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Abstract
Radiotherapy treatment outcomes are determined by complex interactions 
among treatment, anatomical, and patient-related variables. A key component 
of radiation oncology research is to predict at the time of treatment planning, 
or during the course of fractionated radiation treatment, the probability of 
tumor eradication and normal tissue risks for the type of treatment being con-
sidered for that particular patient. Traditionally, these outcomes are modeled 
using information about the dose distribution and the fractionation. However, 
it is recognized that radiation response is multifactorial including clinical prog-
nostic factors and, more recently, inherited genetic variations have been sug-
gested as playing an important role in radiation response. Therefore, recent 
approaches have utilized increasingly data-driven models incorporating 
advanced bioinformatics and machine learning tools in which dose-volume 
metrics are mixed with other patient- or disease-based prognostic factors in 
order to improve outcomes prediction. Accurate prediction of treatment out-
comes would provide clinicians with better tools for informed decision-making 
about expected benefits versus anticipated risks. In this chapter, we provide an 
overview of the current status of data-driven outcome modeling techniques for 
patients who receive radiation treatment with special focus on its big data 
notion and the emerging role of machine learning approaches to improve out-
come modeling and response prediction.
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16.1	 �Introduction

Recent years have witnessed tremendous technological advances in radiotherapy 
treatment planning, image guidance, and treatment delivery [1, 2]. Moreover, clinical 
trials examining treatment intensification in patients with locally advanced cancer 
have shown incremental improvements in  local control and overall survival [3]. 
However, radiation-induced toxicities remain major dose-limiting factors [4, 5]. 
Therefore, there is a need for studies directed toward predicting treatment benefit 
versus risk of failure. Clinically, such predictors would allow for more individualiza-
tion of radiation treatment plans. In other words, physicians may prescribe a more or 
less intense radiation regimen for an individual based on model predictions of local 
control benefit and toxicity risk. Such an individualized regimen would aim toward an 
optimized radiation treatment response while keeping in mind that a more aggressive 
treatment with a promised improved tumor control will not translate into improved 
survival unless severe toxicities are accounted for and limited during treatment plan-
ning. Therefore, improved models for predicting both local control and normal tissue 
toxicity should be considered in the optimal treatment planning design process.

Radiotherapy outcomes are usually characterized by two metrics: the tumor con-
trol probability (TCP) and the normal tissue complication probability (NTCP) of 
surrounding normal tissues [2, 6]. TCP/NTCP models could be used during the 
consultation period as a guide for ranking treatment options [7, 8]. Alternatively, 
once a decision has been reached, these models could be included in an objective 
function, and the optimization problem driving the actual patient’s treatment plan 
can be formulated in terms relevant to maximizing tumor eradication benefit and 
minimizing complication risk [9–11]. Traditional models of TCP/NTCP models 
and their variations use information only about the dose distribution and fraction-
ation. However, it is well known that radiotherapy outcomes may also be affected 
by multiple clinical and biological prognostic factors such as stage, volume, tumor 
hypoxia, etc. [12, 13] as depicted in Fig. 16.1. Therefore, recent years have wit-
nessed the emergence of data-driven models utilizing informatics techniques, in 
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Fig. 16.1  Radiotherapy 
treatment involves complex 
interaction of physical, 
biological, and clinical factors. 
The successful informatics 
approach should be able to 
resolve this interaction 
“puzzle” in the observed 
treatment outcome (e.g., local 
control or toxicity) for each 
individual patient [21]
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which dose-volume metrics are combined with other patient- or disease-based prog-
nostic factors [4, 5, 14–20].

In this chapter, we provide an overview of the current status of data-driven out-
come modeling techniques for predicting tumor response and normal tissue toxici-
ties for patients who receive radiation treatment with special focus on the emerging 
role of machine learning approaches to improve outcome modeling and response 
prediction. Then, we present examples of radiotherapy data and its big data notion. 
Finally, we discuss the potentials and challenging obstacles to applying bioinfor-
matics and machine learning strategies to radiotherapy outcome modeling.

