailed
optimization of a member of a RC structure. Metaheuristic based methods are the
leading ones for the last 15years in search several design variables of the optimized
RC member. The following contributions to the optimization science for RC appli-
cation are given in this section.

Coello et al. employed genetic algorithm in development of an optimization
approach for RC beams [1]. Genetic algorithm is also used in the approach of Rafiq
and Southcombe for optimization biaxial RC columns [2]. Several RC member was
optimized by genetic algorithm based approach of Koumousis and Arsenis [3]. The
detailed reinforcement design of RC frame structure employing genetic algorithm
was done by Rajeev and Krishnamoorthy [4]. By employing sequential quadratic
programing technique, shape optimization of RC members was done and genetic
algorithm was employed in cost optimization by Rath et al. [5]. By considering slen-
derness of the columns, RC frames was optimized by Camp et al. by employing
genetic algorithm and the optimization process was carried out by grouping several
members of RC structures [6]. Ferreira et al. optimally designed T-shaped RC beams
according to different design codes [7].

Genetic algorithm was also combined with other metaheuristic method inspired
from natural phenomena and these hybrid algorithms have been used in the optimiza-
tion of RCmembers. A hybrid algorithm, which is combination of genetic algorithm
and simulated annealing, was used by Leps and Sejnoha for optimum design of con-
tinues beams [8]. By considering lateral equivalent static earthquake loads at the
joints, Lee and Ahn optimized RC frame by using a genetic algorithm based method
and a database including possible desing of RC members [9].

Three dimensional RC frame structure under excitation of dead, live, snow and
earthquake load was optimized by the method of Balling and Yao [10]. Ahmadkhan-
lou and Adeli proposed an optimization method with two stages for optimization of
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RC slab. The neural dynamics model [11, 12] for the optimum solution of continuous
variables and perturbation technique modify the values to practical ones were used
in the optimization method [13]. Barros et al. developed expressions for the bending
moment, steel area and ratio for singly or doubly RC beams for optimum design
[14]. Optimum cost design of pre-stressed concrete bridges were done by Sirca Jr.
and Adeli [15]. RC continuous beams were optimized by using a genetic algorithm
based method and selecting design variables from a database in the study of Govin-
daraj and Ramasamy [16]. By combining genetic algorithm and discretized form of
the Hook and Jeeves method, a hybrid algorithm was used in the optimization of RC
flat slab buildings [17]. RC frames were optimized by the genetic algorithm based
method of Govindaraj and Ramasamy [18]. Single-bay multi-story and multi-bay
single story RC frames were optimized by Guerra and Kiousis [19]. A multi objec-
tive optimization approach for RC frames was developed by Paya et al. by employing
a metaheuristic method called simulated annealing [20]. Two heuristic methods such
as random walk and descent local search and two metaheuristic methods such as the
threshold accepting and the simulated annealing based optimization was proposed
for optimization of RC frames of bridges [21].

Generally RC member optimization studies consider the minimization of the
cost. Several studies considered the value of embedded CO2 emission. Two dif-
ferent approaches using simulated annealing algorithm [22] and big bang-big crunch
optimization [23] were used for the optimization of RC frames in order to reduce
cost and embedded CO2 emission.

Gil-Martin et al. developed a reinforcement sizingdiagramapproach forRCbeams
and columns [24]. Barros et al. investigated the optimum depth and reinforcement
of RC beam in rectangular shape [25]. According to Eurocode 2, Fedghouche and
Tiliouine optimized singly reinforced T-shaped RC beams by employing genetic
algorithm [26].

Several approaches employingmetaheuristic algorithms such as simulated anneal-
ing [27, 28], harmony search [29], big bang-big crunch [30] and charged system
search [31] have been used in the optimization of RC retaining walls. The music
inspired metaheuristic algorithm called harmony search have been used in the opti-
mization of several RCmembers such as continuous beams [32], T-shaped RC beams
[33], columns [34] and frames [35]. Kaveh and Sabzi optimized RC frames by using
several metaheuristic algorithms [29]. Optimum design of RC beams were done by
Kaveh and Sabzi and big bang-big crunch was employed in their approach [36].
Rama Mohan Rao combined several algorithms such as simulated annealing and
tabu search for optimization of hybrid fiber-reinforced composite plates [37]. A ran-
dom search technique for the optimization of RC beams [38] and columns [39] was
developed. In the following section, random search technique for optimization of RC
columns is summarized.
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3 Random Search Technique for Optimum Design
of RC Columns

ARCcolumnwith a cross-sectional dimension and reinforcements can carry different
combination of axial force and flexural moment. This reason is resulting from the
change of stresses on the cross-section and location of steel reinforcements. Thus, the
distance from the extreme compression fiber to the neutral axis (c) changes according
to loading conditions. In design of RC members, a reinforcement ratio is calculated
for a constant cross-section. When the cross-section is assumed, the reinforcements
for the axial force can be found and the flexural moment capacity can be calculated
according to the value of c For the ratio of reinforcements the moment capacity may
be very different than the required one. In order to find the closest flexural moment
value to the required one optimization techniques must be used.

The presented method; random search technique is numerical algorithm which
iteratively search the best design of RC member according to design constraints,
member loadings and objectives. The objective of the optimization is explained as
material cost in this chapter. ACI-318 Building Code Requirements for Structural
Concrete [40] rules were taken into consideration.

As mentioned in the introduction section of the chapter, design engineers are
depended to architectural project. For that reason or esthetics of the building, the
cross-section dimensions are limited with the ranges. These ranges may be also
selected as practical dimensions for shortening the optimization process. Also, ranges
for steel reinforcement must be used to shorten the optimization process and consider
the supplying of the steel bars. The bar with big diameter sizes may not be found
near to the construction. For that reason, the price of the steel may increase because
of transportation costs.

Generally, concrete is a cheapmaterial comparing to steel but cost ratio of concrete
to steel may change according to the region of the construction yard. Transportation
and import costs play a great role in this factor. Also, if the travel time of the concrete
form facility to construction yard is long, the use of admixture may increase the cost
of the concrete. For that reason, numerical optimization of RCmember must be done
by considering specific conditions. Mathematic optimum result may not be optimum
for all specific conditions.

Before the random search of design variables of RC columns, several design
constants given in Table1 are defined. These design constants are length of column
(l), clear cover (cc), maximum aggregate diameter (Dmax), elasticitymodulus of steel
(Es), specific gravity of steel (γs), specific gravity of concrete (γc), yield strength of
steel (fy), compressive strength of concrete ( f ′

c), cost of the concrete perm
3 (Cc), cost

of the steel per ton (Cs). Also, loading conditions such as axial force (N), shear force
(V) and flexural moment (M) are defined. In the Fig. 1, the loading of the column is
shown.
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Table 1 Design constants of
the optimization problem

Definition Symbol

Length of column (l) l

Clear cover cc
Range of reinforcement φ

Range of shear reinforcement φv

Max. aggregate diameter Dmax

Yield strength of steel fy
Comp. strength of concrete f ′c
Elasticity modulus of steel, Es

Specific gravity of steel, γs

Specific gravity of concrete γc

Cost of the concrete per m3 Cc

Cost of the steel per ton Cs

Fig. 1 Loadings of column N

MV

bw

l
h

The ranges of design variables are also defined. The design variables are breadth
of column (bw), height of the column (h), number and diameter size of longitudi-
nal reinforcement bars in two lines (including web reinforcements) and diameter
size and distance of shear reinforcements. In Fig. 2, the design variables are shown.
Symmetrical design is done for upper and lower section of the column.

After the design constants, loadings and ranges of design variables are defined,
cross-section dimensions (bw and h) are randomly defined by considering the selected
range. For productivity of the column in the construction yard, dimensions are
assigned with productivity values which are multiple of a value. The ductile fracture
conditions given inEq. (1) and (2) are checked for randomly selected dimensions. The
first condition is a shear force criterion with two inequalities while second condition
is related with the axial capacity of columns.
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h

bw

shear reinforcement

web reinforcement

longitudinal reinforcement
line 1

longitudinal reinforcement
line 2

Fig. 2 Design variables

V <

{
0.2f ′cAc
5.5Ac

(1)

N < 0.5f ′cAc (2)

In Eqs. (1) and (2), Ac represents the cross-sectional area (bwh) of column. If
these conditions are not suitable for selected cross-section, bw and h are iteratively
randomized.

After cross-section dimension supporting ductility conditions, reinforcement
design is started. Number and diameter size of the longitudinal reinforcement are
randomly defined for upper and lower faces of column. In order to carry flexural
moment in opposite directions, the same reinforcements were used for both faces
of column. ACI-318 rules are checked for the orientation of reinforcement bars. If
needed, the reinforcements are positioned in two lines. Placement condition defined
in ACI-318 [40] for columns are shown in Eq. (3). φaverage is the average of the
diameter sizes in a line where the placement condition is checked. aφ is the clear dis-
tance between reinforcements. The reinforcements are iteratively randomized until
placement condition is satisfied.

aφ >

⎧
⎨

⎩

1.5φavarage
40 mm
4
3Dmax

(3)

In the methodology, web reinforcements are also assigned with randomization.
Also,minimumandmaximum reinforcement conditions are also checked.Reinforce-
ment ratio (ρ), which is calculated by the ratio of all longitudinal reinforcements to
cross-sectional area, must be between 0.01 and 0.06. If the limit conditions are not
satisfied, iterative randomization of reinforcements continue.

After all design variable related with axial forces are randomly assigned with a
practical value, the distance from extreme compression fiber to neutral axis (c) is
scanned for axial force capacity. Then, flexural moment capacity of random design
is found. If the flexural moment capacity is lower than the required one or more than
a defined percentage of the required value, the iterations are repeated. In the present
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method used in the optimization of the numerical example, this percentage is taken
as 100%. For every 500 iteration, it is iteratively increased with 1%.

After the random design of cross-section and longitudinal reinforcement, the
design of shear reinforcements was done. Iteratively, diameter sizes are assigned
with the values within the range and the required distance of shear reinforcement
(stirrups) are found according to nominal shear strength of concrete (Vc) and nominal
shear strength of reinforcement (Vs) given in Eqs. (4) and (5), respectively.

Vc =
√
f ′c
6

bwd (4)

Vs = Avfyd

s
(5)

Av and s represents shear reinforcement area and distance between them. d is the

effective depth of the concrete. Also, the Vs value must not exceed 0.66
√
f ′
cbwd.

In that situation, the objective function is penalized with a very big value. Also,
the calculated results are compared with the minimum shear reinforcement (Av,min)
value and maximum shear reinforcement distance (smax) defined in Eqs. (6) and (7),
respectively. The result of shear reinforcements with the minimum cost is taken into
consideration and the results modified according to Eqs. (6) and (7).

(Av)min = 1

3

bws

fy
(6)

smax

{
≤ d

4 if Vs ≥ 0.33
√
f ′
cbwd

≤ d
2 if not

(7)

After a suitable design is found, the maximummaterial cost which is the objective
function of the optimization is calculated. The objective function which is minimized
is given in Eq. (8). The parameters used in Eq. (8) are listed in Table2.

Table 2 Parameters of
objective function

Definition Symbol

Material cost of the beam per unit meter C

Gross area of cross-section Ag

Area of nonprestressed longitudinal reinforcement Ast

Area of shear reinforcement spacing s Av

Length of shear reinforcement spacing s ust
Material cost of the concrete per m3 Cc

Material cost of the steel per ton Cs

Specific gravity of steel γs
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min C = (Ag − Ast)Cc + (Ast + Av

s
ust)lγsC (8)

The objective function is calculated by repeating the optimization process for
several iteration numbers and design with the minimum cost is found. The flowchart
of the optimization methodology is given Fig. 3.

Also, the strength of material such as fy and f
′
c may taken as a design variable,

but in construction of a structure, using different material types may not be practical.
Themethodology is applied for different loading condition of axial force and flexural
moment in Sect. 4.

4 Numerical Example

The optimum design of uniaxial columns was investigated for different flexural
moment and axial force values. Design constant, shear force value (V) and ranges of
design variables used in the numerical examples are given in Table3.

In the calculations, the compressive stress block to neutral axis depthwas assumed
as equivalent rectangular. The β1 value, which is a factor relating depth of equivalent
rectangular stress block, was calculated as given in Eq. (9).

β1 = 0.85 17MPa < f ′c ≤ 28MPa
β1 = 0.85 − 0.0071428(f ′c − 28) f ′c > 28MPa

(9)

If the value of β1 is lower than 0.65, β1 is taken as 0.65. The elasticity modulus
of concrete was calculated by using Eq. (10).

Ec = 4700
√
f ′c (10)

In searching of design variables, the values of bw and h were chosen from (or
rounded to) values which are divisible to 50mm in order to produce a RC structure
member practical in construction yard. Because of constant size of steel reinforce-
ments, even integers are assigned for the diameter sizes. The optimum results of
several M-N cases (Table4) are given in Table5.

The optimum cross-section dimensions of Case 1 such as bw and h are 250 and
300mm, respectively. In this case, reinforcement positioned in one line is suitable
to carry the internal forces. Two reinforcements with the minimum diameter range
(16mm) is found for the optimum results. Also, cross-section dimensions are found
as the range minimums. For that reason, the most shear reinforcement is needed for
Case 1 since the nominal shear strength of concrete (Vc) is low for the design with
small cross-section dimensions. The total material cost of the Case 1 is 19.61$ as
seen in Table5.

In Case 2, the optimum height of the column is 450mmwhile bw is 250mmwhich
is also minimum value as found as Case 1. In order to carry more flexural moment,
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Fig. 3 Flowchart of the
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Table 3 Design constant, shear force value and ranges of design variables

Description Value

Length of column (l) 3m

Clear cover, cc 30mm

Max. aggregate diameter, Dmax 16mm

Yield strength of steel, fy 420MPa

Comp. strength of concrete, f ′c 25MPa

Elasticity modulus of steel, Es 200,000MPa

Specific gravity of steel, γs 7.86 t/m3

Specific gravity of steel, γc 2.5 t/m3

Cost of the concrete per m3 40$

Cost of the steel per ton 400$

Shear force, V 100kN

Range of web width, bw 250–400mm

Range of height, h 300–600mm

Range of reinforcement φ 16–30mm

Range of shear reinforcement φv 8–14mm

Table 4 N-M cases for numerical example

Case N (kN) M (kNm)

1 500 100

2 1000 200

3 1500 300

4 2000 400

5 2500 500

6 3000 600

h value is increasing. Longitudinal reinforcements are also found asminimum values
for allowed range. The total cost of the optimum design is 28.05$ for Case 2.

In Case 3, increase of height of the column is also seen according to previous
cases. Single line design of steel reinforcement is also possible for Case 3 in order to
position the required optimum steel reinforcements. But in Case 3, the longitudinal
reinforcements are not assigned with minimum range size.

In Case 4, the optimum height of the column is the maximum allowed value.
In that case, the reinforcements or the breadth of the column must be increase.
The breadth of the column has effective on placing more reinforcements in a line,
but using the reinforcements in two lines for a section with 300mm breadth is the
optimum solution. By the increase of the cross-section dimensions, optimum shear
reinforcement is getting lower and the distance between stirrups are increasing. The
same shear reinforcement is optimum for the last three cases (Case 4–6).
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Table 5 The optimum results of design variable

Case 1 Case 2 Case3 Case 4 Case 5 Case 6

bw (mm) 250 250 300 300 400 400

h (mm) 300 450 500 600 600 600

Bars in upper or lower section (line 1) 2�16 2�16 1�22
+1�16

1�20
+1�18

1�22
+1�20

3�20
+2�18

Bars in upper or lower section (line 2) – – – 1�20 1�20 1�16

Web reinforcement in a face – 1�16 1�16 1�18 1�16 1�16

Shear rein. diameter (mm) �8 �8 �8 �8 �8 �8

Shear rein. distance (mm) 120 190 220 270 270 270

Optimum cost ($) 19.61 28.05 36.11 46.19 55.12 67.11

For Cases 5 and 6, the cross-section is assigned with the range maximums. For
these cases, the longitudinal moments were positioned in two lines. The cost of
Case 5 and 6 are 55.12$ and 67.11$, respectively. In Case 6 comparing to Case 5,
the longitudinal reinforcements are significantly increasing because of the limit of
cross-sectional dimensions.

In the conclusion section, results for additional M-N combinations were given in
several grafts in order to discuss the results of the proposed method. The optimum
results were searched for flexural moment values between 100 kNm and 700kNm
by 100kNm differences. In that cases, five different axial force value (500, 1000,
1500, 2000 and 2500kN) were used.

5 Conclusion

The optimum cost of different M-N combinations are plotted in Fig. 4. As seen in
the graph, the optimum costs are near to each other for 400 kNm flexural moment.
This situation is also observed for flexural moment more than 400kNm, but not
for 500kN axial force. For the flexural moments below 400kNm, ACI-318 rules
are critical constraints in design. Especially for 2000 and 2500kN axial force, the
optimum costs for flexural moment between 100 and 300kNm are nearly equal to
each other.

In Fig. 5, the optimum total reinforcement ratio of longitudinal reinforcements to
cross-sectional area are plotted for M-N combinations. As seen in the Fig. 5, ranges
of design variables are more critical than the minimum required reinforcement ratio
defined as 0.01 in ACI-318 for 500kN axial force and 100kNm flexural moments.
In the cases with 500kN axial force, the optimum cost and total reinforcement ratios
are very big compared to other axial force values. Since the compressive forces are
low in the section, these forces are not so effective to reduce tensile forces resulting
from flexural moments. To carry tensile stresses, steel reinforcement bars are needed.
In most flexural moment cases of 2500kN axial force, minimum reinforcements are
optimums while big cross-sections are enough to carry compressive forces.
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By using the presented approach, optimum solutions of RC uniaxial columns
can be found for different M-N combinations. As seen in the optimum results,
cross-sectional area of column was enlarged in order to carry more internal forces.
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This situation is originated from the big cost difference of steel and concrete. The
proposedmethod can assign reinforcements in two lines in order to ensure positioning
rules about adherence between steel and concrete. Because of this ability, the opti-
mum results are ready for production in construction yards without modification. In
M-N combination with low internal forces, longitudinal reinforcements are posi-
tioned in single line. This results shows the effectiveness of the proposed method.
As a conclusion, random search technique for the optimization of RC columns is a
feasible approach.
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Abstract The success of an engineering project typically involves multiple stake-
holders beyond the designer alone, such as customers, regulators, or design com-
petitors. Each of these stakeholders is a dynamic decision maker, optimizing their
decisions in order to maximize their own profits. However, traditional design opti-
mization often does not account for these interactions, or relies on approximations of
stakeholder preferences. Utilizing game theory, we propose a framework for under-
standing the types of interactions that may take place and their effect on the design
optimization formulation. These effects can be considered as an economic uncer-
tainty that arises due to limited information about interactions between stakeholders.
This framework is demonstrated for a simple example of interactions between an
aircraft designer and an airline. It is found that even in the case of very simple inter-
actions, changes in market conditions can have a significant impact on stakeholder
behaviors and therefore on the optimal design. This suggests that these interactions
should be given consideration during design optimization.
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1 Introduction

Many modern engineered systems involve multiple stakeholders, each providing
some inputs and receiving some outputs with respect to the system. In the simplest
case, this might be a designer who determines system characteristics and a customer
who determines how to utilize the system. In more complex systems, we might also
have system operators, regulators, or suppliers. We may additionally have multiple
stakeholders within each of these groups competing with one another, for example
multiple designers each providing similar products to their customers. Each of these
stakeholders acts as a dynamic decision maker, acting and reacting based on the
decisionsmade by other stakeholders. These types of interactions can have a dramatic
effect on the success or failure of a design.

There are several methods designers currently use to attempt to understand these
interactions, mostly by attempting to uncover the preferences of other stakeholders.
Most frequently, designers use legacy information based on the types of designs
they and their competitors have produced before and the success of those designs.
A designer may also use direct communication with other stakeholders, such as via
a market study, to attempt to determine the relative importance of different perfor-
mance metrics. However, these methods are not exact, and the resulting understand-
ing of stakeholder preferences will have some error. This may be due to sampling
bias of legacy designs, extrapolation into a new design space, or in cases of direct
communication, miscommunication of preferences, either through a stakeholder’s
ignorance of their own preferences or a deliberate attempt to sway the designers’
decisions. We can consider these errors in understanding stakeholder preferences as
an economic uncertainty, directly changing a designer’s true objective function and
therefore affecting the design optimization process.

In order to understand the effects of these stakeholder interactions, we can utilize
game theory [1]. Game theory has been developed in economics as a way to model
strategic decision making between rational stakeholders, or players. Depending on
the way players interact and the information shared between them, we can arrive
at different outcomes for the same basic design problem. From the perspective of
our optimization problem, game theory allows us to adaptively update our objective
function, relating the performance characteristics of our design to designer profits,
based on our location in the design space, changes in the market, and actions of other
stakeholders. We will introduce this idea in more detail with some simple examples
in the next section.

Previous works such as Vincent [2], Rao [3], Badhrinath and Rao [4], and Lewis
and Mistree [5] have demonstrated the use of game theory for solving multidisci-
plinary design problems, but have not addressed the application of game theory to
economic uncertainty and interactions. Li and Azarm study the design of a prod-
uct [6] or product family [7] in the presence of competitive products in the market
and uncertain customer preferences, but do not model customers or competitors
as dynamic decision makers. Subrahmanyam [8] also considers the idea of market
uncertainties as affecting design optimality, but these uncertainties are taken as given
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values and are not affected by design decisions. Morrison [9] applies game theory
to a case study of fuel efficiency innovation among competing airlines, but does not
consider additional stakeholders or applications to design optimization. The present
work also draws from the ideas of decision based design [10] and value driven design
[11] as tools for explaining design value as a function of performance attributes. The
objective of this work is to reformulate a multidisciplinary design optimization prob-
lem to account for dynamic interactions between multiple stakeholders and market
changes using a game theory model with both simultaneous and sequential inter-
actions considered. We will additionally demonstrate, using an example from the
aerospace industry, why considering these interactions during design optimization
is important, and how it provides a designer with more information about design
trade-offs.

