
41© Springer International Publishing Switzerland 2015
I. El Naqa et al. (eds.), Machine Learning in Radiation Oncology:
Theory and Applications, DOI 10.1007/978-3-319-18305-3_4

N. Japkowicz, PhD (*)
School of Information Technology and Engineering, University of Ottawa,
Ottawa, ON, Canada
e-mail: nat@site.uottawa.ca; http://www.site.uottawa.ca/~nat

M. Shah, PhD
Research and Technology Center - North America, Robert Bosch LLC,
Palo Alto, CA, USA
e-mail: mohak@mohakshah.com

4Performance Evaluation in Machine
Learning

Nathalie Japkowicz and Mohak Shah

Abstract
Performance evaluation is an important aspect of the machine learning pro-
cess. However, it is a complex task. It, therefore, needs to be conducted care-
fully in order for the application of machine learning to radiation oncology or
other domains to be reliable. This chapter introduces the issue and discusses
some of the most commonly used techniques that have been applied to it. The
focus is on the three main subtasks of evaluation: measuring performance,
resampling the data, and assessing the statistical significance of the results. In
the context of the first subtask, the chapter discusses some of the confusion
matrix-based measures (accuracy, precision, recall or sensitivity, and false
alarm rate) as well as receiver operating characteristic (ROC) analysis; several
error estimation or resampling techniques belonging to the cross-validation
family as well as bootstrapping are involved in the context of the second sub-
task. Finally, a number of nonparametric statistical tests including McNemar’s
test, Wilcoxon’s signed-rank test, and Friedman’s test are covered in the con-
text of the third subtask. The chapter concludes with a discussion of the limi-
tations of the evaluation process.

mailto:nat@site.uottawa.ca
mailto:mohak@mohakshah.com

42

4.1 Introduction

While developing and applying machine learning tools to problems in radiation
oncology or other domains are what will allow new advances to be made in these
domains, it is important to realize that without proper means of evaluating the new
methods, there is no way to know whether or not they are effective. While research-
ers and practitioners of machine learning have long known that and used general
evaluation methods to judge the effectiveness of their algorithms, until recently,
very little attention has been paid to the details of how this evaluation should be car-
ried out. Instead, a uniform methodology was consistently applied without any con-
cern regarding the appropriateness of that methodology for the particular cases
considered. In this chapter, we begin by giving an overview of machine learning
evaluation, pointing to some issues that may creep in if it is not conducted appropri-
ately. We then follow with a discussion of evaluation metrics, resampling methods,
and statistical testing. We conclude the chapter with a consideration of the limita-
tions of the evaluation process. The discussion in this chapter is based on [1], which
gives much more detail about the issue and its solution.

4.2 An Overview of Machine Learning Evaluation

While not as exciting a process as the design of machine learning algorithms or its
application to difficult problems, the issue of machine learning evaluation needs to
be considered very carefully. Indeed, there exist many approaches to evaluation and
it remains unclear when or why certain approaches are more appropriate than oth-
ers. In this chapter, we clarify these questions in at least a few cases that may be of
interest to the radiation oncology research community.

To begin with, Fig. 4.1 presents the various steps of classifier evaluation along with
the interaction between these steps. At each of these steps, choices must be made. In
particular, the researcher must decide on which algorithms will be used in the study,
which data sets they will be applied, and what performance measure, resampling tech-
nique, and statistical tests will be used. Each of these questions is quite complex
because the choices made at one step may impact on the other steps. For example, if
the data set on which the evaluation will be based contains very few instances of
X-rays with malignant tumors and many instances of X-rays with benign tumors, then
the performance measure (or metric) to be used cannot be the same as if there were as
many instances of each cases. In addition, the choices to be made at each step depend
on the purpose of the evaluation. Here are four common scenarios:

• Comparison of a new algorithm to other (may be generic or application-specific)
classifiers on a specific domain (e.g., when proposing a novel learning
algorithm)

• Comparison of a new generic algorithm to other generic ones on a set of bench-
mark domains (e.g., to demonstrate general effectiveness of the new approach
against other approaches)

N. Japkowicz and M. Shah

43

• Characterization of generic classifiers on benchmarks domains (e.g., to study the
algorithms’ behavior on general domains for subsequent use)