16.2	 �Data-Driven Outcome Modeling

Radiotherapy outcome models could be divided according to the underlying prin-
ciple into (1) analytical models, which employ biophysical understanding of irra-
diation effects such as the linear quadratic (LQ) model, and (2) data-driven models, 
which are phenomenological models and depend on parameters available from the 
collected clinical and dosimetric data [20]. In the context of data-driven and multi-
variable modeling of outcomes, the observed treatment outcome (e.g., TCP or 
NTCP) is considered as the result of mathematical mapping of several dosimetric, 
clinical, or biological input variables [19]. Mathematically this is expressed as: 
f X Yx w; :∗ →( )  where RN (an input variable vector of N dimensions) is com-

posed of the input metrics (dose-volume metrics, patient disease specific prognostic 
factors, or biological markers). The expression y Yi ∈  is the corresponding observed 
treatment outcome scalar. The variable w* includes the optimal parameters of model 
f(·) obtained by optimizing a certain objective functional. Learning is defined in this 
context as estimating dependencies from data [22]. The two common types of learn-
ing could be applied: supervised and unsupervised. Supervised learning is used 
when the endpoints of the treatments such as tumor control or toxicity grade are 
known; these endpoints are provided by experienced oncologists following RTOG 
or NCI criteria, and it is the most commonly used learning method in outcome mod-
eling. Nevertheless, unsupervised methods such as principal component analysis 
(PCA) are also used to reduce dimensionality and to aid visualization of multivari-
ate data and selection of learning method parameters [23]. The selection of the 
functional form of the model f(·) is closely related to the prior knowledge of the 
problem. In analytical models, the shape of the functional form is selected based on 
the clinical or biological process at hand; however, in data-driven models, the objec-
tive is usually to find a functional form that fits the data [24].

16.3	 �Radiotherapy as a Big Data Resource

A typical radiotherapy treatment scenario can generate a large pool of “big data” 
that comprise but are not limited to patient demographics, volumetric dosimetric 
data about radiation exposure to the tumor and surrounding tissues, and 3D and 4D 
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anatomical and functional disease longitudinal imaging features (radiomics), in 
addition to genomics and proteomics data derived from peripheral blood and tissue 
specimens. Accordingly, big data in radiotherapy could be divided based on its 
nature into four categories: clinical, dosimetric, imaging, and biological. These four 
categories of radiotherapy big data are described in the following.

16.3.1	 �Clinical Data

Clinical data in radiotherapy typically refers to cancer diagnostic information (site, 
histology, stage, grade, etc.) and patient-related characteristics (age, gender, comor-
bidities, etc.). In some instances, other treatment modalities information (surgery, 
chemotherapy, hormonal treatment, etc.) would be also classified under this cate-
gory. The mining of such data could be challenging if the data is unstructured; 
however, there are good opportunities for natural language processing (NLP) tech-
niques to assist in the organization of data [25].

16.3.2	 �Dosimetric Data

This type of data is related to the treatment planning process in radiotherapy, which 
involves radiation dose simulation using computed tomography imaging, specifi-
cally dose-volume metrics derived from dose-volume histograms (DVHs) graphs. 
Dose-volume metrics have been extensively studied in the radiation oncology litera-
ture for outcome modeling [14–17, 26, 27]. These metrics are extracted from the 
DVH such as volume receiving certain dose (Vx); minimum dose to x% volume 
(Dx); mean, maximum, and minimum dose; etc. More details are in our review chap-
ter [20]. Moreover, we have developed a dedicated software tool called “Dose 
response explorer” (DREES) for deriving these metrics and modeling of radiother-
apy response [28].

16.3.3	 �Radiomics (Imaging Features)