The remaining part of the work is organized as follows. In Sect. 2 we provide our
method of reformulating an optimization problem to account for different types of
stakeholder interactions. In Sect. 3, we apply this method to a simple example prob-
lem of interactions between aircraft designers and regulators. Section4 summarizes
our conclusions, some limitations of the proposed framework, and plans for future
work.

2 Problem Formulation

For the purpose of thiswork,wewill focus onhowwecan reformulate anoptimization
problem when considering the effects of the interactions between l stakeholders.
Readers interested in the principles of game theory can find more information from
introductory game theory text books such as Fudenberg and Tirole [1]. First, let us
consider a basic multidisciplinary design optimization problem formulation:

maximize
n∑

i =1

wi f i(X) (1)

s.t.g j (X) ≥ 0 f or j = 1, . . . , m

where X is our vector of design variables, fi describes the i th performance metric
of the design, wi is the weight of the i th performance metric in the optimization, and
g j describes the j th of m many design constraints

By varying the vector w in this optimization, we can calculate a set of Pareto
optimal designs for different performance values. Now consider that for each design
and set of performance values (that is, each weight vector w) we can define some
profit function for our designer,

�1(w, Y, E) (2)
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where Y describes the decision vector of the other stakeholders in the design and E
describes a set of exogenous variables not directly controlled by any stakeholders.
This function is used to transform our design performance and other stakeholder
decisions directly into the profit for the designer. Note that our designer is labeled as
the first stakeholder (Y1 = w) and there are l − 1 other stakeholders.

The decision vector Y will be determined by the other stakeholders attempting to
maximize their own expected profits, such that

Yk = argmax(�k(Yk, w, Y∼k, E)) for k = 2, . . . , l (3)

where �k describes the profit of the kth stakeholder, Yk is the decision vector of the
kth out of l many stakeholders, Y∼k and is the decision vector of the other l − 2
stakeholders.

We now have l profit functions and l decision sets. This can be thought of as l
different optimization problems, each dependent on the same decision vector for all
players, forming an overdetermined set of equations. In order to determine a solution,
we must apply a set of rules; in our case this is based on a certain game structure that
describes the amount of information shared between stakeholders and the order in
which decisions are made. Information shared between stakeholders refers to how
well each stakeholder is able to approximate the profit functions of the others. For
example, a designer may not explicitly know the profit function of their customer, but
maymake an approximation based on prior designs.Wewill also show that theremay
arise situations where one stakeholder may have an incentive to deliberately mislead
another stakeholder in order to create a more favorable situation for themselves. This
type of behavior need not be detrimental for the stakeholder being misled, and can
in some cases be advantageous for both parties.

The order of decisions may be either simultaneous, sequential, or partially both.
Sequential decisionmakingmeans one stakeholder chooses their decision vector first
and passes that decision on to the next stakeholder in the sequence. Stakeholders
moving first will approximate the reaction of each subsequent stakeholder based on
their available information about those stakeholders’ profit functions. These approx-
imated reactions are known as a best reply function [1]; that is, given that stakeholder
one chooses Y1, stakeholder 2 will maximize their expected profit by playing Y2, or
simply

Yi = ϕij(Yj, Ŷ) (4)

where ϕi j is the best reply function that relates the given Y j to the best reply Yi and Ŷ
is the vector of decisions of all the other stakeholders, some of which may be known
based on the sequence of the game, and others which require their own best reply
function to determine. Each of these can be solved recursively to determine a best
reply function for each subsequent decision maker.

We can therefore formulate our profit maximization problem for the designer
by combining Eqs. (1), (2), and (4), where the decisions of stakeholder acting in
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sequence before the designer are given as inputs, and the best reply function for
stakeholders acting after the designer act as constraints. This problem will be subject
to uncertainty in the exogenous inputs, E, as well as uncertainty due to approxima-
tions made in determining the best reply function, ϕ.

maximize �1(w, Y, E)

(X) = argmax
n∑

i =1

wif i(X) (5)

s.t. gj(X) ≥ 0 for j = 1, . . . , m

Yk = ϕk1(w, Y∼k) f or k = 2, . . . , l

In the case of simultaneous decisions, we must use the concept of a Nash equilib-
rium [1] to determine a solution. A Nash equilibrium is a point in the decision space
where no stakeholder can improve their own profit function by changing their deci-
sion vector. This means that a Nash equilibrium acts as a self-enforcing agreement
between the players. That is to say, (X, Y ) is a Nash equilibrium if and only if

�1(w, Y, E) > �1(w∗, Y, E) for all w∗ �= w, and (6)

�k(Yk, w, Y∼k, E) > �k(Y∗
k, w, Y∼k, E) f or all Y∗

k �= Yk, k = 2, . . . , l

We can find any pure strategy Nash equilibria by formulating a best reply function
for each stakeholder and solving that system of equations to determine where all the
best replies intersect. A pure strategy Nash equilibrium means a stakeholder plays
a single deterministic decision vector, while a mixed strategy means a stakeholder
randomly selects from multiple pure strategies with some predetermined probability
of each. It should be noted that there is no guarantee of a single unique Nash equilib-
rium, and equilibria can exist in both pure andmixed strategies. To solve our problem
using simultaneous decision making, we are no longer performing an optimization.
Instead, we are looking for the intersection of the surfaces defined by the best reply
functions for each of our stakeholders. These intersections represent pure strategy
equilibria, of which there may be multiple or none. In cases of multiple Nash equilib-
ria, we can sometimes eliminate some equilibria through so called refinements. For
the purposes of this work, we will present all Nash equilibria as possible outcomes,
and we will only deal with simultaneous decision making in the discrete decision
context for simplicity.

3 Example Problem

Having defined how we may formulate an optimization problem considering inter-
actions with other stakeholders, let us consider a simple example. We have two
stakeholders, an aircraft designer and builder and their customer the airline. Both are
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monopolists, meaning they face no competition. We assume that the designer leases
aircraft to the airline at a per flight cost that is fixed, regardless of the aircraft design
or the number of flights.

The designer’s only decision variable is the level of technology to invest in the
aircraft, T . This can be thought of as the design effort and material and labor cost
associated with producing the aircraft. For our problem, we will consider to be
bounded between 0 and 1. T acts as the only weighting variable w as described in
Eq. (1), where a value of 0 is the optimal manufacturing cost, and a value of 1 is the
optimal customer value.

The airline’s decision variable is the number of flights that they will offer, Q,
which will determine the price they charge per ticket based on a fixed linear demand
for air travel. The airline has some fixed cost of operation per flight, some cost that
is proportional to the price of jet fuel, cF , and some benefit based on the level of
technology invested in the aircraft. We can then formulate the profit functions for
both stakeholders as follows

�d(T, Q) = Q(L − cTT) (7)

�a(T, Q, cF) = Q(P(Q)Np − cFF − cLL + vTT) (8)

where cT is the cost to implement new technology for the designer, F is the fuel
consumption per flight, L is the lease cost per flight, cL is some factor greater than
1 describing the total fixed costs for the airline including lease cost, vT is the value
of technology to the airline, Np is the number of passengers per flight, and P(Q) is
the price per ticket based on the linear demand function, given by

P(Q) = a − bQNp (9)

To create a meaningful example, we first find some reasonable estimates for some
of the unknown coefficients in our problem. We select a Boeing 737-700 as the
baseline aircraft for our analysis. Considering the standard configuration capacity
of 128 passengers [12] and an average load factor of roughly 0.8 [13], we take
the number of passengers per flight, Np, as 100. Given an average flight length of
1000 miles [13], we calculate the fuel consumption per flight, F, as roughly 1500
gallons [14]. Average recent jet fuel prices are around $3.00 per gallon [15], and
we consider a range up to $5.00 to account for possible future changes. Based on
the 737-700 list price of $76M [16] and a useful life of 60,000 flights [17] we find
a per flight cost of $1,300. Considering additional storage and maintenance costs
as roughly doubling this expense, we select the per flight lease cost of the aircraft,
L, as $3000. Based on available airfare cost breakdown data [18], we consider that
ranges cL from 10 to 12, meaning that the capital cost of the aircraft ranges from 8
to 10% of the total cost per flight, depending on the airline. In order to determine
characteristic numbers for the cost and value of new technology, we consider a new
aircraft design project. We consider that this new design will cost an additional $850
per flight, roughly a 25% increase from the initial design, and provides a benefit
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Fig. 1 Historical ticket price versus quantity sold [13, 19]

of $4200 per flight through increased capacity, efficiency, and passenger comfort.
Finally, by collecting data on tickets sold and average ticket price over the past 20
years, we fit the linear relationship between quantity and price as shown in Fig. 1.
This approximation assumes that the airline uses this single aircraft design to service
all of their routes.

Now let us consider the simplest case of interaction, where the designer first
decides on the level of technology investment with full information about the airline
profit function, and the airline then determines the quantity of flights in a sequential
game. Note that both profit functions, Eqs. (7) and (8), are concave functions. We
can therefore calculate a best reply function for the airline by setting to zero the first
derivative of the airline profit function with respect to Q and solving for Q, such that

d�a

dQ
= vTT − cLL − cFF + Np(a − bNpQ) − N2

pQb (10)

Q∗ = ϕda(T) = aNp + vTT − cFF − cLL

2bN2
p

(11)

We can substitute this best reply function into the designer’s profit function to
replace and solve for the designer’s optimal value of T by setting to zero the derivative
of the designer’s profit function with respect to T and solving for T,

d�d

dT
= vT(L − cTT) + cT(cFF − cLL − aNp − vTT)

2N2
pb

(12)

T∗ = vTL + cFcTF + cLcTL − acTNp

2cTvT
(13)

Using our values for our various coefficients, we can calculate the decision of
the designer and airline and the profit for each. Since we have ranges of values for
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Table 1 Solution values for sequential game with no uncertainty

cF cL Q∗ T∗ �d �a

$3.00 10 2.58M 0 (−0.08) $7.75B $20.0B

$3.00 12 2.02M 0.63 $4.99B $12.32B

$5.00 10 2.28M 0.27 $6.30B $15.55B

$5.00 12 1.78M 0.99 $3.83B $9.57B

fuel price and the airline cost factor, we perform this analysis at the 4 extreme cases
of these coefficients as shown in Table 1. Because our problem is linear in these
values, we can interpolate between these 4 points to find the decisions and profits at
any combination. Note that in the first case, the designer would choose an optimal
value of slightly negative technology investment, however we restrict this value to
be between 0 and 1. It can be seen that the optimal decisions and resulting profits for
both the designer and airline vary greatly with these possible changes in parameters
cF and cL .

In a realistic design problem, we will likely consider that a designer must make
design decisions without knowledge of future fuel prices. These prices will be
unknown to the airline as well. A designer will then maximize expected profits based
on the possible distribution of future fuel prices. Due to the simple linear nature of
our example problem, this will be the same as designing based on the mean value of
future fuel prices.

A designer may face additional uncertainty in their understanding of the airlines’
profit function, for example in the value of cL . However, the airline will be able to
know this value exactly. This is known in game theory as a game of “incomplete
information” [1]. This means the designer will face some error in their prediction of
the best reply function of the designer, specifically

Q∗ = ϕd̃a(T) = aNp + vTT − cFF − (cL + ε) L

2bN2
p

(14)

where ε describes the error in the designers understanding of airline costs.
We can see from our previous example that the designer will invest more in tech-

nology if they believe the airlines fixed cost, cL , is higher. This is because higher fixed
costs mean the effect of technology on airline marginal profits is more significant,
and therefore more technology investment will have a greater effect on the quantity
of flights. This relationship implies that airlines will have an incentive to mislead
designers into believing that their costs are higher than in reality, shifting profits
away from designers and toward airlines. Without considering the effects of these
interactions, designers will be unable to understand the effects of these potential
uncertainties.

To explore these interactions in more detail, let us switch from a continuous
game to a discrete one. In this case, the designer must either decide to invest in new
technology (T = 1) or not (T = 0). The airline will decide whether to expand their
market by offering a higher number of flights (Q = 2.5M), or to maintain their
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Fig. 2 Extensive form game with uncertainty in fuel prices p_F and in fixed cost p_C, where
designers choose technology T and airlines choose quantity of flights Qwith payoffs for the designer
and the airline, respectively

current levels (Q = 1.5M). We consider that fuel prices will either be $3 per gallon
with probability pF or $5 per gallon with probability 1 − pF . Finally, the designer
assumes the airline is a low cost carrier (cL = 10) with probability pc or a high
cost carrier (cL = 12) with probability 1− pc. We can express this problem using a
decision tree (cf. Fig. 2), known in game theory as an extensive form game [1].

In Fig. 2, each node represents a decision, and dashed lines between nodes indicate
an information set, where the decision maker must act without knowing for certain
which node in the information set they are currently in. The solution will therefore
depend on the decision maker’s beliefs about the values of pF and pc. The payoffs
for each resulting set of decisions are given at the end of each path, where the top
number is the designer’s profit, and the bottom number is the airline’s profit, both in
billions of dollars.We can simplify this game by eliminating dominated strategies for
the airline, since we know at the last branch of the decision tree the airline will choose
the value that maximizes their own profits; this is known as backwards induction.
Fig. 3 shows these dominated strategies in gray.

We see that, based on this discrete example, the designer can only influence the
airline to utilize more flights by increasing technology investment if fuel prices are
low and airline costs are high, or fuel prices are high and costs are low. In the
remaining two cases, the designer will strictly prefer not to invest in new technology,
since they will lease the same number of flights regardless and will have a higher
profit margin for each. Airlines will always prefer the case where designers invest in
technology, as they always gain higher profits.

From this simple example, we would conclude that if fuel prices are high, airlines
will attempt to convince designers that they have low costs, as designers will believe
they can then influence flight quantity by investing in technology. If fuel prices are
low, airlines will attempt to convince designers that their costs are high, again in an
effort to encourage designers to invest in technology.
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Fig. 3 Backwards induction indicating strictly dominated choices (gray) for the airlinewhen choos-
ing quantity Q

Fig. 4 Simultaneous game solution

We may also be interested to know if the possible solutions of this game change if
we consider that designers and airline make decision simultaneously. For example,
airlines submit orders for new aircraft without knowing future fuel prices or precise
aircraft specifications. We can represent this sort of game using strategic form, with
4 payoff matrices representing the 4 possible combinations of fuel price and airline
costs as shown in Fig. 4.

The numbers in each box represent the payoffs for the airline and the designer,
respectively. Numbers that are underlined indicate a best reply for that stakeholder.
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When both numbers are underlined in the same box, meaning the best replies inter-
sect, we have a Nash equilibrium for that individual game, represented by circling
that square. We can see that for the simple game we have constructed, it is never
advantageous for the designer to invest in technology. This happens because since
decisions are made at the same time, the designer’s choice cannot influence the quan-
tity selected by the airline.We can also see that when airline costs are high (cL = 12),
meaning we are on the two matrices on the right side, the equilibrium solution for
this game will be (T = 0), (Q = 1.5M). When airline costs are low, the equilibrium
will depend on the probability of low fuel prices, pF , as the airline will attempt to
maximize their expected profits. If the airline believes pF is less than 0.11, they will
always choose the low quantity (Q = 1.5M), and if they believe pF is greater than
0.11 the airline will choose the high quantity, (Q = 2.5M). When pF is equal to
0.11, the airline is indifferent between these two strategies and may play either one,
or play a mixed strategy where they randomly select between both options. It should
be noted that the designer would strictly prefer the airline select the higher quantity,
but based on this game structure, they have no way to influence that decision.

It should be noted that the solutions we have found for each of these different
types of games need not be Pareto optimal in terms of profits for both stakeholders.
For example, in Fig. 4, we can see that both the designer and a high cost airline
(cL = 12) would be strictly better off playing the strategy (T = 1), (Q = 2.5M) as
compared to the equilibrium strategy (T = 0), (Q = 1.5M), regardless of the values
of fuel price and airline costs. However, that strategy is not an equilibrium because
one or both of the stakeholders can improve their profits by modifying their decision.
For example, in the case of [cF = 5, cL = 12] starting at (T = 1), (Q = 2.5M),
we see that the designer would strictly prefer to select (T = 0) when the airline
plays (Q = 2.5M), and similarly the airline prefers (Q = 1.5M) against (T = 1).
Because the strategies and payoffs are known, each player will realize the other will
try to change their own strategy, and will respond accordingly, resulting in selecting
(T = 0), (Q = 1.5M). This is a variation on the classical game theory example
known as the prisoner’s dilemma [1].

4 Conclusions

We have presented a framework for how game theory can be utilized in design opti-
mization to better model and understand interactions between multiple stakeholders.
We demonstrated how, based on the order in which interactions take place and the
information shared between stakeholders, the optimal decision for the designer can
change significantly. By incorporating these interactions into the design problem,
we can directly anticipate these changes and can quantify the uncertainty in the
profit expected for our final design based on approximations of other stakeholders.
Additionally, this framework is able to directly provide information for the designer
regarding trade-offs between multiple disciplines during design, since we are able to
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adaptively update the designer’s objective function based on changes in stakeholder
preferences due to changes in performance.

Using our simple example problem, we demonstrate that for the sequential game
between the designer and airline, small changes in the value of certain profit function
coefficients can have a large effect on optimal design choices and profits for both
stakeholders.We observe that for the values we have selected in our sequential game,
the airline may have an incentive to obscure their true costs from designers in order
to encourage investment in new technology. Looking at the same problem but using a
simultaneous structure, the designer will never elect to invest in technology, based on
the cases considered. From these two exampleswe have shown that understanding the
structure of the game can greatly change the outcome, and that, within that structure,
approximations by one stakeholder in the preferences of another can have a large
impact on design decisions and profits.

We do note that, depending on the game structure utilized, a stakeholder may need
to approximate the decisions of the designer in their profit maximization, requiring
them to solve the design optimization problem within their own profit optimization.
For expensive design problems, this creates computational limitations, and future
work is needed to address this issue. It can also be difficult in a practical problem
to quantify the type of interactions between multiple stakeholders. The authors have
previously proposed amethod tounderstand these interactions byusing causalmodels
[20]. Future work in this area will focus on applying the methods described to a
realistic design problem and understanding the relative importance of uncertainty in
stakeholder preferences as compared to traditional designuncertainties like variations
in material properties and operating conditions.
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A Fixed Point Approach to Bi-level
Multi-objective Problems

Carla Antoni and Franco Giannessi

Abstract The present note aims at introducing a new approach for handling bi-level
multi-objective problems. The advantage consists in the fact that, for solving the
upper level, it does not require to know explicitly the lower level. Here, the linear
case is fully treated. Hints are given on how to extent it to the important class of the
cono-functions, which contains that of the convex functions, and is one of the few
extensions of convex functions which are numerically viable. The final section gives
suggestions for further research in the field.

Keywords Bi-level vector optimization ·Multi-objective optimization · Scalariza-
tion · Cone-functions
AMS Mathematics Subject Classification (2000): 65K · 90C

1 Introduction

Many real world problems can be formulated mathematically as extremum prob-
lems, where there are several objective functions. Rarely, such functions achieve the
extremum at a same point. This has led, in the last decades, to a rapid mathemat-
ical development of this field, whose origin goes back to more than one century
ago. Almost independently of this, in some fields of engineering dealing with the
design, the need has gradually emerged of taking into account the competition of
some variables, which were previously condensed in just one. Roughly speaking,
the researches, carried on in the mathematical optimization area, can be split into
those which aim at detecting properties of the set of solutions, and those which aim
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at providing us with methods for finding such a set by using, in general, scalarizing
techniques; the former are extremely important as a base for any other research; the
latter should take into consideration the fact that, in most of the applications, the
designer has a bi-level problem: an extremum problem (upper level), whose feasible
region is the set of the extremum points of a multi-objective constrained extremum
problem (lower level); consequently, the methods of solution of the bi-level problem
should require to run on such a feasible set, namely the set of vector extremum points,
as less as possible (unlike what some existing methods try to do). Here, based on
previous results [12], a method for solving the bi-level problem is described. Our
main scope consists in outlining the method and let it be easily understood to a wide
audience more than deliver a detailed, rigorous exposition of the method; this will
be done in a forthcoming paper [2]. Consequently, to make the text plain, we take
some assumptions, which are somewhat strong, and which can be easily weakened;
moreover, again for the sake of simplicity, we take for granted the existence of the
extrema we meet. In Sect. 2, after having proved some properties of such a class, we
define a new type of scalarization for a multiobjective problem (lower level), and
then we outline an approach to the bi-level problem. While this will be the subject
of a forthcoming paper, in this note (Sect. 4) we will develop the case where the
multiobjective problem (lower level) is linear and the upper level is convex, and we
consider strong solutions with Pareto-cone. It will be shown that, in this case, we
improve the existing literature, in as much as the lower level requires to handle a
linear problem (while the existing literature is faced with a nonlinear one and, in
general, for weak solutions). Section5 contains some numerical examples. In the
final section, we discuss shortly some further developments.

In Appendix, we consider a class of nonconvex functions, which enjoy the nice
property to have convex level sets, and for which constructive sufficient condition
can be etablished in order to state whether or not a given function belongs to such a
class.

Many real world problems lead to the minimization (or maximization) of a scalar
function over the set of minimum points of a multi-objective problem. Hence, we
are faced with a bi-level problem.

Let l, m and n be positive integer, X ⊆ R
n , C ⊆ R

l be a convex, closed and
pointed cone with apex at the origin; the functions Φ : R

n −→ R, f : R
n −→ R

l ,
g : R

n −→ R
m are given. In the sequel, int S and ri S will denote the topological

interior and relative interior of the set S, respectively.

