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Abstract Automatic surveillance of public areas, such as airports, train stations, and
shoppingmalls, requires the capacity of detecting and recognizing possible abnormal
situations in populated environments. In this book chapter, an architecture for intelli-
gent surveillance in indoor public spaces, based on an integration of interactive and
non-interactive heterogeneous sensors, is described. As a difference with respect to
traditional, passive and pure vision-based systems, the proposed approach relies on a
distributed sensor network combining RFID tags, multiple mobile robots, and fixed
RGBD cameras. The presence and the position of people in the scene is detected
by suitably combining data coming from the sensor nodes, including those mounted
on board of the mobile robots that are in charge of patrolling the environment. The
robots can adapt their behavior according to the current situation, on the basis of a
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Prey-Predator scheme, and can coordinate their actions to fulfill the required tasks.
Experimental results have been carried out both on real and on simulated data to
show the effectiveness of the proposed approach.

Keywords Mobile robots · Wireless sensor networks · Multi-robot systems ·
Multi-robot surveillance

1 Introduction

A critical infrastructure (CI) is a system which is essential for the maintenance of
vital societal functions. Public areas, such as airports, train stations, shopping malls,
and offices, are examples of CIs that can be a target for terrorist attacks, criminal
activities ormalicious behaviors. Usually, CIs aremonitored by passive cameras with
the aim of detecting, tracking, and recognizing objects of interest to understand and
prevent possible threats.

However, traditional vision-based systems can result ineffective when dealing
with realistic scenarios, since their passive sensors can fail in identifying and tracking
anobject of interest in a large environment, due topartial and total occlusions, changes
in illumination conditions, and difficulties in re-identifying objects in different non-
overlapping views. Moreover, a network of fixed passive sensors can be subject to
malicious physical attacks [11].

1.1 Contributions of the Book Chapter

In this chapter, the problem of monitoring a populated indoor environment is faced
by combining data coming from multiple heterogeneous fixed and mobile sensors.
The term “populated” is used through the book chapter to denote an environment
with presence of people. In our description, we do not take into account crowded
or densely-populated environments. We describe the development of an architecture
designed for the surveillance of a large scenario, where authorized personnel wear
Radio Frequency Identification (RFID) tags and the environment is monitored by
fixed RGBD cameras with RFID receivers and it is patrolled by multiple mobile
robots, equippedwith laser range finders andRFID receivers (see Fig.1). Laser scans,
RFID tag data, and RGBD images gathered by the distributed sensors are merged
to obtain information about the position and the identity of people in the scene.
Moreover, the robots coordinate their actions through a dynamic task assignment to
fully cover the operational environment.

The architecture is conceived to work in a fully distributed fashion and to auto-
matically raise alarms (possibly communicated to a central operational station)
when abnormal conditions are detected. To this end, the developed architecture inte-
grates different technologies. Although all the above technologies have been already
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Fig. 1 The proposed architecture, combining mobile robots, fixed RGBD cameras, and RFID tags
and receivers to monitor a populated environment

developed in previous works, their integration was not previously considered, in par-
ticular for surveillance applications. Moreover, an experimental analysis, carried out
also in a real environment, shows the effectiveness of the implemented system.

The remainder of the chapter is organized as follows. Related work is analyzed in
Sect. 2, while the definition of the problem is given in Sect. 3. The components of the
architecture are described in Sect. 4 and the process of fusing the information coming
from the different sensors is described in Sect. 5. The multi-robot coordination and
the task assignment processes are detailed in Sect. 6. Results on both a real and a
simulated environment are discussed in Sect. 7. Conclusions and future directions
are drawn in Sect. 8.

2 Related Work

There exists a large literature about the problemof people detection in indoor environ-
ments by using fixed cameras. However, since a variety of factors, including illumi-
nation conditions, occlusions, and blind spots, limit the capacity of pure vision-based
systems, it is possible to consider a combination of multiple heterogeneous sensors
to achieve better results.

Approaches integrating multiple sensors can be divided into two main categories:
(1) interactive methods, where each person has an active role during the detection
process (e.g., by dressing an RFID tag) and (2) non-interactive methods, where the
role of the person is passive and the analysis is carried out by the detection system
only (e.g., a camera). In the rest of this section, some examples of interactive and
non-interactive methods are described.
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2.1 Interactive Methods

One of the first experiments about collecting information from a group of people in
a physical real context is described by Hui et al. [8]: 54 individuals attending to a
conference, dressed with an Intel iMote device consisting of a micro-controller unit
(MCU), a Bluetooth radio and a flash memory, are considered. However, the choice
of using Bluetooth does not allow for a fine-grained recording of social interactions,
mainly because of the missing possibility of analyzing face-to-face interactions.

