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Abstract. Sliding mode control provides insensitivity to parameter variations 
and complete rejection of disturbances. However, this property is only valid in 
the sliding phase. Sliding surface design can be used to improve controller per-
formance by minimizing or eliminating the time to reach the sliding phase. In 
this study, we review and classify the methods available in the literature for 
sliding surface design focusing on single-input systems. 
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1 Introduction 

The state-space trajectory of a sliding mode control system can be divided into two 
parts representing two different modes of system operation. The trajectories start from 
a given initial condition off the sliding surface and tend towards the sliding surface. 
The part of the trajectory before reaching the sliding surface is known as the reaching 
or hitting mode and its duration is called the reaching time. When the trajectories 
converge to the sliding surface, the sliding mode starts. In general, the design of a 
sliding mode controller (SMC) involves the design of a sliding surface that represents 
desired stable dynamics and a control law that guarantees the reaching mode and slid-
ing mode. The system trajectories are sensitive to parameter variations and disturb-
ances during the reaching mode of the trajectory but are insensitive in sliding mode. 

The design problem in systems with discontinuous control laws can usually be  
reduced to the selection of the parameters of the sliding surfaces that completely de-
termine the performance of the control system [1]. Thus, there are various sliding 
surface design strategies in the literature to improve SMC performance by minimizing 
or even eliminating the reaching mode [2, 3]. This study surveys and classifies con-
tinuous-time SMC studies based on their different sliding surface design methods. 
The terminology used in the SMC literature can sometimes be confusing making it 
hard to understand, compare and classify design approaches. For instance, a sliding 
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surface with a linear combination of state variables can be called a nonlinear sliding 
surface as the dynamics of the sliding phase may become a nonlinear trajectory as a 
result of other parameters such as time-varying ones. However time-varying parame-
ters do not introduce nonlinearities in terms of state variables. We therefore classify 
sliding surface design methods according to properties such as dimension, linearity, 
time dependence, and the nature of their moving algorithm. The first classification is 
arranged based on the number of sliding surfaces to be designed which in turn de-
pends on the number of input variables. For single-input systems, the sliding surface 
is scalar while for multi-input systems it is a vector. Another property is the time de-
pendence of the sliding surface. If the parameters of the sliding surface during the 
operation of the system are stationary with respect to time, it is called a constant slid-
ing surface. In conventional SMC, the sliding surface is naturally constant. However, 
a time-varying function can also be used for defining a sliding surface to obtain a 
time-varying sliding surface. If the changes in the parameters of the time-varying 
sliding surface are all functions of the continuous-time variable t, they are called con-
tinuously-moving sliding surfaces. If any parameter change is made at discrete time 
instants, the sliding surface is a discretely-moving sliding surface. If the sliding sur-
face is defined by a linear function of the state variables, the sliding surface is linear; 
otherwise, it is nonlinear. 

The remainder of this chapter is organized as follows. In Section 2, the notation 
and structure of the conventional SMC are explained. Then, in Section 3, sliding sur-
face design methods are presented based on the above classification. Section 4 pro-
vides conclusions and suggestions for future work. 

2 Conventional Continuous-Time Sliding Mode Control 

A single-input non-autonomous dynamic open-loop system of order n can be given as 

),()().,(),()()( tdtutbtftx n xxx ++=                         (1) 

where ( 1)( ) [ ( ) ( ) ... ( )]n Tt x t x t x t−=x  is the state vector with ( 1) ( )nx t−  denoting 

the (n-1)th derivative of x(t) with respect to time, u(t) is the input signal, d(x,t) is a 
time-dependent disturbance with known upper bound and f (x,t) and b(x,t) are func-
tions determining the system characteristics. For single-input systems, the commonly 
used sliding surface for the tracking problem can be defined as 

( ) ( )s t=e ce                                  (2) 

where c=[ cn-1 cn-2 ... c1 1]∈ xn1ℜ  is a vector with strictly positive real elements that 

determine the coefficients of the sliding surface, 1 )( nxt ℜ∈e  is the tracking error 

defined as ( 1)
d( ) ( ) ( ) [ ( ) ( ) ... ( )]ˆ n Tt t t e t e t e t−= − =e x x where xd(t) is the desired trajecto-

ry. For second order systems, (2) can be written as 

)()()( 1 tectes +=e                                    (3) 
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which gives a linear function of the error with slope c1. A homogeneous differential 
equation that has a unique solution is obtained by setting s(e)=0. Thus, the error will 
asymptotically reach zero with an appropriate control law that keeps the trajectory on 
the sliding surface. Since it is necessary and sufficient to differentiate (2) or (3) once 
for the input u(t) to appear, this is a first order stabilization problem based on s(e). 
Lyapunov's direct method can be used to obtain the control law that keeps s(e) at zero 
and a candidate Lyapunov function is 

