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Abstract In this paper, we outline the foundations for a model for reasoning on
images based on abstract concept and action representation via concept algebra. On
performing object detection and recognition on image streams, the instances are
mapped to ontology. Concept algebra rules and definitions of abstract notions,
permit expressing image semantic and the making of further assumptions. This
enables abstract reasoning on knowledge extracted or resulted from a cascade of
deductions obtained from sets of images processed with different detection and
recognition techniques. It also becomes possible to corroborate knowledge
extracted from the image stream with information from heterogeneous sources, such
as sensory input. Concept algebra reasoning aims to emulate human reasoning,
including learning, but remains quantifiable, making way for verifiability in
deductions.

1 Introduction

Image understanding is important in fields such as medicine, aerospace, security,
and semantic web. Classic approaches rely on stochastic methods involving feature
classification and clustering, as in [1], where protein subcellular distributions are
interpreted using various sets of subcellular location features (SLF), combined with
supervised classification and unsupervised clustering methods. Earlier approaches
use artificial neural network [2]. Another approach is case-based reasoning, as
described in [3], where two creek type case-based reasoners operate within a
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propose-critique-modify task structure to combine low-level structure analysis with
high-level interpretation of image content. Case-based reasoning (CBR) has been
steadily expanding in the last 20 years and is widely applied in health sciences [4].
The subject is extensively covered in Perner’s 2008 book [5].

Apart from health sciences, image understanding has generated extensive work
in security areas such as iris biometrics, as described in [6], where techniques are
based on statistical analysis, starting with the work of Flom and Safir [7], Daugman
[8] and Wildes [9], with subsequently inspired models such as neural networks,
Gaussian mixture models, wavelets, fusing quality scores, etc. We find it also
necessary to mention the model-based approach of the DARPA image under-
standing benchmark for parallel computers [10]. Among the probabilistic approa-
ches, we also note Bayesian reasoning on qualitative descriptions for images [11].

However, more recent work tends toward a higher level of abstraction layer for
image reasoning, using syntactic reasoning models such as [12], which employ a
LALR type grammar and description languages [13]. Drawing from this and
Knauff’s article [14] on a neuro-cognitive theory of deductive relational reasoning
with mental models and visual images, we notice a direction in image under-
standing that can be successfully further expanded, namely providing a fully
quantifiable model with a high-degree of expressiveness for human-like reasoning.

Thus, providing a formal language (or equivalent structure) that can capture
abstract concepts, actions, and complex syllogisms about images, without necessarily
mentioning the detected, but rather the semantic of the relationships between them.

This prompted us to revert to our work in brain−computer interfacing that led us
to model human thought processes using concept algebra. The recent work per-
formed by Feldman [15], Wang [16–19], Hu [20], and Tien [21] strengthened our
assumption that the model would fit well the need to express abstract relations
between objects, as well as allow learning. This means that the model can use
previous knowledge in addition to current observations in order to make deduc-
tions, resulting in better image comprehension across different image streams.

Using concept algebra produces the basis for a framework that allows reasoning
on images, and can be further combined with epistemic logic to produce a reasoning
and communication framework that can be used by heterogeneous (mobile) sensor
agents.

2 Concept Algebra for Formal Ontology and Semantic
Manipulation

Let us assume that we are provided with an image input stream, on which
application-specific object detection and recognition have been performed, resulting
in mapping of the objects to an informal static ontology. Our goal is to provide a
denotational mathematical structure that is formal, dynamic, and general in order to
rigorously model and process knowledge, thus obtaining a formal ontology fit for
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semantic manipulation and further use for inference and machine learning.
Operational semantics for the calculus of concept algebra are formally elaborated
using a set of computational processes in real-time process algebra (RTPA), as
proposed by [19]. According to [19], we have the following definitions:

Definition 1 Denotational mathematics is a category of expressive mathematical
structures that deals with high-level mathematical entities, with hyperstructures on
HS beyond numbers on R with a series of embedded dynamic processes (functions).

Definition 2 A hyperstructure, HS, is a type of mathematical entity that is a
complex n-uple with multiple fields of attributes and constraints, as well as their
interrelations.

Wang employs the OAR (object-attribute-representation) model in order to
extend classic ontologies such as WordNet (which is purely lexical) and
ConceptNet (that adds complex concepts and higher-order concepts that compose
verbs with arguments such as events and processes) as to distinguish between
concept relations and attribute relations, thus facilitating machine learning and
causal reasoning. Thus, he defines his language knowledge base, LKBUDM (UDM
being a type suffix of RTPA).

Wang’s model heavily relies on RTPA, and views concepts as sets of IDs,
attributes, objects, internal relations, and external input and output relations,
whereas knowledge in general adds synonym and antonym relations to concepts.