Multiple projects focusing on collecting data from social interactions are devel-
oped by the SocioPatterns collaboration. Partners participating in this collaboration
have been the first to record fine-grained contacts by using active RFID sensors.
This kind of devices allows to record face-to-face interactions within a range of
1.5m. For example, Becchetti et al. [2] describe an experiment in which data com-
ing from wireless active RFID tags worn by 120 volunteers moving and interacting
in an indoor area are collected. The tags periodically broadcasts information about
contacts with similar tags (i.e., whenever the person wearing the tag came close to
another member of the volunteer group). Assuming that the subjects wear the tags on
their chest and using very low radio power levels, contacts between tags are detected
only when participants actually face one another, since the body effectively acts as
a shield for the sensing signals. Thus, it is reasonable to assume that the experiment
can detect an ongoing social contact (e.g., a conversation). SocioPatterns has made
several installations in different social contexts, including conferences [1], hospitals
[9], primary schools [16], and a science gallery [4], making some data sets publicly
available on its website.1

Experiments similar to the SocioPatterns’ ones have been conducted deployed by
Chin et al. [5], consisting in monitoring people wearing active RFID badges during
a conference. The goal is to build a system that can find and connect people to
each other. A remarkable result of the experiment is that, for social selection, more
proximity interactions lead to an increased probability for a person to add another as
a social connection.

While the above approaches target the analysis of social human behaviors, in this
book chapter we investigate the use of data acquired from interactive tags for surveil-
lance applications. Indeed, we aim at integrating the SocioPatterns sensing platform
together with other sensing technologies, including laser range finders and RGBD
cameras, to overcome the problems related to traditional automatic surveillance. It is
worth noticing that a scenario in which (1) authorized personnel wear RFID tags and
(2) other authorized actors (e.g., visitors, travelers, spectators) may have an RFID tag
as well (e.g., included in a ticket or a passport or a boarding pass) is a quite plausible
one. Airports, embassies, and theaters are examples of scenarios where interactive
methods can be used.

1http://www.sociopatterns.org/datasets.

http://www.sociopatterns.org/datasets
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2.2 Non-interactive Methods

Approaches in this category are based on passive sensors. Since the literature on
vision-based systems is huge, we limit our description to existing approaches using
technologies other than vision for addressing automatic surveillance. In the field of
laser-based systems, Cui et al. [6] introduce a feature extraction method based on
accumulated distribution of successive laser frames. A pattern of rhythmic swing
legs is used to extract each leg of a person and a region coherency property is
exploited to generate an efficient measurement likelihood model. A Kalman and a
Rao-BlackwellizedMonte Carlo data association (RBMC-DAF) filters are combined
to track people. However, this approach is not effective for people moving quickly
or partially occluded.

Xavier et al. [17] describe a feature detection system for real-time identification
of lines, circles, and legs from laser data. Lines are detected by using a recursive line
fitting method, while leg detection is carried out by taking into account geometrical
constrains. This approach cannot handle scan data of a dynamic scene including
moving people or not well separated structures.

A solution involving human-robot interaction is presented by Shao et al. [14].
Visual and laser range information are combined: Legs are extracted from laser
scans and, at the same time, faces are detected from the images of a camera. A
mobile robot uses the detection procedure (that returns the direction and the distance
of surrounding people) to approach and to start interacting with humans. However,
the swinging frequency is too low for people detection and tracking.

In the above cited papers, the main limitation concerns the problem of detecting
multiple people. In most cases, the approaches can deal with well separated objects,
but cannot be easily extendedwhenmultiple people are grouped together. In this book
chapter, we propose an approach that can be used in a populated environment and
that is suitable for monitoring groups of people. The method combines interactive
and non-interactive heterogeneous sensors in order to overcome the problems of
traditional vision-based systems.

Information coming from range finders, RFID receivers, and RGBD cameras are
merged to obtain the position and the identity of people in the scene. Moreover,
the actions of the robots are coordinated according to a dynamic task assignment
algorithm, in order to a have a dynamic monitoring range.

3 Problem Definition

The problem of monitoring a populated environment can be modeled as a Prey-
Predator game. Indeed, considering the sensor nodes as predators and the objects to
be monitored as preys, it is possible to formalize the surveillance task as follows: A
predator tries to catch preys and a prey runs away from predators.
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The game consists of preys and predators living in the same environment. It is
usually defined as a game where both predators and preys have a score and any
individual can gain or lose points over time. A metric distance is assigned to each
prey and to each predator as the game score. The goal for each prey is to maximize
its distance from the predators, while each predator aims at minimizing its distance
from the preys. In our setting, the preys are the people moving in the monitored
environment, while the predators are the sensor nodes that are used for detecting the
presence and for estimating the position of a person. A sensor node is made of an
RFID reader and other additional sensors, like an RGBD camera or a laser range
finder. Moreover, some sensor nodes are mounted on mobile robots that navigate
in the environment. For such a reason and for the presence of blind areas also, the
portion of the environment that is currently observable can vary over time.