kV x-ray computed tomography (kV-CT) has been historically considered the stan-
dard modality for treatment planning in radiotherapy because of its ability to pro-
vide electron density information for target definition, structures, and heterogeneous 
dose calculations [2, 29]. However, additional information from other imaging 
modalities could be used to improve treatment monitoring and prognosis in differ-
ent cancer types. For example, physiological information (tumor metabolism, pro-
liferation, necrosis, hypoxic regions, etc.) can be collected directly from nuclear 
imaging modalities such as SPECT and PET or indirectly from MRI [30, 31]. The 
complementary nature of these different imaging modalities has led to efforts 
toward combining information to achieve better treatment outcomes. For instance, 
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PET/CT has been utilized for staging, planning, and assessment of response to radi-
ation therapy [32, 33]. Similarly, MRI has been applied in tumor delineation and 
assessing toxicities in head and neck cancers [34, 35]. Moreover, quantitative infor-
mation from hybrid-imaging modalities could be related to biological and clinical 
endpoints, a new emerging field referred to as “radiomics” [36, 37]. In our previous 
work, we demonstrated the potential of this new field to monitor and predict 
response to radiotherapy in head and neck [38], cervix [38, 39], and lung [40] can-
cers, in turn allowing for adapting and individualizing treatment.

16.3.4	 �Biological Markers

A biomarker is defined as “a characteristic that is objectively measured and evalu-
ated as an indicator of normal biological processes, pathological processes, or 
pharmacological responses to a therapeutic intervention” [41]. Biomarkers can be 
categorized based on the biochemical source of the marker into exogenous or 
endogenous. Exogenous biomarkers are based on introducing a foreign substance 
into the patient’s body such as those used in molecular imaging as discussed above. 
Conversely, endogenous biomarkers can further be classified as (1) “expression 
biomarkers,” measuring changes in gene expression or protein levels, or (2) 
“genetic biomarkers,” based on variations, for tumors or normal tissues, in the 
underlying DNA genetic code. Measurements are typically based on tissue or fluid 
specimens, which are analyzed using molecular biology laboratory techniques 
[42]. Expression biomarkers are the result of gene expression changes in tissues or 
bodily fluids due to the disease or normal tissues’ response to treatment [43]. These 
biomarkers can be further divided into single parameter (e.g., prostate-specific 
antigen (PSA) levels in blood serum) versus bio-arrays. These can be based on 
disease pathophysiology or pharmacogenetic studies or they can be extracted from 
several methods, such as high-throughput gene expression (aka transcriptomics) 
[44–46], resulting protein expressions (aka proteomics) [47, 48], or metabolites 
(aka metabolomics) [49, 50]. On the other hand, the inherent genetic variability of 
the human genome is an emerging resource for studying disposition to cancer and 
the variability of patient responses to therapeutic agents. These variations in the 
DNA sequences of humans, in particular single-nucleotide polymorphisms (SNPs), 
have strong potential to elucidate complex disease onset and response in cancer 
[51]. Methods based on the candidate gene approach and high throughput (genome-
wide associations (GWAS) studies) are currently heavily investigated to analyze 
the functional effect of SNPs in predicting response to radiotherapy [52–54]. There 
are several ongoing SNP genotyping initiatives in radiation oncology, including 
the pan-European GENEPI project [55], the British RAPPER project [56], the 
Japanese RadGenomics project [57], and the US Gene-PARE project [58]. An 
international consortium has been also established to coordinate and lead efforts in 
this area [59]. Examples include the identification of SNPs related to radiation 
toxicity in prostate cancer treatment [60–62].
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16.4	 �Systems Radiobiology

To integrate heterogeneous big data in radiotherapy, engineering-inspired system 
approaches would have great potential to achieve this goal. Systems biology has 
emerged as a new field to apply systematic study of complex interactions to biologi-
cal systems [63], but its application to radiation oncology, despite this potential, has 
been unfortunately limited to date [64, 65]. Recently, Eschrich et al. presented sys-
tems biology approach for identifying biomarkers related to radiosensitivity in dif-
ferent cancer cell lines using linear regression to correlate gene expression with 
survival fraction measurements [66]. However, such a linear regression model may 
lack the ability to account for higher-order interactions among the different genes 
and neglect the expected hierarchal relationships in signaling transduction of highly 
complex radiation response. It has been noted in the literature that modeling of 
molecular interactions could be represented using graphs of network connections as 
in power line grids. In this case, radiobiological data can be represented as a graph 
(network) where the nodes represent genes or proteins and the edges may represent 
similarities or interactions between these nodes. We have utilized such approach 
based on Bayesian networks for modeling dosimetric radiation pneumonitis rela-
tionships [67] and more recently in predicting local control from biological and 
dosimetric data [68].