Consider the problem (lower level):

min
C0

f (x) s.t. x ∈ K := {x ∈ R
n : g(x) ≥ 0}, (1)

where minC0 marks vector minimum with respect to the cone C0 := C \ {0}: y is a
(global) multi-objective minimum point (in short, MMP) of (1) if and only if

f (y) �C0 f (x), ∀x ∈ K , (2)
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where the inequality in (2) means f (y) − f (x) /∈ C0. At C = R
l+, (1) becomes the

classic Pareto problem.

Finally, consider the problem (upper level):

minΦ(x) s.t. x ∈ K 0, (3)

where K 0 is the set of VMPs of (1).

2 Problems in Engineering

In the design of an aircraft, there are many quantities to be taken into account [17].
The designers must define the performance of an aircraft. In other words, they must
carefully specify the optimization problem and the trade-off between al these quanti-
ties; some can be considered as objectives, some as constraints; some of them can be
seen as a set of concurrent objectives, are in conflict each other. Hence, the designers
are facedwith a very hardmulti-objective optimization. In amuch simplified version,
the objectives are minimum induced drag problem of a wing system, maximum lift-
ing and minimum cost. The designer could, of course, consider these 3 objectives as
concurrent without any other distinction, and formulate a 3-objective optimization
problem. However, it is evident that this would be a coarse approach. In fact, the
comparison of the cost with, e.g., the lift would lead to compare heterogeneous mag-
nitudes. The “natural” comparison is between induced drag and lift. Then, among all
the aircrafts, for which none “dominates” the others, in the sense that an improvement
of lift (drag) implies a worsening of drag (lift), it is meaningful to search for one,
which minimizes the cost. Hence the bi-level approach is that which makes sense.

In the general case, when designing a machine one has to take into account design
variable, functional, and criterion constraints. The design variable constraints have
the form

x j ≤ x j ≤ x j , j = 1, . . . , n. (4)

In the case of mechanical systems the x j represent the stiffness coefficients, the
moments of inertia, masses, damping factors, geometric dimensions, etc. The func-
tional constrants may be written as follows

Ci ≤ gi (x) ≤ Ci , i = i, . . . , m, (5)

where the functional dependances (relationships) gi (x) may be either functional
depending on the integral curves of the differential equations or explicit functions of
x ; Ci and Ci are the lower and the upper admissible values of the quantity gi (x).

The functional constraints can specify the range of the allowable stresses in structural
elements, the track gauge, etc. Also, there exists particular performance criteria such
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as productivity, materal consumption, and efficiency. It is desired that, with other
things being equal, these critera, denoted by f j , j = 1, . . . , l would have extremal
values. For simplicity we assume that fi are to be minimized. In order to avoid
situations in which the designer regards the values of som criteria as unacceptable,
we introduce crietrion constraints

fi (x) ≤ fi , i = i, . . . , l, (6)

where fi is the worst value of criterion fi (x) to which the designer may agree.
Criterion constraint fi cannot be chosen before solving the problem. Constraints
(4)–(6) define the feasible solution set K :

K = {x ∈ R
n : x ≤ x ≤ x, ḡ ≤ g ≤ g, f ≤ f }. (7)

If functions g and f are continuous, then the set K is closed. One of the basic
problems of multicriteria optimization is the following: find a set K 0 ⊆ K for which
y ∈ k0 is a solutions of

min
C

f (x). (8)

K 0 is thePareto optimal set. It plays an important role in vector optimizationproblems
because it can be analized more easily than the feasible solution set and because the
optimal vector always belongs to the Pareto optimal set irrespective of the system
of preferences used by the designer for comparing vectors belonging to the feasible
solution set. The importance of this set is determined to a great extent by the following
well-known theorem.

Theorem 1 If the feasible set K is closed and fi , i = 1, . . . , l are continuous, then
the Pareto optimal set is nonempty.

3 Scalarization of the Lower Level

Now, let us consider the scalarization of (1) by exploiting the method, which was
introduced in [11] ; see also Sect. 6 of [12].
For each y ∈ X , and p ∈ C∗, consider the sets:

S(y) := {x ∈ X : f (x) ∈ f (y) − C}

Sp(y) := {x ∈ X : 〈p, f (x)〉 ≤ 〈p, f (y)〉}

S(y) is evidently a level set of f with respect to C . Indeed, when X = R
n and

C = R
l+, then it is precisely the lower set of f ; in the affine case, S(y) is a cone with

apex at y , and Sp(y) becomes a supporting half-space at its apex.
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Note that, apart from S(y), Sp(y) and Proposition 3.1 (where p is a parameter), p
will be considered fixed, in particular in the case of the algorithm. Instead, y will now
play the role of a parameter and, later, that of the unknowns; this will be reported.
The concept of level set, in strict or extended sense, plays a fundamental role in the
present scalarization; in order to describe it, we need to establish some properties.

Proposition 3.1

(i) If f is a convex function on X, then, ∀y ∈ X, S(y) is convex.

(ii) If p ∈ C∗, then, ∀y ∈ X,

S(y) ⊆ Sp(y), y ∈ S(y) ∩ Sp(y).

Proof (i) For xi ∈ S(y) there exist ci such that f (xi ) = f (y) − ci , i = 1, 2. Then,
∀α ∈ [0, 1],

(1 − α) f (x1) + α f (x2) = f (y) − ((1 − α)c1 + αc2).

Since C is convex (1 − α)c1 + αc2) ∈ C . Moreover, if f is a C function, then
∀α ∈ [0, 1] there exists c′(α) such that

f (x(α)) = (1 − α) f (x1) + α f (x2) − c′(α).

It follows that
f (x(α)) = f (y) − (1 − α)c1 − αc2 − c′(α)

and then x(α) ∈ S(y), ∀α ∈ [0, 1], ∀y ∈ X .

(ii) 0 ∈ C ⇐⇒ y ∈ S(y); y ∈ Sp(y) is trivial. The thesis follows. �

Now, let p ∈ C∗; as announced, unlike what in general happens in the field of
scalarization, p will remain fixed in the rest of this section. Let us introduce the
following problem (in the unknown x , depending on the parameter y):

min 〈p, f (x)〉, x ∈ K (y) := K ∩ S(y). (9)

Borrowing the terminology of Variational Inequalities, we call (9) Quasi-Minimum
Problem. Its feasible region depends (parametrically) on y; we will see that, for our
scalarization method, it will be important to consider the case y = x , where the
feasible region depends on the unknown; i.e. the feasible points are “fixed points” of
the point-to-set map y �→ K (y).
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Remark 3.1 Under suitable assumptions the first order necessary condition of (9) is:

〈pT ∇ f (x), y − x〉 ≥ 0, x ∈ K (y), (10)

which is a particular case of a Quasi-Variational Inequality.

In general, problem (10) looks difficult. The following proposition identifies a class
of (9), which can be handled easily.

Proposition 3.2 Let X be convex, f be a convex, g be concave on X and p ∈ C∗.
Then (9) is convex.

Proof We have to show that the restriction of 〈p, f ( · )〉 to X and K (y) are convex.
Since p ∈ C∗ and f is a convex, ∀x1, x2 ∈ X it holds

〈p, (1 − α) f (x1) + α f (x2) − f (x(α))〉 ≥ 0, ∀α ∈ [0, 1],

and, equivalently,

(1 − α)〈p, f (x1)〉 + α〈p, f (x2)〉 − 〈p, f (x(α))〉 ≥ 0, ∀α ∈ [0, 1],

that is the convexity of x �→ 〈p, f (x)〉. The convexity of X and the concavity of g
implies the convexity of K ; then, the convexity of S(y) (Proposition 3.1), implies
that of K (y). �

As announced, we want to run on the set of VMPs of (1) in such a way to make
the resolution of (1) as easy as possible. In other words, by exploiting the properties
of (9), it will be possible to define a method which solves (1) without having obliged
to find in advance K 0.

Proposition 3.3 y ∈ X, x ∈ S(y) =⇒ S(x) ⊆ S(y).

Proof x ∈ S(y) if and only if there is c ∈ C such that f (x) = f (y) − c, and
x̂ ∈ S(x) if and only if there is ĉ ∈ C such that f (x̂) = f (x) − ĉ. It follows that
f (x̂) = f (y) − (c + ĉ), that is x̂ belongs to S(y). Then, the inclusion S(x) ⊆ S(y)

is proved. �

The above proposition shows that, if the “apex”of the level set S(y) is shifted to
a point belonging to it, then the translated level set is contained in it. This property
will allow us to find a VMP of (1).

Proposition 3.4 If x0 is a (global) minimum point of (9) at y = y0, then x0 is a
(global) minimum point of (9) at y = x0.
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Proof Proposition 3.1 guarantees that x0 ∈ S(x0). Ab absurdo, suppose that x0 be
not a (global) minimum point of (9) at y = x0. Then,

∃x̂ ∈ K ∩ S(x0) : 〈p, f (x̂)〉 < 〈p, f (x0)〉. (11)

Proposition 3.3 implies x̂ ∈ S(y0), and the conditions

x̂ ∈ K ∩ S(y0) : 〈p, f (x̂)〉 < 〈p, f (x0)〉. (12)

contradict the assumptions. Necessarily x0 is a global minimum point of (9) at
y = x0. �

Remark 3.2 Taking into account Propositions 3.3 and 3.4, problem (9) can be for-
mulated as:

find x0 ∈ K s.t. min
x∈K (x0)

〈p, f (x)〉 = 〈p, f (x0), (13)

which justifies, once more, the terminology Quasi-minimum Problem.

The following proposition connects the optimality of (1), its image, and the optimality
of (13). It is trivial to note that (2) is satisfied if and only if the system (in the
unknown x):

f (y) − f (x) ≥C0 0, g(x) ≥ 0, x ∈ X (14)

is impossible.

Proposition 3.5 Let p ∈ int C∗.

(i) y is a VMP of (1) if and only if the system (in the unknown x):

〈p, f (y) − f (x)〉 > 0, f (y) − f (x) ∈ C, g(x) ≥ 0, x ∈ X, (15)

is impossible.

(ii) The impossibility of (15) is a necessary and sufficient condition for y to be a
(scalar) minimum point of (9) or (13).

Proof (i) If x̂ satisfies (15), then f (y) − f (x̂) �= 0; consequently x̂ satisfies (14).
Viceversa, suppose there is x̂ ∈ X such that f (y) − f (x̂) ≥C0 0, g(x̂) ≥ 0. This
implies 〈p, f (y) − f (x̂)〉 > 0. In fact, since p ∈ int C∗, there is r > 0 such that
p + Nr ⊆ C∗, where Nr = {δ ∈ R

l :‖ δ ‖< r}, then

〈p + δ, f (y) − f (x̂)〉 ≥ 0, ∀ δ ∈ Nr . (16)
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Ab absurdo, suppose

〈p, f (y) − f (x̂)〉 = 0. (17)

Since there exists ε > 0 such that ε ‖ f (y) − f (x̂) ‖< r, and f (y) − f (x̂) �= 0,
then, from (16) and (17) it follows that

0 ≤ 〈p − ε( f (y) − f (x̂)), f (y) − f (x̂)〉 = −ε ‖ f (y) − f (x̂) ‖< 0. (18)

This is absurd.

(ii) follows from the definition of scalar minimum point. �

Remark 3.3 System (15) allows one to associate (1) with its Image Space (IS) and
perform an useful analysis. To this end pose:

u = f (y) − f (x), v = g(x), x ∈ X; (19)

the image of X through the function x �→ ( f (y) − f (x), g(x)) is the IS associated
with (1). For details, see [9, 12].

We are now able to define the steps of an approach for finding (all) the VMPs of (1).
(A) Choose any p ∈ int C∗ (p will remain fixed in the sequel).
(B) Choose any y0 ∈ K and solve the (scalar) problem (9) at y = y0; let x0 be a
solution; according to Proposition 3.4, x0 is a VMP of (1).
(C) Consider (9) as a parametric problem in the parameter y: start at y = x0 and find
its solutions. According to Propositions 3.4 and 3.5 all the solutions of (1) will be
found. This approach,whichwill be developed in [2], seems promising independently
of the bi-level problem. If we apply it to the bi-level problem, then it becomes the
following set of steps.

As said in Sect. 1, in general, in the real applications, the problem to solve is just
(3), and not that of finding all the solutions of (1); hence, it is desired to meet, among
the solutions of (1), only those, which allow one to solve (3). The approach described
above serves to satisfy such a need. To this end, the method described at the end of
the previous section can be integrated this way:
(A) Choose any p ∈ int C∗ (p will remain fixed in the sequel).
(B) Choose any y1 ∈ K and solve the (scalar) problem (9) at y = y1; let x1 be
a minimum point; call K 0

1 the set of solutions of (9) obtained by varying y from
y = y1; of course x1 ∈ K 0

1 ; according to Propositions 3.4 and 3.5, all the elements
of K 0

1 are VMPs of (1).
(C) Solve the problem:

minΦ(y) s.t. y ∈ K 0
1 ; (20)
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if we can conclude that the solutions of this problem are such also on K 0, then (3) is
solved; otherwise, we must continue.
(D) Jump to a subset of K 0, adjacent to K 0

1 ; let it be K 0
2 ; repeat (C) on it; and so on.

As is easily seen, thanks to the method of the above section, in solving (3) we
do not meet all the solutions of (1). The above method is a general scheme, which
requires to be implemented; the implementation takes advantage, if it is done within
a certain class of functions; an instance of this is shown below.

4 Reduction of the Scalar Problem

4.1 The Upper Level: The Linear Case

The symbols of this section are independent of those of the previous sections. Let
us now consider problem (3), where Φ is convex; even if it is not necessary, for the
sake of simplicity, Φ will be assumed to be differentiable.

Now, suppose that the lower level be linear, and consider the case where X = R
n+

and C = R
l+, which, although a particular one, is among the most important formats

in the applications. Thus, without any loss of generality, we can set:

fi (x) = 〈di , x〉, di ∈ R
n, i = 1, . . . , l, D =

⎛

⎜⎝
d1

...

dl

⎞

⎟⎠ , f (x) = Dx

〈p, f (x)〉 = 〈pD, x〉

where di and p are considered as row-vectors. The set K (y) can be cast in the form:

K (y) = {x ∈ R
n+ : −Dx ≥ −Dy, Γ x ≥ γ },

with Γ ∈ R
m×n, γ ∈ R

m . By setting

A =
(−D

Γ

)
, b =

(
0
γ

)
, E =

(−D
0

)
, c = pD

problem (9) takes the form:

min 〈c, x〉, Ax ≥ b + Ey, x ≥ 0, (21)

where, without any loss of generality, we assume that the rank of A be n, and that:

A =
(

B
N

)
, b =

(
bB

bN

)
, E =

(
EB

EN

)
,
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where B is a feasible basis, that is

B−1(bB + EB y) ≥ 0, N (B−1(bB + EB y)) ≥ bN + EN y. (22)

The vector

x = B−1(bB + EB y) (23)

is a solution of (21) if and only if

cB−1 ≥ 0, (24)

and remains optimal until y fulfils (22). Note that the performance of step (B) of the
method leads at a point, namely x0, where the inequalities, which defines S(y), are
verified as equalities; consequently, in general, x0 will be overdetermined. Therefore,
we assume that an anti-cycling ordering is adopted. Moreover, it is not restrictive to
suppose that B contains at least one row of D; this will understood in the sequel.

Now, with a small abuse of notation, problem (20) becomes:

minΦ(y), s.t. y ∈ K 0
B1

, (25)

where

K 0
B1

= {y ∈ R
n : (In − B−1

1 EB1)y = B−1
1 bB1 , (N1B−1

1 EB1 − EN1)y

≥ bN1 − N1B−1
1 bB1},

and B1 is a base which identifies K 1
0 . We can now specify the method (A)–(D) to the

present case; it finds a local minimum point of (3).
(a) Choose any p such that p ∈ int C∗; p will remain fixed in the sequel.
(b) Choose any y1 ∈ K . We have to solve (21), which is assumed to have minimum.
By a standard use of Simplex Method, we find an optimal basis, say B1 and the
minimum point given by:

x1 = B−1
1 (bB1 + EB1 y1).

Now, replace y1 with the parameter y, but keep B1 as basis. According to the Propo-
sitions 3.4 and 3.5, all the VMPs of (1), corresponding to B1, are obtained as those
solutions of (21) which equal the very parameter y; this is equivalent to say that y
must be such that B1 is both primal and dual feasible and y must be a fixed point of
the map: y �→ B−1

1 (bB1 + EB1 y). Since B1 is dual feasible if and only if cB−1
1 ≥ 0

(which is a by-product of the construction of x1 and does not depend on y), in
conclusion, such VMPs are the solutions of the system:
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{
B1(N1B1

−1EB1 − EN1)y ≥ bN1 − N1B1
−1bB1 primal feasibility

y = B−1
1 (bB1 + EB1 y) fixed point

(26)

Call K 0
B1

the set of solutions of (26).
(c) Consider the problem

minΦ(y), s.t. y ∈ K 0
B1

, (27)

and let y2 be a minimum point of it. If y2 ∈ ri K 0
B1
, then stop; otherwise, perform

next step.
(d) IfΦ does not decrease, when we try, through a pivot, to exchange B1 with one of
its adjacent bases (such an exchange will be performed under an anti-cycling rule),
then again with y2 we have reached a solution of (27) and we stop. Otherwise, we
replace B1 with an adjacent basis, which allowsΦ to decrease, and repeat the step (c).

Remark 4.1 It is worthy to stress the fact that the previous method may reduce the
bi-level problem to a finite sequence of scalar extremum problems. For instance, if
both (1) and (3) are linear, then, performing the steps (a)–(d) of this section amounts
to execute a finite steps of Simplex Method; if Φ is convex and (1) is linear (as
assumed in this section), then performing (a)–(d) in this section amounts to execute
a finite number of steps of the Gradient Method.

Now, we will give a justification of the above method. Let K be a polyhedron of R
n

and Q a convex cone having, as apex, the origin, which does not belong to it. Given
a vector x , Qx denotes the translation of Q, which has x as apex or

Qx = {y ∈ R
n : y = x + q, q ∈ Q}.

Moreover, in the sequel, H0 denotes any hyper-plane of R
n , defined by

{x ∈ R
n : 〈a, x〉 = b}

and H− and H+ denote, respectively, the half-spaces

{x ∈ R
n : 〈a, x〉 ≤ b}, {x ∈ R

n : 〈a, x〉 ≥ b}.

Definition 4.1 Let F be a set of proper faces of a polyhedron K . F is said to be
connected, if and only if, for each pair of element ofF , say F ′ and F ′′, there exists
a set of proper faces of K , say F0, F1, . . . , Fr , contained in F , such that F0 = F ′,
Fr = F ′′, Fi−1 ∩ Fi �= ∅ and Fi is not a subface of Fi−1, for i = 1, . . . , r .
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Lemma 4.1 Let F be a face of K and x0 ∈ int F. If

Qx0 ∩ K = ∅, (28)

then, for all x ∈ F,

Qx ∩ K = ∅.

Proof Let the polyhedron K be the set

{x ∈ R
n : Γ x ≥ γ },

where Γ ∈ R
m×n, γ ∈ R

m . Without any loss of generality, as face F we can
consider

F = {x ∈ R
n : Γ1x = γ1, Γ2x ≥ γ2}

where

Γ =
(

Γ1
Γ2

)
, γ =

(
γ1
γ2

)
.

The hypothesis x0 ∈ ri F means

Γ1x0 = γ1, Γ2x0 > γ2. (29)

From (28) we draw that, not only one of the inequalities which define K is violated,
but, account taken of (29), such inquality corresponds to Γ1: with obvious notation,
let us denote it by

〈(Γ1)i , x0 + q〉 < (γ1)i . (30)

(nel prodotto scalare servono vettori colonna?)
In fact, if ab absurdo such a violated inequality corresponded to Γ2, then, by letting
q → 0 we would obtain

〈(Γ2)i , x0〉 ≤ (γ2)i

which contradicts (29). Now, let x ∈ F . The equalities

〈(Γ1)i , x + q = 〈(Γ1)i , x0 + q〉,

and (30) lead to Qx ∩ K = ∅. �

Lemma 4.2 K 0 is connected.
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Proof First, observe that K 0 = {x ∈ K : Qx ∩K = ∅}. If F1 and F2 are proper faces
of K , which belong also to K 0, there exist two hyper-planes, which are not parallel
(contradicting this leads to contradict that one of the two faces does not belong to
K 0):

H0
1 = {x : 〈a1, x〉 = b1}, H0

2 = {x : 〈a2, x〉 = b2}

which support K and, respectively, contain F1 and F2, and such that

Qx ⊆ H−
i , ∀x ∈ H0

i , i = 1, 2.

Put

V − := H−
1 ∩ H−

2 , V + := H+
1 ∩ H+

2 ,

and set, ∀t ∈ [0, 1],

H0
t := {x ∈ R

n : 〈(1 − t)a1 + ta2, x〉 = (1 − t)b1 + tb2}.

Since, ∀t ∈ [0, 1],

K ⊆ V + ⊆ H+
t , Qx ⊆ V −, ∀x ∈ H0

1 ∩ H0
2 ,

then ∀t ∈ [0, 1], there is a hyper-plane, say H 0
t , parallel to H0

t , supporting K and
such that

K ⊆ H +
t , Qx ⊆ H −

t , ∀x ∈ H 0
t .

This means that the face H 0
t ∩ K is a subset of K 0. Finally, the interval [0, 1]

is partitioned into a finite number of sub-intervals, and, this way, two consecutive
intervals correspond to adjacent faces of K 0. �

Proposition 4.1 Suppose that the function Φ : R
n −→ R be convex and differen-

tiable, and suppose that its infimum (minimum) occurs on R
n \ K . Assume that f

and g be as above. Then, the algorithm (a)–(d) finds a local minimum point of (3) in
a finite number of steps.