The monitoring task consists of identifying every person that does not wear an
RFID tag by assigning her/him an identity number (ID). The goal of the monitoring
task is achieved whenever a sensor node can detect the presence and the position of
a person, determining if such a person is wearing or not an RFID tag. Formulating
the surveillance task as a Prey-Predator game provides the following advantages:
(1) In the case of a person leaving the monitored area and then re-entering later, the
re-identification problem is not an issue, since if a person was labeled with an ID i
before exiting the scene, when she/he re-enters the scene the system can use another
ID j (i �= j) and continue its process of determining if j is wearing or not an RFID
tag; (2) The same performance metric defined for the Prey-Predator game can be
used for evaluating our approach, providing quantitative results (see the experiments
reported in Sect. 7).

4 Sensor Nodes

The proposed monitoring approach uses a combination of multiple heterogeneous
fixed and mobile sensor nodes. Authorized people wear RFID tags of the type shown
in Fig. 2a. Mobile nodes are robots equipped with a laser range finder and an RFID
receiver (Fig. 2b), while fixed nodes are made of RGBD cameras to grab visual 3D
information and RFID receivers that are mounted near the camera (Fig. 2c). The
communication between mobile and fixed sensors is achieved by using TCP/IP over
a wireless network. This is a feasible solution, since the size of exchanged messages
among nodes is quite small (up to 1 kb) and the possibility to either lost a message
or receive a delayed message is negligible.

4.1 RFID Tags and Receivers

The two main entities of our sensing platform, designed and developed by the
SocioPatterns research collaboration, are the OpenBeacon active RFID tags (Fig. 2a)
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Fig. 2 a RFID tag. b Turtlebot robot equipped with a laser range finder and an RFID receiver.
c Fixed RGBD camera with RFID receiver

and the OpenBeacon Ethernet reader (top right in Fig. 2b). The tags are electronic
wireless badges equipped with a PIC16 micro-controller (MCU) and an ultra low
power radio frequency transceiver. The MCU has a total SRAM of 256 bytes and
can work up to 8 MHz of frequency, while the transceiver has very low energy con-
sumptions: 11.3 mAh in transmission at 0 dBm of output power and 12.3 mAh in
reception at 2Mbps of air data rate. They are powered by batteries ensuring a lifetime
of more than two weeks and are programmed to periodically broadcast beacons of
32 bytes at four different levels of signal strength: 0, −6, −12, −18 dBm. Every
beacon contains the tag identifier, the information about the current signal strength,
and other fields useful for debugging. Similarly, the RFID reader has a transceiver
as well and an omni-directional covering range of 10m.

The whole sensing platform is designed to allow the RFID receivers to collect the
data sent by each tag via the wireless channel. In our scenario, a receiver is mounted
on each robot and it is used to read the signal strength and the ID of a tag, in order to
establish if a person detected in the environment is actually wearing a tag. All data
collected by RFID readers are forwarded to a central logging server,2 that stores all
messages in log-files. Each record contains information about the tag whom sent the
packet, including its ID, the signal strength, the sequence number and the IP of the
reader that collected the corresponding message.

2OpenBeacon Logger. https://github.com/francesco-ficarola/OpenBeaconLogger.

https://github.com/francesco-ficarola/OpenBeaconLogger
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Fig. 3 People detection using the laser range finder

4.2 Laser Range Finders

The mobile sensor node is composed of a Turtlebot3 equipped with a range finder
and an RFID receiver (Fig. 2b). Multiple robots are involved in the task of patrolling
the environment. Each robot has a 2D metric map of the environment, that is built
off-line using the ROS gmapping tool.4 Furthermore, each robot can be considered
always well-localized on the 2Dmetric map by using the ROS implementation of the
AMCL localization method.5 Person detection is carried out by means of a distance
map, indicating the probability that a given point in the current laser scan belongs to
the metric map. By comparing the distance map with the metric map it is possible
to extract the foreground objects, i.e., sets of points in the distance map that are
far enough from the metric map points. From each foreground object the following
features are extracted: the number of its points, their standard deviation, a bounding
box, and the radius of the minimum enclosing circle (see Fig. 3). Then, the features
are sent as input to an Ada-Boost based person classifier, trained with about 1800
scans.

People tracking relies on the particle filter algorithm called PTracker, that is
described in Sect. 5. Data association is used to determine the relationship between
observations and tracks, and multiple hypotheses are maintained when observations
may be associated to more than one track. Finally, each track is combined with the
signal detected by the RFID receiver mounted on each robot, in order to verify if a
person is wearing the RFID tag.