)(
2

1
)( 2 essV =

                             
 (4) 

with V(0)=0, V(s)>0 for ∀s(e)>0. A sufficient condition for the stability of the system 
is 
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where η is a strictly positive real constant that determines the convergence velocity of 
the trajectory to the sliding surface [4]. The inequality (5) ensures that the distance to 
the sliding surface decreases along all trajectories and consequently, the system is 
stable. Therefore, (5) is called the reaching condition for the sliding surface. By sub-
stituting (3) into (5) and omitting the arguments of the dependent variables one ob-
tains 

secxdubfs d η−≤+−++ )..( 1                      (6) 

A control input satisfying the reaching condition can be chosen as 

1
1

ˆ( ) ( ( , ) ( ) ( )) sign( ( )) ( ) ( )ˆd eq disu t b f t x t c e t k s u t u t−= − − + − = +x e
        

 (7) 

where f̂  is the estimated state equation, k is the discontinuous control gain that is a 

strictly positive real constant with a lower bound dependent on the estimated system 
parameters and bounded external disturbances. The function sign(.) denotes the 
signum function defined as follows 
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Note that at s=0, (8) is undefined. In SMC design, this definition is adequate since 
(8) provides opposite signs in the neighbourhood of s=0, that is 

0lim
0

>
−→
s

s
 and 0lim

0
<

+→
s

s                       
 (9) 

The control input u(t) in (7) consists of two parts. The first part, ueq is a continuous 
term known as the equivalent control. It is based on the estimated system parameters 
and it compensates the estimated undesirable dynamics of the system. The second part 
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with the signum function is the discontinuous control law, udis that requires infinite 
switching on the part of the control signal and actuator at the intersection of the error 
state trajectory and the sliding surface. Thus, the trajectory is forced to always move 
towards the sliding surface [1]. 

3 Sliding Surface Design Methods 

Designing the sliding surface is a powerful method to improve system performance. It 
is also possible to shorten the reaching time and thus lessen the effect of disturbances 
by increasing the amplitude of the discontinuous control gain k in (7). This reduces 
the reaching time by increasing the amplitude of the control signal during the reaching 
mode. However, the gain increase has negative effects such as high sensitivity to 
unmodeled system dynamics, undesired high amplitude chattering, and actuator satu-
ration. Therefore, increasing the discontinuous control gain is generally undesirable 
for physical systems and is not a viable alternative to sliding surface design. 

A good trade-off between reaching time and speed of response is obtained by 
changing the parameters of the sliding surface. We discuss surface design methodolo-
gies for selecting these parameters next. 

3.1 Linear Constant Sliding Surface 

Conventional sliding mode control (SMC) has linear constant sliding surfaces and the 
sliding surface parameters directly determine the system performance [1]. For exam-
ple, for second order systems in the form of single-input non-autonomous dynamic 
open-loop system (1) simulations for xtf =),(x , 1=),( tb x  and 0=),( td x  give 

underdamped, critically damped or overdamped system responses with different val-
ues of sliding surface parameter c1 as shown in Figure 1. 

 

 

Fig. 1. Error state-space responses obtained with different c1 parameters 
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increases. Thus, the same feedback controllers may either result in a stable system or 
may lead to instability depending on the switching rule applied. 

An upper bound of c1 for physical systems is determined by each of three main fac-
tors: the frequency of the lowest unmodeled structural resonant mode, neglected time 
delays, and the sampling rate. The first two bounds are directly related to the physical 
system characteristics but the sampling rate bound depends on the available technolo-
gy and the performance of the control algorithm. The upper bound on the sliding sur-
face parameter c1 is chosen as the minimum of these three bounds. Smaller c1 values 
give longer tracking times. Therefore, the lower limit of c1 directly depends on the 
maximum allowable tracking time. To achieve the desirable closed loop performance, 
the switching rule must be appropriately chosen considering the upper and lower lim-
its. The determination of the parameters of the constant scalar sliding surface is an 
important step in the sliding mode control strategy. Generally, these parameters are 
selected either by empirical rules or by trial and error. However, optimization meth-
ods can be used to obtain the constant parameters and improve the system perfor-
mance [5]. 

For the conventional SMC introduced in Section 2, the sliding surface (2) naturally 
results in a PD sliding surface. An integral action can also be included to obtain PID 
control structures. The integral action is typically used with a boundary layer SMC 
because the integral term can eliminate the steady-state error resulting from the 
boundary layer. Slotine and Spong [6] added an integral term to the sliding surface as 
follows 

∫++=
t

Ipd dekekeks
0

)()( ττe

                   
 (10) 

where kd must be non-zero for a causal input-output relation [7]. Stepanenko et al. [8] 
proposed a sliding surface where the integral action is active only when the system 
enters a predetermined region to avoid overshoot as a result of large initial errors.  

Integral action is not only used with boundary layer SMC. For instance, in [9, 10] 
integral action is used to eliminate the reaching time. Without using the conventional 
equivalent control term and analyzing the global asymptotic stability for the robot 
arm, Jafarov et al. [11] improved the simulation performance given in [8]. The effec-
tiveness of integral sliding surfaces has been demonstrated with various experimental 
set-ups such as DC motor control [12, 13]. 