• Comparison of multiple classifiers on a specific domain (e.g., to find the best
algorithm for a given application task)

To better illustrate the difficulties of making the appropriate choices at each step,
we look at an example involving the choice of an appropriate performance measure.
Table 4.1 shows the performance obtained by eight different classifiers (naive Bayes
[NB], C4.5, three-nearest neighbor [3NN], ripper [Rip], support vector machines

The Classifier Evaluation Framework

Choice of Learning Algorithm(s)

Datasets Selection

Performance Measure
of Interest

Error-Estimation/
Sampling Method

Statistical Test

Perform Evaluation

2 : feedback from 1 should be used to adjust 2

2 : knowledge of 1 is necessary for 21

1

Fig. 4.1 The main steps of evaluation

Table 4.1 The performance of eight different classifiers according to nine different performance
measures. There is clear disagreement among the evaluation measures

Algo Acc RMSE TPR FPR Prec Rec F AUC Info S

NB 71.7 .4534 .44 .16 .53 .44 .48 .7 48.11

C4.5 75.5 .4324 .27 .04 .74 .27 .4 .59 34.28

3NN 72.4 .5101 .32 .1 .56 .32 .41 .63 43.37

Ripp 71 .4494 .37 .14 .52 .37 .43 .6 22.34

SVM 69.6 .5515 .33 .15 .48 .33 .39 .59 54.89

Bagg 67.8 .4518 .17 .1 .4 .17 .23 .63 11.30

Boost 70.3 .4329 .42 .18 .5 .42 .46 .7 34.48

RanF 69.23 .47 .33 .15 .48 .33 .39 .63 20.78

4 Performance Evaluation in Machine Learning

44

[SVM], bagging [Bagg], boosting [Boost], random forest [RF]) on a given data set
(the UCI breast cancer data set [2]) using nine different performance measures
(accuracy [Acc], root-mean-square error [RMSE], true positive rate [TPR], false
positive rate [FPR], precision [Prec], recall [Rec], F-measure [F], area under the
ROC curve [AUC], information score [Info S]). As can be seen from the table, each
measure tells a different story. For example, accuracy ranks C4.5 as the best classi-
fier for this domain, while according to the AUC, C4.5 is the worst classifier (along
with SVM, which accuracy did not rank highly either). Similarly, the F-measure
ranks naive Bayes in the first place, whereas it only reaches the 5th place as far as
RMSE is concerned. This suggests that one may obtain very different conclusions
depending on what performance measure is used. Generally speaking, this example
points to the fact that classifier evaluation is not an easy task and that not taking it
seriously may yield grave consequences.

The next section looks at performance measures in more detail, while the next
two sections will discuss resampling and statistical testing.

4.3 Performance Measures

Figure 4.2 presents an overview of the various performance measures commonly
used in machine learning. This overview is not comprehensive, but touches upon the
main measures. In the figure, the first line, below the “all measures” box indicates
the kind of information used by the performance measure to calculate the value. All
measures use the confusion matrix, which will be presented next, but some add
additional information such as the classifier’s uncertainty or the cost ratio of the data
set, while others also use other information such as how comprehensible the result
of the classifier is or how generalizable it is, and so on. The next line in the figure
indicates what kind of classifier the measure applies to deterministic classifiers,
scoring classifiers, or continuous and probabilistic classifiers. Below this line comes
information about the focus (e.g., multiclass with chance correction), format (e.g.,
summary statistics), and methodological basis (e.g., information theory) of the mea-
sures. The leaves of the tree list the measures themselves.

As just mentioned, all the measures of Fig. 4.2 are based on the confusion matrix.
The template for a confusion matrix is given in Table 4.2:

TP, FP, FN, and TN stand for true positive, false positive, false negative, and true
negative, respectively. Some common performance measures calculated directly
from the confusion matrix are:

• Accuracy = (TP + TN)/(P + N)
• Precision = TP/(TP + FP)
• Recall, sensitivity, or true positive rate = TP/P
• False alarm rate or false positive rate = FP/N

For a more comprehensive list of measures including sensitivity, specificity, like-
lihood ratios, positive and negative predictive values, and so on, please refer to [1].

