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To Professor Okyay Kaynak to commemorate his life time
impactful research and scholarly achievements and his

services to the profession



Foreword

It is a pleasure for me to write this foreword for the book dedicated to Okyay Kay-
nak to commemorate his lifetime impactful research and scholarly achievements and
outstanding services to profession.

Okyay has been a long time friend and colleague at my university. I have been follow-
ing his activities and achievements with admiration. He has been the scientific ambas-
sador of my university and Turkey in the international circles. He appears to have friends
all over the world. Although we are in somewhat different fields, wherever I visit, I have
often received the remark, “Oh, we know Okyay Kaynak from your university!".

Okyay got his Ph. D. degree at a very early age, when he was only 24 years old. He
spent the following 6 years in industry and then joined my university. The industrial
exposure has contributed positively to his teaching and research activities, as well as to
the administrative responsibilities that he has carried, such as the founding Chairman
of Computer Engineering Department, Director of Biomedical Engineering Institute,
Chairman of EEE Dept., Director of Mechatronics Research and Application Center
and the holder of the UNESCO Chair on Mechatronics (a title conferred on him at our
campus by the Director General of UNESCO; Federico Mayor), to name a few. He has
introduced the field of mechatronics to his colleagues and made a reputation of being
the guru of mechatronics in Turkey. Thanks to his efforts, we now have a secondary
graduate program in this field.

At the early stages of his career, Okyay has designed and delivered together with his
colleagues many continuing education courses to industry through Bogazici University
Foundation. This has resulted in considerable amount of income to the Foundation. In
later years, he has cooperated with an industrial company in delivering mechatronics re-
lated courses. A certificate program on mechatronics has been continuing for a number
of years.

Okyay has been one of most prolific members of my university; in recent years he
has been publishing at a rate of 6-8 high quality journal papers per year in collaboration
with many colleagues from many different parts of the world, as varied as UK, US,
Australia, Israel, Bulgaria, Japan, Hungary, Kazakhstan, Iran and China. Some of his
coauthors have spent sabbaticals at his department.
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In addition to his recognized scientific contributions, Okyay has organized many
conferences in Istanbul. Thanks to him, we have had very large groups of people visiting
our campus. This has helped to increase the recognition of our university throughout the
world.

Okyay is known not only with his impactful scientific research but also with the
leadership and guidance he has provided to his colleagues. His apparently boundless
energy, insight, and leadership are well known among his international peers throughout
the world. He serves as a role model for his colleagues not only in Turkey but also
around the world.

Thanks Okyay for what you have done for Bogazici University.

Professor Dr. Gülay Barbarosoğlu
Rector

Bogazici University
Istanbul, Turkey



Preface

The volume is dedicated to Professor Okyay Kaynak to commemorate his life time
impactful research and scholarly achievements and outstanding services to profession.

Professor Kaynak has graduated with a first class honours and PhD degrees from
the University of Birmingham, UK, in 1969 and 1972, respectively. Before joining the
academia, he spent some years in industry, which has been an advantage for him in
later years during his academic life, causing his research activities to be more applica-
tion oriented, with a strong footing. So far, he has authored or coauthored more than
400 papers that have appeared in various journals, books and conference proceedings.
Professor Kaynak is very well known for his work on Variable Structure Systems and
Sliding Mode Control. He started his research activities in these topics while he was
in Japan in early 1980s. His 1987 publication on Discrete-Time Sliding Mode Control
is seminal, having received close to 300 WoS citations. Although close to 30 years has
passed since its publication, it is still being cited (20, 22 and 11 citations in 2012, 2013
and 2014 respectively) - an indication of its seminality.

In recent years, Professor Kaynak has concentrated on the fusion of computationally
intelligent methodologies and sliding mode control. With a paper that combines the
artificial neural networks and sliding mode control, he has coined the word “neuroslid-
ing.” He contributes to the scientific literature not only with his doctoral students from
Turkey but also with students and colleagues from many different parts of the world,
the collaborations being achieved through internet and short visits.

In addition to his research activities, Professor Kaynak has also made significant
contributions to the profession internationally, in particular, his leading role in the IEEE
(Institute of Electrical and Electronics Engineers) - the world’s largest professional or-
ganization with over 400,000 members worldwide. He served as the President of IEEE
Industrial Electronics Society during 2002-2003, and has been a leading person in the
group who conceived, designed, developed and brought to life two very successful ma-
jor interdisciplinary IEEE publications, namely, IEEE/ASME Transactions on Mecha-
tronics and IEEE Transactions on Industrial Informatics. He was in the Management
Committee of the first one for a number of years, and the Editor in Chief of the lat-
ter for 2005-2006. Currently he is the Editor-in-Chief of IEEE/ASME Transaction on
Mechatronics.
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Professor Kaynak’s outstanding achievements have been recognized by a number
of awards and prizes, including the prestigious Dr. - Ing Eugene Mittelmann Achieve-
ment Award of IEEE Industrial Electronics Society, and fellowships from Alexander
von Humboldt Foundation of Germany and Matusumae International. He was award an
IEEE fellowship in 2003 “for contributions to variable structure systems theory and its
applications in mechatronics.”

His accomplishments are more remarkable considering they have all been achieved
in his home country, Turkey where he has worked almost all his life, with his students
and colleagues in Turkey where the conditions may have been less favorable as com-
pared to some western countries, especially perhaps before the last decade.

The 21 invited chapters in this volume have been written by leading researchers
who, in the past, have had association with Professor Kaynak as either his students and
associates or colleagues and collaborators. The focal theme of the volume is the Sliding
Modes and their applications from Control to Intelligent Mechatronics.

The volume is opened with a touching article by Professor Vadim Utkin acknowledg-
ing significant contributions that Professor Kaynak has made to the engineering fields
and profession. The rest of the chapters cover a broad scope of topics in Sliding Modes
from theoretical investigations to significant applications.

Chapters 2-11 are focused on theoretical investigations. Chapter 2 examines the de-
velopment of the Sliding Mode Control (SMC) theory in the last decades, and proposes
arbitrary-order continuous SMC algorithms which can significantly reduce chattering
and improve precision. Chapter 3 presents a decentralised SMC strategy for some non-
linear interconnected systems using only local information. In Chapter 4, control is-
sues for multi-input uncertain non-affine systems are examined and integral SMC is
adopted as an effective approach. Chapter 5 explores various dynamical behaviours of
discretised fast terminal SMC systems and conditions are obtained to ensure conver-
gent steady states. In Chapter 6, a new class of nonlinear reaching laws are developed
for discrete-time SMC and applied successfully to solve an inventory supply chain prob-
lem. Chapter 7 further studies the sliding mode adaptation and convergence-time regu-
lation by revealing a connection between the sliding mode accuracy and homogeneous
high-order sliding modes. In Chapter 8, a new class of SMC, the event-triggering SMC,
is proposed and sufficient event conditions are derived to guarantee finite-time sliding
mode to occur. In Chapter 9, a non-homogeneous continuous super-twisting algorithm
for higher-order dynamical systems is proposed and conditions to ensure finite-time
stability are obtained. Chapter 10 proposes an output feedback sliding mode controller
to solve the global exact output tracking problem for a class of uncertain multivariable
nonlinear systems using norm observes. In Chapter 11, the SMC of switched stochastic
hybrid systems is fully explored, including sliding surface design, stability and SMC
law synthesis.

The remaining chapters are about applications of SMC. Chapter 12 fully examines
the SMC of unmanned aerial vehicles (UAVs) and outlines their future challenges and
issues. In Chapter 13, a hybrid SMC with feedback linearization control is proposed for
voltage source inverter-fed induction motors which shows to be very effective. Chap-
ter 14 proposes a tensor product model transformation based SMC for linear control
systems which is applied to a DC serve gear motor control problem. In Chapter 15, a
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novel SMC strategy is developed for controlling a robotic fish. Chapter 16 extends the
super-twisting algorithm to control an under-actuated five degrees of freedom paramet-
rically excited crane. Chapter 17 integrates SMC-based learning algorithms and fuzzy
neural networks for controlling helicopters. In Chapter 18, fuzzy SMC of direct drive
manipulators done over the years in Professor Kaynak’s laboratory is reviewed and the
role of controller parameter adaptation for SMC is discussed. Chapter 19 develops a
reduced model that is proposed for controlling the temperature on the wafer in a rapid
thermal processing system and subsequently a SMC strategy is developed. Chapter 20
examines the development of sliding surfaces and their applications. Finally, Chapter
21 proposes a terminal SMC for controlling a quadrotor type UAV.

As the organizers of this volume who have worked with Professor Kaynak in vari-
ous capacities, we would like to thank him for having such a wonderful impact on the
particular field and for the service he provided to the society in many different forms.
We would also like to express our sincere thanks to the chapter contributors for their
support to our book project. Special thanks are directed to Prof. Janusz Kacprzyk, the
Editor of Springer Book Series “Studies in Systems, Decision and Control” for his en-
couragement and support to edit this volume. Thanks also go to Dr. Thomas Ditzinger
and Dr. Leontina Di Cecco, both from Springer Applied Sciences and Engineering, for
their support during implementation of this project. Finally, we are very thankful to our
families for their cooperation.

Xinghuo Yu
Mehmet Önder Efe

Editors
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My Friend, Professor Okyay Kaynak 

Vadim Utkin 

Professor Okyay Kaynak is an internationally recognized scientist with significant 
contributions into several engineering areas: control theory, industrial electronics, 
mechatronics etc. He deserves great respect of colleagues for his many year activity 
including:  research; teaching; work as chairman, president, vice-president of many 
international committees and societies, as chairman and director of departments and 
research centers; membership in editorial boards of scientific journals; organizing 
numerous international conferences. 

We met for the first time in1989 during our sabbatical stay at Institute of Industrial 
Sciences of University of Tokyo (Figure 1). We shared an office with Okyay and 
since then keep close professional and personal contacts.  

 

 

Fig. 1. First time meeting with Okyay and Japanese colleagues in 1989 

Within last 30 years Prof. Kaynak has been working in the area of my main 
professional interest – variable structure systems and sliding mode control. Research 
in this area was initiated in the former USSR in 60’s and only 10 years later 
colleagues of different countries showed interest and included this topic into the scope 
of their research programs. Prof. Kaynak was a key figure of this process. He was 
invited to Tokyo University in early 80’s as a visiting scholar. The head of the 
department Prof. Harashima offered him several topics for future joint research and 
Okyay selected variable structure systems (VSS) with sliding mode control, 
practically unknown area for Japanese colleagues. His decision was the starting point 
for intensive development of different sections of theory and applications for this 
class of control systems in Japan.  

The sliding mode control exhibits low sensitivity with respect to different types of 
uncertainties in operation conditions such as unknown disturbances, parameter 
variations. In addition it enables decoupling complex systems into independent 
subsystems of lower dimension, which is important for control of high order nonlinear 
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dynamic plants, in particular manipulators and mobile robots. The colleagues working 
with Prof. Kaynak were the first who demonstrated efficiency of the sliding mode 
control methodology in robotics. The robot in Figure 2 did not look so naïve 30 years 
ago as it does now. 

 

Fig. 2. Sliding mode control of a robotic manipulator 

Two papers published in co-authorship with Prof. F. Harashima and Prof. H. 
Hashimoto served as background for the implementation of sliding mode control for 
the manipulator shown in Figure 2. 

In 80’s interest to sliding mode control increased considerably. It resulted in high 
level of publications by authors from different universities and research centers of 
many countries and we could speak about international community of researchers 
working in this area. The role of Prof. Kaynak in establishing of the community 
would hardly be overestimated. He was among the organizers of the first international 
workshop on VSS, held in Sarajevo in 1990. It was the historical event in the life of 
the community. As I know, until now Prof. Kaynak keeps the menu of the restaurant, 
where the meeting of the organizing committee was held, signed by the committee 
members.  The workshop was so successful that many volunteers offered to organize 
the next one in their countries. Since then the workshop was held every two years in 
England, Italy, Japan, Australia, USA, Spain, Mexico, India, the last one in France in 
2014 and of course one of them was held in Turkey and organized by Prof. Kaynak.  
He was a member of organizing committees of majority of them. Thanks to the 
activity of the leading figures in the area, including Prof. Kaynak, the sliding mode 
control methodology was recognized as a chapter of the nonlinear control theory and 
now it can be found in many modern control text books. Finally IEEE Technical  
Committee on Variable Structure and  Sliding Mode Control  was established   in 
2000.  
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The sections on sliding mode control are included into programs of the most 
prestigious control conferences (IFAC congresses, ACC, CDC).  But not control 
conferences only. I will explain why.   Sliding mode control implies discontinuous 
control actions. Electronic power converters serve as actuators in many control 
systems of modern technology and on-off is the only acceptable mode for them. It 
means that sliding mode is a natural and prospective tool to control power converters.  
Prof. Kaynak is an expert in industrial electronics and did a lot of “advertising 
efforts”. Now you can find many papers on sliding mode applications in journals and 
conferences on industrial electronics. I am thankful to Okyay for promoting my IEEE 
fellowship in IEEE Industrial Electronics Society.    

I am happy to pay tribute to my good friend Okyay for his outstanding scientific 
achievements and multifarious service to our control community, heading numerous 
national and international organizations and meetings, involving young scientists of 
many countries to research activity (reflected in his joint publications with colleagues 
of UK, US, Australia, Bulgaria, Japan, Hungary, Kazakhistan, Iran, China). 

Dear Okyay, all of us, your friends and colleagues, believe that your retirement is 
symbolic and we will enjoy collaboration and personal contacts with you for many 
years. 

 
Vadim Utkin 
Ohio State University 

 



Continuous Nested Algorithms : The Fifth
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Abstract. The history and evolution of Sliding Mode Controllers in
the last three decades is revisited. The new generation of continuous
sliding-mode controllers, and continuous nested sliding-mode controllers
is presented. Such controllers generate an continuous control signal, en-
suring, for the systems with relative degree r, the finite–time convergence
to the (r+1)− th sliding-mode set using only information on the sliding
output and its derivatives up to the (r − 1) order.

In this book it is natural to recall the past and to think about the
future. This chapter is an attempt to give a viewpoint on the stages
of development of the Sliding-Mode Control(SMC) theory in the last
decades. We will show that each decade the SMC community has been
able to generate families of controllers with much better properties than
before, and propose arbitrary-order continuous SMC algorithms which
can significatively reduce the chattering and improve the precision.

1 The First Generation of Sliding Modes Controllers

The classical theory of first order SMC was established by 1980 and later reported
in Prof. Utkin’s monograph in Russian, in 1981 (English version [35]). In his
monograph Porfessor Utkin clearly stated the two-step procedure for sliding-
mode control design:

1. Sliding surface design;
2. Discontinuous (relay or unit) controllers ensuring the sliding modes.

The main advantages of the first order SMC are the following:

• theoretically exact compensation (insensitivity) w.r.t. bounded matched un-
certainties [7];

c© Springer International Publishing Switzerland 2015 5
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• reduced order of sliding equations;
• finite–time convergence to the sliding surface.

However, the following disadvantages were evident:

• chattering;
• the sliding variables converge in finite–time but the state variables only con-
verge asymptotically;

• the sliding surface design is restricted to have relative degree one with respect
to the control, i.e., higher order derivatives are required for the sliding surface
design.

2 The Second Generation of SMC: Second Order Sliding
Modes

By the early 80’s, the control community had understood that the main dis-
advantage of SMC is the “chattering” effect [35],[36]. It has been shown that
this effect is mainly caused by unmodelled cascade dynamics which increase the
system’s relative degree, and perturb the ideal sliding mode [3],[14],[36], i.e. in
order to adjust the chattering it is necessary that not only the sliding variable
tends to zero, but also its derivative.

2.1 Second Order Sliding Modes

The second order sliding modes (SOSM) concept was introduced in the Ph.D.
dissertation of A. Levant (Levantovskii).

Consider a second order uncertain system

σ̈ = f (σ, σ̇, t) + g (σ, σ̇, t) ν,

where σ and σ̇ are the system state, σ = x1 is the system output, ν ∈ R is the
scalar control and f (σ, σ̇, t) represents unknown uncertainties/perturbations.
It is also assumed that all the partial derivatives of f(σ, σ̇, t) are bounded on
compacts and g (σ, σ̇, t) �= 0 is known. Then, one can write{

ẋ1 = x2

ẋ2 = f (x, t) + g (x, t) ν,
(1)

where x2 = σ̇ and x = [x1, x2]
T . For simplicity, it will be assumed that g(x, t) > 0

for all t, x. Defining ν = g−1(x, t)u, system (2.1) can be written as{
ẋ1 = x2

ẋ2 = u+ f(x, t).
(2)

The main objective of SOSM was to design a control u such that the origin
of system (2) is finite-time stable, in spite of the uncertainties/perturbations
f(x, t), with |f(x, t)| < f+ for all t, x. For the above mentioned goal, a controller
is proposed in the next section.

Here, and always below, the solution of the all systems will be understood in
the sense of A. Filippov[12].
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2.2 Twisting Algorithm

The first and simplest SOSM algorithm is the so-called “Twisting
Algorithm”(TA)[10]. For a relative degree two system the TA takes the form

u = −a sign(x2)− b sign(x1), b > a+ f+, a > f+.

Under the assumption of known bounds for f+, and with parameters a and b
of the controller chosen appropriately [10], the twisting algorithm ensures finite-
time exact convergence of both x1 and x2, i.e. there exists T > 0 such that,
for all t > T , x1(t) = x2(t) = 0. Thus, the TA is said to be a SOSM control
algorithm since it provides a (stable) “second order sliding mode” at the origin.
An example trajectory can be seen in the Figure 1.

Fig. 1. Example trajectory of the Twisting algorithm

2.3 Terminal Algorithm and Singularity of Switching Surface

Consider the second order system

ẋ1 = x2, ẋ2 = u(x), (3)

where the terminal sliding mode control input u is given by [27],[39].

u(x) = −α sign(s(x)), s(x) = x2 + β
√
|x1| sign(x1). (4)

By taking the time derivative of the switching surface, it is obtained

ṡ(x) = ẋ2 + β
x2

2
√|x1|

= −α sign(s(x)) + β
x2

2
√|x1|

. (5)

This means that the derivative of the switching surface s(x) is singular for x1 = 0,
and, consequently, the relative degree of the switching surface does not
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exist. From now on, we will call the switching surface s(x), singular. On the
switching surface x2 = −β

√|x1| sign(x1), it occurs that

ṡ = −α sign(s(x)) − β2

2
sign(x1).

It is clear that under condition β2 < 2α, the sliding on the surface s(x) = 0
exists, and two types of behavior for the solution of the system are possi-
ble [24], [33], [34]:

Terminal Mode. For the case when β2 < 2α, the trajectories of the system
reach the surface s(x) = 0 and remain there for all the future time. This kind of
behavior can be seen in Figure 2.

x1

x2

s =0

Fig. 2. Terminal mode with β = 3, α = 5

The ideal sliding and computational chattering start when the solution reaches
s(x) = x2 + β

√|x1| sign(x1) .

Twisting Mode.When the controller parameters are chosen such that β2 > 2α,
the trajectories of the system do not slide on the surface s(x) = 0. This behavior
is exemplified in Figure 3. Note that the computational chattering does not start
until the states reach the system’s origin.

As it has been seen from (5), there is an issue of singularity of the switching
surface. Such issue has been overcame by rewriting the function s as follows [11]

s̄(x) = β2x1 + x2
2 sign(x2).

Note that s(x) = 0, and s̄(x) = 0 describe the same switching surface.

Precision of SOSM. The main advantage of SOSM is that they are homoge-
neous, with weights {2,1} ([1],[30]). As it is shown in [19], the order of precision,
determined by the weights of homogeneity in terms of the discretization step δ,
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x1

x2

s =0

Fig. 3. Twisting mode with β = 4, α = 5

is O(δ2) with respect to the sliding output and O(δ) with respect to its deriva-
tive. Moreover, in the presence of fast actuator dynamics with time constant μ,
the precision order is O(μ2) with respect to the sliding output and O(μ) with
respect to its derivative [5],[26].

2.4 Discussion about SOSM

Advantages of SOSM

1. SOSM ensures the quadratic precision of convergence with respect
to the sliding output.

2. For one degree of freedom mechanical systems, both the Twisting and the
Terminal controllers provide dynamic collapse, i.e. the sliding surface design
is no longer needed.

3. For systems with relative degree r, the order of the sliding dynamics is
reduced up to (r − 2). The design of the sliding surface of order (r − 2)
is still necessary.

However, the following problems remain open:

• SOSM algorithms for systems with relative degree two still pro-
duce a discontinuous control signal, i.e., they can not reduce the
chattering substantially.

• The problem of exact finite-time stabilization (dynamic collapse) and exact
disturbance compensation for SISO systems with arbitrary relative degree
still persists.

Chattering Attenuation Strategy Based on SOSM. Under additional
assumptions regarding the smoothness of the system, the SOSM controllers(see
also [2]) have been used to attenuate chattering in systems with relative
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degree one, by including an integrator in the control input. Consider the following
system

Ẋ = F (t,X) +G(t,X)u,X ∈ Rn, u ∈ R
u̇ = v,

where F is a function with known upper bound. The relative degree one switching
variable σ(X) is designed such that it satisfies the equation σ̇ = f(x, t)+g(x, t)u.
Then, defining for example a Twisting-like control v = −a sign(σ̇(X)) −
b sign(σ(X)), or a Terminal-like control v = −α sign(s(σ(X))), and selecting
appropriate parameters, we will have an continuous control signal u, ensuring
finite-time convergence to the surface σ(X) = 0.

2.4.1 The First Criticism of SOSM
In the end of the 80’s, the SOSM were strongly criticized. The main point of this
criticism is the that anti-chattering strategy for a first order sliding mode uses the
derivative σ̇. Thus, if by any reason it is possible to measure σ̇ = f(t, σ)+g(t, σ)u
and, additionally, g(t, σ) is also known, then the uncertainty f(t, σ) = σ̇−g(t, σ)u
is also known and can be compensated without any discontinuous control! In this
case, what is the reason for theq use of a SMC?

In the late eighties it was clear that, in order to adjust the chattering
for a relative degree one sliding variable, an continuous control signal
should be generated without requiring information on the derivative
of the sliding variable, i.e. on the perturbations.

3 Third Generation of Sliding Modes Controllers: The
Super-Twisting Algorithm

The Super–Twisting Algorithm (STA)[19]:

ẋ = f(t, x) + g(t, x)u,

u = −k1|x| 12 sign(x) + v,
v̇ = −k2 sign(x),

(6)

where f is any Lipschitz bounded uncertainty/disturbance, for some constants
k1 and k2, ensures [19] exact finite time convergence to the second sliding-mode
set x(t) = ẋ(t) = 0, ∀t ≥ T without usage of ẋ. If we consider system (6) having
x as the measured output, the STA is an output-feedback controller for a system
of one dimension.

3.0.2 Robust Exact Differentiator
This last property of the STA allowed to construct the ”robust exact” sliding-
mode differentiator [20] and gave further impetus to the development of the
mathematical theory and applications of SOSM algorithms. We now briefly de-
scribe the idea behind it. Let f(t) be a signal to be differentiated and assume
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that |f̈(t)| ≤ L, with L being a known constant. Take x1 = f, x2 = ḟ ; then the
problem can be reformulated as finding an observer for

ẋ1 = x2, ẋ2 = f̈ , y = x1,

where f̈(t) is considered as a bounded perturbation. Since the STA does not
require derivatives, which in this case would be the state x2, it only uses output
injection and results particularly useful in the form of a STA observer

˙̂x1 = −k1|x̂1 − y| 12 sign(x̂1 − y) + x̂2,
˙̂x2 = −k2 sign(x̂1 − y) .

Once the constants k1 and k2 are appropriately chosen, the convergence of
the STA ensures that the equalities (f − x̂1) = (ḟ − x̂2) = 0 are established
after a finite-time transient. Thus x̂2 is an estimate for the derivative ḟ(t) and
turns out to be the best possible one ([20]) in the sense of [18] when (bounded
Lebesgue-measurable) noise or discretization are present. However, the difficult
geometrical proof of the STA convergence remained as the main disadvantage
for this algorithm, thereby preventing further generalizations.

3.0.3 Recapitulations
The use of the Super Twisting Algorithm for Lipschitz systems allows substitut-
ing a discontinuous control by means of an continuous one. Additionally, their
use offers:

1. Chattering attenuation (but not its complete removal![4]).
2. Differentiator obtained using the STA:

• finite-time exact estimation of derivatives in the absence of both noise
and sampling;

• the best possible approximation in the sense of [18] of order O(δ) w.r.t.
discrete sampling and of order O(

√
ε) w.r.t. deterministic Lebesgue-

measurable noise bounded by ε.

However, there are some disadvantages:

1. For systems with relative degree r = 2, the design of a sliding surface is
still needed. Hence, there is finite-time convergence to the surface, but the
convergence of the states to the origin is asymptotic. Moreover, in this case,
the usage of STA based differentiator for the sliding surface design is not
enough [6] because the reconstructed switching surface should have at least
Lipschitz derivative.

2. The first order sliding mode controllers with constant gains could compen-
sate Lebesgue but bounded perturbations. The STA is insensible to per-
turbations whose time derivative is bounded. However, these perturbations
could grow no more fast than linear function of time, i.e., they do not need
to be bounded.
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4 Fourth Generation of Sliding Mode Controllers:
Arbitrary Order Sliding Mode Controllers

Consider the uncertain dynamical system:

Ẋ = F (t,X) +G(t,X)u,X ∈ Rn, u ∈ R
σ = σ(X, t),∈ R.

Let the output σ have a fixed and known relative degree r. In such a case, the
control problem is translated into the finite-time stabilization of an uncertain
differential equation or, equivalently, of the following differential inclusion

σ(r) ∈ [−C,C] + [Km,KM ]u, (7)

where C,Km and KM are known constants parameterizing the uncertainty of
the original system.

4.1 Nested Arbitrary Order Sliding-Mode Controllers

In 2001, the first arbitrary order SM controller was introduced [21], combining
relay controller with hierarchical terminal sliding modes [38]. Such controllers
solve the finite-time exact stabilization problem for an output with an arbitrary
relative degree, in the presence of bounded Lebesgue measurable uncertainties.

Given the relative degree r of the output, ”Nested” higher order sliding-
mode(HOSM) controllers are constructed using a recursion, generalizing the
singular Terminal Algorithm. The following is the recursion for the Singular
Terminal Algorithm. Let p be the least common multiple of 1, 2, . . . , r. Also let

u = −α sign
(
ϕr−1,r(σ, σ̇, . . . , σ

(r−1))
)
, (8)

where ϕ0,r = σ, N1,r = |σ| r−1
r and

ϕi,r = σ(i) + βiNi,r sign(ϕi−1,r), Ni,r =
(
|σ| pr + · · ·+ |σ(i−1)| p

r−1+1

) r−i
p

.

The parameters βi can be selected in advance in such a way that only the gain
of the controller α has to be selected large enough. The algorithm provides for
the finite-time stabilization of σ = 0 and, therefore, of its successive derivatives
up to r−1. Thus, it provides for the existence of an r-th order sliding mode in the
set Sr = {σ = σ̇ = ... = σ(r−1) = 0}. In Figure 4 it is exemplified the trajectories
and states for the Nested controller with r = 3. Since controller (8) uses the
output and its successive derivatives, the HOSM arbitrary order differentiator,
introduced in [23], was instrumental for the applicability of HOSM controllers.
Let σ(t) be a signal to be differentiated k− 1 times and assume that |σ(k)| ≤ L,
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Fig. 4. System trajectory of Nested algorithm for r = 3

with L being a known constant. Then, the (k− 1)-th order HOSM differentiator
takes the following form

ż0 = v0 = −λkL
1

k+1 |z0 − σ| k
k+1 sign(z0 − σ) + z1,

ż1 = v1 = −λk−1L
1
k |z1 − v0|

k−1
k sign(z1 − v0) + z2,

...

żk−1 = vk−1 = −λ1L
1
2 |zk−1 − vk−2|

1
2 sign(zk−1 − vk−2) + zk

żk = −λ0L sign(zk − vk−1)

(9)

where zi is the estimation of the true derivative σ(i)(t). The differentiator ensures
the finite-time exact differentiation under ideal conditions of exact measurement
in continuous time. The only information needed is an upper bound, L, for
|σ(k+1)|. Then a parametric sequence {λi} > 0, i = 0, 1, . . . , k, is recursively
built, which provides for the convergence of the differentiators for each order
k. In particular, the parameters λ0 = 1.1, λ1 = 1.5, λ2 = 2, λ3 = 3, λ4 =
5, λ5 = 8 are enough up until the 5-th differentiation order. With discrete
sampling, the differential equations are replaced by their Euler approximations.
This differentiator provides for the best possible asymptotic accuracy in the
presence of input noises or discrete sampling [19,18] for the rth derivative:

– order O(δ) with respect to discrete sampling,

– order O(ε
1

r+1 ) with respect to bounded deterministic Lebesgue measurable
noise.

The use of the HOSM arbitrary order differentiator together with the HOSM
arbitrary order controller allowed the design and the implementation of a
nested arbitrary-order HOSM output-feedback controller for uncertain single-
input single-output (SISO) systems ensuring the finite-time output stabilization
in spite of disturbances. The block diagram for implementation of the output-
feedback nested HOSM controller is presented in Figure 5.

4.1.1 Discussion about Nested HOSM
Nested HOSM algorithm ensures exact finite-time stabilization (dynamic col-
lapse) of the output σ and exact disturbance compensation for SISO systems
with relative degree r, using information on σ, σ̇, ..., σ(r−1).
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Fig. 5. The implementation of the output-feedback nested HOSM controller

Some of its advantages are:

• SOSM ensure the r-th order precision for the sliding output with
respect to the discretization step and fast parasitic dynamics
[22],[26].
item The sliding surface design is no longer needed.

However, the nested HOSM algorithms for relative degree r systems
still produces a discontinuous control signal, i.e., they can not reduce
the chattering substantially.

5 Fifth Generation of SMC: Continuous Arbitrary Order
Sliding-Mode Controllers

In this section we propose an arbitrary order Continuous Nested Sliding Mode
Algorithm(CNSMA). The CNSMA provides, for relative degree r systems with
respect to the output,

- continuous control signal;
- finite-time convergence to the (r + 1)-th order sliding-mode set;
- derivatives of the output up to the (r − 1) order.

Firstly for the systems with relative degree two we will introduce two versions
of the Continuous Terminal Sliding Mode Algorithm(CTSMA), as a combina-
tion of Super-Twisting with both versions of Terminal Algorithm: singular and
nonsingular. It will be shown that the CTSMA has also the above mentioned
properties of the CNSMA for the systems with relative degree two. The possi-
bilities to prove their convergence will be discussed.

Than the CNSMA for the systems with arbitrary relative degree is suggested.
In this section the following notation is used, for a real variable z ∈ R to a

real power p ∈ R, �z	p = |z|psgn(z), therefore �z	2 = |z|2sgn(z) �= z2. If p is
an odd number, this notation does not change the meaning of the equation, i.e.
�z	p = zp. Therefore

�z	0 = sgn(z), �z	0zp = |z|p, �z	0|z|p = �z	p
�z	p�z	q = |z|psgn(z)|z|qsgn(z) = |z|p+q (10)
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5.1 Continuous Terminal Sliding Mode Algorithm

Continuous terminal sliding-mode algorithms are defined in the following way:

(a) Continuous Singular Terminal Sliding Mode Algorithm (CSTSMA);
(b) Continuous Nonsingular Terminal Sliding Mode Algorithm (CNTSMA).

Continuous Singular Terminal Sliding Mode Algorithm (CSTSMA)

Suppose that the control input u is defined as

u =− k1�φ	1/2 − k3

∫ t

0

�φ	0dτ, (11)

or

u = −k1�φ	1/2 + L, L̇ = −k3�φ	0, (12)

where φ =
(
x2 + k2�x1	2/3

)
, and k1, k2, k3 are appropriate positive gains. Sub-

stituting the control (12) into (2), the closed loop system becomes⎧⎪⎨
⎪⎩
ẋ1 = x2

ẋ2 = −k1�φ	1/2 + L+ f(x, t)

L̇ = −k3�φ	0.
(13)

Suppose x3 = L+ f(x, t), then one can rewrite (13) as⎧⎪⎨
⎪⎩
ẋ1 = x2

ẋ2 = −k1�φ	1/2 + x3

ẋ3 = −k3�φ	0 + ρ,

(14)

where ρ = ∂f
∂x ẋ+ ∂f

∂t , and it is assumed that it satisfies |ρ| ≤ Δ.
Proposed algorithm (14) can be interpreted as a combination of the Super-

Twisting algorithm with the Singular Terminal Sliding mode.

5.2 Continuous Nonsingular Terminal Sliding Mode Algorithm
(CNTSMA)

Suppose that the control input u is defined as

u =− k1�φN	1/3 − k3

∫ t

0

�φN 	0dτ, (15)

or

u = −k1�φN	1/3 + L, L̇ = −k3�φN	0, (16)
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where, φN =
(
x1 + k2�x2	3/2

)
and k1, k2, k3 are appropriate positive gains.

Substituting the control (16) into (2), the closed loop system becomes⎧⎪⎨
⎪⎩
ẋ1 = x2

ẋ2 = −k1�φN	1/3 + L+ f(x, t)

L̇ = −k3�φN	0.
(17)

Suppose x3 = L+ f(x, t), then one can rewrite (17) as⎧⎪⎨
⎪⎩
ẋ1 = x2

ẋ2 = −k1�φN	1/3 + x3

ẋ3 = −k3�φN	0 + ρ,

(18)

where ρ = ∂f
∂x ẋ+ ∂f

∂t and assume that it satisfy |ρ| ≤ Δ.
Proposed algorithm (18) can be viewed as a combination of the Super-

Twisting algorithm with the Nonsingular Terminal Sliding Mode algorithm.

5.2.1 Discussion about the CSTSMA and CNSTMA
Continuous singular/nonsingular terminal sliding-mode algorithms (14) and (18)
are homogeneous of degree δf = −1, with weights � = {3, 2, 1}. The main
advantage of this algorithm is that, the only information needed, for the finite
time convergence of all three variables x1, x2 and x3, is the output (x1) and its
derivative (x2). It is also obvious that ẋ2 = 0 because φ, which is a function of
x1, x2 and x3, equals to zero. The precision of the output tracking σ, σ̇ and σ̈,
corresponding to a 3rd order sliding mode.

The parameters used in the simulation of were

• initial conditions x1(0) = 2 and x2(0) = −7
• gains k1 = 6, k2 = 5 and k3 = 6

After substituting the control u in (2), the closed loop system is the same as in
(14). Figure 6 shows that the convergence and precision of the states x1, x2 and
x3 are 10−9, 10−6 and 10−3 respectively, when the simulation step of the Euler
algorithm is set to τ = 10−3. It evident from the simulation that the precision
corresponds to a third order sliding mode.

Figure (7) shows the convergence of the states, the phase portrait, the control
input and the perturbation estimation of a second order uncertain plant with
3-CSTSMC as a controller. It is noticeable from the phase portrait in Fig. (7)(b)
that switching surface φ = 0 does not seem to be a sliding surface, and shows a
behavior typical of the second order sliding mode known as Twisting controller.

The time evolution of the states of system (18) with u as a Continuous Non-
singular Terminal Sliding Mode Control(CNTSMC) are given in Figure 9, where
the value of perturbation is again taken as f = 2 + 4 sin(t/2) + 0.6 sin(10t) and
gains are selected as k1 = 13.4, k2 = 3.3, k3 = 25. It is clear from the figure
that all the states converge to zero, despite of the perturbation f . Figure 10
shows the precision of each of the states when the simulation step of the Euler
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Fig. 6. Convergence and precision of states with τ = 0.001 for 3-CSTSMA

algorithm is set to τ = 10−3 (Fig. 10a), or τ = 10−4 (Fig. 10b). From them we
can calculate the (precision) coefficients: ν3 = 80, ν2 = 80 and ν1 = 1200. They
show that the precision corresponds to a third-order sliding mode.

In Figure 11 the phase portrait of the plant’s states x1 and x2 is shown, along
with the switching curve φN = 0. It is noticeable that the trajectory reaches
the switching surface and then slides along it, until the origin is reached in finite
time. This is also clear from the behavior of φ = φN in Figure 9, that also appears
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under a non vanishing perturbation f

zoomed in the same picture. This behavior is similar to the one of the classical
second-order sliding mode known as Terminal (or Prescribed) Controller.

Figure 13 presents again the phase portrait of the plant’s states x1 and x2

with the same CNTSMC, but with different gains: k1 = 6, k2 = 1/6, k3 = 6.
Trajectories in Figure 13 have a rather undamped behavior compared to the ones
in Figure 11. In this case, the convergence to the switching surface φ = φN = 0
has a twisting-like convergence to the switching surface (see Fig. 11 and Fig. 13).

6 Convergence Conditions for the Continuous Terminal
Sliding Mode Algorithm

The proposed controllers (12) and (16) are able to stabilize system (2) in finite
time if the following Proposition is satisfied.

Proposition 1. System (14) is finite time stable at the origin, with appropriate
gains k1, k2 and k3, in spite of bounded perturbations |ρ| ≤ Δ.

of the bounded perturbation ρ.

6.1 Lyapunov Function for Continuous Singular Terminal Sliding
Mode Algorithm (CSTSMA)

Consider the following continuous Lyapunov function candidate for the stability
analysis of (14)

V (x) = p1|x1| 43 − p12�x1	 2
3

(
x2 + k2�x1	2/3

)
+ p2

∣∣∣x2 + k2�x1	2/3
∣∣∣2

+ p13�x1	 2
3 �x3	2 − p23

(
x2 + k2�x1	2/3

)
�x3	2 + p3|x3|4. (19)
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Fig. 10. Precision of the state variables x1, x2, x3 corresponding to a 3-order Sliding
Mode

V (x) is homogeneous of degree δV = 4, with weights � = [3, 2, 1]. It is differen-
tiable everywhere, but it is not locally Lipschitz at x1 = 0. Our main goal is to
derive conditions for the coefficients (p1, p12, p2, p13, p23, p3), and for the gains
(k1, k2, k3) of the continuous terminal sliding-mode algorithm (14), such that
V (x) > 0 and time derivative of (19), along (14), is negative definite (V̇ < 0 for
all x ∈ R

3, x �= 0).
Function (19) can also be expressed as a quadratic form, with the vector

ΞT =
[
�x1	 2

3 φ �x3	2
]
, where φ =

(
x2 + k2�x1	2/3

)
, i.e.

V (x) = ΞTPΞ, where P =

⎡
⎣ p1 − 1

2p12
1
2p13− 1

2p12 p2 − 1
2p23

1
2p13 − 1

2p23 p3

⎤
⎦ (20)
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V (x) is positive definite and radially unbounded if and only if P > 0, which is
true if the following inequalities are satisfied

⎧⎪⎨
⎪⎩

p1 > 0, p1p2 > 1
4p

2
12,

p1
(
p2p3 − 1

4p
2
23

)
+ p12

2

(− p12p3

2 + p13p23

4

)
+ p13

2

(
p12p23

4 − p2p13

2

)
> 0

(21)
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Fig. 13. Phase portrait of Plant’s states x1 and x2, and locus of the switching curve
φ = φN = 0, showing a Twisting-Like behavior of the CNTSM controller

The derivative of (19), along the system (14), is

V̇ (x) = q1�x1	 1
3 x2 − q2|x1|− 1

3x2
2 − 2k1p2|φ| 32 − p23|x3|3

− q3|x1|− 1
3 x2�x3	2 + k1p12�x1	 2

3 �φ	 1
2 − q̄4�x1	 2

3x3

+ q̄5x3φ+ p23k1�φ	 1
2 �x3	2 − q̄6�x3	3�φ	0 (22)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1 = 4p1

3 − 4k2p12

3 +
4p2k

2
2

3

q2 = 2p12

3 − 4p2k2

3

q3 = 2p23k2

3 − 2p13

3

q̄4 = p12 + 2p13k3�φ	0�x3	0 − 2p13�x3	0ρ
q̄5 = 2p2 + 2p23k3�φ	0�x3	0 − 2p23�x3	0ρ
q̄6 = 4k3p3 − 4p3ρ�φ	0

(23)

when ρ = 0, then let us define⎧⎪⎨
⎪⎩
q4 = p12 + 2p13k3�φ	0�x3	0
q5 = 2p2 + 2p23k3�φ	0�x3	0
q6 = 4k3p3

(24)

The following Definition and Lemma are presented to prove the stability of
system (14) without disturbances i.e., ρ = 0
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Definition 1. Functions β(α, λ) and ϑ(α) are the real valued function of the
real variable α > 0 and any value of λ, β(α, λ) satisfied ϑ(α) ≥ β(α, λ) for all
λ, where the function β(α, λ) is defined as

β(α, λ) =

{
max(0, β1(α, λ)) for λ ≥ −√

3α

max(0, β2(α, λ)) for λ < −√
3α

(25)

where {
β1(α, λ) = −αr31(α, λ) + λr21(α, λ) + r1(α, λ)

β2(α, λ) = αr32(α, λ)− λr22(α, λ) + r2(α, λ)
(26)

and

r1(α, λ) =
λ+

√|λ|2 + 3α

3α
, r2(α, λ) =

λ−√|λ|2 − 3α

3α
(27)

One of the main results of the chapter which guarantee the finite time stability
of proposed algorithm (14) when ρ = 0 is stated in the following lemma :

Lemma 1. Consider the continuous and homogeneous function V (x) given by
(20). V (x) goes to zero in finite time if the following conditions are satisfied{

p1 + p2k
2
2 > k2p12, p12 = 2p2k2, p23k2 = p13

p12 > 2p13k3, p2 > p23k3, k3 > 0,
(28)

and there exists some α1, α2 > 0 such that⎧⎪⎪⎨
⎪⎪⎩

q1k1k2p12 − k1p12 −
√

22|q4|3
33(p23−|q6|) > α1 > 0

ϑ(α1) ≥ β(q1, α1)
2k2

1p2p23−α2

k3
1p23p12

> ϑ(α1) > 0,

(29)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2k21p2p23 > α2 > 0

ϑ(α2) ≥ max {β(λ1, α2), β(λ2, α2)}
1

(k1p12)2

(
p23 − |q6| − 22|q4|3

33
(
q1k2− α1

k1p12

)2

)
> ϑ(α2) > 0,

(30)

where λ1 = 2p2 + 2p23k3 and λ2 = 2p2 − 2p23k3. In this case V (x) satisfies the
differential inequality

V̇ ≤ −κV 3/4 (31)

for some positive κ and it is a Lyapunov function for the system (14), whose
trajectories converges in finite time to the origin x = 0, for every value of the
perturbation ρ = 0. The convergence time of a trajectory starting at the initial
condition x0 can be estimated as

T (x0) ≤ 4

κ
V

1
4 (x0). (32)
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Lemma 1 provides conditions for the existence of a Lyapunov function for system
(14), when ρ = 0. However, it is not obvious a priori that there exist indeed values
of the parameters k1, k2, k3,p1, p2, p3,p12, p13, p23, α1, α2 for which the conditions
imposed in the Lemma 1 are satisfied, i.e. if the system of inequalities are feasible.
Using the next Theorem it will be shown that there are indeed sets of values for
the parameters, that fulfill the conditions of the Theorem in the both case when
ρ = 0 or ρ �= 0. This Theorem is the main contribution of the chapter, which
also gives the proof of the Proposition 1.

Theorem 1. Let us suppose that the origin x = 0 of system (14) is finite
time stable for a set of gains k1, k2, k3, and (19) is the Lyapunov function
V (x), with a set of parameters p1, p2, p3, p12, p13, p23 in the unperturbed case.
Then, the origin x = 0 of (14) remains finite time stable for a set of gains
l3k1, l

2k2, l
6k3 and that V (x) in (19) is a Lyapunov function for the set of pa-

rameters l−8p1, l
−12p2, l

−24p3, l
−10p12, l

−16p13, l
−18p23, for the sufficiently large

positive real number l in the both perturbed and unperturbed case.

Table 1. Parameters of the Lyapunov function when ρ = 0

k1 6 6

k2 1 2

k3 6 6

p1 20 20

p2 0.5 0.5

p3 0.01 0.01

p12 1 2

p13 0.05 0.1

p23 0.05 0.05

6.1.1 Lyapunov Function Validation
After finding the conditions on the gains k1, k2, k3, as given by (28), based on the
Lyapunov function parameters of (20), p1, p2, p3, p12, p13, p23 that makes system
(14) finite time stable at the origin, it is still not quite obvious that system
inequalities (21) and (28) to (30) are feasible. Therefore, we have to find at least
one set of numerical values of k1, k2, k3, p1, p2, p3, p12, p13, p23 and inequalities
for α1 and α2 such that inequalities (21) and (28) to (30) are feasible. Other sets
of gains can easily be found using Theorem 1, by simply tuning the positive real
value l.

One of the Possible Choice for Validation:

Using (28) to (30) and some particular ki, i = 1, 2, 3 and p1, p2, p3, p12, p13, p23,
one can write α2 = η1α1 where 0 < η1 < 1. Figures 14 (a) and (b) show the
graphs of the functions ϑ(α1), β(α1, λ) and ϑ(α2), β(α2, λ1) along with β(α2, λ2),
respectively, for the parameters of the first column of Table 1 parameters which
satisfy (29) and (30).
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Fig. 14. Inequalities for the Lyapunov Function Validation

6.2 Lyapunov Analysis of Continuous Nonsingular Terminal Sliding
Mode Algorithm (CNTSMA)

The Lyapunov function candidate for system (18) is proposed as

V (x) = β |x1|
5
3 + x1x2 +

2

5
k2 |x2|

5
2 − 1

k31
x2x

3
3 + γ3 |x3|5 ,

which is homogeneous (of degree δV = 5) and continuously differentiable. We will
show that V (x) is decrescent, and that selecting β > 0 and γ3 > 0 sufficiently
large it is also positive definite.

For this, recall the classical Young’s inequality [16]: for any real values p > 1,
q > 1 such that 1

p + 1
q = 1 and any positive real numbers a, b, c the inequality

ab ≤ cp ap

p + c−q bq

q holds. Using this inequality it follows that

V (x) ≥
(
β − 3

5
c

5
3
1

)
|x1|

5
3 +

2

5

(
k2 − c

− 5
2

1 − c
− 5

2
2

1

k31

)
|x2|

5
2

+

(
γ3 − 3

5

1

k31
c

5
3
2

)
|x3|5 .

V is positive definite if all its coefficients are positive. This can be achieved by

selecting e.g. c1 =
(

4
k2

) 2
5

, c2 =
(

4
k2k3

1

) 2
5

, and

β >
3

5

(
4

k2

) 2
3

, (33)

k51γ3 >
3

5

(
4

k2

) 2
3

. (34)
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It is straight forward to verify that V is decrescent for any values of the param-
eters if the following conditions are satisfied

k3 > Δ

β >
3

5k
2
3
2

k1 > 5γ3k
5
1κ

(
1 +

Δ

k3

)
+

(
3
2

)2
(k3

k1
)2(

5
3βk

2
3
2 − 1

) (
1 +

Δ

k3

)2

γ3k
5
1 >

(
5
32

1
3 β + 3k3

k1

(
1 + Δ

k3

))2

20k3

k1

(
1− Δ

k3

)(
5
3βk

2
3
2 − 1

) (35)

7 Continuous Nested Sliding Mode Algorithm

In this section a generalization of the Continuous Singular Terminal Sliding
Mode Algorithm (CSTSMA) is presented. Due to the nested structure of the
algorithm, it is also referred to as continuous nested terminal sliding-mode
algorithm.

CSTSMA is proposed as follows

ẋ1 = x2

ẋ2 = −k1 |φ1|1/2 sign (φ1) + x3

ẋ3 = −k3sign (φ1) + ρ (36)

where φ1 = x2 + k2|x1|2/3sign(x1) x1, x2, x3 represent the states, and the
perturbation ρ satisfies |ρ| ≤ Δ.

4-CSNSMA is proposed as follows

ẋ1 = x2

ẋ2 = x3

ẋ3 = −k1 |φ2|1/2 sign (φ2) + x4

ẋ4 = −k4sign (φ2) + ρ (37)

where

φ2 = x3 + k3
(|x1|3 + |x2|4

) 1
6 sign

(
x2 + k2|x1| 34 sign(x1)

)
(38)

and x1, x2, x3, x4 represent the states, and the perturbation ρ satisfies |ρ| ≤ Δ.
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Similarly, 5-CSNSMA is proposed as follows

ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

ẋ4 = −k1 |φ3|1/2 sign (φ3) + x5

ẋ5 = −k5sign (φ3) + ρ (39)

where

φ3 = x4 + k4

[(|x1|12 + |x2|15 + |x3|20
) 1

30 sign (l1)
]

and

l1 = x3 + k3
(|x1|12 + |x2|15

) 1
20 sign

(
x2 + k2|x1| 45 sign(x1)

)
and x1, x2, x3, x4, x5 represent the states, and the perturbation ρ satisfies
|ρ| ≤ Δ.

The generalized r-CSNSMA is proposed as follows

ẋ1 = x2

ẋ2 = x3

...

ẋr−1 = −k1 |φr−2|1/2 sign (φr−2) + xr

ẋr = −krsign (φr−2) + ρ (40)

where x1, x2, · · · , xr represent the states, and the perturbation ρ satisfies |ρ| ≤ Δ.
Variable φr−2 is defined as:

•
R1,r−1 = |x1| r

r+1

where r represents the relative degree of the algorithm with respect to x1.
•

Ri,r−1 = ||x1|r1 + |x2|r2 + · · ·+ |xi−2|ri−2 |qi ,
where i = 2, 3, · · · , (r − 1), r1, r2, · · · , ri−2, and qi is a parameter designed
based on the homogeneity weight of xi+1.

•
S0,r−1 = x1

S1,r−1 = x2 + k2R1,r−1sign(x1)

Si,r−1 = xi+1 + ki+1Ri,r−1sign(Si−1,r−1)

where i = 2, 3, · · · , (r − 1)
• Finally φr−2 = sr−1,r−1.
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For example, if we want to select r1, r2 and q2 for the 4-CSNSMA (r=3), firstly
we have to check its weighted homogeneity. Our aim is to design a 4-CSNSMA
that has homogeneous weights {4, 3, 2, 1}. The design of parameters r1, r2, and
q2 is fully dependent on the weight assigned to x3. Here, we have chosen its value
as 2, therefore, it is necessary to adjust r1, r2 and q2 such that after homogenous
scaling, one can get the desired value 2 for x3. There are several ways to select
these parameters, one of them consists on calculating the LCM (lowest common
factor) of 4 and 3, which is 12, and then adjusting the power of the terms |x1|,
and |x2|, such that the weight of x3 is equal to 2. It is obvious that by selecting
r1 = 3, r2 = 4 and q2 = 6 it is possible to maintain the homogeneity of the
algorithm with weights {4, 3, 2, 1}. Similarly, one can generalize the 4-CSNSMA
till the r-CSNSMA.

Evolution of the states for the STA, where STA is given as follows [19], [28]

ẋ1 = −k1|x1| 12 sign(x1) + x2

ẋ2 = −k2sign (x1) + ρ, (41)

where x1, x2 represent the states, and the perturbation ρ satisfies |ρ| ≤ Δ. The
CSTSMA, and 4-CSNSMA are shown in Fig. 15-Fig. 16, with the following values
for the initial conditions and gains

• STA
– initial conditions x1(0) = 2, x2(0) = −7
– gains k1 = 3, k2 = 4

• CSTSMA
– initial conditions x1(0) = 2, x2(0) = −7 and x3(0) = 1
– gains k1 = 6, k2 = 2 and k3 = 6

• 4-CSNSMA
– initial conditions x1(0) = 2, x2(0) = −7, x3(0) = 1 and x4(0) = −1
– gains k1 = 4, k2 = 1, k3 = 2 and k4 = 4

Remark 1. The properties of the proposed algorithms are the same as those of
the terminal sliding mode, therefore it is referred to as rth order continuous
terminal sliding-mode algorithm (r-CSNSMA).

Discussion about CTSMA and Other Generalized CSNSMA. The
CTSMA (36) is homogeneous of degree δf = −1 with weights � = {3, 2, 1}. The
main advantage of this algorithm is that the only information that it needs to
maintain finite time convergence of all three variables x1, x2 and x3 is the output
(x1) and its derivative (x2). The proposed algorithm can work as a controller for
an uncertain system with relative degree 2 with respect to its output, in the case
of CSTSMA. Similarly, the r-CSNSMA is homogeneous of degree δf = −1, with
weights � = {r, r − 1, · · · , 2, 1}, and it can be used for an uncertain system with
relative degree r − 1 with respect to output. The main idea behind the construc-
tion of this algorithm is to add one extra discontinuous integral term, which is
able to reconstruct the perturbation and also nullify it. The CSNSMA is insen-
sible to perturbations whose time derivative is bounded. These perturbations
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Fig. 15. STA and states precision with τ = 0.001

could grow no more fast than linear function of time, i.e., they do not need to be
bounded. In comparison the nested HOSM controller can compensate bounded
Lebesgue measurable perturbations. Comparison of the properties of the prin-
cipal SMC strategies for the second order uncertain system is given in the Table 2.
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Fig. 16. CSTSMA and states precision with τ = 0.001

Simulation Results. In order to verify the proposed technique of the r-
CSNSMA, the following second and third order systems are considered

ẋ1 = x2

ẋ2 = u+ f
(42)
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Table 2. Comparison of the properties of the different SMC strategies for the second
order uncertain system with output σ

Algorithm Control Signal Information Stability Chattering Order of sliding w.r.t. σ

First SMC Discontinuous σ, σ̇ Asymptotic Yes 1

Twisting Discontinuous σ, σ̇ Finite time Yes 2

Terminal SMC Discontinuous σ, σ̇ Finite time Yes 2

STC Continuous σ, σ̇ Asymptotic No 2

Third SMC Continuous σ, σ̇, σ̈ Finite time No 3

Continuous Terminal SMC Continuous σ, σ̇ Finite time No 3

where x1, x2 are the states, u is the control and f = 2+ 4sin(t/2)+ 0.6sin(10t)
is the Lipschitz (in time) disturbance. Similarly,

ẋ1 = x2

ẋ2 = x3

ẋ3 = u+ f

(43)

where x1, x2, x3 are the states, u is the control and f = 2+4sin(t/2)+0.6sin(10t)
is the Lipschitz (in time) disturbance. The controller for systems (42) and (43)
are designed as

u = −k1 |φ1|1/2 sign (φ1)−
∫ t

0

k3sign (φ1) dτ (44)

and

u = −k1 |φ2|1/2 sign (φ1)−
∫ t

0

k4sign (φ2) dτ (45)

where φ1 and φ2 are defined as in (14) and (37), respectively. The following
parameters are used for the simulation

• uncertain double order integrator (42)
– initial conditions x1(0) = 2 and x2(0) = −7
– gains k1 = 6, k2 = 5 and k3 = 6

• uncertain third order integrator (43)
– initial conditions x1(0) = 2, x2(0) = −7 and x3(0) = 1
– gains k1 = 5, k2 = 1, k3 = 2 and k4 = 4

How to Implement CSNSMA? The main specific feature of CSNSMA as well
as of STA, CSTSMA and CNTSMA is that the part of control signal responsable
for the compensation of Lipschitz perturbation is continuous. As a consequence
of this, they are only able to compensate, theoretically exactly, Lipschitz per-
turbations, but they also need a Lipschitz signal to follow. This means that the
switching surfaces estimated by the differentiators should be smooth and have
Lipschitz derivatives. This is the reason why even the CSNSMA requires only
(r − 1) derivatives of the sliding output, and the derivative of order (r − 1)



32 L. Fridman et al.

0 1 2 3 4 5 6 7 8 9 10
−8

−6

−4

−2

0

2

4
Convergence of states

t

x

 

 
x

1

x
2

(a)

−1 −0.5 0 0.5 1 1.5 2
−10

−8

−6

−4

−2

0

2

4

Phase portrait of x
1
 and x

2

x
1

x 2

 

 
φ = 0
x

1
 vs x

2

(b)

0 1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

5

10

15
Control Input

t

u

(c)

0 1 2 3 4 5 6 7 8 9 10
−4

−2

0

2

4

6

8
Perturbation and Estimation

t

f

 

 
Perturbation
Estimation

(d)

Fig. 17. Numerical example uncertain double integrator
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Fig. 18. Numerical example uncertain triple integrator
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should be approximated by smooth signal with Lipschitz derivatives. This could
be achieved by a differentiator of order r so, in order to implement the CSNSMA
it is necessary to use r-order robust exact differentiators [22], but using only the
derivatives that it produces up to the order (r−1). By doing so, all the necessary
signals for the r-CSNSMA will be smooth, with Lipschitz derivative. The block
diagram for the implementation of CSNSMA is shown in next Figure.