3.2 Linear Discretely-Moving Sliding Surface  

Conventional SMC has reaching and sliding modes, and if the initial state is far from 
the sliding surface, the system may have an undesirable and unpredictable transient 
response. Hence, we need to minimize the reaching time by decreasing the distance 
between the sliding surface and the initial state. This is achieved by decreasing the 
magnitudes of the sliding surface parameter vector c in (2). However, large parame-
ters are required to reduce the steady state error. Time-varying linear sliding surfaces 
provide a compromise between reaching time and steady-state error. Although they 
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naturally have a linear structure in state space, their variation with time brings a non-
linear trajectory in sliding mode [14].  

An important study about linear and time-varying sliding surfaces is the rotation 
and shifting schemes of Choi et al. [15]. They initially choose the sliding surface pa-
rameters to pass through arbitrary initial conditions then move the sliding surface 
towards a predetermined final sliding surface. This reduces the time during which the 
disturbances affect the system and reduces sensitivity to parameter variations and 
external disturbances. For trajectory tracking with second order systems, the sliding 
surface is defined in [15] as 

0)()()()(),(ˆ 1 =−+= ttetctets αe                        (11) 

In stable regions, α  is chosen zero and only c1> 0 is adjusted to obtain the desired 
dynamics. On the other hand, in unstable regions, c1 is constant as in conventional 
SMC and α  is adjusted to provide the shifting scheme. Thus, no reaching mode 
exists in stable regions and the system is insensitive to uncertainties including param-
eter variations and external disturbance. The SMC without reaching mode is called 
global SMC [16] or total SMC [10]. To place the surface near the current state, the 
sliding surface is rotated at discrete steps. The newly calculated sliding surface is 
fixed for a determined time instance in discretely-moving algorithms. This time peri-
od is known as the dwelling time and it is another controller parameter that must be 
adjusted to preserve robustness, subject to hardware capabilities. When the initial 
conditions are in the unstable regions, if the rotation process is applied, c1(t0) becomes 
negative and e(t)=e(t0)exp(-c1(t0)t) becomes unbounded. In this case, the trajectory 
moves away from the origin until the sliding surface enters the stable region. By ap-
plying the rotation scheme in unstable regions the system can also be taken to the 
equilibrium state. Nevertheless, rotation in the unstable region increases the reaching 
time. In [15], the shifting scheme was proposed for unstable regions to avoid this 
situation. The rotation and shifting schemes in [15] were extended and implemented 
for second order nonlinear systems with both disturbances and parameter variations 
[17].  

The moving algorithms can be easily determined with respect to the stable and un-
stable regions for second order systems and the algorithm works until a predefined 
final sliding surface is reached. However, the determination of the rotation and shift-
ing regions is more complex for higher order systems. Roy and Olgac [18] arranged 
(11) for nth order systems and moved the sliding surface represented by the initial 
conditions and the final sliding surface parameters. Robust stability for parameters in 
the bounded ranges of the rotation scheme can be tested using Kharitinov’s theorem 
[19]. The rotation scheme is used if the system is robustly stable for this range. Oth-
erwise, the shifting scheme is used. The experimental results of discretly shifting and 
rotating schemes are also demonstrated for single-phase PWM inverters [20]. 

In another study for higher order systems, Park and Choi [21] assumed that all the 
desired eigenvalues diλ of the sliding surface ),(ˆ ts e  are equal to )(tdλ  to simplify 

the difficulties arising for higher order systems. The rotation and shifting schemes are 
obtained by adjusting )(tdλ  and ).(tα In discretely-moving sliding surfaces, as the 
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sliding surface is taken to be constant during the dwelling time, the derivatives of the 
sliding surface parameters c in (2) is not necessary for the calculation of the control 
law. Therefore, the control law calculated for conventional SMC is used. This is an 
advantage of discretely-moving sliding surfaces.  

3.3 Linear Continuously-Moving Sliding Surface 

In discretely-moving sliding surfaces, the sliding surface is fixed during the dwelling 
time but has a discontinuity at the end of each dwelling period. The discontinuity 
causes sensitivity to disturbances. Slotine [22] introduced the continuously-moving 
sliding surface to eliminate this. He used the time derivatives of the sliding surface 
parameter to calculate the control input u(t). Salamci et al. [23] approximated the 
nonlinear system by a linear time-varying system and designed linear continuously-
moving sliding surfaces to minimize a specified optimization criterion.  