3http://www.turtlebot.com/.
4http://wiki.ros.org/gmapping.
5http://wiki.ros.org/amcl.

http://www.turtlebot.com/
http://wiki.ros.org/gmapping
http://wiki.ros.org/amcl
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4.3 RGBD Cameras

The Microsoft Kinect (version 1.0) has been used as RGBD camera. Kinect sensor
supplies an RGB image with a resolution of 640×480 and a frame rate of 30 frames
per second. 3D information are received in the form of a 11-bit depth image. Both
color and depth information are used for computing an accurate foreground detection.
RGB and depth data are stored for each captured frame.

A statistical approach, called Independent Multimodal Background Subtraction
(IMBS) [3], is used to create the background model, that is updated every 15 seconds
for dealing with illumination changes. The obtained foreground mask is used as
starting point for a 3D clustering step.

Let B denote the set of 3D points that corresponds to the 2D points belonging
to the blobs in the foreground mask and C denote all the 3D points of the point
cloud generated from the depth data provided by the Kinect (B ⊂ C). In order to
improve the detection results, all the 3D points ∈ {C\B} having a distance< 0.01m
from the points in B are recursively added to B itself. Then, to filter out possible
false positives, all the blobs with a maximum height < 1.2m are discarded, while
the others are considered as valid observations. Finally, the 3D positions of the valid
blobs are computed by estimating their Euclidean distance from the cameras. Indeed,
since the positions of the cameras monitoring the environment are known, people
can be localized on the 2D metric map by averaging the 3D points belonging to the
their blobs and calculating the distance of the average point from the camera. The
above described steps are summarized in Fig. 4.

Fig. 4 People detection using a RGBD camera



86 A. Pennisi et al.

5 Data Fusion

Information coming from fixed and mobile sensor nodes needs to be merged. The
data fusion process is made of two phases: (1) Obtaining tracks by fusing visual and
laser data and (2) Merging the tracks with RFID receiver information.

In the first phase, a multi-object particle filter approach, called PTracker, has
been used in order to fuse and track the observations extracted from RGBD and
laser data. A particle filter-based tracker maintains a probability distribution over the
state of the object being tracked, keeping information about position, scale, color,
direction and velocity of the object. Particle filters represent this distribution as a
set of weighted samples (particles). Each particle represents a possible instantiation
of the state of the object and it is a guess representing one possible position of the
object being tracked. The set of particles contains more weight at locations where the
object being tracked is more likely to be. This weighted distribution is propagated
through time the Bayesian filtering equations, and the trajectory of the tracked object
is determined by taking the particle with the highest weight or the weighted mean of
the particle set at each time step. A detailed description of the data fusion method is
available at http://www.dis.uniroma1.it/~previtali/downloads/DataFusion.pdf. The
output of this phase is a set St = {

o1t , . . . , on
t

}
containing all the observations oi

t at
time t, 1 ≤ i ≤ n, where n is the total number of the observations.

In the second phase, St is merged with the information coming from the RFID
receivers at time t, the set Ut = {

id1
t , . . . , idk

t

}
, where idk

t is a triple 〈t, p, r〉, with t
being the identification number of the tag, p the pose of the receiver that detects the
tag t, and r the detection range of the receiver. An observation oi

t ∈ St is associated
to a triple (idt

j = 〈tj, pj, rj〉) ∈ Ut if all the particles of ot
i (computed by PTracker)

are included in the circular range having radius rj and center pj. After the merging
phase, three different outputs can be generated:

1. zt
h = 〈ot

i, idt
j 〉 where ot

i has been merged with idt
j ;

2. zt
h = 〈ot

i, ?〉 where no RFID data have been associated with the track ot
i ;

3. zt
h = 〈?, idt

j 〉 where no track information can be assigned to the detected RFID
data idt

j .

6 Multi-robot Surveillance

In our architecture, multiple robots are responsible for patrolling the environment,
meaning that a team of different robotic agents have to be coordinated and con-
trolled. This can be done by adopting different coordination strategies and control
approaches, in order to plan the robots’ behavior.We propose a novel approach based
on a distributed coordination and a hybrid control, that makes use of a variant of the
multi-robot Petri Net Plans [18].

http://www.dis.uniroma1.it/~previtali/downloads/DataFusion.pdf


Multi-robot Surveillance Through a Distributed Sensor Network 87

6.1 Distributed Coordination

Coordination strategies for a team of robots can be divided into two categories:
(1) Centralized methods, where an agent sends commands to other robots, and (2)
Distributed approaches, where each agent decides its task and it shares information
with the team.

In centralized solutions, the whole planning task is assigned to a single agent
(central unit) that is responsible to calculate the next task for each robot. This must
be done in a very short time, due to real-time constraints. Furthermore, the central
unit represents a weak point, since in case it crashes, this will affect the functionality
of the entire system.

Adopting a distributed approach, it is possible to deal with the above issues. The
idea is to make each agent acting independently from each other, by using only local
knowledge about the environment. An agent can collaborate with its neighbors in
order to divide the task into sub-problems or to work together to achieve the defined
goals.