In the more general realm of bioinformatics, this systems approach could be 
represented as a part of a feedback treatment planning system as shown in Fig. 16.2, 
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Fig. 16.2  The bioinformatics understanding of heterogeneous variable interactions as a feedback 
into the treatment planning system to improve patient’s outcomes. A heterogeneous list of vari-
ables with their noisy characteristics are acquired from retrospective or prospective studies and fed 
into in a learning algorithm to derive estimates of TCP/NTCP, which is typically corrected based 
on feedback of newly tested patients or scientific and clinical findings

I. El Naqa



269

in which bioinformatics understanding of heterogeneous variables interactions 
could be used as an adaptive learning process to improve outcome modeling and 
personalization of radiotherapy regimens.

16.5	 �Software Tools for Outcome Modeling

Many of the TCP/NTCP outcome modeling methods require dedicated software 
tools for implementation. Examples of such software tools in the literature are 
BIOPLAN and DREES. BIOPLAN (BIOlogical evaluation of treatment PLANs) 
uses several analytical models for evaluation of radiotherapy treatment plans [69], 
while DREES is an open-source software package developed by our group for 
dose-response modeling using analytical and data-driven methods [28] presented 
in Fig. 16.3. It should be mentioned that several commercial treatment planning 
systems have currently incorporated different TCP/NTCP models, mainly analyti-
cal ones that could be used for ranking and biological optimization purposes. A 
discussion of these models and their quality assurance guidelines is provided in 
TG-166 [11].

Fig. 16.3  DREES allows for TCP/NTCP analytical and multivariate modeling of outcomes data. 
The example is for lung injury. The components shown here are Main GUI, model order and 
parameter selection by resampling methods, and a nomogram of outcome as function of mean dose 
and location

16  Bioinformatics of Treatment Response



270

16.6	 �Discussion

16.6.1	 �Data Sharing

Successful outcome modeling requires large datasets to meet statistical require-
ments, and sharing data is necessary to achieve this purpose. However, data shar-
ing remains an issue for nontechnical issues [70]. Therefore, the Quantitative 
Analyses of Normal Tissue Effects in the Clinic (QUANTEC) consortium has 
suggested that cooperative groups adopt a policy of anonymizing clinical trial 
data and making these data publicly accessible after a reasonable delay. This 
delay would enable publication of all the investigator-driven, planned studies 
while encouraging the establishment of key databanks of linked treatment plan-
ning, imaging, and outcomes data [71]. An alternative approach is to apply rapid 
learning as suggested by the Maastro clinic group at Maastricht, in which innova-
tive information technologies are developed that support semantic interoperabil-
ity and enable distributed learning and data sharing without the need for the data 
to leave the hospital or the institution [72]. An example of multi-institutional 
data sharing is developed by the groups of Maastro clinic and the Policlinico 
Universitario Agostino Gemelli in Rome, Italy (Gemelli) [73].

16.6.2	 �Lack of Web Resources for Radiobiology

As of today, there are no dedicated web resources for bioinformatics studies in 
radiation oncology. Nevertheless, radiotherapy biological marker studies can 
still benefit from existing bioinformatics resources for pharmacogenomic stud-
ies that contain databases and tools for genomic, proteomic, and functional 
analysis as reviewed by Yan [74]. For example, the National Center for 
Biotechnology Information (NCBI) site hosts databases such as GenBank, 
dbSNP, Online Mendelian Inheritance in Man (OMIM), and genetic search tools 
such as BLAST.  In addition, the Protein Data Bank (PDB) and the program 
CPHmodels are useful for protein structure three-dimensional modeling. The 
Human Genome Variation Database (HGVbase) contains information on physi-
cal and functional relationships between sequence variations and neighboring 
genes. Pattern analysis using PROSITE and Pfam databases can help correlate 
sequence structures to functional motifs such as phosphorylation [74]. Biological 
pathway construction and analysis is an emerging field in computational biol-
ogy that aims to bridge the gap between biomarker findings in clinical studies 
with underlying biological processes. Several public databases and tools are 
being established for annotating and storing known pathways such as KEGG 
and Reactome projects or commercial ones such as the IPA or MetaCore [75]. 
Statistical tools are used to properly map data from gene/protein differential 
experiments into the different pathways such as mixed effect models [76] or 
enrichment analysis [77].
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16.6.3	 �Protecting the Confidentiality and Privacy of Clinical 
Phenotype Data