Bartoszewicz [24] also considered the dwelling time in discretely-moving sliding 
surfaces for second order systems and defined the sliding surface as a function of 
time. The sliding surface parameter c1(t) and shifting parameter )(tα  in (11) are writ-

ten as first degree polynomials of time. The rotation and shifting schemes are then 
obtained by choosing the polynomial parameters. When c1(t) is varied at a constant 
value, the amount of rotation differs with the current value of c1(t). Therefore, Tokat 
[25] directly used angular information to define the rotation scheme. The continuous-
ly-moving sliding surface for second order systems is obtained in [26] as a shifting 
scheme using s(e) in (3) and a quadratic polynomial as follows 
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where c1 in s(e) and tb> 0, a1, a2, a3 and are constant design parameters. When a1=0 as 
in [24], the time-dependent shifting in stable regions is directly proportional to time. 
Thus, (12) is called a constant-velocity sliding surface. Otherwise, the sliding surface 
is shifted to the conventional sliding surface as a quadratic function of time and the 
speed of convergence to the conventional sliding surface increases as time passes. In 
the quadratic case, (12) is called a constant-acceleration sliding surface. The state can 
be initially set on the sliding surface by adjusting the design parameters. The new idea 
in (12) is continuously shifting the sliding surface until time tb. The idea is also ap-
plied to third order systems considering various input and state constraints [3]. Con-
tinuously shifting was also accomplished in [27] using (3) as  

1 1 0( ) ( 1) ,
ˆ( , )

( ) ,
bf d

b

t ts c t t x
s t

t ts

≤ ≤− −⎧
= ⎨ >⎩

e
e

e                
 (13) 

where it is assumed that the desired states are fixed and the initial conditions are 
(x1(0),x2(0))=(0,0). The sliding surface (13) will initially be zero and the state will be 
on the sliding surface. When t reaches tb, the sliding surface is fixed as in the conven-
tional sliding surface. In [28], sliding surfaces was proposed for second order systems 
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obtained by inserting a time-dependent function in the conventional sliding surface of 
(3) as 

1ˆ( , ) ( ) ( ( ) ( ))s t s v t c v t= − +e e                           (14) 

where v(t) is a second order differentiable, time-dependent, continuous function de-
fined in the range [ )+∞,0 . The sliding surface (14) starts at the initial conditions with  

3 2
b0 1 2 3

b
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= ⎨ >⎩                  

 (15) 

Time-dependent variables for shifting and rotation schemes are frequently used to 
obtain continuously-moving sliding surfaces and generally provide a global SMC 
[29]. To eliminate the reaching time for nth order single-input systems in controllable 
canonical forms, an error function as )()()(ˆ ttete γ−=  was used in [30] where )(tγ  is 

a time-dependent function that initially places the trajectories on the sliding surface. 
To preserve the sliding dynamics of the original system, )(tγ  must vanish as the 

motion of the system evolves in time. Therefore, it is chosen in an exponential form 
and the new sliding surface is defined as 

( 1)ˆˆ ˆ ˆ ˆ( , ) ( ) ( ) ( )
T

ns t e t e t e t−⎡ ⎤= ⎣ ⎦e ce c
                     

 (16) 

As a result of the linear time-dependent structure of )(ˆ te , (16) is a continuously-

moving linear sliding surface. Using )(ˆ te , sliding surfaces for multi-input systems 

were also developed [31]. Adding an exponential time-dependent term to obtain a 
continuously time-varying sliding surface provides better performance and improves 
robustness with a simple engineering design [16, 32]. Tokat et al. [33] proposed a 
continuously time-varying linear sliding surface in a new (s-p) plane with the coordi-
nates defined as the original sliding surface s=0 in the ( )ee −  plane and 

1( ) ( ) ( ) 0p e t c e t−= − =e                           (17) 

which is perpendicular to s(e)=0 in (3). A linear sliding surface is defined in the (s-p) 
plane as 

ˆ( , ) ( ) ( ). ( )ss t s k t p= −e e e                         (18) 

where ks(t) determines the position of the proposed sliding surface. A rotating sliding 
surface is obtained by continuously adjusting the parameter ks. One way of generating 
ks(t) is using a time dependent function with simple first-order derivatives. For exam-
ple, ks(t) for stable regions can be chosen as the shifted sigmoid function  

1
max min min( ) ( )(1 )mt a

s s s sk t k k e k+ −= − + +                (19) 
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where m and a are parameters that determine the shape of the function. The surface 
modified by adjusting the parameter ks(t) within a predefined interval [33]. 

Integrating fuzzy logic control and sliding mode control to achieve stability and 
meet desired performance criteria is an active area of research [34]. These studies can 
be classified in two groups. The first group use conventional sliding mode control 
strategies and employ fuzzy models to simplify or to improve the control mechanism. 
The controllers obtained using these approaches are known as sliding mode fuzzy 
controller (SMFC). The second group, known as fuzzy sliding mode controller 
(FSMC) obtains an approximate input-output relation for a conventional SMC and 
realizes it with a single input fuzzy logic controller (FLC). With these definitions in 
mind, sliding surface design using fuzzy theory can be classified as SMFC. For in-
stance, Ha et al. [35] proposed a fuzzy logic tuning algorithm for second order sys-
tems in which the FLC generates the rotation for stable regions and the shifting for 
unstable regions. However, only the output error e1 is used in the antecedents of the 
fuzzy rules and, consequently, rotation is only permitted in a slope-increasing direc-
tion. Komurcugil [36] used a one-input FLC structure for continuous rotation and 
implemented the design for a single-phase UPS inverter. Lee et al. [14] proposed a 
linear continuously time-varying sliding surface as in (11) with c1(t)=0 for unstable 
regions. As this is parallel to the e(t)=0 plane, the sliding surface is shifted until 