Fig. 19. CSNSMA implementation

8 Conclusion

In this chapter, the historical overview of the development of SMC is presented.
We have shown that in the last three decades the Sliding Mode Community has
created new generations of controllers:

- second order sliding mode controllers(1985);
- super-twisting controllers(1993);
- arbitrary sliding-mode controllers(2001,2005).

In this chapter we have presented the next generation: two families of
continuous nested sliding-mode controllers, that can be used on Lipschitz
systems with relative degree r, providing the continuous control signal. This
new controllers ensure a finite-time convergence of the sliding output to the
(r + 1) − th-order sliding set using information on the sliding output and its
derivatives up to the order (r − 1),
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Abstract. In this chapter, a decentralised control strategy based on sliding mode
techniques is proposed for a class of nonlinear interconnected systems. Both
matched uncertainties in the isolated subsystems and mismatched uncertainties
associated with the interconnections are considered in the problem formulation.
Under mild conditions, sliding mode controllers for each subsystem are designed
in a decentralised manner by only employing local information. Conditions are
determined which enable information on the interconnections to be employed
within the decentralised controller design process in order to reduce conservatism.
The developed results are applied to a continuously stirred-tank reactor (CSTR)
system. Simulation results are presented which demonstrate the effectiveness of
the approach.

1 Introduction

A class of complex systems, such as multi-machine power systems ( [5, 15]), chemi-
cal reactor systems [7] and multi-agent systems [6], can be modelled as a collection of
subsystems with appropriate interconnections. Such classes of systems are called large
scale interconnected systems. The interconnections among subsystems together with
the inherent nonlinearity of the coupled dynamics inevitably result in complex dynam-
ics. Moreover, such classes of system are frequently distributed in space. This may make
control design using a centralised strategy difficult [16] as such an approach requires
that information about each subsystem is available to the other subsystems for use by
the controller. Problems such as network failure or failure of communication channels
may prevent information transfer among subsystems. Even if information transfer is
possible, the time delay caused by information transfer may compromise system per-
formance. This has motivated the development of decentralised control strategies in
which each subsystem is controlled independently. The control is based only on local
information, which not only enhances system reliability but also reduces the cost of
implementing systems to transfer information between subsystems.

It is well known that uncertainties or modelling errors may seriously affect control
system performance. Specifically, for large scale interconnected systems, uncertainties
experienced by one subsystem not only affect its own performance but usually affect the
other subsystems’ performance as well due to the interactions among subsystems. Sliding
mode control has been recognised as a powerful approach in dealing with uncertainties.
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When in the sliding mode, a closed loop system is completely insensitive to matched un-
certainties [4,13]. The sliding mode approach can also be used to deal with the systems
in the presence of unmatched uncertainty [17] although the property of total insensitivity
is frequently lost. However, in contrast to the case of centralised control, decentralised
control can only use local information and thus the uncertainties within the interconnec-
tions may not be rejected, even if they are matched. Designing a decentralised control
scheme to reject the effect of uncertainties in the interconnection terms is challenging.

The problem of robust decentralised controller design has received much attention and
many results have been obtained. In [1,3,9,19], only matched uncertainties are considered
and bounds on the matched uncertainties are assumed to be linear or polynomial. In terms
of mismatched uncertainties, in order to achieve asymptotic stability, some limitations
are unavoidable. Mismatched uncertainties have been considered in [12,17] where cen-
tralised dynamical feedback controllers are designed which need more resources to ex-
change information between subsystems. A class of constraints called integral quadratic
constraints is imposed on the considered systems to limit the structure of the original
systems [12]. In some cases, adaptive techniques are applied to estimate an upper bound
on the mismatched uncertainty to counteract the effects [2]. This approach may be pow-
erful when the uncertainty satisfies a linear growth condition. In [10], although the un-
certainties are assumed to be functions, the system needs to be transformed into a special
triangular structure. All of the literature which considers mismatched uncertainties men-
tioned above inevitably requires extra resources and increases the system complexity.
This may be unattractive from the viewpoint of implementation.

In this chapter, a decentralized control strategy for a class of nonlinear interconnected
systems is presented based on a sliding mode control paradigm. In terms of robustness,
both matched and unknown interconnections with mismatched uncertainties are consid-
ered. Moreover, the uncertainties are assumed to be bounded by known functions which
are employed within the control design to counteract the effects of the uncertainties.
The bounds on the uncertainties take more general forms when compared with exist-
ing work. Based on the approach proposed in [4], a sliding surface for each subsystem
is designed which when combined constitute a composite sliding surface for the inter-
connected system. A set of sufficient conditions is developed such that the correspond-
ing sliding motion is asymptotically stable when the system is restricted to the designed
sliding surface. Then, a decentralised sliding mode control is designed to drive the large-
scale interconnected system to the sliding surface in finite time. It is shown that if the
uncertainties/interconnections possess a superposition property, a decentralised control
scheme may be designed to counteract the effect of the uncertainty. Finally, the developed
decentralised control scheme is applied to a continuously stirred-tank reactor system.
Simulation results relating to this system show that the obtained results are effective.

2 System Description
Consider a nonlinear large-scale interconnected system composed of N subsystems
where the i-th subsystem is described by

ẋi = Aixi +Bi

(
ui + φi(t, xi)

)
+

N∑
j=1

Ξij(t, xj)

+ψi(t, x) i = 1, 2, . . . , N (1)
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where xi ∈ Di ⊂ Rni , ui ∈ Rmi denote the state variables and inputs of the i-th
subsystem, respectively. The matrix pairs (Ai, Bi) are constant with appropriate dimen-
sions. The matched uncertainties are denoted by φi(t, xi). The term

∑n
j=1 Ξij(t, xj)

describe the known interconnection of the i-th subsystem. The nonlinear functions
ψi(t, x) represent the uncertain interconnections where x = col(x1, x2, . . . , xn). It is
assumed that all the nonlinear functions are sufficiently smooth such that the unforced
system has a unique continuous solution. It should be noted that

N∑
j=1

Ξij(t, xj) = Ξii(t, xi) +
N∑
j �=i

j=1

Ξij(t, xj) (2)

In this case, Ξii(t, xi) can be considered the known nonlinearity in the ith subsystem
and the term

∑N
j �=i

j=1
Ξij(t, xj) the known interconnection within the ith subsystem. It

will be shown that that such a class of interconnections can be employed in decen-
tralised controller design to reduce conservatism.

The objective is to design a decentralised control scheme for system (1) based on
sliding mode techniques such that the corresponding closed-loop system is asymptoti-
cally stable. The following assumption is first imposed on the system (1).

Assumption 1. The matrix pairs (Ai, Bi) are controllable and rank(Bi) = mi for
i = 1, 2, . . . , N .

Under the condition that rank(Bi) = mi in Assumption 1, there exists an invertible
matrix T̃i ∈ R(ni×ni) such that following the coordinate transformation x̃i = T̃ixi,
the matrix pairs (Ai, Bi) with respect to the new coordinates x̃i have the following
structure

Ãi =

[
Ãi1 Ãi2

Ãi3 Ãi4

]
= T̃iAiT̃

−1
i (3)

B̃i =

[
0

B̃i2

]
= T̃iBi (4)

where Ãi1 ∈ R(ni−mi)×(ni−mi) and the matrix B̃i2 ∈ Rmi×mi is nonsingular for
i = 1, 2, . . . , N . It should be noted that the matrix T̃i can be obtained using basic
matrix theory.

As (Ai, Bi) is controllable from Assumption 1, from [4], it follows that the matrix
pair (Ãi1, Ãi2) in (3) is controllable. Then, there exists a matrix Ki ∈ R(ni−mi)×mi

such that Ãi1 −KiÃi2 is Hurwitz stable. Considering the system (1), introduce a new
transformation matrix as follows:

Ti =

[
Ini−mi 0

Ki Imi

]
T̃i (5)
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It is clear that the matrix Ti is nonsingular. Define z = col(z1, z2, . . . , zN ) where zi =
Tixi. Then in this new coordinate system, system (1) has the following form

żi =

[
Ai1 Ai2

Ai3 Ai4

]
zi +

[
0

B̃i2

] (
ui + gi(t, zi)

)

+

N∑
j=1

Γij(t, zj) + δi(t, z) (6)

where zi = Ti(Di) := Ωi, Ai1 = Ãi1 − Ãi2Ki is stable with Ki given in (5), T−1 ≡:
diag{T−1

1 , T−1
2 , . . . , T−1

N } and for i, j = 1, 2, . . . , N

gi(t, zi) = φi(t, T
−1
i zi) (7)

Γij(t, zj) �
[
Γ a
ij(t, zj)

Γ b
ij(t, zj)

]
= TiΞij(t, T

−1
j zj) (8)

δi(t, z) �
[
δai (t, z)

δbi (t, z)

]
= Tiψi(t, T

−1z) (9)

where
Γ a
ij(t, zj), δai (t, z) ∈ R(ni−mi)

Γ b
ij(t, zj), δbi (t, z) ∈ Rmi

For further analysis, now partition zi =col(zai , z
b
i ) where zai ∈ Rni−mi and zbi ∈

Rmi . Then the system (6) can be rewritten in the following form

żai = Ai1z
a
i +Ai2z

b
i +

N∑
j=1

Γ a
ij(t, zj) + δai (t, z) (10)

żbi = Ai3z
a
i +Ai4z

b
i + B̃i2

(
ui + gi(t, zi)

)
+

N∑
j=1

Γ b
ij(t, zj) + δbi (t, z) (11)

where the matrix Ai1 in (10) is stable.
The following assumption is now imposed on the uncertainty.

Assumption 2. There exist known continuous functions ρi(t, zi), ηai (t, z) and ηbi (t, z)
such that for i, j = 1, 2, . . . , N

(i) ‖gi(t, zi)‖ ≤ ρi(t, zi)

(ii) ‖δai (t, z)‖ ≤ ηai (t, z)‖z‖
(iii) ‖δbi (t, z)‖ ≤ ηbi (t, z)

Remark 1. Assumption 2 is a limitation on all the uncertainty experienced by the sys-
tem. It is required that bounds on the uncertainties are known. These bounds will be
employed in the control design to reject the effects of the uncertainty. It should be em-
phasised that the bounds on the uncertainties in Assumption 2 have a more general form
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when compared with existing work. Assumption 2 also shows that it is only required
that the uncertainties δai (·) vanish at the origin, but it is not required that gi(·) and δbi (·)
vanish at the origin.

3 Stability Analysis of the Sliding Mode Dynamics

In this section, a sliding surface is designed for the system (10)-(11) and the stability of
the corresponding sliding motion is analysed. A set of sufficient conditions is provided
such that the sliding motion is asymptotically stable. By inspection, the system (10)-
(11) has regular form. Choose the local sliding surface for the ith subsystem of the
large-scale interconnected system (6) as follows:

σi(zi) ≡: zbi = 0, i = 1, 2, . . . , N. (12)

Then, the composite sliding surface for the interconnected system (6) is chosen as

σ(z) = 0 (13)

where σ(z) ≡: col
(
zb1, z

b
2, . . . , z

b
N

)
Since Ai1 in (10) is stable, for any Qi > 0, the following Lyapunov equation has a

unique solution Pi > 0 such that

Aτ
i1Pi + PiAi1 = −Qi, i = 1, 2, . . . , N. (14)

During sliding motion, zbi = 0 for i = 1, 2, . . . , N . Then, the sliding mode dynam-
ics for the system (10)-(11) associated with the designed sliding surface (13) can be
described by

żai = Ai1z
a
i +

n∑
j=1

Γ s
ij(t, z

a
j ) + δsi (t, z

a
1 , z

a
2 , . . . , z

a
N) (15)

where

Γ s
ij(t, z

a
j ) := Γ a

ij(t, zj)|zb
j=0 (16)

δsi (t, z
a
1 , z

a
2 , . . . , z

a
N) := δai (t, z)|(zb

1,z
b
2,...,z

b
N )=0 (17)

Here Γ a
ij(t, zj) and δai (t, z) are defined in (8) and (9) respectively.

Assumption 3. The function Γ s
ij(·) has the following decomposition:

Γ s
ij(t, z

a
j ) = Γ̃ s

ij(t, z
a
j )z

a
j (18)

where Γ̃ s
ij(t, z

a
j ) is an appropriately-dimensionedmatrix function for i, j = 1, 2, . . . , N .

Remark 2. If the termΞij(t, xj) in system (1) is sufficiently smooth with Ξij(t, 0) = 0,
then Γ s

ij(t, z
a
j ) will be smooth enough with Γ s

ij(t, 0) = 0. From [14], it is straightfor-
ward to see that the decomposition (18) holds. It should be noted that in this chapter, it
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is only required that Γ s
ij(·) has the decomposition in (18). This is different to existing

work reported in [1, 10, 12, 14, 16] where it is required that Ξij(t, xj) in (1) vanish at
the origin.

It follows that, under Assumptions 1-3, a reduced order interconnected system com-
posed of N subsystems with dimension ni −mi is obtained as follows

żaj = Ai1z
a
j +

n∑
j=1

Γ̃ s
ij(t, z

a
j )z

a
j + δsi (t, z

a
1 , z

a
2 , . . . , z

a
N) (19)

which represents the sliding mode dynamics relating to the sliding surface (13), where
zai ∈ Rni−mi and Γ̃ s

ij(t, z
a
j ) satisfy equation (18).

Lemma 1. For the terms δsi (t, z
a
1 , z

a
2 , . . . , z

a
N ) in system (19), if condition (ii) in As-

sumption 2 holds, then there exist continuous functions γij(·) such that

‖δsi (t, za1 , za2 , . . . , zaN)‖ ≤
N∑
j=1

γij(t, z
a)‖zaj ‖ (20)

where za = col(za1 , z
a
2 , . . . , z

a
N).

Proof. From the definition of δsi (·) in (16), it follows that

δsi (t, z
a
1 , z

a
2 , . . . , z

a
N) = δai (t, z

a
1 , 0, z

a
2 , 0, . . . , z

a
N , 0) (21)

From condition (ii) in Assumption 2,

‖δai (t, z)‖ ≤ ηai (t, z)‖z‖ (22)

From (21) and (22), it follows that

‖δsi (t, za1 , za2 , . . . , zaN)‖ = ‖δai (t, za1 , 0, za2 , 0, . . . , zaN , 0)‖
≤ ηai (t, z

a
1 , 0, z

a
2 , 0, . . . , z

a
N , 0)‖za‖

≤
N∑
j=1

ηai (t, z
a
1 , 0, z

a
2 , 0, . . . , z

a
N , 0)‖zaj ‖

≤
N∑
j=1

γij(t, z
a
j )‖zaj ‖ (23)

where γij(t, z
a
j ) = ηai (t, z

a
1 , 0, z

a
2 , 0, . . . , z

a
N , 0) for i = 1, 2, . . . , N . Hence the result

follows. ��
The following result can now be presented.

Theorem 1. Consider the sliding mode dynamics given in equation (19). Under As-
sumptions 1-3, the sliding motion governed by (19) is asymptotically stable if there
exists a domain Ωza of the origin in za ∈ R

∑N
i=1(ni−mi) such that

M τ +M > 0
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in Ωza\{0} where M = (mij)N×N and for i, j = 1, 2, . . . , N

mij =

{
λmin(Qi)− 2‖Pi‖γii(t, zai )− ςii(t, z

a
i ), i = j

−ςij(t, z
a
j )− 2‖Pi‖γij(t, zaj ), i 	= j

where Pi and Qi satisfy (14), and the functions ςij(·) are defined by

ςij(t, z
a
j ) :≡ ‖PiΓ̃

s
ij(t, z

a
j ) + (Γ̃ s

ij)
τ (t, zaj )Pi‖

with Γ̃ s
ij(t, z

a
j ) given by (18), and γij(t, z

a
j ) determined by (20).

Proof. For system (19), consider the Lyapunov function candidate

V (t, za1 , z
a
2 , . . . , z

a
N) =

N∑
i=1

(zaj )
τPiz

a
j (24)

where Pi satisfies equation (14)
Then, the time derivative of V (t, za1 , z

a
2 , . . . , z

a
N ) along the trajectories of system

(19) is given by

V̇ =

N∑
i=1

{
− (zaj )

τQiz
a
i + 2(zaj )

τPiδ
s
i (t, z

a
1 , z

a
2 , . . . , z

a
N)

+

n∑
j=1

(zaj )
τ
(
PiΓ̃

s
ij(t, z

a
j ) + (Γ̃ s

ij)
τ (t, zaj )Pi

)
zaj

}
(25)

where (14) is used above. From (20), it follows that

V̇ ≤
N∑
i=1

{
− λmin(Qi)‖zai ‖2 + 2‖zai ‖‖Pi‖‖δsi (t, za1 , za2 , . . . , zaN )‖

+
N∑
j=1

∥∥∥PiΓ̃
s
i1(t, z

a
j ) + (Γ̃ s

ij(t, z
a
j ))

τzajPi

∥∥∥‖zai ‖‖zaj ‖}

≤
N∑
i=1

{
− λmin(Qi)‖zai ‖2 +

N∑
j=1

ςij(t, z
a
j )‖zai ‖‖zaj ‖

+2‖zai ‖‖Pi‖
N∑
j=1

γij(t, z
a
j )‖zaj ‖

}

= −
N∑
i=1

{
λmin(Qi)− 2‖Pi‖γii(t, zai )− ςii(t, z

a
i )
}
‖zai ‖2 +

N∑
i=1

N∑
j=1

j �=i

{
ςij(t, z

a
j ) + 2‖Pi‖γij(t, zaj )

}
‖zai ‖‖zaj ‖

= −1

2
Y τ (M τ +M)Y ≤ 0 (26)
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where Y ≡: col(‖za1‖, . . . , ‖zaN‖).
Thus, the conclusion follows from M τ +M > 0. ��
Theorem 1 shows that the designed sliding motion is asymptotically stable.

Conditions to ensure that this sliding motion is attained and maintained will now be
developed.

4 Decentralised Sliding Mode Control Design

A sliding mode control is designed to drive the system to the sliding surface. It is well
known that an appropriate reachability condition is described by

στ (z)σ̇(z) < 0

for a centralised system with switching surfaces σ(z) = 0. For the nonlinear intercon-
nected system (1), the corresponding condition is described by

N∑
i=1

στ
i (zi)σ̇i(zi)

‖σi(zi)‖ < 0 (27)

where σi(zi) is defined by (13). It should be noted that the condition (27) is proposed
in [8] and has been widely used [14, 18].

In order to reduce the effects of the unknown interconnection δbi (·), consider the
expression

ηbi (t, z) =

N∑
j=1

μij(t, zj) + νi(t, z) (28)

where νi(t, z) represents all the coupling terms which cannot be included in the term∑N
j=1 μij(t, zj)
The objective is to design a decentralised sliding mode controller such that the reach-

ability condition (27) is satisfied. For i = 1, 2, . . . , N , the following control scheme is
proposed:

ui = −B̃−1
i2

{
Ai3z

a
i +Ai4z

b
i +

N∑
j=1

Γ b
ji(t, T

−1
i zi)

}

−B̃−1
i2 sgn(zbi )

{
‖B̃i2‖ρi(t, zi)

+

N∑
j=1

μji(t, zi) + ζi(t, zi)
}

(29)

where the ρi(t, zi) are defined in Assumption 2, μji(t, zi) satisfy (28) and ζi(t, zi) is a
reachability function which will be defined later.
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Theorem 2. Consider the nonlinear interconnected system (6). Under Assumptions 1-
3, the decentralised control (29) is able to drive the system (1) to the composite sliding
surface (13) and maintain a sliding motion on it thereafter if in the considered domain
Ω = Ω1 ×Ω2 · · · ×Ω, the functions ζi(t, zi) in (29) satisfy

N∑
i=1

ζi(t, zi) >

N∑
i=1

νi(t, z)

in Ω\{0} for all t > 0 with νi(t, z) defined in (28).

Proof. From the analysis above, all that needs to be proved is that the composite reach-
ability condition (27) is satisfied. From (13), for i = 1, 2, . . . , N

σ̇i(zi) = żbi = Ai3z
a
i +Ai4z

b
i

+B̃i2

(
ui + φi(t, T

−1
i zi)

)
+

N∑
j=1

Γ b
ij(t, zj) + δbi (t, z) (30)

Substituting (29) into (30),

N∑
i=1

στ
i (zi)σ̇i(zi)

‖σi(zi)‖ =

N∑
i=1

{ (zbi )
τ

‖zbi ‖
{
δbi (t, z) + B̃i2φi(t, T

−1
i zi)

}

−‖B̃i2‖ρi(t, zi)−
N∑
j=1

μji(t, zi)− ζi(t, zi)
}

+
(zbi )

τ

‖zbi ‖
{ N∑

i=1

N∑
j=1

Γ b
ij(t, zj)−

N∑
i=1

N∑
j=1

Γ b
ji(t, zi)

}

≤
N∑
i=1

‖B̃i2φi(t, T
−1
i zi)‖+

N∑
i=1

‖δbi (t, z)‖

−
N∑
i=1

‖B̃i2‖ρi(t, zi)−
N∑
i=1

N∑
j=1

μji(t, zi)

−
N∑
i=1

ζi(t, zi) (31)

From Assumption 3,

N∑
i=1

‖δbi (t, T−1z)‖ ≤
N∑
i=1

N∑
j=1

μij(t, zj) +

N∑
i=1

νi(t, z)

=
N∑
i=1

N∑
j=1

μji(t, zi) +
N∑
i=1

νi(t, z) (32)
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and

‖B̃i2φi(t, T
−1
i zi)‖ ≤ ‖B̃i2‖‖φi(t, T

−1
i zi)‖

≤ ‖B̃i2‖ρi(t, zi) (33)

Substituting inequalities (32) and (33) into (31)

N∑
i=1

στ
i σ̇i

‖σi‖ ≤ −
N∑
i=1

ζi(t, zi) +
N∑
i=1

νi(t, z) < 0 (34)

Then the reachability condition (31) is satisfied. Hence, the result follows. ��
From sliding mode control theory, Theorems 1 and 2 together guarantee that the

closed-loop system formed by applying the decentralised controller (29) to the inter-
connected system (6) is asymptotically stable in the domain Ω. From the relationship
between (1) and (6), it follows that the control (29) with the transformation

col(zai , z
b
i ) = Tixi

can stabilize the system (1) asymptotically in the domain D := D1 ×D2 ×DN .

5 Case Study —Control of a Continuously Stirred Tank Reactor
(CSTR)

To illustrate the algorithm, a system composed of three cascaded non-isothermal contin-
uously stirred-tank reactors (CSTRs) with recycling as presented in [11] is considered.
The overview of the system is shown in Fig.1.

Controller 1

Temperature 
sensor

Composition 
analyzer

Coolant 
in

Coolant 
out

CSTR 1

F01, T01, CA01

Controller 2

Temperature 
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Composition 
analyzer

Coolant 
in

Coolant 
out

CSTR 2

F02, T02, CA02

Controller 3

Temperature 
sensor

Composition
analyzer

Coolant 
in

Coolant 
out

CSTR 3

F03, T03, CA03

Fr, T3, CA3

F1, T1, CA1 F2, T2, CA2 F3, T3, CA3

Recycle

Local subsystem 1 Local subsystem 2 Local subsystem 3

Fig. 1. Schematic diagram of the CSTR system

The output of local subsystem CSTR 3 is passed through a separator that recycles
unreacted products back to the CSTR 1 subsystem. The reactant species are consumed
in each reactor by three parallel, irreversible exothermic reactions. Due to the non-
isothermal nature of the reactions, a jacket is used to remove/provide heat to each
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reactor. A plant model based on material and energy balance is described as follows
(see [11] for full details):

dT1

dt
=

F 0
1

V1
(T 0

1 − T1) +
Fr

V1
(Tr − T1) +

3∑
i=1

−ΔHi

ρcp
Ri(CA1, T1)

+
Q1

ρcpV1
(35)

dCA1

dt
=

F 0
1

V1
(C0

A1 − CA1) +
Fr

V1
(CAr − CA1)−

3∑
i=1

Ri(CA1, T1) (36)

dT2

dt
=

F 0
2

V2
(T 0

2 − T2) +
F1

V2
(T1 − T2)

+

3∑
i=1

−ΔHi

ρcp
Ri(CA2, T2) +

Q2

ρcpV2
(37)

dCA2

dt
=

F 0
2

V2
(C0

A2 − CA2) +
F1

V2
(CA1 − CA2)−

3∑
i=1

Ri(CA2, T2) (38)

dT3

dt
=

F 0
3

V3
(T 0

3 − T3) +
F2

V3
(T2 − T3)

+

3∑
i=1

−ΔHi

ρcp
Ri(CA3, T3) +

Q3

ρcpV3
(39)

dCA3

dt
=

F 0
3

V3
(C0

A3 − CA3) +
F2

V3
(CA2 − CA3)−

3∑
i=1

Ri(CA3, T3) (40)

where Ti, CAi, Qj and Vj denote the temperature, the reactant concentration, the rate
of heat, and the volume of the ith reactor, respectively. The terms

Ri(CAj , Tj) = ki0e
−Ei
RTj CAj , i = 1, 2, 3

represent the reaction rate of the ith reaction. F 0
i denotes the flow rate of a fresh feed

stream associated with the ith reactor. Fr represents the flow rate of the recycle stream.
It should be noted that the temperature and the reactant concentration of the recycle
stream are assumed to be equal to the temperature and the concentration of the CSTR
3 subsystem as the recycled product is directly separated from CSTR 3. ΔHi, ki and
Ei for i = 1, 2, 3 denote the enthalpy, pre-exponential constants and activation energies
of the three reactions respectively. The symbols cp and ρ denote the heat capacity and
density of fluid in the reactor. As in [11], it is assumed that the recycle ratio is r =
0.5 and the system parameters are given in Table 1. The corresponding steady state
operating conditions are presented in Table 2 (see [11]).
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Table 1. System Parameters

Parameters Value Parameters Value

F 0
1 4.998 m3/h V1 1.0 m3

F 0
2 30 m3/h V2 3.0 m3

F 0
3 60 m3/h V3 9.0 m3

T 0
1 300.0 K C0

A1 4.0 kmol/m3

T 0
2 300.0 K C0

A2 3.0 kmol/m3

T 0
3 300.0 K C0

A3 2.0 kmol/m3

ΔH1 -5.0 × 104 KJ/kmol k10 3.0 × 106 h−1

ΔH2 -5.2 × 104 KJ/kmol k20 3.0 × 105 h−1

ΔH3 -5.4 × 104 KJ/kmol k30 3.0 × 105 h−1

E1 5.0 × 104 KJ/kmol ρ 1000.0 kg/m3

E2 7.53 × 104 KJ/kmol cp 0.231 KJ/kg K
E3 7.53 × 104 KJ/kmol Fr 94.998 m3/h

Note: Fr = rF3 where r is the recycle ratio.

The objective is to design a decentralised control strategy to stabilise the CSTR sys-
tem asymptotically. Let

xi1 = CAi − Cs
Ai

xi2 = Ti − T s
i

for i = 1, 2, 3. Then, the CSTR system can be described in the form of (1) by

ẋ1 =

[−99.996 0

0 −99.996

]
︸ ︷︷ ︸

A1

x1 +

[
0

0.00433

]
︸ ︷︷ ︸

B1

(u1 + φ1(t, x1))

+

[
94.998 0

0 94.998

]
x3︸ ︷︷ ︸

Ξ13

+

[
f11(t, x1)

f12(t, x1)

]
︸ ︷︷ ︸

Ξ11

+ψ1(t, x) (41)

Table 2. System Steady State Operating Conditions

State Equilibrium Point State Equilibrium Point

T s
1 432.8113 K Cs

A1 1.8864 kmol/m3

T s
2 422.1458 K Cs

A2 2.0510 kmol/m3

T s
3 427.8888 K Cs

A3 1.8302 kmol/m3
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ẋ2 =

[−43.332 0

0 −43.332

]
︸ ︷︷ ︸

A2

x2 +

[
0

0.00144

]
︸ ︷︷ ︸

B2

(u2 + φ2(t, x2))

+

[
33.332 0

0 33.332

]
x1︸ ︷︷ ︸

Ξ21

+

[
f21(t, x2)

f22(t, x2)

]
︸ ︷︷ ︸

Ξ22

+ψ2(t, x) (42)

ẋ3 =

[−21.111 0

0 −21.111

]
︸ ︷︷ ︸

A3

x3 +

[
0

0.000481

]
︸ ︷︷ ︸

B3

(u3 + φ3(t, x3))

+

[
14.444 0

0 14.444

]
x2︸ ︷︷ ︸

Ξ32

+

[
f31(t, x3)

f32(t, x3)

]
︸ ︷︷ ︸

Ξ33

+ψ3(t, x) (43)

where

f11(t, x1) =
(
− 3× 106 exp(

−6013.952

x12 + 432.8113
)

−6× 105 exp(
−9057.012

x12 + 432.8113
)
)
(x11 + 1.8864) + 5.2249

f12(t, x1) =
(
6.494× 108 exp(

−6013.952

x12 + 432.8113
)

+1.377× 108 exp(
−9057.012

x12 + 432.8113
)
)
(x11 + 1.8864)

−1131.4185

f21(t, x2) =
(
− 3× 106 exp(

−6013.952

x22 + 422.1458
)

−6× 105 exp(
−9057.012

x22 + 422.1458
)
)
(x21 + 2.051) + 4.0035

f22(t, x2) =
(
6.494× 108 exp(

−6013.952

x22 + 422.1458
)

+1.377× 108 exp(
−9057.012

x22 + 422.1458
)
)
(x21 + 2.051)

−865.9556

f31(t, x3) =
(
− 3× 106 exp(

−6013.952

x32 + 427.8888
)

−6× 105 exp(
−9057.012

x32 + 427.8888
)
)
(x31 + 1.8302) + 4.3212

f32(t, x3) =
(
6.494× 108 exp(

−6013.952

x32 + 427.8888
)

+1.377× 108 exp(
−9057.012

x32 + 427.8888
)
)
(x31 + 1.8302)

−935.5439
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The unknown matched uncertainty φi(t, xi, t) is assumed to satisfy

‖φ1(t, x1)‖ ≤ 1000|x11|+ 800|x12| (44)

‖φ2(t, x2)‖ ≤ 2000|x21|+ 600|x22| (45)

Consider the system (41)-(43) in the domain

D = {xi ∈ R3|xi1 ≥ −Cs
Ai, |xi2| ≤ 100}

It should be noted that since the concentration of each tank cannot be negative and
the temperature is upper and lower limited by practical bounds, the domain considered
covers a reasonable range from the practical point of view.

By using the algorithm in [4], the coordinate transformation zi = Tixi for i = 1, 2, 3
can be obtained with Ti defined by

Ti =

[
1 0

−0.1 1

]

Then the system (41)-(43) is transformed into the form in (10)-(11) as

ż1 =

[−99.996 0

0 −99.996

]
z1 +

[
0

0.00433

]
(u1 + g1(t, z1, t))

+

[
94.998 0

0 94.998

]
z3︸ ︷︷ ︸

Γ13(t,z3)

+

[
Γ a
11(t, z1)

Γ b
11(t, z1)

]
+

[
δa1 (t, z)

δb1(t, z)

]
(46)

ż2 =

[−43.332 0

0 −43.332

]
z2 +

[
0

0.00144

]
(u2 + g2(t, z2, t))

+

[
33.332 0

0 33.332

]
z1︸ ︷︷ ︸

Γ21(t,z1)

+

[
Γ a
22(t, z2)

Γ b
22(t, z2)

]
+

[
δa2 (t, z)

δb2(t, z)

]
(47)

ż3 =

[−21.111 0

0 −21.111

]
z3 +

[
0

0.000481

]
(u3 + g3(t, z3, t))

+

[
14.444 0

0 14.444

]
z2︸ ︷︷ ︸

Γ32(t,z2)

+

[
Γ a
33(t, z3)

Γ b
33(t, z3)

]
+

[
δa3 (t, z)

δb3(t, z)

]
(48)

where

Γ a
ii(t, zi) = fi1(T

−1
i zi)

Γ b
ii(t, zi) = fi2(T

−1
i zi)− 0.1fi1(T

−1
i zi)
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for i = 1, 2, 3 and j = 1, 2, and the unknown interconnections are assumed to satisfy

δa1 (t, z) ≤ 5 sin2(z11)‖z‖
δb1(t, z) ≤ 0.5 sin2(z11)‖z1‖︸ ︷︷ ︸

μ11(t,z2)

+0.5 sin2(z11)‖z2‖+ 0.5 sin2(z11)‖z3‖︸ ︷︷ ︸
ν1(t,z)

δb2(t, z) ≤ 6|z21|+ 5|z22|︸ ︷︷ ︸
μ22(t,z2)

δa3 (t, z) ≤ 2 cos2(z31)‖z3‖
δb3(t, z) ≤ 0.2 cos2(z11)‖z3‖︸ ︷︷ ︸

μ31(t,z1)

+0.7|z22|︸ ︷︷ ︸
μ32(t,z2)

During sliding motion, zi2 = 0 and Γ s
ii(t, zi) is given by

Γ s
11(t, z11) = ξ11(t, z11)z11 + 1.8864ξ11(t, z11) + 5.2249 (49)

Γ s
22(t, z21) = ξ21(t, z21)z11 + 2.051ξ21(t, z21) + 4.0035 (50)

Γ s
33(t, z31) = ξ31(t, z31)z11 + 1.8302ξ31(t, z31) + 4.3212 (51)

where

ξ11(t, z11) = −3× 106 exp(
−6013.952

0.1z11 + 432.8113
)

−6× 105 exp(
−9057.012

0.1z11 + 432.8113
)

ξ11(t, z21) = −3× 106 exp(
−6013.952

0.1z21 + 422.1458
)

−6× 105 exp(
−9057.012

0.1z21 + 422.1458
)

ξ11(t, z31) = −3× 106 exp(
−6013.952

0.1z31 + 427.8888
)

−6× 105 exp(
−9057.012

0.1z31 + 427.8888
)

It is straightforward to verify that the term 1.8864ξ11(t, z11) + 5.2249 in (49) vanishes
to 0 when x11 = 0, which means that the term can be approximated with a Taylor
series. By using a Taylor series of order 6, the term can be expressed as follows:

1.8864ξ11(t, z11) + 5.2249 = d1(t, z11)z11 (52)

where

d1(t, z11) = 1.43× 10−15z411 + 7.27× 10−12z311

+1.73× 10−8z211 + 2.31× 10−5z11 + 0.0168 (53)

With the same procedure, the Taylor series’ expansions for similar terms in Γ s
22(t, z2)

and Γ s
33(t, z3) can also be expressed with d2(t, z21) and d3(t, z31)

d2(t, z21) = 7.67× 10−16x4
22 + 3.45× 10−12x3

22

+7.61× 10−9x2
22 + 9.55× 10−6x22 + 0.00658 (54)
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d3(t, z31) = 7.64× 10−16x4
32 + 3.67× 10−12x3

32

+8.42× 10−9x2
32 + 1.09× 10−5x32 + 0.00776 (55)

Thus the known nonlinearity Γ s
ii(t, zi1) in (46)-(48) can be expressed as

Γ s
ii(t, zi1) = (ξi1(t, zi1) + di(t, zi1))︸ ︷︷ ︸

Γ̃ s
ii(t,zi1)

zi1

It is clear that the known nonlinear interconnections Γ sij(t, zj1) can be expressed
as

Γ s
13(t, z31) = 94.998z31

Γ s
21(t, z11) = 33.332z31

Γ s
32(t, z21) = 14.444z31

From Lemma 1,

δa1 (t, z11, z21, z31) ≤
3∑

j=1

5 sin2(z21)‖z11‖

δa3 (t, z11, z21, z31) ≤ 2 cos2(z31)‖z31‖

Choosing Qi = I2 for i = 1, 2, 3 and solving the Lyapunov equation (14) yields

P1 = −0.005

P2 = −0.0115

P3 = −0.0237

Then, the matrix function M will be

⎡
⎢⎣
1−‖Γ̃ s

11(t,z11)‖
99.996 −0.05 sin2(z11) −0.05 sin2(z11) −0.95−0.05 sin2(z11)

−0.7692 1−‖Γ̃ s
22(t,z21)‖
43.332 0

0 −0.6842 1−‖Γ̃ s
33(t,z31)‖
21.11 −0.0947 cos2(z31)

⎤
⎥⎦

By direct computation, it is straightforward to verify that in the domain D,

M τ +M > 0
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It follows from Theorem 1 that the designed sliding mode is asymptotically stable. From
Theorem 2, define the following decentralised control law

u1(t, z1) = 15395.8441z12 − 230.9469Γ b
11(t, z1)

−sgn(z13)
{
1000|z11|+ 800|z12 − 0.1z11|

+115.47 sin2(z11)‖z1‖+ 230.9469ζ1(z1)
}

(56)

u2(t, z2) = 20014.7806z22 − 692.8406Γ b
22(t, z2)

−sgn(z23)
{
2000|z21|+ 600|z22 − 0.1z21|

+692.8406ζ2(z2)
}

(57)

u3(t, z3) = −153575.7506z32− 2078.5219Γ b
11(t, z3)

−sgn(z33)
{
415.70348 cos2(z31)‖z3‖+ 2078.5219ζ3(z3)

}
(58)

where ζ1(z1) = 250 + 0.5‖z1‖, ζ2(z2) = 100, and ζ3(z3) = 100.
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Fig. 2. Time response of the states of the CSCTR system from (35)-(40)
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Fig. 3. Time response of the control input signals

By direct computation, it follows that the condition
∑N

i=1 ζi(zi) ≥ ∑N
i=1 νi(t, z)

is satisfied in the domain D, and thus the designed controllers (56)–(58) stabilise the
system (41)-(43) asymptotically. The time responses of the system states of the CSCTR
described in equations (35)-(40) are given in Figure 2 where the upper figure shows
the reactant concentration while the lower figure shows the tank temperature. The time
response of the control input signals are shown in Figure 3. The simulation results show
that the proposed approach is effective.

6 Conclusions

In this chapter, a decentralised state feedback sliding mode control law has been pro-
posed to stabilise a class of nonlinear interconnected systems with known and un-
known interconnections asymptotically in the considered domain. Both matched and
mismatched uncertainties are considered. The bounds on the uncertainty can be func-
tions instead of constants or being restricted to having purely polynomial bounds, which
is different to previous work. Both known interconnections and the bounds on the un-
known interconnections have been fully considered in the control design to reduce the
conservatism. The developed results are applicable to a wide class of interconnected
systems. Design and simulation for a CSTR system has been presented to demonstrate
the effectiveness of the results obtained.
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Abstract. This chapter is devoted to examine the control of multi-input uncer-
tain non affine systems. Despite the great importance of this subject the literature
has relatively few contributions, often not fully satisfactory. The authors attempt
to identify the reasons for this in the difficulties of dealing with uncertain and
time and state dependent matrices multiplying the control in the sliding output
dynamics called High Frequency Gain matrices. For constant nonsingular matri-
ces it would seem sufficient to know a set of matrices, the so-called unmixing set,
and use enumerative techniques to identify on line the element which serves to
make effective the control algorithm. The problem up to now is the cardinality of
this set which is the product of factorial and exponential of the dimension of the
matrix making impractical this approach even for low scale systems. The issue
becomes more complicated if the matrix HFG is state-dependent and time. In this
case the best that, in the current state of the research, can be done is to assume
the above matrix with eigenvalues in the positive half-plane for any value of its
arguments, and adopt a particular technique called integral sliding mode. Gener-
alization to nonsingular matrices seems to be a very hard task since everything
must be time and state varying.

1 Introduction

In this chapter recent results regarding the sliding mode control of multi-input nonlinear
systems with uncertainties in the state equation are presented. It is well known that the
sliding mode control problem can be also viewed as a stabilization problem for an I/O
system with an artificial output (the sliding output) zeroing which the relevant control
problem turns out to be solved. This assumption obviously implies the stability of the
so called zero-dynamics. The I/O relationship of interest does not need to be perfectly
known as will be more clearly stated in the sequel.

In order to clarify which is the main contribution of this chapter we start considering
the case in which the relationship between the time derivative of the sliding output and
the control is affine. This means that the dynamics of the sliding output is described by
a first order differential equation whose R.H.S is the sum of a time and state dependent
disturbance term, the drift vector field, and the product of a matrix of suitable dimension
with the control vector. We call this matrix High Frequency Gain Matrix (HFGM) in
analogy with the linear time invariant case. While uncertainties in the drift term can

c© Springer International Publishing Switzerland 2015 57
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be managed exploiting the knowledge of norm upper bounds, the lack of knowledge
of the HFG matrix implies the ignorance of the direction in which the control action
is exerted on the sliding output dynamics . The perfect knowledge of this matrix, on
the other hand, allows the perfect decoupling of the multi input control in a set of
single input control problem much more tractable. Between the two extreme cases of
perfect knowledge and total ignorance the problem is to investigate if there are classes
of uncertain matrices for which a control strategy causing the convergence of the sliding
output to zero exist. This is one of the most important object of the research on the
control of multi input nonlinear uncertain systems.

Even when dealing with the single input systems the situation in which the sign of
the high frequency gain is unknown has been, for some time, considered a challenging
case of study by many researchers, mainly in the field of adaptive control community.
The structure of a simple first order parameter adaptive control with constant control
gain with uncertain sign has been considered ẋ = f (x)+ g(x)u with the nonlinear drift
term f (x) upper bounded in modulus by a non necessarily known function and the non
zero gain g(x) with unknown sign and with known lower bound of its modulus. The
design of a control strategy effective with systems with drift term of general type (so
that the uncontrolled system can be characterized by any form of undesired behaviour
ranging from instability to finite escape time etc..), and insensitive to the control direc-
tion has been often denominated as the universal control problem. The solution of such
kind of problem is not so trivial if Morse in [13] raised the famous conjecture that even
in the case of linear system ẋ = x+bu where b �= is unknown with unknown sign cannot
be globally stabilized by a smooth adaptive control law. In [11] and [12] Martensson
on the basis of results in [24] disproved such a conjecture showing the existence of a
globally asymptotically stable control law with integral adaptive mechanism character-
ized by suitable nonlinear gains named Nussbaum functions. These functions, roughly
speaking, grow in modulus faster than the norm of the drift term as function of the state
norm while their sign is commuted the quicker the higher the state norm. Many papers
appeared in the literature, starting from the simpler case in [24] to the design of univer-
sal stabilizer that is control systems with negligible a priori knowledge about the plant
dynamics [1].

Relaxing the requirement of smooth control law, which was the main concern of
the researcher in adaptive control, and allowing any form of discontinuous control law,
a sliding mode control insensitive to the sign of the control gain is presented in [1]
which can be considered a very simple example of Knowledge Based controller. Similar
switching logic can be found in [14] based on the implicit identification of the sign of
the control gain as a consequence of of the use of the so called monitoring function,
that is a time varying function that commutes the sign of the control gain and abruptly
increases its initial conditions as an upper bound of the absolute value of the output
cross it.

The generalization to the multi-variable case is not trivial due to the above mentioned
ignorance of the direction of the control action and to make the problem tractable some
assumption on the uncertain HFG matrix structure must be made .

In Section 2 we consider the case of constant HFG matrices in order to present the
results proposed in literature for such case and the intrinsic implementation difficulties
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as the dimension of the system increases. In Section 3 the considered control system is
presented, together with the relevant assumptions. It is analyzed the case of nonlinear
uncertain systems non-affine in the control with nonlinear sliding manifold. For this
kind of systems the control direction is defined in implicit form. In such case the con-
sidered sliding output is suitably modified and integrators are introduced in the input
channel and the augmented system turns out to be affine with respect to the new con-
trol, which is first time derivative of the actual control. The resulting HFG matrix is, in
general, time and state dependent. In Section 4 an effective use of the integral Sliding
Mode method is proposed. In Section 5 some assumptions previously posed in the chap-
ter are discussed and analyzed together with their implications. A numerical example is
provided in Section 6. Finally some concluding remarks are provided.

All the proofs are collected in the Appendix.
Throughout this chapter a prime denotes transpose and |·| is the Euclidean norm or

the induced matrix norm.
Moreover, let ρ be a function in μ and γ , then the symbols ρμ , ρμμ and ρμγ denote,

respectively, the first-order partial derivatives
∂

∂ μ
ρ , the second-order partial derivatives

∂ 2

∂ μ2 ρ , and the second-order mixed partial derivatives
∂ 2

∂ μ∂γ
ρ .

In this chapter any solution of a differential equation with discontinuous r.h.s. must
be interpreted in the Filippov sense, [7], and it is assumed to exist on the whole [0,+∞).

2 The Nonlinear Sliding Mode Control Systems with Constant
HFG Matrix

In this section we briefly present some previous results in literature regarding sliding
mode control systems with constant HFG matrices.

Let us consider nonlinear uncertain systems affine in the control law

ẋ1 = A1(t,x1)+B1u1, x1 ∈ Rn, u1 ∈ Rm, t ≥ 0, (1)

and a sliding output
s1 (t,x1) =C0 (t)+C1x1, s1 ∈ Rm, (2)

where the term C0 (t) and the constant matrix C1 are perfectly known. The state x1 is
available to the controller. The sliding output (2) is designed such that a system motion,
constrained in finite time by the condition

s1 (t,x1) = 0, (3)

fulfills the prescribed control objectives. The constraint (3) is often referred to as the
sliding manifold.

The first time derivative of the sliding output s1 can be expressed as

ṡ1 (t,x1) = s1 t + s1x1 [A1(t,x1)+B1u1] = Ċ0 (t)+C1 [A1(t,x1)+B1u1] (4)
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We assume that the relative degree of the sliding output s1 with respect to the control
u1 is uniformly one, i.e. det(C1B1) �= 0. Then (4) can be rewritten as

ṡ1 (t,x1) = G1 [Φ1 (t,x1)+ u1] , (5)

where G1 =C1B1, G1 ∈ Rm×m, and Φ1 (t,x1) = G−1
1 [s1 t +C1A1 (t,x1)], Φ1 ∈ Rm.

The nonlinear control system (1) is uncertain. If G1 is perfectly known and the norm
of the drift term Φ1 (t,x1) is upper bounded by a known function of the same arguments,
classical sliding mode method can solve easily the control problem. Indeed if the control
is chosen, for example

u1 i =−G−1
1 i

[
F1 (t,x1)+ k2]sign (s1) ,

where G−1
1 i is the i-th row of the matrix G−1

1 , F1 (t,x1)≥ |Φ1 (t,x1)|, k �= 0 is a chosen con-
stant, and sign (s1) ∈ Rm is defined as the vector sign (s1) = [sign (s1) , . . . ,sign (sm)]

′,
then it suffices to guarantee the standard condition s′1s1 ≤ −k2 |s1| and s1 is steered to
zero in finite time. The multi-input control problem is decoupled in single-input ones.

While uncertainties in the drift term Φ1 (t,x1) can be quite easily managed if suit-
able upper-bounds are known, uncertainties in the matrix G1 often make the problem
formidable even for sliding mode control approach. Uncertainties in the matrix G1 af-
fect directly the possibility of decoupling the system and, therefore, represent a difficult
obstacle to the achievement of the control objectives.

In the sequel we summarize the control strategies proposed in literature and effective
for systems with uncertain and constant matrices G1 featuring specific structural prop-
erties. Three cases are presented characterized by increasing generality. The solution of
the control problem in the three cases is based on the choice of a suitable Lyapunov
function candidate, the time derivative of which must be evaluated according to the Fil-
ippov’s solution concept due to possible discontinuities in the r.h.s. of the state equation
(1).

Case 1. The HFG matrix is positive definite, i.e. G1 > 0.
The following Lyapunov function is chosen

V1 =
1
2

s′1G−1
1 s1.

The control vector is designed as

u1 =−ρ1 (t,x1) sign (s1) ,

where the control gain is ρ1 (t,x1) =
[
F1 (t,x1)+ k2

]
and k �= 0 is a chosen constant.

The first time derivative of the function V1 satisfies the following inequalities

V̇1 = s′1 [Φ1 + u1]≤−k2s′1sign (s1)≤−k2
√

s′1s1 ≤− k2√
λmax

(
G−1

1

)√V1,

where λmax(G
−1
1 ) indicates the maximum eigenvalue of the matrix G−1

1 ; as a conse-
quence s1 converges to zero in finite time.
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Case 2. The HFG matrix is such that G1 +G′
1 > 0.

The Lyapunov function is chosen as follows

V2 = s′1s1.

The control vector u1 is designed as a unit vector control of this kind

u1 =−ρ1 (t,x1)
s1 (t,x1)

|s1 (t,x1)| ,

where the control gain is as in the previous case ρ1 (t,x1) =
[
F1 (t,x1)+ k2

]
, k �= 0.

The first time derivative of the function V2 satisfies the following inequalities

V̇2 = s′1G1 (Φ1 + u1)+ (Φ1 + u1)
′ G′

1s1

≤ − k2

|s1|λmin (G1 +G′
1) s′1s1 + 2s′1G1

(
Φ1 −F1

s1
|s1|

)
,

since it can be shown that the vectors s1 and G1

(
Φ1 −F1

s1
|s1|

)
form an obtuse angle, it

results

V̇2 ≤− k2

|s1|λmin
(
G1 +G′

1

)
s′1s1 ≤−k2λmin

(
G1 +G′

1

)√
s′1s1 ≤−k2λmin

(
G1 +G′

1

)√
V2,

where λmin(G1 +G′
1) indicates the minimum eigenvalue of the matrix (G1 +G′

1); as a
consequence s1 converges to zero in finite time.

Case 3. The HFG matrix is such that −G1 is Hurwitz .
The Lyapunov function is chosen as follows

V3 = s′1P1s1,

where P1 ∈ Rm×m is the unique symmetric positive definite solution to the equation

−P1G1 −G′
1P1 =−I.

The control vector u1 is designed as a unit vector control of this kind

u1 =−ρ1 (t,x1)
s1 (t,x1)

|s1 (t,x1)| ,

where the control gain is chosen as ρ1 (t,x1) =
[
F1 (t,x1)+ k2

]
, k �= 0.

The first time derivative of the function V3 satisfies the following inequalities

V̇3 = s′1P1G1 (Φ1 + u1)+ (Φ1 + u1)
′ G′

1P1s1 ≤− k2

|s1| s
′
1s1 + 2s′1P1G1

(
Φ1 −F1

s1

|s1|
)
,

since it can be shown that the vectors s1 and P1G1

(
Φ1 −F1

s1
|s1|

)
form an obtuse angle,

it results

V̇3 ≤− k2

|s1| s
′
1s1 ≤−k2

√
s′1s1 ≤− k2

λmax (P1)

√
V3

where λmax(P1) indicates the maximum eigenvalue of the matrix P1; as a consequence
s1 converges to zero in finite time.
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It is also possible to complement the previous results, effective for constant HFG
matrices G1, by considering for all the cases a norm bounded time and state dependent
perturbation, ΔG1(t,x1), provided some constraint of the type∣∣G−1

1 ΔG1(t,x1)
∣∣≤ γ < 1.

The scalar γ is assumed known to the designer and slight modifications of the above
control amplitude ρ1(t,x1) solves the problem.

In recent years further steps for more general cases of uncertainties of the matrix G1

have been performed. We refer to [17] in which the eigenvalues of the uncertain matrix
G1 are assumed arbitrarily located in the complex plane except on a boundary layer of
the imaginary axis.

The method is based on the knowledge of a suitable set S = S1...Si...Snm of matrices,
the so called unmixing set [12] having the following property:
given an arbitrary real nonsingular m×m matrix M there exists at least one element Si

of the set such that the product −MSi is Hurwitz.
As a consequence let SG1 an element of the unmixing set corresponding to G1, if we

chose

u1 = SG1w1, w1 =−ρ1 (t,x1)
s1 (t,x1)

|s1 (t,x1)| ,

the situation would coincide, with respect to the new control w1, with the Case 3.
The finite cardinality unmixing set has been proved to exist, [12], [17], and it is

assumed to be known by the designer. Since G1 is not known, in [17] a time-varying
estimate of SG1 is provided by a time-varying convex combination of the elements of
this set. An adaptation mechanism for the coefficients provides a facility for cycling
through the elements of the set dwelling on each element for a progressively longer
time intervals. As a result, by using contradiction argumentation like in the single input
case, the asymptotic stability is guaranteed. Similar approach based on the knowledge
of an unmixing set has been recently proposed in the area of sliding mode control [15] in
which the sliding manifold is reached in a finite number of trial(in the worst case equal
to the cardinality of the unmixing set). The procedure to identify the matrix SG1 is, in
both cases, heuristic and the door for different searching procedure based on intelligent
and learning techniques [26,23] is open.

In the following we shall present some consideration regarding the implication of
the fundamental assumption that the unmixing set is known. Indeed this assumption
hides the fact that only the existence of an unmixing set has been proved and no gen-
eral methods to build it have been provided until now so we can consider the problem
relevant to the case of constant uncertain non singular HFG matrices a relatively open
problem. The cardinality of an unmixing set for matrices of rather general structure has
been evaluated in [25] according to the next proposition.

Proposition 1. For any non singular real matrix M of order m ≤ 3 there exists a per-
mutation matrix Pm j and an Identity variant Im j (a diagonal matrix whose elements can
be +1 or −1) to such that the product MPm jIm j has positive eigenvalues. Therefore the
set of the products of any permutation matrix for any Identity variants is an unmixing
spectrum at least for m ≤ 3.