N. Japkowicz and M. Shah

45

We now illustrate some of the problems encountered with accuracy, precision,
and recall since they represent important problems in evaluation. Consider the con-
fusion matrices of Table 4.3. The accuracy for both matrices is 60 %. However, the
two matrices t classifiers with the same accuracy account for two very different
classifier behaviors. On the left, the classifier exhibits a weak positive recognition

All
measures

Confusion Matrix Additional info
(Classifier Uncertainty

Cost ration, skew)

Alternate
Information

Continous and
Prob. Classifiers

(Reliability metrics)

Scoring
Classifiers

Deterministic Classifiers

Multi-class
Focus

No
Chance-

Correction

Chance
Correction

Accuracy
Error Rate

Cohen’s Kappa
Fleiss Kappa

Single-Class
Focus

Graphical
measures

ROC Curves
PR Curves

DET Curves
Lift Charts

Cost Curves

Summary
Statistics

AUC
H measure RMSE

KL divergence
K&B IR

BIR

Interestingness
Comprehensibility

Multi-criteria

Distance/
Error-

measures

Information
Theoretic
Measures

TP/FP Rate
Precision/Recall

Sens./Spec.
F-measure

Geom. Mean
Dice

Fig. 4.2 An overview of performance measures

Table 4.2 A generic
confusion matrix

True class → hypothesized|class V Pos Neg

Yes TP FP

No FN TN

P = TP + FN N = FP + TN

True class Pos Neg

Yes 200 100

No 300 400

P=500 N=500

True class Pos Neg

Yes 400 300

No 100 200

P=500 N=500

Table 4.3 The confusion matrices of two very different classifiers with the same accuracy

4 Performance Evaluation in Machine Learning

46

rate and a strong negative recognition rate. On the right, the classifier exhibits a
strong positive recognition rate and a weak negative recognition rate. In fact, accu-
racy, while generally a good and robust measure, is extremely inappropriate in the
case of class imbalance data, such as the example, mentioned in Sect. 4.2 where
there were only very few instances of X-rays containing malignant tumors and
many instances containing benign ones. For example, in the extreme case where,
say, 99.9 % of all the images would not contain any malignant tumors and only
0.1 % would, the rough classifier consisting of predicting “benign” in all cases
would produce an excellent accuracy rate of 99.9 %. Obviously, this is not represen-
tative of what the classifier is really doing because, as suggested by its 0 % recall, it
is not an effective classifier at all, specifically if what it is trying to achieve is the
recognition of rare, but potentially important, events. The problem of classifier eval-
uation in the case of class imbalance data is discussed in [3].

Table 4.4 illustrates the problem with precision and recall. Both classifiers repre-
sented by the table on the left and the table on the right obtain the same precision
and recall values of 66.7 and 40 %. Yet, they exhibit very different behaviors: while
they do show the same positive recognition rate, they show extremely different neg-
ative recognition rates; in the left confusion matrix, the negative recognition rate is
strong, while in the right confusion matrix, it is nil! This certainly is information
that is important to convey to a user, yet, precision and recall do not focus on this
kind of information. Note, by the way, that accuracy which has a multiclass rather
than a single-class focus has no problem catching this kind of behavior: the accu-
racy of the confusion matrix on the left is 60 %, while that of the confusion matrix
on the right is 33 %!

Because the class imbalance problem is very pervasive in machine learning,
ROC analysis and its summary measure and the area under the ROC curve (AUC),
which do not suffer from the problems encountered by accuracy, have become cen-
tral to the issue of classifier evaluation. We now give a brief description of that
approach. In the context of the class imbalance problem, the concept of ROC analy-
sis can be interpreted as follows. Imagine that instead of training a classifier f only
at a given class imbalance level, that classifier is trained at all possible imbalance
levels. For each of these levels, two measurements are taken as a pair, the true posi-
tive rate (or sensitivity) and the false positive rate (FPR) (or false alarm rate). Many
situations may yield the same measurement pairs, but that does not matter since

True class Pos Neg

Yes 200 100

No 300 400

P=500 N=500

True class Pos Neg

Yes 200 100

No 300 0

P=500 N=100

Table 4.4 The confusion matrices of two very different classifiers with the same precision and
recall

N. Japkowicz and M. Shah

47

duplicates are ignored. Once all the measurements have been made, the points rep-
resented by all the obtained pairs are plotted in what is called the ROC space, a
graph that plots the true positive rate as a function of the false positive rate. The
points are then joined in a smooth curve, which represents the ROC curve for that
classifier. Figure 4.3 shows two ROC curves representing the performance of two
classifiers f1 and f2 across all possible operating ranges.