0)( =tα . A Takagi-Sugeno (TS) type fuzzy model is then designed to generate c1(t) 

and )(tα for the regulation of the time-varying sliding surface. Also, a TS type fuzzy 

model was utilized in [37] for directly obtaining the sliding surface with rule conse-
quents )()( tectes ii +=  (i=1,2,...,r), where r is the number of rules, si, ci are the slid-

ing surface and the sliding surface slope for the ith rule, respectively. For higher order 
systems, a continuously-moving linear sliding surface was proposed in [21] designing 
a Mamdani-type fuzzy moving algorithm based on the sliding surface design in [18]. 
In this algorithm, the inputs are the distance of the current state to the sliding surface 
and the discontinuous control gain and the output is the change in the sliding surface. 
The rules result in larger changes in the sliding surface when either the distances of 
the current state to the sliding surface or the discontinuous control gain increases [21]. 

Artificial neural networks have also been used for continuously time-varying slid-
ing surface design. For instance, a radial basis function neural network was proposed 
in [38] to adjust the sliding surface and controller parameters. The delayed control 
input and system output are the inputs and the adaptive parameters are obtained on-
line using the artificial neural network outputs. 

3.4 Constant Nonlinear Sliding Surface 

For large tracking errors, linear sliding surface design methods require a large control 
input to keep the system states on the sliding surface [39]. This is because the magni-
tude of the control signal is usually directly proportional to the distance between the 
states and reference states. Another problem with a linear sliding surface is that it 
replaces nonlinear dynamics with linear dynamics that may not fit the global dynam-
ics of the controlled system. 
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These disadvantages can be avoided by using a nonlinear sliding surface that offers 
a wider variety of design alternatives than their linear counterparts [40]. Thus, a non-
linear sliding surface can provide better system performance if the nonlinearity is 
chosen judiciously. SMC with nonlinear sliding surfaces is called nonlinear SMC. 
Sliding mode control is similar to bang-bang control [41]; they both have a relay-like 
structure. With this similarity in mind, for a nth order single-input linear time-invariant 
system  

ubxAx +=                                 (20) 

the Hamiltonian function to obtain the time-optimal control strategy is  

)(1 uh T bxAq ++=                          (21) 

where  is a co-state vector. Finally, for A= [0 1;0 0], b=[b1 0]T, and for the 

minimum time problem with the constraint |u(t)| , the solution of the state equa-
tions are obtained with  as [41] 
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2
2 5

1
1

2
2 6

1

1
, 1

2

1
, 1

2

x c u
b

x

x c u
b

⎧ + = +⎪⎪= ⎨
⎪− + = −
⎪⎩                              

 (23) 

Therefore, taking c5=0, c6=0 and defining 
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Fig. 2. The sliding surface obtained by using time-optimal control strategy 
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Thus, the control signal can be written in terms of (24) as u(t)=-sign(s). From Fig-
ure 2, it is seen that (24) has a parabolic structure obtained by combining optimal 
control and sliding mode control. 

The first such surface as in Figure 2 was also proposed by McDonald [42] who 
used a linear combination of the error in the controlled variable and its square as the 
sliding surface function. In [39], a parabolic sliding surface was used in nonlinear 
SMC design and (24) was modified in [43] by scaling x1 with a constant. All these 
efforts are for improving the robustness without increasing the magnitude of the con-
trol input. 

Nonlinear sliding surfaces also increase the application areas of SMC. For in-
stance, a nonlinear sliding surface was used in [44] for power systems. Cerruto et al. 
[45] defined the sliding trajectory for the position and speed regulator problem of 
electrical servo drives. The motor is stationary at t=t0, accelerates until t=t1, then 
moves with a constant speed between t1> t >t2. Finally, it decelerates with a maximum 
acceleration until the desired reference value. This scheme is appropriate for most 
servo applications [46]. The sliding surface proposed in [45] is given by 
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 (25) 

where ai, and ti (i=1,2,3) are constant design parameters subject to physical system 
constraints. When the current state is close to the origin (t >t3), a linear sliding surface 

is used in (25) to provide smooth settling behaviour. Some sytem dynamics consti-
tutes a nonlinear underactuated system and can be represented by linear system with 
bounded and unmatched uncertainty. Thus, designing a nonlinear sliding surface re-
flecting the nonlinear dynamics of the system provides a novel sliding surface with 
simple and implementable control law [47]. Also, Takahashi et al [48] used SMC to 
obtain a special sinusoidal voltage source. An ideal sinusoidal wave has an elliptical 
trajectory in the current-voltage phase plane. The state variables are taken as capacitor 
voltage cvx =1  and capacitor current cix =2 . The nonlinear constant sliding surface 

is defined as 

01)(
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2
1 =−+=
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x

V

x
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 (26) 

where s(x) has negative values inside the ellipsoid and positive values outside it. 
Thus, SMC provides robustness to variations in magnitude and frequency and better 
tracking of a sinusoidal reference for second order systems [48]. 