In the following section, we propose an alternative to Wang’s model. We
simplify by removing the RTPA notation, producing our own definition of con-
cepts. From Wang’s model, we maintain the semantic environment Θ and the sets
of relational and compositional operators OP = ●r, ●c.

Namely, we use the compositional operators as described by Wang [17]:
inheritance, tailor, extension, substitute, composition, decomposition, aggregation,
instantiation, and specification. We maintain the same semantic, only replacing
concept representation. Thus, it remains possible to derive new concepts from
previous ones. However, our approach relational operators differ, as alternative
definitions of concepts co-exist, and translation from a syntactic representation to
any semantic representation will lead to the same abstract concept. Thus, instead of
relating synonyms, antonyms, etc., the relational operator links concrete concepts
and abstract ones; be it pure abstractions (“good”, “beautiful”) or verbs.

3 Our View of Knowledge Representation

Remark 1 A concept may represent a concrete object (table, tree), a measurable
phenomenon (wind, pressure), an abstract notion (task, gain, self), or an action
(return, take off, beacon).

Remark 2 Auditory stimulation using words results in brain activation patterns that
consist of simultaneously increased activity on a subset of the monitored brain
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locations. The set of monitored brain locations is finite, but can be arbitrarily
chosen. Potentially infinite number of concepts can be defined on a set if you
include PSDs (location and intensity, which is a real number).

Remark 3 One such brain location corresponds to a semantic dimension of the
concept described by the stimulus word. The set of all semantic dimensions B,
forms our working alphabet.

Definition 3 The definition of a concept C is the disjunction of the definitions of all its
known synonyms Si:C=S1∨ S2∨ …∨ Sn (Building =House∨Hut∨Tower∨Shed).

Remark 4 Two distinct concepts, C1 and C2 may share semantic dimensions and
one synonym may belong to one or more concepts (Ex.: “castle” may be in “house”
or “fortification”).

Definition 4 A syntactic definition SintD of a concept synonym is a conjunction of
free variables X1 … Xk, each variable Xi corresponding to a feature in the
agent-specific data model. The set of all syntactic definitions SintD is SintD.

Definition 5 A semantic definition SemD of a concept synonym is a conjunction of
free variables Y1…Ym, each variable Yj corresponding to a semantic dimension in
the abstract layer representation of the concept. The set of all semantic SemD
definitions is SemD.

Definition 6 Translation between syntactic and semantic definitions of concept
synonyms are performed by applying a bijective, invertible, and non-commutative
function tsl:SintD! SemD,where tsl(X1 … Xk) = Y1…Ym. Its inverse
tsl�1:SemD! SintD,tsl�1ðY1. . .YmÞ ¼ X1. . .Xk performs semantic-to-syntactic
translation.

Definition 7 The translation function tsl:SintD! SemD can be extended to
function Tsl:SintDn ! SemDn, Tsl having variable arity. Function Tsl allows
translating concepts, as tsl allows translating concept synonyms.

Definition 8 A basic sentence Fi is a conjunction of concepts occurring simulta-
neously at a given moment t.

Definition 9 Basic inference is obtained by applying rules over basic sentences
I ¼ F1. . .Fn, R1  R1

1. . .R
k1
1 , where R is constant according to the domain—Horn

clauses.

Definition 10 An agent is a mobile entity equipped with sensory input (denoted
SI), such as an UAV, radiosonde, ground vehicle with thermocam, etc. The set of
agents, Agents = {agent | agent = {self, resources, vocabulary, concept represen-
tation mechanism, inference mechanism, epistemic logic, learning mechanism,
querying mechanism, game theory strategies, group, trusted agents, friends, ene-
mies, task, current action, intention, gain, visible universe, invisible universe,
knowledge}}.
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Remark 5 The agent’s definition of self is a unique identifier (Self, rank) where Self
is a word over an alphabet A,A\B ¼ U, B ¼ f[big and bi is a semantic dimension,
and rank is an indicator of the agent’s position in the group hierarchy.

Remark 6 The resource set R is formed by the semantic definitions of the concepts,
denoting the resource to which weights are attached:R ¼ ðSemD(C),w)f g.
Remark 7 The vocabulary D is initially a predefined set D0 of semantic concept
definitions, which is further extended by learning or deduction. Thus, when an
agent needs to learn a new concept C, it can ask several trusted agents and select the
most frequent definition, query through a question/answer mechanism, or deduce
the definition himself from web queries and ontology. The vocabulary becomes
Di ¼ D0 [ C.

Remark 8 The sets for group G, trusted agents TA, friends Fr, and enemies E are
apriorically defined, and can be updated by learning, reasoning, or communication
with trusted sources. They consist of agent definitions as in 3.