Proof First of all observe that K 0 is a connected set of faces of K (Lemma 4.2).
Observe also that, in going from basis B to an adjacent one, maintaining a solution of
(21) (note that B contains at least one row of D; such an assumption is not restrictive
because of Proposition 3.4 and allows us to parametrize the faces of K 0), we pass
from a face of K 0 to an adjacent face of K still included in K 0. Then, by adopting any
(but fixed) ordering of the combinations of class n extracted from {1, 2, . . . , l + m},
and an anti-cycling order, the algorithm (a)–(d) can visit all the faces of K and then
of K 0 if it is necessary for the minimization of (3).
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The stationary point at which the algorithm stops is a local minimum point of (3). In
fact, it holds that

∇Φ(x0) ∈ conv{ai , i ∈ I (F0)}, (31)

whereI (F0) is the set of indexes of the constraints of (21), which are also of K and
are binding at x0. From (31) we draw that zero belongs to a convex combination,
at x0, of the gradients of Φ and of the constraints of (21), which are binding at x0,
identified by I (F0). Due to the convexity of all the implicated functions, such a
condition is sufficient besides necessary. �

5 Reduction of the Upper Level

5.1 Examples

Example 1 In (1) and (3) set n = m = l = 2, X = C = R
2+ and

f (x) =
(

2x1 − x2
−x1 + 2x2

)
, g(x) =

(
2x1 + x2 − 1

−x1 + 2x2 − 1

)
, Φ(x) = x21 +

(
x2 − 1/2

)2
.

Let us perform (a)–(d) of Sect. 4.

(a) Since C∗ = C , we can choose p = (2, 3); it will remain fixed.
(b) Now we have:

D =
(

2 −1
−1 2

)
, Γ =

(
2 1
1 2

)
, γ =

(
1
1

)
, c = (

1 4
)
,

so that (25) becomes

min(x1 + 4x2)

s.t. (32)

⎛

⎜⎜⎝

−2 1
1 −2
2 1
1 2

⎞

⎟⎟⎠

(
x1
x2

)
≥

⎛

⎜⎜⎝

0
0
1
1

⎞

⎟⎟⎠ +

⎛

⎜⎜⎝

−2 1
1 −2
0 0
0 0

⎞

⎟⎟⎠

(
y1
y2

)
, x ∈ X
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We choose y1 = (
2/3 4/9

)
. By means of a straightforward use of Simplex Method,

we find that the basis of A , formed with the 1st and 4th rows, or:

B1 =
(−2 1

1 2

)

gives the unique solution of (32) (with y = y1) i.e. x1 = (
5/9 2/9

)
. The set K 0

B1
,

given by the system (26), becomes

K 0
B1

= {y ∈ R
2+ : y1 + 2y2 = 1, 3y1 ≥ 1}.

(c) Problem (27) becomes

min
(

y21 + (y2 − 1/2)2
)
, s.t.y ∈ K 0

B1
.

Now replace B1 with

B2 =
(−2 1

2 1

)
.

By means of the Gradient Method, we easily find its unique minimum point and
minimum:

y2 = (
1/3 1/3

)
, Φ(y2) = 5/36.

Since y2 ∈ ∂K 0
B1
, we perform (d).

(d) From the equalities

∇Φ(y2) = (−2/3 −1/3
)

we draw that y2 is not either a global or a local minimum point of Φ on K 0 and that
(the 1rst constraint of K being binding and the 2nd being redundant), by replacing
B1 with B2, Φ decreases with respect to 5/36. Then perform again the step (b) with
B2 and y2 in place of B1 and y1 , respectively. (b)′ When B B

2 System (26) gives the
set

K 0
B2

= {y ∈ R
2+ : 2y1 + y2 = 1, 3y1 ≤ 1}.

(c)′ Problem (27) becomes

min
(

y21 + (y2 − 1/2)2
)
, s.t.y ∈ K 0

B2
.
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By means of the Gradient Method, we easily find its unique minimum point and
minimum:

y3 = (
1/5 3/5

)
, Φ(y3) = 1/20 < Φ(y2).

Since y3 ∈ ∂K 0
B2
, y3 is a global besides local minimum point of (3).

Example 2 Consider the previous example, replacing Φ with the following one:

Φ(x) = (x1 − 2)2 + (x2 − 5/6)2.

Perform the steps (a), (b) and (c), but with the present Φ. Solving

min
(
(x1 − 2)2 + (x2 − 5/6)2

)
, s.t.y ∈ K 0

B1
, (33)

we find

y2 = (
2/5 3/10

) ∈ ri K 0
B1

, Φ(y2) = 16/45.

Despite of this, if we consider in (33) K 0
B2

instead of K 0
B1

we find

ỹ = (
1/5 3/5

)
, Φ(ỹ) = 49/180 < 16/45,

which shows that, notwithstanding the fact that y2 be a global minimum point of Φ

on K 0
B1
, it is not a global minimum point on K 0.

Example 3 Let us now briefly discuss a classic scalarization method, namely that
introduced in [8]; see also [7, 15]. It aims a finding the weak VMPs of (1), and thus
the comparison with the method described in the previous sections is not perfectly
fitting; however, we disregard this aspect since onemight think of extending it; hence,
we want to see what would happen if it were extended to the case of a cone C and
not int C . Consider again Example 1. To find a (weak) VMP, we must consider the
problem:

∀(u1, u2) ∈ f (K ), f ind F(u) = min
x∈K

max
(

f1(x) − u1, f2(x) − u2

)
; (34)

the result is a (weak) VMP. Note that the minimization in (34) is a nonsmooth
problem. For instance, when f is the function of Example 1, and u = (

2 1
)
such a

minimization becomes:

min
x∈K

max
(
2x1 − x2 − 2,−x1 + 2x2 − 1

)
, (35)
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which leads to x1 = (
5/9 2/9

)
of Example 1. The practically impossible problem

is to express Φ as function of a vector running on the set of solutions of (34), even
if only those of a subset of K 0 like K 0

B1
.

Example 4 Let us set n = 1, l = m = 2, XR, C = R
2+,

f1(x) = x, f2(x) = x2, g1(x)0x + 1, g2(x) = −x .

Obviously, K = [−1, 0], and all the elements of K are VMPs of (1). Set y = 0. For
p1, p2 > 0, consider the classic scalarized problem:

min(p1x + p2x), x ∈ K .

Note that x = 0 is not a (global) minimum point of the classic scalarized problem
whatever p1, p2 > 0 may be.

Example 5 Let us set n = 1, l = m = 2, X = R, C = R
2, and

f = (
2x − x2 1 − x2

)
, g = (

x 1 − x
)
.

we find S(y) = {y}, ∀y ∈ [0, 1]. Hence, the unique solution of (3) is y itself. By
varying y , (3) gives, with its solutions, the interval σ = [0, 1], which is the set of
VMP of (1), as it is trivial to check. Now, let us use the classic scalarization [14]
outside the classic assumption of convexity, i.e. the scalar parametric problemwhich,
here, becomes:

min(c1 f1(x) + c2 f2(x)), x ∈ σ

that is

min− (c1 + c2)x2 + 2c1x + c2, x ∈ σ (36)

where
(

c1 c2
) ∈ int C∗ = int R

2 is a pair of parameters. Every minimum point of
(36) is a VMP of (1). In the present example it is easy to see that the only solutions
of (36) are x = 0, or x = 0 and x = 1, or x = 1 according to respectively c2 < c1
or c2 = c1 or c2 > c1. Hence, the scalarized problem (36) does not detect all the
solutions of (1) (the same happens obviously to (3), if S(y) is deleted).

6 Further Developments

Thedevelopment carried out in the previous sections is, deliberately,much simplified.
In fact, the scope of this paper is to stress the importance, for the applications, of
addressing some research efforts to the study of the bi-level vector problem. Some
possible extensions are outlined below.



444 C. Antoni and F. Giannessi

(i) A first effort will be devoted to let the previous method be able to find global min-
ima. Some of the assumptions, made to simplifying the exposition, are too restrictive;
it should be useful to remove them.
(ii) In order to stress the importance of the bi-level approach, let us bring an example.
An extremely important application of vector optimization is to aerospace design. In
this field, the first fundamental quantities are lift, drug and cost (of course, in reality,
besides them, we have many other quantities or their splitting). To formulate (1) with
such 3 objectives (l = 3) should me meaningless; a competition between the cost
and the lift or the drug should be a nonsense. A meaningful approach is to formulate
(1) with 2 objectives, the lift and the drug (l = 2), and (3) with Φ to represent the
cost.
(3i) In Sect. 4, the general method of Sect. 3 has been applied to a particular (even
if particularly important) class of problems, and it has been shown how the bi-
level problem can be reduced to a (finite) sequence of single-problems. It should
be interesting to obtain a similar result for other classes of problems; for instance,
exploiting Sect. 2, the class of C-functions. Extensions to infinite dimensional spaces
are also of great importance. We note that the method of the previous sections may
reduce the bi-level problem to a finite sequence of scalar extremum problems. For
instance, if both (1) and (3) are linear, then, performing (a)–(d) of Sect. 4, amounts to
execute a finite steps of SimplexMethod; ifΦ is convex and (1) is linear (as assumed
in Sect. 4), then performing (a)–(d) of Sect. 4, amounts to execute a finite steps of the
Gradient Method. It should interesting to identify other classes of bi-level problems
for which such a reduction holds.
(4i) As it is well known, not always an equilibrium can be expressed as the extremum
of any functional; this led to formulate the theory of Variational Inequalities (VI).
Furthermore, some equilibria are characterized by more than one operator and a
blending of the involved operator may be not sufficient; this led to formulate the
theory of Vector Variational Inequalities (VVI). As shown for VOP in the previous
sections, also in this case a bi-level approach is suitable for the applications. Con-
sequently, it should be useful to extend the method of Sect. 4 to the case of VVI. In
other words, (1) must be replaced by a VVI: let F : R

n −→ R
l×n be a matrix-valued

function and consider the VVI, which consists in finding y ∈ K such that:

F(y)(x − y) �C0 0, ∀x ∈ K , (37)

where C0 and K are as in Sect. 1. Denote by K 0 the set of solutions to (37). Now,
consider the (scalar) VI, which consists in finding y ∈ K 0 such that:

〈Ψ (y), x − y〉 ≥ 0, ∀x ∈ K 0, (38)

where Φ : R
n −→ R

n . When both (37) and (38) admit the primitives (see the
so-called Symmetry Principle), then they can be cast in the formats (1) and (3)
respectively. The scalarization method for (37) described in Sect. Appendix of [12]
should allow one to define, for (37) and (38), a method like that of Sect. 4, avoiding
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to be obliged to find necessarily all the solutions of (37), namely K 0 . The above VVI
and VI are of Stampacchia type; same question about scalarization can be posed for
the Minty type VVI and VI.
(5i)Another developmentmay deal with the perturbation function of (3). There exists
a wide literature as it concerns with scalar optimization and a few with (37), but they
are independent each other. In as much as the important problem is (3), the study of
the perturbation function of (1) should be auxiliary to (3) and not autonomous. Let
the constraints of (1) be g ≥ ξ , where ξ plays the role of a parameter. Then K and K 0

depend on ξ ; denote them by K (ξ) and K 0(ξ), respectively. Hence, the minimum in
(3) will depend on ξ , say Φ↓(ξ). The study of the properties of K 0(ξ) is extremely
important, while to find it is, in general, very difficult, but also useless, if (3) is the
main scope.
(6i) Another subject, strictly connected with the previous one, is that of duality. The
literature on duality for (1) is wide. Here too, in as much as the important problem is
(3), the study of duality of (1) should be dependent on that of (3). Let us restrict to the
Lagrangian duality, whose study is naturally located in the Image Space associated
with the given problem. In fact the dual space is that of the functionals, whose zero
level sets are considered to separate two suitable sets of the IS [9]. Hence, we have
an IS associated with (1) and an IS associated with (3). In general, (3) has a positive
duality gap. Sensitivity is a further topic, which is fundamental for the applications.
(7i) An extension of the present approach to set-valued, in particular interval-valued,
extremum problems is conceivable. The infinite dimensional vector extremum prob-
lems, expecially those of isoperimetric type, and the stochastic version of the previ-
ously mentioned problems, are surely interesting fields of research.

Appendix

The definitions of A and D in this section are independent of those of the other sections.

Definition A.1 The (positive) polar of the cone C is given by:

C∗ := {x ∈ R
n : 〈y, x〉 ≥ 0, ∀y ∈ C}. (39)

The following set of functionswill be the base of the present approach.More precisely, in the present
paper, we establish the theory, based on C−functions, which is the background of the approach to
the bi-level problems we want to carry on. In the present paper, we begin with the class of problems,
say convex-linear problems, which have Φ convex, f linear and K polyhedral; other classes will
be studied in furthercoming papers.

Definition A.2 Let X be convex; f is a convex [9] if and only if ∀x1, x2 ∈ X , ∀α ∈ [0, 1]:
(1 − α) f (x1) + α f (x2) − f ((1 − α)x1 + αx2) ∈ C. (40)

When C ⊆ R
l or C ⊇ R

l , then f is called C-convex. At l = 1 and C = R+, f is the classic convex
function. In most of the literature, regardless of the occurrence of such inclusions, a convex is often
called C-convex; this is not suitable. For instance, the R−-function, which turns out to be a concave
function, should be called R−-convex; this, even if formally correct, is unnecessarily far from the
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intuitive sense and the common language. The definition is a cornerstone of mathematics; conse-
quently, it should be handled very cautiously, without distorting the already possessed concepts.
The following property of convexs will be fundamental in the sequel.

Proposition A.1 If f is a convex on X and c∗ ∈ C∗, then 〈c∗, f 〉 is convex on X.

Proof Since f is a convex, ∀c∗ ∈ C∗, ∀x1, x2 ∈ X , ∀α ∈ [0, 1],
〈c∗, (1 − α) f (x1) + α f (x2) − f ((1 − α)x1 + αx2)〉 ≥ 0

or, equivalently,

(1 − α)〈c∗, f (x1)〉 + α〈c∗, f (x2)〉 − 〈c∗, f ((1 − α)x1 + αx2)〉 ≥ 0.

Hence, the convexity of 〈c∗, f 〉 follows. �

As it is well known, the drawback of most of the extensions of convex functions is the lack of
conditions which allow one to detect, through viable numerical calculus, whether or not a given
function fulfils the definition of such an extension. The C-functions (see the Appendix)are among
the few extensions for which some viable conditions can be established. Suppose that the cone C
be polyhedral, so that there exists a matrix A ∈ R

r×l , whose generic entry is denoted by ai j , such
that:

C = {u ∈ R
l : Au ≥ 0}. (41)

In this case, f is a C-function if and only if, ∀x1, x2 ∈ X , ∀α ∈ [0, 1],
A[(1 − α) f (x1) + α f (x2) − f ((1 − α)x1 + αx2)] ≥ 0 (42)

or

(1 − α)φi (x1) + αφi (x2) − φi ((1 − α)x1 + αx2) ≥ 0, i = 1, . . . , r,

where

φi (x) :=
l∑

j=1

ai j f j (x), i = 1, . . . , r. (43)

Thus, the following result holds.

Proposition A.2 f is a C-function on X with respect to the polyhedral cone (41) if and only if the
functions φi , i = 1, . . . , r of (43) are convex on X.

Observe that the functions φ1, . . . , φr can be convex, even if some (all) the functions f1, . . . , fl are
not, as the following example shows.

Example A.1 Let X = R
2, C = {u ∈ R

2 : 2u1 + u2 ≥ 0, u1 + 2u2 ≥ 0}. Let f1(x) =
−x21/2+3x22 , f2(x) = 3x21 −x22/2. f1 and f2 are not convex but φ1 = 2 f1+ f2 and φ2 = f1+2 f2
are convex and then f = ( f1, f2) is a C-function.

The preceding example suggests a condition for f to be a C-function when C is like in (41). Set:

f = ( f1, . . . , fl ), where fi (x) = 〈x, Di x〉, Di ∈ R
l×l , i = 1, . . . l, (44)
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and put x(α) := (1−α)x1+αx2, α ∈ [0, 1].Condition (42) is fulfilled if and only if, ∀i = 1, . . . , l,
∀x1, x2, ∀α ∈ [0, 1],

(1 − α)〈x1,
l∑

j=1

ai j D j x1〉 + α〈x2,
l∑

j=1

ai j D j x2〉 − 〈x(α),

l∑

j=1

ai j D j x(α)〉 ≥ 0.

Thus, the following result holds.

Proposition A.3 The (vector) quadratic function (44) is a C-function on X with respect to the
cone (41), if and only if each of the matrices

Qi =
l∑

j=1

ai j D j , i = 1, . . . , l,

has non-negative eigenvalues.

Remark A.1 The cone of Example 2.1 contains R2+, but it does not differ much from R
2+. In several

applications, like e.g. the design of aircrafts, the cone is the Pareto one; however, the designers may
desire to explore what happens, if such a cone is relaxed a little bit.

Now, let us consider the case,whereC is not necessarily polyhedral; let it be defined by its supporting
half-spaces, or

C :=
⋂

t∈T

{x ∈ R
l : 〈at , x〉 ≥ 0}, (45)

where T is an intervall of R, and, ∀t ∈ T, at ∈ R
l .

When the coneC is givenby (45), a function f is aC-function if andonly if,∀x1, x2, ∀α ∈ [0, 1],
〈at , (1 − α) f (x1) + α f (x2) − f (x(α))〉 ≥ 0, ∀t ∈ T,

that is

(1 − α)ϕt (x1) + αϕt (x2) − ϕt (x(α)) ≥ 0, ∀t ∈ T,

where

ϕt = 〈at , f 〉. (46)

We have thus obtained:

Proposition A.4 The function f is a C-function on X with respect to the cone C defined in (45) if
and only if, ∀t ∈ T , the function ϕt defined in (46) is convex on X.

The functions ϕt , t ∈ T , can be convex on X even if some (all) the functions f j , j = 1, . . . , l are
not, as the following example shows.

Example A.2 Let X = R
2 and C = {u ∈ R

3 : u3 ≥
√

u2
1 + u2

2}. The family of all the supporting
halfspaces of C , namely (45), is easily found to be:

⋂

t∈[−√
2,

√
2]
{u ∈ R

3 : −tu1 ±
√
2 − t2u2 + √

2u3 ≥ 0}.
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Consider the vector function f = ( f1, f2, f3) with:

fi (x) = 〈x, Di x〉,
being

D1 =
(
1 0
0 −1

)
, D2 =

( −1 0
0 1

)
, D3 =

(
2 0
0 2

)
.

We have now:

a(t) = (−t,±
√
2 − t2,

√
2), t ∈ [−√

2,
√
2],

so that

φt (x) =
〈
x,

( −t ± √
2 − t2 + √

2 0
0 −t ± √

2 − t2 + √
2

)
x
〉
.

It is easy to see that, for each t ∈ [−√
2,

√
2], φt is convex on X , while f1 and f2 are not convex.

Remark A.2 Example A.2 suggests a condition for f to be a C-function on X with respect to a not
necessarily polyhedral cone C .
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Reliability-Based Shape Design Optimization
of Structures Subjected to Fatigue

Manolis Georgioudakis, Nikos D. Lagaros and Manolis Papadrakakis

Abstract Fatigue has been played a key role into the design process of structures,
since many failures of them are attributed to repeated loading and unloading con-
ditions. Crack growth due to fatigue, represents a critical issue for the integrity and
resistance of structures and several numerical methods mainly based on fracture
mechanics have been proposed in order to address this issue. Apart from loading,
the shape of the structures is directly attributed to their service life. In this study,
the extended finite element is integrated into a shape design optimization framework
aiming to improve the service life of structural components subject to fatigue. The
relation between the geometry of the structural component with the service life is
also examined. This investigation is extended into a probabilistic design framework
considering both material properties and crack tip initialization as random variables.
The applicability and potential of the formulations presented are demonstrated with
a characteristic numerical example. It is shown that with proper shape changes, the
service life of structural component can be enhanced significantly. Comparisons with
optimized shapes found for targeted service life are also addressed, while the choice
of initial imperfection position and orientation was found to have a significant effect
on the optimal shapes.

1 Introduction

The failure process of structural systems is considered among the most challenging
phenomena in solid and structural mechanics. Despite of the advances achieved
over the past decades in developing numerical simulation methods for modeling
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such phenomena, there are issues still open to be addressed for accurately describing
failuremechanisms at themacro aswell as at themicro level. Reliability and accuracy
of the numerical description of failure process, plays an important role for the design
of newmaterials aswell as for understanding their durability and resistance to various
loading conditions.

In case of structural components subjected to cycling loading, fatigue plays an
important role to their residual service life. When loading exceeds certain threshold
value, microscopic cracks begin to form that propagate and possibly lead to fracture.
Additionally, the shape of these components is a key parameter that significantly
affects their residual service life and designers can control. Square holes or sharp
corners lead to increased local stresses where fatigue cracks can initiate whereas
round holes and smooth transitions or fillets will increase fatigue strength of the
component. Hence, it is required not only a reliable simulation tool for crack growth
analysis able to predict the crack paths and accurately describe the stiffness degra-
dation due to damage, but also there is a need for an optimization procedure capable
to identify improved designs of the structural components with regard to a targeted
service life.

Limitations of the analytical methods in handling arbitrary complex geometries
and crack propagation phenomena led to the development of numerical techniques
for solving fracture mechanics problems. In recent years, finite elements with enrich-
ments have gained increasing interest in modeling material failure, with the extended
finite element method (XFEM) being the most popular of them. XFEM [50] is capa-
ble of modeling discontinuities within the standard finite element framework and
its efficiency increases when coupled with the level set method (LSM) [52]. In this
framework, Edke and Chang [13] presented a shape sensitivity analysis method for
calculating gradients of crack growth rate and crack growth direction for 2D struc-
tural components undermixed-mode loading, by overcoming the issues of calculating
accurate derivatives of both crack growth rate and direction. This work was further
extended [14] to a shape optimization framework to support design of 2D struc-
tural components again under mixed-mode fracture for maximizing the service life
and minimizing their weight. Furthermore, Li et al. [46] proposed elegant XFEM
schemes for LSMbased structural optimization, aiming to improve the computational
accuracy and efficiency of XFEM, while Wang et al. [64] considered a reanalysis
algorithm based on incremental Cholesky factorization which is implemented into
an optimization algorithm to predict the angle of crack initiation from a hole in a
plate with inclusion.