For a nonlinear sliding surface, different ideas can be combined in order to im-
prove the performance. For instance Kelly [49], used a nonlinear function of the state 
variables in the integral term of an integral sliding surface to obtain global asymptotic 
stability and better performance. Su and Stepanenko [40] defined the generalized 
sliding surface equation as 
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( )( , , , ) , , ,d d d dt t= −s x x x x v x x x
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for an nth order systems with especially n inputs where [ ] 1
21 ... nx

nvvv ℜ∈=v  are 

design functions. The generalized sliding surface (27) includes sliding surface equa-
tions in the robot manipulator literature as each degree of freedom of a robot manipu-
lator is powered with independent torques [40]. For example, for n=2, v1=v2 is defined 
as 
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and to visualize the nonlinear constant sliding surface, (28) is obtained in Figure 3 for 
a1=16, a2=4, a3=0.2, d=0.3125. The similarity between the sliding surfaces given in 
Figure 3 and the parabolic sliding surface of Figure 2 obtained using optimal control 
is notable. Lee [50] proposed a nonlinear sliding surface with cubic polynomials and 
improved the system performance with respect to conventional linear SMC. 
 

 

Fig. 3. Nonlinear constant sliding surface obtained with (28) 

Higher order SMCs are used to retain the property of robustness and to eliminate 
chattering [51]. However this advantage is obtained by tuning the gain parameter 
which must be sufficiently high. A nonlinear sliding surface based higher order SMC 
is applied for controlling the position of a servomotor [52]. Comparisons with the 
higher order SMC using a linear switching surface shows a reduction of chattering as 
in the linear case with superior transient performance. 
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Richter [53] used polytrophic process dynamics to define a sliding surface. For 
ideal gases with pressure x1 and density x2 a polytrophic process is one in which the 
state of the substance is transferred from one point to another following the law 

axx n =21                                   (29) 

where ℜ∈n  is a polytrophic exponent and ℜ∈a  is a constant. The system that 
follows the thermodynamic path is defined by the sliding surface 

axxs n −= 21)(x                              (30) 

In general, the tracking error is large at the early phase of the transient period and 
decreases as the response approaches the steady state. Exploiting this fact, a nonlinear 
sliding surface was proposed in [54] using a state-dependent coefficient for the con-
ventional sliding surface (3) as 

1 1 2( ) ( | |)c e k k e= −                            (31) 

where ε+= |)max(|2 ek , 0>ε  and k1>0. Initially, |)max(||| ee ≈ and hence 

1 1c k ε≈ . Near the desired states, the error is approximately zero and 1 1 2c k k≈ . Thus, 

the sliding surface changes as a function of the tracking error in continuous-time.  
Another method in sliding surface design is inserting the control input term u(t) in 

the sliding surface definition to improve performance. Sliding surfaces that depend on 
the states as well as the control input are called dynamic sliding surfaces and the asso-
ciated SMCs are known as dynamic SMC [55]. In general, this makes the control in-
put a nonlinear function of the states and results in nonlinear constant sliding surfaces. 

Fractional order systems, in the context of SMC design, are used either to improve 
the control performance or to apply SMC to fractional order systems [56, 57]. A hy-
brid system was proposed in [58] that combines the advantages of fractional control 
and sliding mode control. The sliding surface is first defined for nth order single-input 
systems as 

1 1
1 1( ) ... n

n n ns c e c D e c D e D eα α α+ + −
− −= + + + +e                  (32) 

where ),...,2,1(0 nici =>  are sliding surface parameters, ααα dtdD =  with 

ℜ∈α  is the fractional order differintegration operator [58]. Then  and  
fractional order sliding surfaces are obtained from the proposed definition (32). Tang 
et al. [59] used a fractional order  sliding surface for ABS to regulate the slip to 
a desired value. 

In all linear and most nonlinear sliding surface design methods, asymptotic con-
vergence is inevitable and error convergence to zero is achieved in infinite time. Us-
ing the concept of fractional order systems, Zak [60] proposed the terminal attractor 
concept to improve the stability characteristics of dynamic systems. If the Lipschitz 
condition is not satisfied at an equilibrium point, this equilibrium becomes a terminal 
attractor [61]. A function f (x) satisfies the Lipschitz condition at x=0 if  
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lbfhf ≤− )0()(                             (33) 

for all ε<l , where b is independent of l. For example, given the dynamics 
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(x1, 1x )=(0,0) is an equilibrium point. The Lipcshitz condition (33) is not satisfied 

and therefore the equilibrium is a terminal attractor. The solution of (34) is 
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The solution is obtained by integrating from zero to any time instant t. If the inte-
gral is solved until time t when the equilibrium point is reached, it can be seen that for 
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x1(ts)=0 is obtained and that the equilibrium point is approached in finite time [61]. 
Similarly, it can be shown that 1x  also approaches zero in finite time. The terminal 

SMC was first proposed for second order nonlinear dynamic systems in controllable 
canonical form for which the system dynamics in sliding mode are determined with 
(34). Thus, the terminal sliding surface is defined as 