The closer a curve representing a classifier f is from the top-left corner of the
ROC space (small false positive rate, large true positive rate), the better the per-
formance of that classifier. For example, f 1 performs better than f 2 in the graph
of Fig. 4.3. However, the ideal situation of Fig. 4.3 rarely occurs in practice.
More often than not, one is faced with a situation such as that of Fig. 4.4, where
one classifier dominates the other in some parts of the ROC space, but not in
others.

The reason why ROC analysis is well suited to the study of class imbalance
domains is twofold. First, as in the case of the single-class focus metrics of the pre-
vious section, rather than being combined together into a single multiclass focus

1

f1

f2

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 0.2 0.4 0.6
False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.8 1

Fig. 4.3 The ROC curves of two classifiers f1 and f2. f1 performs better than f2 in all parts of the
ROC space

4 Performance Evaluation in Machine Learning

48

metric, performance on each class is decomposed into two distinct measures.
Second, the imbalance ratio that truly applies in a domain is rarely precisely known.
ROC analysis gives an evaluation of what may happen in diverse situations.

We now move on to discussing the question of data resampling.

4.3.1 Resampling

What is the purpose of resampling? Ideally, we would have access to the entire
population or a lot of representative data from it. This, unfortunately, is usually not
the case, and the limited data available has to be reused in clever ways in order to be
able to estimate the error of our classifiers as reliably as possible. Resampling is
divided into two categories: simple resampling (where each data point is used for
testing only once) and multiple resampling (which allows the use of the same data
point more than once for testing). In addition to discussing a few resampling
approaches, this section will underline the issues that may arise when applying

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 0.2 0.4 0.6
False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.8 1

f1

f2

Fig. 4.4 The ROC curves of two classifiers f1 and f2. f2 performs better than f1 on the left side of
the ROC space. After the two curves, cross f1 performs better than f1

N. Japkowicz and M. Shah

49

them. Figure 4.5 gives an overview of various resampling regimens. We will discuss
a few of them. For a more detailed presentation, please see [1].

When the data set is very large and all cases are well represented, then no resam-
pling method is needed, and it is possible to use the holdout method where a portion
of the data set is reserved for training while the rest of the data set is used for testing.
Please note that the practice of training and testing on the same data set (re-
substitution) is unacceptable when the goal of the study is to test the predictive
capability of the learning tool. Such a practice gives an optimistic assessment of the
tool’s capability. In general, the classifier will overfit the data it was trained on,
which means that it will perform very well on that data and obtain much poorer
results on data it has never seen before. To a certain extent and for many algorithms,
the better the classifier performs on the known data, the worse it will perform on
unknown data.

In most cases, there is not enough data to use the holdout method. The most com-
monly used resampling method then is k-fold cross validation and its variants, strat-
ified k-fold cross validation, and leave-one-out, also known as the jackknife.
10 × 10-fold cross validation has also become quite common and the 0.632 boot-
strap is sometimes used as well. We will present each of these schemes in turn and
discuss the situations in which each scheme is believed to be most appropriate.

Figure 4.6 illustrates the k-fold cross-validation process in the following ways:
each line of the graph symbolizes the entire data set. It is randomly divided into k
subsets (on the graph, k = 10) as symbolized by the k = 10 rectangles that compose
each line. The first line corresponds to Fold 1, the second to Fold 2, and so on. In
Fold 1, the first rectangle is shaded differently from the others. This signifies that in
this fold, the data represented by the first rectangle will be used as testing data while
the data represented by the other k-1 rectangles will be used as training data. In Fold
2, it is the data of the second rectangle that is used as the testing set, while the data