Many numerical methods have been developed over the last four decades in
order to meet the demands of design optimization. These methods can be classi-
fied in two categories, gradient-based and derivative-free ones. Mathematical pro-
gramming methods are the most popular methods of the first category, which make
use of local curvature information, derived from linearization of objective and con-
straint functions and by using their derivatives with respect to the design variables
at points obtained in the process of optimization. Heuristic and metaheuristic algo-
rithms are nature-inspired or bio-inspired procedures that belong to the derivative-
free category of methods. Metaheuristic algorithms for engineering optimization
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include genetic algorithms (GA) [34], simulated annealing (SA) [38], particle swarm
optimization (PSO) [37], ant colony algorithm (ACO) [12], artificial bee colony
algorithm (ABC) [27], harmony search (HS) [23], cuckoo search algorithm [67],
firefly algorithm (FA) [66], bat algorithm [68], krill herd [20], and many others.
Evolutionary algorithms (EA) are among the most widely used class of meta-
heuristic algorithms and in particular evolutionary programming (EP) [19], genetic
algorithms [26, 34], evolution strategies (ES) [55, 59] and genetic programming
(GP) [39].

The advancements in reliability theory of the past 30 years and the development
of more accurate quantification of uncertainties associated with system loads, mate-
rial properties and resistances have stimulated the interest in probabilistic treatment
of systems [58]. The reliability of a system or its probability of failure constitute
important factors to be considered during the design procedure, since they character-
ize the system’s capability to successfully accomplish its design requirements. First
and second order reliability methods, however, that have been developed to assess
reliability, they require prior knowledge of the means and variances of component
random variables and the definition of a differentiable limit-state function. On the
other hand, simulation based methods are not restricted by form and knowledge of
the limit-state function but many of them are characterized by high computational
cost.

In this study, XFEM and LSM are integrated into a shape design optimization
framework, aiming to investigate the relation between geometry and fatigue life
in the design of 2D structural components. Specifically, shape design optimization
problems are formulated within the context of XFEM, where the volume of the
structural component is to be minimized subjected to constraint functions related
to targeted service life (minimum number of fatigue cycles allowed) when material
properties and crack tip initialization are considered as random variables. XFEM is
adopted to solve the crack propagation problem as originally proposed byMoës et al.
[50] and Stolarska et al. [61], with the introduction of adaptive enrichment technique
and the consideration of asymptotic crack tip fields and Heaviside functions. XFEM
formulation is particularly suitable for this type of problem since mesh difficulties
encountered into a CAD-FEM shape optimization problem are avoided by working
with a fixed mesh approach. In association to XFEM, the level set description is
used to describe the geometry providing also the ability to modify the CAD model
topology during the optimization process. Nature inspired optimization techniques
have been proven to be computationally appealing, since they have been found to be
robust and efficient even for complex problems and for this purpose are applied in
this study. An illustrative example of a structural component is presented, and the
results show that, with proper shape changes, the service life of structural systems
subjected to fatigue loads can be enhanced. Comparisons between optimized shapes
obtained for various targeted fatigue life values are also addressed, while the location
of the initial imperfection along with its orientation were found to have a significant
effect on the optimal shapes for the components examined [24].
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2 Handling Fatigue Using XFEM

Fatigue growth occurs because of inelastic behavior at the crack tip. The present study
is focused on 2Dmixed-mode linear elastic fracture mechanics (LEFM) formulation,
where the size of plastic zone is sufficiently small and it is embeddedwithin an elastic
singularity zone around the crack tip.

2.1 Fatigue Crack Growth Analysis at Mixed-Mode Loading

In order to quantify crack growth around the crack tip in the presence of constant
amplitude cyclic stress intensity, the basic assumptions of LEFM are employed. The
conditions at the crack tip are uniquely defined by the current value of the stress
intensity factors (SIFs) K . For extractiing mixed-mode SIFs, the domain form of
the interaction energy integral [70] is used, based on the path independent J-integral
[56], providing mesh independency and easy integration within the finite element
code. When both stress intensity factors (K I , KII) are known, the critical direction
of crack growth θc as well as the number of fatigue cycles N can easily be computed.

2.1.1 Computation of the Crack Growth Direction

The accuracy and reliability of the analysis of a cracked body depends primarily
on continuity and accurate determination of the crack path. It is therefore important
to select the crack growth criteria very carefully. Among the existing criteria, the
maximum hoop stress criterion [17], is used in this study. The crack growth criterion
states that (i) crack initiation will occur when the maximum hoop stress reaches a
critical value and (ii) crack will grow along direction θcr in which circumferential
stress σθθ is maximum.

Then the circumferential stress σrθ (see Fig. 1) along the direction of crack prop-
agation is a principal stress, hence the crack propagation direction θcr is determined
by setting the shear stress equal to zero, i.e.:

Fig. 1 Polar coordinates in
the crack tip coordinate
system

crack tip
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σrθ = 1

2πr
cos

θ

2

(1

2
K I sinθ + 1

2
KII(3cosθ − 1

)
= 0 (1)

This leads to the expression for defining the critical crack propagation direction θcr

in terms of local crack tip coordinate system as:

θcr = 2atan
1

4

( K I

KII
±

√
K 2

I

KII
+ 8

)
(2)

It is worthmentioning that according to this criteria, the maximum propagation angle
θcr is limited to 70.5◦ for pure Mode II crack propagation problems.

2.1.2 Computation of Fatigue Cycles

Fatigue crack growth is estimated using Paris law [53], which is originally proposed
for single mode deformation cases, relating the crack propagation rate under fatigue
loading to SIFs. For the case of mixed-mode loading, a modified Paris law can be
expressed using the effective stress intensity factor rangeΔKeff = Kmax − Kmin. For
a certain fatigue loading level, where the crack grows by length Δa in ΔN cycles,
Paris law reads:

Δa

ΔN
≈ da

d N
= C(ΔKeff)

m (3)

where C and m are empirical material constants. m is often called as the Paris
exponent and is typically defined in the range of 3–4 for common steel and aluminium
alloys. Equation3 represents a linear relationship between log(ΔKeff) and log( da

d N )

which is used to describe the fatigue crack propagation behavior in region II (see
Fig. 2). For calculating the effectivemixed-mode stress intensity factorΔKeff, various
criteria have been proposed in the literature. In this study, the energy release rate
model has been adopted, leading to:

ΔKeff =
√

ΔK 2
I + ΔK 2

II (4)

and consequently, the number of the corresponding cycles is computed according
to [2]:

ΔN = Δa

C(ΔKeff)m
(5)
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Fig. 2 Logarithmic crack
growth rate and effective
region of Paris law
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2.1.3 Fracture Toughness

Similar to the strength of materials theory where the computed stress is compared
with an allowable stress defining the material strength, LEFM assumes that unstable
fracture occurs when SIF K reaches a critical value Kc, called fracture toughness,
which represents the potential ability of a material to withstand a given stress field
at the crack tip and to resist progressive tensile crack extension. In other words, Kc

is a material constant and is used as a threshold value for SIFs in each pure fracture.
In XFEM, special functions are added to the finite element approximation based

on the partition of unity (PU) [3]. Finite elementmesh is generated and then additional
degrees of freedom are introduced to selected nodes of the finite element model near
to the discontinuities in order to provide a higher level of accuracy. Hence quasi-static
crack propagation simulations can be carried out without remeshing, bymodeling the
domain with standard finite elements without explicitly meshing the crack surfaces.

2.2 Modeling the Crack Using XFEM

For crack modeling in XFEM, two types of enrichment functions are used: (i) The
Heaviside (step) function and (ii) the asymptotic crack-tip enrichment functions taken
from LEFM [2]. The displacement field can be expressed as a superposition of the
standard ustd, crack-split uH and crack-tip utip fields as:

u(x) = ustd + uenr = ustd + uH + utip (6)
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or more explicitly:

u(x) =
n∑

j=1

N j (x)u j +
nh∑

h=1

Nh(x)H(x)ah +
nt∑

k=1

Nk(x)
( n f∑

l=1

Fl(x)bl
k

)
(7)

where n is the number of nodes in each finite element with standard degrees of
freedom u j and shape functions N j (x), nh is the number of nodes in the elements
containing the crack face (but not crack tip), ah is the vector of additional degrees of
freedom for modeling crack faces by the Heaviside function H(x), nt is the number
of nodes associated with the crack tip in its influence domain, bl

k is the vector of
additional degrees of freedom for modeling crack tips. Finally, Fl(x) are the crack-
tip enrichment functions, given by:

{Fl(r, θ)}4l=1 =
{√

r sin(
θ

2
);√

r cos(
θ

2
);√

r sin(
θ

2
) sin(θ);√

r cos(
θ

2
) sin(θ)

}

(8)

The elements which are completely cut by the crack, are enriched with the Heaviside
(step) function H . The Heaviside function is a discontinuous function across the
crack surface and is constant on each side of the crack. Splitting the domain by the
crack causes a displacement jump and Heaviside function gives the desired behavior
to approximate the true displacement field.

The first contributing part (ustd) on the right-hand side of Eq. (7) corresponds
to the classical finite element approximation to determine the displacement field,
while the second part (uenr) refers to the enrichment approximation which takes into
account the existence of any discontinuities. This second contributing part utilizes
additional degrees of freedom to facilitate modeling of the discontinuous field, such
as cracks, without modeling it explicitly.

3 The Structural Optimization Problem

Structural optimization problems are characterized by objective and constraint func-
tions that are generally non-linear functions of the design variables. These functions
are usually implicit, discontinuous and non-convex. In general there are three classes
of structural optimization problems: sizing, shape and topology problems. Structural
optimization was focused at the beginning on sizing optimization, such as optimizing
cross sectional areas of truss and frame structures, or the thickness of plates and shells
and subsequently later, the problem of finding optimum boundaries of a structure and
optimizing its shape was also considered. In the former case the structural domain is
fixed, while in the latter case it is not fixed but it has a predefined topology.

The mathematical formulation of structural optimization problems can be exp-
ressed in standard mathematical terms as a non-linear programming problem, which
in general form can be stated as follows:
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opt: F(s)

subject to: g j (s) ≤ 0, j = 1, . . . , k

slow
i ≤ si ≤ sup

i , i = 1, . . . , n

(9)

where s is the vector of design variables, F(s) is the objective function to be
optimized (minimized or maximized), g j (s) are the behavioral constraint functions,
while slow

i and sup
i are the lower and upper bounds of the i th design variable. Due

to fabrication limitations the design variables are not always continuous but dis-
crete since cross-sections or dimensions belong to a certain design set. A discrete
structural optimization problem can be formulated in the form of Eq. (9) where
si ∈ �d , i = 1, 2, . . . , n where �n

d is a given set of discrete values representing for
example the available structural member cross-sections or dimensions and design
variables s can take values only from this set.

3.1 Shape Optimization

In structural shape optimization problems the aim is to improve the performance of
the structural component bymodifying its boundaries [4, 6, 28, 60]. All functions are
related to the design variables, which are coordinates of key points in the boundary
of the structure. The shape optimization methodology proceeds with the following
steps:

(i) At the outset of the optimization, the geometry of the structure under investiga-
tion has to be defined. The boundaries of the structure are modeled using cubic
B-splines that, are defined by a set of key points. Some of the coordinates of
these key points will be considered as design variables.

(ii) An automatic mesh generator is used to create the finite element model. A finite
element analysis is carried out and displacements, stresses are calculated.

(iii) The optimization problem is solved; the design variables are improved and the
new shape of the structure is defined. If the convergence criteria for the search
algorithm are satisfied, then the optized solution has been found and the process
is terminated, else a new geometry is defined and the whole process is repeated
from step (ii).

3.2 XFEM Shape Optimization Considering Uncertainties

In this study, two problem formulations are considered, a deterministic and a prob-
abilistic one. According to the deterministic formulation, the goal is to minimize
the material volume expressed by optimized geometry of the structural component
subject to constraints related to the minimum service life allowed (calculated using
fatigue cycles as described in Sect. 2.1.2).
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3.2.1 Deterministic Formulation (DET)

The design problem for the deterministic formulation (DET) is defined as:

min: V (s)

subject to: N (s) ≥ Nmin

slow
i ≤ si ≤ sup

i , i = 1, 2, . . . , n

(10)

V is the volume of the structural component, si are the shape design variables with
lower and upper limits slow

i and sup
i , respectively, and N is the service life in terms

of number of fatigue cycles with the lower limit of Nmin.

3.2.2 Probabilistic Formulation (PROB)

The probabilistic design problem (PROB) is defined as:

min: V (s)

subject to: N̄ (s, x) ≥ Nmin

slow
i ≤ si ≤ sup

i , i = 1, 2, . . . , n

x j ∼ fx (μx , σ
2
x ) j = 1, 2, . . . , nr

(11)

where s and x are the vectors of the design and random variables, respectively, N̄ is
the mean number of fatigue cycles.

The probabilistic quantity N̄ of Eq. (11) is calculated bymeans of the Latin hyper-
cube sampling (LHS) method. LHS was introduced by McKay et al. [49] in an effort
to reduce the required computational cost of purely random samplingmethodologies.
LHS can generate variable number of samples well distributed over the entire range
of interest. A Latin hypercube sample is constructed by dividing the range of each of
the nr uncertain variables into M non-overlapping segments of equal marginal prob-
ability. Thus, the whole parameter space, consisted of M parameters, is partitioned
into Mnr cells. A single value is selected randomly from each interval, producing M
sample values for each input variable. The values are randomly matched to create
M sets from the Mnr space with respect to the density of each interval for the M
simulations.

4 Metaheuristic Search Algorithms

Heuristic algorithms are based on trial-and-error, learning and adaptation proce-
dures in order to solve problems. Metaheuristic algorithms achieve efficient perfor-
mance for a wide range of combinatorial optimization problems. Four metaheuristic
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algorithms that are based on the evolution process are used in the framework of this
study. In particular evolution strategies (ES), covariance matrix adaptation (CMA),
elitist covariance matrix adaptation (ECMA) and differential evolution (DE) are
employed. Details on ES, CMA and ECMA can be found in the work by Lagaros
[42], while the version of DE implemented in this study is briefly outlined below.

4.1 Evolution Strategies (ES)

Evolutionary strategies are population-based probabilistic direct search optimization
algorithm gleaned from principles of Darwinian evolution. Starting with an initial
population of μ candidate designs, an offspring population of λ designs is created
from the parents using variation operators. Depending on the manner in which the
variation and selection operators are designed and the spaces in which they act,
different classes of ES have been proposed. In ES algorithm employed in this study
[55, 59], each member of the population is equipped with a set of parameters:

a = [(sd , γ ), (sc, σ ,α)] ∈ (Id , Ic)

Id = Dnd × R
nγ

+ (12)

Ic = Dnc × Rnσ+ × [−π, π ]nα

where sd and sc, are the vectors of discrete and continuous design variables defined in
the discrete and continuous design sets Dnd and Rnc , respectively. Vectors γ, σ and
α, are the distribution parameter vectors taking values in R

nγ

+ , Rnσ+ and [−π, π ]nα ,
respectively. Vector γ corresponds to the variances of the Poisson distribution.
Vector σ ∈ Rnσ+ corresponds to the standard deviations (1 � nσ � nc) of the
normal distribution. Vector α ∈ [−π, π ]nα is related to the inclination angles
(nα = (nc −nσ /2)(nσ −1)) defining linearly correlated mutations of the continuous
design variables sd , where n = nd + nc is the total number of design variables.

Let P(t) = {a1, . . . , aμ} denotes a population of individuals at the t-th generation.
The genetic operators used in the ESmethod are denoted by the followingmappings:

rec: (Id , Ic)
μ −→ (Id , Ic)

λ (recombination)

mut : (Id , Ic)
λ −→ (Id , Ic)

λ (mutation) (13)

selk
μ: (Id , Ic)

k −→ (Id , Ic)
μ (selection, k ∈ {λ,μ + λ})

A single iteration of the ES, which is a step from the population Pt
p to the next parent

population Pt+1
p is modeled by the mapping:

optE A: (Id , Ic)
μ
t −→ (Id , Ic)

μ
t+1 (14)
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Algorithm 1 ES algorithm
1: t = 0
2: initialize(P(t = 0))
3: evaluate(P(t = 0))
4: repeat:
5: Pp(t) = selectBest(μ, P(t))
6: Pc(t) = reproduce(λ, PP p)

7: mutate(Pc(t))
8: evaluate(Pc(t))
9: if UsePlusStrategy then
10: P(t + 1) = Pc(t) ∪ P(t)
11: else
12: P(t + 1) = Pc(t)
13: end if
14: t = t + 1
15: until isNotTerminated()

4.2 Covariance Matrix Adaptation (CMA)

The covariance matrix adaptation, proposed by Hansen and Ostermeier [30] is a
completely de-randomized self-adaptation scheme. First, the covariance matrix of
the mutation distribution is changed in order to increase the probability of producing
the selected mutation step again. Second, the rate of change is adjusted according to
the number of strategy parameters to be adapted. Third, under random selection the
expectation of the covariance matrix is stationary. Further, the adaptation mechanism
is inherently independent of the given coordinate system. The transition from gen-
eration g to g + 1, given in the following steps, completely defines the Algorithm 2.

Generation of offsprings. Creation of λ new offsprings as follows:

sg+1
k ∼ N (m(g), σ (g)2C(g)) ∼ m(g) + σ (g)N (0, C(g)) (15)

where sg+1
k ∈ �n is the design vector of the kth offspring in generation g + 1, (k =

1, ..., λ), N (m(g), C(g)) are normally distributed random numbers where m(g) ∈ �n

is the mean value vector and C(g) is the covariance matrix while σ (g) ∈ �+ is the
global step size. To define a generation step, the new mean value vector m(g+1),
global step size σ (g+1), and covariance matrix C(g+1) have to be defined.

New mean value vector. After selection scheme (μ, λ) operates over the λ off-
springs, the new mean value vector m(g+1) is calculated according to the following
expression:

m(g+1) =
μ∑

i=1

wi s
(g+1)
i :λ (16)
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Algorithm 2 CMA algorithm
1: initialize λ,μ, wi=1,...,μ, μeff, cσ , dσ , cc, μcov, ccov

2: initialize C(t) ∈ In, m(t) = ones(n × 1), p(t) = zeros(n × 1)

3: repeat:

4: xi (t) ∼ N (m(t), σ 2(t)C(t)) for i = 1, . . . , λ

5: m(t + 1) = ∑μ
i=1 wi xi (t)

6: pc(t) = (1 − cc)pc(t − 1) + √
cc(2 − cc)μeff

(m(t+1)−m(t)
σ (t)

)

7: C(t + 1) = (1 − ccov)C(t) + ccov(1 − 1
μcov

)
∑μ

i=1 wiOP
( xi (t)−m(t)

σ (t)

) +
ccov
μcov

OP(pc(t))

8: pσ (t) = (1 − cσ )pσ (t − 1) + √
cσ (2 − cσ )μeffC(t)− 1

2
m(t+1)−m(t)

σ (t)

9: σ(t + 1) = σ(t)exp
( cσ

dσ

( ‖pσ (t)‖
E(‖N (0,I)‖) − 1

))

10: until stopping criterion is met

where s(g+1)
i :λ is the i th best offspring and wi are the weight coefficients.

Global step size. The new global step size is calculated according to the following
expression:

σ (g+1) = σ (g)exp

(
cσ

dσ

(
‖p(g+1)

σ ‖
E‖N (0, I)‖ − 1

))
(17)

while the matrix C(g)
− 1
2 is given by:

C(g)
− 1
2 = B(g)D(g)−1

B(g)T
(18)

where the columns of B(g) are an orthogonal basis of the eigenvectors of C(g) and
the diagonal elements of D(g) are the square roots of the corresponding positive
eigenvalues.

Covariance matrix update. The new covariance matrix C(g+1) is calculated from
the following equation:

C(g+1) = (1 − ccov)C(g) + ccov
μcov

p(g+1)
c p(g+1)T

c

+ ccov

(
1 − 1

μcov

) μ∑

i=1

wi O P

(
s(g+1)

i :λ − m(g)

σ (g)

)
(19)

OP denotes the outer product of a vector with itself and p(g)
c ∈ �n is the evolution

path (p(0)
c = 0).
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4.3 Elitist Covariance Matrix Adaptation (ECMA)

Elitist CMA evolution strategies algorithm is a combination of the well-known
(1 + λ)-selection scheme of evolution strategies [55], with covariance matrix adap-
tation [35]. The original update rule of the covariance matrix is applied to the
(1 + λ)-selection while the cumulative step size adaptation (path length control)
of the CMA(μ/μ, λ) is replaced by a success rule based step size control. Every
individual a of the ECMA algorithm is comprised of five components:

a = {s, psucc, σ, pc, C} (20)

where s is the design vector, psucc is a parameter that controls the success rate
during the evolution process, σ is the step size, pc is the evolution path and C is
the covariance matrix. Contrary to CMA, each individual has its own step size σ ,
evolution path pc and covariance matrix C. A pseudo code of the ECMA algorithm

Algorithm 3 (1 + λ)-ECMA

1: g = 0, initialize a(g)
parent

2: repeat

3: a(g+1)
parent ← a(g+1)

parent

4: for k = 1, . . . , λ do

5: s(g+1)
k ∼ N (s(g)

parent, σ
(g)2C(g))

6: end for

7: UpdateStepSize

(
a(g+1)
parent ,

λ
(g+1)
succ
λ

)

8: if f (s(g+1)
1:λ ) < f (s(g)

parent) then

9: x(g+1)
parent ← x(g+1)

1:λ
10: UpdateCovariance

(
a(g+1)
parent ,

s(g+1)
parent −s(g)

parent

σ
(g)
parent

)

11: end if

12: until stopping criterion is met

is shown in Algorithm 3. In line #1 a new parent a(g)
parent is generated. In lines #4–6, λ

new offsprings are generated from the parent vector a(g)
parent . The new offsprings are

sampled according to Eq. (8), with variable m(g) being replaced by the design vector
s(g)

parent of the parent individual. After the λ new offsprings are sampled, the parent’s
step size is updated by means of U pdateStepSi ze subroutine (see Procedure 4).
The arguments of the subroutine are the parent a(g)

parent and the success rate λ
(g+1)
succ /λ,

whereλ
(g+1)
succ is the number of offsprings having better fitness function than the parent.
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The step size update is based upon the 1/5 success rule, thuswhen the ratioλ
(g+1)
succ /λ is

larger than 1/5 step size increases, otherwise step size decreases. If the best offspring
has a better fitness value than the parent, it becomes the parent of the next generation
(see lines #8–9), and the covariance matrix of the new parent is updated by means of
U pdateCovariance subroutine (see Procedure 5). The arguments of the subroutine
are the current parent and the step change:

s(g+1)
parent − s(g)

parent

σ
(g)
parent

(21)

The update of the evolution path and the covariance matrix depends on the success
rate:

psucc = λsucc

λ
(22)

If the success rate is below a given threshold value pthresh then the step size is taken
into account and the evolution path and the covariance matrix is updated (see lines
#2–3 of Procedure 5). If the success rate is above the given threshold pthresh the step
change is not taken into account and evolution path and covariance matrix happens
are updated (see lines #5–6).