The cardinality of such a set is consequently equal to m!2m.
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A conjecture relevant to the extension to m > 3 has been disproved for m = 65 with
no guarantee that its validity is extended to lesser values. In any case even if the con-
jecture were true the cardinality of the unmixing set would be non polynomial bounded
with m as (NP-complete) making any enumerative technique impractical even for sys-
tems of low dimension. Therefore, dealing for medium/large scale system the problem
is not solved in practice (the examples in [14] are for m = 2) and deserves further in-
vestigations encouraged by the fact that some particular matrices (e.g. triangular, block
triangular, in companion form [20], [8]) can be characterized by surprisingly lower di-
mensional unmixing set.

To conclude this section on systems with constant HFG matrices we can stress the
fact that up to now there is no well defined constructive methodology to support the
basic assumption in [17], [14].

3 The Nonlinear Sliding Mode Control System

Consider the control system

ẏ = f (t,y,v) , t ≥ 0, (6)

with the control vector v ∈ Rm, the state variable y ∈ Rk and the dynamics f : [0,+∞)×
Rk ×Rm → Rk. A sliding manifold is defined by

σ (t,y) = 0 (7)

with σ : [0,+∞)×Rk → Rm, m ≤ k, which fulfills prescribed control aims. The objec-
tive is to control the state variables y(t), t ≥ 0, of the control system (6) in order to
exponentially guarantee the sliding property σ [t,y(t)] = 0 with uncertain dynamics f .

3.1 The Nonlinear Control System with Chattering Reduction

In order to reduce chattering in the control system (6) and sliding manifold (7) due to
the discontinuous nature of the Sliding Mode control v, the augmented control system
is defined as

ẏ = f (t,y,v) , v̇ = u, t ≥ 0, (8)

with augmented state variable x = (y′,v′)′ ∈ Rn, n = k+m, and control variable u ∈ Rm.
The state x and the control u are available. If the new control u is discontinuous, then
the vector v turns out to be (absolutely) continuous and the corresponding state x of (8)
must be intended in the Filippov sense, [7].

Discussion.

If the control objective is satisfied, then the sliding motion on σ (t,y) = 0 is exponen-
tially achieved by applying a continuous control v.

This fact implicitly defines the class of nonlinear non-affine systems, which can be
suitably dealt with by the methodology which is proposed in this chapter.

Indeed it is necessary that:
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– the continuous control v∗, solution to the equation σt (t,y)+σy (t,y) f (t,y,v∗ (t,y))=
0, exists and is unique;

– the constrained dynamical system (6)–(7), implicitly defining the zero-dynamics,
is stable with v = v∗ (minimum–phase), [9,5];

– the motion of system (6) in a boundary layer of the sliding manifold σ (t,y) = 0 is
practically stable, [27].

The augmented dynamics
ẋ = A(t,x)+Bu, (9)

where A(t,x) =

[
f (t,y,v)

0

]
and B =

[
0
I

]
.

Assume that f , σ are both of class C2 everywhere. Then

σ̇ (t,x) = M (t,x) , (10)

with M (t,x) = σt (t,y)+σy (t,y) f (t,y,v), and

σ̈ (t,x,u) = E (t,x)+G(t,x)u, (11)

where E = σtt + 2σty f + f ′σyy f +σy ft +σy fy f , the term f ′σyy f denotes the vector of
components f ′σ jyy f , j = 1, . . . ,m, and G = σy fv.

Fix a constant m×m matrix C = diag(ci), ci > 0, i = 1, . . . ,m, i = 1, . . . ,m, and
consider

ζ (t,x) = σ̇ (t,x)+Cσ (t,x) . (12)

Remark 1. We assume that the sliding output ζ , hence σ and σ̇ are available to the
controller for feedback purposes. Actually, σ̇ cannot be directly computed since it is
affected by the uncertainties of the system. In [2] a second order sliding mode (SOSM)
observer was introduced to solve this kind of problem. It was proven, [2], that this
SOSM observer can exactly estimate σ̇ (t,x) in finite time, provided the availability of
a known function Q such that |σ̈ | ≤ Q(t,x,u).

Then for almost every t

ζ̇ (t,x,u) = σ̈ (t,x,u)+Cσ̇ (t,x) (13)

= E (t,x)+G(t,x)u+CM (t,x)

= L(t,x)+G(t,x)u,

where L = ζt + ζxA = E +CM, G = ζxB and L, G are continuous.
Let us consider system (9) with sliding output vector (12), the time derivative of

which is expressed by (13). Let D be an open subset of Rn and suppose that A, B ∈
C0 (D), ζ ∈C1 ([0,+∞)×D).

We make the following assumption.

Assumption 1. Let λi (G), i= 1, . . . ,m, be the real parts of the eigenvalues of the matrix
G(t,x), t ≥ 0 and x ∈ D. There exist two continuous functions α and ω such that for all
t and x

0 < α (t,x)≤ λi (G)≤ ω (t,x) , i = 1, . . . ,m. (14)
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Remark 2. Assumption 1 implies that the real parts of the eigenvalues of the matrix G
are positive and bounded by two continuous functions α (t,x) and ω (t,x) according to
(14). The two functions α (t,x) and ω (t,x) are assumed to exist. In this chapter neither
the two functions α (t,x) and ω (t,x), nor bounding functions for them are assumed to
be known.

If condition (14) holds (see [3] and [10]), then for all t ≥ 0 and x there exists a unique
solution P(t,x)> 0 to the Lyapunov equation

−G′ (t,x)P(t,x)−P(t,x)G(t,x) =−I. (15)

If G(t,x) were known, then P(t,x) could be computed by solving an algebraic equa-
tion, [10]. In this chapter we assume not to know the matrix G(t,x), therefore we cannot
obtain P(t,x). The proposed control strategy does not rely on the availability of P(t,x).

Even though we do not know the matrix P(t,x), we can write its time derivative
dP(t,x)

dt as the sum of two terms

dP(t,x)
dt

= H1 (t,x)+H2 (t,x,u) , (16)

where H1 = Pt +PxA and H2 = PxBu.

Remark 3. Assumption 1 is similar to the Hurwitz condition presented by [4] for Slid-
ing Mode control of multi-variable linear systems, which does not impose upper bounds
on the norm of HFGM. In [4] a constant HFGM is considered and a lower bound of the
unknown positive eigenvalues is sufficient. Here the HFGM G(t,x) is time and state
dependent. It is necessary to take into account the first time derivative of the matrix
P(t,x), given by (16). This requires the knowledge of the existence of an upper bound
of the unknown positive eigenvalues of G(t,x). Therefore the results, which we propose
here and the ones of [4], even if they are related, cannot be directly compared.

Suppose that the sliding manifold (7) and the system (9) are such that the following
assumption holds.

Assumption 2. G ∈C1 ([0,+∞)×D) and there exist three continuous functions k0, k1,
k2 such that for every t and x one has

|A|+ |B| ≤ k0 (t,x) , |Gx| ≤ k1 (t,x) , |Gt | ≤ k2 (t,x) . (17)

Under the previously posed conditions we can state the following proposition.

Proposition 2. Let Assumption 1 and 2 hold. Then there exists a continuous scalar
γ1 (t,x) such that

ζ ′H1 (t,x)ζ ≤ γ1 (t,x) |ζ |2 (18)

and a continuous positive scalar γ2 (t,x) such that∣∣ζ ′H2 (t,x,u)ζ
∣∣≤ γ2 (t,x) |ζ |2 |u| , (19)

for every t, x, u, ζ .
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Proof. See the proof of Proposition 2.3 in [3].

Remark 4. The three continuous functions k0 (t,x), k1 (t,x) and k2 (t,x) are assumed to
exist. This assumption is required for the proof of Proposition 2. In this chapter neither
the functions k0 (t,x), k1 (t,x), k2 (t,x), γ1 (t,x) and γ2 (t,x), nor bounding functions for
them are assumed to be known, since they are not necessary to the proposed control
procedure.

4 The Unit Vector Integral Sliding Mode Control

In this section we introduce an Integral Sliding Mode control method. This Sliding
Mode approach was proposed so far, [22], [21], [16], and it is based on the idea to
determine a sliding manifold such that the state trajectories of the controlled system start
on the sliding surface at the initial time t = 0. Provided a sliding condition is guaranteed
by the applied control for t ≥ 0, the sliding mode is obtained without reaching phase
together with the exact rejection of the uncertainties since the initial time t = 0.

The Integral Sliding Output

Let us define a new integral sliding output

s(t,x) = ζ (t,x)+ c0

[
−1

c 0
ζ (0,x(0))+

∫ t

0
ζ (τ,x)dτ

]
, (20)

where c0 is an arbitrary positive constant.

Remark 5. The sliding output s can always be computed since all the terms in (20) are
available. From (20) it appears that s(0,x(0)) = 0.

Remark 6. If the condition s(t,x) = 0 is identically fulfilled for t ≥ 0, the original slid-
ing output ζ (t,x) vanishes arbitrarily exponentially fast

ζ (t,x) = ζ (0,x(0))e−c0t .

The dynamics of the sliding output s, considering (13) and (20), is given by

ṡ(t,x) = c0ζ (t,x)+G(t,x) [Φ (t,x)+ u] , (21)

where Φ (t,x) = G−1 (t,x)L(t,x).

u =−ρ (t,x)
s(t,x)
|s(t,x)| . (22)

The following theorem is proven.

Theorem 1. Consider system (9) with sliding output s(t,x) given by (20) under As-
sumptions 1 and 2. Assume to know Φ∗ (t,x) such that for every t ≥ 0 and x

Φ∗ (t,x)≥ 2 |P(t,x)G(t,x)Φ (t,x)|+ 2c0 |P(t,x)ζ (t,x)| . (23)
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The unit vector control (22) with amplitude

ρ (t,x)≥ 2 [ε∗+Φ∗ (t,x)] , (24)

ε∗ > 0, guarantees that s(t,x) = 0 for t ≥ 0. The sliding manifold s(t,x) = 0 is invariant

and locally stable within the ball |s|< 1
2γ2 (t,x)

, where the unknown function γ2 (t,x)>

0 is given by (19).

Proof of Theorem 1. See the Appendix.

Remark 7. The augmented control system (9) is defined such that v̇ = u; the actual
control v is included in the augmented state x = (y′,v′)′ and the new control vector is
u. According to Theorem 1 the sliding motion on s(t,x) = 0 is guaranteed by applying
the discontinuous control u given by (22). The corresponding control v turns out to be
continuous and the corresponding state x solution of (9) must be intended in the Filippov
sense, [7]. The actual control v, which is part of the state x solution of (9), is guaranteed
to be bounded if the zero-dynamics defined by the dynamical system (9) constrained on
s(t,x) = 0 is stable.

5 Upper Bounds of the Norm of the Solution of the Continuous
Algebraic Lyapunov Function

The computation of the drift term Φ∗ (t,x) implies the availability of an upper bounds
of the norm of the matrix P(t,x) for any (t,x). In the sequel it will be proved that
Φ∗ (t,x) is the only information required to carry out the design of the control system
and therefore it make sense to analyze the literature regarding the solutions bound to
the Lyapunov equation.

Assumption 1 guarantees that an unique positive definite solution to the following
equation exists

G′ (t,x)P(t,x)+P(t,x)G(t,x) = I. (25)

The question is which is the minimum amount of information, regarding the set of
matrix G(t,x), sufficient to provide the required norm bound for P(t,x).

In principle the required upper bound is computable once the minimum singular
value σmin (G′ (t,x)⊕G′ (t,x)) of the Kronecker sum of G′ (t,x) with itself is available
according to

vec (P(t,x))=[
(
I ⊗G′ (t,x)

)
+
(
G′ (t,x)⊗ I

)
]−1vec (I)=

(
G′ (t,x)⊕G′ (t,x)

)−1
vec (I)

| (P(t,x))| ≤ |vec (P(t,x))| ≤ (
σmin

(
G′ (t,x)⊕G′ (t,x)

))−1 |vec (I)|.
In case of known matrix G(t,x) the computation can be performed on line exploiting
some form of symbolic algorithm. It is still an open problem the generalization of such
an approach to the case of norm bounded uncertainties with respect to a nominal known
G(t,x) despite of the broad literature relevant to robust Lyapunov stability.
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An upper bound of P(t,x) can be expressed in terms of the bounds of the eigenval-
ues of G(t,x) exploiting the following integral form of the solution of the Lyapunov
equation, which, for any (t,x), can be expressed as

P(t,x) =
∫ +∞

0
e−G(t,x)′τ e−G(t,x)τ dτ,

From this integral form it follows that P(t,x) ∈C1([0,∞)×D).
The first consequence of this latter expression for P(t,x) and the Assumption 1 is

that

|P(t,x)| ≤ c
∫ +∞

0
e−2ατdτ =

c
2α

, (26)

where c, which always exists due to Assumption 1, is such that

ce−α ≥
∣∣∣e−G(t,x)

∣∣∣ .
Different bounds requiring less a priori knowledge about the matrix G(t,x) have

been provided in the literature.
According to previous notations let

– λ1 (P)≥ λ2 (P)≥ . . .λm (P) the eigenvalues of P(t,x);
– σ1 (G)≥ σ2 (G)≥ . . .σm (G) the singular values of the matrix G(t,x);

– λ1 (Gs)≥ λ2 (Gs)≥ . . .λm (Gs) the eigenvalues of the symmetric part G(t,x)+G′(t,x)
2 =

Gs (t,x) of G(t,x).

The former result of was attained for the restricted class of matrices G(t,x) with
λm (Gs)> 0 which, as previously remarked, is considered of little interest for this paper.
The bound presented in [19] is

λ1 (P)≤ 1
λm (Gs)

.

Slightly more general result has been presented in [6]. The class of system is ex-
tended to that for which λm (Gs) is not necessarily positive but there exist a posi-
tive definite matrix F such that the minimum eigenvalue of the symmetric part of
F

1
2 G(t,x)F− 1

2 +G′ (t,x) is greater than a known positive number μF (G). In that case
a computable upper bound of the norm of P(t,x) is

λ1 (P)≤ λ1 (F)λm (F)

μF (G)

A more general class of uncertain matrices for which it is possible to compute an
upper bound of the norm of P(t,x) is presented in [18] and will be here detailed and
adapted to the considered case. Consider the polar decomposition of the invertible ma-
trix G(t,x)

G(t,x) =
(
G(t,x)G′ (t,x)

) 1
2
(
G(t,x)G′ (t,x)

)− 1
2 G(t,x) = H (t,x)R(t,x) ,
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where H (t,x) = (G(t,x)G′ (t,x))
1
2 > 0 is the symmetric positive definite factor of

G(t,x) and R(t,x) = (G(t,x)G′ (t,x))−
1
2 G(t,x) is the orthogonal factors of G(t,x) (in-

deed R(t,x)R′ (t,x) = I).
The required Assumptions are that R has eigenvalues with positive real parts and

det(R) = +1, that is R ∈ SO(m).
R, we drop the arguments for notation simplicity sake, can be factorized according to
Schur theorem as

R = XShX ′ XX ′ = I

and Sh is a block diagonal matrix with 2× 2 diagonal blocks Shi,

Shi =

[
cosθi −sinθi

sinθi cosθi

]
(27)

where by assumption cosθi > 0.
As a result for the symmetric part of R

R+R′

2
= XCX ′ C = diagci

and

ci =

[
cosθi 0

0 cosθi

]
(28)

Therefore

1 ≥ λ1

(
R+R′

2

)
≥ λm

(
R+R′

2

)
≥ min

i
cosθi.

The posed assumptions imply that a possibly time and state dependent strictly positive
scalar cm ≤ mini cosθi is available to the designer.

Let
H−1 =

(
GG′)−1/2

H−1G = R

and
R+R′

2
=

H−1G+G′H−1

2
.

Note that GH−1 = HRH−1 and GH−1+H−1G′
2 have the same eigenvalue of R and R+R′

2
respectively.

Consider now the Lyapunov equation (25) and multiply both sides by H−1 as follows

H−1PG+H−1G′P = H−1

H−1PGH−1H +H−1G′P = H−1.

The two terms in the left hand side are similar and therefore have the same trace

2trace
(
H−1G′P

)
= trace

(
H−1) ,

since trace (AB) ≥ λm (A) trace (B) and, due to the previous remark trace
(
GH−1

)
=

trace (R)
2λm (R) trace (P) = trace

(
H−1)
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since the eigenvalues of H are the singular values of G it results:

trace
(
H−1)≤ m

σm (G)
,

λ1 (P)≤ trace (P)≤ m
2cmσm (G)

. (29)

If G(t,x) has spectrum in C+ , its orthogonal factor R(t,x) has positive eigenvalues,
known lower bounds of the singular values of G(t,x) and of the eigenvalues of R(t,x)
are sufficient to provide an upper bound (29) of the norm of the solution of the Lyapunov
equation (25).

6 Example

Consider the control system (6) with

f (t,y,v) =

⎡
⎢⎢⎣

y3

y4

− f5 (y1,y3) f6 (v2)
f7 (y1,y3)v1 +[ f5 (y1,y3)+ f8 (y2,y4)] f6 (v2)

⎤
⎥⎥⎦ , (30)

0 1 2 3 4 5 6 7 8 9 10
−8

−6

−4

−2

0

2

v1

0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

v2

t [sec]

Fig. 1. The applied continuous control actions vi, i = 1,2
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f5 (y1,y3) =
2.5√
5.25

√
10+ .02 |y1 + y3|3, f6 (v2) =

(
v2 + .03v3

2

)
,

f7 (y1,y3) =
√

5.25
2.5

√
10+ .02 |y1 + y3|, f8 (y2,y4) = .1

√
10+ .02 |y2 + y4|3, the control

vector v ∈ R2, the state variable y ∈ R4 and the dynamics f : [0,+∞)×R4 ×R2 → R4.
The sliding manifold is defined by

σ (t,y) =

[
y1 + y3

y2 + y4

]
= 0. (31)

The sliding output σ is exploited to define ζ and s according to (12) and (20) respec-
tively, with C = diag (4, 4) and c0 = 2. We define the augmented dynamics

ẋ = g(t,x,u) = A(t,x)+Bu, (32)

with augmented state variable x = (y′,v′)′ ∈ R6, control variable u ∈ R2, and dynamics
g(t,x,u) = ( f ′ (t,x) ,u′)′.

The HFGM results G(t,x) =

[
0 − f5

(
1+ .09v2

2

)
f7 ( f5 + f8)

(
1+ .09v2

2

)]. It is easy to verify that

G(t,x) has positive eigenvalues for all t ≥ 0 and x. Assumption 1 holds, then for all

0 1 2 3 4 5 6 7 8 9 10
0

5

10

y1

0 1 2 3 4 5 6 7 8 9 10
0

5

10

y2

0 1 2 3 4 5 6 7 8 9 10

−4

−2

0

y3

0 1 2 3 4 5 6 7 8 9 10

−4

−2

0

y4

t [sec]

Fig. 2. The state variables yi, i = 1, . . . ,4
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t ≥ 0 and x there exists a unique solution P(t,x) > 0 to the Lyapunov equation (15).
The matrix G(t,x) is assumed not to be known, therefore we do not compute P(t,x).
The proposed control strategy does not rely on the availability of P(t,x).

The previously posed conditions and assumptions hold for system (30), sliding man-
ifold (31), and augmented dynamics (32).

We design the control switching logic according to the unit vector control algorithm
(22). The applied control actions vi, i = 1,2, are continuous, Figure 1. The state vari-
ables yi, i = 1, . . . ,4, are presented in Figure 2.

Conclusions

The control of uncertain multi-input systems has been considered.
The case of system with constant HFG has been analyzed first. The concept of un-

mixing set is introduced and its role in motivating an enumerative technique to deal
with simply nonsingular HFG matrices has been outlined. The Curse of Dimensionality
of this approach and the heuristic nature of the proposed methodologies open the door
to alternative solutions possibly more feasible.

The attempt to generalize to time and state dependent HFG matrices with eigen-
values in the positive half-plane for any value of their arguments the control method
adopted for constant HFG matrices( with the same spectral features) turns out to be
not satisfactory. Indeed with the same choice of the Lyapunov function candidate the
application of the same unit vector control method leads to the rather poor result that
the convergence cannot be guaranteed outside a boundary layer of the sliding manifold
whose size depends on the system uncertainties in a very involved way and therefore
not available to the designer.

The situation is made more complicated by the fact that the system originally non
affine in the control is made affine by the introduction of integrators in the Input Chan-
nel.

The use of the Integral Sliding Mode control, consisting instead in the introduction of
integrators in the Output Channel, (whose initial conditions can be arbitrarily assigned)
allows the elimination of the so called reaching condition and the sliding motion is
established from the initial time whichever the size of the boundary layer.

Acknowledgement. This book is a special volume dedicated to Professor Okyay Kay-
nak to commemorate his lifetime impactful research and scholarly achievements and
his services to the profession. With this chapter the authors want to outline the origi-
nal contribution of Professor Kaynak to make Sliding Mode Theory an important tool
to solve problems ranging from robotics and other advanced engineering applications,
to mathematical programming and optimization. This impression of vastness and va-
riety of research interests, for Giorgio Bartolini, dates back at the first meeting with
Okyay Kaynak during the IEEE International Workshop on Intelligent Motion Control
in August 1990 in Istanbul.
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Appendix

The proof of Theorem 1 requires the following lemma.

Lemma 1. Let V (t) be absolutely continuous on every interval [0,T ], T > 0, such that
V (t)≥ 0 for every t ≥ 0 and

dV (t)
dt

≤−p(t)
√

V (t)+ q(t)V (t) , (33)

where p and q are nonnegative integrable functions on every [0,T ], T > 0. Then V (t) =
0 for every t sufficiently large provided

V (0)≤ 1
4

(∫ t∗

0
p(t)e−Q(t)dt

)2

(34)

for some t∗ > 0, where

Q(t) =
1
2

∫ t

0
q(s)ds.

Moreover, if there exists t ≥ 0 such that V (t) = 0, then V (t) = 0 for every t ≥ t.

The proof of Lemma 1 can be found in [3].
Proof of Theorem 1. Let us choose the following Lyapunov function candidate

V (t,x) = s′ (t,x)P(t,x) s(t,x) , (35)

where P(t,x)> 0 is the unknown matrix solution to (15).
By using (13), (21) and (35)

dV
dt = 2c0s′P(t,x)ζ + s′P(t,x)G(t,x) [Φ (t,x)+ u]

+[Φ (t,x)+ u]′ G′ (t,x)P(t,x) s+ s′ dP(t,x)
dt s.

(36)

The equation (36) implies

dV
dt ≤ s′P(t,x)G(t,x) [Φ (t,x)+ u]+

+[Φ (t,x)+ u]′ G′ (t,x)P(t,x)s+
2c0s′P(t,x)ζ + γ2 (t,x) |s|2 |u|+ γ1 (t,x) |s|2 ,

(37)

where the unknown functions γ1 (t,x) and γ2 (t,x)> 0 are given by (18) and (19).
The unit vector control strategy (22), [3], discontinuous on s(t,x) = 0, can be applied

u =−ρ (t,x)
s
|s| .

By virtue of the unit vector control (22) and since (15) holds, the Lyapunov equation
(37) implies

dV
dt ≤ −s′

[
ρ (t,x) s

|s| − 2P(t,x)G(t,x)Φ (t,x)+ 2c0P(t,x)ζ
]
+

+γ2 (t,x)ρ (t,x) |s|2 + γ1 (t,x) |s|2 .
(38)
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By (23) we can write

dV
dt

≤− [ρ (t,x)(1− γ2 (t,x) |s|)−Φ∗ (t,x)] |s|+ γ1 (t,x) |s|2 . (39)

For any ε∗ > 0, within the ball |s|< 1
2γ2

, if ρ (t,x) fulfills (24), then

dV
dt

≤−ε∗ |s|+ γ1 (t,x) |s|2 . (40)

Denote by λmin = λmin (t,x), λmax = λmax (t,x) the minimum and maximum eigen-
value of P(t,x). Taking into account (35), (40) implies that

dV
dt

≤− ε∗√
λmax

√
V +

γ1

λmin
V.

From this inequality, according to Lemma 1, it follows that the application of the unit
vector control (22) guarantees s(t,x) = 0 for t ≥ 0. �
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Abstract. In this chapter, the dynamical behaviors of discrete-time fast
terminal sliding mode control systems are studied. Based on Euler’s dis-
cretization, the approximate discrete-time model is obtained. Using a
recursive analysis method, the boundedness for the steady states of the
discrete-time system is established. Theoretical analysis shows that the
discrete-time fast terminal sliding mode control method can offer a higher
output tracking precision than the discrete-time linear sliding mode con-
trol method. As an application of the proposed theoretical results, the
control problem for the DC-DC buck converters via discrete-time fast ter-
minal sliding mode control is investigated. Simulation results are given
to demonstrate the effectiveness of the proposed method.

Keywords: Dynamical behaviors, Euler discretization, Fast terminal
sliding mode.

1 Introduction

In recent years, the sliding mode control (SMC) has been extensively studied
and successfully applied in practice. This is due to its many attractive features,
such as simplicity, invariance, and robustness to parameters uncertainties and
external disturbances [1–4]. In general, in order to realize a SMC, a switching
surface or a sliding mode surface is first defined, and then a SMC law is designed
to drive the system state to the sliding mode surface. Once the sliding mode is
reached and retained, the dynamic behaviors of system are determined by the
sliding mode.

In the literature, most sliding mode surfaces only guarantee that the system
state converges to the equilibrium asymptotically with infinite convergence time.
To improve the dynamic response of the closed-loop system, a direct way is to
introduce nonlinear sliding surfaces. One of such nonlinear sliding surfaces is the
terminal sliding mode (TSM) surface [5, 6], which can ensure the finite-time con-
vergence during the sliding mode stage. Such TSM control methods have been
developed in [5–8], which can guarantee that the systems states converge to the
equilibrium in finite time. To overcome the shortcoming that the TSM has a

c© Springer International Publishing Switzerland 2015 77
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slower convergence rate than the linear sliding mode (LSM) when the system
state is far away from the equilibrium, a fast terminal sliding mode (FTSM)
control method was proposed in [9]. The FTSM control method combines the
advantages of the TSM control and the conventional LSM control together so
that fast (finite-time) transient convergence both at a distance from and at a
close range of the equilibrium can be obtained. Actually, the finite-time control
of dynamical systems is of interest because the systems with finite-time conver-
gence demonstrate some nice features such as faster convergence rate, and better
robustness and disturbance rejection properties [10]. Nevertheless, the aforemen-
tioned results on TSM control (TSMC) or FTSM control (FTSMC) are obtained
in the continuous-time domain.

In practice, since more and more controllers are implemented using digital
computers, how to design a digital controller becomes imperative. Many re-
searchers have studied the discretization effect on continuous-time SMC sys-
tems, i.e., discrete-time SMC systems. Due to limited switching frequencies of
discrete-time SMC, the celebrated invariance property for continuous-time SMC
systems no longer holds [11, 12]. In this case, the complex dynamical behaviors
(e.g., periodic behaviors) of discrete-time SMC may occur which were explored
for different SMC systems [13–17].

Although many works have been done on discretized SMC systems, less studies
exist on the analysis of discrete-time TSMC systems. However, since the TSM
controller is an inherent nonlinear controller, how to design digitized TSMC and
derive conditions to ensure the asymptotical convergence and stability of this
kind of systems is very challenging even for the first-order case. In [18], for a
first-order discrete-time TSMC system, it was shown that the system’s steady
state behaviors are period-2 cycle. In [19, 20], for a second-order discrete-time
TSMC system, the boundedness for the system’s steady states was established.
Nevertheless, these results are only focused on lower-order TSMC systems. In
[21], the authors considered the problem of discretization of continuous-time
high-order TSMC systems and redesigned a class of discrete-time finite-time
convergent control laws by imposing certain assumptions. However, they did
not analyze the dynamical behavior of discretization of continuous-time high-
order TSMC systems although there are many works about continuous-time
TSMC, see for example [6, 7]. To this end, in [22], we studied the dynamical
behaviors of a class of discrete-time higher-order TSMC systems based on Euler’s
discretization.

Considering the superior control performance of FTSMC than TSMC and
LSMC in continuous-time domain, this chapter will further investigate the dy-
namical behaviors of a class of discrete-time higher-order FTSMC systems. Due
to the introduction of fractional powers in the recursive FTSM surfaces, it is very
challenging to analyze the complex dynamical behaviors of discretized higher-
order FTSMC systems. By a recursive analysis, we give the explicit bounded-
ness for the steady states of the system, which builds a relationship between
control parameters (including the fractional powers and sampling period) and
the boundedness of steady states. We will show that the discrete-time FTSMC
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systems can offer a higher output tracking precision than the discrete-time lin-
ear SMC systems. Finally, an example about the control problem of buck type
DC-DC converters is provided to show the potential of the proposed techniques.

2 System Description and SMC System

Consider the following single-input-single-output (SISO) system:

ẋ = Ax +Bu,

y = Cx, (1)

where x = [x1, x2, · · · , xn]
T ∈ Rn is the system state, y ∈ R is the system output,

and u is the control input. Without loss of generality, assume that A,B,C are
in the controllable observable canonical form as

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

. . .

0 0 0 · · · 1
−a1 −a2 −a3 · · · −an

⎤
⎥⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0
1

⎤
⎥⎥⎥⎥⎥⎦ , C =

[
1 0 · · · 0 0

]
, (2)

where ai(i = 1, · · · , n) are known constants.
Let us first review the well-known equivalent control-based SMC method in

continuous-time domain. A linear sliding mode surface is chosen as:

s = cTx with c = [c 1]T = [c1 c2 · · · cn−1 1]T , (3)

where c1, c2, · · · , cn−1, 1 are coefficients of a Hurwitz polynomial

λn−1 + cn−1λ
n−2 + · · ·+ c2λ+ c1 = 0. (4)

Then an equivalent control based SMC is given as:

u = ueq + us (5)

with

ueq = −cTAx, us = −αsgn(s) with α > ρ, (6)

where ρ is a positive constant. Under the SMC law, the sliding mode state will
converge to zero in a finite time. After then, the system behavior is determined
by the sliding mode surface, which is determined by the following closed-loop
system ⎡

⎢⎢⎢⎣
ẋ1

...
ẋn−2

ẋn−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 1 · · · 0
...

. . .

0 · · · 0 1
−c1 · · · −cn−2 −cn−1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

...
xn−2

xn−1

⎤
⎥⎥⎥⎦ . (7)
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Clearly the selection of parameters c1, c2, · · · , cn−1 will determine the closed-loop
system’s eigenvalues and dynamical behavior.

In practice, since more and more controllers are implemented using digital
computers, it is very important to study the dynamical behaviors of SMC sys-
tems in discrete-time domain. It is well-known that Euler’s discretization is a
very popular discretization method which is widely used. Thus, we consider Eu-
ler’s discretization of SMC systems.

3 Discrete-Time Linear Sliding Mode Control (LSMC)
Systems

In this section, we will investigate the discrete implementation of SMC system
(1) with (5) using Euler’s discretization. The Euler’s discretization model of
system (1) is

x1(k + 1) = x1(k) + hx2(k),

...

xn−1(k + 1) = xn−1(k) + hxn(k),

xn(k + 1) = xn(k)− h[a1x1(k) + a2x2(k) + · · ·+ anxn(k)] + hu(k), (8)

where h is the sampling period. For this discrete-time system, the continuous-
time LSMC law (5) becomes a discrete-time LSMC law which is given by:

u(k) = −cTAx(k) − αsgn(cTx(k)) =

n∑
i=1

aixi(k)− αsgn(cTx(k)). (9)

Under the discrete-time LSMC law (9), the steady-state behavior of system (8)
will be a period orbit. The main result and proof are given in [14]. Here, we only
present the main theorem.

Theorem 1. For the discrete-time closed-loop system (8)-(9), if all the eigen-
values of the matrix I + hBc are located within the unit circle, then every tra-
jectory of the closed-loop system converges to a period-2 orbit whose coordinates
are bounded by:

|x1(k)| ≤ αh

2c1

(
1 +

c1
|1 + S|

(h
2

)n−1
)
,

|xj(k)| ≤ α

|1 + S|
(h
2

)n−j+1

, j = 2, 3, · · · , n, (10)

where Bc =

⎡
⎢⎢⎢⎣

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−c1 −c2 · · · −cn−1

⎤
⎥⎥⎥⎦ and S =

∑n−1
i=1 ci(−h

2 )
n−i.
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4 Discrete-Time Fast Terminal Sliding Mode Control
(FTSMC) Systems

4.1 Continuous-Time TSMC

Note that LSMC only guarantee that the system state converges to the equilib-
rium asymptotically with infinite convergence time. To improve the convergence
rate, the TSMC method was introduced in [5, 6], which can ensure the finite-
time convergence during the sliding mode stage. The aim of TSMC is to design a
control law such that state x reaches zero in a finite time. Specifically, as shown
in [6], a recursive TSM surface is first constructed:

si+1 = ṡi + βi+1s
qi+1/pi+1

i , i = 0, 1, · · · , n− 2, (11)

where s0 = x1, pi, qi are both odd positive integers with qi < pi and βi > 0 for
every i = 1, · · · , n − 1. Clearly, if sn−1 = 0 is achieved in a finite time, by a
simple deduction, it can be concluded that sn−2 will reach zero in a finite time.
By an inductive deduction, it can be proven that si, i = 0, 1, · · · , n − 3, will
reach zero in a finite time, i.e., the equilibrium si = 0 is a terminal attractor [6].
Hence, the task of TSMC law is to guarantee the sliding mode surface sn−1 = 0
is achieved in a finite time and kept on it for ever. Based on this idea, in [6], the
TSMC law is proposed as

u(t) =

n∑
i=1

aixi(t)−
n−2∑
i=0

βi+1
dn−i−1

dtn−i−1
(s

qi+1/pi+1

i )−Ksgn(sn−1), (12)

where K > ρ with a positive constant ρ. In order to avoid the singularity, the
parameters pi, qi should be chosen carefully [6], that is, if

qk+1

pk+1
> n−k−1

n−k , then

the control u is bounded when sk → 0 sequentially from k = n− 2 to k = 0.

4.2 Continuous-Time FTSMC

For the previous TSMC, when the system state is far away from the equilibrium,
the TSMC does not prevail over the LSMC on the convergence rate. To this end,
a fast TSMC method was proposed in [9], which employs the following FTSM
surface

si+1 = ṡi + βi+1s
qi+1/pi+1

i + γi+1si, i = 0, 1, · · · , n− 2, (13)

where γi+1 > 0. Based on the FTSM (13), the FTSMC law is designed as

u(t) =

n∑
i=1

aixi(t)−
n−2∑
i=0

βi+1
dn−i−1

dtn−i−1
(s

qi+1/pi+1

i )−
n−2∑
i=0

γi+1
dn−i−1

dtn−i−1
(si)

−Ksgn(sn−1), (14)

where K > 0, which can guarantee that the system state converges to the equi-
librium in a finite time with a faster convergence rate no matter when the system
state is far away from or close to the equilibrium.
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4.3 Euler’s Discretization of FTSMC Systems

In this subsection, we will investigate the discrete implementation of FTSMC
system by using Euler’s discretization. Note that in [22], the dynamical behaviors
of discrete-time system (8) with discrete-time TSMC law (12) is investigated. In
this chapter, the main aim is to study the dynamical behaviors of discrete-time
systems (8) under discrete-time FTSMC law (14).

For convenience, let � denote forward difference operator, i.e.,

�1s(k) ≡� s(k) =
s(k + 1)− s(k)

h
, ∀s(k) ∈ R. (15)

Based on this notation, define �i := �(�i−1) with i = 2, 3, ..., n.
Since the FTSMC law (14) is designed based on the recursive FTSM structure

(13), then we obtain Euler’s discretization of FTSM structure (13) as follows:

si+1(k) =
si(k + 1)− si(k)

h
+ βi+1s

qi+1/pi+1

i (k) + γi+1si(k)

= �si(k) + βi+1s
qi+1/pi+1

i (k) + γi+1si(k), i = 0, 1, · · · , n− 2, (16)

where s0(k) = x1(k). By (15) and (16), we obtain the discrete-time FTSMC law
as follows:

u(k) =

n∑
i=1

aixi(k)−
n−2∑
i=0

βi+1�n−i−1(s
qi+1/pi+1

i (k))−
n−2∑
i=0

γi+1�n−i−1(si(k))

−Ksgn(sn−1(k)), (17)

where K > ρ.

Remark 1. Note that in continuous-time controllers (12) and (14), the fractional
powers should be carefully chosen to avoid the singularity problem. Here, it
should be pointed out that for the discrete-time FTSMC law (17), to avoid the
singularity, the conditions for fractional powers should also be satisfied. The
detailed explanation will be given in subsection D.

Next, we will analyze the stability of the closed-loop system (8) with (17).
First, we will show that the finite-time convergence property of FTSM structure
(13) is not guaranteed.

A. Analysis of Discrete-Time FTSM Structure
The design of continuous-time FTSMC law is mainly based on the fact that
when sn−1 = 0 is reached and kept it on for ever, then sn−2 = 0 will reach zero
in a finite time. However, in the case of design of discrete-time FTSMC law, this
does not hold. Specifically, if sn−1(k) = 0, it follows from (16) that

sn−2(k + 1) = sn−2(k)− hβn−1s
qn−1/pn−1

n−2 (k)− hγn−1sn−2(k). (18)

We first show that it is impossible that the discrete-time system (18) is finite-
time stable, even asymptotically stable. The proof of Lemma 1 is given in the
Appendix.
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Lemma 1. For the discrete-time system (18), there is a 2-orbit equilibrium

sn−2 =
(
± hβn−1

2− hγn−1

)1/(1−qn−1/pn−1)

. (19)

Due to the existence of non-zero equilibrium for the discrete-time system (18),
sn−2(k) will not reach zero in a finite number of sampling instants. Although the
finite-time convergence property of discrete-time FTSMC is not possible, issues
such as the stability and the boundedness of the discrete-time system (8) with
(17) should be studied. In the sequel, we will give an answer to these questions.

B. Analysis of Steady-State Behaviors

1) Analysis of steady state of discrete-time FTSM surface
In this subsection, we will analyze the steady-state behavior of sliding mode
surfaces si, i = 0, · · · , n−1. Before moving on, we give the following two lemmas.

Lemma 2. [15] For the scalar dynamical system z(k + 1) = z(k) + g(k) −
εsgn(z(k)), if |g(k)| < γ, γ > 0, and γ < ε, then there is a finite number K∗ > 0
such that |z(k)| ≤ ε+ γ < 2ε, ∀k ≥ K∗.

Lemma 3. Consider the scalar dynamical system

z(k + 1) = z(k)− l1z
α(k)− l2z(k) + g(k), (20)

where l1 > 0, 0 < l2 < 1, and 0 < α < 1 is a ratio of odd integers. If |g(k)| ≤
γ, γ > 0, then there is a finite number K∗ > 0 such that

|z(k)| ≤ ψ(α) ·max
{( γ

l1

)1/α

,
( l1
1− l2

) 1
1−α

}
, ∀k ≥ K∗, (21)

where function ψ(α) is defined as

ψ(α) = 1 + α
α

1−α − α
1

1−α . (22)

The proof of this lemma is in the Appendix and the plot of function ψ(α) is
shown in Fig. 1.

With the help of these two lemmas, we present the first result.

Theorem 2. For system (8), if the sliding mode surface is defined as (16) and
the control law is designed as (17), then there is a finite number K∗ > 0 such
that

|si(k)| ≤ ρi, i = 0, · · · , n− 1, ∀k ≥ K∗, (23)

where ρn−1 = h(K) and

ρi = ψ(
qi+1

pi+1
) ·max

{(ρi+1

βi+1

)pi+1/qi+1

,
( hβi+1

1− hγi+1

) 1
1−qi+1/pi+1

}
, i = n− 2, · · · , 0.

(24)
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Fig. 1. The plot of function ψ(α)

Proof. We first consider sn−1. It follows from (16) that

sn−1(k + 1)− sn−1(k)

= �sn−2(k + 1) + βn−1s
qn−1/pn−1

n−2 (k + 1) + γn−1sn−2(k + 1)

−�sn−2(k)− βn−1s
qn−1/pn−1

n−2 (k)− γn−1sn−2(k)

= h�2 sn−2(k) + hβn−1 � [s
qn−1/pn−1

n−2 (k)] + hγn−1 � sn−2(k). (25)

Since si(k) = �si−1(k)+ βis
qi/pi

i−1 (k) + γisi−1(k) for i = n− 1, n− 2, · · · , 1, then
�lsi(k) = �l+1si−1(k) + βi �l [s

qi/pi

i−1 (k)] + γi �l si−1(k). With this relation in
mind, it follows from (25) that

sn−1(k + 1)− sn−1(k) =h�n s0(k) + h

n−2∑
i=0

βi+1�n−i−1[s
qi+1/pi+1

i (k)]

+ h

n−2∑
i=0

γi+1�n−i−1si(k). (26)

Meanwhile, from (8), we have

�ns0(k) = −a1x1(k)− a2x2(k)− · · · − anxn(k) + u(k). (27)

Substituting (27) and (17) into (26) yields

sn−1(k + 1)− sn−1(k) = −hKsgn(sn−1(k)). (28)

By Lemma 2, there is a finite number K∗
1 > 0 such that |sn−1(k)| ≤ hK =

ρn−1, ∀k ≥ K∗
1 .

Next, let us consider sliding mode surface sn−2. According to (16), we obtain

sn−2(k + 1) = sn−2(k)− hβn−1s
qn−1/pn−1

n−2 (k)− hγn−1sn−2(k) + hsn−1(k).
(29)
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By Lemma 3 and noticing |sn−1(k)| ≤ ρn−1, it follows from (29) that there is a
finite number K∗

2 > 0 such that

|sn−2(k)| ≤ ρn−2 = ψ(
qn−1

pn−1
)·max

{( ρn−1

βn−1

)pn−1/qn−1

,
( hβn−1

1− hγn−1

) 1
1−qn−1/pn−1

}
,

∀k ≥ K∗
2 .

Similarly, consider sn−3. According to (16), we obtain

sn−3(k + 1) = sn−3(k)− hβn−2s
qn−2/pn−2

n−3 (k)− hγn−2sn−3(k) + hsn−2(k).
(30)

And there is a finite number K∗
3 > 0 such that

|sn−3(k)| ≤ ρn−3 = ψ(
qn−2

pn−2
)·max

{( ρn−2

βn−2

)pn−2/qn−2

,
( hβn−2

1− hγn−2

) 1
1−qn−2/pn−2

}
,

∀k ≥ K∗
3 .

Recursively, we can complete the proof. 	


2) Analysis of steady state of x(k)
Next, let us estimate the state x(k). Before moving on, we need the following
lemmas.

Lemma 4. [23] If 0 < p = p1/p2 ≤ 1, where p1 > 0, p2 > 0 are positive odd
integers, then |xp − yp| ≤ 21−p|x− y|p.
Based on this lemma, we have the following propositions. The proofs are in the
Appendix.

Proposition 1. For j = 1, · · · , n, i = 1, · · · , n − 1, the following inequality
holds: ∣∣∣�i [s

qj/pj

j−1 (k)]
∣∣∣ ≤ (

2

h
)i−qj/pj |�sj−1(k)|qj/pj . (31)

Proposition 2. For i = 0, · · · , n−2, j = 1, · · · , n−1−i, the following inequality
holds:

| �j+1 si(k)| ≤| �j si+1(k)|+ βi+1(
2

h
)j−qi+1/pi+1 | � si(k)|qi+1/pi+1

+ γi+1| �j si(k)|. (32)

Theorem 3. For system (8), if the sliding mode surface is defined as (16) and
the control law is designed as (17), then it can be found a finite number K∗ > 0
such that

|x1(k)| ≤ ρ0, |xi(k)| = | �i−1 s0(k)| ≤ δ0,i−1, i = 2, · · · , n, ∀k ≥ K∗, (33)
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where

δi,1 = ρi+1 + βi+1ρ
qi+1/pi+1

i + γi+1ρi, i = 0, · · · , n− 2,

δi,j+1 = δi+1,j + βi+1(
2

h
)j−qi+1/pi+1δ

qi+1/pi+1

i,1 + γi+1δi,j ,

j = 1, . . . , n− 2, i = 0, · · · , n− 1− j. (34)

Proof. First, we consider �si(k), i = 0, · · · , n− 2. By (16),

�si(k) = si+1(k)− βi+1s
qi+1/pi+1

i (k)− γi+1si(k). (35)

By Theorem 2,

| � si(k)| ≤|si+1(k)|+ βi+1|si(k)|qi+1/pi+1 + γi+1|si(k)|
≤ρi+1 + βi+1ρ

qi+1/pi+1

i + γi+1ρi := δi,1, ∀k ≥ K∗. (36)

Second, we consider�2si(k), i = 0, · · · , n−3. By (36), it follows from Proposition
2 that

| �2 si(k)| ≤ | � si+1(k)|+ βi+1(
2

h
)1−qi+1/pi+1 | � si(k)|qi+1/pi+1 + γi+1| � si(k)|

≤ δi+1,1 + βi+1(
2

h
)1−qi+1/pi+1δ

qi+1/pi+1

i,1 + γi+1δi,1

:= δi,2, ∀k ≥ K∗. (37)

Recursively, assume | �j si(k)| ≤ δi,j , j = 3, . . . , n − 2, i = 0, · · · ,
n − 1 − j, ∀k ≥ K∗. Now, let us consider | �j+1 si(k)|, i = 0, · · · , n − 2 − j.
By Proposition 2, we have

| �j+1 si(k)| ≤ | �j si+1(k)|+ βi+1(
2

h
)j−qi+1/pi+1 | � si(k)|qi+1/pi+1

+ γi+1| �j si(k)|
≤ δi+1,j + βi+1(

2

h
)j−qi+1/pi+1δ

qi+1/pi+1

i,1 + γi+1δi,j

:= δi,j+1, ∀k ≥ K∗.

Next, let us analyze xi(k), i = 1, · · · , n. According to (8) and (16), we get

x1(k) = s0(k), xi(k) = �i−1s0(k), i = 2, · · · , n. (38)

	

C. Output Tracking Precision Using Discrete-Time FTSMC and Lin-
ear Sliding Mode Control (LSMC)
Consider system (1) with output y = x1. Assume the desired output signal is yr

and yr, ẏr, · · · , y(n)r are bounded. Define e = y− yr as the output tracking error
and let e1 = e, e2 = ė1, · · · , en = ėn−1. Then, it follows from (1) that

ėi = ei+1, i = 1, · · · , n− 1, ėn = −a1x1 − a2x2 − · · · − anxn + u− y(n)r .
(39)
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On one hand, according to Theorems 2 and 3, for the Euler’s discretization model
of system (39), if we design the following discrete-time FTSMC law:

u(k) =

n∑
i=1

aixi(k)−
n−2∑
i=0

βi+1�n−i−1(s
qi+1/pi+1

i (k))−
n−2∑
i=0

γi+1�n−i−1si(k)

−Ksgn(sn−1(k)) + y(n)r , (40)

with s0(k) = e(k), si−1(k) = �si−2(k) + βi−1s
qi−1/pi−1

i−2 (k) + γi−1si−2(k), i =
2, · · · , n, then the tracking error e is ultimately bounded and the bound is

|e(k)|FTSMC ≤ ρ0, with (41)

ρn−1 = hK, ρi = ψ(
qi+1

pi+1
)·max

{(ρi+1

βi+1

)pi+1/qi+1

,
( hβi+1

1− hγi+1

) 1
1−qi+1/pi+1

}
,

i = n− 2, · · · , 0. (42)

On the other hand, if we employ linear sliding mode surfaces, under the LSMC
law (9), according to Theorem 1, the output tracking error e is also ultimately
bounded and the bound is

|e(k)|LSMC ≤ αh

2c1

(
1 +

c1
|1 + S|

(h
2

)n−1
)
, (43)

where S =
∑n−1

i=1 ci(−h
2 )

n−i and h is the sampling period.
Based on (41) and (43), we can compare the output tracking precisions under

these two discrete-time SMC laws. In the following, as in [15], the big O notation
is used. A function f(h) is said to be of order g(h) as h → 0 and denoted as
f(h) = O(g(h)), if there exist δ > 0 and M > 0 such that |f(h)| < M |g(h)| for
|h| < δ.

First, with the big O notation in mind, according to (41)-(42), we have ρn−1 =
O(h). Then

ρn−2 = ψ(
qn−1

pn−1
)·max

{(
O(h)

)pn−1/qn−1

,
(
O(h)

) 1
1−qn−1/pn−1

}
. (44)

Since 1
2 < qn−1

pn−1
< 1, then 1 < pn−1

qn−1
< 1

1−qn−1/pn−1
, which leads to ρn−2 =

O(hpn−1/qn−1). By a similar analysis and using the inductive method, it can be
concluded that

lim
k→∞

|e(k)|FTSMC ≤ ρ0 = O(h
pn−1
qn−1

··· p2q2 · p1q1 ). (45)

Second, it follows from (43) that

lim
k→∞

|e(k)|LSMC = O(h). (46)

According to (45)-(46) and noticing pi

qi
> 1, i = 1, · · · , n − 1, we can adjust

the fractional powers pi

qi
, i = 1, · · · , n − 1, such that limk→∞ |e(k)|FTSMC is

much smaller than limk→∞ |e(k)|LSMC , which demonstrates the superiority of
FTSMC.
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Remark 2. It should be pointed out that the estimated ultimate bound in
Theorems 2 and 3 is for the discrete-time system (8) based on Euler’s dis-
cretization, rather than the continuous-time model (1). The trajectories of the
Euler-discretized system are different from those of the original continuous-time
counterpart system with piecewise constant control. This statement also applies
to system (39). In section 5, we will use simulations to demonstrate the difference
between Euler-discretized model and exact-discretized model.

D. Analysis of Singularity Problem in Discrete-Time FTSMC Law
Note that in the continuous-time controller (12) and (14), the fractional powers
should be carefully chosen to avoid the singularity problem. Here, as in [6, 7, 9],
the singularity of the control is referred to the phenomenon when si → 0, u → ∞.
Actually, for the discrete-time controller (17), to avoid the singularity, the same
conditions should also be satisfied. That is if qk+1/pk+1 > (n− k − 1)/(n− k),
then there is no singularity in the control law (17) when sk enters the region
{sk : |sk| ≤ ρk} sequentially from k = n − 1 to k = 0, (i.e., sn−1 first enters
the region {sn−1 : |sn−1| ≤ ρn−1}, sn−2 then enters the region {sn−2 : |sn−2| ≤
ρn−2}, and so on). The proof is similar to that of Ref. [22], which is omitted
here.

Remark 3. Note that it is possible there is another kind of singularity problem
as that for the continuous-time FTSMC in [9]. That is there may exist such a
case when |si(t0)| > ρi and |sj(t0)| ≤ ρj for 0 ≤ j < i ≤ (n − 1) at the initial
time. Actually, in practice, to avoid this singularity problem, as suggested in [8]
for the continuous-time TSMC, we can replace sj(t0) with the following mapping

function: Map(sj(t0)) =

{
sj(t0), for |sj(t0)| > ρj ;
δ, for |sj(t0)| ≤ ρj ,

where δ > 0.

5 Application to a DC-DC Buck Converter System

Consider the buck type DC-DC converter which is shown in Fig. 2. Vin is a
DC input voltage source, S is a controlled switch, D is a diode, Vo is sensed
output voltage, and L,C,R are the inductance, capacitance, load resistance,
respectively. The buck type DC-DC converters are used in applications where
the required output voltage is smaller than the input voltage. If the switching
frequency for S is sufficiently high, the dynamic of DC-DC converters can be
described by an average state space model [24]. Based on the average state space
model [24], the dynamic equation for the buck converter is:

i̇L =
1

L
(uVin − Vo),

V̇o =
1

C
(iL − Vo

R
), (47)
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where u is the control input and u ∈ [0, 1]. Let Vref be the desired DC output
voltage and x1 = Vref −Vo be the output voltage error. It follows from (47) that
the error dynamic equation is:

ẋ1 = x2 = −V̇o,

ẋ2 = − 1

LC
x1 − 1

RC
x2 − Vin

LC
u+

Vref

LC
,

y = x1. (48)

Based on this model, the control objective is to design a control law such that
the tracking error x1 converges to zero.

Vo

L

C R
D

S

Vin

Li

Fig. 2. DC-DC Buck converter

By Euler’s discretization, the discrete-time model of system (48) is:

x1(k + 1) = x1(k) + hx2(k),

x2(k + 1) = x2(k)− h[a1x1(k) + a2x2(k)] + hμ(k), (49)

where a1 = 1
LC , a2 = 1

RC , μ = −Vin

LC u +
Vref

LC . By Theorem 2, the corresponding
discrete-time FTSMC law is

μ(k) = a1x1(k) + a2x2(k)− β1�(s
q1/p1

0 (k))− γ1�s0(k)−Ksgn(s1(k)) (50)

with

s0(k) = x1(k), s1(k) = �s0(k) + β1s
q1/p1

0 (k) + γ1s0(k), (51)

where β1 > 0, γ1 > 0,K > 0, 1/2 < q1/p1 < 1. In simulation, the components
values of the DC-DC buck converter are given as: Input Voltage Vin = 20V ,
Desired Output Voltage Vref = 15V , Inductance L = 100mH , Capacitance
C = 0.1F , Load Resistance R = 10Ω.

Choose β1 = γ1 = K = 1 and q1 = 3, p1 = 5. By Theorem 3, the steady state
x is bounded by:

when h = 0.01(sec), then limk→∞ |x1(k)| ≤ 0.00055, limk→∞ |x2(k)| ≤ 0.0216;
when h = 0.1(sec), then limk→∞ |x1(k)| ≤ 0.0255, limk→∞ |x2(k)| ≤ 0.2363.
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mode surface 0 = x2 + x
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1 + x1. (b) Time histories of states x1, x2.
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with h = 0.1(sec) and (x1(0), x2(0)) = (2, 2). (a) Phase plane of state x and sliding

mode surface 0 = x2 + x
3/5
1 + x1. (b) Time histories of states x1, x2.

The response curves of Euler-discretized system (49)-(50) are shown in Fig. 3
and Fig. 4, where the sampling period h = 0.01(sec) and h = 0.1(sec).

Note that Euler’s discretization is only the approximate discretization of
continuous-time model under a piecewise constant control. To further investigate
the difference between Euler-discretized model and exact-discretized model, in
Fig. 5, we do some simulations for continuous-time model (48) under a sampling
control law (50) via a sampler and zero-order hold device, i.e., exact-discretized
model. By comparisons, it can be found that Euler’s discretization is a good
approximate discretization when the sampling period is relatively small.
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6 Conclusions

This chapter has studied the dynamical behaviors of discrete-time FTSMC sys-
tems based on Euler’s discretization. By a rigorous theoretic analysis, we have
found bounds for the steady state, which allow us to estimate the maximum
chattering amplitude when using a given value of the time step. Further work
includes the study of more complex discretization behaviors of FTSMC systems
with uncertain parameters.
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Appendix

This appendix includes Lemma 1, Lemma 3, and the proofs for Propositions 1-2.
Proof of Lemma 1: Without loss of generality, let

sn−2(k) =
( hβn−1

2− hγn−1

)1/(1−qn−1/pn−1)

,

which results into

s
1−qn−1/pn−1

n−2 (k) =
hβn−1

2− hγn−1
. (A.1)

As a result,

(2− hγn−1)sn−2 = hβn−1s
qn−1/pn−1

n−2 (k), (A.2)

that is

sn−2(k + 1) = (1− hγn−1)sn−2(k)− hβn−1s
qn−1/pn−1

n−2 (k) = −sn−2(k). (A.3)

Using a similar deduction leads to

sn−2(k + 2) = sn−2(k).