Even if a distributed coordination increases the computation costs, due to the need
of managing the necessary coordination messages, it allows to split the costs among
all the team. Indeed, each robot performs a smaller amount of computation with
respect to the whole computation load required to a single central node. The commu-
nication between agents in a distributed processing is greatly reduced as well, since it
is not necessary to exchange information about perception, thus reducing the trans-
missions to a simple exchange of lightweight coordination messages. In addition,
the reaction to external events is faster, since events are managed locally, without the
need of waiting for instructions from a central global coordinator. Finally, a distrib-
uted execution is more robust to failures. Indeed, if an agent becomes unreachable,
it can be replaced by another one without affecting the capability of the system.

6.2 Petri Nets Plans

We propose a distributed architecture with hybrid control and centralized planning.
Using a centralized plan means that a plan is generated from a supervisor (an agent
or a user) and it is sent in a distributed fashion to all the robots. Petri Nets Plans
(PNP) [18] is a framework based on Petri Nets, conceived for designing, writing,
executing, and debugging plans. The use of PNP allows a clear distinction between
action specification and their implementation as well as a formal specification of
plans, which permit to implement reasoning and to verify procedures.

Ziparo et al. [18] have extended the PNP framework to multi-robot systems. The
extension uses a shared plan, that provides each agent with a plan created in a cen-
tralized manner, and with the model to run it in a distributed fashion. This approach
allows to execute a set of PNPs, created by a shared multi-robot plan, for a single-
robot, without the need of a central coordinator. The correctness of the distributed
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execution with respect to the multi-robot PNP is enforced by using the commu-
nication primitives send(ID), receive(ID) and sync(ID,ID′), where ID and ID′ are
unique identifiers for the state of execution of single-robot plans. The primitives are
modeled as single-robot ordinary non-instantaneous actions and represent commu-
nication acts and they are used to define three operators for coordinating the plans
for each single robot:

• Hard Synchronization. It synchronizes in time two single-robot plans and it
allows for information sharing among them, through the communication of IDs

and IDr which encode the state of execution for the plan of agent s and agent r,
respectively.

• Soft Synchronization. It defines a precedence relation among two actions of two
different robots.

• Multi-robot Interrupt. It allows for relating interrupts between the actions of
two robots s and r. Since each robot has a receiving thread, when a sensing action
launches an interrupt on s, it send a message to r, which starts an interrupt as well.

6.3 Hybrid Control

Arobot decides the type of action to perform as the result of the perceived information
from the environment. It contains two procedures, a reactive and a deliberative one,
with an interface that is responsible for connecting them. The reactive procedure is
used for handling situations that require an immediate reaction of the robot, such
as avoiding obstacles or sending an alarm in case of intruders. The deliberative
procedure is used for long-term decisions, like planning a trajectory. This two-level
architecture has the advantage of increasing the reactivity of the system, having a
dynamic and very responsive control. It is worth noting that, designing the interface
between the two layers is not trivial.

The PNP formalism is used to manage both the deliberative and reactive control.
In [18] the global plan is converted into individual single-robot plans. In such a
way, a manual or an automatic rewriting of the single plans is needed. However, the
individual plansmust be distributed to each robot, making the operations of changing
and debugging a plan rather complex.

We propose a different approach. Each agent is equipped with an execution model
that can interpret and execute the original PNP. Then, the plan interpreter manages
the various actions by implementing those addressed to it and by handling the actions
which pertain to different agents, through communication primitives. The main dif-
ference with [18] lies in the PNP executor. Indeed, in [18] each received command
is interpreted by using operators and primitives both defined in PNP, then the appro-
priate commands are sent to the robot in order to complete the required tasks (see
Fig. 5a).

Our approach includes, instead, two new software modules: (1) the Coordinator
and (2) the Robot ID Recognizer. The Coordinator is not a specific robot, but a
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Fig. 5 a Architecture for the PNP Executor proposed in [18]. b Our modified architecture for the
PNP Executor

software procedure running on all the robots in the team. Both modules are designed
to work in a distributed asynchronous fashion. We assume that all the information
are sent and received asynchronously between the robots and that some robots can
be unable to receive all the available information due to lost packets.

The PNP executor is the same as the one in the single-robot case, which uses only
the PNP primitives and operators. In the PNP plan, by following the rules of labeling,
an action is preceded by the ID of the robot that has to perform it. First of all, the
action is passed to the Robot ID Recognizer, which controls whether the action has to
be executed by the local agent or by one of the remote robots. If it is the case for the
local agent, the action is passed to the single PNP executor. Instead, if the action is
for a remote robot, it is passed to the local coordinator module which transforms the
action into a communication primitive, in order to synchronize the evolution of the
local plan with the execution state of the remote robots. This can be done since the
coordinator informs the other robots about the ending of the local action (see Fig. 5b),
thus allowing to synchronize the plans of all the agents. A copy of the multi-robot
plan is stored by all robots, and all the PNP executors are synchronized. In such a
way, if no communication errors occur, each agent exactly knows the execution state
of all the remote agents.