Procedure 4 UpdateSizeState
(
a = {s, psucc, σ, pc, C}, psucc

)

1: psucc ← (1 − cp)psucc + cp psucc

2: σ ← σexp

(
1

d

(
psucc − ptarget

succ

1 − ptarget
succ

(1 − psucc)

))

Procedure 5 UpdateCovariance
(
a = {s, psucc, σ, pc, C}, sstep ∈ �n

)

1: if psucc < pthresh then

2: pc ← (1 − cc)pc + √
cc(2 − cc)xstep

3: C ← (1 − ccov)C + ccovpcpT
c

4: else

5: pc ← (1 − cc)pc

6: C ← (1 − ccov)C + ccov(pcpT
c + cc(2 − cc)C)

7: end if
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4.4 Differential Evolution (DE)

Storn and Price [62] proposed a floating point evolutionary algorithm for global
optimization and named it differential evolution (DE), by implementing a special
kind operator in order to create offsprings from parent vectors. Several variants of
DE have been proposed so far [9]. According to the variant implemented in the
current study, a donor vector vi,g+1 is generated first:

vi,g+1 = sr1,g + F · (sr2,g − sr3,g) (23)

Integers r1, r2 and r3 are chosen randomly from the interval [1, N P]while i �= r1, r2
and r3. N P is the population size and F is a real constant value, called the mutation
factor. In the next step the crossover operator is applied by generating the trial vector
ui,g+1 which is defined from the elements of si,g or vi,g+1 with probability C R:

u j,i,g+1 =
{

v j,i,g+1, if randi, j ≤ C R or j = Irand
s j,i,g , if randi, j ≥ C R or j �= Irand

i = 1, 2, . . . , N P and j = 1, 2, . . . , n

(24)

where rand j,i ∼ U [0, 1], Irand is a random integer from [1, 2, . . . , n]which ensures
that vi,g+1 �= si,g . The last step of the generation procedure is the implementation
of the selection operator where the vector si,g is compared to the trial vector ui,g+1:

si,g+1 =
{

ui,g+1, if F(ui,g+1) ≤ F(si,g)

si,g , otherwise

i = 1, 2, . . . , N P

(25)

where F(s) is the objective function to be optimized, while without loss of generality
the implementation described in Eq. (25) corresponds to minimization.

Algorithm 6 Classical DE
1: initialize {x1, x2, . . . , xN P } ∈ �n

2: fi = f (xi ) for i = {1, . . . , N P}
3: repeat:

4: vi = CreateDonor({x1, x2, . . . , xN P }), for i = {1, . . . , N P}
5: vi = Crossover(xi , vi ) for i = {1, . . . , N P}
6: f offsi = f (ui ) for i = {1, . . . , N P}
7: {xi , fi } = Selection

(
xi , ui , fi , f offsi

)
for i = {1, . . . , N P}

8: until stopping criterion is met
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5 Towards the Selection of the Optimization Algorithm

In the past a number of studies have been published where structural optimization
with single and multiple objectives are solved implementing metaheuristics. A sen-
sitivity analysis is performed for four metaheuristic algorithms in benchmark mul-
timodal constrained functions highlighting the proper search algorithm for solving
the structural optimization problem.

5.1 Literature Survey on Metaheuristic Based Structural
Optimization

Perez and Behdinan [54] presented the background and implementation of a particle
swarm optimization algorithm suitable for constraint structural optimization prob-
lems,while improvements that effect of the setting parameters and functionality of the
algorithm were shown. Hasançebi [31] investigated the computational performance
of adaptive evolution strategies in large-scale structural optimization. Bureerat and
Limtragool [5] presented the application of simulated annealing for solving struc-
tural topology optimization, while a numerical technique termed as multiresolution
design variables was proposed as a numerical tool to enhance the searching perfor-
mance. Hansen et al. [29] introduced an optimization approach based on an evo-
lution strategy that incorporates multiple criteria by using nonlinear finite-element
analyses for stability and a set of linear analyses for damage-tolerance evaluation,
the applicability of the approach was presented for the window area of a generic
aircraft fuselage. Kaveh and Shahrouzi [36] proposed a hybrid strategy combining
indirect information share in ant systems with direct constructive genetic search, for
this purpose some proper coding techniques were employed to enable testing the
method with various sets of control parameters. Farhat et al. [18] proposed a sys-
tematic methodology for determining the optimal cross-sectional areas of buckling
restrained braces used for the seismic upgrading of structures against severe earth-
quakes, for this purpose single-objective and multi-objective optimization problems
were formulated. Chen and Chen [7] proposed modified evolution strategies for
solving mixed-discrete optimization problems, in particular three approaches were
proposed for handling discrete variables.

Gholizadeh and Salajegheh [25] proposed a new metamodeling framework that
reduces the computational burden of the structural optimization against the time
history loading, for this purpose a metamodel consisting of adaptive neuro-fuzzy
inference system, subtractive algorithm, self-organizing map and a set of radial basis
function networks were used to accurately predict the time history responses of
structures. Wang et al. [65] studied an optimal cost base isolation design or retrofit
design method for bridges subject to transient earthquake loads. Hasançebi et al. [32]
utilized metaheuristic techniques like genetic algorithms, simulated annealing, evo-
lution strategies, particle swarm optimizer, tabu search, ant colony optimization and
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harmony search in order to develop seven optimum design algorithms for real size
rigidly connected steel frames. Manan et al. [47] employed four different biologi-
cally inspired optimization algorithms (binary genetic algorithm, continuous genetic
algorithm, particle swarm optimization, and ant colony optimization) and a simple
meta-modeling approach on the same problem set. Gandomi and Yang [21] provide
an overview of structural optimization problems of both truss and non-truss cases.
Martínez et al. [48] described a methodology for the analysis and design of rein-
forced concrete tall bridge piers with hollow rectangular sections, which are typically
used in deep valley bridge viaducts. Kripakaran et al. [40] presented computational
approaches that can be implemented in a decision support system for the design of
moment-resisting steel frames, while trade-off studies were performed using genetic
algorithms to evaluate the savings due to the inclusion of the cost of connections in
the optimization model. Gandomi et al. [22] used the cuckoo search (CS) method
for solving structural optimization problems, furthermore, for the validation against
structural engineering optimization problems theCSmethodwas applied to 13 design
problems taken from the literature.

Kunakote and Bureerat [41] dealt with the comparative performance of some
establishedmulti-objective evolutionary algorithms for structural topology optimiza-
tion, four multi-objective problems, having design objectives like structural compli-
ance, natural frequency and mass, and subjected to constraints on stress, were used
for performance testing. Su et al. [63] used genetic algorithm to handle topology
and sizing optimization of truss structures, in which a sparse node matrix encoding
approach is used and individual identification technique is employed to avoid dupli-
cate structural analysis to save computation time. Gandomi andYang [21] used firefly
algorithm for solving mixed continuous/discrete structural optimization problems,
the results of a trade study carried out on six classical structural optimizationproblems
taken from literature confirm the validity of the proposed algorithm. Degertekin [11]
proposed two improved harmony search algorithms for sizing optimization of truss
structures, while four truss structure weight minimization problems were presented
to demonstrate the robustness of the proposed algorithms. The main part of the work
byMuc andMuc-Wierzgoń [51] was devoted to the definition of design variables and
the forms of objective functions for multi-layered plated and shell structures, while
the evolution strategy method was used as the optimization algorithm. Comparative
studies of metaheuristics on engineering problems can be found in two recent studies
by the authors Lagaros and Karlaftis [43], Lagaros and Papadrakakis [44] and in the
edited book by Yang and Koziel [69].

5.2 Sensitivity Analysis of Metaheuristic Algorithms

Choosing the proper search algorithm for solving an optimization problem is not
a straightforward procedure. In this section a sensitivity analysis of four search
algorithms is performed for five constrained multimodal benchmark test functions
in order to identify the best algorithm and to be used for solving the structural shape
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optimization problem studied in the next section. This sensitivity analysis is carried
out to examine the efficiency of the four metaheuristic algorithms and thus proving
their robustness. In particular, for the solution of the five problems ES, CMA, ECMA
and DE methods are implemented, since they were found robust and efficient in pre-
vious numerical tests [43, 44]. This should not been considered as an implication
related to the efficiency of other algorithms, since any algorithm available can be
considered for the solution of the optimization problem based on user’s experience.

The control parameters for DE are the population size (N P), probability (C R)
and constant (F), while for ES, CMA and ECMA the control parameters are the
number of parents (μ) and offsprings (λ). The characteristic parameters adopted for
the implementation are as follows: (i) for DE method, population size N P = 15,
probability C R = 0.90 and constant F = 0.60, while (ii) for all three ES, CMA and
ECMA methods, number of parents μ = 1 and offsprings λ = 14 for the case of ES
and ECMA and number of parents μ = 5 and offsprings λ = 15 for the case of CMA.

For all four algorithms the initial population is generated randomly using LHS in
the range of design space for each test example examined, while for the implementa-
tion of all algorithms, the real valued representation of the design vectors is adopted.
For the purposes of the sensitivity analysis 50 independent optimization runs were
performed, for the combination of the algorithmic parameters given above. The 50
independent optimization runs, represents a necessary step since non deterministic
optimization algorithms do not yield the same results when restarted with the same
parameters [57]. Using the optimum objective function values achieved for the 50
independent optimization runs, mean and coefficient of variation of the optimum
objective function value are calculated.

For comparative reasons the method adopted for handling the constraints and the
termination criterion is the same for all metaheuristic optimization algorithms. In
particular, the simple yet effective, multiple linear segment penalty function [44] is
used in this study for handling the constraints. According to this technique if no
violation is detected, then no penalty is imposed on the objective function. If any of
the constraints is violated, a penalty, relative to the maximum degree of constraints’
violation, is applied to the objective function, otherwise the optimization procedure
is terminated after 10,000 function evaluations. For the results found in the literature
and used for our comparative study different constraint handling techniques and
termination criteria were implemented.

5.2.1 Test Case S-6ACT

The first test case considered in this sensitivity analysis study is the so called S-
6ACT [33] problem that is defined as follows:

min: F(x) = x21 + x22 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2

+ (x5 − 3)2 + 2(x6 − 1)2 + 5x27 + 7(x8 − 11)2 + 2(x9 − 10)2

+ (x10 − 7)2 + 45
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subject to: g1(x) = 105 − 4x1 − 5x2 + 3x7 − 9x8 ≥ 0

g2(x) = −10x1 + 8x2 + 17x7 − 2x8 ≥ 0

g3(x) = 8x1 − 2x2 + 17x7 − 2x8 ≥ 0

g4(x) = −3(x1 − 2)2 − 4(x2 − 3)2 − 2x23 + 7x4 + 120 ≥ 0

g5(x) = −5x2 − 8x2 − (x3 − 6)2 + 2x4 + 40 ≥ 0

g6(x) = −x21 − 2(x2 − 2)2 + 2x1x2 − 14x5 + 6x6 ≥ 0

g7(x) = −0.5(x1 − 8)2 − 2(x2 − 4)2 + 3x25 + x6 + 30 ≥ 0

g8(x) = 3x1 − 6x2 − 12(x9 − 8)2 ≥ 0

−10 ≤ xi ≤ 10, i = 1, . . . , 10

It is a 10 design variables problemwith 8 inequality constraints. As it can be observed
in Table1 the better COV value is achieved by CMA and the worst one by ES
algorithm, while the best mean value is obtained by DE algorithm and the worst
by ES.

The best optimized designs achieved by the four metaheuristics among the 50
independent optimization runs is given in Table2. Although, the best optimized
design is achieved by CMA and DE algorithm, DE algorithm had slightly better
performance with reference to the statistical data of Table1. It should be noted also
that for all 50 independent optimization runs performed for each algorithm, feasible
optimized designs were obtained.

5.2.2 Test Case S-CRES

This test case problem was proposed by Deb [10] and is formulated with 2 design
variables and 2 inequality constraints:

min: F(x) = (x21 + x2 − 11)2 + (x1 + x22 − 7)2

subject to: g1(x) = 4.84 − (x1 − 0.05)2 − (x2 − 2.5)2 ≥ 0

g2(x) = x21 + (x2 − 2.5)2 − 4.84 ≥ 0

0 ≤ x1 ≤ 6

0 ≤ x2 ≤ 6

Table 1 Results comparison for test case S-6ACT

Algorithm μ λ Selection Obj. function

Best Mean COV (%)

ES 1 14 + 14.962 49.0379 1.56E+02

CMA 5 10 , 14.257 15.1669 8.57E-02

ECMA 1 14 + 14.436 14.2681 5.17E+00

DE 14.257 14.2608 3.42E-01
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Table 2 Results comparison for test case S-6ACT

x Deb [10] ES CMA ECMA DE

x1 2.171996 1.5859 1.576076 1.6996902 1.5760762

x2 2.363683 2.8712 2.731987 2.6947086 2.7319869

x3 8.773926 8.7952 8.791763 8.7832448 8.7917633

x4 5.095984 5.0471 5.059531 4.9932193 5.0595309

x5 0.990655 1.1745 0.976753 1.0675614 0.9767532

x6 1.430574 1.9129 1.436430 1.6072484 1.4364296

x7 1.321644 0.7489 0.783778 0.8738167 0.7837782

x8 9.828726 9.6163 9.709677 9.7054379 9.7096767

x9 8.280092 9.7648 9.774489 9.7654962 9.7744885

x10 8.375927 7.1255 7.064255 6.9290318 7.0642553

F 24.30621 14.962 14.257 14.436 14.257

In Fig. 3 the feasible and infeasible domain of the problem is shown. The feasible
domain is approximately 0.7% of the total search space. The two constraint functions
g1, g2 create a crescent shape for the feasible domain, as it is shown in Fig. 4 with
the zoomed area around the optimal point.

Similar to the previous test case, statistical results (mean value and COV) are
given in Table3. Furthermore, in Table4, the results are compared with the best
result found in literature [10]. It should be noted also that for all 50 independent
optimization runs performed for each algorithm, feasible optimized designs were
obtained.

The CMA and DE algorithms had better performance, since COV values of the
optimized objective function value obtained at the end of the evolution process was
orders of magnitude smaller than the one obtained by the other two algorithms.

Fig. 3 Feasible and
infeasible domain for
S-CRES problem
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Fig. 4 Enlarged space
around the optimal point

Table 3 Results comparison for test case S-CRES

Algorithm μ λ Selection Obj. function

Best Mean COV (%)

ES 1 14 + 13.59085 13.6897 2.53E+00

CMA 5 15 , 13.59084 13.5909 1.34E-03

ECMA 1 14 + 13.59087 13.6096 3.49E-01

DE 13.59084 13.5957 1.79E-02

Table 4 Results comparison for test case S-CRES

x Deb [10] ES CMA ECMA DE

x1 2.246826 2.246841 2.246826 2.246811 2.246826

x2 2.381865 2.382141 2.381865 2.381597 2.381865

F 13.59085 13.59085 13.59084 13.59087 13.59084

5.2.3 Test Case S-0.5F

The optimization problem S-0.5F [8] is formulated with 7 design variables and 4
inequality constraints:

min: F(x) = (x1 − 10)2 + 5(x2 − 12)2 + x43 + 3(x4 − 11)2

+ 10x65 + 7x26 + x47 − 4x6x7

subject to: g1(x) = 127 − 2x21 − 3x22 − x3 − 4x24 − 5x5
2 ≥ 0

g2(x) = 282 − 7x1 − 3x2 − 10x23 − x4 − x5 ≥ 0

g3(x) = 196 − 23x1 − x22 − 6x26 + 8x7 ≥ 0

g4(x) = −4x21 − x22 + 3x1x2 − 2x23 − 5x6 + 11x7 ≥ 0

−10 ≤ xi ≤ 10, i = 1, . . . , 7
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Table 5 Results for test case S-0.5F

Algorithm μ λ Selection Obj. function

Best Mean COV (%)

ES 1 14 + 680.7721 705.7945 1.24E+01

CMA 5 15 , 680.6301 680.6301 1.20E-07

ECMA 1 14 + 680.6848 681.5228 6.33E-02

DE 680.6301 680.6551 1.67E-01

Table 6 Results comparison for test case S-0.5F

x Deb [10] ES CMA ECMA DE

x1 2.330499 2.320378 2.330501 2.299430 2.330501

x2 1.951372 1.967625 1.951373 1.947076 1.951373

x3 −0.477541 −0.281803 −0.477539 −0.468747 −0.477539

x4 4.365723 4.319129 4.365723 4.382807 4.365723

x5 −0.624487 −0.615799 −0.624484 −0.611883 −0.624484

x6 1.038131 1.057470 1.038125 1.001823 1.038125

x7 1.594227 1.560759 1.594225 1.541608 1.594225

F 680.63 680.77 680.63 680.69 680.63

In this problem, only 0.5% of the space is feasible. Similar to the previous test
functions for all 50 independent optimization runs performed for each algorithm,
feasible optimized designs were obtained. Statistical results (mean value and COV)
are given in Table5. Table6 shows that even thought all algorithmsmanaged to locate
the optimal design domain, only CMA and DE algorithms found the global optimum
design. CMA algorithm had the best performance, since COV value of the optimized
objective function is almost zero.

5.2.4 Test Case S-HIM

The optimization problem S-HIM [8] is formulated with 5 design variables and 6
inequality constraints:

min: F(x) = 5.3578547x23 + 0.8356891x1x5 + 37.293239x1 − 40792.141

subject to: g1(x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4
− 0.0022053x3x5 ≥ 0

g2(x) = 92 − g1(x) ≥ 0

g3(x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2

+ 0.0021813x23 − 90 ≥ 0

g4(x) = 20 − g3(x) ≥ 0
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Table 7 Results for test case S-HIM

Algorithm μ λ Selection Obj. function

Best Mean COV (%)

ES 1 14 + −30665.5 −30190.0 1.81E+00

CMA 5 15 , −25273.7 −24258.6 2.07E+01

ECMA 1 14 + −30665.5 −30477.6 8.45E-01

DE −30665.5 −30700.5 2.68E-01

Table 8 Results comparison for test case S-HIM

x ES CMA ECMA DE

x1 78.000 78.000 78.000 78.000

x2 33.000 33.000 33.000 33.000

x3 29.996 45.000 29.995 29.995

x4 45.000 45.000 45.000 45.000

x5 36.776 27.000 36.776 36.776

F −30665.5 −25272.7 −30665.5 −30665.5

g5(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3
+ 0.0019085x3x4 − 20 ≥ 0

g6(x) = 5 − g4(x) ≥ 0

78 ≤ x1 ≤ 102

33 ≤ x2 ≤ 45

−27 ≤ xi ≤ 45, i = 3, 4, 5

Statistical results (mean value and COV) are given in Table7. The optimal value of
the objective function value is equal to −31005.7966 [1], which was achieved after
350,000 function evaluations. From Table8 is shown that for all 50 independent opti-
mization runs performed only for ES, CMA and DE algorithms, feasible optimized
designs were obtained. In contrast to the previous test functions, CMA algorithm
failed to identify the area of the optimal solution.

5.2.5 Test Case S-G08

The optimization problem S-G08 [1] is formulated with 2 design variables and 2
inequality constraints:

min: F(x) = sin(2πx1)3sin(2πx2)

x31(x1 + x2)

subject to: g1(x) = x21 − x2 + 1 ≥ 0

g2(x) = 1 − x1 + (x2 − 4)2 ≥ 0

= 1 ≤ x1 ≤ 3

= 1 ≤ x2 ≤ 5
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Table 9 Results for test case S-G08

Algorithm μ λ Selection Obj. function

Best Mean COV (%)

ES 1 14 + −0.10546 −0.08413 4.14E+01

CMA 5 15 , −0.10546 −0.06765 1.49E+02

ECMA 1 14 + −0.10546 −0.10398 4.11E+01

DE −0.10566 −0.10546 7.02E-01

Fig. 5 Design variables
domain for test case S-G08

Figure5 depicts the search space, while Fig. 6 depicts the area around the optimal
solution found in the literature. Similar to the previous test case, statistical results
(mean value and standard deviation) are given inTable9. TheDEalgorithmhad better
performance, since COV value of the optimized objective function value obtained at
the end of the evolution process was orders of magnitude smaller than that obtained
for the other three algorithms. The optimal value of the objective function found in
the literature is equal to −0.09582 [1], achieved after 350,000 function evaluations.
Similar to the previous test functions, in Table10 is shown that for all algorithms
feasible optimized designs were obtained.