The proof is completed. 	
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Fig. 5. Phase plane of Euler-discretized model (49)-(50) and Exact–discretized model
(48) with (50) when (a) h = 0.1(sec), (b) h = 0.01(sec), (c) h = 0.001(sec).
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Lemma 5. If 0 < α < 1 and the function ψ(α) is defined in (22), then

xψ(α) − xαψ(α)α + ψ(α)− 1 ≥ 0 for any x ∈ [0, 1].

Proof. Denote F (x) = xψ(α) − xαψ(α)α + ψ(α) − 1. Next, we will calculate
the minimum of F (x) when x ∈ [0, 1]. First of all, according to the definition of
ψ(α), it is clear that ψ(α) > 1, which implies that F (0) = ψ(α) − 1 > 0 and
F (1) = ψ(α) − ψ(α)α + ψ(α) − 1 > 0. Secondly, by a calculation of Ḟ (x) = 0,

we have x = α
1

1−α

ψ(α) . Substituting it into F (x) and according to the values of

F (0), F (1), we obtain minx∈[0,1] F (x) = 0, which completes the proof. 	

Proof of Lemma 3: Denote

Ω =

{
|z| ≤ max

{
ψ(α)

( γ

l1

)1/α

, ψ(α)
( l1
1− l2

) 1
1−α

}}
.

The following proof is divided into two steps. First, we show that the state z
will enter the region Ω in a finite time. Second, we prove that once there z ∈ Ω,
then it will stay there forever.
Step 1. Choosing Lyapunov function V (k) = z2(k), it follows from (20) that

�V (k) = V (k + 1)− V (k)

= −
(
l1z

α(k) + l2z(k)− g(k)
)(

2z(k)− l1z
α(k)− l2z(k) + g(k)

)
.

(A.4)

Next, we will show that if z(k) /∈ Ω, then �V (k) ≤ −c, where c is a small
positive constant.

If z(k) /∈ Ω, there are two cases for z(k).

Case 1: z(k) > max
{
ψ(α)

(
γ
l1

)1/α

, ψ(α)
(

l1
1−l2

) 1
1−α

}
.

On one hand, since z(k) > ψ(α)
(

γ
l1

)1/α

, then l1z
α(k) > ψα(α)γ. By noticing

that |g(k)| ≤ γ, we obtain l1z
α(k)− |g(k)| > [ψα(α) − 1]γ := μ, which implies

l1z
α(k) + l2z(k)− g(k) > μ, (A.5)

where μ is a positive constant since ψ(α) > 1 and γ > 0.

On the other hand, since z(k) > ψ(α)
(

l1
1−l2

) 1
1−α

, then (1 − l2)z
1−α(k) >

ψ1−α(α)l1, which implies that (1− l2)z(k) > ψ1−α(α)l1z
α(k) ≥ l1z

α(k). Hence,

z(k) > l1z
α(k) + l2z(k). (A.6)

It follows from this inequality and (A.5) that

2z(k)− l1z
α(k)− l2z(k) + g(k) > l1z

α(k) + l2z(k) + g(k) > μ. (A.7)

Substituting this inequality and (A.5) into (A.4) results in �V (k) < −μ2 := −c.
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Case 2: z(k) < −max
{
ψ(α)

(
γ
l1

)1/α

, ψ(α)
(

l1
1−l2

) 1
1−α

}
.

A similar proof can prove that �V (k) ≤ −c still holds. Hence, the state z will
enter the region Ω in a finite time.
Step 2. Although in Step 1 we show that �V (k) is negative when z(k) /∈ Ω, it
is possible the states may escape from Ω after entering it, since in Ω, �V (k) < 0
is no longer guaranteed. So in this step, we will show that once z ∈ Ω, then it
will stay there forever. Without loss of generality, assume z(k) ∈ Ω. Next, we
will prove that z(k + 1) ∈ Ω.

Case 1:
(

γ
l1

)1/α

≥
(

l1
1−l2

) 1
1−α

.

In this case, Ω = {|z| ≤ ψ(α)
(

γ
l1

)1/α

}. First assume that

z(k) = ψ(α)θ
( γ

l1

)1/α

, 0 ≤ θ ≤ 1.

It follows from (20) that

z(k + 1) =ψ(α)θ
( γ

l1

)1/α

− (ψ(α)θ)αγ − l2ψ(α)θ
( γ

l1

)1/α

+ g(k)

≤(1− l2)ψ(α)θ
( γ

l1

)1/α

− (ψ(α)θ)αγ + γ. (A.8)

If ψ(α)θ ≥ 1, it follows from (A.8) that

z(k + 1) ≤ ψ(α)θ
( γ

l1

)1/α

≤ ψ(α)
( γ

l1

)1/α

. (A.9)

If 0 ≤ ψ(α)θ ≤ 1, it follows from (A.8) that

z(k + 1) ≤ (1− l2)ψ(α)θ
( γ

l1

)1/α

+ [1− (ψ(α)θ)α]γ. (A.10)

Since
(

γ
l1

)1/α

≥
(

l1
1−l2

) 1
1−α

, then γ ≥ l
1

1−α

1

(
1

1−l2

) α
1−α

, which yields γ1−α ≥
l1

(
1

1−l2

)α

. By a further calculation, it can be obtained that γ
l1

≥
(

γ
1−l2

)α

.

Thus,

γ

1− l2
≤

( γ

l1

)1/α

. (A.11)

In addition, since 0 < α < 1 and 0 ≤ ψ(α)θ ≤ 1, then ψ(α)θ ≤ (ψ(α)θ)α. With
this fact and (A.11) in mind, it follows from (A.10) that

z(k + 1) ≤ (1 − l2)ψ(α)θ
( γ

l1

)1/α

+ [1− (ψ(α)θ)α](1 − l2)
( γ

l1

)1/α

≤ (1 − l2)
( γ

l1

)1/α

≤
( γ

l1

)1/α

. (A.12)
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Thus z(k + 1) ≤ ψ(α)( γ
l1
)1/α.

On the other hand, with (A.11) in mind, it follows from (A.8) that

z(k + 1) ≥(1− l2)ψ(α)θ
( γ

l1

)1/α

− (ψ(α)θ)αγ − γ

≥(1− l2)[ψ(α)θ − (ψ(α)θ)α − 1]
( γ

l1

)1/α

. (A.13)

By noticing 0 < α < 1, if ψ(α)θ ≥ 1, then ψ(α)θ − (ψ(α)θ)α − 1 ≥ −1. If
0 ≤ ψ(α)θ < 1, then it follows from Lemma 5 that

ψ(α)θ − (ψ(α)θ)α − 1 ≥ −ψ(α).

Thus,

z(k + 1) ≥ −(1− l2)ψ(α)
( γ

l1

)1/α

≥ −ψ(α)
( γ

l1

)1/α

. (A.14)

As a result, z(k+1) ∈ Ω. A similar proof will show that the assumption of z(k) =

ψ(α)θ
(

γ
l1

)1/α

,−1 ≤ θ ≤ 0, will also lead to the conclusion that z(k + 1) ∈ Ω.

Case 2:
(

γ
l1

)1/α

≤
(

l1
1−l2

) 1
1−α

. By a similar proof as that in Case 1, we can prove

that z(k + 1) ∈ Ω, which is omitted here. 	

Proof of Proposition 1: An inductive argument is employed. At the first step,
for i = 1, it follows from Lemma 1 that

∣∣∣� [s
qj/pj

j−1 (k)]
∣∣∣ = ∣∣∣sqj/pj

j−1 (k + 1)− s
qj/pj

j−1 (k)

h

∣∣∣
≤ (

2

h
)1−qj/pj

∣∣∣sj−1(k + 1)− sj−1(k)

h

∣∣∣qj/pj

= (
2

h
)1−qj/pj |�sj−1(k)|qj/pj . (A.15)

At the inductive step, assume that the relation (31) holds for i = m ≥ 2. With
this assumption in mind, we have for i = m+ 1

∣∣∣�m+1 [s
qj/pj

j−1 (k)]
∣∣∣ = ∣∣∣�m[s

qj/pj

j−1 (k + 1)]−�m[s
qj/pj

j−1 (k)]

h

∣∣∣
≤ (

2

h
)m+1−qj/pj |�sj−1(k)|qj/pj , (A.16)

which completes the proof. 	

Proof of Proposition 2: Since �si(k) = si+1(k)−βi+1s

qi+1/pi+1

i (k)−γi+1si(k)
from (16), then

| �j+1 si(k)| = | �j si+1(k)− βi+1 �j [s
qi+1/pi+1

i (k)]− γi+1 �j si(k)|
≤ | �j si+1(k)|+ βi+1| �j [s

qi+1/pi+1

i (k)]|+ γi+1| �j si(k)|.
By Proposition 1, we can complete the proof. 	
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Abstract. In this chapter we investigate the reaching law based ap-
proach to the discrete time sliding mode control of dynamical systems.
We present a particular class of recently introduced controllers designed
according to this approach and we thoroughly discuss their properties.
The common idea of all the controllers considered in this chapter, is to
obtain the desired convergence rate of the systems’ state to a vicinity
of the sliding hyperplane and to maintain the state in the vicinity, once
the state has entered it. The vicinity is called the quasi sliding mode
band and its width may serve as a good measure of the closed loop
system robustness. Furthermore, we apply the proposed controllers to
the periodic review inventory management problem. Even though in this
chapter we focus our attention on the inventory system control, the pre-
sented reaching laws can be effectively applied to any linear discrete time
plant subject to disturbance and parameter uncertainty.

Keywords: sliding mode control, discrete time systems, reaching law.

1 Introduction

Sliding mode methodology [4,11,12,23,24,32] is an effective regulation and track-
ing control technique that can be applied to a wide class of nonlinear, uncertain,
time-varying dynamic systems. Because of its computational efficiency and ro-
bustness [10,13] it has rapidly gained much interest in the automation science
and engineering community. Furthermore, since an overwhelming majority of
control algorithms are nowadays implemented in digital hardware, discrete time
sliding mode controllers [2,14,19,21,27,28,30,33] have recently become increas-
ingly popular.

In general, there are two fundamental methods of designing sliding mode con-
trollers. The first one involves stating a control law and then demonstrating that
it guarantees a stable sliding motion in the considered system. The second ap-
proach to the design of sliding mode controllers is based on the reaching law
method. This technique begins with defining the desired evolution of the slid-
ing variable. Then the control law which ensures, that the system follows the
specified profile of this variable is determined. This method has originally been
developed for continuous time systems in [17]. Then the results were extended

c© Springer International Publishing Switzerland 2015 99
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[18] and further analysed [3] for discrete time systems. A number of other in-
teresting and practically important reaching laws for discrete time systems have
also been proposed and successfully applied [19], but the one presented in [18]
still maintains its importance and is often used as a benchmark for currently
developed algorithms.

Unfortunately, as we will show in Section 4 the reaching law developed by Gao
et al. cannot be directly applied to some systems, due to generating negative,
as well as positive control signals in order to ensure the zigzag motion of the
representative point about the sliding hyperplane. Therefore, in this chapter we
will present several reaching law approaches, that do not have this disadvantage.

We will apply the presented reaching laws to the periodic review inventory
management problem. The control theoretic approach to this issue has in recent
years become an important research topic. An overview of the approaches used
in the field and the obtained results can be found in [8,20,22,29]. The control
theory methods were first applied to the management of logistic processes in
the early 1950s when Simon [31] used servomechanism control algorithm to find
an efficient strategy of replenishing goods in continuous time, single product in-
ventory control systems. Several years later the discrete time servomechanism
control algorithm for the problem of efficient goods replenishment has been de-
veloped [34]. Since then numerous solutions have been presented, and therefore,
we are able to mention only several, arbitrarily chosen examples of solutions
proposed over the last few decades. In [15] and [16] autoregressive moving aver-
age (ARMA) system structure has been used to model uncertain demand. Then
model predictive control of supply chain has been proposed in [1] and [26]. In
[9] a robust controller for the continuous time system with uncertain processing
time and delay has been designed by minimizing H∞-norm. However, obtaining
the control law parameters of the strategy described in [9] requires application
of numerical methods, which limits the analytical tractability of this approach.

The remainder of this chapter is organised as follows. In Section 2 we present
the periodic review inventory system. In Section 3 we develop a basic, dead-beat
type controller for this system. Such a controller generates a very high value of
the control signal in the first time instant. Therefore, in Section 4 we try to ap-
ply the well-known reaching law developed by Gao. Unfortunately, this reaching
law is unsuitable for the considered system, as it cannot guarantee generating
a non-negative control signal. In sections 5-8 we develop the non-switching, in-
verse tangent based, hyperbolic tangent based and variable structure reaching
laws. We demonstrate, that each of these reaching laws ensures generating a
non-negative and upper bounded control signal, eliminates the need for costly
emergency storage, and can, with an adequate warehouse capacity, guarantee full
consumers’ demand satisfaction. In Section 9 the performance of the obtained
reaching law based sliding mode controllers is verified in computer simulations.
Section 10 presents the conclusions of the chapter.
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2 Inventory System Model

In this section we will consider a periodic review inventory system, depicted in
Figure 1. The system consists of a distribution center and m distant commodity
suppliers. Every provider p is characterized by the maximum amount of goods
umaxp it can send during a single review period T . Supplier p delivers goods
with a lead time Lp. We assume, that each lead time Lp is a multiple of the
review period, i.e. Lp = μpT , where μp is a positive integer. Inevitably, during
the transport, some goods are broken, so that only αp of the goods sent by
supplier p arrive at the distribution center, where αp ∈ (0, 1] for p = 1, . . . ,m.
The goods are then stored and used to satisfy an a priori unknown, time-varying
consumers’ demand d(kT ). Only the upper bound of d(kT ) is known in advance,
and we denote it by dmax. As the warehouse on hand stock may be insufficient to
fully satisfy the consumers’ demand, we introduce an additional function h(kT ),
which corresponds to the amount of goods actually sold at time kT . Therefore,

0 ≤ h(kT ) ≤ d(kT ) ≤ dmax. (1)

The replenishment orders are generated by the controller placed at the dis-
tribution center. Its output u(kT ) corresponds to the total amount of goods
requested from all of the providers. This value is divided among the suppliers in
proportion to their output capabilities, i.e. each supplier p receives

umaxp

/∑m
i=1 umaxi of the total order.

The stock level at time kT is denoted by y(kT ). The warehouse is empty at
the beginning of the control process, i.e. y(kT < 0) = 0, and the first resupply
order is generated at kT = 0, i.e. u(kT < 0) = 0. We can express the on hand
stock level for any kT > 0 as the difference between incoming and outgoing
amounts of goods

y(kT ) =
m∑

p=1

k−1∑
j=0

umaxp∑m
i=1 umaxi

αpu (jT − Lp)−
k−1∑
j=0

h(jT ). (2)

Fig. 1. Inventory supply model



102 P. Lesniewski and A. Bartoszewicz

We can simplify the model, by representing all suppliers with equal lead times
as a single provider. The amount of goods, that will arrive at the distribution

center from this provider is equal to aiu, where ai =
∑

p:µp=i

umaxp

/ m∑
j=1

umaxj for

i = 1, . . . , n− 1, and n = max(μp) + 1. If there is no supplier with a particular
lead time iT , then the corresponding coefficient ai is equal to zero. Now the
stock level can be expressed in the following form

y(kT ) =

n−1∑
i=1

k−1∑
j=0

aiu[(j − i)T ]−
k−1∑
j=0

h(jT ). (3)

We express the system dynamics in the standard state space form

x[(k + 1)T ] = Ax(kT ) + bu(kT ) + oh(kT )

y(kT ) = qTx(kT ), (4)

where x(kT ) = [x1(kT ) x2(kT ) . . . xn(kT )]
T is the state vector, y(kT ) =

x1(kT ) is the warehouse stock level. The remaining state variables are the de-
layed values of the control signal, i.e. for i = 2, . . . , n

xi(kT ) = u[(k − n+ i− 1)T ]. (5)

A is n× n state matrix, and b, o, and q are n× 1 vectors

A =

⎡
⎢⎢⎢⎢⎢⎣

1 an−1 an−2 a1
0 0 1 · · · 0

...
. . .

...
0 0 0 · · · 1
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ , b =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0
1

⎤
⎥⎥⎥⎥⎥⎦ , o =

⎡
⎢⎢⎢⎢⎢⎣

−1
0
...
0
0

⎤
⎥⎥⎥⎥⎥⎦ , q =

⎡
⎢⎢⎢⎢⎢⎣

1
0
...
0
0

⎤
⎥⎥⎥⎥⎥⎦ . (6)

The demand state of the system is xd = [yd 0 . . . 0], where yd is the desired
on hand stock level.

3 Dead-Beat Controller

In this section we will design a basic dead-beat sliding mode controller for the
described inventory system. Then, we will analyse the properties of the closed
loop system with the application of this controller.

We begin, by introducing a sliding hyperplane described by the following
equation

s(kT ) = cTe(kT ) = 0, (7)

where cT = [c1 c2 . . . cn] satisfies cTb �= 0 and e(kT ) = xd − x(kT ) is the
closed loop system error. By substituting (4) and (6) into s[(k + 1)T ] = 0 we
obtain the following control signal

u(kT ) =
(
cT b

)−1
cT [xd −Ax(kT )]. (8)
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When this control signal is applied, the closed loop system state matrix has the

following formAc = [In−b
(
cTb

)−1
cT ]A. We find the characteristic polynomial

of this matrix

det(zIn −Ac) = zn +
c1a1 + cn−1 − cn

cn
zn−1+

+ · · ·+ c1an−2 + c2 − c3
cn

z2 +
c1an−1 − c2

cn
z. (9)

Condition cTb �= 0 implies, that all denominators in (9) are not equal to zero. In
order to ensure asymptotic stability, all of the eigenvalues of the system must be
located inside a unit circle. Furthermore, to obtain finite time error convergence
to zero, the characteristic polynomial (9) must satisfy

det (zIn −Ac) = zn. (10)

We find, that (10) is satisfied when the following vector c is chosen

c1 = 1, ci =

i−1∑
j=1

an−j for i = 2, . . . , n. (11)

Substituting (6) and (11) into (8) we get

u(kT ) =

[
yd − x1(kT )−

n∑
i=2

cixi(kT )

]/
n−1∑
j=1

aj. (12)

This concludes the design of the basic, dead-beat controller. Further in this
section we will analyse some of its properties. In the first theorem we demon-
strate, that the control signal is always non-negative and upper bounded. This
control signal directly corresponds to the replenishment orders sent to the sup-
pliers. Each supplier always has some maximum replenishment order, that it can
fulfil during a single review period. Obviously, the provider also cannot send a
negative amount of goods. Thus, both of these properties are crucial for imple-
mentation in a real system.

Theorem 1. Control signal (12) for any k ≥ 0 satisfies

0 ≤ u(kT ) ≤ max (yd, dmax)

/
n−1∑
j=1

aj . (13)

Proof. We observe, that the control signal at the initial instant is

u(0) = yd

/
n−1∑
j=1

aj. (14)

Next, from (11) we get
ci = ci−1 + an−i+1, (15)
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for any i = 3, . . . , n. Using (15) and (12) we obtain

u[(k + 1)T ] =
1

cn

{
yd − x1[(k + 1)T ]−

n−1∑
i=2

cixi[(k + 1)T ]

}
− u(kT ) =

=
1

cn

{
yd − x1[(k + 1)T ]−

n−1∑
i=2

cixi[(k + 1)T ]

}
+ (16)

− 1

cn

[
yd − x1(kT )−

n∑
i=2

cixi(kT )

]
= h(kT )

/
n−1∑
j=1

aj ,

for any k ≥ 0. Taking into account (1), (14) and (16) we observe, that (13)
indeed holds. This ends the proof. ��

The costs of emergency storage are usually quite high. Therefore, it would
be advantageous, if we could calculate an a priori known size, that the on hand
stock will never exceed. Then, by assigning an inventory capacity equal to, or
greater than this value, we would ensure, that all incoming shipments will be
accommodated inside the warehouse. In this way, the need for emergency storage
would be eliminated.

Theorem 2. When the dead-beat controller is applied, the on hand stock level
will never exceed its demand value.

Proof. Using (5) with (12) we obtain for any k ≥ 0

yd − x1(kT ) = u(kT )
n−1∑
i=1

ai +
n∑

i=2

ciu[(k − n+ i− 1)T ]. (17)

All of the parameters ci are positive, and as shown in Theorem 1, the control
signal is always non-negative. Therefore, the right hand side of (17) is non-
negative, which ends the proof. ��
Remark 1. Since the warehouse stock level cannot exceed its demand value, then
h(kT ) ≤ yd, for any choice of yd. Therefore, taking into account (16), inequality

(13) actually simplifies to 0 ≤ u(kT ) ≤ yd/
∑n−1

j=1 aj.

In order to maximize profit, it is crucial to eliminate lost sales. Therefore,
the consumers’ demand, if possible, should be fully satisfied. In the following
theorem, we will calculate the minimum value of the demand stock level, that
guarantees that after some initial time, the warehouse will never be empty. This
implies full satisfaction of the consumers’ demand.

Theorem 3. If the demand value of the on hand stock satisfies

yd > dmax

n−1∑
i=1

ai(i + 1)

/
n−1∑
j=1

aj , (18)

then the warehouse will never be empty for any k > max(μp) + 1.
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Proof. As we have already mentioned, u(kT < 0) = 0. Therefore, using (16) we
can write (3) for k > max(μp) + 1 as

y(kT ) =

n−1∑
i=1

⎧⎨
⎩ai

k−1∑
j=0

u[(j − i)T ]

⎫⎬
⎭ −

k−1∑
j=0

h(jT ) =

=

n−1∑
i=1

⎧⎨
⎩ai

i−1∑
j=0

u[(j − i)T ] + aiu(0) + ai

k−1∑
j=i+1

u[(j − i)T ]

⎫⎬
⎭ −

k−1∑
j=0

h(jT ) = (19)

= yd −
∑n−1

i=1

[
ai

∑k−1
j=k−i−1 h(jT )

]
∑n−1

j=1 aj
≥ yd − dmax

∑n−1
i=1 ai(i + 1)∑n−1

j=1 aj
.

This ends the proof. ��
Let us notice, that if the warehouse is never empty for any k > max(μp) + 1,

then the consumers’ demand is fully satisfied after this initial period.
The basic dead-beat controller generates a very large control signal in the first

time instant, which would be problematic in a real application. Therefore, in the
following chapters we will propose several reaching law based controllers which
eliminate this problem. The common idea of these controllers is to define an
appropriate way in which the representative point will converge, starting from
any initial position, to the vicinity of the sliding hyperplane s(kT ) = 0, and in
this way to decrease the required amplitude of the control signal.

4 Gao’s Reaching Law

We will begin by applying a well-known reaching law developed in [18] to the
problem considered in this chapter. In that work, the authors first define the
quasi sliding mode as a motion with the following properties:

1. Starting from any initial state, the representative point will converge mono-
tonically to the switching plane and cross it in finite time.

2. After reaching the plane the representative point will cross it in each succes-
sive step.

3. The size of each zigzagging step is non-increasing, and the representative
point stays within a specified band around the hyperplane s(kT ) = 0.

A perturbed system is described by the following difference state equation

x[(k + 1)T ] = Ax(kT ) +ΔAx(kT ) + bu(kT ) + f (kT ), (20)

where ΔA represents system parameter uncertainty and f (kT ) is an external
disturbance. In order to satisfy conditions 1-3 the authors propose the following
reaching law

s[(k + 1)T ] = (1− q)s(kT )− (S2 + F2 + ε) sgn[s(kT )]+

− S̃(kT )− F̃ (kT ) + S1 + F1, (21)
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where function

sgn(x) =

{−1 if x ≤ 0
1 if x > 0

(22)

q ∈ (0, 1] is a convergence rate factor, and ε > 0 is used to satisfy the second
condition. Furthermore

S̃(kT ) = S̃[x(kT )] = cTΔAx(kT ) (23)

is the influence of parameter uncertainty on the sliding variable, and

F̃ (kT ) = cTf(kT ) (24)

is the effect of external disturbance on this variable. Constants S1 and F1 are
the average values of S̃(kT ) and F̃ (kT ) , i.e.

S1 = (SU + SL)
/
2, F1 = (FU + FL)

/
2, (25)

where SU , FU are the upper, and SL, FL are the lower bounds of S̃ and F̃

SL ≤ S̃ ≤ SU , FL ≤ F̃ ≤ FU . (26)

Moreover, S2 and F2 correspond to the greatest possible deviation of S̃ and F̃
from their nominal values S1, F1

S2 = (SU − SL)
/
2, F2 = (FU − FL)

/
2. (27)

Using (20) and (21) we obtain the following control signal

u(kT ) = − (
cT b

)−1 {
(1 − q)s(kT ) + cTAx(kT )+

−cTxd + S1 + F1 − (ε+ S2 + F2) sgn[s(kT )]
}
. (28)

According to [3], if parameters q, ε are chosen to satisfy

qε

2(1− q)
> S2 + F2, (29)

then this reaching law ensures, that the sliding variable will change its sign in
every successive control period and converge to the band

|s(kT )| ≤ ε
/
(1 − q). (30)

For the system considered in this chapter

S1 = S2 = 0, F̃ (kT ) = −h(kT ), F1 = −dmax/2, F2 = dmax/2. (31)

Using (6), (11) and (31) with (28) we get

u(kT ) = {qs(kT ) + (ε + dmax/2)sgn[s(kT )] + dmax/2}
/

n−1∑
i=1

ai. (32)
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Theorem 4. With the application of Gao’s reaching law, the control signal is
bounded by

− ε

(1− q)
∑n−1

i=1 ai
≤ u(kT ) ≤ qyd + ε + dmax∑n−1

i=1 ai
. (33)

Proof. The sliding variable will start from the initial value s(0) = cTxd = yd
and will converge to the band (30). Therefore, during the whole control process
the value of the sliding variable

s(kT ) ∈
[ −ε

1− q
, yd

]
. (34)

The value of the control signal (32) always increases with the increase of s(kT ).
Therefore, in order to obtain the minimum and maximum possible values of
u(kT ) we simply substitute the bounds of interval (34) into (32) and find that
(33) indeed holds. ��
We now observe, that the application of Gao’s reaching law to the considered
system has allowed to significantly reduce the maximum absolute value of the
control signal when compared with the dead-beat sliding mode controller. Un-
fortunately, since q ∈ (0, 1] and ε > 0 it is not possible to find a combination
of the controller parameters that would ensure generating a non-negative con-
trol signal. As this control signal represents the replenishment orders sent to the
suppliers, this approach is therefore not feasible for the application considered
in this chapter.

5 Non-switching Reaching Law

The application of Gao’s reaching law is not possible for the considered inventory
system, as was shown in the previous section. Therefore, in this section we will
present another approach to this problem [6]. We begin by defining the quasi
sliding mode in a slightly different way. We still require that the representative
point of the controlled system should, from any initial position, converge mono-
tonically toward the vicinity of the sliding hyperplane s(kT ) = 0. However, after
reaching the vicinity of s(kT ) = 0 the representative point does not have to cross
the hyperplane in each successive step as it was required in Gao’s definition. We
only require, that it does not leave a band around s(kT ) = 0, which is further
called the quasi sliding mode band. This allows us to discard the discontinuous
term from the control signal, which was needed to ensure the zigzagging mo-
tion. We also replace the constant convergence rate factor q with the following
variable one

q[s(kT )] =
s0

s0 + |s(kT )| , (35)

where s0 > S2 + F2 is a design parameter used to obtain a satisfactory compro-
mise between fast convergence and feasible amplitude of the control signal. This
second modification allows us to reduce the value of the control signal when
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s(kT ) is large, while still maintaining fast convergence in the neighbourhood
of the sliding hyperplane. Finally, we express the modified reaching law for a
general discrete-time system as follows

s[(k + 1)T ] = {1− q[s(kT )]} s(kT )− S̃(kT )− F̃ (kT ) + F1 + S1. (36)

We will now demonstrate, that reaching law (36) ensures the existence and
reachability of the quasi sliding mode.

Theorem 5. If the following inequality

|s(kT )| ≤ s0 (S2 + F2)

s0 − (S2 + F2)
(37)

is satisfied for some k = k0, then it also holds for any k > k0.

Proof. From (36) we observe, that |s[(k+1)T ]| always increases with the increase
of |s(kT )|. Therefore, even if we assume the most disadvantageous influence of
the model uncertainty and external disturbance, if (37) is satisfied for some k,
then from (36) we get

|s[(k + 1)T ]| ≤ s20 (S2 + F2)
2 /

[s0 − (S2 + F2)]
2

s0 (S2 + F2)
/
[s0 − (S2 + F2)] + s0

+ S2 + F2 =

=
(S2 + F2)

2

s0 − (S2 + F2)
+ S2 + F2 =

s0 (S2 + F2)

s0 − (S2 + F2)
. (38)

Using the principle of mathematical induction, we conclude, that (37) indeed
holds for any k > k0. ��
Theorem 6. If |s(kT )| is greater than the right hand side of (37), then s(kT )
converges, at least asymptotically to the band specified by (37).

Proof. We introduce a positive δ, that corresponds to the distance between the
value of s(kT ) and the quasi sliding mode band (37). The proof will consist of
two cases, in the first one we will consider positive, and in the second negative
values of s(kT ).

Case 1. If

s(kT ) =
s0 (S2 + F2)

s0 − (S2 + F2)
+ δ >

s0 (S2 + F2)

s0 − (S2 + F2)
> 0, (39)

then we get

s[(k + 1)T ]− s(kT ) = −
s20

[
S2 + F2 + S̃(kT ) + F̃ (kT )− S1 − F1

]
s20 + δ [s0 − (S2 + F2)]

+

−
δ (s0 − S2 − F2)

[
s0 + S̃(kT ) + F̃ (kT )− S1 − F1

]
s20 + δ [s0 − (S2 + F2)]

≤ (40)

≤ −
δ (s0 − S2 − F2)

[
s0 + S̃(kT ) + F̃ (kT )− S1 − F1

]
s20 + δ [s0 − (S2 + F2)]

.
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Taking into account that s0 > S2+F2 and S2+F2 ≥
∣∣∣S̃(kT ) + F̃ (kT )− S1 − F1

∣∣∣,
we observe, that s[(k + 1)T ]− s(kT ) is negative, and it approaches zero only if
δ → 0. Therefore, if the initial value s(0) > 0, then it will asymptotically converge
to the band (37).

Case 2. If

s(kT ) = − s0 (S2 + F2)

s0 − (S2 + F2)
− δ < − s0 (S2 + F2)

s0 − (S2 + F2)
< 0, (41)

then, we use (36) and obtain

s[(k + 1)T ]− s(kT ) =
s20

[
S2 + F2 − S̃(kT )− F̃ (kT ) + S1 + F1

]
s20 + δ [s0 − (S2 + F2)]

+

+
δ (s0 − S2 − F2)

[
s0 − S̃(kT )− F̃ (kT ) + S1 + F1

]
s20 + δ [s0 − (S2 + F2)]

≥ (42)

≥
δ (s0 − S2 − F2)

[
s0 + S̃(kT ) + F̃ (kT )− S1 − F1

]
s20 + δ [s0 − (S2 + F2)]

.

Since s0 > S2 + F2 and S2 + F2 ≥
∣∣∣S̃(kT ) + F̃ (kT )− S1 − F1

∣∣∣ we conclude,

that if (41) is true, then the difference s[(k + 1)T ] − s(kT ) is positive, and it
approaches zero only if δ → 0. Taking into account the results for cases 1 and
2 we conclude, that if s(kT) is outside of the band (37), then it will, at least
asymptotically, converge to this band.

��

Taking into account (31) we rewrite (36) for the analysed inventory system as

s[(k + 1)T ] = {1− q[s(kT )]} s(kT ) + h(kT )− dmax

/
2. (43)

Using (4) and (43) we obtain the following control law

u(kT ) =
{
q[s(kT )]s(kT ) + dmax

/
2
}/

n−1∑
i=1

ai. (44)

Having obtained the controller, in the following three theorems, we will demon-
strate its properties. The significance of these properties for the inventory re-
plenishment system has been justified in Section 3.

Theorem 7. Control signal (44) will, for any k ≥ 0 satisfy

0 ≤ u(kT ) ≤ [
s0yd

/
(yd + s0) + dmax

/
2
]/

n−1∑
i=1

ai. (45)
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Proof. As we have shown in Theorems 5 and 6, the absolute value of the sliding
variable will decrease in each step, unless (37) is satisfied. Moreover, once (37)
is satisfied, it holds for the rest of the control process. Since s(0) = cTxd = yd,
taking into account (31), we observe that

s(kT ) ∈ [−s0dmax

/
(2s0 − dmax) , yd

]
. (46)

As the control signal (44) always increases with the increase of s(kT ), we sub-
stitute the limits of interval (46) into (44) and find that (45) is true. ��
Theorem 8. With the application of the proposed non-switching reaching law
based controller, the warehouse stock level will always satisfy

y(kT ) ≤ yd + s0dmax

/
(2s0 − dmax) . (47)

Proof. From (46) we obtain

s(kT ) ≥ −s0dmax

/
(2s0 − dmax) (48)

for all k ≥ 0. Using (5) and (7) we can rewrite (48) as

y(kT ) ≤ yd +
s0dmax

2s0 − dmax
−

n∑
i=2

ciu[(k − n+ i− 1)T ]. (49)

The coefficients ci are positive, and, as shown in Theorem 7, the control signal
is always non-negative. Therefore (49) implies (47). ��
Theorem 9. If the demand warehouse stock level satisfies

yd > dmax

n−1∑
i=1

iai

/
n−1∑
i=i

ai +
s0dmax

2s0 − dmax
, (50)

then y(kT ) > 0 for any k ≥ k0 + n − 1, where k0 is the first time instant in
which (37) is satisfied.

Proof. Using (37), we get

y(kT ) ≥ yd −
n∑

i=2

ciu[(k − n+ i− 1)T ]− s0dmax

2s0 − dmax
(51)

for any k ≥ k0. Moreover, using (37) with (44), we obtain

u(kT ) ≤ dmax

/
n−1∑
i=1

ai (52)

also for any k ≥ k0. Using (51) and (52) we get

y(kT ) ≥ yd − dmax

n−1∑
i=1

iai

/
n−1∑
i=1

ai − s0dmax

2s0 − dmax
(53)

for any k ≥ k0+n− 1. If (50) is true, then the right hand side of (53) is always
strictly positive. ��
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6 Inverse Tangent Based Reaching Law

The non-switching reaching law approach demonstrated in the previous section
shows some promising results. In this section, we consider a similar reaching law,
however this time based on a trigonometric function [7]. The reaching law has
the following form

s[(k + 1)T ] = s(kT )− garctg
[
s(kT )

/
g
] − S̃(kT )− F̃ (kT ) + S1 + F1, (54)

where
g > 2 (S2 + F2)

/
π (55)

is a parameter used to find a compromise between fast convergence and rea-
sonable magnitude of the control signal. We will begin by showing, that this
reaching law ensures existence and reachability of the quasi sliding mode.

Theorem 10. If inequality

|s(kT )| ≤ gtg
[
(S2 + F2)

/
g
]

(56)

is satisfied for some k = k0, then it also holds for all k > k0.

Proof. First we demonstrate that if (56) holds, then

s[(k + 1)T ] ≤ gtg
[
(S2 + F2)

/
g
]
. (57)

We can observe from (54) that the value of |s[(k + 1)T ]| always increases with
the increase of |s(kT )|. Using (54) and (56) we obtain

s[(k + 1)T ] ≤ gtg
[
(S2 + F2)

/
g
]
+

− garctg
{
tg

[
(S2 + F2)

/
g
]} − S̃(kT )− F̃ (kT ) + S1 + F1. (58)

In the considered case, the most disadvantageous values of perturbations are
S̃(kT ) = SL and F̃ (kT ) = FL. Under these conditions, the terms in the sec-
ond line of (58) cancel each other out. This means, that (58) implies (57).
We will now show, that if (56) is satisfied, then

s[(k + 1)T ] ≥ −gtg
[
(S2 + F2)

/
g
]
. (59)

Using (54) and (56) we obtain

s[(k + 1)T ] ≥ −gtg
[
(S2 + F2)

/
g
]
+

− garctg
{−tg

[
(S2 + F2)

/
g
]} − S̃(kT )− F̃ (kT ) + S1 + F1. (60)

The most disadvantageous values of perturbations for this case are S̃(kT ) = SU

and F̃ (kT ) = FU . For this worst possible case, the terms in the second line of
(60) cancel out. Therefore, (60) implies (59).

Taking into consideration (57) and (59), using the principle of mathematical
induction, we conclude that indeed once (56) is satisfied, it will remain true for
the rest of the control process. ��
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Theorem 11. If the proposed reaching law is applied, then the value of |s(kT )|
will converge, at least asymptotically, to the band (56).

Proof. We introduce a positive δ, which corresponds to the distance of s(kT )
from the band (56). We will show, that |s(k + 1)T | is always closer to this band
than |s(kT )| by an amount, that can drop to zero only if δ → 0. This property
means, that s(kT ) will converge, in the worst case asymptotically, to the band
(56).

Case 1. First, we consider positive values of s(kT ), i.e.

s(kT ) = gtg
[
(S2 + F2)

/
g
]
+ δ. (61)

We calculate the rate of change of variable s by using (61) and (54)

s[(k + 1)T ]− s(kT ) = −garctg
{
tg

[
(S2 + F2)

/
g
]
+ δ

/
g
}
+ S1 + F1+

−S̃(kT )− F̃ (kT ) ≤ S2 + F2 − garctg
{
tg

[
(S2 + F2)

/
g
]
+ δ

/
g
}
. (62)

Since function arctg(.) is monotonic, we notice that the right hand side of (62)
is strictly negative, and approaches zero only for δ → 0.

Case 2. We now assume, that

s(kT ) = −gtg
[
(S2 + F2)

/
g
] − δ. (63)

From (54) we get

s[(k + 1)T ]− s(kT ) = −garctg
{−tg

[
(S2 + F2)

/
g
] − δ

/
g
}
+ S1 + F1+

−S̃(kT )− F̃ (kT ) ≥ −S2 − F2 + garctg
{
tg

[
(S2 + F2)

/
g
]
+ δ

/
g
}

(64)

We observe, that the right hand side of (64) is strictly positive, and approaches
zero only if δ → 0. Taking into consideration (62) and (64) we conclude, that
s(kT ) will converge, in the worst case scenario asymptotically, to the band (56).

��

This concludes the demonstration of existence and reachability of the quasi slid-
ing mode. We will now derive a controller for the considered system based on
the presented reaching law.

Using (4), (7) and (31) with (54) we obtain

u(kT ) =
{
garctg

[
s(kT )

/
g
]
+ dmax

/
2
}/

n−1∑
i=1

ai. (65)

In the remainder of this section, we will demonstrate some important properties
of this control law. The meaning of these properties for an actual logistic system
has already been described in Section 3.
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Theorem 12. Control signal (65) is non-negative and upper bounded, i.e.

0 ≤ u(kT ) ≤ [
garctg

(
yd

/
g
)
+ dmax

/
2
]/

n−1∑
i=1

ai (66)

for any k ≥ 0.

Proof. As shown in Theorems 10 and 11, the magnitude of s(kT ) will decrease
in each step, unless (56) is satisfied. Moreover, once (56) is satisfied, it will hold
for the rest of the control process. Since s(0) = yd, this means that the sliding
variable

s(kT ) ∈ [−gtg
[
dmax

/
(2g)

]
, yd

]
(67)

for all k ≥ 0. The control signal (65) always increases with the increase of s(kT ).
Therefore, to obtain its maximum and minimum values, we simply substitute the
limits of interval (67) into (65) and find that (66) indeed holds. ��

Theorem 13. The on hand stock, for all k ≥ 0, satisfies the following inequality

y(kT ) ≤ yd + gtg
[
dmax

/
(2g)

]
. (68)

Proof. From (67) we obtain

s(kT ) ≥ −gtg
[
dmax

/
(2g)

]
(69)

for all k ≥ 0. Moreover, we can rewrite (69) using (7) and (5) as

y(kT ) ≤ yd + gtg
[
dmax

/
(2g)

] − n∑
i=2

ciu[(k − n+ i− 1)T ]. (70)

All the coefficients ci are positive. Furthermore, as demonstrated in Theorem 12,
the control signal is non-negative. This allows us to conclude that (70) implies
(68). ��

Theorem 14. If the demand stock level satisfies

yd > dmax

n−1∑
i=1

iai

/
n−1∑
i=1

ai + gtg
[
dmax

/
(2g)

]
, (71)

then the warehouse will never be empty for any k ≥ k0 + n− 1, where k0 is the
first review period in which (56) is satisfied.

Proof. From (56) we obtain

y(kT ) ≥ yd −
n∑

i=2

ciu[(k − n+ i− 1)T ]− gtg
[
dmax

/
(2g)

]
(72)
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for any k ≥ k0. Moreover, since u(kT ) increases with the increase of s(kT ),
using (56) with (65) we obtain

u(kT ) ≤ dmax

/
n−1∑
i=1

ai (73)

again, for all k ≥ k0. By combining (72) and (73) we arrive at

y(kT ) ≥ yd − dmax

n−1∑
i=1

iai

/
n−1∑
i=1

ai − gtg
[
dmax

/
(2g)

]
(74)

for any k ≥ k0+n− 1. If (71) is true, then the right hand side of (74) is always
strictly positive, which ends the proof. ��

7 Hyperbolic Tangent Based Reaching Law

In this section we take into consideration the reaching law based on the hyper-
bolic tangent function [25]. This reaching law can be presented as

s[(k + 1)T ] = s(kT )− rtanh
[
s(kT )

/
r
] − S̃(kT )− F̃ (kT ) + S1 + F1 (75)

with r > S2 + F2 which plays a similar role to g in the inverse tangent based
reaching law.

We will begin by demonstrating that reaching law (75) ensures the existence
and reachability of the quasi sliding mode for any discrete time system that can
be described by (20).

Theorem 15. If the following inequality

|s(kT )| ≤ r [ln (r + S2 + F2)− ln (r − S2 − F2)]
/
2 (76)

is satisfied for some k = k0, then it is also true for any k > k0.

Proof. From (75) we obtain∣∣s[(k+1)T ]
∣∣ ≤ ∣∣∣s(kT )− rtanh

[
s(kT )

/
r
] ∣∣∣+ ∣∣∣F1 + S1 − S̃(kT )− F̃ (kT )

∣∣∣ . (77)

Considering (25), (26) and (27) the second term on the right hand side of (77)
is always smaller than or equal to S2 +F2. Moreover, the value of the first term
always increases with the increase of |s(kT )|. Thus, taking into account (76), we
get

|s(k + 1)T | ≤ r
{
[ln (r + S2 + F2)− ln (r − S2 − F2)]

/
2+

− e[ln(r+S2+F2)−ln(r−S2−F2)]/2 − e−[ln(r+S2+F2)−ln(r−S2−F2)]/2

e[ln(r+S2+F2)−ln(r−S2−F2)]/2 + e−[ln(r+S2+F2)−ln(r−S2−F2)]/2

}
+ S2 + F2 =

r [ln (r + S2 + F2)− ln (r − S2 − F2)]
/
2 (78)

which ends the proof. ��
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Theorem 16. The sliding variable will converge, at least asymptotically to the
band described by (76).

Proof. We express the distance of |s(kT )| from the band (76) by a positive value
δ. Therefore, any value of |s(kT )| outside of this band can be represented as

|s(kT )| = r [ln (r + S2 + F2)− ln (r − S2 − F2)]
/
2 + δ. (79)

We observe, that |s(kT )| ≥ |rtanh[s(kT )/r]| for any value of s(kT). This allows
us to use (77) to express the rate of change of the sliding variable as

|s[(k + 1)T ]| − |s(kT )| ≤ S2 + F2+

− rtanh
{
[ln (r + S2 + F2)− ln (r − S2 − F2)]

/
2 + δ

/
r
}
. (80)

Because tanh(.) is a monotonic function of its argument, and

tanh
{
[ln (r + S2 + F2)− ln (r − S2 − F2)]

/
2
}
=

S2 + F2

r
, (81)

then the right hand side of inequality (80) is negative and approaches zero only
for δ → 0. Therefore, s(kT ) will in fact converge to the band (76). ��
Using (4) and (11) we write the control signal for the considered system as

u(kT ) =
{
rtanh

[
s(kT )

/
r
]
+ dmax

/
2
}/

n−1∑
i=1

ai. (82)

In the three theorems that follow, we will describe the properties of the system
with the application of the obtained controller. The importance of these prop-
erties has been explained in the section concerning the dead-beat controller.

Theorem 17. The control signal (82) satisfies

0 ≤ u(kT ) ≤ [
rtanh

(
yd

/
r
)
+ dmax

/
2
]/

n−1∑
i=1

ai (83)

for all k ≥ k0.

Proof. It follows from Theorems 15 and 16 that the absolute value of the sliding
variable will decrease in each period, unless (76) is satisfied. Furthermore, once
(76) becomes satisfied, it will hold for the rest of the control process. As s(0) = yd,
we observe, that for any k ≥ 0

s(kT ) ∈ [−r [ln (r + dmax/2)− ln (r − dmax/2)]
/
2, yd

]
. (84)

Control signal (82) always increases with the increase of s(kT ). By substituting
the limits of interval (84) into (82) we obtain the maximum and minimum values
of u(kT ) and find that (83) indeed holds. ��
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Theorem 18. The stock level in the distribution center always satisfies the fol-
lowing inequality

y(kT ) ≤ yd + r
[
ln

(
r + dmax

/
2
) − ln

(
r − dmax

/
2
)] /

2. (85)

Proof. From (84) we have

s(kT ) ≥ −r
[
ln

(
r + dmax

/
2
) − ln

(
r − dmax

/
2
)] /

2 (86)

for all k ≥ 0. By substituting (5) and (7) into (86) we get

y(kT ) ≤

≤ yd −
n∑

i=2

ciu[(k − n+ i− 1)T ] +
r

2

[
ln

(
r +

dmax

2

)
− ln

(
r − dmax

2

)]
.

(87)

The control signal, as shown in Theorem 17 is always non-negative, and all the
elements of vector c are positive. Therefore, we conclude that (87) implies (86).

��

Theorem 19. If the demand stock level is chosen to satisfy

yd > dmax

n−1∑
i=1

iai

/
n−1∑
i=1

ai +
r

2

[
ln

(
r +

dmax

2

)
− ln

(
r − dmax

2

)]
, (88)

then the on hand stock level will never drop to zero for any k > k0+n−1, where
k0 is the first review period in which (76) is satisfied.

Proof. By using (5) with (76) we obtain

y(kT ) ≥ yd−
n∑

i=2

ciu[(k−n+i−1)T ]− r

2

[
ln

(
r +

dmax

2

)
− ln

(
r − dmax

2

)]
(89)

for all k ≥ k0. As u(kT ) always increases with the increase of s(kT ) we use (76)
and (82) to get

u(kT ) ≤ dmax

/
n−1∑
i=1

ai (90)

also for any k ≥ k0. By combining (89) and (90) we arrive at

y(kT ) ≥ yd−dmax

n−1∑
i=1

iai

/
n−1∑
i=1

ai− r

2

[
ln

(
r +

dmax

2

)
− ln

(
r − dmax

2

)]
(91)

for any k > k0 + n − 1. If (88) is satisfied, then the right hand side of (91) is
strictly positive, and this observation ends the proof. ��
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8 Variable Structure Reaching Law

In some inventory systems it would be advantageous if the controller output
would always be equal either to some defined a priori value, or to zero. This
corresponds to making a delivery request for some specific amount of goods (for
example one truckload) or no request at all. In order to obtain such an inventory
management policy, we propose the following reaching law [5]

s[(k + 1)T ] = s(kT )− 0.5Q{1 + sgn[s(kT )]}+ h(kT ), (92)

where sgn(.) is defined by (22) and parameter

Q > dmax. (93)

We notice from (92) and (93) that if s(kT ) > 0, then s[(k + 1)T ] ≥ s(kT )−Q.
On the other hand, if s(kT ) ≤ 0, then s[(k + 1)T ] ≥ s(kT ). Therefore

s(kT ) > −Q (94)

for all k ≥ 0. We define k1 as the first time instant when the representative point
reaches or crosses the hyperplane. We observe from (92), (93), and s(0) = yd > 0,
that the value of s(kT ) will decrease in each step, at least by Q − dmax, unless
s(kT ) ≤ 0 becomes satisfied. Therefore, we can upper bound k1 by

k1 < 	yd
/
(Q− dmax)
. (95)

Now we will consider the value of s(kT > k1T ). If s(kT ) ≤ 0, then s[(k+1)T ] ≤
s(kT ) + dmax ≤ dmax. If on the other hand s(kT ) > 0, then s[(k + 1)T ] ≤
s(kT )−Q+ dmax < s(kT ). Therefore, for any k ≥ k1

s(kT ) ≤ dmax. (96)

Taking into account (94) and (96) we conclude, that for all k ≥ k1 the value of
the sliding variable will satisfy s(kT ) ∈ (−Q, dmax].

By substituting (4) and (7) into (92) we obtain the following control signal

u(kT ) = Q{1 + sgn[s(kT )]}
/(

2

n−1∑
i=1

ai

)
. (97)

As we easily observe the replenishment orders generated by the controller are
always equal to either Q

/ ∑n−1
i=1 ai or to zero. In the next theorem we will demon-

strate, that the stock level is always upper bounded, and therefore, the risk of
costly emergency storage can be eliminated by choosing an appropriate ware-
house size.

Theorem 20. When the proposed controller is applied, the on hand stock level
satisfies

y(kT ) < yd +Q (98)

for any k ≥ 0.
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Proof. Using (5) we transform (94) to the following form

y(kT ) < yd +Q−
n∑

i=2

ciu[(k − n+ i− 1)T ]. (99)

Because all parameters ci are positive, and the control signal is non-negative, we
conclude, that (99) implies (98). ��
In the next theorem, we show that with a sufficiently large demand stock level,
our control strategy ensures full satisfaction of consumers’ demand and therefore
maximizes profit.

Theorem 21. If the demand stock level satisfies

yd > dmax +Q

n−1∑
i=1

iai

/
n−1∑
j=1

aj , (100)

then the on hand stock level will be strictly positive for any k ≥ k1.

Proof. Inequality (96) holds for all k ≥ k1. We can rewrite it as follows

y(kT ) ≥ yd − dmax −
n∑

i=2

ciu[(k − n+ i− 1)T ] ≥ yd − dmax −Q

n−1∑
i=1

iai

/
n−1∑
j=1

aj

(101)
If (100) holds, then the right hand side of (101) is strictly positive, which ends
the proof. ��

9 Simulation Results

In order to verify the properties of the proposed controllers, and to compare their
performance, computer simulations were performed. The maximum consumers’
demand dmax = 100 items and the review period T = 1 day. The actual con-
sumers’ demand d(kT ) in the simulations is shown in Fig. 2. It exhibits sudden
changes between small and large values, which corresponds to the most difficult
conditions in the inventory system. There are three suppliers in the system and
their description is shown in Table 1. This set of parameters characterising the
suppliers results in the following values of coefficients: a3 = 0.156, a5 = 0.309,
a8 = 0.476, and the remaining ai are equal to zero. As we have already demon-

Table 1. System parameters

p Lp [days] αp umaxp [items]

1 3 0.97 18

2 5 0.96 36

3 8 0.92 58
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Fig. 2. Consumers’ demand

strated in Theorem 4 it is impossible to guarantee generating a non-negative
control signal with the application of Gao’s reaching law, which means that this
approach cannot be used in practice. Therefore, we omit the Gao’s reaching law
in the simulations presented in this section. The parameters of each controller
are chosen so that the control signal will not exceed

∑3
i=1 umax = 112 items

(apart from the dead-beat controller where this is not possible). In each case the
minimum demand stock level y′d that ensures full consumers’ demand satisfaction
has been calculated, and a slightly larger value, yd has been used. Furthermore,
for each controller, we have obtained the stock level ymax, that will never be
exceeded. This information, useful for choosing an appropriate warehouse size,
is shown in Table 2.

For each controller we will present the control signal, the inventory stock level,
and the value of the sliding variable. The simulation results for the dead-beat
controller are shown in figures 3, 4 and 5, for the non-switching reaching law in
figures 6, 7 and 8, for the inverse tangent based reaching law in figures 9, 10 and
11, for the hyperbolic tangent based reaching law in figures 12, 13 and 14 and
for the variable structure controller in figures 15, 16 and 17.

Observing the figures 3-17 we notice, that all of the controllers satisfy the
properties, which have been demonstrated analytically in the previous sections.
They all generate a non-negative and upper bounded control signal and ensure
that the stock level does not exceed an a priori known value. By choosing an

Table 2. Controllers parameters

Controller Parameters y′
d [items] yd [items] ymax [items]

Dead-beat None 719 730 730

Non-switching reaching law s0 = 59.02 items 946 960 1287

Inverse tangent reaching law g = 36.3 items 804 810 995

Hyperbolic tangent reaching law r = 55.4 items 701 710 792

Variable structure reaching law Q = 105.4 items 752 760 865
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Fig. 3. Control signal for the dead-beat controller (u(0) = 775.7 items)
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Fig. 4. On hand stock level for the dead-beat controller
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Fig. 5. Evolution of the sliding variable for the dead-beat controller.
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Fig. 6. Replenishment orders generated by the non-switching reaching law controller
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Fig. 7. Stock level for the non-switching reaching law controller
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Fig. 8. Sliding variable evolution for the non-switching reaching law controller (the
QSMB bounds equal to ±327 items are shown with dashed lines)
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Fig. 9. Replenishment orders generated by the inverse tangent reaching law controller
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Fig. 10. Stock level for the inverse tangent reaching law controller
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Fig. 11. Sliding variable evolution for the inverse tangent reaching law controller (the
QSMB bounds equal to ±185 items are shown with dashed lines)
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Fig. 12. Replenishment orders generated by the hyperbolic tangent reaching law con-
troller
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Fig. 13. Stock level for the hyperbolic tangent reaching law controller
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Fig. 14. Sliding variable evolution for the hyperbolic tangent reaching law controller
(the QSMB bounds equal to ±82.3 items are shown with dashed lines)
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Fig. 15. Replenishment orders generated by the variable structure controller
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Fig. 16. Stock level for the variable structure controller
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Fig. 17. Sliding variable evolution for the variable structure controller (the bounds
equal to dmax = 100 items and −Q = −105.4 items are shown with dashed lines)
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appropriately large value of the demand stock level for each controller, we have
eliminated the risk of lost sales.