6.4 Implementation

For the low-level control, we use the Robotic Operative System (ROS),6 which is
a flexible framework for robotic infrastructures equipped with a collection of tools,
libraries, and conventions aiming at simplifying the creation and management of
robotic platforms. The tools are arranged in nodes, that can be integrated with other
nodes to compose a complex architecture.

6http://www.ros.org.

http://www.ros.org
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Fig. 6 Scheme of the PNP-ROS bridge

In order to interact with ROS, a node has been built for interfacing the external
libraries. The scheme of the bridge from PNP to ROS is reported in Fig. 6. The
Action Client asks the Action Server to execute a given action, while the Service
Client asks the PNP Service to evaluate the firing conditions. The PNP Service is
user-defined and it maintains the state of the system giving a response (i.e., a value
true or false) about a condition. When PNP-ROS sends a request for an action, the
Robot IDRecognizer (see Fig. 5b) pre-processes the request by checking if the action
has to be sent to the local agent (and therefore it will be performed), or if the action
has to be sent to a remote robot. In the last case:

• If the request is for a local action, theAction Server launches a new communication
thread involving the other ROSmodules in order to accomplish the task. When the
action is finished, the boolean state variable is set to true and the PNP Service can
respond with a positive value. This means that the PNP library Executor knows
that the action is terminated and it can send an “ActionFinished” message to all
the remote agents and proceed with another plan.

• If the address of the action is a remote agent id, the Action Server launches a new
communication thread with a primitive receive(id). This is a blocking function
and thus the thread stops its execution waiting for a message. When the remote
agent finishes its action, it sends an “ActionFinished” message and the thread can
resume.

Using the above described protocol, each agent can directly use the multi-robot
original plan, while maintaining the information about the state of execution of the
plan for the other agents.

6.5 Example of PNP Execution

Figure7 shows an example of a simple PNP execution. Two sensor nodes are moni-
toring the environment: Node0 is a fixed camerawith anRFID receiver, while Robot1
is amobile robot equippedwith a laser range finder and an RFID receiver. Both nodes
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Fig. 7 Example of PNP execution

receive a request for the action “Node0#Detect” meaning that Node0 is required to
check if a person is in its field of view. Robot1 understands that the action is for a
remote agent, thus it sends the request to the Coordinator, that transforms the action
in a primitive receive. When Node0 detects the presence of a person, it completes
its action and sends a message, containing the information about the presence of an
authorized person or not, to Robot1. In the example shown in Fig. 7, the person does
not wear an RFID tag, so Robot1 is notified that it has to check the possible abnormal
situation (action “Robot1#GoToAnomaly”).

6.6 Dynamic Task Assignment

The robots in the team must work together on the current task, coordinating their
actions and efficiently sharing the workload to maximize the overall task perfor-
mance. This is a complex goal, since the robots operate in a dynamic environment
and the perceptions can be noisy.

In order to deal with the coordination problem in a real scenario, we adopted a
solution based on a greedy algorithm [12, 15] and the Prey-Predator game formal-
ization (see Sect. 3). A Dynamic Task Assignment (DTA) process is responsible for
assigning a prey to a predator. Such an assignment is unique, meaning that a predator
cannot chase two or more preys. A predator creates a new bid each time it sees a prey
(Fig. 8a). A bid describes its estimates of the expected information gain and costs of
traveling to various locations for catching the prey. Bids, that are the same for both
mobile and fixed sensors, are asynchronously sent to all the predators (Fig. 8b) and
the DTA algorithm makes the assignment on the basis of the current bids (Fig. 8c).
The tracking performance of a predator increases at the decrease of its distance from
a prey, thanks to the higher quality of the received sensor data. During the chasing, a
predator could change the prey to chase: To handle this situation, the DTA algorithm
assigns the prey no longer chased to another predator.
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?

?

(a)

Robot 1
- . . .
- . . .
- . . .

Robot 1
- . . .
- . . .
- . . .

Robot 2
- . . .
- . . .
- . . .

Robot 2
- . . .
- . . .
- . . .

Robot 3
- . . .
- . . .
- . . .

Robot 3
- . . .
- . . .
- . . .

(b) (c)

Fig. 8 Dynamic task assignment (DTA). a Predators do not yet knowwhich prey chase. b Predators
exchange their bids. c The DTA algorithm assigns at each predator the best prey to chase

7 Experimental Evaluation

Experimental results has been computed both in a real scenario and by using a
simulator. The experiments carried out in the real scenario have been used to generate
the error models for the sensors in the network nodes (a model for the RGBD camera
and one for the laser range finder). The models are very useful for obtaining realistic
results in the simulated environment, that are then used to quantitatively evaluate the
effectiveness of the proposed architecture.