QUANTEC offered a solution to radiotherapy digital data (treatment planning, 
imaging, and outcomes data) accessibility by asking cooperative groups to adopt a 
policy of anonymizing clinical trial data and making the data publicly accessible 
after a reasonable delay [71]. With regard to blood or tissue samples, no recommen-
dation was made, however, by extending the same work and making any gene or 
protein expression assay measurements available under the same umbrella, while 
raw specimen data could be accessed from the biospecimen resource. For example, 
in the RTOG biospecimen standard operating procedure (SOP), it is highlighted that 
biospecimens received by the RTOG Biospecimen Resource are de-identified of all 
patient health identifiers and are enrolled in an approved RTOG study. Each patient 
being enrolled by an institution has to qualify and consent to be part of the study 
before being assigned a case and study ID by the RTOG Statistical Center. No infor-
mation containing specific patient health identifiers is maintained by the Resource 
Freezerworks database, which is primarily an inventory and tracking system. In 
addition, information related to medical identifiers and any code lists could be 
removed completely from the dataset after a certain period say 10 years or so. 
Moreover, it has been argued that current measures by the Health Insurance 
Portability and Accountability Act (HIPPA) of 18 data elements are not sufficient 
and techniques based on research in privacy-preserving data mining, disclosure risk 
assessment data de-identification, obfuscation, and protection may need to be 
adopted to achieve better protection of confidentiality [78].

16.7	 �Future Research Directions

The ability to maintain high-fidelity large-scale data for radiotherapy studies 
remains a major challenge despite the high volume of clinical generated data on 
almost daily basis. As discussed above there have been several ongoing institutional 
and multi-institutional initiatives such as the RTOG, radiogenomics consortium, 
and EuroCAT to develop such infrastructure; however, there is plenty of work to be 
done to overcome issues related to, data sharing hurdles, patient confidentiality 
issues lack of signaling pathways databases of radiation response, development of 
cost-effective multicenter communication systems that allows transmission, stor-
age, and query of large datasets such images, dosimetry, and biomarkers informa-
tion. The use of NLP techniques is a promising approach in organizing unstructured 
clinical data. Dosimetry and imaging data can benefit from existing infrastructure 
for Picture Archiving and Communication Systems (PACS) or other medical image 
databases. Methods based on the new emerging field of systems radiobiology will 
continue to grow on a rapid pace, but they could also benefit immensely from the 
development of specialized radiation response signaling pathway databases analo-
gous to the currently existing pharmacogenomics databases. Data sharing among 
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different institutions is a major hurdle, which could be solved through cooperative 
groups or distributed databases by developing in a cost-effective manner the necessary 
bioinformatics and communication infrastructure using open-access resources 
through partnership with industry.

�Conclusion

Recent evolution in radiotherapy imaging and biotechnology has generated enor-
mous amount of big data that spans clinical, dosimetric, imaging, and biological 
markers. This data provided new opportunities for reshaping our understanding 
of radiotherapy response and outcome modeling. However, the complexity of 
this data and the variability of tumor and normal tissue responses would render 
the utilization of advanced bioinformatics and machine learning methods as 
indispensible tools for better delineation of radiation complex interaction mecha-
nisms and basically a cornerstone to “making data dreams come true” [79]. 
However, it also posed new challenges for data aggregation, sharing, confidenti-
ality, and analysis. Moreover, radiotherapy data constitutes a unique interface 
between physics and biology that can benefit from the general advances in bio-
medical informatics research such as systems biology and available web 
resources while still requiring the development of its own technologies to address 
specific issues related to this interface. Successful application and development 
of advanced data communication and bioinformatics tools for radiation oncology 
big data so to speak is essential to better predicting radiotherapy response to 
accompany other aforementioned technologies and usher significant progress 
toward the goal of personalized treatment planning and improving the quality of 
life for radiotherapy cancer patients.
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