All Data
Regimen

No
Re-sampling

Re-
substitution

Cross-
Validation

Random
Sub-Sampling

Multiple
Re-sampling

Bootstrapping Randomi-
zation

Repeated
k-fold
Cross-

Validation

10x10CV5x2CV
Permutation

Test

0.632
Bootstrap

E0 Bootstrap
Leave-

One-Out

Stratified
k-fold
Cross-

Validation

Non-Stratified
k-fold
Cross-

Validation

Re-sampling

Hold-Out
Simple

Re-sampling

Fig. 4.5 Overview of resampling methods

4 Performance Evaluation in Machine Learning

50

represented by the other rectangles are used as the training set. This goes on k times
so that each of the rectangles is used as a testing set. This is an interesting scheme
which guarantees that (1) at each fold, the training and the testing set are separate;
(2) once the entire scheme has been executed, every data point has been used as a
testing point; (3) no data point has been used more than once as a testing point; and
(4) every data point has been used k-1 times as a training point. So in summary,
there is no overlap in the testing sets, but there is overlap in the training set. The
facts that there is no overlap in the testing set, that this scheme is very simple to
implement, and that it is not very computer intensive make it a very popular approach
believed to yield a good error estimate. Because of the high overlap in the training
set, however, the method can yield a bias in the error estimate, but this is mitigated
in the case of moderate to large data sets.

When the data set is imbalanced, k-fold cross validation as just described can
yield problems. In particular, the random division of the data into k subsets may
yield situations where the data of the minority class is not at all represented in the
subset. The performance of the classifier on such a data set would be misleading as
it would be overly optimistic. Similarly, if the training data contained an even
smaller proportion of minority examples than the actual data set, the classifier’s
performance would be overly pessimistic. In order to avoid both problems, a pro-
cess called stratified k-fold cross validation is used to ensure that the distribution is
respected in the training and testing sets created at every fold. This would not neces-
sarily be the case if a pure random process were used.

Another issue arises when the data set is quite small. In such cases, k-fold cross
validation may cause the training portion of the data at each fold to be too small
for effective learning to take place. In such cases, it is common to set k to the size
of the data set, meaning that (1) there are as many folds as there are data points

Fold 1

Fold 2
…

Fold k -1

Fold k

Fig. 4.6 The k-fold cross-validation process

N. Japkowicz and M. Shah

51

and, at each fold, (2) the testing set includes a single data point and (3) the classi-
fier is trained on all the data but this particular point. This process is commonly
called leave-one-out or the jackknife. It has the advantage of yielding a relatively
unbiased classifier (since virtually all the data is used for training at each fold,
although since the data set is small to begin with, the classifier is probably not
unbiased); however, the error estimate is likely to show high variance since only
one example is tested at every fold, resulting in a 0 or 100 % accuracy rate for
each fold. In addition, it is a very time-consuming process since the number of
folds equals the size of the data set.

A further issue with the family of k-fold cross-validation approaches just dis-
cussed concerns the stability of the estimate it produces. In order to improve the
stability of that estimate, it has become commonplace to run the k-fold cross-
validation process multiple times, each with different random partitions of the data
into k-folds. The most common combination is the 10 × 10-fold cross validation [4],
though 5 × 2-fold cross validation [5] had also been proposed early on as an alterna-
tive to tenfold cross validation.

We conclude this discussion with a presentation of bootstrapping, an alternative
to the k-fold cross-validation schemes. Bootstrapping assumes that the available
sample is representative and creates a large number of new samples by drawing
from replacement from the available sample. Bootstrapping is useful in practice
when the sample is too small for cross-validation or leave-one-out approaches to
yield a good estimate. There are two bootstrap estimates that are useful in the con-
text of classification: the Є0 and the e632 bootstraps. The Є0 bootstrap tends to be
pessimistic because it is only trained on 63.2 % of the data in each run. The e632
attempts to correct for this. The listing below is an informal description of the algo-
rithms for the Є0 and e632 bootstraps.

• Given a data set D of size m, we create k bootstrap samples Bi of size m, by sam-
pling from D with replacement (k is typically ≥ 200).

• At each run, each of the k bootstraps represent the training set while the testing
set is made up of a single copy of the examples from D that did not make it to Bi.