Comparing the results obtained with the different controllers we immediately
notice, that the basic dead-beat strategy generates an unacceptably large value of
the control signal in the first time instant. Therefore, the reaching law approaches
are needed to overcome this drawback. As we can observe, the non-switching,
inverse tangent and hyperbolic tangent reaching law approaches give different
results, even when their parameters are chosen to obtain the same bound on the
magnitude of the control signal. The non-switching reaching law generates the
smoothest control signal of the three, making it easy to follow by the suppliers.
Unfortunately, in order to ensure full consumers’ demand satisfaction it requires
the largest warehouse size. On the other side of the spectrum, the hyperbolic tan-
gent reaching law requires the least amount of inventory space, but the generated
replenishment orders change quite rapidly. Therefore, the undesirable bullwhip
effect in this case is only slightly reduced. The properties of the inverse tangent
reaching law lie between the other two. The choice between one of these three
strategies for a specific application can be motivated by comparing the cost of
storage of a particular ware and the willingness of the providers to fulfil rapidly
changing replenishment orders.

The variable structure controller generates orders that are always equal to
either zero, or some specified a priori value. Therefore, it seems best fitted for
cases in which a decision whether to send or not to send a transport of a partic-
ular quantity of goods (for example one truckload) has to be reached. This kind
of situation could arise, when the transportation costs are high when compared
to the value of goods themselves, or when a transport between wholesalers is
considered. The drawback of this strategy is that it would also require consider-
able storage capabilities on the side of the supplier, so that it would be able to
comply with the incoming shipment requests.

10 Conclusions

In this work, we have chosen a definition of the quasi sliding mode that, in con-
trast to the seminal work of Gao, does not require crossing the sliding hyperplane
in each control step. In our definition, it is sufficient, that the representative point
remains in a pre-defined band around the sliding hyperplane. This modification
allowed us to eliminate chattering and obtain tighter bounds on the control
signal. We have presented four reaching laws for linear discrete time systems
subject to parameter uncertainties and disturbances. For each of the presented
reaching laws we have demonstrated the conditions ensuring the existence and
reachability of the quasi sliding mode.

We have shown, that for some systems, e.g. the inventory supply chains, the
reaching law of Gao cannot be applied, because it does not guarantee generating
a non-negative control signal. On the other hand, all of the recently proposed
reaching laws can satisfy this important condition. We have also demonstrated,
that by applying the proposed reaching laws, we obtain controllers that eliminate
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the need for costly emergency storage, and can, with a sufficiently large ware-
house capacity, ensure complete satisfaction of the consumers’ demand. These
important properties have been both proved analytically and verified in com-
puter simulations.

The variable structure reaching law is the most suited to problems, in which
it is advantageous to generate a control signal that is equal either to zero, or
to some known, specified a priori value. Choosing between one of the remaining
reaching laws for a specific case one should take into account the requirements
on the system robustness (reflected by the maximum admissible width of the
quasi sliding mode band) and the limits on the control signal rate of change.
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Abstract. Fundamental properties of SlidingMode (SM)Control (SMC)
are considered. The best and worst possible SM accuracy of Single-Input
Single-Output (SISO) and Multi-Input Multi-Output (MIMO) systems
is shown to be directly determined by the number of continuous deriva-
tives of the sliding variables. The best SM accuracy is obtained in the both
SISO and MIMO cases by homoneous SMs. SM adaptation is to be based
on the detection of a real SM. Such detection is based on the observation
of the above best possible accuracy in the presence of noises and discrete
sampling. Convergence to SM is accelerated by control, which is piece-
wise homogeneous on successive time segments. It allows feedback appli-
cation of homogeneous SM-based differentiators with piece-wise constant
parameters, providing for arbitrarily fast convergence and preserving the
optimal accuracy featuring homogeneous SMs. Simulation results show
the feasibility of the proposed methods and demonstrate their asymptotic
accuracy.

1 Introduction

The idea of the Sliding Mode Control (SMC) approach is very intuitive. One tries
to remove the dynamics uncertainty by establishing and keeping an appropriate
connection σ = 0 between the system variables. Due to the system uncertainty
the proposed way is to shift the system towards the constraint, and to switch
the control each time this goal appears to be missed. It results in high-frequency
switching of the control, and the corresponding motion mode σ ≡ 0 is called
Sliding Mode (SM), whereas σ is called the sliding variable [65,21,57,59].

The main advantages and disadvantages of the approach are immediately
seen: on the one hand the control method is simple and effective, on the other
hand the resulting control becomes discontinuous on the constraint manifold
and theoretically features infinite-frequency switching. Such switching can cause
dangerous system vibrations (the chattering effect [65,7,25]).

High-Order Sliding Modes (HOSMs) were historically proposed to overcome
the above chattering-effect problem. Describe that approach. Suppose that the
equality σ = 0 is kept on the solutions of a closed-loop system. The sliding
order r is the lowest integer r, such that the rth-order total time derivative σ(k)
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is not a continuous function of the state variables and time (see [31,32]. The
corresponding motion σ ≡ 0 is called rth-order SM, and for brevity is called
r-sliding mode (r-SM).

The standard SMs [21,65] are of the first order, i.e. σ = 0 is held, whereas
already σ̇ contains discontinuous control u, r = 1. The idea of the HOSM-
based chattering attenuation of standard SMs is to introduce the virtual control
u̇, so as to keep σ = σ̇ = 0 by means of a discontinuous virtual control u̇
[9,31,15]. The control u itself is formally included in the system variables. As
the result, the sliding order is increased from 1 to 2. Note that the chattering
reduction is not due to the continuity of the corresponding control u(t), but due
to simultaneously keeping continuous functions of system variables σ and σ̇ at
zero [35]. Nothing theoretically prevents using u(k) providing for the (k+1)-SM
keeping σ = σ̇ = . . . = σ(k) = 0 [35], k = 1, 2, ... . HOSMs are also typically
characterized by high accuracy in the presence of small switching imperfections
and noises [31,33].

Relative degree is defined as the lowest total derivative order of the output
σ which explicitly contains control [28]. Families of universal controls are re-
cursively constructed and solve the problem for any relative degree r [33,59] of
the output σ by means of r-SM. In particular, the finite-time stabilization of
σ is possible by means of control, continuous everywhere except the manifold
σ = σ̇ = · · · = σ(r−1) = 0 [34]. The controllers are complemented by the ro-
bust exact SM-based differentiators in finite time providing for the unavailable
derivatives of σ [32]. SM control is proved to be insensitive to disturbances in
the control channel (matched disturbances), robust with respect to sampling
noises and small delays. Homogeneous SMs [33] are proved to be robust to small
disturbances, including those which change the relative degree [43], and to the
presence of fast stable sensors and actuators [26,35].

The results described above constitute a solid foundation for extensive ap-
plications of SMC for solution of various control and observation problems un-
der uncertainty conditions [3,8,11,15,19,20,24,27,29,46,45,51,57,49,61]. The new
emerging areas of SMC theory deal with nonhomogeneous SMC and observation
[18,39], robustness and discretization issues [6,26,40,43], approximability features
[12]. Lyapunov functions are found and used for HOSM controllers [47,55,56,17].

Usually the uncertainties are assumed to be bounded, whereas the bounds
serve as the SM control parameters. The SM adaptation is needed, if these
bounds exist, but are unknown. The next-level adaptation is required, if the
bounds are variable, but change with some bounded speed, etc. SM adaptation
is one of the hot topics of the modern SMC [50,53,52,60,2,63,66].

It is well-known that though the transient time to SM of the homogeneous SM
controllers is finite, the convergence is slow at large distances. The convergence
time is very important, since the system uncertainty is suppressed only after the
SM is established. Intensive efforts have been made to shorten the transient. In
that context one has to especially single out the controllers with fixed-time con-
vergence, i.e. with the convergence times bounded from above by some constant
independent of initial conditions [17,4,54]. Unfortunately, recent study shows
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that realization of such systems is problematic, if the sampling rate is a-priory
bounded [36]. Therefore, it seems more realistic to regulate the convergence time
so that it will not exceed a prescribed function of initial conditions.

In this chapter we discuss some fundamental properties of the SMC, review
and extend the recent results by the authors in SM adaptation and convergence-
time regulation. In this context new general results on the SM accuracy, ho-
mogeneous Multi-Input Multi-Output (MIMO) SMC and its acceleration are
presented. The main idea of this chapter is that the best possible accuracy de-
fined by the SM order is not only to be obtained both in the Single-Input Single-
Output (SISO), and MIMO cases by homogeneous HOSMs, but also can be used
for the detection of homogeneous HOSMs kept in practical systems. The accel-
erated control is homogeneous over successive time intervals, which also allows
the feedback application of the robust finite-time convergent differentiators [32].
Simulation results show the feasibility of the proposed methods and demonstrate
their asymptotic accuracy.

2 General SMC Problem

Consider an uncertain smooth nonlinear system of the form ẋ = f(t, x, u), x ∈
R

n, u ∈ R
m, with a smooth output σ(t, x) ∈ R

l. By the SMC problem we
understand the problem of establishing and afterwards keeping a proper con-
straint σ(t, x) = 0 which solves or facilitates the main control problem. Intro-
ducing a new auxiliary control u̇ = v obtain the new affine-in-control system(
ẋ
u̇

)
=

(
f(t, x, u)

0

)
+

(
0
1

)
v. Further we only deal with affine-in-control sys-

tems. We also usually assume that the system has a well-defined relative degree.
Recall that a scalar output σ(t, x) of a smooth SISO system

ẋ = a(t, x) + b(t, x)u, (1)

has a relative degree r, if the rth total time derivative of σ is the first to explicitly
contain the control, and the corresponding control coefficient does not vanish.
In the MIMO case the dimensions of u and σ are to be equal, a partial relative
degree ri with respect to some control component is to exist for each component

σi of the output, and the matrix
(

∂σ(ri)

∂uj

)
is to be nonsingular [28].

Finite-Time Stability. We say that the SM σ ≡ 0 is finite-time stable, if σ ≡ 0
is established in finite time. In the sequel we mainly consider finite-time stable
SMs (FTSSMs). One frequently doubts the advantages of systems with FTSSMs
over asymptotically stable SMs (ASSMs). Indeed, in practice exact convergence
is never possible. Nevertheless the difference is significant.

The practical accuracy of a FTSSM is determined by present small distur-
bances and is obtained in a finite time known in advance, whereas the transient
time of a practical ASSM tends to infinity, if the disturbances gradually vanish.

The disturbed steady-state motion of a FTSSM is close to the ideal SM over
any compact time interval [23], which often practically finishes the analysis. On
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the other hand, the disturbed motions of an ASSM are close to undisturbed
transient motions over closed finite time intervals, but since the undisturbed
transient never ends, some special convergence analysis is inevitable.

3 Sliding Order and Restrictions of SM Accuracy

Realization of SM control inevitably includes discrete switching [58] and noisy
measurements. Here we estimate the worst and the best possible realization
accuracy of HOSMs in the presence of noises and discrete switching, and show
that possible practical SM accuracies are strictly determined by the numbers of
the output derivatives in which the discontinuity appears for the first time.

3.1 Accuracy of SMs in the Absence of Noises

The following lemma actually describes SM accuracy in the presence of discrete
control swithing. It extends a similar result of [31].

Lemma 1. Let ω(t) be a scalar function having continuous derivative ω(l) on
the segment [0, τ ], τ > 0. Then for each natural number l there exist such
c0, c1, ..., cl−1 > 0 and d1, d2, ..., dl−1 > 0 that for any δ > 0

1. if |ω(l)| ≥ δ holds on the segment, then

max |ω| ≥ c0δτ
l,max |ω̇| ≥ c1δτ

l−1, ...,max |ω(l−1)| ≥ cl−1δτ ; (2)

2. if |ω(l)| ≤ δ and |ω| ≤ d0δτ
l hold over the segment [0, τ ] for some d0, then

max |ω̇| ≤ (d0d1 + 1)δτ l−1, ...,max |ω(l−1)| ≤ (d0dl−1 + 1)δτ. (3)

Obviously the second statement of the Lemma provides for a rather crude esti-
mation, since with d0 = 0 all derivatives of ω should vanish.
Proof of Statement 1. The statement is trivial with l = 1. Let the statement
be true with some l = k > 0, i.e. the corresponding set ci be chosen. Transition
from l = k to l = k + 1 is as follows.

Obviously ω̇ satisfies the statement with l = k. Thus, only ω is to be evaluated.
Prove that max |ω| ≥ 2−(k+1)3−(k+1)2δτk+1. Indeed, let it be wrong and |ω| <
2−(k+1)3−(k+1)2δτk+1 hold. The points of the whole segment can be written in
the ternary number system as numbers τ · 0.b1b2 . . . with bj ∈ {0, 1, 2}. Consider
only points with bj ∈ {0, 2}, j = 1, . . . , k+1. They constitute 2k+1 subsegments
of the length 3−k−1τ . Take one internal point at each such subsegment. The
distance between each two neighbor points with the same bj , j = 1, . . . , k, is
not less than 3−(k+1)τ , and the difference of the values of ω does not exceed
|ω| < 2−k3−(k+1)2δτk+1. Hence, according to the Lagrange Theorem, there is a
point between them, where |ω̇| < 2−k3−k(k+1)δτk. These 2k second-generation
points belong to the set of points with bj ∈ {0, 2}, j = 1, . . . , k, and the distance
between successive points is not less than 3−kτ > 3−(k+1)τ . Apply once more the
same procedure and get 2(k−1) third-generation points with the distance between
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them not less than 3−(k+1)τ . After k+1 steps get a point in the original segment,
where |ω(k+1)| < δ, which is a contradiction to the Lemma condition.
Proof of Statement 2. Applying the same procedure as for statement 1 get
l − 1 points tj with |ω(j)(tj)| ≤ d0δd̃jτ

l−j , j = 1, 2, . . . , l− 1. Now from

ω(l−1)(t) = ω(l−1)(tl−1) +

∫ t

tl−1

ω(l)(t)dt

one gets |ω(l−1)(t)| ≤ (d0d̃l−1+1)δτ . Similarly, integrating one gets |ω(l−2)(t)| ≤
(d0d̃l−2 + d0d̃l−1 + 1)δτ2, etc. ��

Lemma 1 shows that the accuracy of keeping an output σ = 0 is directly con-
nected with the number of its continuous total time derivatives. This naturally
implies the following definition [31], directly formulated for the vector output σ.

Definition 1. Suppose the constraint σ(x) = 0, σ : Rk → R
m, is identically

kept on some solutions of a dynamic system ẋ = v(x), x ∈ R
k, understood in the

Filippov sense, v(x) is any Lebesgue-measurable locally bounded vector-function.
Then the solutions keeping σ(x) = 0 are said to be in the (r1, r2, ..., rm)th-order
sliding mode, if

1. σ
(j)
i (x) are continuous functions of x, j ≤ ri − 1;

2. the r-sliding set Lr =
{
x |σ(j)

i (x) = 0, j ≤ ri − 1, i = 1, ...,m
}
is not empty,

and locally consists of Filippov solutions;

3. σ
(r1)
1 , σ

(r2)
2 , ..., σ

(rm)
m are discontinuous functions of x or do not exist.

In the non-autonomous case the time t is considered as an additional coordinate,
and the equation ṫ = 1 is formally added.

It follows from the sliding-order definition that SM order is component-wise
larger or equal than vector relative degree, if the latter exists. It can be higher,
if, for example, the control itself features some discontinuous dynamics. An r-SM
is called unstable, asymptotically stable, finite-time stable, etc., if the r-sliding
manifold Lr features the same property.

Consider a MIMO dynamic system (1). Let the output σ(t, x) and the input
u be vectors, σ : Rn+1 → Rm, u ∈ Rl, a, b be smooth. The system is assumed
to have the partial relative degrees r = (r1, ..., rm), ri > 0, which means that

the successive total time derivatives σ
(j)
i , j = 0, 1, ..., ri − 1, i = 1, ...,m, do not

contain controls, but controls appear in σ
(ri)
i . Respectively, get a vector equation

σ(r) = h(t, x) + g(t, x)u, (4)

where σ(r) denotes (σ
(r1)
1 , ..., σ

(rm)
m )T . As a direct consequence of Lemma 1 obtain

the following Theorem.

Theorem 1. Let system (1) be smooth with partial relative degrees r=(r1, ..., rm).
Then for some constants cri,0, ..., cri,ri−1, dri,1, ..., dri,ri−1 > 0, i = 1, ...,m the
following is true for each component σi. Over any time interval of the length τ
with continuous control u(t) ∈ R

l



134 Y. Dvir and A. Levant

1. if |σ(ri)
i | ≥ δi holds on the segment for some δi > 0, then

max |σi| ≥ cri,0δiτ
ri ,max |σ̇i| ≥ cri,1δiτ

ri−1, ...,max |σ(ri−1)| ≥ cri,ri−1δiτ ;
(5)

2. if |σ(ri)
i | ≤ δi and |σi| ≤ dri,0δiτ

r hold over the segment for some dri,0 and
δi > 0, then

max |σ̇| ≤ (dri,0dri,1 + 1)δiτ
ri−1, ...,max |σ(ri−1)| ≤ (dri,0dri,ri−1 + 1)δiτ.

(6)

In particular, in the case of the SISO SMC problem, it follows from the The-
orem that no one can expect an accuracy better than

σ = O (τr) , σ̇ = O (
τr−1

)
, ..., σ(r−1)| = O (τ)

in the sliding mode σ ≈ 0, if σ(r) is separated from zero between the switchings.
On the other hand, if σ(r) exists and is bounded, then keeping σ ≈ 0 implies
that also σ(j) ≈ 0, j = 1, . . . , r − 1.

As follows from the second statement of the Theorem, the r-SM accuracy
can be higher than σ(j) = O(τr−j), if σ(r) is kept close to zero. For example,
the implicit Euler method [1] actually increases the order of the real (i.e. ap-
proximate) SM due to the on-line estimation of the equivalent control, which
allows to decrease the discontinuous component of the control. Unfortunately
such estimation requires some additional system knowledge.

3.2 Accuracy of Sliding Modes in the Presence of Noises

Once more consider the uncertain SMC problem (1), (4). Recall that it is possible
to provide for the exact finite-time establishment of the r-SM σ ≡ 0 using only
output measurements [32,33].

Theorem 2. Suppose that the control, based on the input measurements only,
provides for the exact finite-time establishment of the r-SM σ ≡ 0 independently
of the function h, satisfying ‖h‖ ≤ C. Let σi be measured with a Lebesgue-
measurable noise ηi(t) of the maximal magnitude εi ≥ 0, ηi(t) ≤ εi, with un-
known features, i = 1, . . . ,m. Then the worst-case SM accuracy cannot be better
than

|σi| ≤ εi, |σ̇| ≤ c̃i,1ε
ri−1

ri

i , ..., |σ(ri−1)
i | ≤ c̃i,ri−1ε

1
ri

i ,

c̃i,j =
(

C

m
1
2

) j
ri
, j = 1, . . . , ri, i = 1, . . . ,m.

(7)

Proof. Let the output satisfy the equation σ(r) = g(t, x)u, i.e. (4) with ‖h‖ ≤ C,
h ≡ 0. Let now the measured signal σ̂i be of the form σ̂i(t, x) = σi(t, x) +
εi cos((m

−1/2C/ε)1/rit), i.e. the noise be equal ε cos((m−1/2C/ε)1/rit). Then the
noisy signal σ̂i satisfies

σ
(ri)
i =

(
cos

((
C

εm
1
2

) 1
r

t

))(r)

+ g(t, x)u,

∣∣∣∣∣
(
cos

((
C

εm
1
2

) 1
r

t

))(r)
∣∣∣∣∣ ≤ C

m
1
2

.



SM Order and Accuracy in SM Adaptation and Acceleration 135

Respectively, according to the assumptions, the control will successfully establish

and keep σ̂i ≡ 0, which corresponds to |σ(j)
i | ≤

(
C√
m

) j
r

ε
r−j
r , j = 0, . . . , r−1. ��

Note that both Theorems 1, 2 are true for any τ and εi, neither τ nor εi need
to be small.

Under the conditions of Theorem 2 let the output σ be measured with noises
of the magnitudes εi > 0 at some discrete time instants, and let the control
be updated at each sampling instant and remain constant between the sampling
moments. Then the inequalities (5) hold independently of the noise presence over

each sampling time interval of the length τ on which the inequality |σ(ri)
i | > δi >

0 is held.
The situation is more complicated, if the maximal sampling step tends to

zero. Some additional assumptions are needed to ensure that the corresponding
solutions uniformly converge to solutions with continuous sampling. If such a
convergence takes place, then, according to (7), the worst case SM accuracy is

not better than |σ(j)
i | = O(ε

r−j
r

i ).

Example. The output σ of the SISO system (1), (8) of the relative degree r

is traditionally nullified by keeping the constraint Σ =
(

d
dt + λ

)r−1
σ = 0 in

1-SM Σ ≡ 0 [22,65,21]. Let τ be the sampling step, then Σ = O(τ) is the only
possible accuracy according to Theorem 1. The respective overall r-SM accuracy
is σ = O (τ) , σ̇ = O (τ) , ..., σ(r−1)| = O (τ) [62]. It definitely satisfies (5), but is
much worse than the best possible accuracy (6).

4 Homogeneous SM Control

In this section we develop SMC which realizes the best possible asymptotic SM
accuracy (6), (7) calculated in the previous section. The corresponding con-
trollers are developed for systems featuring well-defined relative degrees and are
based on the homogeneity theory [5,13,14].

Definition 2. A function f : Rn → R is called homogeneous of the degree q,
deg f = q, with the dilation dκ : (x1, ..., xn) �→ (κm1x1, ..., κ

mnxn), if the equality
f(x) = κ−qf(dκx) holds for any x ∈ R

n and κ > 0 . The numbers deg xi = mi,
mi > 0, are called the homogeneity degrees (weights) of xi.

Definition 3 ([33]). A differential inclusion ẋ ∈ F (x), F (x) ⊆ R
n, is homoge-

neous of the degree q, if it is invariant with respect to the homogeneity transfor-
mation (t, x) �→ (κ−qt, dκx). In other words, the equality F (x) = κ−qd−1

κ F (dκx),
holds for any x ∈ R

n, κ > 0.

Remark 1. Differential equations are considered here as a particular case, when
F (x) has only one element. The definition is then reduced to the classic defi-
nition [5]: deg ẋi = deg xi + q. The nonzero homogeneity degree q of a vector
field can always be scaled to ±1 by an appropriate proportional change of the
weights m1, ...,mn. Note that one can formally introduce the weight deg t = −q,
respectively deg ẋi = deg xi − deg t.
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The inclusion ẋ ∈ F (x), x ∈ R
n, is called Filippov’s, if F (x) is nonempty,

compact, convex and upper-semicontinuous. The latter means that the maximal
distance of the points of F (x) from the set F (y) tends to zero as x tends to y.

The following is the main result on the Filippov homogeneous differential
inclusions ẋ ∈ F (x), x ∈ R

n that we use. Let the inclusion homogeneity degree
be negative, then [33,43]

1. The asymptotic stability is equivalent to uniform finite-time stability and to
the “contractivity” property [33]. The latter means that all solutions starting
in some ball centered at 0 in some finite time T gather in a ball of a smaller
radius (maybe to leave it afterwards).

2. In the presence of measurement noises with magnitudes ε1, . . . , εn ≥ 0 and
variable delays not exceeding τ > 0 all indefinitely-extendable-in-time solu-
tions of the disturbed inclusion

ẋ ∈ F (x1(t+ [−τ, 0]) + ε1[−1, 1], . . . , xn(t+ [−τ, 0]) + εn[−1, 1])

in finite time enter a compact |xi| ≤ ciδ
mi , where ci > 0, deg xi = mi,

δ = max[τ,maxi(ε
1/mi

i )], i = 1, . . . , n, to stay there forever.

4.1 Homogeneous SISO SM Control

Consider the SISO SMC problem (1) with smooth functions a and b. The system
is understood in the Filippov sense [23]. Let the scalar output σ(t, x) have the
relative degree r, which means that

σ(r) = h(t, x) + g(t, x)u, (8)

where h, g are uncertain smooth functions, g(t, x) = 0. As usual [31,32,33] as-
sume that h, g are bounded,

|h(t, x)| ≤ C, 0 < Km ≤ g(t, x) ≤ KM , (9)

Such bounds are true at least for any compact operational region. Any solution
of (1) is assumed infinitely extendable in time, provided σ, its derivatives and u
remain bounded along the solution.

The uncertain dynamics (8) can be replaced by the concrete differential in-
clusion

σ(r) ∈ [−C,C] + [Km,KM ]u. (10)

Most r-SM controllers are build as controllers for (10) making −→σ = (σ, σ̇, ...,
σ(r−1)) vanish in finite time.

We want the closed-loop inclusion to be homogeneous with negative homo-
geneity degree. It is easy to see that with C > 0 inevitably deg σ(r) = 0, on the
other hand, deg σ(r) = deg σ(r−1)−deg t. Taking the system homogeneity degree
−1, deg t = 1, obtain that deg σ = r, . . . , deg σ(r−1) = 1. This homogeneity is
called r-sliding homogeneity [33]. Respectively, the control

u = U(−→σ ) (11)

is called r-sliding homogeneous, if deg u = 0, i.e.
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u(σ, σ̇, ..., σ(r−1)) ≡ u(κrσ, κr−1σ̇, ..., κσ(r−1)). (12)

holds for any κ > 0, −→σ ∈ R
r. Since the control is locally bounded [23], due to

(12) it is also globally bounded. The right-hand side of the inclusion (10), (11) is
assumed minimally enlarged at the points of the discontinuity of (11) to satisfy
the Filippov conditions [23].

Replace σ ∈ R with ω ∈ R in the following formulas, enabling the further usage
of the controllers for different components of the vector output σ in the MIMO
case. Let β1,r, . . . , βr−1,r be some predefined positive coefficients, and α be the
chosen control magnitude. Then the simplest family of r-sliding homogeneous
controllers of the form

u = −αΨr−1,r(ω, ω̇, . . . , ω
(r−1)), (13)

called embedded SM controllers [32], are provided by the following resursion.
Let d ≥ r, define

ϕ0,r = ω, N0,r = |ω|1/r, Ψ0,r = signω;

ϕj,r = ω(j) + βj,rN
r−j
j−1,rΨj−1,r, Ψj,r = signϕj,r,

Nj,r =
(|ω|d/r + |ω̇|d/(r−1) + . . .+ |ω(j−1)|d/(r+1−j)

)1/d
.

(14)

The following are valid parametric sets {β1,r, . . . , βr−1,r}, dr for r = 2, . . . , 4:
r = 2, {1}, d1 = 1; r = 3, {1, 2}, d2 = 6; r = 4, {0.5, 1, 3}, d4 = 12. They
provide for the finite-time convergence to r-SM with sufficiently large α. It is
further assumed that β1,r, . . . , βr−1,r are always properly chosen, which means
that the differential equations ϕr−1,r = 0 are finite-time stable [41].

Another well-known family of SM controllers, called quasi-continuous SM
controllers [34], features control continuous everywhere except the r-sliding set
ω = ω̇ = . . . = ω(r−1) = 0. Such controllers feature considerably less chatter-
ing. Other constructions of homogeneous HOSM controllers and the choice of
parameters are considered in [33,41].

4.1.1 Differentiator
Any r-sliding homogeneous controller can be combined with an (r − 1)th-order
differentiator [32] producing an output feedback controller. Its applicability in
this case is possible, since σ(r) is bounded due to the boundedness of the feedback
function u = −αΨr−1,r(

−→σ ) in (10).
Let the input signal φ(t) be a function consisting of a bounded Lebesgue-

measurable noise with unknown features, and of an unknown base signal φ0(t),
whose kdth derivative has a known Lipschitz constant L > 0. The following
differentiator is presented in a recursive form and provides for the estimations

zj of the derivatives φ
(j)
0 , j = 0, . . . , kd:

ż0 = −λkd
L1/(kd+1)|z0 − φ(t)|kd/(kd+1) sign(z0 − φ(t)) + z1,

ż1 = −λkd−1L
1/kd |z1 − ż0|(kd−1)/kd sign(z1 − ż0) + z2,

...

żkd−1 = −λ1L
1/2|zkd−1 − żkd−2|1/2 sign(zkd−1 − żkd−2) + zkd

,
żkd

= −λ0L sign(zkd
− żkd−1).

(15)
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The parameters λi of differentiator (15) are chosen in advance for each kd. An
infinite sequence of parameters λi can be built, valid for all natural kd [32]. In
particular, one can choose λ0 = 1.1, λ1 = 1.5, λ2 = 2, λ3 = 3, λ4 = 5, λ5 = 8 [34],
which is enough for kd ≤ 5. In the absence of noises the differentiator provides
for the exact estimations in finite time. Its error dynamics is homogeneous [32].
With sampling time periods not exceeding τ > 0 and the maximal possible

sampling error ε ≥ 0 the accuracy zj−φ
(j)
0 = O(max (τkd+1−j, ε(kd+1−j)/(kd+1)))

is ensured.

4.1.2 Differentiator Initialization
Although one can take arbitrary initial values of differentiator for its feedback
application, it may considerably destroy the initial system transient, since at
the beginning the differentiator outputs will have no resemblance to the right
derivatives. The overall performance can be drastically improved if the initial
values of the differentiator are chosen right.

The most simple method is to take z0(t0) = φ(t0) and zi(t0) = 0, i = 1, . . . , kd,
where t0 is the first sampling time. Then one just provides some reasonable time
for the differentiator convergence prior to the control application.

Another method, which we consider preferable, is to choose some initial time
increments of the length Δt, consisting of a number of real sampling intervals.
The kd +1 sampling values of the input φ are stored for kd such successive time
increments, and then the initial values of the differentiator are calculated by
divided differences. During all this period the control is not applied, i.e. is kept
at zero. Then the differentiator is practically already in the steady state from the
very beginning. This initialization process is robust with respect to noises of the
magnitude of the order Δtkd+1. One can still add a small additional time for the
initial error elimination. One can also consider non-homogeneous differentiator
modifications [4,17,37] with faster convergence. In that case the global system
homogeneity is lost, which can affect the further results presented in the chapter.

4.1.3 Output Feedback Control
Assuming that the sequence λj , j = 0, 1, ..., is the same over the whole chapter,
denote (15) by the equality ż = Dkd

(z, φ, L). Incorporating the (r − 1)th order
differentiator into the feedback equations, obtain the output-feedback r-sliding
controller

u = U(z), ż = Dr−1(z, σ, L), (16)

where L ≥ C +KM sup |U |. Obviously, provided (10), (11) is finite-time stable,
the output-feedback controller (16) ensures the finite-time establishment of the
r-sliding mode −→σ = 0. Moreover [33], if (11) is r-sliding homogeneous, the
closed-loop inclusion (10), (16) is homogeneous with deg zi = deg σ(i) = r − i
and the system homogeneity degree -1. Respectively, if σ is measured with the
sampling accuracy ε ≥ 0 and the sampling intervals not exceeding τ > 0, then
the asymptotic SM accuracy σ(j) = O(max (τr−j , ε(r−j)/r)) is obtained.

Remark 2. All the accuracies here and further are formally calculated under the
assumption that, whereas the sampling is discrete, the differential equations/
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inclusions still take place between the samplings. In practice the internal dynam-
ics of the controller (16) is realized as a discrete computer system. The simplest
one-step-Euler realization has been shown to destroy the asymptotic accuracy of
the differentiator (15) [40]. A special modification is needed to preserve the above
accuracy [44]. Nevertheless, no modification is required, if the differentiator is ap-
plied in a feedback with a homogeneous SM controller, as in (15) [43]. In that case
the standard accuracy is preserved.

4.2 Homogeneous MIMO SM Control

Once more consider dynamic system (1),

ẋ = a(t, x) + b(t, x)u, σ = σ(t, x), (17)

but let now σ and u be vectors, σ : R
n+1 → R

m, u ∈ R
m. The system is

assumed to have the vector relative degree r = (r1, ..., rm), ri > 0. It means that

the successive total time derivatives σ
(j)
i , j = 0, 1, ..., ri − 1, i = 1, ...,m, do not

contain controls, and can be used as a part of new coordinates [28]. Respectively,
(8) turns to be a vector equation,

σ(r) = h(t, x) + g(t, x)u, (18)

where σ(r) denotes (σ
(r1)
1 , ..., σ

(rm)
m )T , the functions h, and g are unknown and

smooth. The function g is a nonsingular matrix.
Let g be represented in the form g = Kḡ, where K > 0 defines the “size” of

the matrix g, and ḡ corresponds to the matrix “direction”. A nominal “direction”
matrix G(t, x) is assumed nonsingular and available in real time, so that

g(t, x) = K(t, x)(G(t, x) +Δg(t, x)),
∥∥ΔgG−1

∥∥
1
≤ p < 1. (19)

Here Δg is the uncertain deviation of ḡ from G, and the norm ‖·‖1 of the ma-
trix A = (aij) is defined as ‖A‖1 = max

i

∑
j

|aij |. The estimation G can be

any Lebesgue-measurable function, p is a known constant. Mark that similar
assumptions are adopted in [19].

Similarly to (9), assume that the uncertain vector function h and the scalar
function K are bounded,

‖h(t, x)‖ ≤ C, 0 < Km ≤ K(t, x) ≤ KM , (20)

where C, Km, KM are known constants.
Note that the avaialability of G(t, x) in real time does not necessarily mean

that x(t) is available, and G is known analitically. For example, the aerodynamic
characteristics of an aircraft are usually available as approximate table functions
of the observable dynamic pressure and altitude.

Introduce a virtual control v,

u = G(t, x)−1v. (21)
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Then dynamics (18) take the form

σ(r) = h(t, x) +K(t, x)(I +Δg(t, x)G−1(t, x))v, (22)

where I is the unit matrix.
Introduce the notation −→σ i = (σi, . . . , σ

(ri−1)
i ), −→σ = (−→σ 1, . . . ,

−→σ m). Choose
the components of v = (v1, . . . , vm)T in the form of the embedded ri-sliding
homogeneous controller (13), (14)

vi = −αΨri−1,ri(
−→σ i), i = 0, 1, . . . ,m, u = G(t, x)−1v, (23)

where α > 0. Now the closed-loop system satisfies the decoupled (r1, r2, . . . , rm)-
sliding homogeneous inclusion

σ
(ri)
i ∈ [−C,C]− α[Km(1− p),KM (1 + p)]Ψri−1,ri(

−→σ i), i = 1, . . . ,m, (24)

with the weights deg σ
(j)
i = ri−j. According to Subsection 4.1, (24) is finite-time

stable with sufficiently large α.
Respectively the output-feedback control gets the form

vi = −αΨri−1,ri(zi), i = 0, 1, . . . ,m, u = G(t, x)−1v,
żi = Dri−1(L, σi, zi), L ≥ C + 2KMα.

(25)

The closed-loop inclusion is still homogeneous with deg σ
(j)
i = deg zi,j = ri − j.

Theorem 3. Let the MIMO system (17), (18) satisfy conditions (19), (20).
Then output-feedback control (25) provides for the finite-time establishment and
keeping of the r-SM σ = 0. Let σi be measured with the sampling accuracy
εi ≥ 0, i = 1, 2, . . . ,m, and the sampling intervals not exceeding τ > 0, then the

asymptotic SM accuracy σ
(j)
i = O(max (τri−j, ε

(ri−j)/ri
i )) is obtained.

The proof is straight-forward. As we have seen, the obtained SM asymptotics are
the best possible. Note that one can here use quasi-continuous controllers [34,41],
but the corresponding technique is more complicated [38], though provides for
superior performance.

5 Adaptation of Sliding Modes

Consider SISO (8), (9) or MIMO (18), (19), (20) SMC problem. How to solve it
if C, Km, KM are unknown, or even are variable in time?

It is quite clear that if the bounds change continuously with bounded velocity,
then developed standard controllers (13) or (23) solve the problem with suffi-
ciently large α at least locally in the space and time. From that observation
the solution strategy is clear: one needs to increase α sufficiently fast. At some
point α is so large that the system starts converging to the desired SM. Then
one needs to detect the moment when the SM σ ≡ 0 is established. Obviously
α can be too large at that time, which means a large control effort and terrible
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chattering. So one gradually decreases α until the SM is lost. Then α is once
more increased. If the rates of increasing and decreasing α are chosen right, the
system will remain in real (approximate) SM all the time.

The above strategy is very natural and one finds a lot of papers, where it is
applied fully or partially. Often one assumes that any sufficiently large α solves
the problem. Then one never needs to decrease it. The problem is that in that
case one risks increasing α indefinitely. Indeed, any error in detecting SM leads
to additional increase of α.

There are two conclusions: first, there always should be some stopping, prefer-
ably decreasing mechanism for α; second, one needs a robust criterion for the
detection of SM. Indeed one will never observe σ ≡ 0 in real life. One of the pop-
ular methods [66] is to apply the Utkin filter [65] for extraction of the equivalent
control, and to use it for the regulation of α. The problem with this approach
is that both SM detection and extraction of the equivalent control remain not
clear and not robust. Another approach [60] is just detecting that σ is suffi-
ciently small. Since the derivatives of σ are not taken into account, it leads to
false detection of SM. Taking the derivatives into account allows to detect a real
(approximate) r-SM, but requires direct derivatives’ measurements or additional
information for differentiator application.

We adopt here another approach [10,63]. If α is sufficiently large with respect
to uncertainties and changes with locally bounded velocity, then the dynamics
around the r-SM manifold is locally homogeneous in space and time. Therefore
the optimal SM accuracy asymptotics of Section 4 is to be observed. The ap-
proach requires taking into account switching imperfections and noises, which
makes the approach robust from the very beginning. According to Theorem 1,
the accuracy is proportional to α, provided α is at least of the order of ||h||. Since
often only σ is available, another idea is to replace calculation/observation of σ
derivatives with observing the inequality |σ| ≤ ματr for sufficiently long time.
Obviously, the presence of sampling noises not exceeding γατr in their magni-
tude does not interfere with this reasoning, if γ is sufficiently small compared
with μ. Demonstrate this approach on the twisting-controller adaptation [10].

Consider a SISO system (1) of the relative degree 2. In other words

σ̈ = h(t, x) + g(t, x)u, (26)

where h(t, x) and g(t, x) are some smooth functions. It is supposed that for some
positive constants hd, hm, gm, gM , gd > 0 the following inequalities hold:

|ḣ/h| � hd with |h| � hm, |ḣ| � hdm with |h| � hm,
gm � g � gM , |ġ/g| � gd.

(27)

Only hd and gd are assumed known. Since there is no constant or functional
bound of ḣ, introduction of u̇ as a new control does not solve the problem by
standard 3-sliding control methods.

Let τ > 0 be the sampling period. Choose the control in the form

u = −α(signσ + β sign σ̇), 0.5 < β < 1, (28)
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where β is a constant control parameter. With constant α a standard twisting
controller [31] is obtained. Here σ̇ is supposed available, the control value remains
constant between the measurements. Since h/g can be unbounded, no concrete
constant value of α solves the stated problem. The adaptation of α recently
proposed by [30] is not applicable here due to the unboundedness of h. It also
does not provide for the expected accuracy O(τ2) (Sections 3, 4) characteristical
for 2-sliding modes.

Introduce a real 2-sliding mode criterion. Choose a natural number Nt and
some μ > 0. Let t ∈ [ti, ti+1), and define

cSM (t) =

{
1 if ∀tj ∈ [t−Ntτ, t] : |σ(tj)| � μα(tj)τ

2

−1 if ∃tj ∈ [t−Ntτ, t] : |σ(tj)| > μα(tj)τ
2 , (29)

where tj are the sampling instants. The 2-sliding mode criterion is considered
satisfied if cSM = 1.

It can be shown that with β ∈ (0.5, 1) and constant α, g, h the convergence
is assured with α > 1

1−β |h/g|, whereas the fast divergence is assured with α <
1

1−β |h/g|. Thus, at the moment when the divergence is detected a switch from α

to qα is natural, where q > 1+β
1−β is a predefined constant. Then one can expect

that the convergence will be immediately restored. The following adaptation law
is a modification of [10].

Choose some αm > αmm > 0. Let the gradual adaptation law be

α̇ =

⎧⎪⎪⎨
⎪⎪⎩

λ+α if α > αm, cSM = 1,
−λ−α if α > αm, cSM = −1,
−cSMλm if αmm < α � αm,

λm if α � αmm,

α(0) ≥ αmm, (30)

where λ+, λ−, λm are positive adaptation parameters. Thus, α is never less than
αmm, which is taken arbitrarily small.

In addition, an instant increment is implemented at each sampling instant ti,
at which the 2-sliding criterion changes from 1 to -1:

α(ti) =

{
qα(ti − 0) if cSM (ti−1) = 1& cSM (ti) = −1,
α(ti − 0) if cSM (ti−1) = 1 or cSM (ti) = −1.

(31)

Theorem 4. Let σ be sampled with time step τ and a noise not exceeding γτ2

in absolute value, where the constant γ > 0 is another parameter of the prob-
lem. Choose λ− > gd + hd, λ+ > gd + hd. Then for some q∗ > q/(1 − β) and
any sufficiently large μ and sufficiently large Nt ≥ 4 (chosen after μ) with suf-
ficiently small τ the positive parameter α(t) features local maxima, which do
not exceed max[q∗|h|/g,Kmm] taken at the same time. Respectively the accuracy
|σ| ≤ ν1τ

2α(t), |σ̇| ≤ ν2τα(t) is established in finite time. The constants q∗,
ν1, ν2 only depend on the parameters of the algorithm and parameters of the
assumptions.

Here Nt can be chosen in advance independently of the actual system, μ
depends on γ. Obviously, μ > γ is necessary. There are no restrictions on λm,
αmm and αm.
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It can be proved that with sufficiently large λm the gain α(t) follows |h|/g.
If λm is not large enough, only peak values of α are restricted according to the
Theorem. If σ̇ is not available, the control is chosen in the form u = −α(signσ+
β signΔσ), where Δσ is the increment of σ over the last sampling period.

Example. Consider an academic example

ẏ =

{
sign s(t) with |y| ≤ 100,
−y with |y| > 100,

σ̈ = y + (2 + cos t)u.

Here s(t) is a standard Gaussian white noise with the distribution (0,1). Obvi-
ously, α = 200 would be enough to establish 2-SM σ ≡ 0, but it would lead to
strong chattering. The algorithm (28), (29), (30), (31) is applied with artificial
saturation of α at 200. Without such saturation α becomes so large during the
transient that its graph lacks observable details in the steady state. The parame-
ter β = 2/3 is taken, and q = 6 > 1+β

1−β = 5. Other controller parameters μ = 30,
Nt = 10, αm = 1, αmm = 0.1, λ− = 7, λ+ = 2, λm = 4 are taken. The initial
values are σ(0) = 10, σ̇(0) = 1, y(0) = 5, α(0) = 0.1.

Fig. 1. 2-SM twisting adaptation: a. the adaptation gain maxima do not exceed 6|h|/g,
b. graph of σ, c. graph of σ̇, d. graph of u.

The graphs of α and of |h|/g are shown in Fig. 1a. For the first time the
2-sliding mode criterion is satisfied at about t = 4.5, and at t = 5 the criterion
is violated. It is clearly seen from Fig. 1a that the maxima of α do not exceed
q|h|/g, q = 6. The local 2-sliding accuracy of σ is proportional to τ2 and α(t),
and is practically equal μα(t)τ2 = 30α(t)τ2 ≈ 180|h(t)|/g(t)τ2. The graphs of
σ, σ̇, u are demonstrated in Fig. 1b,c,d respectively.
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6 Acceleration of SM Convergence

Transient time restrictions often appear important in SM control. In particular,
in control of switched systems [42], the natural requirement is that the SM be
established before the next switch, so that the dynamics uncertainty be effec-
tively removed. Also in observation one often needs to know in advance when
the observer transient is over.

Thus, the transient time of a HOSM controller is often required to be bounded
by some predefined function of initial conditions. Ideally the maximal conver-
gence time is to be independent of the initial conditions even for unbounded
operational regions. The corresponding notions of fixed-time or uniformly exact
stability and convergence were introduced in [4,16,17,54]. Meantime, such conver-
gence has been obtained for observers [4,17] and disturbed linear time-invariant
systems [54]. Unfortunately, recent results [36] show that fixed-time stable sys-
tems are not feasible over really large operational regions, if the sampling rate
is apriory bounded. The reason is that even for small sampling periods, the sys-
tem makes enormous jumps between the samplings at sufficiently distant points,
and even can escape to infinity faster than any exponent. Therefore, the larger
the region the smaller the sampling period is to be taken, and only semiglobal
convergence is obtained in practice. Large fast-changing controls also usually ex-
clude observation of the output derivatives, which makes output-feedback control
impossible.

The main idea proposed here is to realize an arbitrarily fast convergence rate
by successively switching from one homogeneous SM controller to another. In
particular, a predefined upper bound for the convergence time to SM can be
satisfied, which is provided as a function of the initial conditions. Between such
switches one can apply the differentiator (15), providing for the output-feedback
control. The differentiator parameters switch together with the the controller,
whereas the derivative estimations are kept intact.

6.1 Twisting Acceleration

Consider a SISO system (1), (8), (9) of the relative degree r = 2 and the twisting
controller (28) [31] with β ∈ (0, 1).

With α > C
(1−β)Km

the function σ(t) oscillates [31], and the trajectories rotate

around the origin in the plane σ, σ̇ (Fig. 2a). The trajectory starts at the point
(σ0, σ̇0) at the moment t0. The intersections σk, k = 1, 2, ..., of the trajectory with
the σ-axis correspond to local extrema of σ at the time instants tk. The respective
intersections of the trajectory with the σ̇-axis in the time range (tk, tk+1) are
denoted σ̇k (Fig. 2a). Note that with k > 0 the values σk and σ̇k correspond to
different time instants.

The problem is to provide for the needed convergence rate by properly changing
the coefficient α at each intersection σk of the trajectory with the σ-axis at the
times tk, k = 1, 2, ....
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Fig. 2. Accelerated twisting controller: theoretical trajectory and notation (a), simu-
lation with initial values (σ(0), σ̇(0)) = (100,−100) (b,c,d).

Let

(1− β)KM < Km(1 + β), ω∗(α) =
(1 − β)αKM + C

(1 + β)αKm − C
, (32)

and fix some α∗, such that

ω∗(α∗) < 1, α∗ > C
(1−β)Km

. (33)

Theorem 5. Let (32), (33) hold. Then with any γ > 0, q ≥ 1 the output-
feedback control

u = −αk(sign z0 + β sign z1) with t ∈ [tk, tk+1),

αk = max{α∗, γ|σk|ρ}, k = 0, 1, ...,

ż = D1(z, σ, Lk), Lk = q(C +KMαk(1 + β))

provides for the fixed-time convergence to 2-SM σ = 0 with ρ > 1, and just for
accelerated finite-time convergence with 0 < ρ ≤ 1.

The standard optimal 2-SM accuracy (Theorem 3) is obtained in the presence
of noises and discrete sampling, since in a vicinity of the SM the dynamics coin-
cides with that of a standard twisting controller. The differentiator is initialized
as in Subsection 4.1.2. Note that with ρ > 1 a compact operational region should
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be chosen [36]. The proof consists in estimation of one rotation time and show-
ing that in the backward time the times of rotations coming from infinity are
dominated from above by a converging geometric series.

6.1.1 Simulation Example
Consider an academic example

σ̈ = cos et +
(
2− sin t2

)
u.

Dynamics of σ satisfy σ̈ ∈ [−C,C] + [Km,KM ]u, where C = 1, Km = 1, KM =
3. Integration is performed by the Euler method, being the only reliable method
with discontinuous dynamics. The sampling step τ = 10−4 is taken equal to the
integration step. Two sampling intervals of the length Δt = 0.01 are applied for
the initialization of the differentiator, and additional time 0.05 is added for the
final differentiator convergence with L = 2C, afterwards Lk = 2(C + KMαk).
The sampling noise η(t) = 0.005 sin(137579.23t+ 0.231375) is introduced.

Let β = 2
3 , γ = 0.6, α∗ = 6, ρ = 3. The performance of the algorithm with

the initial conditions σ(0) = 100, σ̇(0) = −100 is demonstrated in Fig. 2b,c,d.
The differentiator initialization is clearly observed in the trajectory graph Fig.
2c. The accuracies |σ| ≤ 0.0024, |σ̇| ≤ 0.032 are obtained after the convergence
time of about 9.

6.2 General Case: Accelerated HOSM MIMO SM Control

6.2.1 Once More on MIMO SM Homogeneity
Consider a MIMO dynamic system (17), (18), (19), (20). Recall that the relative
degree is (r1, . . . , rm) and a virtual control v = G(t, x)u is introduced,

u = G(t, x)−1v, vi = −αΨri−1,ri(
−→σ i)), i = 0, 1, ...,m,

practically decoupling the system. Here Ψri−1,ri is an embedded ri-sliding homo-

geneous controller (14) [32,33], α > 0, −→σ i = (σi, σ̇i, ..., σ
(ri−1)
i ), Ψri−1,ri(

−→σ i) =
±1. Thus, solutions of (17), (18), (19), (20), (23) satisfy the inclusion (24)

σ
(ri)
i ∈ [−C,C]− α[Km(1− p),KM (1 + p)]Ψri−1,ri(

−→σ i), i = 1, . . . ,m, (34)

with the weights deg σ
(j)
i = ri − j. Inclusion (34) has the homogeneity degree -1

and is finite-time stable (Theorem 3).

6.2.2 Choosing the Convergence Rate
Define the so-called homogeneous norms

||−→σ i||h = |σi|
1
ri + |σ̇i|

1
ri−1 + ...+ |σ(ri−1)

i |, i = 1, ...,m,

||−→σ ||h = ||−→σ 1||h + ||−→σ 2||h + ...+ ||−→σ m||h.
Let Rk be an arbitrary monotonously growing sequence Rk → ∞, R0 = 0,
k = 0, 1, 2, ... And let T (R) be a monotonously increasing positive-definite
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Fig. 3. The convergence-rate function T , and the piece-wise-constant convergence-time
estimation. The case of the fixed-time convergence, limR→∞ T (R) = TM < ∞.

convergence-rate function R ≥ 0, T (0) = 0. The idea is to develop such a control
that all trajectories starting in the region ||−→σ ||h ≤ Rk converge to the r-sliding
mode in the time not exceeding T (Rk) (Fig. 3).

Consider control of the form

rM = maxi ri, rm = mini ri, μ > 1
vi = αμrMΨri−1,ri(

−→σ iμ
−rM )).

(35)

Let the stabilization time of any trajectory of (34), starting within the homoge-
neous disk ||−→σ ||h ≤ 1 belong to [T∗, T ∗], 0 < T∗ ≤ T ∗. Note that T∗, T ∗ exist
due to [33,36]. The following Lemma constitutes the idea of the convergence
acceleration.

Lemma 2. Control (35) provides for the convergence of any trajectory of the
system starting in the region ||−→σ ||h ≤ R to the r-sliding mode −→σ = 0 in some

time belonging to [RT∗/μ
rM
rm , RT ∗/μ].

The proof is based on a time transformation [38]. Define the functions

n(−→σ ) = k ⇔ ||−→σ ||h ∈ [Rk−1, Rk), k = 0, 1, ..., (36)

μM (−→σ ) =
γRn(−→σ )

T (Rn(−→σ ))−T (Rn(−→σ )−1)
, γ > 0. (37)

Introduce the variable μ(t) that is left-hand continuous and features the dynam-
ics

μ(t+ 0) = max{1,min[μ(t), μM (−→σ )]},
μ(t0) = max{1, μM (−→σ )}. (38)

It is easy to see that μ is piece-wise constant and monotonously decreases, while
μ ≥ 1 is always preserved.

It follows from Lemma 2, Fig. 3 that the control (35), (36), (37), (38) provides
for the convergence time Tconv(t) to the SM σ ≡ 0, which satisfies Tconv(t) ≤
T∗
γ T (Rn(−→σ (t,x(t)))) along the trajectory [38]. The fixed-time convergence is ob-

tained if limR→∞ T (R) = TM < ∞.
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Unfortunately, fixed-time convergence controls is difficult to realize [36]. Much
“softer” acceleration is obtained, if (37) is replaced with

μM (−→σ ) =
γRn(−→σ )

T (Rn(−→σ ))
, γ > 0. (39)

Theorem 6. Control (35), (36), (39), (38) features the convergence time Tconv

satisfying the inequality Tconv ≤ T∗
γ

∑n(−→σ (t0))
k=1 T (Rk), where t0 is the initial mo-

ment. In particular, the simple estimation Tconv ≤ T∗
γ n(−→σ (t0))TM is obtained

with limR→∞ T (R) = TM < ∞. In the case Rk = R1λ
k−1, k = 1, 2, . . ., the

estimation is

Tconv(t) ≤ T ∗TM

γ
logλ

(‖−→σ (t0)‖
h

R1

)
. (40)

Note that ‖−→σ (t0)‖h grows slower than the Euclidian norm ‖−→σ (t0)‖, so the con-
vergence rate (40) is faster than exponential.

Proof. Consider the control (35). It follows from Lemma 2 that Δtk ≤ RkT
∗

μ ,

where Δtk is the time needed for a trajectory starting in ‖−→σ (t0)‖ ≤ Rk to enter
‖−→σ (t0)‖ ≤ Rk−1. Taking into account (39) obtain the Theorem statements. ��

Fix any q ≥ 1, then the output-feedback control gets the form

vi = αμrMΨri−1,ri(ziμ
−rM )),

żi = Dri−1(zi, σi, Lk), Lk = qαμrM (C + 2KM ).
(41)

Mark that one needs appropriate differentiator initialization (Subsection 4.1.2).
With discrete measurements the sampling period is to be small enough, which
may turn the control into a semiglobal one, especially, if the fixed time conver-
gence is imposed [36]. The standard accuracy of Theorem 3 is obtained in the
presence of noises and discrete sampling.

6.2.3 Example
Consider an academic MIMO control system( ...

σ 1

σ̈2

)
=

(
2 cos(σ1σ̇2 + 5.1t)
− cos(σ1σ2 − 3.2t)

)
+

(1 + 1
2 cos t)

(
2 + 0.1 sin σ̇2 + sin t 0.3 sin(σ̇2 + t)
0.5 sin(σ̈1 − 2t) 3− 0.1 sin σ̈1 − cos 1.7t

)(
u1

u2

)
,

G =

(
2 + sin t 0

0 3− cos 1.7t

)
, K ∈ [0.5, 2.5].