5.3 Selection of the Appropriate Search Algorithm

The sensitivity of the four algorithms with respect to different optimization runs
characterized by the mean and coefficient of variation of the optimized objective
function values for each metaheuristic algorithm was identified in the corresponding
tables of Sect. 5.2. The lower mean and COV values are, the better the algorithm is.
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Fig. 6 Domain around
global minimum for test case
S-G08

Table 10 Results comparison for test case S-G08

x Aguirre et al. [1] ES CMA ECMA DE

x1 1.227971 1.227818 1.227818 1.227818 1.227817

x2 4.245373 3.744911 3.744911 3.744911 3.744911

F −0.09582 −0.10546 −0.10546 −0.10546 −0.10546

This is due to the fact that low COV values mean that the algorithm is not influenced
by the independent runs. Overall, the algorithm resulting to the lower mean value
(in case of minimization problem) and COV is used for performing the optimization
run with the specific algorithm, i.e. the DE algorithm.

6 Numerical Examples

A fillet from a steel structural member [61] is analyzed in this section to illustrate the
capabilities of the proposed methodology described in the previous sections of this
study. The geometry, loading conditions, and design variables of the structural com-
ponent are shown in Fig. 7. Four-node linear quadrilateral elements under plane stress
conditions with constant thickness equal to 5mm and isotropic material properties
are assumed. For the purposes of this study two boundary conditions are considered;
in the first one, designated as fillet rigid, all nodes of the bottom edge are fixed while
in the second one, denoted as fillet flexible, only the two end nodes of the bottom
edge of the component are fixed.

For both test examples deterministic and probabilistic shape optimization prob-
lems are solved. The objective function to be minimized, corresponds to the material
volume while two sets of constraints are enforced, i.e. deterministic and probabilis-
tic constraints on the fatigue cycles. Furthermore, due to manufacturing limitations
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b1

b2

r3

375mm

P

150mm

initial crack

θ
(x0, y0)

x

y

Fig. 7 Fillet geometry, loading and design variables of the problem

Table 11 Upper and lower
bounds of design variables
and corresponding steps
(in mm)

Design
variables

lup llow Step

b1 100.0 50.0 1.0

b2 100.0 50.0 1.0

r3 30.0 10.0 1.0

the design variables are treated as discrete in the same way as in a single objective
design optimization problems with the discrete version of Evolution Strategies [45].
The design variables correspond to the dimensions of the structural component taken
from Table11. The design load P (see Fig. 7), is applied as a concentrated tensile
load at the midpoint of the top edge and is equal to 20KN.

It is common in probabilistic analysis to distinguish between uncertainty that
reflects the variability of the outcome of a repeatable experiment and uncertainty due
to ignorance. The last one is sometimes referred as “randomness”, commonly known
as “aleatoric uncertainty”, which cannot be reduced. However, both deterministic and
probabilistic approaches rely on various model assumptions and model parameters
that are based on the current state of knowledge on the behavior of structural systems
under given conditions. There is uncertainty associated with these conditions, which
depends upon the state of knowledge that is referred as “epistemic uncertainty”.

In this study various sources of uncertainty are considered: on crack tip initializa-
tion (aleatoric randomness) which influences the shape of the crack propagation path
and on modeling (epistemic uncertainty) which affects the structural capacity. The
structural stiffness is directly connected to the Young modulus E , of structural steel,
while the number of fatigue cycles is influenced by the material properties C and m.
The crack length increment Δa and the poison ratio are taken equal to 5.0mm and
0.3, respectively, both implemented as deterministic. Thus, for the structural compo-
nent five random variables are used, i.e. the ordinate y0 of the crack tip initialization
and the corresponding angle θ along with the Young modulus E and parameters C ,
m. The material properties for the structural steel of the component are implemented
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Table 12 Random variables with the type of distribution and each statistical parameters: mean
value (μ) and standard deviation (σ )

Random variables μ σ cov (%) Distribution type

y0 (in mm) (150−b1)/(2+b1) − 5 Normal

θ (in ◦) 0.0 0.50 − Normal

E (in GPa) 207.0 35.19 17 Lognormal

C 2.45e-11 4.16e-12 17 Lognormal

m 2.37 0.40 17 Lognormal

as independent random variables whose characteristics were selected according to
Ellingwood et al. [16], Ellingwood and Galambos [15] and are given in Table12.

The numerical study that follows comprises of two parts: in the first part a para-
metric investigation is performed in order to find the number of simulations required
for computational efficiency and robustness regarding the calculation of the statisti-
cal quantities required and the identification of the most appropriate one that can be
used in order to characterize the influence of randomness on the fatigue cycles. In the
second part, the performance of structural components under fatigue is investigated
within a probabilistic shape design optimization framework.

6.1 Parametric Investigation

For the purpose of this parametric investigation the fillet rigid case is examined and
three designs, corresponding to the upper (Design 1), lower (Design 3) bounds of
the designs variables and an intermediate one (Design 2) are chosen. The scope of
this investigation is to find the lower number of simulations for a reliable calculation
of certain statistical quantities that are related to the number of fatigue cycles. To
this end, Monte Carlo (MC) simulations based on LHS are performed for the three
designs described above and the mean, median and standard deviation of the number
of fatigue cycles are calculated (see Table13).

The performance of the different number of MC simulations is depicted in the
histogramsofFig. 8. For the needs of this investigation, the three designs are subjected
to the ensemble of different number of simulations (100 + 200 + 500 + 1000).
Thus, 5400 XFEM analyses have been postprocessed for the three designs in order
to create a response databank with the quantities of interest. The propagation of
uncertainties is performed by means of the MC simulation method in connection
to the LHS technique which has been incorporated into the XFEM framework as
described above. According to LHS a given design is run repeatedly, for each MC
simulation using different values for the uncertain parameters, drawn from their
probability distributions as provided in Table12. It is worth mentioning that the
characteristic mesh size generated for the nestedXFEManalysis in both probabilistic
analysis and optimization cases, is kept constant in the region of the crack path.
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Table 13 Statistical quantities of the parametric investigation for the three designs of the rigid fillet
case

Design MCS Mean Median Std. dev.

Design 1 100 5382911.9 6895308.5 3176784.9

Design 1 200 6848983.6 7024024.0 11271233.5

Design 1 500 6568327.3 7026526.0 13717577.0

Design 1 1000 6533674.8 7026013.0 19043699.3

Design 2 100 90222.3 91794.2 27363.2

Design 2 200 94371.9 86020.0 28170.8

Design 2 500 96950.6 93982.8 109963.6

Design 2 1000 95214.8 94768.0 60920.3

Design 3 100 5260.5 4858.5 1141.3

Design 3 200 5371.9 4992.9 1308.9

Design 3 500 5369.6 5005.9 1278.3

Design 3 1000 5328.8 5360.0 994.2

Fig. 8 Histograms of each design

In the group of histograms of Fig. 8 the variability of the number of fatigue cycles
with respect to the number of simulations is depicted. These histograms show the
probabilistic distribution of the fatigue cycles value for different number of simula-
tions implemented into XFEM and for the three designs, respectively. The frequency
on the occurrence of the number of fatigue cycles is defined as the ratio of the number
of simulations, corresponding to limit state values in a specific range, over the total
number of simulations (Ntot ). Ntot is equal to 100, 200, 500 or 1000 depending on
the number of simulations used.

Comparing the histograms of Fig. 8, it can be noticed that the width of the con-
fidence bounds corresponding to the intermediate design is narrower compared to
the other two, while for the case corresponding to the upper bounds of the design
variables there are two zones of concentration for the frequency values. Furthermore,
comparing themean versusmedian values of the number of fatigue cycles, themedian
value is considered more reliable since it is not influenced by the extreme lower and
upper values obtained. Specifically, in the framework of an optimization problem,
search procedure might lead to designs where such extreme lower and upper values
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might be often encountered. In addition, 200 LH simulations were considered as
an acceptable compromise between computational efficiency and robustness. To this
extend an equal number of simulations are applied for the solution of the probabilistic
formulation of the shape optimization problem which is investigated in the second
part of this study.

The influence of the uncertain variables on the shape of the crack propagation paths
is presented in Figs. 9, 10 and 11, where the cloud of the typical crack paths obtained
for 200 simulations is depicted.A crack path is defined as typical, if its shape is similar
to deterministic one. Especially, for Design 1, due to its geometric characteristics,
many not typical crack paths were obtained, however only the typical ones are shown
in Fig. 9. This is an additional reason for choosing the median versus mean value as
the statistical quantity to be incorporated into the probabilistic formulations of the
problems studied in the second part of this work.

From the results obtained, it can be concluded that the crack paths obtained by
means of XFEM is highly influenced by the random parameters considered in this
study, thus the importance of incorporating them into the design procedure is exam-
ined in the following second part.

Fig. 9 Design 1

Fig. 10 Design 2
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Fig. 11 Design 3

6.2 Optimization Results

In the second part of this study four optimization problems are solved with the dif-
ferential evolution (DE) metaheuristic optimization algorithm. The abbreviations
DET∗K and PROB∗K correspond to the optimum designs obtained through a deter-
ministic (DET) and probabilistic (PROB) formulation where the lower number of
fatigue cycles allowed is equal to ∗ thousands.

6.2.1 Design Optimization Process

Theoptimization process that is basedon the integration ofXFEMinto a deterministic
and a probabilistic formulation of structural shape optimization is shown in Fig. 12.
Within each design iteration of the search process there is a nested crack growth
analysis loop performed for each candidate optimum design. Thus, a complete crack
growth analysis is conducted until the failure criterion is met, i.e. Keq < Kc and
the corresponding service life is evaluated in order to assess the candidate optimum
design.

The parameters used for theDEalgorithmare as follows: population size N P =30,
the probability C R = 0.90 and the mutation factor F = 0.60. For comparative reasons
the method adopted for handling the constraints and the termination criterion is the
same for all test cases. On the other hand, the optimization procedure is terminated
when the best value of the objective function in the last 30 generations remains
unchanged.

6.2.2 Fillet Rigid Test Case

The fillet rigid structural component examined in the previous section is the test
example of this study. For this case two groups of formulations were considered,
deterministic and probabilistic ones (defined in Eqs. (10)–(11), respectively), where
Nmin was taken equal to 100, 200 and 500 thousands of fatigue cycles. The objective
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Optimization Process

XFEM Analysis

Design Assesment
(contraints handling)

Is Keq < Kc?

Initial Crack
x, y, theta

XFEM Analysis

YES

Calculate crack
growth direction (θc)
and add new crack

segment using θc and
Δα

Add ΔΝ to total N for the
corresponding crack segment

Evaluate {d}, {σ}, {ε}

Is the current
design optimum?

Update Best
design

YESNO

Choose
next design

Calculate design
parameters (Ν, …)

NO

Compute SIFs
(KI, KII, Keq)

Given design
b1, b2, r3

Fig. 12 XFEM shape optimization process for deterministic and probabilistic formulation

Fig. 13 Objective function
versus generation for DET
case (rigid fillet)

function to be minimized in this problem formulation, is the material volume. DE
managed to reach optimum designs as shown in Figs. 13 and 14 together with the
optimization history for the deterministic and probabilistic formulation respectively.
The optimized designs achieved are presented in Table14 along with the material
volume, while the shapes of deterministic optimized designs are shown in Figs. 15,
16 and 17.
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Fig. 14 Objective function
versus generation for PROB
case (rigid fillet)

Table 14 Optimum design for each problem formulation and corresponding statistical parameters
for fillet rigid (MCS = 200)

Design b1 b2 r3 V N (det)
c N c Nmed

c COV
(%)

DET100K 50.0 75.0 27.0 79,690 136,024 99,055 106,573 30.43

DET200K 50.0 84.0 28.0 82,461 201,728 261,604 198,703 36.84

DET500K 73.0 100.0 21.0 105,793 553,038 506,188 505,190 33.02

PROB100K 66.0 100.0 27.0 100,390 118,124 107,584 100,894 45.14

PROB200K 88.0 100.0 19.0 118,065 83,143 353,434 200,288 23.55

PROB500K 100.0 93.0 18.0 169,157 498,856 269,721 554,890 47.19

Upper Bound

Lower Bound

Optimum Design

Crack path

Fig. 15 Optimum design for deterministic formulation DET100 for rigid fillet

From Table14, comparing the three designs achieved by means of the determinis-
tic formulation it can be said that thematerial volume of DET500K is increased by 33
and 28%compared toDET100KandDET200K respectively,while that ofDET200K
is increased by almost 3.5% compared to DET100K. Furthermore, it can be seen
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Upper Bound

Lower Bound

Optimum Design

Crack path

Fig. 16 Optimum design for deterministic formulation DET200 for rigid fillet

Fig. 17 Optimum design for deterministic formulation DET500 for rigid fillet

that there are differences to almost all design variables considered to formulate the
optimization problem. The results obtained for the probabilistic formulation revealed
that the material volume of PROB500K is increased by 68 and 43% compared to
PROB100K and PROB200K respectively, while that of PROB200K is increased by
almost 17.5% compared to PROB100K. In addition, it can be seen that the material
volume of designs PROB100K, PROB200K and PROB500K is increased by 26, 43
and 60% compared to DET100K, DET200K and DET500K, respectively.

In order to justify the formulation of the shape optimization problem consider-
ing uncertainties, probabilistic analyses are performed for all six optimized designs
obtained through the corresponding problem formulations and the statistical quan-
tities related to the number of fatigue cycles are calculated. These quantities are
provided in Table14 and as it can be seen there are cases where deterministic for-
mulation overestimates the number of fatigue cycles compared to the median value
when considering uncertainty. Furthermore, it can be seen that the mean value of
the fatigue cycles is not a reliable statistical quantity since it is highly influenced by
the crack paths due to high COV values (see Table14 and Fig. 18). The high COV
values which found from the reliability analysis proposed in emerges the necessity
of a robust design formulation for the optimization problem, by minimizing these
COV values and find the “real” optimum.
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Fig. 18 Crack patterns for DET100, DET200, DET500 case respectively (rigid fillet)

7 Conclusions

In this study structural shape optimization problems are formulated for designing
structural components under fatigue. For this reason the extended finite element
and level set methods are integrated into a shape design optimization framework,
solving the nested crack propagation problem and avoiding the mesh difficulties
encountered into a CAD-FEM shape optimization problem by working with a fixed
mesh approach.

Based on observations of the numerical test presented the deterministic optimized
design is not always a “safe” design with reference to the design guidelines, since
there are many random factors that affect the design. In order to find a realistic opti-
mized design the designer has to take into account all important random parameters.
In the present work a reliability analysis combined with a structural shape design
optimization formulation is proposed where probabilistic constraints are incorpo-
rated into the formulation of the design optimization problem. In particular, structural
shape optimized designs are obtained, considering the influence of various sources
of uncertainty. Randomness on the crack initialization along with the uncertainty
on the material properties are considered. Shape design optimization problems were
formulated for a benchmark structure, where the volume of the structural compo-
nent is minimized subjected to constraint functions related to targeted service life
(minimum number of fatigue cycles allowed) when material properties and crack tip
initialization are considered as random variables.

A sensitivity analysis of four optimization algorithms based on evolution process
was conducted in order to identify the best algorithm for the particular problem at
hand to be used for solving the structural shape optimization problem. This sensitiv-
ity analysis is carried out in order to examine the efficiency and robustness of four
metaheuristic algorithms. Comparing the four algorithms it can be said that evo-
lutionary based algorithms can be considered as efficient tools for single-objective
multi-modal constrained optimization problems. In all test cases examined, a large
number of solutions need to be found and evaluated in search of the optimum one.
The metaheuristics employed in this study have been found efficient in finding an
optimized solution.
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The aim of this work in addressing a structural optimization problem considering
uncertainties was twofold. First the influence of the uncertain parameters and the
number of Latin hypercube samples was examined and in particular those related
to the statistical quantities and consequently to the number of fatigue cycles. In the
second part of this study the two formulations of the optimization problem were
considered feasible for realistic structures. The analysis of the benchmark structure
has shown that with proper shape changes, the service life of structural systems
subjected to fatigue loads can be enhanced significantly. Comparisonswith optimized
shapes found for targeted fatigue life are also performed, while the choice of the
position and orientation of initial imperfection was found to have a significant effect
on the optimal shapes for the structural components examined.
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A Stress-Test of Alternative Formulations
and Algorithmic Configurations
for the Binary Combinatorial Optimization
of Bridges Rehabilitation Selection

Dimos C. Charmpis and Loukas Dimitriou

Abstract Optimal surface transport asset management is a major concern with
multiple economic and operational implications developed in various infrastructure
areas. Although relevant ‘mature’ analytical frameworks have been proposed and
developed, the problem setup and the algorithmic choices are still issues requiring
thorough and detailed investigation. In this chapter, an optimal budget allocation
framework is developed and stress-tested for the optimal scheduling of a bridges
upgrading program.A suitable test case is developed for performing in-depth analysis
that takes into consideration the most important features involved in such scheduling
problems, while alternative formulations are also presented and discussed. The pro-
posed frameworks are applied on a real large-scale dataset from the highway system
of US, able to provide an adequate test-bed for investigating the optimal upgrade
problem. The paper aims in the investigation of the effects that alterations of the
problem setup, but also the effects that algorithmic configurations are introducing,
when addressing real-world applications. The binary/selection problem is handled
with a suitably coded Branch-and-Bound (BaB) algorithm, which is regarded as a
robust and fast heuristic for such optimization problems. BaB is tested in alternative
standard and extreme configurations, offering insights on its performance. Interest-
ingly enough, although the continuous relaxation introduced by the BaB enables fast
convergence, the NP-hard problem’s nature should be cautiously taken into consider-
ation. The results are discussed in order to provide insights of applying the proposed
framework in realistic infrastructure upgrading schemes.
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1 Introduction

It is widely recognized that the development of civil infrastructure corresponds to a
twofold process: infrastructure additions and the maintenance of the existing. Both
require significant efforts (monetary and other) and it is essential to handle them in
such manner that the resulting infrastructure meets the multiple requirements and
covers the multiple objectives contemporary societies depend on. Alternative prac-
tices and large research efforts have been proposed and used worldwide for cases
of optimal infrastructure handling, belonging to the broad multidisciplinary areas of
asset management, optimal budget allocation problems, optimal planning, mainte-
nance programming and life-cycle engineering analysis, elements that highlight the
importance and complexity of the optimal (in multiple ways) infrastructure manage-
ment case.

In order to be able to utilize the methodological and technical advances that have
emerged in the recent decades for the optimal asset management of civil infrastruc-
ture, many important issues need to be considered, related to the data availability,
reliability and consistency that adds to the burden involved in each case.

This chapter aims to offer results from an in-depth investigation that incremental
programming modification as well as algorithmic configurations have on realistic
implementations and in the overall model performance for such computationally
complex cases. In particular, alternative problem setups are analyzed and discussed.
Additionally, a well-documented optimization algorithm is stress-tested for address-
ing the above configurations, providing valuable results on the problem character-
istics. The algorithm selected is the Branch-and-Bound (BaB), which is based on a
relaxation of the binary problem to a series of linear programming approximations.

This comprehensive formulation that is offered and discussed, accompanied with
computational results, are suitably selected and presented in order to contribute to
the understanding of the nature of the bridge upgrade scheduling problem and the
expected outcomes using optimization frameworks. The real data used in this work
is obtained from the database of the Federal Highway Administration (FHWA) of
the United States (US) (National Bridge Inventory-NBI).

Regarding the organization of the chapter, it starts with a brief but targeted litera-
ture review of optimal asset management of road infrastructure and budget allocation
for bridges’maintenance purposes. Then, the case and threads of the optimal bridges’
upgrade programming is discussed based on the realistic information extracted from
the NBI database. The test-bed used here corresponds to the bridges stock of the
State of New York, which yields a data sample of about 15,000 bridges and is thor-
oughly and reliably appraised in operational and economic terms. Results from a
comprehensive case setup are analytically presented and discussed next. Also, the
performance of the proposed optimization framework is presented in detail, giving
information about its performance and some outlook. From the discussion section,
useful insights both for the methodological part as well for the state-of-the-practice
are provided. The last section concludes this work.
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2 Literature Review

Optimal investments planning for infrastructure maintenance and generally asset
management of the civil infrastructure has always been recognized as an important
issue and as so substantial research effort is invested over the years [1]. A complete
literature review of this important issue will not be presented in the current paper.
Hence, focusing on road infrastructure, the importance for maintaining adequate
operational conditions have been highlighted mainly for three reasons:

i the importance of maintaining the necessary connectivity is closely related with
economic activity,

ii the necessary efforts for maintenance correspond to large amounts of money that
should be invested in the most ‘prosperous’ manner, and

iii in cases of emergency (natural disasters, accidents or deliberate malevolent
actions) road networks are providing vital lifelines.

Following the above very broad categorization of the road asset management prob-
lems, the ‘rational’ way of treating (funding) asset maintenance is based on the gen-
eral area of optimal budget allocation type of problems, while allocation involves
both selecting the assets/elements that should be maintained as well as the time
that maintenance efforts should be scheduled. For these reasons, many optimization
frameworks have been tested and used [2, 3] focusing on the road asset management
on a life-cycle basis and taking into consideration reliability issues [4–7]. The specific
case of the road asset management and the corresponding fund allocation problem
give rise to multiple objectives and concerns, therefore many approaches have been
based on multi-objective optimization problem setups [8, 9], incorporating elements
of stochasticity and uncertainty in the important assets of bridges [10]. Moreover,
optimal allocation and scheduling problems have been also considered [11], while
some –at least methodological– issues, emerging in cases of optimal programming
for multidistrict agencies, are also reported [12]. Moving to the asset management of
the road infrastructure, viewed as important lifelines in cases of emergency, optimal
recovery planning has been treated again using optimal planning procedures [13,
14]. Seemingly to the recovery planning, infrastructure security planning may be
treated as optimal allocation problem [15].