• At each run, a classifier is trained and tested and Єoi represents the performance
of the classifier at that run.

• Єo represents the average of all the Єoi’s.

e632 = 0.632 x Єo + 0.368 x err (f)

Where err(f) is the optimistically biased re-substitution error (error rate obtained
when training and testing on D)

As previously mentioned, bootstrapping is a good estimator when the data set is
too small to run k-fold cross validation or leave-one-out. In particular, it was shown
to have low variance in such cases. On the other hand, bootstrapping is not a useful
estimator in the case of classifiers that do not benefit from the presence of duplicate
instances such as k-nearest neighbors.

4 Performance Evaluation in Machine Learning

52

4.4 Significance Testing

The performance metrics discussed in Sect. 4.2 allow us to make observations about
different classifiers, and the resampling approaches discussed in Sect. 4.3 allow us
to reuse the available data in order to obtain results believed to be more reliable. The
question we ask in this section is related to the issue raised by resampling in
Sect. 4.3. In particular, we ask to what extent the observed results are, indeed, reli-
able. More specifically, can the observed results be attributed to the real character-
istics of the classifiers under scrutiny or are they observed by chance? The purpose
of statistical significance testing is to help us gather evidence of the extent to which
the results returned by an evaluation metric on the resampled data sets are represen-
tative of the general behavior of our classifiers.

Although some researchers have argued against the use of statistical tests mainly
because it is often difficult to perform properly and its results are often overvalued
and limit the search for new ideas [6, 7], statistical testing remains the norm in most
experimental settings. Nonetheless, in line with the critics, it is important to conduct
and interpret such tests properly. We will discuss basic aspects of the practice in
what follows. In particular two issues arise:

 1. Do we have enough information about the underlying distributions of the classi-
fiers’ results to apply a parametric test?

 2. What kind of problem are we considering?
• The comparison of two algorithms on a single domain
• The comparison of two algorithms on several domains
• The comparison of multiple algorithms on multiple domains

Figure 4.7 overviews the various statistical tests in relation to these two problems.
The first line in the figure differentiates between the kinds of problems considered.
The next line lists the different statistical tests available in each situation. The tests in
red boxes are parametric tests while those in green boxes represent nonparamet-
ric tests. Parametric tests have the advantage of being more powerful than nonpara-
metric ones, but they apply in a more limited number of situations than the
nonparametric ones since they require knowledge of the underlying distribution.
Nonparametric tests are more flexible than the parametric ones since they do not take
into account the underlying distribution. Instead, they use ranking information.

A comprehensive discussion of all these tests can be found in [1]. In this chapter,
we will focus on three versatile nonparametric tests: McNemar’s test, Wilcoxon’s
signed-rank test for matched pairs, and Friedman’s test (followed by Nemenyi’s test).
McNemar’s test applies in the case of two algorithms and one domain; Wilcoxon’s
test applies in the case of two algorithms tested on multiple domains and Friedman’s
test applies to the case of multiple algorithms executed over multiple domains.

McNemar’s test calculates four variables:

• The number of instances misclassified by both classifiers (C00)
• The number of instances misclassified by the first classifier but correctly classi-

fied by the second (C01)

N. Japkowicz and M. Shah

53

• The number of instances misclassified by the second classifier but correctly clas-
sified by the first (C10)

• The number of instances correctly classified by both classifiers (C11)

McNemar’s χ2 statistics is given by

c 2

01 10

2

01 101MC C C C C= () +()– – /

If C01 + C10 < 20, then the test cannot be used.
Otherwise, the χ2

MC statistics is compared to the χ2 statistics. If χ2
MC exceeds the

χ2
1, 1-α statistic, then we can reject the null hypothesis that assumes that the first and

second classifiers perform equally well with 1–α confidence.
Wilcoxon’s signed-rank test deals with two classifiers on multiple domains. It is

also nonparametric. Here is its description:

• For each domain, we calculate the difference in the performance of the two
classifiers.

• We rank the absolute values of these differences and graft the signs in front of the
ranks.

• We calculate the sum of positive and negative ranks, respectively (WS1 and WS2).
• We compute TWilcox such that TWilcox = min (WS1,WS2).
• We compare TWilcox to critical value Vα. If Vα ≥TWilcox, we reject the null hypothesis

that the performance of the two classifiers is the same at the α confidence level.