Obviously, r = (3, 2), rM = 3. Standard embedded (3, 2)-sliding controllers [32]
are taken with α = 20. The resulting output-feedback controller is

u = G−1v =

(
2 + sin t 0

0 3− cos 1.7t

)−1 (
v1
v2

)
,

v1 = −20μ3 sign[s2μ
−2 + 2(|s1μ−1|3 + s20)

1/6 sign(s1μ
−1 + |s0|1/2 sign s0)],

v2 = −20μ3 sign(w1μ
−1 + |w0|1/2 signw0),
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where s and w are the outputs of the differentiators (15) of the orders 1 and 2,

ṡ0 = −2L1/3|s0 − σ1|2/3 sign(s0 − σ1) + s1,

ṡ1 = −1.5L1/2|s1 − ṡ0|1/2 sign(s1 − ṡ0) + s2,

ṡ2 = −1.1L sign(s2 − ṡ1);

ẇ0 = −1.5L1/2|w0 − σ2|1/2 sign(w0 − σ2) + w1,

ẇ1 = −1.1L sign(w0 − σ2), L = 40μ3,

μ is defined by (36), (38) and (37) or (39).
The differentiators are initialized by finite differences using 3 samplings taken

at the times 0, 0.01 and 0.02. The control is applied starting from t = 1 in
order to provide some time for the differentiators’ convergence. The integration
is carried out according to the Euler method.

The non-accelerated convergence (with μ = 1) from initial conditions−→σ 1(0) =
(120, 100, 90), −→σ 2(0) = (−120,−100) takes about 70 time units. The expected

accuracies are to satisfy the formula σ
(j)
i = O(τri−j), i = 1, 2, j = 0, . . . , ri − 1.

Fig. 4. Homogeneous MIMO SMC performance on the left and its acceleration on the
right. The same initial conditions (120, 100, 90), (−120,−100) and scales are taken.
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Indeed, the SM accuracies |σ1| ≤ 2.8 · 10−8, |σ̇1| ≤ 1.5 · 10−5, |σ̈1| ≤ 2.1 · 10−2,
|σ2| ≤ 1.4 · 10−5, |σ̇2| ≤ 2.0 · 10−2 are obtained with τ = 10−4, and |σ1| ≤
2.1 · 10−11, |σ̇1| ≤ 1.2 · 10−7, |σ̈1| ≤ 1.8 · 10−3, |σ2| ≤ 0.81 · 10−7, |σ̇2| ≤ 1.4 · 10−3

are obtained with τ = 10−5. Similar accuracies are got also by all accelerated
algorithms.

Now take Rk = 0.5ek, γ = 1 and the convergence-rate function T (R) =
0.1RTM/(1 + 0.1R), TM = 15. The control (35), (37), (38) would provide here
for the fixed-time convergence, but its reliable simulation requires τ = 10−8

or less. Instead of (37) take (39). The resulting convergence with τ = 10−5 is
demonstrated in Fig. 4 and takes only about 10 time units. In order to clarify
the comparison, the graphs for the non-accelerated and accelerated convergence
are demonstrated side by side in the same scale.

7 Conclusions

The best and worst SM accuracy asymptotics are shown to be directly deter-
mined by the order of the SM, both in the SISO and MIMO cases. Homogeneous
SM control is extended to the MIMO uncertain systems. Asymptotic accuracies
of the output-feedback homogeneous MIMO SMC are calculated in the presence
of noises and discrete sampling, and are shown to be the best possible.

The observation of the standard output accuracy of homogeneous HOSM con-
trol over a sufficiently long time interval implies keeping the standard accuracies
also of its derivatives (Theorem 1). Thus, such observation can be naturally uti-
lized for the detection of a real (approximate) HOSM, which can be used in SM
adaptation. An example of such twisting-controller adaptation is presented.

Any system with a homogeneous MIMO SM can be accelerated providing
for arbitrarily fast convergence to the SM. The convergence time can be kept
bounded from above by a function of the homogeneous norm of initial conditions.
It can be done also by output-feedback control. The optimal SM accuracy is
preserved in any case.
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mode control theory. Professor’s Kaynak results lie at the foundation of the
theory. In this respect we would especially like to single out his seminal paper
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43. Livne, M., Levant, A.: Accuracy of disturbed homogeneous sliding modes. In: Proc.

of the 13th International Workshop on Variable Structure Systems, Nantes, France,
June 29 - July 2 (2014)

44. Livne, M., Levant, A.: Proper discretization of homogeneous differentiators. Auto-
matica 50, 2007–(2014)

45. Man, Z., Feng, Y., Yu, X.: Non-singular terminal sliding mode control of rigid
manipulator. Automatica 38(12), 2159–2167 (2002)

46. Man, Z., Paplinski, A., Wu, H.: A robust MIMO terminal sliding mode control
scheme for rigid robotic manipulators. IEEE Transactions on Automatic Con-
trol 39(12), 2464–2469 (1994)

http://www.tau.ac.il/~levant/Levant.CDC2013.FTS.corrected.pdf


SM Order and Accuracy in SM Adaptation and Acceleration 153

47. Moreno, J.A., Osorio, M.: Strict lyapunov functions for the super-twisting algo-
rithm. IEEE Transactions on Automatic Control 57, 1035–1040 (2012)

48. Oniz, Y., Kaynak, O.: Variable-structure-systems based approach for online learn-
ing of spiking neural networks and its experimental evaluation. Journal of the
Franklin Institute 351(6), 3269–3285 (2014)

49. Pisano, A., Usai, E.: Sliding mode control: A survey with applications in math.
Mathematics and Computers in Simulation 81(5), 954–979 (2011)

50. Plestan, F., Bregeault, V., Glumineau, A., Shtessel, Y., Moulay, E.: Advances in high
order andadaptive slidingmodecontrol.Theory andapplications412, 465–492 (2011)

51. Plestan, F., Glumineau, A., Laghrouche, S.: A new algorithm for high-order slid-
ing mode control. International Journal of Robust and Nonlinear Control 18(4/5),
441–453 (2008)

52. Plestan, F., Shtessel, Y., Bregeault, V., Poznyak, A.: New mETHODOLOGIES for
adaptive sliding mode control. International Journal of Control 83(9), 1907–1919
(2010)

53. Plestan, F., Shtessel, Y., Bregeault, V., Poznyak, A.: Sliding mode control with
gain adaptation - application to an electropneumatic actuator. Control Engineering
Practice 21(5), 679–688 (2013)

54. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control
systems. IEEE Transactions on Automatic Control 57(8), 2106–2110 (2012)

55. Polyakov, A., Poznyak, A.: Lyapunov function design for finite-time convergence
analysis: ”twisting” controller for second-order sliding mode realization. Automat-
ica 45(2), 444–448 (2009)

56. Polyakov, A., Poznyak, A.: Unified lyapunov function for a finite-time stability
analysis of relay second-order sliding mode control systems. IMA Journal of Math-
ematical Control and Information 29(4), 529–550 (2012)

57. Sabanovic, A.: Variable structure systems with sliding modes in motion control-a
survey. IEEE Transactions on Industrial Informatics 7(2), 212–223 (2011)

58. Sarpturk, S., Istefanopulos, Y., Kaynak, O.: On the stability of discrete-time sliding
mode control systems. IEEE Transactions on Automatic Control 32(10), 930–932
(1987)

59. Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding mode control and ob-
servation. Birkhäuser (2014)
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Abstract. Event-triggered sliding mode control for robust stabilization of linear
systems is presented here. In event-triggered control strategy the control law is
not updated in periodic manner but a specific condition is used to generate the
possible triggering instant for the control update. It is seen that with the sliding
mode control the sequence of triggering instants generated by event condition
does not exhibit accumulation of triggering instants in the presence of distur-
bances. We propose the sufficient event condition for the sliding mode control
that guarantees that in the finite time sliding mode occurs in the system in the
vicinity of sliding surface and remains within a predesigned region. An analysis
for event triggered stabilization of fractional order systems is briefly given. The
same triggering condition developed for integer order systems also guarantees
stability of fractional order systems. A numerical example is given to show the
effectiveness of the above result.

1 Introduction

Computer-controlled systems have been widely used these days due to its numerous
advantages over analog implementation. In this strategy, the states are sampled and
the control is updated in period manner in time. The dynamics of the system evolves in
continuous open loop manner between two consecutive control updates. This strategy is
easy to design and analyse the stability of the system. Indeed, it demands the dedicated
reliable feedback to send the information of the plant at periodic instants. For instance,
in networked control systems the sensors and actuators communicate over the com-
munication networks which is subjected to loss of information due to packet dropout.
Another concern in classical periodic implementation is the reduced time sharing capa-
bility of the digital processor. An improved time sharing capability makes the processor
to work in multi task environment. In most of the cases, states of the system changes
barely require any control update subject to desired performance. Thus, it seems natu-
ral to update the control whenever the demand is made and letting the system to run in
open loop manner as long as possible. So, it is always desirable to minimise the control
update in digital implementation such that the closed loop system is stable.

Event-triggered strategy has shown promising system performance with reduced
control updates over time of interest. Here, the triggering instant for the next control

c© Springer International Publishing Switzerland 2015 155
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update is calculated based on some condition called event. Generally, the event uses the
measurement error defined as discrepancy of evolution of states with respect to the state
sampled at immediate previous instant. Compared to periodic time triggered, control
update is achieved in a closed-loop manner. A detailed discussion can be seen in [1]–
[6] and references therein. It has been observed that these techniques offer advantages
in terms of maximum inter execution time, optimal resource use, etc. This technique
has been successfully studied in many applications such as networked control system
[10]–[12]. In similar context, the other control techniques has appeared in literature
such as quantized feedback [7], [8], Lebesgue sampling [9], etc. In all these cases, the
system is guaranteed to be input-to-state stable (ISS) with respect to measurement er-
ror. Another, approach to design the event-triggered is achieved through model based
technique where an approximate model is used at the controller end for applying control
and the states of the model states are updated with plant state whenever event is satisfied
[18]. In these cases, the event is continuously evaluated for control update which needs
a dedicated circuit to measure the state from the plant. Recently, in [17], [19] a periodic
event-triggered control strategy is proposed to evaluate event at predesigned periodic
time instants and ascertain the system stability.

Self triggered strategy is proposed in literatures in alternative to event triggered for
generating triggering sequences [13]–[16]. Unlike periodic time implementation, in
self-triggered strategy the triggering instant is calculated from the last sampled state
information and hence, the continuous state information is not required. However, a
tradeoff between event-triggered and self-triggered mechanism is achieved with respect
to maximum inter execution time interval. Very few papers have reported the perfor-
mance of event-triggered control for systems with disturbances. For instance, in [13], a
self-triggered H∞ controller is studied. Also, event-triggered stability of systems with
uncertainties are discussed in few papers such as [5], [21]. It has been shown that the
complete stabilization of the system with disturbances are not achieved and also accu-
mulation of triggering instants might occur [20].

Here, we discuss event-triggered sliding mode control for stabilization of systems
with disturbances acting on it. We consider the external disturbances enter through
input channel only. Sliding mode control has the capability to reject the distur-
bances/uncertainities completely [24]. The implementation of sliding mode control with
sampled data analysis is reported in literatures and few of them can be found in [25]–
[32]. However, in all these works a constant period is assumed for digital implementa-
tion. Also the steady state boundaries are shown to be function of sampling period.

In this chapter, we analyse the performance of sliding mode algorithm in event trig-
gered implementation. The preliminary of this work can be found in [6]. We develop
a sufficient condition for stability of the system with respect to the measurement error
for the sliding mode control. We show the event condition developed here guarantees
the sliding trajectories to remain bounded in a region around the sliding manifold for all
time. We further show that the inter execution time are bounded from below by a positive
quantity and hence there is no accumulation of inter execution times. Based on these con-
ditions, we also develop a self-triggering mechanism which does not require feedback
information to guarantee the closed-loop system stability. This self-triggering mecha-
nism requires only the information of previous state to find the next possible triggering
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instant. In the next section of this chapter, we propose briefly event-triggering condition
for fractional order systems. Fractional order systems has been studied since last decades
extensively as it describes both integer and fractional order calculus [33], [35], [36]. The
robust stabilization of fractional order systems has also been studied with sliding mode
control [34], [35]. We show that with the same triggering condition developed for integer
order system, the stability of the fractional system is ensured.

The rest of the chapter are as follows. Section 2 describes the preliminaries to the
main result of the chapter. Here, sliding mode control and problem with digitally im-
plementing the control law is discussed. In Section 3, the event triggered sliding mode
control for integer order system is presented. Sufficient condition to ensure the sliding
trajectories to remain bounded within a band is given here. Also, we show that there
inter execution times are always lower bounded by finite positive quantity. Further, the
event parameters must be selected such that it should not result in accumulation of
triggering instants. A discussion on choosing the event design parameters are given in
Section 4. A brief analysis for nonlinear systems is given in Section 5. Then, event
triggered sliding mode control for fractional order systems are presented in Section 6.
First, preliminaries to the fractional order systems and then the design of sliding mode
control for fractional order systems are presented here. Briefly, self-triggering based
sliding mode control is developed in Section 7. Finally, the simulation results and some
concluding remarks are given in Sections 8 and 9, respectively.

2 Problem Statement

2.1 Notation

N = {1,2, . . . ,k, . . .} denotes set of natural numbers. We denote N0 = N∪{0}. R, Rn

denote sets of real numbers, n-dimensional real vector space, respectively. Any matrix
symmetric means M = M� and M > 0(≥ 0) represents positive (positive semi) definite
matrix, that is x�Mx > 0 (≥ 0) for all x ∈ R

n. Next, λmax{M} and λmin{M} are the
maximum and minimum eigenvalues of M, respectively. ‖x‖ denotes Euclidean norm
(2-norm) for any x ∈R

n and is defined as ‖x‖ :=
√

x�x. The notion |a| represents abso-
lute value of any scalar a∈R. A function α : [0,+∞) �→R≥0 is called class-K function
if it is strictly increasing and α(0) = 0. It is called class-K∞ if it belongs to class-K
and α(t) tends to +∞ as t does. A function γ : [0,+∞)× [0,+∞) �→ R≥0 is called as
class-K L if for each fixed t ≥ 0 the function γ(·, t) is a class-K and for every s ≥ 0
the function γ(s, t)→ 0 as t tends to ∞.

Next, we introduce the notion of input-to-state stable (ISS) for any dynamical sys-
tem. Consider a system

ξ̇ = f (ξ ,w), ξ0 := ξ (t0) ∈ R
n. (1)

Here, w acts as the input to the system (1). This input is locally essentially bounded
function and it may be external control or disturbance depending on the context of the
problem. We introduce the following notions below used in this chapter [22].
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Definition 1. The system (1) is said to be ISS if there exists a class-K L function
β1(·, ·) and a class-K function γ1(·) such that

‖ξ‖ ≤ β1(‖ξ0‖, t)+ γ1(‖w‖∞) (2)

for all ξ ∈ R
n.

Definition 2. The system (1) is said to be ISS in the Lyapunov sense if there exists class-
K∞ functions α(·), α(·), a class-K function γ2(·) and a class-K L function β2(·, ·)
such that for any Lyapunov function V : Rn → R≥0, we have

α(‖ξ‖)≤V (‖ξ‖)≤ α(‖ξ‖) (3)

∂V
∂ξ

ξ̇ ≤ β2(‖ξ0‖, t)+ γ2(‖w‖∞) (4)

for all ξ ∈ R
n.

2.2 Preliminaries

Consider a continuous linear time-invariant system

ẋ(t) = Ax(t)+Bu(t)+Dd(t) (5)

where x(t) ∈ R
n represents the state of the system, u(t) ∈ R

m is the control input and
d(t) ∈R

m is the disturbance and it is assumed to be bounded ‖d(t)‖ ≤ dmax. The matri-
ces A, B and D are of appropriate dimensions. We assume that rangeD ⊆ rangeB, i.e.,
matching condition is satisfied. The system (5) can also be represented in regular form

ẋ1(t) = A11x1(t)+A12x2(t)

ẋ2(t) = A21x1(t)+A22x2(t)+B2u(t)+D2d(t)
(6)

where x1(t) ∈ R
n−1 and x2(t) ∈ R

m. In most practical cases the disturbances enter the
system through the input channel e.g., measurement noises etc. so, the assumption made
in this chapter seems justified. It is well known that sliding mode control can reject the
disturbance completely that is acting in the input channel only.

We choose the sliding variable for the system (6) as

s(t) = c�x(t), c ∈R
n×m. (7)

The sliding mode control law can be designed such that the sliding variable s(t) = 0
is ensured in finite time. To achieve this, differentiating (7), it gives

ṡ(t) = c�(Ax(t)+Bu(t)+Dd(t)). (8)

Design the sliding mode control for the system (5) as

u(t) =−(c�B)−1
(

c�Ax(t)+K
s(t)

‖s(t)‖
)

(9)
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where K ≥ supt≥0 ‖c�Dd(t)‖+η where η > 0. This control law (9) guarantees sliding
mode is enforced in the system in finite time. Therefore, during sliding i.e., s(t) =[

c�1 c�2
]

x(t) = 0, from (7), we obtain

x2(t) =−
(

c�2
)−1

c�1 x1(t).

This implies that when sliding mode takes place, the trajectories of the system corre-
sponds to the null space of matrix c ∈ R

n×m and hence system order is reduced. c can
be designed such that c2 = I, then the reduced dynamics can be given from (6) as

ẋ1(t) = (A11 −A12c�1 )x1(t). (10)

Now, if the pair (A11,A12) is controllable, then it is always possible to design c1 such
that A11 −A12c�1 is Hurwitz. Thus, the closed loop system is asymptotically stable.

2.3 Problem Setup

In practical implementation the control law is not updated continuously but at some
discrete instants only. A rich analysis of sampled data system with sliding mode control
has been reported in literature. Here, the control law is updated at periodic time instants.
This is often regarded as time triggered implementation. If h is the constant sampling
period then the control (9) can be given with ti+1 = ti + h

u(t) =−(c�B)−1
(

c�Ax(ti)+K
s(ti)

‖s(ti)‖
)
, ∀t ∈ [ti, ti+1[ (11)

with s(ti)= c�x(ti) denotes sliding variable at ti. At the time instant ti+1, the control (11)
is updated again and remains constant till the next triggering become active. However,
in event-triggered strategy, the control law is not updated in periodic manner in time.
The triggering instants for control is calculated based on event condition and hence
the triggering sequences are aperiodic. The triggering condition developed must ensure
stability of the system in appropriate sense. We report in subsequent sections that the
event condition developed guarantees the sliding trajectories to remain bounded within
an region in finite time. We define the measurement error of the sampled state of the
system as

e(t) = x(ti)− x(t), ∀t ∈ [ti, ti+1[. (12)

This measurement error e(t) plays a significant role in achieving the accuracy of the
stabilization problem. For t = ti, e(ti) = x(ti)− x(ti) = 0 since the control is updated
only at this instant only, so the sliding mode will occur at this instant. However, for any
t ∈]ti, ti+1[, e(t) = 0 and consequently s(t) will deviate from the sliding manifold.

In this chapter, we address the problem of achieving robust stabilization with respect
to measurement error e(t) by sliding mode control. This is ensured by executing simple
event that makes the system stable. We also establish that with this triggering scheme
there is no Zeno Phenomena i.e., no accumulation of control inter executions times in
some time intervals [ti, ti+1[.
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3 Event-Triggered Sliding Mode

Theorem 1. Consider the system (5) and sliding variable (7). Let ε ∈ (0,∞) be given.
Then the control law (11) achieves sliding mode in the vicinity of s(t) = 0 within a band
given as {

x(t) ∈R
n : ‖s(t)‖ ≤ 2ε‖A‖−1} (13)

if the following conditions are satisfied∥∥∥c�Ae(t)
∥∥∥< ε (14)

and K is chosen as

K > sup
t≥0

∥∥∥c�Dd(t)
∥∥∥+η + ε (15)

where η > 0.

Proof. We consider the Lyapunov function for t ∈ [ti, ti+1[ as

V =
1
2

s�(t)s(t).

Differentiating V with respect to time along the system trajectories and using (8), yields

V̇ = s�(t)
(

c�Ax(t)+ c�Bu(t)+ c�Dd(t)
)
.

Now using (11) in the above for control, we obtain

V̇ = s�(t)
(

c�Ax(t)− c�Ax(ti)−K
s(ti)
‖s(ti)‖ + c�Dd(t)

)

=−s�(t)
(

c�Ae(t)+K
s(ti)

‖s(ti)‖ − c�Dd(t)

)
. (16)

It can be shown that at t = ti the Lyapunov function V̇ < 0. However, for t ∈ [ti, ti+1[\ti,
invoking the conditions (14) and (15), we obtain

V̇ <−s�(t)
(

K
s(ti)

‖s(ti)‖ − c�Dd(t)− ε
s(t)

‖s(t)‖
)

<−ηs�(t)
s(ti)

‖s(ti)‖
=−η‖s(ti)‖+ηc�e(t)

s(ti)
‖s(ti)‖ . (17)

The last equality in the above follows from s(t) = c�x(t) = c�(x(ti)− e(t)). Further
using (14), we obtain

V̇ <−η‖s(ti)‖+ηε‖A‖−1. (18)
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Now recalling the fact that ‖s(t)‖ = ‖s(ti)+ c�e(t)‖ ≤ ‖s(ti)‖+ ‖c‖‖e(t)‖. Using
this in (18), we obtain

V̇ <−η‖s(t)‖+ 2ηε‖A‖−1 (19)

Define the set Bi := {s(t), t ∈ [ti, ti+1) : ‖s(t)‖ ≤ 2ε‖A‖−1}. For i = 0, if ‖s(ti)‖ ∈B0,
then system trajectory remain in B0 for all time hence. On the other hand, if ‖s(ti)‖ /∈
B0, then there exists a p ∈ N such that ‖s(t)‖ ∈Bp for all t ≥ tp due to (18). Since p
is finite, we claim that this occurs in finite time. So, the sliding mode will occur in the
vicinity of s(t) = 0 with an band as given in (13). This completes the proof. �

Remark 1. It can be noted that the condition (14) must be maintained for all time the
sliding trajectories to remain in a band given by (13). However, in practice we assume
the following relation ‖c‖‖A‖‖e(t)‖≤ ε to be satisfied. This in turn respects the relation
(14).

3.1 System Stability

Here, we discuss the stability of the closed loop system. When sliding trajectories re-
main bounded within the region given by (13), then for all time t ≥ tp where tp is the
time instant where sliding trajectories enter (7), we have

‖s(t)‖ ≤ 2ε ‖A‖−1 ,

then it can be written as

x2(t)≤−c�1 x1(t)+ 2ε ‖A‖−1 .

The reduced order dynamics can be given as

ẋ1(t)≤ (A11 −A12c�1 )x1(t)+ 2A12ε ‖A‖−1 . (20)

In the following, we give the stability of the closed loop system.

Proposition 1. Consider the system (20). Let the control law (11) bring the sliding
mode in the vicinity of the sliding surface. Then the system is ISS and the trajectories
remain bounded with an ultimate bound given by

B =
{

x1(t) : λmin{Q}‖x1(t)‖ ≤ 4ε ‖A‖−1
∥∥∥A�

12P
∥∥∥} . (21)

Proof. Consider the Lyapunov function

V = x�1 (t)Px1(t)

where P is a symmetric positive definite matrix, i.e., P= P� > 0. Differentiating V with
respect to time and using (20), we write

V̇ =ẋ1(t)
�Px1(t)+ x1(t)

�Pẋ1(t)

≤x1(t)
�(A�

clP+PAcl)x1(t)+ 4ε ‖A‖−1 A�
12Px1(t) (22)
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where Acl = (A11−A12c�1 ) is Hurtiwz. Then by converse Lyapunov Theorem, there will
exist a positive definite matrix Q such that the following relation

A�
clP+PAcl+Q = 0

holds. Then

V̇ ≤−x�1 (t)Qx1(t)+ 4ε ‖A‖−1 A�
12Px1(t). (23)

From Rayleigh’s inequality for any positive definite matrix Q, we have

λmin{Q}‖z(t)‖2 ≤ z�(t)Qz(t)≤ λmax{Q}‖z(t)‖2

for all z(t) ∈ R
n. So,

V̇ ≤−λmin{Q}‖x1(t)‖2 + 4ε ‖A‖−1
∥∥∥A�

12Px1(t)
∥∥∥

≤−λmin{Q}‖x1(t)‖2 + 4ε ‖A‖−1
∥∥∥A�

12P
∥∥∥‖x1(t)‖

=−λmin{Q}
(
‖x1(t)‖− 4ε ‖A‖−1 ‖A�

12P‖
λmin{Q}

)
‖x1(t)‖.

Therefore, the system (20) is ISS with respect to ε with a bound as given in (21).
This completes the proof. �

3.2 Event-Triggering Scheme

Here, we discuss event-triggering scheme for the system (5) which ensures sliding mode
in the system. We see that if the condition (14) is satisfied for all time then sliding mode
always occur in the vicinity of sliding surface in finite time. So, we select (14) as the
triggering condition for sliding mode to occur. For any σ ∈]0,1], if we guarantee

‖c‖‖A‖‖e(t)‖< σε (24)

holds for t ∈ [ti, ti+1[ and i ∈ Z≥0, then condition (14) is respected and hence the re-
sults of Theorem 1 holds for all t. So, the triggering instant is generated whenever this
condition is violated, i.e., equality is satisfied,

‖c‖‖A‖‖e(t)‖= σε. (25)

Thus, the triggering instant ti+1 can then be determined as

ti+1 = inf{t ∈]ti,+∞[ : ‖c‖‖A‖‖e(t)‖≥ σε} (26)

for all i ∈N0.
In practical cases, the control gets updated after some time instants once the states are

sampled. Therefore the delay forms an important part in this analysis. So, if the delay
is considered then the control (11) would be held constant for all t ∈ [ti +Δ , ti+1 +Δ [,
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Δ > 0. We refer here inter execution time as time interval between two consecutive
triggering instants.

It might be possible that the inter execution time may approach to zero leading to
accumulation of triggering instants. This can cause inability of the processor to execute
the control task and hence the stability of the system can not be ensured. In order to
avoid such a situation, we show next that there always exist a positive lower bound for
inter execution times.

Theorem 2. Consider the system (5). Let the control law (11) brings the sliding mode
in the system by executing the event (25) for all t > ti for the increasing time sequence
{ti}i∈N0 , i.e., t0 < t1 < t2 < · · · . If ti+1 is the triggering instant, then the inter execution
time ti+1 − ti = Ti > 0 satisfy

Ti ≥ 1
τ

ln

(
1+

∥∥∥c�A
∥∥∥−1

σε
τ

ρ(‖x(ti)‖)+β

)
(27)

where τ and β are defined as

τ := ‖A‖ and β :=
∥∥∥B(c�B)−1K

∥∥∥+ ‖D‖dmax, (28)

and the real valued function ρ(‖x(ti)‖) : Rn �→ R≥0 is given as

ρ(‖x(ti)‖) :=
∥∥∥A−B(c�B)−1c�A

∥∥∥‖x(ti)‖ . (29)

Proof. Consider the set Γ = {t : ‖c‖‖A‖‖e(t)‖= 0}. Then for time t ∈ [ti, ti+1[\Γ , we
write

d
dt

‖e(t)‖ ≤‖ė(t)‖= ‖ẋ(t)‖

=

∥∥∥∥Ax(t)−B(c�B)−1c�Ax(ti)−B(c�B)−1K
s(ti)
‖s(ti)‖ +Dd(t)

∥∥∥∥ .
Substituting x(t) = x(ti)− e(t) in the above relation and simplifying yields

d
dt

‖e(t)‖ ≤‖A‖‖e(t)‖+
∥∥∥(A−B(c�B)−1c�A

)
x(ti)

∥∥∥
+

∥∥∥∥B(c�B)−1K
s(ti)

‖s(ti)‖
∥∥∥∥+ ‖D‖dmax

=‖A‖‖e(t)‖+
∥∥∥A−B(c�B)−1c�A

∥∥∥‖x(ti)‖

+
∥∥∥B(c�B)−1K

∥∥∥+ ‖D‖dmax

=τ ‖e(t)‖+ρ(‖x(ti)‖)+β (30)

where τ , β and the function ρ(‖x(ti)‖) are defined as per (28) and (29), respectively.
Using comparison Lemma [23], the solution to the differential inequality (30) with

the initial condition e(ti) = x(ti)− x(ti) = 0 can be given as

‖e(t)‖ ≤ ρ(‖x(ti)‖)+β
τ

(
eτ(t−ti)− 1

)
(31)
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where t ∈ [ti, ti+1[. Recalling the relation (25) and (26) and since e1(t) := c�Ae(t), we
write (31) as

σε ≤
∥∥∥c�A

∥∥∥ ρ(‖x(ti)‖)+β
τ

(
eτTi − 1

)
(32)

where Ti = ti+1 − ti then the lower bound for inter execution time can be obtained as
given (27). Since the control (11) is an asymptotic stabilizing control law implying
‖x(ti)‖ never equals zero in finite time. Also β > 0. This together implies the lower
bound is bounded below by strictly nonzero. This proves the Theorem. �

Remark 2. Theorem 2 gives the existence of a positive lower bound of inter execution
time. This is important to ensure the control executions are processed only after a finite
time interval. Therefore, triggering instants for control signal get updated can be given
as ti+1 − ti ≥ Ti. This also avoids accumulation of triggering instants, so it is practically
feasible.

In many practical cases, delay Δ is inevitable, but it may not be given an attention if it
is sufficiently small to neglect. However, it affects the performance, possibly increases
the sliding mode band around s(t) = 0 for large non zero values of Δ . Let ti be the
instant at which state is sampled and after Δ instant, i.e., ti +Δ control signal execution
is finished and updated. Then the control can be given

u(t) = u(ti +Δ), ∀t ∈ [ti +Δ , ti+1 +Δ [. (33)

It has been assumed constant delay for all intervals of time. In the following, we state
that there exists a lower bound for delay in inter execution times. This result is reported
in the following Corollary.

Corollary 1. Consider the system (5). Assume that the control law (33) is applied to
the system at ti +Δ instants such that the sliding mode begins in some finite time. Let
σ1 ∈]0,1[ be given and the increasing time sequences {ti}i∈N0 satisfy the event execution
rule (26). Let’s denote

T �
i =

1
τ

ln

(
1+

∥∥∥c�A
∥∥∥−1

σ1ε
τ

ρ1(‖x(ti−1)‖,‖x(ti)‖)+β

)
(34)

where τ and β are defined as given by (28) and ρ1(‖x(ti−1)‖,‖x(ti)‖) given as

ρ1(‖x(ti−1)‖,‖x(ti)‖) = ‖A‖‖x(ti)‖+
∥∥∥B(c�B)−1c�A

∥∥∥‖x(ti−1)‖.

If

0 ≤ Δ ≤ T �
i (35)

then there exists σ ∈]σ1,1[ such that sliding mode occur in the vicinity of sliding surface
s(t) = 0.
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Proof. Consider t ∈ [ti, ti + Δi). Then (35) guarantees that ‖c‖‖A‖‖e(t)‖ = σ1ε for
all t ∈ [ti, ti +Δi). Since σ ∈]σ1,1[, there will exist a time from Theorem 2 such that
‖c‖‖A‖‖e(t)‖= σε for all t ∈ [ti +Δi, ti+1Δi+1) with initial condition for (30) can be
chosen as ‖c‖‖A‖‖e(t)‖ = σ1ε . Thus the sliding mode occurs due to Eqns. (14) and
(25) with desired sliding band. The minimum inter execution time T �

i exists due to
Theorem 2 represents the time taken by ‖c�Ae(t)‖ to grow from 0 to σ1ε . Therefore,
from Theorem 2 there exists a non zero delay as given in (35). �

4 Admissible Triggering Signals

In this Section, we derive the conditions for admissible triggering instants that ascertain
the system stability. We say that the triggering instants are admissible if ti+1 ≥ ti +
Ti holds for all i ∈ N0. Similarly, the closed loop system (5) and (11) is said to be
admissibility if the corresponding triggering time sequences are admissible.

The control signal is updated whenever the triggering condition (25) is satisfied. At
the mean time it must be ensured that the triggering instant generated must be admis-
sible. If the design parameters are not chosen properly, non admissible triggering will
occur and eventually Zeno Phenomenon results. This happens due to the unknown dis-
turbance which governs rate of decrement of sliding variable towards the sliding mani-
fold. Moreover, the selection of α also affects the triggering instants. The less value of
ε , the more chance to lead to accumulation of triggering instants. So, a suitable value
must be chosen.

5 Event-Triggered Control for Nonlinear Systems

This idea can also be extended to nonlinear systems. Here, briefly we discuss the anal-
ysis for nonlinear systems. We consider a nonlinear system

ẋ(t) = f (x(t),u(t),d(t)) (36)

where x(t) ∈ D ⊂ R
n and u(t) ∈U ⊂ R. It has been assumed that the function f (·) is

Lipschitz in x(t)∈D and it is also affine in control and disturbance. Further, we assume
that the disturbance d(t) enters the system through the input channel only. We design
the sliding manifold for the system (36) as s(t) = c�x(t). Taking the derivative of s(t),
we obtain

ṡ(t) = c� f (x(t),u(t),d(t)). (37)

Since f (·, ·, ·) is affine in both control and disturbance, we write the above relation as

ṡ(t) = a1(x(t))+ b(x(t))u(t)+ a2(x(t),d(t)). (38)

Design the SMC for the system (36) as

u(t) =−b−1(x(t))(a1(x(t))+Ksigns(t)) (39)
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where K > supt≥0 |a2(x(t),d(t))|. It can be easily shown that with the control (39), the
sliding manifold is reached in finite time and is constrained to remain on this manifold
for all time. Now, if the c is chosen suitably, then the reduced order system is asymptot-
ically stable. Here, we discuss event-triggered implementation of the control law (39)
such that closed loop system is ISS. Let L1 be the Lipschitz constant of a1(x(t)) and
0 < K1 ≤ ‖b(x(t))‖ ≤ K2.

Theorem 3. Consider the system (36). Let ε1 ∈ (0,∞) be given and {ti}∞
i=0 be the se-

quences of triggering instants. Then, the sliding mode is enforced in the system in the
vicinity of the sliding manifold given by the region

{x(t) ∈ R
n : |s(ti)| ≤ ε0} (40)

if the following holds

K ≥ K2

K1
(ε1 +Δmax) (41)

and

K1

K2
L1‖c‖‖e(t)‖ ≤ ε1 (42)

where ε0 = 2 K2
K1

ε1
L1

.

Proof. To prove this, we consider Lyapunov function for t ∈ [ti, ti+1[ as

V =
1
2

s2(t).

Differentiating V along the system trajectories and using the control law (39), we obtain

V̇ = s(t)c�(a1(x(t))+ b(x(t))u(t)+ a2(x(t),d(t)))

= s(t)c�(a1(x(t))− b(x(t))b−1(x(ti))a1(x(ti))− b(x(t))b−1(x(ti))Ksigns(ti)

+ a2(x(t),d(t))) (43)

It can be easily shown that if (42) holds then

‖c�(a1(x(t))− b(x(t))b−1(x(ti))a1(x(ti)))‖ ≤ K1

K2
L1‖c‖‖e(t)‖ ≤ ε1.

Then, using this, the above relation can be deduced as

V̇ ≤−s(t)
K1

K2
Ksigns(ti)+ |s(t)|ε1 + |s(t)|Δmax

=−s(t)
K1

K2

(
Ksigns(ti)− K2

K1
(ε1 +Δmax)signs(t)

)

≤−s(t)
K1

K2
ηsigns(ti)

=−η
K1

K2

(
|s(ti)|− K2

K1L1
ε1

)
. (44)
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On further simplification, it yields

V̇ <−η
K1

K2

(
|s(t)|− 2

K2

K1

ε1

L1

)
(45)

It can be seen that the sliding trajectory decreases till |s(t)| ≤ ε0. It can be argued that
there will exist a finite time tp ≥ 0 such that the sliding trajectory re,main bounded
within the region given by (40). �

6 Event-Triggered Control for Fractional Order Systems

An event triggered sliding mode control for fractional order systems is discussed in this
section. Fractional order systems has been gaining popular as it deals with fractional or-
der calculus. Here, sliding mode control for fractional order systems are first discussed
and then its realization with event-triggering scheme is analysed. Briefly, we define the
terminologies pertaining to the fractional order systems.

6.1 Preliminaries

The definition of Riemann-Liouville fractional order integrals and derivatives are stated
recalled given in [33]–[36]. The Laplace transform of the Riemann-Liouville fractional
order integrals and derivatives are also given.

6.1.1 Gamma Function
Gamma function Γ (z) is defined by

Γ (z) =
∫ ∞

0
e−t tz−1dt. (46)

6.1.2 Mittag-Leffler Function
The Mittag-Leffler function in one parameter Eα(z) is given by

Eα(z) =
∞

∑
k=0

zk

Γ (αk+ 1)
. (47)

Mittag-Leffler function in two parameters Eα ,β (z) is given by

Eα ,β (z) =
∞

∑
k=0

zk

Γ (αk+β )
. (48)

The Mittag-Leffler function in two parameters in fractional calculus plays the same role
as exponential function does in integer order calculus. The Mittag-Leffler function is in
fact a generalization of exponential function. For instance,

E1,1(z) =
∞

∑
k=0

zk

Γ (k+ 1)
=

∞

∑
k=0

zk

k!
= ez. (49)
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6.1.3 Fractional Order Integral
Riemann-Liouville fractional order integral of order α ∈ R

+ is defined by

0D−α
t f (t) =

1
Γ (α)

∫ t

0

f (τ)
(t − τ)(1−α)

dτ. (50)

6.1.4 Fractional Order Derivative
Riemann-Liouville fractional order derivative of order α is defined by

0Dα
t f (t) = 0Dm

t 0D−(m−α)
t f (t)

=
dm

dtm

[
1

Γ (m−α)

∫ t

0

f (τ)
(t − τ)(α−m+1)

dτ
]

(51)

where α ∈ R
+ and m− 1 < α < m, m ∈ N.

6.2 Sliding Mode Control For Fractional Order Systems

This section deals with the basic concept of sliding mode control and the application of
Sliding Mode Control to a LTI commensurate fractional order single system given in
[35]. The solution to the fractional differential equation with discontinuous righthand
side is understood in a Filippov sense. The sliding surface is selected such that the
motion of the system trajectories along the sliding surface is stable and the states of the
system will reach the origin asymptotically.

Consider the commensurate fractional order LTI system given as

0Dα
t x̄(t) = Āx̄(t)+ B̄

(
u(t)+ d(t)

)
(52)

where x̄(t) ∈ R
n, u(t) ∈ R and d(t) ∈ R represent the states, control input and distur-

bance of the system, respectively. We assume that the system is controllable and the
uncertainty entering the system is matched and bounded, i.e., |d(t)| ≤ dmax for all t ≥ 0.

We can always find a non singular matrix T such that a linear transformation x(t) =
T x̄(t) will transform the equation (52) into the regular form

0Dα
t x1(t) = A11x1(t)+A12x2(t)

0Dα
t x2(t) = A21x1(t)+A22x2(t)+B2

(
u(t)+ d(t)

)
. (53)

where x1 ∈R
n−1 and x2 ∈ R. The system (53) can also be represented as

0Dα
t x(t) = Ax(t)+B(u(t)+ d(t)). (54)

The sliding surface for the system (53) is chosen as

s(t) = 0Dα−1
t Cx(t) (55)

where C = [c1 1] and c1 ∈ R
n−1. The matrix c1 is selected such that motion along the

sliding surface is stable. The derivative of the sliding surface s(t) with respect to time
can be written as

ṡ(t) = 0Dα
t Cx(t)

=C
(
Ax(t)+B

(
u(t)+ d(t)

))
. (56)
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The C is chosen such that CB is singular. Then control input can be designed as

u(t) =−(CB)−1(CAx(t)+Ksign(s(t))
)

(57)

where K is selected as K ≥ |CBdmax|+η and η > 0 to guarantee the existence of sliding
mode.

Theorem 4. Consider the system given in equation(53). Then the control law given by
(57) guarantees the existence of sliding mode along the surface defined by equation(55).

Proof. Consider the Lyapunov function

V (t) =
1
2

s2(t).

Taking the derivative of V (t) with respect to time and using (54) and (57), we obtain

V̇ (t) = s(t)ṡ(t)

= s(t)(CAx(t)+CB(u(t)+ d(t)))

=−s(t)(Ksign(s(t))+CBd(t))

≤−η |s(t)|
=−η

√
2V 1/2(t). (58)

This implies that the V (t) converges to zero in finite time lesser than t0 +
√

2V 1/2(x(0))
η .

Hence, the sliding variable will also converges to zero in finite time.

Once the system is in sliding mode, i.e., s(t) = 0, the dynamics of the system during
sliding motion is governed by

0Dα
t x1(t) = (A11 −A12c1)x1(t)+A12

(
0D1−α

t s(t)
)
. (59)

Since 0D1−α
t s(t)→ 0 in finite time, we can write the dynamics of the system as

0Dα
t x1(t) = (A11 −A12c1)x1(t) = Âx1(t).

It is always possible choose an appropriate C = [c1 1] matrix, so as to place the eigen-
values of Â at desired location, since the (Ā, B̄) pair is controllable. In order to make the
system asymptotically stable, the matrix C is chosen such that the following condition
is satisfied

|arg(λi(Â))|> α
π
2

(60)
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where λi(Â) are the eigenvalues of Â. Thus the system represented by equation (52) can
be stabilized by sliding mode control along with the rejection of matched disturbances.

6.3 Event Triggering Based Control for Fractional Order Systems

In event triggered based control, the control law is updated whenever event condition
satisfied. The control law is given as

u(t) =−(CB)−1 (CAx(ti)+Ksign(s(ti))) ∀t ∈ [ti, ti+1[ (61)

where s(ti) = 0Dα−1
ti Cx(ti). The control input is updated at every triggering instant when

the event triggering condition is satisfied. The control input to the system is kept con-
stant until the next triggering instant. The gain K is selected as

K ≥ ‖CBdmax‖+η + ε (62)

where η > 0 is a positive real number and β > 0 is a positive design parameter. Since
the control is not updated continuously, the states of the system remain within an band
in the vicinity of sliding surface.

Here, we use the same triggering condition (25) to ensure the stability of the closed
loop system and the triggering instants are generated based on (26).

By applying the control (61), the states of the system are driven to the neighbourhood
of s(t) = 0 and constrained to remain within a band around the sliding surface given by

B=
{

x ∈ R
n : |s(ti)| ≤ 0Dα−1

t ε‖A‖−1} (63)

We design control to drive the system states to the band B. Then the states of the system
will be within the band B1 since B⊆ B1 where B1 is given by

B1 =
{

x ∈ R
n : |Cx(ti)| ≤ ε‖A‖−1} . (64)

Remark 3. The sliding mode band that we discuss here is different from the quasi slid-
ing mode band in the discrete sliding mode control. The quasi sliding mode band in
DSMC depend on the disturbance bound and sampling time while the sliding mode
band we discuss here depend on design parameter ε . The ε allows the designer to have
a trade of between the system performance and resource utilization.

7 Self-Triggered Sliding Mode Control

Self-triggering mechanism is proposed as alternative to event-triggered control to de-
velop triggering sequences. Here, we do not need feedback information to evaluate
event continuously but at some aperiodic time instants. We propose the self-triggering
mechanism which is based on the results of Theorem 2 in the following. It is observed
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from Theorem 2 that the inter execution time Ti is always lower bounded by a finite pos-
itive quantity. So, it can be said that no triggering instant will appear below this time.
To achieve this, we define the next triggering instant as

t̃i+1 = t̃i +
1
τ

ln

(
1+

∥∥∥c�A
∥∥∥−1

σε
τ

ρ(‖x(ti)‖)+β

)
. (65)

The time instant t̃i is defined as the sampling and control update time instant. To avoid
confusion, we denote sampling instant by this in self-triggered. The triggering instant
is calculated as (65) gives a minimum triggering instant where triggering condition is
not satisfied for all times lesser than that given in (65).

Theorem 5. Consider the system (5) and the control law (11). Then the triggering se-
quences {t̃i}∞

i=0 generated by (65) guarantees closed-loop system is ISS and sliding
mode occurs in the system sin finite time.

Proof. Consider the time interval [ti, ti+1[. Since the triggering satisfies (65), we obtain
from (27) the following ti+1 ≥ t̃i+1. So, the event condition (24) is respected for (65).
This is also true for all i ∈ N0. We also have ti+1 > ti since the second term in (65)
is always nonzero quantity. Thus, triggering mechanism developed ensures ISS of the
system with respect to the measurement error. We also see that as (24) holds for all
time, so sliding mode occurs in the finite time and the proof is completed.

8 Simulation Results

Here, we give the simulation results pertaining to the analysis derived in the previous
Sections. Consider the LTI system

ẋ(t) =

⎡
⎣0 1 0

0 0 1
1 2 3

⎤
⎦x(t)+

⎡
⎣0 0

1 0
0 1

⎤
⎦(

u(t)+

[
0.1+ 0.2cos(5t)

0.5sin(10t)

])
.

Design the sliding surface as s(t) =

[
0.7071 1 0

0 0 1

]
x(t). The following parameters are

chosen as K = 0.8, ε = 0.2, σ = 0.9. The initial condition is chosen as x0 =
[
3 2 1

]
.

The control input for the system is given as

u(t) =−
([

0 0.7071 1
1 2 3

][
x1(ti)
x2(ti)

]
+ 0.8

s(ti)
‖s(ti)‖

)
, ∀t ∈ [ti, ti+1[.

8.1 Event-Triggered Scheme

Fig. 1(a)-(d) show the plot of states of the system, sliding surface, control input and
sampling intervals, respectively. It is shown that, stability of the system is guaranteed
even if the control input is not updated in continuous manner. Moreover, the system
achieves bounded stability as stated in previous Sections. The bounds of the states and
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Fig. 1. Performance of system with event-triggering scheme (a) Evolution of states of the system
(b) sliding surface (c) event based control input and (d) sampling interval generated by executing
event condition

sliding surface can be minimized by suitably selecting the value of ε . For the given
value of ε , we obtain the sliding mode band as 0.0932. It is clear from Fig. 1(b) during
steady state sliding variable remains bounded within the sliding band given by (13).
The plot of sampling intervals versus time is shown in Fig. 1(d). Once the sliding mode
is enforced in the system, the sampling intervals are significantly increased.

8.2 Self-Triggering Scheme

Fig. 2(a)-(d) show the performances of the self-triggering strategy. Fig. 2(a) and (b)
give the plot of states of the system and sliding trajectory. We observe that the sliding
mode occurs in the system almost in the same time. However, in this case the sampling
intervals are reduced. It is to be noted that this scheme doest not require feedback infor-
mation continuously so it is more suitable in applications where reliable communication
is needed.
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Fig. 2. Performance of system with self-triggering scheme (a) Evolution of states of the system
(b) sliding surface (c) self triggered based control input and (d) sampling interval

9 Conclusion

In this chapter, event control based robust stabilization for linear time-invariant
system is proposed. The event strategy possesses many advantages such as optimal
resource utilization, effective use of time and cost of processor. To achieve this advan-
tage, event triggering based sliding mode control is analysed from the practical point of
view. In many situations, robustness forms one of the prime objective in stabilization
problems. Here, by defining the simple triggering condition the linear system is ISS
for any bounded disturbance. The robustness in the system is assured by enforcing the
execution of triggering condition that ensures sliding mode in the vicinity of sliding
manifold. Further, we derived the ultimate bound for the bounded stability. We also de-
rive the minimum possible inter execution time for the control signal execution. This
result is further reported by considering delays into account. The proposed strategy
actually deals with real time application of sliding mode control for any linear sys-
tem. Following this, we also give a self-triggering strategy with sliding mode control.
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Self-triggering scheme seems to be reliable in practice as it does not need any informa-
tion for triggering. In the latter part, we also state event-triggering scheme for fractional
order systems. The event triggering condition developed for integer order system also
guarantees the stability of fractional order systems.

Acknowledgement. B. Bandyopadhyay is formally associated with Prof. Okyay
Kaynak in the editing job of IEEE/ASME Transactions on Mechatronics and he highly
appreciates Prof. Kaynak, the way he keeps in personal touch with the editorial board
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Abstract. This chapter presents a nonhomogeneous continuous super-twisting
algorithm for systems of dimension more than one. The conditions of finite-time
convergence to the origin are obtained and the robustness of the designed algo-
rithm is discussed. The chapter concludes with numerical simulations illustrating
performance of the designed algorithms.

Keywords: Sliding mode control, super-twisting, nonhomogeneous systems.

1 Introduction

It is well known that the classical discontinuous sliding mode control provides finite-
time convergence for a one-dimensional system [1]. A finite-time stabilizing control
for a system of dimension two is realized using the twisting algorithm [2], where the
second order sliding mode control is also discontinuous. Both algorithms are robust
with respect to bounded disturbances. On the other hand, using a continuous second-
order sliding mode super-twisting algorithm [3], a state of a one-dimensional system
can be stabilized along with its first derivative. The super-twisting algorithm is robust
with respect to unbounded disturbances satisfying a Lipschitz condition. There are a
number of papers applying twisting and super-twisting algorithms to robust regulator
and observer design. Various modifications of the sliding mode technique have always
been actively used in industrial applications ([4,5,6,7,8,9,10]), including fault detec-
tion/correction and data-driven control and monitoring ([11,12,13,14,15,16]).

The finite-time convergence of the designed algorithms is conventionally established
using geometrical techniques [2,3], direct Lyapunov method [17,18,19], or homogene-
ity approach [20,21,22]. The explicit Lyapunov functions for their second-order super-
twisting algorithms can be found in [19]. The homogeneity approach, mentioned even
in the classical book [23], was consistently developed in the mentioned papers and ap-
plied to the observer design in [24]. The homogeneity is a commonly accepted tool
for establishing finite-time convergence of the control laws: for instance, the classical
signum control [1] and the super-twisting algorithm [3] are homogeneous. The recent
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paper [25] presents a homogeneous continuous super-twisting algorithm for systems of
dimension more than one, which assures finite-time convergence to the origin for all
system states; as a consequence, it is applicable to homogeneous systems only.

This chapter corrects the indicated flaw and presents a nonhomogeneous continuous
super-twisting algorithm for systems of dimension more than one, which assures finite-
time convergence to the origin for all system states. First, the case of dimension two
is addressed. The conditions of finite-time convergence to the origin equilibrium are
obtained and the robustness of the designed algorithm is discussed. Similar results are
then obtained for systems of dimension more than two. The chapter concludes with
numerical simulations illustrating performance of the designed algorithms.

The chapter is organized as follows. The problem statement is given in Section 2. A
nonhomogeneous super-twisting-like control algorithm for systems of dimension two
is designed in Section 3. The corresponding examples are provided in Section 4. A
nonhomogeneous super-twisting-like control algorithm for systems of dimension more
than two is presented in Section 5 and illustrated by examples in Section 6. Section 7
concludes this study. The proofs of all theorems and lemmas are given in Appendix.

2 Control Problem Statement

Consider a conventional dynamic system of dimension two

ẋ1(t) = x2(t), x1(t0) = x10, (1)

ẋ2(t) = u(t), x1(t0) = x20,

where x(t) = [x1(t),x2(t)] ∈ R2 is the system state and u(t) ∈ R is the control input.
In the classical second-order sliding mode control theory, a finite-time stabilizing

control for the system (1) is designed using the twisting algorithm [2] in the form

u(t) =−k1sign(x1(t))− k2sign(x2(t)), (2)

where k1,k2 > 0 are certain positive constants, and the signum function of a scalar x is
defined as sign(x) = 1, if x > 0, sign(x) = 0, if x = 0, and sign(x) =−1, if x < 0 ([23]).

On the other hand, for a scalar dynamic system

ẋ(t) = u(t), x(t0) = x0, (3)

a continuous finite-time stabilizing control for the system (3) can be designed using the
super-twisting algorithm [3] as follows

u(t) =−λ | x(t) |1/2 sign(x(t))−α
∫ t

t0
sign(x(s))ds, (4)

where λ > 0, α > 0 are certain positive constants. Note that applying the continuous con-
trol (4) to the system (3) results in a second-order sliding mode, i.e., both x(t) and ẋ(t)
converge to zero for a finite time. In other words, the continuous control (4) yields finite-
time convergencesimilar to that produced by a classical discontinuous sliding mode con-
trol u(t) =−Ksign(x(t)), where K > 0 is sufficiently large, for the system (3).
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In this chapter, we propose a nonhomogeneous super-twisting-like continuous mod-
ification of the twisting control algorithm (2) as follows

u(t) =−λ0 |
∫ t

t0
x1(s)ds |γ0 sign(

∫ t

t0
x1(s)ds)−λ1 | x1(t) |γ1 sign(x1(t))−

−λ2 | x2(t) |γ2 sign(x2(t))−α
∫ t

t0
sign(x2(s))ds, (5)

where λ0,λ1,λ2 > 0, α > 0, 0 < γ0,γ1,γ2 < 1 are certain positive constants. It would be
demonstrated that the designed continuous control (5) works similarly to the twisting
control (2), i.e., results in finite-time convergence of both states x1(t) and x2(t) of the
system (1) to the origin. The announced result is formalized in the next section and then
proved in Appendix.

3 Nonhomogeneous Super-Twisting Algorithm for Relative Degree
Two Systems

The result for the control law (5) is given as follows.

Theorem 1. Consider a dynamic system (1) of dimension two. Then, the modified
nonhomogeneous super-twisting control law (5) yields finite-time convergence of both
states x1(t) and x2(t) to the origin under certain conditions on control gains λ0,λ1,λ2 >
0.

Proofs of all the theorems are given in Appendix.

Remark 1. In contrast to [25], sufficient conditions on the control gains in (5) are not
provided explicitly. Please refer to Remark 2 at the end of Section 5 for additional
comments.

Consider now a system (1) in presence of a disturbance:

ẋ1(t) = x2(t), x1(t0) = x10, (6)

ẋ2(t) = u(t)+ ξ (t), x1(t0) = x20,

where ξ (t) satisfies the Lipschitz condition with a constant L. The system (6) can still
be stabilized at the origin in view of the following theorem.

Theorem 2. Consider a dynamic system (6) of dimension two in presence of a dis-
turbance ξ (t) satisfying the Lipschitz condition with a constant L. Then, the mod-
ified nonhomogeneous super-twisting control law (5) yields finite-time convergence
of both states x1(t) and x2(t) to the origin under certain conditions on control gains
λ0,λ1,λ2,α > 0.

4 Examples: I. Relative Degree Two

This section presents examples of designing a finite-time stabilizing regulator for a
dynamic system (1) of dimension two, based on the modified nonhomogeneous super-
twisting regulator (5) in Theorems 1 and 2.
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1. Consider a system (1). The modified super-twisting regulator (5) is applied with
the control gains selected as λ0 = 20, λ1 = 10, λ2 = 5, α = 1 and the exponents γ0 =
1/10, γ1 = 1/10, γ2 = 1/5. The initial conditions are assigned as x10 = 1000, x20 =
1000. The obtained results are shown in Fig. 1. Figure 2 depicts the graph of the control
input. The results for the initial conditions x10 = 1000, x20 = −1000 are demonstrated
in Figure 3. Figure 4 depicts the graph of the control input.
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Fig. 1. Graphs of the system states (1) upon applying the control law (5) with exponents γ0 =
1/10, γ1 = 1/10, γ2 = 1/5 and initial conditions x10 = 1000, x20 = 1000
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Fig. 2. Graphs of the control input (5) with exponents γ0 = 1/10, γ1 = 1/10, γ2 = 1/5 for the
system states (1) with initial conditions x10 = 1000, x20 = 1000
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Fig. 3. Graphs of the system states (1) upon applying the control law (5) with exponents γ0 =
1/10, γ1 = 1/10, γ2 = 1/5 and initial conditions x10 = 1000, x20 =−1000
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Fig. 4. Graphs of the control input (5) with exponents γ0 = 1/10, γ1 = 1/10, γ2 = 1/5 for the
system states (1) with initial conditions x10 = 1000, x20 =−1000

2. Consider a system (1) with another set of the control gains λ0 = 0.1, λ1 = 20,
λ2 = 10, α = 1 and the exponents γ0 = γ1 = γ2 = 1/4. The initial conditions are assigned
as x10 = 1000, x20 = 1000. The obtained results are shown in Fig. 5. Figure 6 depicts the
graph of the control input. The results for the initial conditions x10 = 1000, x20 =−1000
are demonstrated in Figure 7. Figure 8 depicts the graph of the control input.