7.1 Experiments with Real Data

Experiments with real data have been performed with two purposes: (1) To generate
the error models for the sensor nodes, and (2) To demonstrate the overall feasibility
of the developed system.

The first set of experiments are thus focused on determining the error models of
the sensors used for people detection: an RGBD camera (a Kinect sensor) and a laser
range finder (a Hokuyo UTM-30LX). The setup is given by two fixed sensor nodes
each including one of the two sensors and a person standing at a variable distance d
from the sensor nodes (see Fig. 9). Four runs for each considered distance (ranging
from 1 to 4m) have been considered. The obtained results are reported in Table1.
As expected, the accuracy of the laser-based method is higher than the one of the
RGBD-based technique, and the errors increase with the distance, for both the laser
and the RGBD camera. The results allow to determine a suitable error model for the
sensors involved in the architecture.

Moreover, when considering a mobile sensor (i.e., an RGBD camera or a laser
mounted on a robot), the error in the self-localization routine carried out by the
robot must be taken into account, since it can influence the detection accuracy. To
this end, we performed a set of preliminary tests on different Turtlebot robots in
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Fig. 9 Laser and visual data
are merged using the floor as
a common reference frame

Table 1 Results in the real scenario

Sensor type Real distance (m) Detected distance (m) Error (m)

Kinect 1 1.441 0.441

Laser 1 1.029 0.029

Kinect 2 2.404 0.404

Laser 2 2.040 0.040

Kinect 3 3.464 0.464

Laser 3 3.068 0.068

Kinect 4 4.533 0.533

Laser 4 4.066 0.066

order to calculate their localization error. We used the well-known approach by Fox
et al. described in [7], obtaining a localization error in the range between 8cm and
16cm. The computed error models (sensors + localization) are used as input for the
simulated experiments (described below) to obtain realistic observations during the
simulations.

The second set of experiments with real data has been performed to show the
effectiveness of the entire approach. Here we do not collect quantitative measures,
but just demonstrate the whole architecture running. Some videos showing the exper-
iments are available in [13] and some snapshots are reported in Fig. 10. The behavior
of the system is the following. Whenever the fixed sensor node detects a person,
a Turtlebot equipped with a laser range finder and an RFID reader is sent in that
location, in order to verify the status of the person (i.e., if she/he is wearing or not
the RFID tag) and to report the anomaly if it is the case (see Fig. 11). Otherwise, if
the system does not detect anomalies, sends a message to the robot which continues
patrolling the environment.

Finally, we measured the computational speed of the entire system processing in
terms of frames per second (FPS) on live data coming from the sensors, using an
Intel Core i5-3210M 2.50 GHz (2 cores), 4 GB RAM and a virtual machine with a
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Fig. 10 Real experiment: a fixed node composed by a Kinect and a RFID receiver, b two RFID
tags, c a Turtlebot robot equipped with a laser range finder

Fig. 11 Experiment with real data. a A person is wearing the RFID tag while the other one are not,
b the fixed sensor detects the two people, identifies only one RFID tag and, c sends the coordinates
to the mobile robot, d the robot stops in front of the person that is not wearing the RFID tag

Table 2 Computational speed for the RGBD detection module running with a single camera

Frame size FPS (2 cores) FPS (virtual machine, 2 cores)

320 × 240 25 20

640 × 480 23 18

simulated processor 2.00GHz (2 cores), 4GBRAM.The results are shown inTable2,
demonstrating that the proposed approach is suitable for real-time applications with
commercial CPUs and even in the case of using a virtual machine.

7.2 Experiments in a Simulated Environment

The goal of the experimental evaluation on simulated data is to quantitatively evaluate
the performance of our method. We run all the experiments by using the simulator
Stage. InStage, both the sensor nodes and the people are represented as robotic agents.
The estimation of the position of the simulated people (i.e., the implementation of
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Fig. 12 The simulated environment in stage

the virtual sensors) is obtained by generating observations with the addition of an
error calculated accordingly to the error model of the real sensors calculated in the
experiments discussed above. Moreover, to have a realistic simulation, we adopted
a realistic model of the people, the same model of the robots as well as the same
field-of-view of the sensors as in the real scenario.