Wilcoxon’s signed-rank test is illustrated in Table 4.5 and in the discussion below
the table. In this example, NB and SVM are compared on ten different domains.

All Machine Learning
& Data Mining problems

2 Algorithms
1 Domain

2 Algorithms
Multiple Domains

Multiple Algorithms
Multiple Domains

Friedman’s
Test

Wilcoxon’s Signed Rank
Test for Matched Pairs

Two Matched
Samples t-Test

McNemar’s
Test

Sign Test

Repeated Measure
One-way ANOVA

Tukey Post-hoc
Test

Bonferroni-Dunn
Post-hoc Test

Nemenyi
Test

Parametric Test
Parametric and
Non-Parametric Non-Parametric

Fig. 4.7 Overview of statistical tests

4 Performance Evaluation in Machine Learning

54

From the table, we find that WS1 = 17 and WS2 = 28, which means that TWilcox = min
(17, 28) = 17. For n = 10–1 degrees of freedom and α = 0.005, V = 8 (see Table 4.5 in
Appendix A of [1]) for the 1-sided test. V must be larger than TWilcox in order to reject
the hypothesis. Since 17 >8, we cannot reject the hypothesis that NB’s performance
is equal to that of SVM at the 0.005 level.

In the case where multiple algorithms are to be compared on multiple domains,
Friedman’s test is a simple and good alternative. It is conducted as follows:

• All the classifiers are ranked on each domain separately. Ties are broken by add-
ing the ranks of the tied algorithms and dividing them by the number of algo-
rithms involved in the tie. The result is assigned to each of the algorithms involved
in the tie.

• For each classifier, the sum of ranks obtained on all domains is calculated and
labeled R.j

2 where j symbolizes the classifier.
• Friedman’s statistics is then calculated as follows:

cF
2

1
j12 1 . . 1= + − +

=

n.k. k R n k
j

k

()

 ()∑ . .2 3

where n represents the number of domains and k the number of classifiers
Table 4.6 illustrates Friedman’s test on a synthetic example. The table on the

left lists the accuracies obtained by classifiers fA, fB, and fC on domains 1, 2, …
10. The table on the left calculates the rank of each classifier on each domain.
These ranks in each column are then added yielding the R.j’s. Applying the for-
mula, we find that χF

2 = 15.05. From Table 7 in Appendix A of [1], we find that for
a 2-tailed test at the 0.05 level of significance, the critical value is 7.8. Since
χF

2 >7.8, we can reject the null hypothesis that all three algorithms perform equally
well.

Note that while Friedman’s test shows that there is a significant difference among
the algorithms being tested, it does not say where that difference is. In such cases,

Table 4.5 Wilcoxon’s signed-rank test for NB and SVM on 10 different domains

Data NB SVM NB-SVM |NB-SVM| Ranks +/− ranks

1 .9643 .9944 −0.0301 0.0301 3 −3

2 .7342 .8134 −0.0792 0.0792 6 −6

3 .7230 .9151 −0.1921 0.1921 8 −8

4 .7170 .6616 +0.0554 0.0554 5 +5

5 .7167 .7167 0 0 Remove Remove

6 .7436 .7708 −0.0272 0.0272 2 −2

7 .7063 .6221 +0.0842 0.0842 7 +7

8 .8321 .8063 +0.0258 0.0258 1 +1

9 .9822 .9358 +0.0464 0.0464 4 +4

10 .6962 .9990 −0.3028 0.3028 9 −9

N. Japkowicz and M. Shah

55

Nemenyi’s test (or other post hoc tests) can be used to pinpoint where that differ-
ence lies. Here is how Nemenyi’s test works.

• Let Rij be the rank of classifier fj on data set Si; we compute the mean rank of
classifier fj on all data sets as

R

n
Rj

i

n

ij. =
=
∑1

1

• Let qyz be the statistic between classifier fy and fz. The formula is

q
R R

k k

n

yz
y z=
−

+()
. .