0 10 20 30 40 50 60 70 80 90 100
−2000

−1000

0

1000

2000

3000

4000

Time

St
ate

Fig. 5. Graphs of the system states (1) upon applying the control law (5) with exponents γ0 =
γ1 = γ2 = 1/4 and initial conditions x10 = 1000, x20 = 1000
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Fig. 6. Graphs of the control input (5) for the system states (1) with exponents γ0 = γ1 = γ2 = 1/4
and initial conditions x10 = 1000, x20 = 1000
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Fig. 7. Graphs of the system states (1) upon applying the control law (5) with exponents γ0 =
γ1 = γ2 = 1/4 and initial conditions x10 = 1000, x20 =−1000
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Fig. 8. Graphs of the control input (5) for the system states (1) with exponents γ0 = γ1 = γ2 = 1/4
and initial conditions x10 = 1000, x20 =−1000

3. Consider a system (6) with disturbance ξ (t) = sin(1000t). Again, the modi-
fied super-twisting regulator (5) is applied with the control gains selected as λ0 = 20,
λ1 = 10, λ2 = 5, α = 1 and the exponents γ0 = 1/10, γ1 = 1/10, γ2 = 1/5. The initial
conditions are assigned as x10 = 1000, x20 = 1000. The obtained results are shown in
Fig. 9. Figure 10 depicts the graph of the control input. The results for the initial con-
ditions x10 = 1000, x20 = −1000 are demonstrated in Figure 11. Figure 12 depicts the
graph of the control input.
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Fig. 9. Graphs of the system states (6) with disturbance ξ (t) = sin(1000t) upon applying the
control law (5) with exponents γ0 = 1/10, γ1 = 1/10, γ2 = 1/5 and initial conditions x10 = 1000,
x20 = 1000
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Fig. 10. Graphs of the control input (5) with exponents γ0 = 1/10, γ1 = 1/10, γ2 = 1/5 for the
system states (6) with disturbance ξ (t) = sin(1000t) and initial conditions x10 = 1000, x20 =
1000
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Fig. 11. Graphs of the system states (6) with disturbance ξ (t) = sin(1000t) upon applying the
control law (5) with exponents γ0 = 1/10, γ1 = 1/10, γ2 = 1/5 and initial conditions x10 = 1000,
x20 =−1000
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Fig. 12. Graphs of the control input (5) with exponents γ0 = 1/10, γ1 = 1/10, γ2 = 1/5 for the
system states (6) with disturbance ξ (t) = sin(1000t) and initial conditions x10 = 1000, x20 =
−1000
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4. Consider a system (6) with disturbance ξ (t) = sin(1000t) and another set of the
control gains λ0 = 0.1, λ1 = 20, λ2 = 10, α = 1 and the exponents γ0 = γ1 = γ2 = 1/4.
The initial conditions are assigned as x10 = 1000, x20 = 1000. The obtained results are
shown in Fig. 13. Figure 14 depicts the graph of the control input. The results for the
initial conditions x10 = 1000, x20 = −1000 are demonstrated in Figure 15. Figure 16
depicts the graph of the control input.
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Fig. 13. Graphs of the system states (6) with disturbance ξ (t) = sin(1000t) upon applying the
control law (5) with exponents γ0 = γ1 = γ2 = 1/4 and initial conditions x10 = 1000, x20 = 1000
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Fig. 14. Graphs of the control input (5) with exponents exponents γ0 = γ1 = γ2 = 1/4 for the system
states (6) with disturbance ξ (t) = sin(1000t) and initial conditions x10 = 1000, x20 = 1000
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Fig. 15. Graphs of the system states (6) with disturbance ξ (t) = sin(1000t) upon applying the
control law (5) with exponents γ0 = γ1 = γ2 = 1/4 and initial conditions x10 = 1000, x20 =−1000
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Fig. 16. Graphs of the control input (5) with exponents γ0 = γ1 = γ2 = 1/4 for the system states
(6) with disturbance ξ (t) = sin(1000t) and initial conditions x10 = 1000, x20 =−1000

5 Nonhomogeneous Super-Twisting Algorithm for Relative Degree
More Than Two Systems

The main result can be generalized as follows. Consider a dynamic system of dimension
n > 2

ẋ1(t) = x2(t), x1(t0) = x10, (7)

ẋ2(t) = x3(t), x2(t0) = x20,

· · ·
ẋn(t) = u(t), xn(t0) = xn0,

using the notation for the system (1). We propose a generalization of the nonhomoge-
neous super-twisting-like continuous control algorithm (5) as follows

u(t) =−v0(t)− v1(t)− v2(t)− . . .− vn(t)− vn+1(t), (8)

where

v0(t) = λ0 |
∫ t

t0
x1(s)ds |γ0 sign(

∫ t

t0
x1(s)ds), vi(t) = λi | xi(t) |γi sign(xi(t)), i = 1, . . . ,n,

vn+1(t) = α
∫ t

t0
sign(xn(s))ds,

and λ0,λ1, . . . ,λn > 0, α > 0 and γi ∈ (0,1), i = 0, . . . ,n are certain positive constants.
It would be demonstrated that the designed nonhomogeneous continuous control (8)

works similarly to the twisting control (2), i.e., results in finite-time convergence of
the states x1(t),x2(t), . . . ,xn(t) of the system (7) to the origin. The announced result is
formalized in the next theorem and then proved in Appendix.

Theorem 3. Consider a dynamic system (7) of dimension n > 2. Then, the modified
nonhomogeneous super-twisting control law (8) yields finite-time convergence of the



186 M. Basin et al.

states x1(t), . . . ,xn−1(t),xn(t) to the origin under certain conditions on control gains
λ0,λ1, . . .λn > 0.

Consider now a system (7) in presence of a disturbance:

ẋ1(t) = x2(t), x1(t0) = x10, (9)

ẋ2(t) = x3(t), x2(t0) = x20,

· · ·
ẋn(t) = u(t)+ ξ (t), xn(t0) = xn0,

where ξ (t) satisfies the Lipschitz condition with a constant L. The system (9) can still
be stabilized at the origin in view of the following theorem.

Theorem 4. Consider a dynamic system (9) of dimension n > 2 in presence of a dis-
turbance ξ (t) satisfying the Lipschitz condition with a constant L. Then, the modified
nonhomogeneous super-twisting control law (8) yields finite-time convergence of the
states x1(t), . . . ,xn−1(t),xn(t) to the origin under certain conditions on control gains
λ0,λ1, . . .λn,α > 0.

Remark 2. In contrast to [25], sufficient conditions on the control gains in (8) are not
provided explicitly. Indeed, in the nonhomogeneous case, there is no result similar to
Theorem 8.1 in [20], which establishes that the system (7),(8) without terms v0(t) and
vn+1(t) is finite-time stable, if sn+1 + λnsn + . . .+ λ1s+ λ0 is a Hurwitz polynomial.
Thus, it is currently unclear if the sufficient conditions obtained in [25] for the homo-
geneous case: 1. sn+1 + λnsn + . . .+ λ1s+ λ0 is a Hurwitz polynomial, and 2. α > L,
λ 2

n > 2(α +L)2/(α −L), which should be added in the presence of disturbances sat-
isfying satisfying the Lipschitz condition with a constant L, would also be sufficient
conditions in Theorems 1–4.

6 Examples: II. Relative Degree More Than Two

This section presents examples of designing a finite-time stabilizing regulator for a dy-
namic system (7) of dimension more than two, based on the modified nonhomogeneous
super-twisting regulator (8) in Theorems 3 and 4.

5. Consider a 3D system

ẋ1(t) = x2(t), x1(t0) = x10, (10)

ẋ2(t) = x3(t), x2(t0) = x20,

ẋ3(t) = u(t), x3(t0) = x30,

The modified nonhomogeneous super-twisting regulator (8)

u(t) =−λ0 |
∫ t

t0
x1(s)ds |1/5 sign(

∫ t

t0
x1(s)ds)−λ1 | x1(t) |1/10 sign(x1(t))

−λ2 | x2(t) |1/10 sign(x2(t))−λ3 | x3(t) |1/10 sign(x3(t))−α
∫ t

t0
sign(x3(s))ds, (11)
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is applied with the control gains selected as λ0 = λ1 = λ2 = 20, λ3 = 10, α = 1. The
initial conditions are assigned as x10 = x20 = x30 = 1000. The obtained results are shown
in Fig. 17. Figure 18 depicts the graph of the control input. Figure 19 shows the results
for the initial conditions x10 = x30 = 1000, x20 =−1000. Figure 20 depicts the graph of
the control input.
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Fig. 17. Graphs of the system states (10) upon applying the control law (11) with exponents
γ0 = 1/10, γ1 = 1/10, γ2 = 1/5 and initial conditions x10 = 1000, x20 = 1000
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Fig. 18. Graphs of the control input (11) with exponents γ0 = 1/10, γ1 = 1/10, γ2 = 1/5 for the
system states (10) with initial conditions x10 = 1000, x20 = 1000
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Fig. 19. Graphs of the system states (10) upon applying the control law (11) with exponents
γ0 = 1/10, γ1 = 1/10, γ2 = 1/5 and initial conditions x10 = 1000, x20 =−1000
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Fig. 20. Graphs of the control input (11) with exponents γ0 = 1/10, γ1 = 1/10, γ2 = 1/5 for the
system states (10) with initial conditions x10 = 1000, x20 =−1000

6. Consider a system (10) and a modified nonhomogeneous super-twisting regulator
(8) with another set of the control gains λ0 = 0.2, λ1 = 10, λ2 = λ3 = 20, α = 1:

u(t) =−λ0 |
∫ t

t0
x1(s)ds |1/4 sign(

∫ t

t0
x1(s)ds)−λ1 | x1(t) |1/4 sign(x1(t))

−λ2 | x2(t) |1/4 sign(x2(t))−λ3 | x3(t) |1/4 sign(x3(t))−α
∫ t

t0
sign(x3(s))ds, (12)

The initial conditions are assigned as x10 = 1000, x20 = 1000. The obtained results are
shown in Fig. 21. Figure 22 depicts the graph of the control input. The results for the
initial conditions x10 = 1000, x20 = −1000 are demonstrated in Figure 23. Figure 24
depicts the graph of the control input.

7. Consider a 3D system (10) with disturbance ξ (t) = sin(1000t). The modified
nonhomogeneous super-twisting regulator (11) is applied with the control gains selected
as λ0 = λ1 = λ2 = 20, λ3 = 10, α = 1. The initial conditions are assigned as x10 = x20 =
x30 = 1000 x10 = 1000. The obtained results are shown in Fig. 25. Figure 26 depicts
the graph of the control input. Figure 27 shows the results for the initial conditions
x10 = x30 = 1000, x20 =−1000. Figure 28 depicts the graph of the control input.

8. Consider a 3D system (10) with disturbance ξ (t) = sin(1000t). The modified
nonhomogeneous super-twisting regulator (11) is applied with the control gains se-
lected as λ0 = 0.2, λ1 = 10, λ2 = λ3 = 20, α = 1. The initial conditions are assigned
as x10 = x20 = x30 = 1000 x10 = 1000. The obtained results are shown in Fig. 29. Fig-
ure 30 depicts the graph of the control input. Figure 31 shows the results for the initial
conditions x10 = x30 = 1000, x20 = −1000. Figure 32 depicts the graph of the control
input.

The examples 1–8 clearly demonstrate that sufficient conditions similar to those
given in [25] for the control gains in Theorem 2 and 4 would be too conservative,
and the finite-time convergence takes place with much relaxed values. In particular, the
value of constant L in this example is equal to 1000, due to high-frequency sinusoidal
oscillations sin(1000t).
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Fig. 21. Graphs of the system states (10) upon applying the control law (12) with exponents
γ0 = γ1 = γ2 = 1/4 and initial conditions x10 = 1000, x20 = 1000
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Fig. 22. Graphs of the control input (12) for the system states (10) with exponents γ0 = γ1 = γ2 =
1/4 and initial conditions x10 = 1000, x20 = 1000
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Fig. 23. Graphs of the system states (10) upon applying the control law (12) with exponents
γ0 = γ1 = γ2 = 1/4 and initial conditions x10 = 1000, x20 =−1000
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Fig. 24. Graphs of the control input (12) for the system states (10) with exponents γ0 = γ1 = γ2 =
1/4 and initial conditions x10 = 1000, x20 =−1000
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Fig. 25. Graphs of the system states (10) with disturbance ξ (t) = sin(1000t) upon applying the
control law (11) with exponents γ0 = 1/10, γ1 = 1/10, γ2 = 1/5 and initial conditions x10 = 1000,
x20 = 1000
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Fig. 26. Graphs of the control input (11) for the system states (10) with disturbance ξ (t) =
sin(1000t), exponents γ0 = 1/10, γ1 = 1/10, γ2 = 1/5, and initial conditions x10 = 1000,
x20 = 1000
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Fig. 27. Graphs of the system states (10) with disturbance ξ (t) = sin(1000t) upon applying the
control law (11) with exponents γ0 = 1/10, γ1 = 1/10, γ2 = 1/5 and initial conditions x10 = 1000,
x20 =−1000
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Fig. 28. Graphs of the control input (11) for the system states (10) with disturbance ξ (t) =
sin(1000t), exponents γ0 = 1/10, γ1 = 1/10, γ2 = 1/5, and initial conditions x10 = 1000,
x20 =−1000
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Fig. 29. Graphs of the system states (10) with disturbance ξ (t) = sin(1000t) upon applying the
control law (11) with exponents γ0 = γ1 = γ2 = 1/4 and initial conditions x10 = 1000, x20 = 1000
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Fig. 30. Graphs of the control input (11) for the system states (10) with disturbance ξ (t) =
sin(1000t), exponents γ0 = γ1 = γ2 = 1/4, and initial conditions x10 = 1000, x20 = 1000
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Fig. 31. Graphs of the system states (10) with disturbance ξ (t) = sin(1000t) upon applying the
control law (11) with exponents γ0 = γ1 = γ2 = 1/4 and initial conditions x10 = 1000, x20 =
−1000

0 50 100 150 200 250 300
−300

−250

−200

−150

−100

−50

0

50

100

150

Time

Co
ntr

ol

Fig. 32. Graphs of the control input (11) for the system states (10) with disturbance ξ (t) =
sin(1000t), exponents γ0 = γ1 = γ2 = 1/4, and initial conditions x10 = 1000, x20 =−1000
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7 Conclusions

This chapter presents a nonhomogeneous continuous super-twisting algorithm for sys-
tems of dimension more than one, which is globally convergent to the origin for a
finite time for any initial condition and also robust with respect to disturbances with
a bounded changing rate. The designed technique generalizes the seminal continuous
super-twisting algorithm, which was proven to be highly effective for stabilization of
both system state and its derivative, to systems of dimension more than one. This ad-
vance leads to a possibility of applying a continuous finite-time stabilization control
law to technical plants, where a conventional sliding mode control cannot be reliably
employed due to effects pertinent to its discontinuous nature, such as short circuiting.
Typical examples of technical devices, where the designed technique could be used to
provide fault-tolerant systems, include induction motors, wind turbines, rolling mills,
wireless network systems, and many others.
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A Appendix

A.1 Lemma 1

Consider a dynamic system (1) of dimension two. Then, the modified nonhomogeneous
super-twisting control law (5) yields finite-time convergence of both states x1(t) and
x2(t) to to a point [x1 f ,0].

Proof. The system (1),(5) can be recast as

ẋ1(t) = x2(t), x1(t0) = x10, (13)

ẋ2(t) =−λ0 |
∫ t

t0
x1(s)ds |γ0 sign(

∫ t

t0
x1(s)ds)−λ1 | x1(t) |γ1 sign(x1(t))−

−λ2 | x2(t) |γ2 sign(x2(t))+ x3(t), x2(t0) = x20,

ẋ3(t) =−αsign(x2(t)), x3(t0) = 0.
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Consider the following subsystem:

ẋ1(t) = x2(t), x1(t0) = x10, (14)

ẋ2(t) =−λ1 | x1(t) |γ1 sign(x1(t))−λ2 | x2(t) |γ2 sign(x2(t))+ x3(t), x2(t0) = x20,

ẋ3(t) =−αsign(x2(t)), x3(t0) = 0.

The vector field f in the right-hand side of (14) can be represented as the sum of two
vector fields, f = g1 + g2, where g1 = [x2,−λ1 | x1(t) |γ1 sign(x1(t))−ρλ2 | x2(t) |γ2

sign(x2(t)),0], ρ ∈ (0,1), and g2 = [0,−(1−ρ)λ2 | x2(t) |γ2 sign(x2(t))+ x3(t),
−αsign(x2(t))]. The field g1 provides the finite-time stability at a point [0,0,x3(t0)] in
view of Lyapunov function V (x1,x2) = λ1(1/(γ1 + 1)) | x1(t) |γ1+1 +(1/2) | x2(t) |2.
The field g2 corresponds to a super-twisting algorithm [3], which converges to a point
[x1 f ,0,0] for a finite time. The finite-time convergence of the entire system (13) at a
point [x1 f ,0,x3(t0)] is derived following the arguments of Theorem 7.4 in [20], replac-
ing there a ”homogeneous” system with a ”finite-time convergent” one, and taking into
account that the Lyapunov function for super-twisting has a continuous total derivative
in time along the trajectory, so the results of Theorem 6.2, Lemma 4.2 and the inequal-
ities (34)-(36) from [20] hold for a finite-time convergent system.

Note that the term λ0 | ∫ t
t0

x1(s)ds |γ0 sign(
∫ t

t0
x1(s)ds) in (13) satisfies a Lipschitz

condition everywhere except for the initial time moment t0. The finite-time convergence
of the system (13) follows from the fact that a super-twisting algorithm still converges
for a finite time in the presence of disturbances satisfying a Lipschitz condition, under
certain restrictions for control gains λ0,λ1,λ2 > 0, α > 0 [3]. �

A.2 Lemma 2

Consider a dynamic system (7) of dimension n > 2. Then, the modified nonhomoge-
neous super-twisting control law (8) yields finite-time convergence of the states
x1(t),x2(t) . . . ,xn(t) to a point [x1 f ,0, . . . ,0].

Proof is given by induction. Let us assume that the lemma assertion is true for a system
(7) of dimension n. Consider now a system of dimension n+ 1:

ẋ0(t) = x1(t), x0(t0) = x00, (15)

ẋ1(t) = x2(t), x1(t0) = x10,

ẋ2(t) = x3(t), x2(t0) = x20,

· · ·
ẋn(t) =−v−1(t)− v0(t)− v1(t)− v2(t)− . . .− vn(t)− vn+1(t), xn(t0) = xn0,

where

v−1(t) = λ−1 |
∫ t

t0
x0(s)ds |γ−1 sign(

∫ t

t0
x0(s)ds),

vi(t) = λi | xi(t) |γi sign(xi(t)), i = 0, . . . ,n,

vn+1(t) = α
∫ t

t0
sign(xn(s))ds,

and γ−1 ∈ (0,1), λ−1 > 0.
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Note that the term v−1(t) in (15) satisfies a Lipschitz condition everywhere except
for the initial time moment t0. The finite-time convergence of the system (15) to a point
[x0 f ,x1 f ,0, . . . ,0] follows from the induction premise, Lemma 1, and the fact that a
super-twisting algorithm still converges for a finite time in the presence of disturbances
satisfying a Lipschitz condition, under certain restrictions for control gains λi > 0, i ∈
−1, . . . ,n, α > 0 [3]. Then, it follows from the equations (15) that x1 f = 0. Thus, the
equilibrium point is given by [x1 f ,0 . . . ,0,0] and located in the manifold x1 = x2 = . . .=
xn = 0. �

A.3 Proof of Theorem 1

The system (1),(5) can be recast introducing a new fictitious variable x0:

ẋ0(t) = x1(t), x0(t0) = 0, (16)

ẋ1(t) = x2(t), x1(t0) = x10,

ẋ2(t) =−λ0 |
∫ t

t0
x1(s)ds |γ0 sign(

∫ t

t0
x1(s)ds)−λ1 | x1(t) |γ1 sign(x1(t))−

−λ2 | x2(t) |γ2 sign(x2(t))−αsign(x2(t)), x2(t0) = x20.

The theorem assertion follows directly from Lemma 2 applied to the system (16). �

A.4 Proof of Theorem 2

The system (6) can be recast, introducing a new fictitious variable x0, as the system (16)
with a disturbance ξ (t) present in the last equation for x2(t). The theorem assertion fol-
lows from Lemma 2 applied to the resulting system and the fact that a super-twisting
algorithm converges for a finite time in the presence of disturbances satisfying a Lips-
chitz condition, under certain restrictions for control gains [3]. �

A.5 Proof of Theorem 3

The system (7) can be recast introducing a new fictitious variable x0:

ẋ0(t) = x1(t), x0(t0) = 0, (17)

ẋ1(t) = x2(t), x1(t0) = x10,

ẋ2(t) = x3(t), x2(t0) = x20,

· · ·
ẋn(t) =−v0(t)− v1(t)− v2(t)− . . .− vn(t)− vn+1(t), xn(t0) = xn0.

The theorem assertion follows directly from Lemma 2 applied to the system (17). �

A.6 Proof of Theorem 4

The system (9) can be recast, introducing a new fictitious variable x0, as the system (17)
with a disturbance ξ (t) present in the last equation for x2(t). The theorem assertion fol-
lows from Lemma 2 applied to the resulting system and the fact that a super-twisting
algorithm converges for a finite time in the presence of disturbances satisfying a Lips-
chitz condition, under certain restrictions for control gains [3]. �
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Abstract. In this chapter, we propose an output feedback sliding mode
controller to solve the problem of global exact output tracking for a class
of uncertain multivariable nonlinear plants with disturbances. In order
to cope with the nonuniform arbitrary relative degree, we propose a
hybrid estimation scheme which combines through switching a high-gain
observer and a set of locally exact differentiators. Norm observers for
the unmeasured state are employed to dominate the disturbances since
they may be state dependent. Thus, uniform global exponential practical
stability and ultimate exact tracking are guaranteed with a peaking free
control signal, despite the use of high-gain observers. An example is
presented to illustrate the application of the proposed scheme in the
presence of unmodeled dynamics and measurement noise.

Keywords: Sliding mode control, uncertain systems, disturbances, out-
put feedback, global exact tracking, high-gain observers, high order slid-
ing modes.

1 Introduction

The stabilization and tracking control for nonlinear systems are longstanding
problems that have still been studied in recent years. Several difficulties can be
pointed out, such as: the ill-defined relative degree condition [6], nonminimum
phase [2], the presence of perturbations and uncertainties [1, 4, 9, 35]. In partic-
ular, the use of output feedback sliding mode control (SMC) for exact tracking
of multivariable disturbed systems with arbitrary relative degree is a challenging
problem in this context [15]. This scenario is even more problematic if global sta-
bility properties are also pursued [29]. For instance, to compensate the relative
degree, High-Gain Observers (HGO) [11], [12, 8] can be used. However, global or
semi-global stability results were obtained only with residual output errors [24].
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Recently, nonglobal exact output tracking controllers based on higher order
sliding modes (HOSM) were considered by several authors (e.g., [2, 13, 15, 30]).
In [30], a second order sliding mode controller was proposed for nonlinear systems
with uniform relative degree two. In [15], an output feedback SMC was developed
for MIMO (Multi-Input-Multi-Output) systems of any relative degree with uni-
formly bounded and matched nonlinearities. Local asymptotic tracking of causal
nonminimum phase nonlinear systems with non-uniform arbitrary relative de-
gree was considered in [2]. In [13], the authors used nested quasi-continuous
HOSM to allow finite-time exact compensation of unmatched perturbations.

In this chapter, we solve the global exact output tracking problem for a class
of uncertain MIMO nonlinear plants with non-uniform arbitrary relative degree
and disturbances. The class considered here encompasses those in [1, 3, 10, 13],
with the advantage of guaranteeing global stability properties. The afore men-
tioned problem using output feedback SMC had remained unsolved for this class
of plants.

The result is achieved by generalizing a hybrid estimation scheme, originally
proposed for SISO plants in [27], to a multivariable framework. The hybrid
estimation scheme selects through switching between a MIMO HGO and a mul-
tivariable extension of a robust exact differentiator (RED) based on HOSM. As
a result, the error system becomes uniformly globally exponentially practically
stable [27] with respect to a small residual set and ultimately converges to zero.

New assumptions must be made for the multivariable case, which make the
problem more involved and not easy to be solved. For instance, in [29] it is
assumed that there exists a known matrix multiplier Sp for the high frequency
gain (HFG) matrix Kp such that KpSp + ST

p K
T
p > 0, whilst in [27] just the

knowledge of the scalar HFG kp sign is needed. Here, we consider a diagonally
stable assumption that is less restrictive than the one made in [29].

In our previous results, only uniformly bounded input disturbances were con-
sidered. In this chapter, the matched disturbances may be linearly growth depen-
dent on the unmeasured state. Moreover, the output-feedback methodology for
disturbance domination is also new since norm state observers are introduced.
To avoid peeking in the control signal such norm state observers are derived
from the input-output filters commonly used in model reference adaptive con-
trol (MRAC).

The hybrid nonlinear filter is constructed using a high-gain observer combined
with the robust exact differentiator instead of lead filters applied before. The
replacement of lead filters used in [27, 29] by a high-gain observer in the hybrid
estimation scheme is motivated by the HGO improved robustness to unmodeled
dynamics, as discussed in [25, 22, 28].

1.1 Preliminaries

In what follows, all κ’s denote positive constants. π(t) denotes an exponentially
decaying function, i.e., |π(t)| ≤ Ke−λt, ∀t, where K possibly depends on the
system initial conditions and λ is a (generic) positive constant. |·| stands for the
Euclidean norm for vectors, or the induced norm for matrices. ||f(t)|| denotes
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ess sup{|f(t)| , t≥0}, and ∣∣∣∣f[t1,t2]∣∣∣∣=supt∈[t1,t2]|f(t)| , 0≤ t1≤ t2. Here, Filippov’s
definition for the solution of discontinuous differential equations is assumed [14].
For the sake of simplicity, “s” will represent either the Laplace variable or the
differential operator (d/dt), according to the context.

2 Problem Statement

Consider an uncertain MIMO nonlinear plant described by:

ẋ = Apx+Bp[u+ d(x, t)] , y = Hpx , (1)

where x ∈ R
n is the state, u ∈ R

m is the input, y ∈ R
m is the output and

d(x, t)∈R
m is a state dependent uncertain nonlinear disturbance. The uncertain

matrices Ap, Bp and Hp belong to some compact set, such that the necessary
uncertainty bounds to be defined later are available for design. The following
basic assumptions are usual in MIMO adaptive control:

(A1) G(s) = Hp(sI−Ap)
−1Bp is minimum phase and has full rank.

(A2) The linear subsystem is controllable and observable.
(A3) The observability index ν of G(s) (see [21]), or an upper bound of ν, is

known.
We also make the following assumptions that are discussed and motivated in

[29, 28].
(A4) The left interactor matrix Ξ(s) (see [19]) is diagonal and G(s) has a

known global vector relative degree {ρ1, . . . , ρm} (i.e., Ξ(s)=diag{sρ1 , . . . , sρm}).
The matrix Kp ∈ R

m×m, finite and nonsingular, is referred to as the high fre-
quency gain (HFG) matrix and satisfies Kp = lims→∞ Ξ(s)G(s) .

(A5) A nonsingular matrix Sp is known such that −KpSp is diagonally stable,
i.e. there exists a diagonal matrix D > 0 such that DK + KTD = −Q, with
Q = QT > 0 and K = −KpSp.

To achieve global exact tracking using only output feedback the following
assumption is made.

(A6) The input disturbance d(x, t) is assumed to be uncertain, locally inte-
grable and norm bounded by |d(x, t)| ≤ kx|x| + kd, ∀x, t, where kx, kd ≥ 0 are
known scalars.

Note that the relative degree of system (1) depends only on the linear part,
being independent of the disturbance d. Although this assumption restricts the
class of disturbances coped with, it represents a challenge in the context of
output-feedback sliding mode control since global stability and exact tracking
are still pursued.

Let the reference signal ym(t) ∈ R
m be generated by the following reference

model

ym = Wm(s) r , Wm(s)=diag
{
(s+γ1)

−1, . . . , (s+γm)−1
}
L−1(s) , (2)

where γj > 0 (j = 1, · · · ,m), r(t) ∈ R
m is an arbitrary uniformly bounded

piecewise continuous reference signal and

L(s) = diag{L1(s), L2(s), . . . , Lm(s)} , (3)
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with Lj(s)=s(ρj−1) + l
[j]
ρj−2s

(ρj−2) + · · ·+ l
[j]
1 s+ l

[j]
0 (j=1,. . .,m) being Hurwitz

polynomials and the superscript [j] indicating that a parameter belongs to Lj(s).
The transfer function matrix Wm(s) has the same vector relative degree as G(s)
and its HFG is the identity matrix.

The main objective is to find a control law u such that the output error
e := y − ym tends asymptotically to zero, for arbitrary initial conditions. When
the plant is known and d(t) ≡ 0, a control law which achieves the matching
between the closed-loop transfer function matrix and Wm(s) is given by u∗ =

θ∗
T

ω, where the parameter matrix is written as θ∗ =
[
θ∗

T

1 θ∗
T

2 θ∗
T

3 θ∗
T

4

]T
, with

θ∗1 , θ
∗
2 ∈R

m(ν−1)×m, θ∗3 , θ
∗
4∈R

m×m and the regressor vector ω = [ωT
u ωT

y yT rT ]T

(wu, wy ∈ R
m(ν−1)) is obtained from I/O state variable filters given by:

ωu = A(s)Λ−1(s)u , ωy = A(s)Λ−1(s)y , (4)

where A(s) = [Isν−2 Isν−3 · · · Is I]T , Λ(s) = λ(s)I with λ(s) being a
monic Hurwitz polynomial of degree ν − 1. The matching conditions require
that θ∗T4 = K−1

p .
Consider the following realization of (4)

ω̇u = Φωu+Γu , ω̇y = Φωy+Γy , Φ∈R
m(ν−1)×m(ν−1), Γ ∈R

m(ν−1)×m (5)

where det(sI−Φ)=det(Λ(s))=[λ(s)]m. Define the state vetor X=[xT , ωT
u , ω

T
y ]

T

with dynamics described by Ẋ=A0X+B0u+B′
0d, y=HoX. Then, adding and

subtracting B0θ
∗Tω and noting that there exist matrices Ω1 and Ω2 such that

ω=Ω1X+Ω2r, one has

Ẋ = AcX +BcKp[θ
∗T
4 r + u− u∗] +B′

0d , y = HoX , (6)

where Ac =A0+B0θ
∗TΩ1 and Bc =B0θ

∗T
4 . Notice that (Ac, Bc, Ho) is a non-

minimal realization of Wm(s). For analysis purposes, the reference model can be
described by

Ẋm = AcXm +BcKp[θ
∗T
4 r − df ] +B′

0d, ym = HoXm , (7)

the equivalent input disturbance df =Wd(s)d, where

Wd(s)=[Wm(s)Kp]
−1

W̄d(s), W̄d(s)=Ho (sI −Ac)
−1

B′
0 . (8)

Thus, ym = Wm(s)Kp

[
θ∗T4 r −Wd(s)d

]
+ W̄d(s)d, it is straightforward to con-

clude that ym = Wm(s) r. Thus, the error dynamics with state xe :=X−Xm is
given by:

state space: ẋe = Ac xe +BcKp[u− θ∗
T

ω + df ], e = Ho xe, (9)

input-output form: e = Wm(s)Kp

[
u− θ∗

T

ω + df

]
. (10)
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Remark 1. The error equations (9) and (10) are similar to those found in some of
our previous works, e.g., [27] and [29]. However, in this chapter, a key difference
must be highlighted: the equivalent input disturbance df (x, t) is state-dependent.
The control design tools proposed in [27] and [29] are not able to cope with
the lack of a norm bound for df (x, t), since the plant state is not available for
feedback. Thus, here we use norm state observers to obtain a norm bound for
df (x, t), as discussed in the next section.

3 Norm State Observer and Norm Bound for Equivalent
Disturbance

Considering Assumption (A6) and applying [17, Lemma 3] to (6), it is possible
to find k∗x > 0 such that, for kx ∈ [0, k∗x] a norm bound for X and x can be
obtained through first order approximation filters (FOAFs) (see details in [17]).
Thus, one has |x(t)| ≤ x̂(t) + π̂(t), where

x̂(t) :=
1

s+ λx
[c1kd + c2|ω(t)|] , (11)

with c1, c2, λx > 0 being appropriate constants that can be computed by the
optimization methods described in [7]. As in [17], the exponentially decaying
term π̂ accounts for the system initial conditions. Reminding that df = Wd(s)d
it is clear that |df | ≤ |Wd(s)∗d|, modulo an exponential decaying term depending
on the initial conditions. Moreover, from (A6) and (11), one has |d(x, t)| ≤
kxx̂(t) + kd, modulo π̂ term, and one can write |df | ≤ d̂f + π̂f , where π̂f is an
exponentially decaying term,

d̂f (t) :=
cf

s+ λf
[kxx̂(t) + kd] , (12)

and
cf

s+λf
is a FOAF designed for Wd(s), with adequate positive constants cf

and λf .

4 Unit Vector Control Design

For systems with uniform relative degree one, i.e. ρ1 = ρ2 = . . . ρm = 1, the
main idea is to close the control loop with a nominal control together with a
unit vector control (UVC) term to cope with uncertainties and disturbances:

u = (θnom)Tω − �(t)Sp
e

|e| , e ∈ R
m, Sp ∈ R

m×m, � ∈ R , (13)

where θnom is the nominal value for θ∗, Sp satisfies (A5) and the modulation
function �(t)≥0 is designed to induce a sliding mode on the manifold e=0 and
is such that:

�(t) ≥ (1 + cd)
∣∣S−1

p

[
(θnom − θ∗)Tω − df

]∣∣+ δ , cd, δ > 0 (14)
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where cd is an appropriate constant and δ can be arbitrarily small. Note that the
nominal control signal allows the reduction of the modulation function amplitude
if |θnom − θ∗| is small. Since Ap, Bp and Hp belong to some known compact set,
an upper bound θ̄ ≥ |θnom − θ∗| can be obtained. Thus, a possible choice for the
modulation function to satisfy (14) is given by

�(t) = (1 + cd)
∣∣S−1

p

∣∣ [θ̄ |ω|+ |df |
]
+ δ. (15)

For relative degree one plants, Wm(s) = diag
{
(s+ γ1)

−1, . . . , (s+ γm)−1
}

(L(s) = Im) and since −KpSp is diagonally stable, by applying Lemma 1 in
the appendix, one can conclude that the above scheme is uniformly globally
exponentially stable and the output error e becomes identically zero after some
finite time. For higher relative degree plants, one could use the operator L(s)
defined in (3), to overcome the relative degree obstacle. The operator L(s) is
such that L(s)G(s) and L(s)Wm(s) have uniform vector relative degree one.
The ideal sliding variable σ=L(s)e ∈ R

m is given by

σ=

⎡
⎢⎢⎣

e
(ρ1−1)
1 + · · ·+ l

[1]
1 ė1 + l

[1]
0 e1

...

e
(ρm−1)
m + · · ·+ l

[m]
1 ėm + l

[m]
0 em

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1−1∑
i=0

l
[1]
i hT

1 A
(i)
c xe

...
ρm−1∑
i=0

l
[m]
i hT

mA(i)
c xe

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= H̄xe ,

(16)
where hj ∈ R

n+2m(ν−1) is the j-th row of Ho matrix and the second equal-
ity is derived from Assumption (A4) and (9). Notice that {Ac, Bc, H̄} is a
nonminimal realization of L(s)Wm(s). If the control signal is given by u =
(θnom)Tω − �(t)Sp

σ
|σ| , with modulation function �(t) satisfying (14), then the

closed-loop error system is uniformly globally exponentially stable and the ideal
sliding variable σ becomes identically zero after some finite time, according to
Lemma 1 in the appendix. However, σ is not directly available to implement the
control law.

5 Unit Vector Control Using a High-Gain Observer

Consider the minimal order observer-form [21] realization {AM , BM , CM} of
the model Wm(s). Then, the external dynamics of the error equation (9) can be
rewritten as

ξ̇ = AMξ+BMKp

[
u−θ∗

T

ω + df + πη

]
, e = CMξ , ξ∈R

ρt , ρt =

m∑
i=1

ρi (17)

where the initial condition ξ(0) and the exponentially decaying signal πη(t) ∈
R

m are adequate for representing the initial condition of the observable but
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uncontrollable modes in (9). The unavailable state ξ can be estimate by means
of an HGO given by:

˙̂
ξ=AM ξ̂+BMKnom

p u−[
Γ (ε−1)−Ha

]
ẽ, ẽ=CM ξ̂ − e , (18)

where ε∈R, Γ (ε−1), Ha∈R
ρt×m, AM ∈R

ρt×ρt , BM ∈R
ρt×m, CM ∈R

m×ρt , ε>0,
ẽ∈R

m is the observer output errorKnom
p ∈R

m×m is the nominal value of the gain

Kp, Γ (ε−1)= block diag{Γ [1]
ε , . . . , Γ

[m]
ε }, with (Γ [j]

ε )T =

[
ā
[j]
ρj−1

ε
. . .

ā
[j]
1

ερj−1

ā
[j]
0

ερj

]
,

Ha = block diag {H [1]
a , . . . , H

[m]
a }, with H

[j]
a =

[
a
[j]
ρj−1 . . . a

[j]
0

]T
and Lj(s)(s +

γj) = sρj + a
[j]
ρj−1s

ρj−1 + . . . a
[j]
1 s + a

[j]
0 . The coefficients ā

[j]
i in the observer

feedback matrix, must be chosen such that N
[j]
a (s)=sρj +ā

[j]
ρj−1s

ρj−1+ · · ·+ā
[j]
0

is Hurwitz. It is possible to design a matrix H̄M such that {AM , BM , H̄M} is a
realization of the SPR transfer function L(s)Wm(s). Thus, for plants of higher
relative degree, σ can be estimated by:

σ̂h = H̄M ξ̂, H̄M ∈R
m×ρt (19)

Defining the estimation error state as ξ̃= ξ̂−ξ, one has:

˙̃ξ = Aξ(ε
−1)ξ̃ +BMKnom

p Ū , ξ̃h = H̄M ξ̃ , (20)

where Aξ(ε
−1) = block diag{A[1]

ξ , . . . , A
[m]
ξ }, BM = block diag{B[1]

M , . . . , B
[m]
M },

ξ̃h = σ̂h − σ, H̄M = block diag {H̄ [1]
M , . . . , H̄

[m]
M }, Ū =

[
I−(Knom

p )−1Kp

]
u+

(Knom
p )−1Kp(θ

∗T

ω − df − πη), with

A
[j]
ξ =

⎡
⎢⎢⎢⎢⎢⎢⎣

− ā
[j]
ρj−1

ε 1 . . . 0

...
...
. . .

...

− ā
[j]
1

ερj−1 0 0 1

− ā
[j]
0

ερj
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, B

[j]
M =

⎡
⎢⎢⎢⎣
0
...
0
1

⎤
⎥⎥⎥⎦, (H̄

[j]
M )T =

⎡
⎢⎢⎢⎢⎣
0 0 . . . 0 1
0 0 . . . 1 aρj−1

...
... . .

. ...
...

0 1 . . . a3 a2

1 aρj−1 . . . a2 a1

⎤
⎥⎥⎥⎥⎦

−1
⎡
⎢⎢⎢⎢⎢⎣

1

l
[j]
pj−2

...

l
[j]
1

l
[j]
0

⎤
⎥⎥⎥⎥⎥⎦ .

Replacing σ by its estimate σ̂h and considering the presence of an absolutely
continuous uniformly bounded output disturbance βα of order ε, i.e., σ̂h + βα,
the plant input is given by:

u = (θnom)Tω − �(t)Sp
σ̂h + βα

|σ̂h + βα| . (21)

Consider the reference model (2)–(3) and the plant (1) with input signal (21)
and modulation function defined in (15) satisfying (14). The following theorem
states that the complete error system is uniformly globally exponentially prac-
tically stable.
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Theorem 1. Consider the complete error system (9), (16), (20) and (21), with

state zT =
[
xT
e ξ̃T

]
. Suppose that assumptions (A1) to (A6) hold and that the

disturbance βα(t) is absolutely continuous and bounded by |βα(t)|≤εKR, where
KR > 0 is a constant. Then, for sufficiently small ε > 0, there exist constants
cz, a>0 such that |z(t)|≤cze

−a(t−t0) |z(t0)|+O(ε) holds ∀z(t0), ∀t≥ t0>0. (Proof:
see Appendix.)

6 MIMO Robust Exact Differentiator (MIMO RED)

In the previous section, a UVC using an HGO to estimate σ was analyzed. From
Theorem 1, the convergence of the error state is only guaranteed to a residual
set of order ε. To achieve exact tracking, one can use a MIMO extension of
the robust exact differentiator (RED) proposed in [23]. A similar approach was
considered in [16] to build a MIMO RED based observer. The idea is to use a
RED of order pj = ρj − 1 for each output ej ∈ R, j = 1, . . . ,m as follows:

ζ̇
[j]
0 =v

[j]
0 , v

[j]
0 =−λ

[j]
0 C [j]

1
pj+1

ρj

∣∣∣ζ [j]0 −ej(t)
∣∣∣ pj
pj+1

sgn(ζj0−ej(t))+ζ
[j]
1

...

ζ̇
[j]
i =v

[j]
i , v

[j]
i =−λ

[j]
i C [j]

1
pj−i+1

ρj

∣∣∣ζ [j]i −v
[j]
i−1

∣∣∣ pj−i

pj−i+1

sgn(ζ
[j]
i −v

[j]
i−1)+ζ

[j]
i+1,

...

ζ̇ [j]pj
=−λ[j]

pj
C [j]

ρj
sgn(ζ [j]pj

− v[j]pj
),

(22)

where C
[j]
ρj is a known constant such that |e(ρj)

j (t)| ≤ C
[j]
ρj . A superscript [j]

is used to indicate that a particular parameter or variable belongs to a RED

related with ej . If the parameters λ
[j]
i are properly recursively chosen1, then the

equalities

ζ
[j]
0 = ej(t); ζ

[j]
i = e

(i)
j (t), j = 1, . . . ,m; i=1, . . . , pj

are established in finite time [23]. Thus, using a MIMO RED, composed by m
REDs of order ρj − 1 for each output ej, the following estimate for σ can be
obtained:

σ̂T
r =

[
ζ
[1]
ρ1−1 + · · ·+ l

[1]
1 ζ

[1]
1 + l

[1]
0 ζ

[1]
0 . . . ζ

[m]
ρm−1 + · · ·+ l

[m]
1 ζ

[m]
1 + l

[m]
0 ζ

[m]
0

]
.

(23)
Then, a control signal u = (θnom)Tω − �(t)Spσ̂r/ |σ̂r| could be used. However,
only local convergence of the error state to zero could be guaranteed, since the

convergence of the REDs requires that the signals e
(ρj)
j (t), j = 1, . . . ,m are

uniformly bounded [23, 24].

1 In particular, the following choice is valid for pj ≤ 3: λ
[j]
0 = 5, λ

[j]
1 = 3, λ

[j]
2 =

1.5, λ
[j]
3 = 1.1. For more details, see [23].
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Remark 2. Parameters C
[j]
ρj are related to the size of the region DR in the error

space, where the differentiator convergence can be guaranteed. The larger C
[j]
ρj ,

the larger is the size of DR and higher sensitivity to input noises and sampling
time.

7 Global RED Based Unit Vector Controller
(GRED-UVC)

Here, we propose an output feedback SMC, named Global RED based Unit Vec-
tor Controller (GRED-UVC), which is based on a multivariable hybrid estima-
tion scheme, named GRED, that combines through switching the HGO estimate
(19) with the MIMO RED estimate (23) according to:

σ̂g = α(ν̃rh) σ̂h + [1− α(ν̃rh)] σ̂r , (24)

where ν̃rh = σ̂r − σ̂h is the difference between both estimates. The switching
function (SF) α(ν̃rh) is a continuous, state dependent modulation which assumes
values in the interval [0, 1] and allows the controller to smoothly change from
one estimator to the other.

The underlying idea of the GRED-UVC is to guarantee that the closed-loop
error system is global exponential stable with respect to a small residual set of
order ε, irrespective of the MIMO RED convergence, and in addition to ensure
that ultimately only the MIMO RED is used to estimate σ after its convergence
is achieved. To this end, the switching law α(·) is proposed so that the resulting
system becomes equivalent to a UVC using an HGO with a uniformly bounded
output disturbance of order ε as in (21), i.e. |σ̂g − σ̂h| ≤ εKR. Thus, global
practical stability is guaranteed, according to Theorem 1, independently of the
MIMO RED behavior, provided its signals remain bounded. This condition is a
consequence of Theorem 1 and the fact that the variables of each individual RED
(22) cannot escape in finite time, which is ensured by [27, Lemma 1]. Therefore,
the error state is globally driven into an invariant compact set DR, where the
convergence of the MIMO RED can be guaranteed and an upper bound ξ̄h for the
HGO estimation error ξ̃h can be determined. The switching law α(·) is designed
as follows:

α(ν̃rh)=

⎧⎨
⎩

0, |ν̃rh| < εM −Δ
(|ν̃rh|−εM+Δ)/Δ, εM−Δ≤|ν̃rh|<εM

1, |ν̃rh| ≥ εM

(25)

where 0<Δ<εM is a boundary layer used to smoothen the switching function,
and εM := εKR with KR being an appropriate positive design parameter, which
is selected such that εM−Δ>ξ̄h. This means that, if KR is properly tuned, then
after some finite time only the MIMO RED remains active (α= 0), providing
exact estimation of the ideal sliding variable σ, as desired.

The GRED-UVC control law is given by:

u = (θnom)Tω − �(t)Sp
σ̂g

|σ̂g| , (26)
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where the modulation function �(t) satisfies (14).
Consider the plant (1) and the reference model (2)–(3). The control law is

given by (26) with modulation function � defined in (15) satisfying (14) and the
GRED estimate σ̂g given by (24) being a convex combination of the estimates
provided by the HGO (19) and the MIMO RED (23). The switching function
α(·) is defined in (25). The proposed control scheme in Fig. 1 guarantees global
stability properties with ultimate exact tracking, as stated in the following the-
orem.

Theorem 2. Suppose that assumptions (A1) to (A6) hold. For sufficiently small
ε> 0, the closed-loop error system described by (9), (16), (20) and (21) is uni-
formly globally exponentially practically stable with respect to a residual set of

order ε. Moreover, for λ
[j]
i , j = 1, . . . ,m, i = 0, . . . , ρj −1, and KR properly

chosen, the estimation of the ideal sliding variable σ becomes exact, being made
exclusively by the MIMO RED (α(·) = 0) after some finite time. Then, the

closed-loop error state zT =
[
xT
e ξ̃T

]
, and hence the output tracking error e,

converge exponentially to zero. (Proof: see Appendix.)

HGO

RED ×

×
Model

r

�(t)

(θnom)Tω

SFPlant

ym

y e

σ̂h

σ̂r

σ̂g

Hybrid Estimation Scheme

u −�Sp
σ̂g

|σ̂g|
ν̃rh

α

1−α

d(x, t)

−−

+

+

+

+

+

+

+
+

Fig. 1. GRED-UVC proposed control scheme.

Remark 3. (Absence of Peaking) As it is well known, HGO estimates may
contain peaking [32]. Indeed, the HGO estimation error ξ̃ will contain a transient
term which eventually exhibit an impulsive-like behavior, where the transient
peaks to O(1/ε) values before it decays rapidly to zero. This behavior is known
as the peaking phenomenon [32]. However, in the proposed scheme, the peaking
phenomenon is circumvented since the modulation function is implemented using
only well conditioned (without peaking) signals, the regressor vector ω and the
norm observer estimate x̂, while the unit vector control (UVC) term blocks the
eventual peaking present in σ̂g to u in (26).
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8 Simulation Results

In order to illustrate the proposed control strategy, we consider a nonlinear
plant with non-uniform relative degree (ρ1 = 2, ρ2 = 3) described by (1), with

Ap=

⎡
⎢⎢⎢⎢⎣

−2 3 0 0 0
1 0 0 0 0
1 2 −6 −11 −6
0 0 1 0 0
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦
,

BT
p =

[
1 0 0 0 0
0 0 1 0 0

]
,

Hp=

[
0 κ 0 κ 3κ
0 0 0 0 1

], G(s)=

[
κ(s+2)

(s−1)(s+1)(s+3)
κ

(s+1)(s+2)
1

(s−1)(s+1)(s+3)2
1

(s+1)(s+2)(s+3)

]
,

where the constant κ∈ [4, 10] is uncertain and Kp=

[
κ κ
0 1

]
is the linear subsys-

tem HFG matrix. The input disturbance is considered uncertain for control de-

sign and is given by d(x) =
[
0.2 cos(t) sin(x2 x3)|x4| 1

2π

(
e−|x5||x1|+ |x2|

)]T
.

This particular choice is motivated by the example considered in [11]. The
reference signal and model are chosen as r = [sin(t) sin(0.5t)] and Wm(s) =

diag
{

1
(s+1)2 ,

1
(s+1)2(s+2)

}
. To perform the simulations, the actual parameter κ

is set to 10, while κnom = 7 is chosen for control purposes. For κnom = 7 and

κ ∈ [4, 10], it follows that
∣∣∣(θnom − θ∗)T

∣∣∣ ≤ 2 and Assumption (A5) is satisfied

with Sp = I. Then, in (26) the modulation function �(t) is given by (15), with

cd=2.25, |df |≤ d̂f and δ=1. The signal d̂f is obtained by the FOAF described
in (12), with kx = 0.2, kd = 1, cf = 5, λf = 0.5 and x̂ is a state norm observer
given by (11), with c1 = 1.2, c2 = 2 and λx = 0.1.
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−0.04
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(a
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(b
)

(c
)

Time (s)

Fig. 2. (a) Tracking performance: y (—) and ym (- -); (b) Time behavior of switching
function (SF) α(·); (c) Zoom of tracking errors e(t)

Other design parameters are listed as follows: I/O filters (4): λ(s) = (s+2)2

and ν = 3; L(s) = diag
{
(s+ 1), (s+ 1)2

}
; High-gain observer (19): ε = 0.001;
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Knom
p = Kp with κ = 7; N

[1]
a = s2+2s+1,N

[2]
a = s3+3s2+3s+1,H

[1]
a = [2 1]

T
,

H
[2]
a = [4 5 2]

T
, H̄

[1]
M = [−1 1]

T
, H̄

[2]
M = [4 − 2 1]

T
; MIMO RED (22)-(23):

λ
[1]
0 = 1.5, λ

[1]
1 =1.1 and C

[1]
2 =30; λ

[2]
0 = 3, λ

[2]
1 = 1.5, λ

[2]
2 =1.1 and C

[2]
3 =100;

switching function (25): εM =250ε and Δ=50ε. We consider the following plant
initial conditions: y1(0) = 1, ẏ1(0) = 2, y2(0) = 0.5, ẏ2(0) = −1, ÿ2(0) = 1. The
remaining system initial conditions are set to zero.

The Euler Method with step-size h=10−5 is used for numerical integration.
Fig. 2(a) shows that the GRED-UVC achieves precise tracking despite the

disturbance d(x, t). From the plot of α(·) in Fig. 2(b), one notes that after a
short transient only the MIMO RED remains active as expected. In practice,
an advantage of the hybrid estimation scheme is that it does not require large
RED parameters to guarantee global stability, thus being less sensitive to mea-
surement noise [23] and also responsible to achieve better steady-state tracking
performance.

Plant with Unmodeled Dynamics and Measurements Noise
The plant could also have a dynamic actuator with transfer matrix given by

Ga(s)=

[ 1
μs+1 0

0 1
μs+1

]
, μ = 0.1 (27)

Moreover, we consider that the output is corrupted by a high frequency mea-
surement noise [34, 5, 31], so that the actual output would be given by

ynoise(t) =

[
y1(t) + 0.01 sin(200t)
y2(t) + 0.01 cos(200t)

]
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Fig. 3. (a) Tracking with unmodeled dynamics and noise: y (—) and ym (- -); (b) Time
behavior of switching function (SF) α(·); (c) Zoom of tracking errors e(t)
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The same control design developed for the nominal plant without unmodeled
dynamics and noise is considered, except for the HGO parameter that should
be adjust to cope with the high frequency noise and the switching function
parameters that should also be modified. Since the errors from the estimators
increases the idea is to set εM with a higher value so that the switching scheme
can still be able to ultimately select the MIMO RED. These parameters are
chosen as follows: ε = 0.1, εM = 50ε and Δ = 10ε As can be seen in Fig. 3,
the tracking performance of the controller under the presence of a small high-
frequency noise and unmodeled dynamics remains satisfactory and the switching
scheme is able to ultimately select the MIMO RED. It should be noted that if
significant noise is present a degradation of the tracking performance would be
expected [34, 5, 31]. The applicability of the proposed controller in real-world
conditions is supported by the experiments presented in [26].

9 Conclusions

A new output feedback sliding mode tracking controller for uncertain MIMO
nonlinear plants with non-uniform arbitrary relative degree in the presence of
disturbances has been proposed. The controller is based on a multivariable hy-
brid estimation scheme, which combines a high-gain observer with locally exact
differentiators in such way that uniform global exponential practical stability
with respect to a small residual set is guaranteed as well as ultimate exact out-
put tracking of a reference model. It is important to stress that since the HGO
estimates are used only in the UVC term and not in the modulation, global sta-
bility is guaranteed with a peaking free control signal via norm state observers.
Moreover, the scheme allows ideal sliding modes in theory, hence, chattering is
precluded in the ideal case, i.e., in the absence of real life imperfections such
as noise and switching delays. Indeed, the estimated sliding variable provided
by the GRED, which drives the unit vector function, becomes identically zero
after some finite time. Numerical simulations are presented so as to validate the
analysis and show the effectiveness of the proposed technique.
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Appendix

The following auxiliary lemmas will be instrumental for the proof of Theorem 1.