As can be observed by the above brief review of the recent research efforts in the
optimal asset management and resource allocation type of problems, the approach
typically used lies within the optimal selection, organization, classification, schedul-
ing or hierarchy formation type of problems, which are treated using optimization
routines and frameworks. In realistic cases, the above types of mathematical pro-
gramming cases correspond to optimization paradigms of high computational com-
plexity and as so several issues emerge, either due to the high dimensionality of the
problems at hand, or by the difficulties to adequately tackle them. This is why the
optimization routines used in the vast majority of the demonstrative cases presented
in the literature employs (meta-)heuristics [16], the final solutions of which cannot
be guaranteed to be absolute optimal solutions.
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The current paper aims to offer an additional application of optimal maintenance
programming for the important road infrastructure of road bridges. In particular, a
real large-scale database is used for this case, which is presented in the following
section.

3 Database Information

The data used here comes from the NBI program, which provides an extensive
database that contains information on several hundreds of thousands bridges, culverts
and tunnels in the US [17]. NBI was initiated in 1972 and is now yearly updated by
the FHWA through inspections conducted from specially qualified personnel and it
can be considered as a suitable test-bed for relevant research and ‘tools’ development
[18]. The information in this inventory is stored in coded form and concerns location,
structural condition, age, materials, traffic etc. for each construction.

3.1 Database Items

The NBI-items exploited herein are synopsized in Table1 and described below.

Bypass, Detour Length (DLEN)
When a bridge is closed and cannot be used for whatever reason (failure, repair,
maintenance, etc.), vehicles have to use a bypass to move around the closed bridge.
The present item indicates the detour length (km), which corresponds to the total
additional travel for a vehicle that results from the closure of a bridge. The longest
detour length allowed to be coded is 199km.

Average Daily Traffic (ADT)
This item reports a recent count for the annual average daily traffic volume of each
bridge. This count includes all types of traffic (light vehicles, trucks, etc.). Even if a
bridge is closed, an ADT-value is given and represents the vehicle count from before
the bridge closure.

Table 1 NBI items used in the present work

No. Symbol Description

19 DLEN Bypass, Detour length

29 ADT Average Daily traffic

96 CIMPR Total improvement cost
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Total Improvement Cost (CIMPR)
This item offers an estimation of the total project cost (US $) for improving each
bridge. It includes all costs that can be associated with the particular bridge improve-
ment project, i.e. the costs for structural upgrade, roadway construction and other
incidental costs. The provided total cost estimation is current. When difficulties are
encountered in making a reasonable cost estimation, setting CIMPR equal to 150%
of the bridge cost is recommended in [17].

3.2 Description of Bridge Stock Data

The bridge stock considered in this work for optimally allocating a budget for bridge
improvement is the one of the State of New York (NY) with NBI state code 362.
Figure1 illustrates the respective bridge locations. The total number of NBI records
for NY is 17,442. This number is reduced by 1948 records to exclude culverts. More-
over, as we are herein interested in steel and reinforced/prestressed concrete bridges
only, another 615 records are eliminated to exclude bridges made of other materials
(wood, masonry, aluminum, etc.). Finally, another 84 records are deleted to exclude
a few bridges, for which essential data are missing, e.g. no bridge improvement cost
(CIMPR) or traffic (ADT) is given in the database. Thus, the total number of NY
bridges processed in this work is 14,795.

The NY bridge data extracted for the items of Table1 from the NBI database are
organized into vectors DLEN, ADT and CIMPR. The data are graphically depicted
in Fig. 2, while a zoom-in view of traffic versus improvement cost data is provided
in Fig. 3.
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4 Optimization of Budget Allocation for Bridge Stock
Improvement

An optimization problem is formulated in the present work to allocate the available
budget for the improvement of a bridge stock. In order to facilitate the reference to
various options to allocate the budget, a binary integer vector x is used to indicate
which bridges of the stock are improved. In particular, the terms of vector x can only
take the values 0 or 1 as follows:

xi =
{
0 ⇒ bridge i is not improved

1 ⇒ bridge i is improved
(1)

Vector x = [
x1 x2 ... xnb

]t has nb terms, where nb is the number of bridges in the
processed stock (for the NY stock used herein, nb =14,795). Thus, for a particular
budget allocation, vector x provides the decision regarding the improvement or not
of each bridge in the stock. The number of bridges improved is obtained simply by
adding together all terms of vector x:

nimpr
b (x) =

nb∑

i=1

xi . (2)

In the two formulations considered in the presentwork, the aim of the optimization
procedure is to decide on the improvement programme of a bridge stock in a way
that the social benefit is maximized. In the first formulation, the aim is to maximize
the total traffic serviced by improved bridges using a pre-specified budget. This way,
the highest possible traffic will take advantage of the budget spent. In mathematical
programming terms, the optimization problem is expressed as:

find x
that maximizes F (x) = ADTt x
subject to CIMPRt x ≤ BU DG ET

x binary

(3)

In the above formulation, x is the vector of decision variables xi (i = 1, . . ., nb),
which numerically control the improvement decision for each bridge. The user-
specified parameter BUDGET is the maximum allowable total improvement cost (in
US $) of the bridges. Thus, a solution x is feasible only when it satisfies the budget
constraint; otherwise, it is infeasible.

The second formulation considered is obtained by appending one more constraint
to (3). Specifically, the indirect service costs due to bridge closure for improvement
works are additionally taken into account. For this purpose, a new vector CCLOS is
formed to provide a measure of the costs due to user inconvenience, delay, increased
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Table 2 Basic statistics of NY bridge stock data

Minimum Maximum Average Sum

ADT (vehicles) 1 297,700 11,400 168.7e6

CIMPR ($) 2.0e3 975.3e6 4.0e6 58.7e9

CCLOS (vehicles × km) 0 19.5e6 74.0e3 1.1e9

Minimum, maximum and average values refer to one bridge for a particular data vector. The ‘sum’
refers to the total value obtained by adding together all bridge values for a particular data vector

fuel consumption, etc. associated with the temporary closure of each bridge under
improvement. Each term CC L O Si (i = 1, . . ., nb) of CCLOS is calculated as:

CC L O Si = ADTi DL E Ni (4)

and its units are (vehicles × km). Thus, the second optimization formulation is
expressed as:

find x
that maximizes F (x) = ADTt x
subject to CIMPRt x ≤ BU DG ET

CCLOSt x ≤ CC L O Smax
x binary

(5)

The user-specified parameter CC L O Smax is the maximum allowable total indirect
service cost (in vehicles × km) of the bridges. Now, a solution x is feasible only
when it satisfies both budget and indirect service cost constraints; otherwise, it is
infeasible.

Table2 provides basic statistical properties for the bridge data in the three vectors
ADT, CIMPR and CCLOS involved in the presented optimization formulations.

5 Binary Optimization Algorithm

The optimization formulations (3) and (5) define binary integer programming prob-
lems with a linear objective function F(x), linear constraints and a binary solution
vector x. There is a number of optimization routines used for addressing such binary
programming problems, all of them belonging to the heuristics class of algorithms. In
this work, the Linear Programming (LP)-based Branch-and-Bound (BaB) algorithm
is used [19, 20], in order to address the particular binary/combinatorial programming
problem. This algorithm searches for an optimal solution to the binary programming
problem by solving a series of LP-relaxation problems, in which the binary require-
ment on the decision variables is replaced by the ‘weaker’ constraint 0 ≤ xi ≤ 1.
The algorithmic steps roughly are:



A Stress-Test of Alternative Formulations and Algorithmic Configurations … 497

• search for a binary feasible solution by solving the problem as a continuous LP
problem and by rounding to the appropriate/nearest integer in {0,1} (the search
starts from a current solution);

• update the best binary feasible point found so far as the search ‘tree’ grows (updat-
ing);

• verify that no better binary feasible solution is possible by solving a series of LP
problems (convergence).

The algorithm performs an incomplete, deterministic exploration of the decision
space and avoids the computationally extremely demanding exhaustive search,which
involves all possible 2nb solution vectors. By using a LP-relaxation feature within
the BaB algorithm, convergence time is significantly improved while maintaining a
level of stratification in the deterministic search process.

In this particular binary optimization algorithm, two features describe the com-
putational burden involved in each case processed: (i) the total number of iterations
needed by the LP method used (here the Simplex method) subject to particular
stopping criteria for estimating upper and lower solution bounds and (ii) the total
number of nodes constructed for exploring the search space. Few nodes and LP iter-
ations correspond to fast BaB convergence, while large numbers of nodes and LP
iterations signify that the BaB algorithm encounters difficulties in converging to a
final (optimal) solution. The particular problem size and the alternative configura-
tions solved herein, form a suitable test-bed for a crash-test of the BaB algorithm.
Results interpretation and discussion are provided in subsequent sections.

6 Computational Experiments

6.1 Maximization of Total Traffic Serviced by Improved
Bridges for Pre-specified Budget

The budget allocation problem for the NY State bridge stock is first addressed with
the BaB algorithm using formulation (3) for various available budgets ranging from
20 to 1000 million$. The results attained from this parametric study are summarized
in Table3. The percentage values in this table compare optimization data/results with
respective total values. Thus, with a budget of just 20 million$, which is much less
than 1� of the total necessary improvement cost for all bridges (see sum of CIMPR
in Table2), 2.0% of NY bridges can be improved servicing more than 10% of the
state’s overall bridge traffic (see sum of ADT in Table2). With a high budget of 1000
million$ (1.7% of the total improvement cost for all bridges), more than 14% of NY
bridges can be improved servicing 37.5% of the total bridge traffic. These results
demonstrate the effectiveness of the developed budget allocation procedure, which
optimally exploits the available amount of money for bridge improvements.

To gain insight into the optimal solutions attained using formulation (3), scat-
ter plots for the ADT and CIMPR values of the improved bridges in each opti-
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Table 3 Optimization results obtained using formulation (3)

Optimization run 1 2 3 4 5 6

BUDGET ($) 20e6 50e6 100e6 200e6 500e6 1000e6

(0.3�) (0.9�) (1.7�) (3.4�) (8.5 �) (1.7%)

Unused budget ($) 1000 0 0 18,000 2000 1,034,000

F (vehicles) 12.8e6 19.6e6 26.2e6 34.2e6 48.6e6 63.3e6

(7.6%) (11.6%) (15.5%) (20.2%) (28.8%) (37.5%)

Improved bridges nimpr
b 298 540 765 1069 1611 2179

(2.0%) (3.6%) (5.2%) (7.2%) (10.9%) (14.7%)
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Fig. 4 Scatter plot of ADT versus CIMPR data for improved bridges according to the optimal
solutions and available BUDGET

mization case are given in Fig. 4. The optimizer clearly prefers to improve bridges,
which have a relatively high ADT -value combined with a relatively low improve-
ment cost (CIMPR) value. In fact, the optimizer seems to select for improvement
all bridges, which have points in the ADT-CIMPR scatter plot below a straight line
passing through the origin, relating to the deterministic search strategy the BaB
algorithm is based on. The value of the BUDGET-parameter actually specifies the
slope (CIMPR/ADT ) of this ‘decision’-line, with a higher BUDGET-value inducing
a higher slope.

Table4 presents the slopes of the ‘decision’-line for the 6 optimization runs, as
well as for the entire NY bridge sample. The slope for a bridge sample is actually
equal to themaximumratioCIMPR/ADT among all bridges of the sample. The results



A Stress-Test of Alternative Formulations and Algorithmic Configurations … 499

Table 4 Slopes of the ‘decision’-line

Bridge sample BUDGET ($) Max ratio CIMPR/ADT

Optimal solution 20e6 3.1

50e6 6.5

100e6 9.5

200e6 15.4

500e6 26.9

1000e6 41.3

Entire sample ∞ 6,108,000.0

of the table verify the positive correlation among available budget and slope of the
‘decision’-line. The extremely high slope-value for the entire sample is explained
by the presence of many bridges in the sample, which have very low ADT -values
combined with high CIMPR-values (see Fig. 3). This behavior is a consequence of
the dependence mentioned earlier among the available budget and the slope of the
‘decision’-line in the ADT-CIMPR scatter plot. Figure4 graphically illustrates this
behavior.

Another interesting property of the results obtained is that the bridges improved
according to the optimal solution for a lower BUDGET-value are a subset of the
bridges improved according to the optimal solution for a higher BUDGET-value. In
other words, when the BUDGET-value is increased, the optimizer adds improved
bridges to the improved bridges selected for a lower BUDGET-value (see Fig. 4).

It is finally noted that, in order to use up the available BUDGET in each opti-
mization case, the final BaB solution may need to be post-processed using another
optimization routine. Thus, the ‘optimal’ BaB solution can be used as the starting
point for a sequential meta-optimization round of stochastic search performed e.g.
with a Genetic Algorithm [21]. The additional stochastic search can eliminate the
unused budgets of Table3 by selecting additional bridges to improve.

6.2 Maximization of Total Traffic Serviced by Improved
Bridges for Pre-specified Budget and Indirect Service Cost

The budget allocation problem for the NY State bridge stock is also addressed with
the BaB algorithm using formulation (5) for available budgets ranging from 50 to
500 million$. The results attained from this parametric study are summarized in
Table5. Lines in bold correspond to the results of Table3, i.e. with the indirect service
cost actually deactivated. Thus, for values higher than the first CC L O Smax-value
given for each BUDGET, the indirect service cost constraint is satisfied anyway in
the optimal solution, whether this constraint is taken into account or not (i.e. only
the budget constraint is critical). The results of Table5 demonstrate the effect of the
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Table 5 Optimization results obtained using formulation (5)

Constraints Optimal solution

BUDGET ($) CC L O Smax
(vehicles × km)

F (vehicles) Improved bridges nimpr
b

50e6 (0.9 %◦) 84.2e6 19.6e6 540
50.0e6 19.5e6 544

30.0e6 19.0e6 479

20.0e6 17.7e6 434

10.0e6 14.8e6 372

5.0e6 11.1e6 227

100e6 (1.7 %◦) 106.7e6 26.2e6 765
50.0e6 25.7e6 710

30.0e6 24.1e6 642

20.0e6 21.8e6 560

10.0e6 17.3e6 421

5.0e6 13.1e6 262

200e6 (3.4 %◦) 145.6e6 34.2e6 1069
100.0e6 34.0e6 1036

50.0e6 32.7e6 911

30.0e6 29.5e6 803

20.0e6 26.5e6 732

10.0e6 20.2e6 482

5.0e6 15.6e6 322

500e6 (8.5 %◦) 207.1e6 48.6e6 1611
100.0e6 47.9e6 1495

50.0e6 43.7e6 1243

30.0e6 38.3e6 1073

20.0e6 33.3e6 892

10.0e6 24.9e6 577

5.0e6 20.1e6 417

2.0e6 17.1e6 336

indirect service cost constraint on the optimal solution attained. It is worth noting
that lower CC L O Smax-values consistently yield lower total ADT -values; these are
generally combined with lower nimpr

b -values. In other words, imposing a more strict
indirect service cost constraint leads to an optimal improvement selection, which
involves fewer bridges servicing a smaller percentage of the total traffic.

Insight into the optimal solutions attained using formulation (5) is gained through
the scatter plots for the ADT , CIMPR and DLEN values of the improved bridges
in two optimization cases depicted in Fig. 5. For the stricter CC L O Smax-value, the
optimizer is obliged to seek bridges with lower detour lengths, even if this means
that corresponding improvement costs are increased. This leads to a ‘compensation’
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Fig. 5 Scatter plot of ADT versus CIMPR and DLEN data for improved bridges according to the
optimal solutions for two different CCLOSmax-values (BUDGET = 200 million$)

among the two constraints imposed and to a ‘decision’-line in the ADT-CIMPR plot
with much higher slope. Thus, when using optimization formulation (5), the slope
of the ‘decision’-line is directly affected by both values controlling the problem’s
constraints (BUDGET and CC L O Smax).

By imposing the indirect service cost constraint, the property that the bridges
improved according to the optimal solution for a lower BUDGET-value are a subset
of the bridges improved according to the optimal solution for a higherBUDGET-value
is lost. This is clearly evidenced in Fig. 5. With formulation (5), every optimization
problem is actually a case of its own.

6.3 Discussion on the Performance of the Optimization
Algorithm

As shown from the above analysis, the BaB algorithm is able to treat alternative
problem setups adequately. Though, some interesting features related to the BaB
performance that cannot be observed in the results presented earlier are provided
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Fig. 6 Matrix of scatter and frequency plots for all problem’s parameters

below. In particular, in Fig. 6, a matrix of pairwise scatter diagrams and frequency
distributions of the problem’s variables and algorithm’s operational characteristics
is presented for 27 optimization cases conducted using formulation (5) in the frame-
work of the earlier demonstrated stress-tests. Throughout the diagram, the stochastic
nature of the relations between each pair of variables is evident. The only strict
correlation emerges between the optimal total ADT -values and the corresponding
numbers of selected bridges for upgrade. This positive correlation is expected, since
all experiments aim in the maximization of ADT by selecting a number of bridges
subject to constraints.

The number of nodes used and the corresponding algorithm’s LP iterations can
be used as valid indices to assess the problem complexity and the BaB performance.
Interestingly enough, the available budget, the total ADT achieved or the service
cost CCLOS cannot ‘explain’ the number of necessary nodes or iterations needed for
addressing each problem configuration, bearing also in mind that the same feasible
solution is always used as the algorithm’s initial/starting conditions (X0

i ). This issue
is related to the problem’s complexity; although the BaB procedure transforms a
NP-hard problem to a series of polynomial problems (efficiently solved by a LP
relaxation), this alteration is not crucial for the algorithm’s required computational
effort (typically associated with combinatorial problems). A clearer view is offered
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in Fig. 7, where the budget and the numbers of nodes and LP iterations are presented
for the 27 test runs. Although the search space is the same, the computational burden
(and the associated computational time), as depicted in the number of search nodes
and the iterations, are non-systematically developed.

The above brief analysis can be regarded as a BaB stress-test for the particular
combinatorial/selection type of problems. It is noted that marginal alterations of the
problem setup (either in the constraints set formation or their thresholds) can have
significant—or at least non-expected—effect on the computational burden involved,
especially in such large-scale datasets. This element should be taken into considera-
tion in the results appraisal meta-analysis, especially in cases where such algorithms
are used under operational circumstances (e.g. when decisions need to be made in
very short time) and not under strategic ones, like in the present work.

7 Policy Implications

A final point worth mentioning is that the relation among total improvement cost for
the bridges and total traffic servicedby improvedbridges is nonlinear. This conclusion
is reached based on the results of Tables3 and 5, while it is clearer illustrated in the
graphs of Figs. 8 and 9. More specifically, the 6 points in the graph of Fig. 8, which
correspond to the optimization runs conducted for 6 different BUDGET-values using
formulation (3), actually provide a coarse view of the Pareto Front (PF) for a multi-
objective optimization problem, which aims in maximizing F and minimizing the
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total improvement cost. The PF distinguishes the area of feasible solutions (which
includes the optimal solutions on the front and inferior solutions below the front) from
the area of impossible solutions (which correspond to points above the front with
non-attainable total ADT-values for the respective total improvement costs). Figure9
provides the similar PF information for various values controlling the indirect service
cost constraint using formulation (5).

The nonlinear PF suggests that increasing an already high budget has a—as
expected—positive effect on the total traffic serviced by improved bridges, but the
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Fig. 10 A nonlinear Pareto Front surface approximation for the complete problem setup

PF exhibits an asymptotically decreasing slope (Fig. 8). As regards the relationship
among the total cost due to bridges closure and ADT , the corresponding PF is again
nonlinear and asymptotically convergent to a particular rate, which in turn is subject
to the available budget (Fig. 9).

The PFs provided here expose the optimal trade-of among all available variables
and correspond to a useful decision tool in cases of financial fluctuations and invest-
ments programming. Such (non-obvious) relationships among various variables are
detectable using an optimization analysis like the one proposed herein. The results
of the above analysis can be used for estimating the complete PF for all variables.
Hence, in Fig. 10, an approximation of the PF by means of interpolation is estimated,
offering a valuable for practical purposes PF surface.

Such analysis and results as the above presented and especially the PF surface
approximation are valuable for ‘quick-response’ analysis for supporting strategic
policy formation. It is noted that the above PF surface is valid for the problem’s
configuration, despite the fact that the bridges’ selection sets for each point of the
PF can be quite different.

8 Conclusions

This paper aims to offer some insights on the application of optimization frame-
works in the maintenance programming of road bridges under budgetary constraints
and social considerations. In particular, a comprehensive formulation is offered and
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discussed, while computational results are also provided, suitably selected and
presented in order to contribute to the understanding of the nature of this prob-
lem and the expected outcomes of such optimization problems. The real data used
herein are extracted from the database of FHWA (National Bridge Inventory-NBI),
after suitable preprocessing to adjust these to the scope of the present research effort.

The computational experiments conducted were focused on the most comprehen-
sive, though not trivial, case ofmaximizing the total bridges traffic (which reflects the
social element of the bridges users’ benefit) subject to budgetary constraints under
a parametric setup for alternative budget availability. An alternative optimization
formulation was also considered additionally accounting for indirect costs due to
bridge closure for improvement works. The results of these problem setups were
investigated based on the general information that can be extracted by these runs. In
brief, it can be concluded that the Branch-and-Bound algorithm was able to provide
an adequate search of the domain in reasonable time, coming up with solutions to
large and demanding problem setups while exploiting the available budget in all
cases (which is a qualitative indication for its algorithmic performance). Addition-
ally, the optimization setups formed here allowed ‘wise’ and consistent selections of
the most ‘prosperous’ sets of bridges that should be upgraded. Interestingly enough,
the results exposed relationships among the variables used, in particular between
the ratio of the improvement cost and the total traffic, which are useful for practical
purposes on one hand, but could be an issue that could worth further investigation
on the other.

Finally, as a point of outlook, the problem of optimal maintenance program-
ming realistically involves several other, more elaborative problem formulations. For
example, multiple objectives and constraints should be introduced into the problem
setup of a useful optimal budget allocation program, mainly reflecting on qualitative
requirements about the existing bridges conditions, the type of bridges and several
others. Nevertheless, the results offered in the current test runs can be regarded as
the necessary starting point for directing further research effort.
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