1

6

(n is the number of domains and k the number of classifiers).
• Nemenyi’s test proceeds by calculating all the qyz statistics. Then, those that

exceed a critical value qα are said to indicate a significant difference between
classifiers fy and fz at the α significance level.

To illustrate Nemenyi’s test, we calculate the following values from Friedman’s
test we just ran1:

 R A. . , . , . .= = =1 55 3 1 45R andRB C

1 Please note that there is an error in the textbook. We present, herein, the corrected solution.

Domain fA fB fC

1 85.83 75.86 84.19

2 85.91 73.18 85.90

3 86.12 69.08 83.83

4 85.82 74.05 85.11

5 86.28 74.71 86.38

6 86.42 65.90 81.20

7 85.91 76.25 86.38

8 86.10 75.10 86.75

9 85.95 70.50 88.03

10 86.12 73.95 87.18

Domain fA fB fC

1 1 3 2

2 1.5 3 1.5

3 1 3 2

4 1 3 2

5 2 3 1

6 1 3 2

7 2 3 1

8 2 3 1

9 2 3 1

10 2 3 1

R 15.5 30 14.5.j

Table 4.6 Friedman’s test applied to three classifiers fA, fB, and fC on ten different domains

4 Performance Evaluation in Machine Learning

56

• Replacing R.y and R.Z by the above values in

q
R y R z

k k

n

yz =
−
+()

. .

1

6

we obtain qAB = −3.22, qAC = .222, and qBC = 3.44.

• qα = 2.55 for α = 0.05 [see [1]) (qα must be larger than qyz for the hypothesis that y
and z perform equally to be rejected).

• Therefore, we reject the null hypothesis in the case of classifiers A and B and B
and C (please note that we consider the absolute value of the qxy quantity), but not
in the case of A and C.

 Conclusion
This chapter presented the most common methods of evaluating the performance
of classifiers on applied domains. Unfortunately, there is no preexisting recipe
that satisfies every situation. In most cases, the user must reflect about what he or
she is trying to verify, understand the restrictions of the experimental setting
(e.g., too little data, data skews (or imbalances), and so on), and apply the best
combination of evaluation methods that is available in these conditions. It is
important to note that due to the fact that there is a lot of unknown in the data,
certain assumptions about the data may end up being violated. It remains
unknown to what extent this will invalidate the results. Last but not least, it is
important to understand how to interpret the results one observes. These results
should be thought of as support for a hypothesis or evidence about certain effects.
They do not prove that a hypothesis is correct. Classifier evaluation thus remains
an art rather than a perfect science.

Bibliography

 1. Japkowicz N, Shah M. Evaluating learning algorithms: a classification perspective. Cambridge/
New York: Cambridge University Press; 2011.

 2. Lichman M. UCI machine learning repository [http://archive.ics.uci.edu/ml]. Irvine: University
of California, School of Information and Computer Science; 2013.

 3. Japkowicz N. Assessment metrics for imbalanced learning. In: Haibo He, Yunqian Ma, editors.
Imbalanced learning: foundations, algorithms, and applications. 1st ed. Hoboken: Wiley; 2013.

 4. Bouckaert R. Choosing between two learning algorithms based on calibrated tests. In: Proceedings
of the 20th international conference on machine learning (ICML-03). Washington, DC; 2003.
p. 51–58.

 5. Thomas D. Approximate statistical tests for comparing supervised classification learning algo-
rithms. Neural Comput. 1998;10(7):1895–923.

 6. Drummond C. Machine learning as an experimental science (revisited). In: Proceedings of the
twenty-first national conference on artificial intelligence: workshop on evaluation methods for
machine learning. AAAI Press technical report WS-06-06. 2006. p. 1–5.

 7. Demšar J. On the appropriateness of statistical tests in machine learning. In: Proceedings of the
25th international conference on machine learning: workshop on evaluation methods for
machine learning. Helsinki, Finland; 2008.

N. Japkowicz and M. Shah

http://archive.ics.uci.edu/ml

	4: Performance Evaluation in Machine Learning
	4.1	 Introduction
	4.2	 An Overview of Machine Learning Evaluation
	4.3	 Performance Measures
	4.3.1	 Resampling

	4.4	 Significance Testing
	 Conclusion
	Bibliography