Figure12 shows two screen-shots from an experiment in which three sensor nodes
(i.e., predators) are chasing moving people without an RFID tag (i.e., preys). People
with tags are no more chased once detected. The experiment has been carried out
by launching multiple runs, changing every time the initial positions and the type
of the sensors (fixed or mobile) and the starting positions of the people with and
without tags. The average error has been calculated by using Eq.1, while the standard
deviation by using Eq.2:

avg =
n∑

t=1

k∑

i=1

1

k

∑m
j=1 ‖e(t)i,j − g

(t)
j ‖

m
(1)

std. dev. =
n∑

t=1

k∑

i=1

1

k

∑m
j=1 ‖e(t)i,j − avg(t)i ‖

m
(2)

where e(t)i,j is the jth estimation performed by the robot i at time t, g(t)j is the ground-
truth position provided by the simulator of the object j at time t, m is the number
of estimations performed by the robot i at time t, n is the duration in seconds of
the experiment and k is the number of robots (i.e., predators) involved in the exper-
iment. The results obtained during the simulations are reported in Table3: The low
value of the standard deviation demonstrates a remarkable reliability of the proposed
approach.

We also quantitatively measured the performance of the tracking module. To this
end, we used the well- known CLEARMOT [10] metrics MOTA andMOTP. MOTA
(Multiple Object Tracking Accuracy) measures the accuracy and MOTP (Multiple
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Table 3 Results in the simulated environment

Run # Prey-predator distance
(avg. ± std. dev.) (m)

Run # Prey-predator distance
(avg. ± std. dev.) (m)

1 0.81 ± 0.13 6 0.64 ± 0.17

2 1.22 ± 0.21 7 0.79 ± 0.31

3 0.83 ± 0.15 8 1.18 ± 0.35

4 1.43 ± 0.08 9 1.03 ± 0.22

5 1.38 ± 0.13 10 1.39 ± 0.28

Object Tracking Precision) calculates the precision of the tracking algorithm.MOTA
results give ameasure of howgood the tracking algorithm can keep connect the object
identities over time, while MOTP results are useful for evaluating the difference
between the bounding box provided by the tracking algorithm and the minimum
bounding box containing the tracked person. MOTA is defined as:

MOTA = 1 −
∑Nframes

t=1 (cm(mt) + cf (fpt) + cs(ID-SWITCHESt))
∑Nframes

t=1 N (t)
G

(3)

where, after computing the mapping for frame t, mt is the number of misses, fpt is the
number of false positives, ID-SWITCHESt is the number of ID mismatches in frame
t considering the mapping in frame (t −1), and N (t)

G is the number of objects present
in frame t. The values for the weighting functions have been set to cm = cf = 1 and
cs = log10.

To obtain the precision score, we calculated the spatio-temporal overlap between
the reference tracks and the output tracks of our method. MOTP was defined as:

MOTP =
∑Nmapped

i=1

∑N (t)
frames

t=1

[ |G(t)
i ∩D(t)

i |
|G(t)

i ∪D(t)
i |

]

∑Nframes
t=1 N (t)

mapped

(4)

where Nmapped refers to the mapped system output objects over an entire reference
track taking into account splits and merges, and Nt

mapped is the number of mapped
objects in the tth frame.

Table4 reports MOTA and MOTP values for all the experiments that have been
carried out. The results show that the integration of data coming from heterogeneous
sensor nodes composed of active RFID tags, RGBD cameras, and mobile laser range
finders can be used to deal with the problem of monitoring a populated environment.
A more accurate experimental analysis for measuring false positive/false negative
rates in different situations and integration with other techniques (e.g., vision) would
further improve the assessment of the quality of the system.
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Table 4 Results of the tracking method in the simulated environment

Experiment MOTA MOTP Experiment MOTA MOTP

1 0.95 0.85 6 0.91 0.87

2 0.97 0.90 7 0.95 0.89

3 0.96 0.88 8 0.95 0.91

4 0.92 0.91 9 0.97 0.93

5 0.99 0.95 10 0.98 0.92

8 Conclusions

Integrating multiple technologies for surveillance applications is an important and
necessary step towards the developing and deploying of effective systems. In this
book chapter we describe an architecture and several techniques used for integrating
heterogeneous fixed and mobile sensor nodes in order to determine the presence
and the position of people in an indoor environment. Different technologies (RFID
tags, laser range finders, and RGBD cameras) are combined through a distributed
data fusion method, which is robust to perception noise and is scalable to multiple
heterogeneous sensors. The reported experimental results, obtained both with real
and simulated data, show the feasibility of the approach and the overall capabilities
of the architecture. Automatic monitoring and detection of abnormal activities are
possible and performance in this task can be good enough for an actual deployment.
However, additional workmust be done in order to make the techniques more precise
and more robust.

A potential extension for the approach described in this book chapter consists in
addingmore types of sensors to the network, such asmicrophones,GPS receivers, and
activeRFID tags providing signal strength data.Moreover, the simulated scenario can
be enriched by generating realistic error models specific to those additional sensors.
In order to improve the multi-sensor architecture designed in this book chapter, the
system can be tested by end-users to evaluate the usability and the feasibility of the
proposed approach.
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