1

1

112)( b

a

xβxs +=x                                   (37) 

where 1β >0 is positive real, b1 and a1 are odd integer constant design parameters 

with b1>a1 [62]. The sliding mode control law is chosen to provide s=0 in finite time, 
namely providing a stable sliding surface. The nonlinear sliding surface thus obtained 
is known as a terminal sliding surface and the control structure is known as terminal 
SMC. In terminal SMC, while the sliding surface reaches the sliding mode in finite 
time as in conventional SMC, the tracking error also converges to zero in finite time 
unlike conventional SMC. Later, the terminal sliding surface was considered in [63] 
for single-input nth order linear systems in controllable canonical form. For single-
input systems, the (n-1)th order sliding surface is given as  

1

1

212)( −

−

−−− += n

n

b

a

nnn hβhs x                                  (38) 

where hn-2 function is calculated in an hierarchical structure as  
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where 0>iβ  are positive real numbers and bi>ai are odd integer design parameters. 

If a terminal SMC is designed such that 0<ss , the terminal sliding variables hn-1,…, 
h1 in (39) converge to zero in finite time sequentially and the system states reach the 
origin in finite time [64]. This finite time is equal to the sum of the reaching times of 
all the sliding surface variables in (38) and (39) calculated separately by the formula 
in (36) [63]. 

Terminal SMC improves the system performance and reaches the equilibrium point 
in finite time rather than asymptotically. However, the system may not be robust with 
respect to modeling uncertainties. Because of the hierarchical process steps in (39), 
when the initial conditions are not determined carefully, singularities may occur. To 
eliminate this problem, a zero value is avoided for hi (i=0,1,..., j-1). The singularity 
problem for multi-input linear systems with uncertainties was investigated in [65]. 
The terminal SMC for nonlinear uncertain systems was examined in [66]. To remove 
chattering and attenuate disturbances, Yu et al [67] proposed new forms of terminal 
SMC with global finite-time stability and analyzed some of their properties through 
application to the control of robotic manipulators. To completely remove disturb-
ances, disturbance observer based terminal SMC stuructures are also proposed  
[68, 69]. When the state is away from the equilibrium point, namely x1>1, the 1 1/

1
a bx  

term in the sliding surface equation (37) may not provide better system performance. 
The following nonlinear sliding surface eliminates this problem for second order sys-
tems in controllable canonical form 

2

2

1

1

12112)( b

a
b

a

xβxβxs ++=x                             (40) 

where 21, ββ >0 are real, b1>a1 and a2>b2 are odd integer constant design parameters 

[70]. For x1 values near zero, the approximate system dynamics become 
11

111
baxβx −= with finite-time convergence similar to (37). When x1 values are far 

from zero, the system dynamics become 2 2
1 2 1 ,a bx β x= − which has better conver-

gence rate than conventional SMC with constant linear sliding surface. SMC with the 
nonlinear sliding surface (40) is called fast terminal SMC [70]. Both a terminal and a 
fast terminal sliding surface are shown in Figure 4 for parameters a1=3, b1=5, a2=13, 
b2=5, . The figure shows that for regions away from the equilibrium point 

the fast terminal sliding surface and thus the system states are in a faster control re-
gion. As the system converges to the equilibrium point fast terminal and terminal 

sliding surfaces become similar. For negative x values, the fractional power in bax  

terms may lead to .ℜ∉bax  This is avoided in the literature by some assumptions or 

by using extra control effort. Aghababa [71], directly proposed a nonsingular terminal 
SMC to avoid this problem. 

121 == ββ
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Fig. 4. Terminal and fast terminal sliding surfaces 

The hierarchical structure in (39) can also be used for the control of single-input 
higher order nonlinear systems by rearranging it for sliding surface (40) [72]. With 
the help of terminal and fast terminal control structures, the error converges to zero in 
finite time by using constant and nonlinear sliding surfaces. 

3.5 Nonlinear Discretely-Moving Sliding Surface 

As surveyed in Section 3.2 and 3.3, linear sliding surfaces combined with moving 
algorithms result in nonlinear system trajectory. Hence, the moving schemes given for 
linear sliding surfaces can be also applied to nonlinear sliding surface design. Clearly, 
a nonlinear system trajectory can already be obtained when a nonlinear constant slid-
ing surface is used. However, defining the whole trajectory with a nonlinear function 
may result in a highly nonlinear sliding surface and control input. Therefore, moving 
algorithms for nonlinear sliding surfaces can lessen or shorten the reaching mode by 
using relatively simple nonlinear functions in place of a constant nonlinear sliding 
surface.  

Li et al. [73] considered the regulator problem for single-input second order sys-
tems and define the sliding surface for the single-input scalar case of (28). In particu-
lar, to obtain a nonlinear discretely-moving sliding surface, v1(e) was defined in [73] 
as a nonlinear function of the error and then obtain the nonlinear sliding surface as 

)tanh()(),(ˆ 1ectwets p+=e
                           

 (41) 

where c1 is the sliding surface slope of the conventional linear sliding surface and wp 
is a design parameter. 