Definition 11 An observation O is obtained by an agent by translating the sensory
input (SI), which it receives as syntactic definitions into the corresponding semantic
definitions and applying the inference rules to themF1 ¼ tslðSI1Þ. . .Fn ¼
tslðSInÞ; R1  R1

1. . .R
k1
1 . . ..

Remark 9 The knowledge K of an agent is initially aprioric K0, and further updated
by adding to it the validated inferences from observations and knowledge shared by
trusted agentsKiþ1 ¼ ki[VI[TF, where TF ¼ f[F;F 2 fTrustedAgentgg and
VI ¼ [I; I ¼ ff[Oig;KiR1  R1

1. . .R
K1
1 . . .g ^ I = True.

Remark 10 Common knowledge K is the intersection of knowledge of agents in a
given group K ¼ \Ki, where i 2 Agents.

Definition 12 The visible universe V is the sum of the agent’s current observations
via sensory input corroborated with the inferences, obtained by applying rules on
the observations and its aprioric knowledge restricted to the current setting
V = f[Oi g[I; I ¼ ff[Oi g; Kset;R1  R1

1. . .R
K1
1 . . .gx, where Kset�K ðKset ¼

K\f[Oig.
Definition 13 The invisible universe Inv represents everything that cannot be
inferred from knowledge K and current observations Oi.

4 Reasoning Mechanism

Thus, let us assume an agent that has acquired an image input stream. First, the
agent will produce a syntactic representation of the objects it detects, which it
translates to the semantic definition over the space of semantic dimensions (Fig. 1).
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Once detected, sentences are being formed by applying rules to sequences of
observations and extracting the abstract concepts. For instance, if in one image a
tree is standing and whereas in the following it is down, the inference rule applied
should introduce the abstract concept “fell” in the sentence, which is related through
an relational operator to the concept “tree”. Each agent will have a set of abstract
concepts to operate with, as described in the previous section (Fig. 2).

Cascading application of inference rules should eventually describe the action
that occurs in the image stream. The inference rules are applied recursively on the
basic sentence and agent’s knowledge; the deductions in each step being added to
the knowledge, until the targeted level of deduction is reached. In case of a mul-
tiagent system, the inference rules will also apply to knowledge from trusted agents.
All new sentences are added to the agents’ knowledge, which it can share with other
agents. In other words, if another agent does not possess the semantic definition of
the “tree”, it can obtain it and the related abstract concepts from another agent,
along with sample syntactic definitions. Learning means adding or replacing the
order of the semantic definitions in the concept definitions. The most common, thus
most likely, definition will be first. Rules can also be shared, since they are at the
same abstraction level.

Fig. 1 Sensory input is expressed syntactically

Fig. 2 Agents will process visual input and produce agent-specific syntactic representations of the
detected objects. These are further translated to algebraic semantic representations
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Thus, we have so far outlined a mechanism for inference on sensory input that
allows action understanding and is representation-independent. It becomes possible
for agents that have different input, in terms of dimensionality and significance, to
learn concepts from one another and to corroborate their knowledge (Fig. 3).

Also, having formal representations for abstract concepts (such as gain, inten-
tion, trust, etc.) makes way for communication and cooperation in groups of agents,
with the possibility to negotiate group strategies that are adequate in the given
context.

The agents complete their vision of the visible universe by communicating, and
use an epistemic logic on top of the algebraic formalism. Strategies are decided via
a game-theoretic approach, whereas queries for learning new information are made
by extending concept algebra with query algebra. Each agent is aware of both self
and group interests, and will act according to what the situation requires (Figs. 4
and 5).

Fig. 3 Basic sentence: object identification and first-level abstractions and verb

Fig. 4 Inference loop with multiagent knowledge
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Fig. 5 Requesting semantic definition of unknown concept from another agent using query
algebra

Fig. 6 Group decisions with human interaction
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Finally, as the formalism is compatible with natural language makes it possible
to send voice queries or commands simultaneously to different members of heter-
ogeneous mobile agent groups (as each agent is aware of its identity and role) (see
Fig. 6).

5 Conclusions and Future Work

In this paper, we have outlined the building blocks for a framework based on
concept algebra that can provide an abstraction layer for reasoning on images from
different sources, regardless of specific data representations. Our approach to
knowledge representation makes way for extensions to various logics, and for
combining with query algebra for rigorously formalized searches in the input. The
result is the possibility for agents with heterogenous knowledge and representations
to communicate and learn, develop strategies, and define intentions within a mul-
tiagent group, and can interface with natural language. Future work involves the
concrete definition of the inference rules and the deduction of abstract concepts and
of actions. Also, implementation is required in order to assess the practical effi-
ciency of the proposed reasoning mechanism. Finally, once the formalism is
completely implemented and a high-level reasoning mechanism is thoroughly
defined, extending the concept algebra with epistemic logic and implementing game
theory decision-making strategies, would allow for intelligent sensing agents that
can cooperate.
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