Using the delta-neighbourhood approach presented by Choi et al. in [15], (41) is 
designed as a discretely-moving nonlinear sliding surface where the parameter wp is 
updated recursively. The discretely-moving nonlinear sliding surface obtained for 
c1=2 and different values of wp is given in Figure 5. The parameter wp is adjusted until 
the last specified sliding surface value is reached [73]. 
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Fig. 5. Discretely-moving nonlinear sliding surfaces obtained by (41) 

3.6 Nonlinear Continuously-Moving Sliding Surface 

Continuously-moving sliding surfaces were developed to avoid the dwelling time of 
discretely-moving sliding surfaces. A sliding surface was defined in [74] using (3) as 

( )( )01010 exp)()(()(),(ˆ ttatectests −−+−= ee               (42) 

where a1>0 is a design parameter. They showed that for known initial conditions, the 
second term keeps the system on the sliding surface and eliminates the reaching 
mode. They also showed that the overall system is globally exponentially stable and 
(42) is a terminal SMC. Inspired by the terminal SMC concept, Bartoszewicz [75] 
also designed the following nonlinear continuously-moving sliding surface for second 
order nonlinear systems with state constraints 

( ) 1ˆ( , ) ( ).sign ( ) . ( )
a

s t e t e t e tγ= +e
                  

 (43) 

In (43), a1 and )(tγ  are design parameters where a1 is a constant in the range 

121 1 <≤ a  and )(tγ  is a time-dependent function that becomes constant at a prede-

termined time instant. Combining (12) and the terminal sliding surface of (37), the 
continuously-moving terminal sliding surface was proposed in [26] as 

22 2 3
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e  (44) 

where tb>0, a1, a2, a3, a4 are constant design parameters. In [76], a parabolic sliding 
surface was proposed using (3) and the (s-p) coordinates defined in (17) as follows 

),().()(),(ˆ 2 tptksts s eee −= ,   (ks=0   if  ee >0)            (45) 
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where ks(t) provides a bending measure of the parabolic sliding surface. The nonlinear 
parabolic sliding surfaces obtained using (45) with different values of ks(t) function 
(19) is illustrated in Figure 6. 
 
 

 

Fig. 6. Nonlinear sliding surfaces obtained by different values of ks in (45) 

4 Conclusion 

In this chapter, sliding surface design methods are classified and surveyed according 
to their properties. In conventional sliding mode control, the sliding surface is con-
stant and linear for simplicity. To improve system performance, moving linear sliding 
surfaces were proposed. The basic philosophy in moving sliding surface design is that 
the sliding surface parameters are initially chosen so that the sliding surface passes 
through the initial conditions. The reaching time which is the period where the dis-
turbances affect the system, is reduced and the system becomes robust with respect to 
parameter variations and external disturbances. The moving algorithm may be dis-
crete or continuous. In discretely-moving sliding surfaces, the sliding surface is con-
stant for a given time period. The discontinuity at the end of this period causes sensi-
tivity to disturbances. To overcome this, a continuously-moving sliding surface may 
be used. Unlike discretely-moving sliding surfaces, they require the derivatives of the 
sliding surface parameters to calculate the control law. This is an advantage of dis-
cretely-moving sliding surfaces. 

Despite their simplicity, linear sliding surfaces have certain disadvantages. For in-
stance, when the sliding surface is linear, the magnitude of the control input required 
to keep the system states on the sliding surface usually increases in direct proportion 
to the magnitude of the tracking error. Another problem with linear sliding surface 
design is the replacement of the nonlinear system characteristics with linear dynamics 
arising from the control law obtained by the linear sliding surface. The linear dynamics 
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of the linear sliding surface may not fit the global dynamics of the controlled system. 
Therefore, using a nonlinear sliding surface may provide better performance if the 
nonlinearity is appropriately selected. For instance, with the use of a special sliding 
surface (known as a terminal sliding surface), the tracking error converges to zero in 
finite time whereas convergence is asymptotic in conventional sliding mode control.  

Moving algorithms for nonlinear sliding surfaces lessen or eliminate the reaching 
mode by using a simpler nonlinear function. Thus, similar performance is obtained by 
using a moving nonlinear sliding surface in place of a constant but complicated one. 
Because discretely-moving schemes for nonlinear sliding surfaces have the same 
discontinuity effects as in the linear case; various continuously-moving sliding sur-
faces have been developed in the literature to remove this drawback. 

Compared to their linear counterparts, both constant and moving nonlinear sliding 
surface design methods result in analytical difficulties in sliding surface design or in 
determining the sliding surface parameters. For moving nonlinear sliding surfaces, it 
is even more complicated to geometrically predetermine the path of the sliding sur-
face. Moreover, designing the control law and determining the stability boundaries 
based on nonlinear sliding surfaces are more difficult. As a consequence, the trade-off 
between the simplicity of the control algorithm and the desired performance im-
provement must be considered in choosing the sliding surface design methodology. 
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