Lemma 1. Consider the MIMO system

σ(t) = M(s)K[u+ d(t)] , (28)

where M(s) = diag
{
(s+γ1)

−1, . . . , (s+γm)−1
}
, γj > 0, K ∈R

m×m is the high
frequency gain matrix and is such that −K is diagonally stable, and d(t) is locally
integrable (LI). If u = −�(t) σ

|σ| , � ≥ (1+ cd)|d(t)|+ δ, where �(t) is LI, cd > 0

is an appropriate constant, δ ≥ 0 is an arbitrary constant, then, the inequality

|σ(t)| and |xe(t)| ≤ c|xe(0)|e−λt (29)

holds ∀t ≥ 0 for some positive constants c, λ, where xe is the state of any
stabilizable and detectable realization of (28) (possibly nonminimal). Moreover,
if δ > 0, then σ(t) becomes identically zero after some finite time ts ≥ 0.

http://www.sciencedirect.com/science/article/pii/S0167691108000601
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Proof: Consider a stabilizable and detectable realization of (28) described
by ẋ = Ax+B(u+d), σ = Hx. From (28), one can obtain the normal form
η̇=A11η + A22σ, σ̇=Amσ+K(u+d+πη) , where Am =diag{−γ1, . . . ,−γm},
|πη| ≤ cη |η(0)| e−ληt and the zero dynamics given by η̇ =A11η is stable, since
M(s) is minimum phase. The state vector of this realization is xT

e = [ηT σT ].
Consider the function V (σ)=σTDσ, whereKTD+DK=Q, Q=QT > 0 for some
diagonal matrix D> 0. The time derivative of V (σ) can be upper bounded by

V̇ ≤ 2σTDAmσ−�σT Qσ
|σ| +2|DK||σ|(|d|+|πη|) , Choosing cd ≥ 2|DK|/λmin(Q)−

1, it can be verified that V̇ ≤ −κ1|σ|2−δ|σ|+|π̄η||σ|. Now, following the proof of

Lemma 1 given in [17], one can conclude that σ(t) ≤ (κ2 |σ(0)|+ κ3 |η(0)|) e−λ̄t.
Moreover, if δ > 0, it can be shown that σ becomes identically zero in some
finite time ts. Since A11 is Hurwitz, one can further conclude that (29) holds.

Lemma 2. Consider the MIMO system

σ̇(t) = Amσ(t) +K[u+ d(t) + π], Am,K∈R
m×m (30)

where Am = diag{−γ1, . . . ,−γm}, −K is diagonally stable, |π| ≤ Re−λt, u =
−�(t) ϑ

|ϑ| , d(t), π(t) and �(t) are locally integrable, ϑ(t) := σ(t)+β(t), where β(t)

is absolutely continuous (∀t). If �(t) ≥ (1 + ĉd)|d(t)| ∀t, for some appropriate
ĉd ≥ 0, then, the signals ϑ and σ are bounded by

|ϑ(t)| and |σ(t)|≤ c̄1|σ(0)|e−γt + c̄2

[
Re−min(γ,λ)t+‖β‖

]
(31)

for some positive constants c̄1, c̄2 and γ = min{γ1, . . . , γm}. (Proof: see [28,
Lemma 7] and [18, Lemma 2])

A Proof of Theorem 1

In order to analyze the stability and convergence properties of the closed-
loop error system, we first show that the ξ̃-subsystem (20) is input-to-state
practically stable (ISpS) with respect to the input xe. Applying the linear

transformation xξ = T (ε)ξ̃, T (ε) = block diag {T [1]
ε , . . . , T

[m]
ε } with T

[j]
ε =

diag
{
1, ε, . . . , ερj−1

}
, one has:

ẋ
[j]
ξ =

1

ε
Ā

[j]
ξ x

[j]
ξ + ερj−1B̄

[j]
ξ Knom

p Ū , j = 1, . . . ,m (32)

where Ā
[j]
ξ =

⎡
⎢⎢⎣
−ā

[j]
ρj−1 Iρj−1

... ——–

−ā
[j]
0 0

⎤
⎥⎥⎦ , B̄

[j]
ξ =

⎡
⎣0(ρj−1×m)

—–
ιj

⎤
⎦, ιj is the j-th row

of an identity matrix of order m and xT
ξ =

[
(x

[1]
ξ )T . . . (x

[m]
ξ )T

]
. For

each state x
[j]
ξ , we consider the functions Vj(x

[j]
ξ ) = (x

[j]
ξ )TPix

[j]
ξ , (Pj =

PT
j > 0 and (Ā

[j]
ξ )TPj + PjĀ

[j]
ξ = −Qj, with Qj = QT

j > 0), From
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(32), V̇j=−1

ε
(x

[j]
ξ )TQjx

[j]
ξ +2ερj−1(x

[j]
ξ )TPjB̄

[j]
ξ Knom

p Ū , which can be upper

bounded by V̇j≤−1

ε
κ
[j]
1

∣∣∣x[j]
ξ

∣∣∣2+ε2ρj−1κ
[j]
2

∣∣Ū ∣∣2 , where κ
[j]
1 =

λmin(Qj)
2 and κ

[j]
2 =

2

∣∣∣PjB
[j]
ξ Knom

p

∣∣∣2

λmin(Qj)
. Thus, one has

∣∣∣x[j]
ξ

∣∣∣ ≤ π
[j]
ξ + ερjκ

[j]
3

∣∣∣∣Ū[t0,t]

∣∣∣∣ . (33)

In what follows we show that Ū defined in (20) can be bounded by

∣∣∣∣Ū[t0,t]

∣∣∣∣ ≤ κ4

∣∣∣∣∣∣xe[t0 ,t]

∣∣∣∣∣∣+ κ5 . (34)

Using the relation ω = Ω1X + Ω2r and xe = X − Xm, one has that
ω = Ω1xe + Ω1Xm + Ω2r. Now, consider the vector ξe = ξ̄ - ξ̄m, where

ξ̄T =
[
ξ̄[1], . . . , ξ̄[m]

]
, ξ̄[j] =

[
yj ẏj . . . y

ρj−1
j

]
and ξ̄Tm =

[
ξ̄
[1]
m , . . . , ξ̄

[m]
m

]
, ξ̄

[j]
m =[

ymj ẏmj . . . y
ρj−1
mj

]
. Since the reference model is a stable system it can be

shown that ξm is uniformly bounded and hence it follows that
∣∣ξ̄∣∣ ≤ |ξe| + κm.

From (9), it can be shown that |ξe| ≤ κ6 |xe| and thus
∣∣ξ̄∣∣≤κ6 |xe|+κm. More-

over, since the plant is minimum phase then it is possible to conclude that
|x|≤κ7

∣∣∣∣ξ̄[t0,t]∣∣∣∣ (modulo π term) by using the normal form of (1) and in addition

it follows that |x| ≤ κ8

∣∣∣∣∣∣xe[t0,t]

∣∣∣∣∣∣ + κ9. From Assumption (A6), it is possible to

show that |Xm| ≤ κ10

∣∣∣∣x[t0,t]

∣∣∣∣+ κ11. Thus, |Xm|≤κ12

∣∣∣∣∣∣xe[t0,t]

∣∣∣∣∣∣+κ13 and hence

|ω(t)|≤κ14

∣∣∣∣∣∣xe[t0,t]

∣∣∣∣∣∣+κ15 (35)

From (11) and (12), it follows that |df (t)| ≤ κ16

∣∣∣∣ω[t0,t]

∣∣∣∣+ κ17 . Moreover, from

(21) and (14), it can be shown that |u(t)| ≤ κ18

∣∣∣∣ω[t0,t]

∣∣∣∣ + κ19, which together
with (35) allows us to show that (34) holds.

From (33) and (34), one can conclude that
∣∣∣x[j]

ξ

∣∣∣ ≤ π
[j]
ξ + ερjκ

[j]
ξ

∣∣∣∣∣∣xe[t0,t]

∣∣∣∣∣∣ +
ερjκ

[j]
20 . Since ξ̃[j] = (T

[j]
ε )−1x

[j]
ξ and

∣∣∣ξ̃∣∣∣ ≤ ∣∣∣ξ̃[1]∣∣∣ + · · · +
∣∣∣ξ̃[m]

∣∣∣, it is possible to

show that ∣∣∣ξ̃∣∣∣ ≤ πξ + εκξ

∣∣∣∣∣∣xe[t0,t]

∣∣∣∣∣∣+ εκ21 . (36)

Thus, from Definition 1 in [27], it follows that the ξ̃-dynamics is ISpS with
respect to the input xe. Now, we show that the xe-subsystem defined in (9) is
ISpS with respect to the input ξ̃. From (10) and (16), it can be shown that

σ̇=Amσ+Kp

[
u−θ∗

T

ω+df+πσ

]
, where Am=diag{−γ1, . . . ,−γm}. From (21),

it follows that
σ̇ = Amσ +K [uv + dU + πσ] , (37)

where K = KpSp, dU = S−1
p

[
(θnom − θ∗)Tω − df

]
and uv = −�(t)ϑ/|ϑ|, with

ϑ := σ + β and β := ξ̃h + βα, since σ̂h = σ + ξ̃h. From (20) and using the



214 L. Hsu et al.

fact that βα ≤ εKR, the auxiliary signal β(t) can be upper bounded by ||β|| ≤
κ22

∣∣∣∣∣∣ξ̃∣∣∣∣∣∣ + εKR. Since �(t) ≥ |dU | and β(t) is absolutely continuous, applying

Lemma 2 to (37), one has:

|σ(t)| ≤ |π̄σ|+ κ23

∣∣∣∣∣∣ξ̃[t0,t]∣∣∣∣∣∣+ c̄2εKR . (38)

From (9) and (37) one has ẋe=Acxe+Bc(σ̇−Amσ). Then, in order to eliminate
the derivative term σ̇, a variable transformation x̂e := xe−Bcσ is performed
yielding ˙̂xe=Acx̂e + (AcBc −BcAm)σ.

Thus, x̂e can be upper bounded by: |x̂e(t)| ≤ πê(t) + σf (t), where σf (t) =
Wσ(t) ∗ |σ(t)|, with Wσ(t) being the impulse response of a first order filter given
by Wσ(s) = cσ/(s + λσ), where cσ > 0, λσ :=mink{−Re(pk)}, with {pk} being
the eigenvalues of Ac. From (38) and since |xe| ≤ |x̂e|+ κ24 |σ|, one has that

|xe| ≤ πe + κe

∣∣∣∣∣∣ξ̃[t0,t]∣∣∣∣∣∣+ εκ25 . (39)

Therefore, the xe-dynamics is ISpS with respect to the input ξ̃. From the small-
gain theorem [20], if ε is chosen such that ε ≤ 1/(κeκξ), one has that the error
system with state z is globally asymptotically practically stable [27]. Moreover,
since the class KL functions in inequalities (36) and (39) are exponentials and
the ISpS gains are linear, it is possible to extend this result, proving exponential
practically stability for this case (see [27] for more details).

B Proof of Theorem 2

The estimate given by the hybrid estimation scheme defined in (24) can be
rewritten as

σ̂g(t) = σ(t) + ξ̃g(t), ξ̃g(t) = α(ν̃rh)ξ̃h(t) + [1− α(ν̃rh)] ξ̃r(t) . (40)

where ξ̃h(t) = σ̂h(t) − σ(t) and ξ̃r(t) = σ̂r(t) − σ(t) are estimation errors and
σ is the ideal sliding variable defined in (16). Considering ξ̃g(t) as an output
disturbance, the GRED-UVC closed-loop error system can be described by:

ẋe = Acxe +BcKp [u− θ∗
T

ω + df ], σ = H̄ xe, (41)

u = (θnom)Tω − �(t)
σ + ξ̃g

|σ + ξ̃g|
. (42)

From (25), the estimation error ξ̃g(t) can be rewritten as:

ξ̃g(t) = ξ̃h(t) + βα(ν̃rh(t)) , (43)

where by design βα(ν̃rh(t)) is uniformly bounded by |βα(ν̃rh(t))| <
εM , with εM = εKR . Moreover, βα is absolutely continuous in t, since the
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switching function α(ν̃rh) is Lipschitz continuous and σ̂r(t) and σ̂h(t) are ab-
solutely continuous because they are Filippov solutions. Substituting (43) into
(42), it can be seen that equation (42) is equivalent to (21), where σ̂h = ξ̃h + σ,
with ξ̃h given by (20), σ given by (16) and e given by (9). Thus, the GRED-UVC
system described by (40), (41) and (42) with switching function α(ν̃rh(t)) defined
in (25) is equivalent to the UVC using a MIMO HGO with an output disturbance
βα(ν̃rh) described by (9), (16), (20) and (21), with |βα(ν̃rh(t))| ≤ εM . Thus, it
is possible to conclude that Theorem 1 is valid for the GRED-UVC system and
the closed-loop error system with state z is uniformly globally exponentially
practically stable with respect to a residual set of order ε.

Now, we prove that the error state of the GRED-UVC ultimatelly converges
to zero. According to Theorem 1, one can conclude for sufficiently small ε the
error state z is steered to an invariant compact set DR :={z : |z(t)|<R} in some

finite time T1≥0. Then, from (36), it follows that
∣∣∣∣∣∣ξ̃[T1,t]

∣∣∣∣∣∣ ≤ πξ+εκξR + εκ21 .

Since
∣∣∣ξ̃h∣∣∣ ≤

∣∣∣ξ̃∣∣∣, it is straightforward to show that for some finite T2 ≥ T1,∣∣∣∣∣∣ξ̃h[T2,t]

∣∣∣∣∣∣≤ ξ̄h, where ξ̄h=εKh.

Since the MIMO RED is time invariant, its initial conditions can be considered
to be at t = T1. From Lemma 1 in [29] the initial conditions are finite. Thus,
after t = T1 the conditions for convergence of the MIMO RED are satisfied and
hence the estimation error ξ̃r(t) converges to zero in some finite time T3 > T1.

As KR is chosen such that εM >ξ̄h+Δ and from (25), it follows that after some
finite time T̄ =max{T2, T3} the estimation of σ becomes exact and being made
exclusively by the MIMO RED (α(ν̃rh) = 0), which implies that ξ̃g(t)=0, ∀t≥ T̄ .
In this case, an ideal sliding mode control loop [33] is formed and applying
Lemma 1 to system (40)–(42), with �(t) satisfying (14), one can conclude that
the error state z will converge exponentially to zero and σ becomes identically
zero after some finite time.



Sliding Mode Control of Switched Stochastic
Hybrid Systems

Ligang Wu, Huijun Gao, and Shen Yin

Research Institute of Intelligent Control and Systems, Harbin Institute of Technology,
Harbin 150001, China

{ligangwu,hjgao,shen.yin}@hit.edu.cn

Abstract. This chapter is concerned with the sliding mode control of
continuous- and discrete-time switched stochastic hybrid systems. By de-
signing integral-type sliding surface functions, the sliding mode dynam-
ics are established for continuous- and discrete-time systems, respectively.
Then, by applying the average dwell time method and the piecewise Lya-
punov function technique, sufficient conditions are proposed for the mean-
square exponential stability of the sliding mode dynamics. A weightedH∞
performance is also proposed for the discrete-time case. Sliding mode con-
trollers for reaching motions of the continuous- and discrete-time switched
stochastic hybrid systems are then designed, such that the trajectories of
the resulting closed-loop systems can be driven onto the prescribed slid-
ing surfaces and maintained there for all subsequent times. Finally, a nu-
merical example is provided to illustrate the effectiveness of the proposed
design scheme.

1 Introduction

Switched systems are an important class of hybrid systems, which consist of a
family of subsystems described by continuous-time (or discrete-time) dynamics
and these subsystems are governed by a switching signal [18]. Many real-world
systems can be modelled as switched systems, for example, chemical process sys-
tems, transportation systems, computer controlled systems and communication
systems. More importantly, many intelligent control strategies are designed based
on the idea of switching controllers to overcome the shortcoming of the tradi-
tionally used single controller and to improve the performance [13], thus making
the corresponding closed-loop systems to become switched systems. Switched
systems have received increasing attention over the past few years, and a large
number of papers have been reported. When focusing on stability analysis of
switched systems, there are many valuable results which have appeared in the
last two decades, and the interested readers may refer to some survey papers,
see for example, [6, 19, 20, 21]. Considerable interests have also been devoted to
synthesis problems of switched systems, including stabilization [2, 3, 5, 14, 16],
robust and optimal control [8, 24, 30, 36, 37], robust filtering [1, 7, 27, 28], fault
detection and fault-tolerant control [9, 26], and model approximation [10, 31].

c© Springer International Publishing Switzerland 2015 217
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After more than 60 years of development, sliding mode control (SMC), as an
effective robust control strategy, has been successfully applied to control of differ-
ent kinds of dynamical systems, such as parametric uncertain systems [4, 17, 33],
time-delay systems [11, 34], stochastic systems [22, 23], parameter-switching sys-
tems [25, 29], and singular systems [32]. To the authors’ knowledge, there are
few results reported on SMC of switched hybrid systems with stochastic per-
turbation (called switched stochastic hybrid systems). In fact, investigating this
research problem would be difficult due to the fact that the probability distri-
bution of switching is not available (that is, the switching is arbitrary subject to
an average dwell time constraint, not in the form of Markovian switching as pro-
posed in [23, 25]). Some open problems still remain unsolved when considering
SMC of switched stochastic hybrid systems. In this work, we shall investigate
this problem, and consider to solve the following three key issues:

• How to design an appropriate sliding surface function, with that the sliding
mode dynamics exists?

• How to analyze the stability and performances of the resulted sliding mode
dynamic? Specifically, how to establish the stability and performance condi-
tions for sliding mode dynamics with less conservativeness?

• How to synthesize SMC laws so as to ensure the attraction of the sliding sur-
face when the system changes from one mode to another under the restricted
switching?

Motivated by the above questions, in this chapter, we are interested in investi-
gating SMC problems for both continuous- and discrete-time switched stochastic
hybrid systems. Firstly, by designing integral-type sliding surface functions, we
obtain the sliding mode dynamics for continuous- and discrete-time cases, re-
spectively, which are switched stochastic hybrid system with the same order as
the original systems. Then, by utilizing the average dwell time approach combin-
ing with the piecewise Lyapunov function technique, sufficient conditions for the
existence of the sliding mode are proposed in terms of LMIs for continuous- and
discrete-time cases, and the explicit parametrization for the desired sliding sur-
face functions are also given, respectively. Following these results, sliding mode
controllers for reaching motion are synthesized such that the state trajectories
of the closed-loop systems can be driven onto the prescribed sliding surfaces
and maintained there for all subsequent times. Moreover, for the discrete-time
system case, we consider the disturbance attenuation performance (that is, H∞
performance) in the analysis of sliding mode dynamics, this is because that there
are often some external disturbances involved in practical systems (for example,
if the disturbance does not satisfy the so-called matching condition, it cannot be
eliminated in the reaching motion phase), which constitute a source of instabil-
ity or of performance degradation. Finally, a numerical example is provided to
illustrate the effectiveness of the proposed SMC design scheme.

Notations. The superscript “T ” denotes matrix transposition; Rn denotes the
n-dimensional Euclidean space; the notation P > 0 means that P is real symmet-
ric and positive definite; I and 0 represent the identity matrix and a zero matrix,
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respectively; diag{. . .} stands for a block-diagonal matrix; λmin(·) (λmax(·)) de-
notes the minimum (maximum) eigenvalue of a matrix. ‖·‖ denotes the Euclidean
norm of a vector or the spectral norm of a matrix. For a vector a = (ai) ∈ Rn,
|a| � ∑n

i=1 |ai| denotes the 1-norm of the vector a. (Ω,F ,P) is a probability
space with Ω the sample space, F the σ-algebra of subsets of the sample space,
and P the probability measure. E{·} denotes the expectation operator. In sym-
metric block matrices or long matrix expressions, we use “�” to represent a term
that is induced by symmetry.

2 Continuous-Time Case

2.1 System Description and Preliminaries

Consider the continuous-time switched stochastic hybrid systems, which are es-
tablished on the probability space (Ω,F ,P), and are described by

dx(t) = {A(α(t))x(t) +B(α(t)) [u(t) + f(x(t), t)]} dt
+E(α(t))x(t)d�(t), (1)

where x(t) ∈ Rn is the system state vector; u(t) ∈ Rm is the control in-
put; �(t) is a one-dimensional Brownian motion satisfying E {d�(t)} = 0 and
E
{
d�2(t)

}
= dt. α(t) : R → N is a piecewise constant function of time t called

a switching signal, and at a given time t, the value of α(t), denoted by α for
simplicity, might depend on t or x(t), or both, or may be generated by any other
hybrid scheme. {(A(α), B(α), E(α)) : α ∈ N} is a family of matrices parame-
terized by an index set N = {1, 2, . . . , N}. Therefore, the switched stochastic
hybrid system effectively switches amongst N subsystems with the switching
sequence controlled by α. We assume that the value of α is unknown, but its
instantaneous value is available in real time.

For each possible value α = i (i ∈ N ), we denote the system matrices
associated with mode i by A(i) = A(α), B(i) = B(α) and E(i) = E(α),
where A(i), B(i) and E(i) are constant matrices. Corresponding to switch-
ing signal α, we have the switching sequence {(i0, t0), (i1, t1), . . . , (ik, tk), . . . , |
ik ∈ N , k = 0, 1, . . .} with t0 = 0, which means that the ikth subsystem is acti-
vated when t ∈ [tk, tk+1).

In addition, f(x(t), t) ∈ Rm is an unknown nonlinear function satisfying

‖f(x(t), t)‖ ≤ ψ ‖x(t)‖ , ψ > 0.

For switching signal α, we revisit the average dwell time property from the
following definition.

Definition 1. [18] For any T2 > T1 ≥ 0, let Nα(T1, T2) denote the number of
switching of α over (T1, T2). If Nα(T1, T2) ≤ N0+(T2−T1)/Ta holds for Ta > 0,
N0 ≥ 0, then Ta is called an average dwell time.

Assumption 1. The switching signal α(t) has an average dwell time.

Assumption 2. For each i ∈ N , the pair (A(i), B(i)) in system (1) is control-
lable and the matrix B(i) has full column rank.
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2.2 Sliding Mode Dynamics

We design the following integral sliding surface function:

s(t) = G(i)x(t) −
∫ t

0

G(i)

[
A(i) +B(i)K(i)

]
x(θ)dθ, (2)

where K(i) ∈ Rm×n are real matrices to be designed, and matrices G(i) are to
be chosen such that G(i)B(i) are nonsingular and G(i)E(i) = 0 for i ∈ N .

The solution of x(t) can be given by

x(t) = x(0) +

∫ t

0

[
A(i)x(θ) +B(i) (u(θ) + f(x(θ), θ))

]
dθ

+

∫ t

0

E(i)x(θ)d�(θ). (3)

It follows from (2) and (3) that

s(t) = G(i)x(0)

+

∫ t

0

G(i)

[
−B(i)K(i)x(θ) +B(i) (u(θ) + f(x(θ), θ))

]
dθ. (4)

As is well known that when the system state trajectories reach onto the sliding
surface, it follows that s(t) = 0 and ṡ(t) = 0. Therefore, by ṡ(t) = 0 we get the
equivalent control as

ueq(t) = K(i)x(t) − f(x(t), t). (5)

Substituting (5) into (1), the sliding mode dynamics can be obtained as

dx(t) =

[
A(i) +B(i)K(i)

]
x(t)dt + E(i)x(t)d�(t). (6)

For notational simplicity, we define Ã(i) � A(i) + B(i)K(i), then the sliding
mode dynamics in (6) can be formulated as

dx(t) = Ã(i)x(t)dt + E(i)x(t)d�(t), (7)

Definition 2. The sliding mode dynamics in (7) is said to be mean-square ex-
ponentially stable under α(t) if its solution x(t) satisfies

E {‖x(t)‖} ≤ η ‖x(t0)‖ e−λ(t−t0), ∀t ≥ t0, (8)

for constants η ≥ 1 and λ > 0.

The above analysis gives the first step of the SMC for the switched stochastic
hybrid system (1). Specifically, we design an integral-type sliding surface as given
in (2) so that the dynamics restricted to the sliding surface (i.e., the sliding mode
dynamics) has the form of (7). The remaining problems to be addressed in this
chapter can be stated as follows:
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1) Stability Analysis. Given all the system matrices in (1), determine the matrices
G(i) and K(i) in sliding surface function (2) such that the sliding mode
dynamics in (7) is mean-square exponentially stable in the sense of Definition
2.

2) SMC Law Design. Synthesize a SMC law to globally drive the system state
trajectories onto the predefined sliding surface s(t) = 0 in a finite time and
maintain them there for all subsequent time.

2.3 Sliding Mode Dynamics Analysis

We present the following result for the stability of sliding mode dynamics (7).

Theorem 3. For a given scalar β > 0, suppose that there exist matrices P (i) >
0 such that for i ∈ N ,

P (i)Ã(i) + ÃT (i)P (i) + βP (i) + ET (i)P (i)E(i) < 0, (9)

then the sliding mode dynamics in (7) is mean-square exponentially stable for
any switching signal with the average dwell time satisfying Ta > lnμ

β , where
μ ≥ 1 and satisfies

P (i) ≤ μP (j), i, j ∈ N . (10)

Moreover, an estimate of the mean-square of the state decay is given by

E {‖x(t)‖} ≤ η ‖x(0)‖ e−λt, (11)

where ⎧⎪⎨
⎪⎩

λ =
1

2

(
β − lnμ

Ta

)
> 0, η =

√
b

a
≥ 1,

a = min
∀i∈N

λmin (P (i)) , b = max
∀i∈N

λmax (P (i)) .

(12)

Proof. Choose the following Lyapunov function candidate:

V (x, α) = xT (t)P (α)x(t), (13)

where P (α) > 0, α ∈ N are to be determined. Then, along the solution of the
sliding mode dynamics in (7) for a fixed α, by Itô’s formula, we have

dV (x, α) = L V (xt, α)dt + 2xT (t)P (α)E(α)x(t)d�(t),

where

L V (x, α) = 2xT (t)P (α)Ã(α)x(t) + xT (t)ET (α)P (α)E(α)x(t)

= xT (t)
[
P (α)Ã(α) + ÃT (α)P (α) + ET (α)P (α)E(α)

]
x(t). (14)
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By Schur complement, LMI (9) implies

P (α)Ã(α) + ÃT (α)P (α) + ET (α)P (α)E(α) < −βP (α),

which implies from (14) that

L V (x, α) < −βxT (t)P (α)x(t) = −βV (x, α).

Thus, we have

dV (x, α) < −βV (x, α)dt + 2xT (t)P (α)E(α)x(t)d�(t).

Observe that

d
[
eβtV (x, α)

]
= βeβtV (x, α)dt + eβtdV (x, α)

< eβt
[
βV (x, α)dt − βV (x, α)dt + 2xT (t)P (α)E(α)x(t)d�(t)

]
= 2eβtxT (t)P (α)E(α)x(t)d�(t). (15)

Integrate both sides of (15) from T > 0 to t and take expectations. Then, by
some mathematical operations, we have

E {V (x, α)} < e−β(t−T )E {V (x(T ), α(T ))} . (16)

Now, for an arbitrary piecewise constant switching signal α, and for any t > 0,
we let 0 = t0 < t1 < · · · < tk < · · · , k = 0, 1, . . ., denote the switching points of
α over the interval (0, t). As mentioned earlier, the ikth subsystem is activated
when t ∈ [tk, tk+1). Letting T = tk in (16) gives

E {V (x, α)} < e−β(t−tk)E {V (x(tk), α(tk))} . (17)

Using (10) and (13), at switching instant tk, we have

E {V (x(tk), α(tk))} ≤ μE
{
V (x(t−k ), α(t

−
k ))

}
, (18)

where t−k denotes the left limit of tk.
Therefore, it follows from (17)–(18) and the relationship ϑ = Nα(0, t) ≤ (t−

0)/Ta that

E {V (x, α)} ≤ e−β(t−tk)μE
{
V (x(t−k ), α(t

−
k ))

}
≤ · · ·
≤ e−β(t−0)μϑE {V (x(0), α(0))}
≤ e−(β−lnμ/Ta)tE {V (x(0), α(0))}
= e−(β−lnμ/Ta)tV (x(0), α(0)). (19)

Notice from (13) that

E {V (x, α)} ≥ aE{‖x(t)‖2}, V (x(0), α(0)) ≤ b ‖x(0)‖2 , (20)

where a and b are defined in (12). Combining (19) and (20) yields
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E
{
‖x(t)‖2

}
≤ 1

a
E {V (x, α)} ≤ b

a
e−(β−lnμ/Ta)t ‖x(0)‖2 ,

which implies (11). By Definition 2 with t0 = 0, the sliding mode dynamics in
(7) is mean-square exponentially stable. This completes the proof. �
Remark 4. A scalar β is introduced in the stability analysis of Theorem 3, this
is the characteristic of the exponential stability result to the switched system by
using the average dwell time approach. Here, β plays a key role in controlling
the low bound of the average dwell time due to Ta > lnμ

β . From Ta > lnμ
β we can

see that when β is given a bigger value, the lower bound of the average dwell
time becomes smaller with a fixed μ, which may result in the instability of the
system.

Remark 5. When μ = 1 in Ta > lnμ
β we have Ta > T ∗

a = 0, which means that the
switching signal α can be arbitrary. In this case, (10) turns out to be P (i) ≤ P (j),
∀i, j ∈ N . The only possibility for that is P (i) = P (j) = P , ∀i, j ∈ N , and
this implies that it requires a common (that is, mode-independent) Lyapunov
functional for all subsystems. On the other hand, when μ > 1 and β → 0 in
Ta > lnμ

β , we have Ta → ∞, that is, there is no switching. In such case, the
sliding mode dynamics in (7) is effectively operating at one of the subsystems
all the time. We have the following result.

Corollary 6. Suppose there is no switching in sliding mode dynamics (7) (when
β → 0 as discussed in Remark 5), that is, system (7) turn out to be a common
stochastic system (thus, the parameters become (Ã, E)). If there exists a matrix
P > 0 such that

PÃ+ ÃTP + ETPE < 0,

then the common stochastic system is mean-square asymptotically stable.

Remark 7. The mean-square asymptotic stability for the common stochastic sys-
tem in Corollary 6 is consistent with the result in [35], which proves that our
result in Theorem 3 has extended the result in [35] to the switched systems.

In the following, based on the result in Theorem 3, we present a solution to
K(i) in sliding surface function (2).

Theorem 8. For a given scalar β > 0, suppose that there exist matrices X(i) >
0 and Y (i) such that for i ∈ N ,[

A(i)X(i) +B(i)Y (i) + (A(i)X(i) +B(i)Y (i))
T
+ βX(i) X(i)ET (i)

� −X(i)

]
< 0,

(21)

then the sliding mode dynamics in (7) is mean-square exponentially stable for
any switching signal with the average dwell time satisfying Ta > lnμ

β , where
μ ≥ 1 and satisfies
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X(i) ≤ μX(j), ∀i, j ∈ N . (22)

Moreover, if the above conditions are feasible, then the matrix variable K(i) in
(2) can be computed by

K(i) = Y (i)X−1(i). (23)

Proof. Let X(i) � P−1(i) and Y (i) � K(i)X(i). Then by performing a congru-
ence transformation to (9) with X(i) and by Schur complement, the result can
be obtained. �

2.4 Sliding Mode Control Design

In this section, we synthesize a discontinuous SMC law, by which the state
trajectories of the switched stochastic hybrid system (1) can be driven onto the
pre-specified sliding surface s(t) = 0 in a finite time and then are maintained
there for all subsequent time.

Theorem 9. Consider the continuous-time switched stochastic hybrid system
(1). Suppose that the sliding surface function is designed as (2) with K(i) being
solved by (23), then the state trajectories of system (1) can be driven onto the
sliding surface s(t) = 0 in a finite time by the following sliding mode controller:

u(t) = K(i)x(t)− (+ ψ ‖G(i)B(i)‖ ‖x(t)‖) (G(i)B(i))−1 sign (s(t)) , (24)

where  is a positive scalar.

Proof. Choose a Lyapunov function of the following form:

W (t) =
1

2
sT (t)s(t).

According to (4), we have

ṡ(t) = G(i)B(i) (−K(i)x(t) + u(t) + f(x(t), t)) .

Thus, taking the derivative of W (t) and considering the above equation, we have

Ẇ (t) = sT (t)ṡ(t)

= sT (t)G(i)B(i) (−K(i)x(t) + u(t) + f(x(t), t)) . (25)

Substituting (24) into (25) and noting ‖s(t)‖ ≤ |s(t)|, we have

Ẇ (t) = sT (t)G(i)B(i)

×
[
− (+ ψ ‖G(i)B(i)‖ ‖x(t)‖) (G(i)B(i))

−1
sign (s(t)) + f(x(t), t)

]
≤ − (+ ψ ‖G(i)B(i)‖ ‖x(t)‖) ‖s(t)‖+ ‖s(t)‖ ‖G(i)B(i)‖ ‖f(x(t), t)‖
≤ − ‖s(t)‖ = −√

2W
1
2 (t). (26)
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It can be shown from (26) that there exists an instant t∗ =
√
2W (0)/ such that

W (t) = 0 (equivalently, s(t) = 0) when t ≥ t∗. Thus, we can conclude that the
system state trajectories can be driven onto the predefined sliding surface in a
finite time. �

3 Discrete-Time Case

3.1 System Description and Preliminaries

Consider a discrete-time switched stochastic hybrid system which can be de-
scribed by the following dynamical equations:⎧⎪⎨

⎪⎩
x(k + 1) = A(α(k))x(k) +B1(α(k)) [u(k) + f(x(k), k)]

+B2(α(k))ω(k) + E(α(k))x(k)�(k),

z(k) = C(α(k))x(k),

(27)

for k = 1, 2, . . ., where x(k) ∈ Rn is the state vector; u(k) ∈ Rm represents the
control input; ω(k) ∈ Rp is the noise signal that belongs to �2[0,+∞); z(k) ∈ Rq

is the controlled output; �(k) is a zero-mean real scalar process on a probability
space (Ω,F ,P) relative to an increasing family (Fk)k∈N of σ-algebras Fk ⊂ F
generated by (�(k))k∈N. The stochastic process {�(k)} is independent, which
is assumed to satisfy

E{�(k)} = 0, E{�2(k)} = δ, k = 0, 1, . . . ,

where δ > 0 is a known scalar. α(k) : Z+ → N is a piecewise constant func-
tion of time, called a switching signal, which takes its values in the finite set
N . At an arbitrary discrete time k, the value of α(k), denoted by α for sim-
plicity, might depend on k or x(k), or both, or may be generated by any other
hybrid scheme. We assume that the sequence of subsystems in switching signal
α is unknown a priori, but its instantaneous value is available in real time.
For the switching time sequence k0 < k1 < k2 < · · · of switching signal
α,the holding time between [kl, kl+1] is called the dwell time of the currently
engaged subsystem, where l ∈ N . {(A(α), B1(α), B2(α), C(α), E(α)) : α ∈ N}
is a family of matrices parameterized by an index set N = {1, 2, . . . , N}. For
each possible value α = i, i ∈ N , we denote the system matrices associated
with mode i by A(i) = A(α), B1(i) = B1(α), B2(i) = B2(α), C(i) = C(α)
and E(i) = E(α), where A(i), B1(i), B2(i), C(i) and E(i) are constant matri-
ces. Corresponding to the switching signal αk, we have the switching sequence
{(i0, k0), (i1, k1), . . . , (il, kl), . . . , | il ∈ N , l = 0, 1, . . .} with k0 = 0, which means
that the ilth subsystem is activated when k ∈ [kl, kl+1).

In addition, f(x(k), k) ∈ Rm is an unknown nonlinear function satisfying

‖f(x(k), k)‖ ≤ χ ‖x(k)‖ , χ > 0.
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Definition 10. [12] For switching signal α(k) and any ki > kj > k0, let
Nα (kj , ki) be the switching numbers of α over the interval [kj , ki]. If for any
given N0 > 0 and Ta > 0, we have Nα (kj , ki) ≤ N0+(ki − kj) /Ta, then Ta and
N0 are called average dwell time and the chatter bound, respectively.

Here, we assume N0 = 0 for simplicity as commonly used in the literature.
The following definitions are introduced, which will play key roles in deriving

our main results.

Definition 11. The discrete-time switched stochastic hybrid system in (27) with
u(k) = 0 and ω(k) = 0 is said to be mean-square exponentially stable under α(k)
if the solution x(k) satisfies

E {‖x(k)‖} ≤ ηρ(k−k0) ‖x(k0)‖ , ∀k ≥ k0,

for constants η ≥ 1 and 0 < ρ < 1.

Definition 12. For 0 < β < 1 and γ > 0, the discrete-time switched stochastic
hybrid system in (27) with u(k) = 0 is said to be mean-square exponentially
stable with a weighted H∞ performance level γ under α(k), if it is mean-square
exponentially stable with ω(k) = 0, and under zero initial condition, that is,
x(0) = 0, it holds for all nonzero ω(k) ∈ �2[0,∞) that

E

{ ∞∑
s=k0

βszT (s)z(s)

}
< γ2

∞∑
s=k0

ωT (s)ω(s). (28)

3.2 Stability and H∞ Performance Analysis

Firstly, we apply the average dwell time approach combined with the piecewise
Lyapunov function technique to investigate the mean-square exponential stabil-
ity of the following nominal system:

x(k + 1) = A(α(k))x(k) + E(α(k))x(k)�(k). (29)

Theorem 13. For a given constant 0 < β < 1, suppose that there exist matrix
P (i) > 0 such that for i ∈ N ,

AT (i)P (i)A(i) + δET (i)P (i)E(i)− βP (i) < 0, (30)

then the discrete-time switched stochastic system in (29) is mean-square ex-
ponentially stable for any switching signal with average dwell time satisfying
Ta > T ∗

a = ceil
(
− lnμ

ln β

)
, where μ ≥ 1 satisfies

P (i) ≤ μP (j), ∀i, j ∈ N . (31)

Moreover, an estimate of the state decay is given by

E {‖x(k)‖} ≤ ηρ(k−k0) ‖x(k0)‖ , (32)
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where

η �
√

b

a
, ρ �

√
βμ

1
Ta , a � min

∀i∈N
λmin(P (i)), b � max

∀i∈N
λmax(P (i)). (33)

Proof. Choose a mode-dependent Lyapunov function of the form:

V (x, α) � xT (k)P (α)x(k), (34)

where P (α) > 0. For k ∈ [kl, kl+1), we define

E {ΔV (x, α)} � E {V (x(k + 1), α)− V (x(k), α)} ,

and we have

E {ΔV (x, α)} = E
{
xT (k + 1)P (α)x(k + 1)− xT (k)P (α)x(k)

}
= E

{
xT (k)

[
AT (α)P (α)A(α) + δET (α)P (α)E(α) − P (α)

]
x(k)

}
.

thus, we have

E {ΔV (x, α)} + (1 − β)E {V (x, α)} � E
{
xT (k)Φ(α)x(k)

}
, (35)

where

Φ(α) � AT (α)P (α)A(α) + δET (α)P (α)E(α) − βP (α).

By (30), it follows from (35) that

E {ΔV (x, α) + (1− β)V (x, α)} < 0, ∀k ∈ [kl, kl+1). (36)

Now, for an arbitrary piecewise constant switching signal α, and for any k > 0,
we let k0 < k1 < · · · < kl < · · · ,l = 1, . . ., denote the switching points of α over
the interval (0, k). As mentioned earlier, the ilth subsystem is activated when
k ∈ [kl, kl+1). Therefore, for k ∈ [kl, kl+1), it holds from (36) that

E {V (x, α)} < βk−klE {V (x(kl), α(kl))} . (37)

Using (31) and (34), we have

E {V (x(kl), α(kl))} ≤ μE {V (x(kl), α(kl−1))} . (38)

Therefore, it follows from (37)–(38) and the relationship ϑ = Nα(k0, k) ≤ (k −
k0)/Ta that

E {V (x, α)} ≤ βk−klμE {V (x(kl), α(kl−1))}
≤ · · ·
≤ β(k−k0)μϑE {V (x(k0), α(k0))}
≤ (βμ1/Ta )(k−k0)E {V (x(k0), α(k0))} . (39)
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Notice from (34) that there exist two positive constants a and b (a ≤ b, and they
are defined in (33)) such that

E {V (x, α)} ≥ aE
{
‖x(k)‖2

}
, E {V (x(k0), α(k0))} ≤ b ‖x(k0)‖2 . (40)

Combining (39) and (40) yields

E
{
‖x(k)‖2

}
≤ 1

a
E {V (x, α)} ≤ b

a
(βμ1/Ta)(k−k0) ‖x(k0)‖2 .

Furthermore, letting ρ �
√
βμ1/Ta , it follows that

E {‖x(k)‖} ≤
√

b

a
ρ(k−k0) ‖x(k0)‖ .

By Definition 11, we know that if 0 < ρ < 1, that is, Ta > T ∗
a = ceil

(
− lnμ

ln β

)
,

the discrete-time switched stochastic hybrid system in (27) with u(k) = 0 and
ω(k) = 0 is mean-square exponentially stable, where function ceil(h) represents
rounding real number h to the nearest integer greater than or equal to h. The
proof is completed. �
Remark 14. In Theorem 13, we propose a sufficient condition for the mean-
square exponential stability condition for the considered the discrete-time
switched stochastic hybrid system in (27) with u(k) = 0 and ω(k) = 0. Here, β
plays a key role in controlling the low bound of the average dwell time, which
can be seen from Ta > T ∗

a = ceil
(
− lnμ

ln β

)
, specifically, if β is given a smaller

value, the low bound of the average dwell time becomes smaller with a fixed μ,
which may result in the instability of the system.

Remark 15. Note that when μ = 1 in Ta > T ∗
a = ceil

(
− lnμ

ln β

)
we have Ta > T ∗

a =

0, which means that the switching signal α(k) can be arbitrary. In this case, (31)
turns out to be P (i) = P (j) = P , ∀i, j ∈ N , and the proposed approach becomes
quadratic one thus conservative. In this case, the system in (27) with u(k) = 0
and ω(k) = 0 turns out to be a discrete-time stochastic system. On the other
hand, when β = 1 in Ta > T ∗

a = ceil
(
− lnμ

ln β

)
, we have Ta = ∞, that is, there is

no switching.

Now, we investigate the weighted H∞ performance for the following system:{
x(k + 1) = A(α(k))x(k) +B2(α(k))ω(k) + E(α(k))x(k)�(k),

z(k) = C(α(k))x(k).
(41)

Theorem 16. For given constants 0 < β < 1 and γ > 0, suppose that there
exist matrix P (i) > 0 such that for i ∈ N ,⎡

⎢⎢⎣
−βP (i) + CT (i)C(i) 0 AT (i)P (i) δET (i)P (i)

� −γ2I BT
2 (i)P (i) 0

� � −P (i) 0
� � � −δP (i)

⎤
⎥⎥⎦ < 0, (42)
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then the discrete-time switched stochastic system in (41) is mean-square expo-
nentially stable with a weighted H∞ performance level γ for any switching signal
with average dwell time satisfying Ta > T ∗

a = ceil
(
− lnμ

ln β

)
, where μ ≥ 1 satisfies

(31).

Proof. The proof of mean-square exponential stability can be refereed to the
proof of Theorem 3. Now, we will establish the weighted H∞ performance defined
in (28). To this end, introduce the following index:

J � E
{
ΔV (x, α) + (1− β)V (x, α) + zT (k)z(k)− γ2ωT (k)ω(k)

}
, (43)

where the Lyapunov function V (x, α) is given in (34). By employing the same
techniques as those used in the proof of Theorem 13, and considering (42), for
k ∈ [kl, kl+1) we have J < 0. Let Γ (k) � zT (k)z(k)− γ2ωT (k)ω(k), then

E {ΔV (x, α)} < E {−(1− β)V (x, α) − Γ (k)} . (44)

Therefore, for k ∈ [kl, kl+1), it holds from (44) that

E {V (x, α)} < βk−klE {V (x(kl), α(kl))} −E

{
k−1∑
s=kl

βk−1−sΓ (s)

}
. (45)

Using (31) and (34), we have

E {V (x(kl), α(kl))} ≤ μE {V (x(kl), α(kl−1))} . (46)

Thus, by (45)–(46) we have

E {V (x(k), α(k))} < βk−klE {V (x(kl), α(kl))} −E

{
k−1∑
s=kl

βk−1−sΓ (s)

}
,

E {V (x(kl), α(kl))} < βkl−kl−1μE {V (x(kl−1), α(kl−1))}

−μE

⎧⎨
⎩

kl−1∑
s=kl−1

βkl−1−sΓ (s)

⎫⎬
⎭ ,

E {V (x(kl−1), α(kl−1))} < βkl−1−kl−2μE {V (x(kl−2), α(kl−2))}

−μE

⎧⎨
⎩

kl−1−1∑
s=kl−2

βkl−1−1−sΓ (s)

⎫⎬
⎭ ,

...
E {V (x(k1), α(k1))} < βk1−k0μE {V (x(k0), α(k0))}

−μE

{
k1−1∑
s=k0

βk1−1−sΓ (s)

}
.
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Therefore, it follows from the above inequalities and the relationship ϑ =
Nα(k0, k) ≤ (k − k0)/Ta that

E {V (x(k), α(k))} < βk−klE {V (x(kl), α(kl))} −E

{
k−1∑
s=kl

βk−1−sΓ (s)

}

< βk−k0μNα(k0,k)E {V (x(k0), α(k0))}

−βk−k1μNα(k0,k)E

{
k1−1∑
s=k0

βk1−1−sΓ (s)

}

−βk−k2μNα(k1,k)E

{
k2−1∑
s=k1

βk2−1−sΓ (s)

}
− · · ·

−βk−kl−1μ2E

⎧⎨
⎩

kl−1−1∑
s=kl−2

βkl−1−1−sΓ (s)

⎫⎬
⎭

−βk−klμE

⎧⎨
⎩

kl−1∑
s=kl−1

βkl−1−sΓ (s)

⎫⎬
⎭

−E

{
k−1∑
s=kl

βk−1−sΓ (s)

}

= βk−k0μNα(k0,k)E {V (x(k0), α(k0))}

−E

{
k−1∑
s=k0

βk−1−sμNα(s,k)Γ (s)

}
. (47)

Under zero initial condition, that is, x(0) = 0, (47) implies

E

{
k−1∑
s=k0

βk−1−sμNα(s,k)zT (s)z(s)

}
< γ2E

{
k−1∑
s=k0

βk−1−sμNα(s,k)ωT (s)ω(s)

}
.

Multiplying both sides of the above inequality by μ−Nα(0,k) yields

E

{
k−1∑
s=k0

βk−1−sμ−Nα(0,s)zT (s)z(s)

}
< γ2E

{
k−1∑
s=k0

βk−1−sμ−Nα(0,s)ωT (s)ω(s)

}
.

Notice that Nα(0, s) ≤ s/Ta and Ta > − lnμ
ln β , we have Nα(0, s) ≤ −s lnβ

lnμ . Thus,
the last inequality implies

E

{
k−1∑
s=k0

βk−1−sμs ln β
lnμ zT (s)z(s)

}
= E

{
k−1∑
s=k0

βk−1−sβszT (s)z(s)

}

< γ2E

{
k−1∑
s=k0

βk−1−sμ−Nα(0,s)ωT (s)ω(s)

}
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< γ2E

{
k−1∑
s=k0

βk−1−sωT (s)ω(s)

}
.

which yields that

E

{ ∞∑
s=k0

βszT (s)z(s)

}
< E

{ ∞∑
s=k0

ωT (s)ω(s)

}
.

By Definition 12, we know that system (41) is mean-square exponentially stable
with a weighted H∞ performance level γ. This completes the proof. �

3.3 The Sliding Mode

We design the following sliding surface function:

s(k) = G(i)x(k) −G(i) (A(i) +B1(i)K(i))x(k − 1), (48)

where G(i) ∈ Rm×n and K(i) ∈ Rm×n are real matrices to be designed. Matrix
G(i) is designed to satisfy that G(i)B1(i) is nonsingular and G(i)E(i) = 0. A
necessary condition for the existence of such matrix G(i) is that there does not
exist a common column vector in both B1(i) and E(i).

As is well known, when the system trajectories reach onto the sliding surface,
it follows that s(k + 1) = s(k) = 0 (for the ideal sliding mode). Therefore,
for k ∈ [kl, kl+1) (i.e., the switched system operates in one of N modes), by
s(k + 1) = 0, we have

s(k + 1) = G(i)

[
A(i)x(k) +B1(i) (u(k) + f(x, k)) +B2(i)ω(k)

+E(i)x(k)�(k)

]
−G(i) (A(i) +B1(i)K(i))x(k) = 0.

Thus, solving the above equation for u(k), the equivalent control for the sliding
motion is given by

ueq(k) = K(i)x(k)− f(x, k)− (G(i)B1(i))
−1

G(i)B2(i)ω(k). (49)

Substituting (49) into (27), the sliding mode dynamics can be obtained as

x(k + 1) = Â(i)x(k) + B̂2(i)ω(k) + E(i)x(k)�(k), (50)

where

Â(i) � A(i) +B1(i)K(i),

B̂2(i) �
[
I −B1(i) (G(i)B1(i))

−1
G(i)

]
B2(i).

In the following, we analyze the stability and performance of the sliding mode
dynamics in (50) based on Theorem 16.
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Proposition 17. For given constants 0 < β < 1 and γ > 0, suppose that there
exist matrix P (i) > 0 such that for i ∈ N ,⎡

⎢⎢⎣
−βP (i) + CT (i)C(i) 0 ÂT (i)P (i) δET (i)P (i)

� −γ2I B̂T
2 (i)P (i) 0

� � −P (i) 0
� � � −δP (i)

⎤
⎥⎥⎦ < 0, (51)

then the sliding mode dynamics in (50) is mean-square exponentially stable with
a weighted H∞ performance level γ for any switching signal with average dwell
time satisfying Ta > T ∗

a = ceil
(
− lnμ

ln β

)
, where μ ≥ 1 satisfies (31).

Proof. The desired result can be obtained by referring to Theorem 16, and we
omit its proof. �

Proposition 18. For given scalars 0 < β < 1 and γ > 0, suppose that there
exist matrices P(i) > 0 and K(i) such that for i ∈ N ,⎡
⎢⎢⎢⎢⎣
−βP(i) 0 (A(i)P(i) +B1(i)K(i))

T
δP(i)ET (i) P(i)CT (i)

� −γ2I B̂T
2 (i) 0 0

� � −P(i) 0 0
� � � −δP(i) 0
� � � � −I

⎤
⎥⎥⎥⎥⎦ < 0, (52)

then the sliding mode dynamics in (50) is mean-square exponentially stable with
a weighted H∞ performance level γ for any switching signal with average dwell
time satisfying Ta > T ∗

a = ceil
(
− lnμ

ln β

)
, where μ ≥ 1 satisfies

P(i) ≤ μP(j), ∀i, j ∈ N . (53)

Moreover, if the conditions above are feasible, the matrix K(i) in (48) can be
given by

K(i) = K(i)P−1(i). (54)

Proof. The desired result can be obtained by performing a congruence transfor-
mation to (51) by diag{P(i), I,P(i),P(i)} (where P(i) = P−1(i)) and letting
K(i) = K(i)P(i). �

Now, we synthesize a sliding mode controller to drive the system trajectories
onto the pre-defined sliding surface s(k) = 0. To this end, considering (27) and
(48), we have

s(k + 1) = G(i)x(k + 1)−G(i) (A(i) +B1(i)K(i))x(k),

= G(i) {A(i)x(k) +B1(i) [u(k) + f(x, k)] +B2(i)ω(k)}
−G(i) (A(i) +B1(i)K(i))x(k)

= −G(i)B1(i)K(i)x(k) +G(i)B2(i)ω(k)

+G(i)B1(i) [u(k) + f(x, k)] . (55)
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Theorem 19. Consider the discrete-time switched stochastic hybrid system in
(27). Suppose that the sliding surface function is designed as (48) with K(i) being
solved by (54), then the state trajectories of system (27) can be driven onto the
sliding surface s(k) = 0 in a finite time by the following sliding mode controller:

u(k) = (G(i)B1(i))
−1 {−Λs(k) +G(i)B1(i)K(i)x(k)

− (+χ ‖G(i)B1(i)‖ ‖x(k)‖+‖G(i)B2(i)‖ ‖ω(k)‖) sign (s(k))} , (56)

where Λ is a positive definite matrix, and  is a positive scalar.

Proof. Setting Δs(k) = s(k + 1)− s(k), and then considering (55), we have

Δs(k) = s(k + 1)− s(k)

= −G(i)B1(i)K(i)x(k) +G(i)B2(i)ω(k)

+G(i)B1(i) [u(k) + f(x, k)]− s(k). (57)

Substituting (56) into (57) yields

Δs(k) = −(Λ+ I)s(k) +G(i)B2(i)ω(k) +G(i)B1(i)f(x, k)

− (+χ ‖G(i)B1(i)‖ ‖x(k)‖+‖G(i)B2(i)‖ ‖ω(k)‖) sign (s(k)) . (58)

Choose a Lyapunov function of the following form:

V (k) =
1

2
sT (k)s(k). (59)

Thus, considering (58) and ‖s(k)‖ ≤ |s(k)|, we have

ΔV (k) = sT (k)Δs(k) +
1

2
ΔsT (k)Δs(k)

= sT (k) [−(Λ+ I)s(k) +G(i)B2(i)ω(k) +G(i)B1(i)f(x, k)]

− (+ χ ‖G(i)B1(i)‖ ‖x(k)‖+ ‖G(i)B2(i)‖ ‖ω(k)‖) |s(k)|
+
1

2
ΔsT (k)Δs(k)

≤ −sT (k)(Λ + I)s(k)− ‖s(k)‖+ 1

2
ΔsT (k)Δs(k).

Since Λ is a positive definite matrix to be tuned, an appropriate Λ can be se-
lected large enough such that ΔV (k) < 0 as while as s(k) being within a cer-
tain bounded region containing the equilibrium point. Then Δs(k) is reasonable
bounded although it is not asymptotically convergent to zero, which shows that
the trajectory of (27) can be driven onto the sliding surface by the control law
(56) and be maintained there. This completes the proof. �

4 An Illustrative Example

Consider system (1) with N = 2 and the following parameters:

A(1) =

⎡
⎣−1.1 0.7 −2.1

1.8 −0.5 −0.7
0.2 2.0 0.5

⎤
⎦ , E(1) =

⎡
⎣0.3 0.1 0.1
0.1 0.3 0.3
0.2 0.1 0.1

⎤
⎦ , B(1) =

⎡
⎣1.2
0.8
0.5

⎤
⎦ ,
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A(2) =

⎡
⎣1.1 0.9 1.0
0.2 0.5 −0.6
0.3 0.6 −0.4

⎤
⎦ , E(2) =

⎡
⎣0.2 0.1 0.2
0.1 0.3 0.1
0.2 0.2 0.2

⎤
⎦ , B(2) =

⎡
⎣0.5
1.2
0.4

⎤
⎦ .

Suppose β = 0.5 and f(x(t), t) = 0.5 exp(−t) sin(
√

x2
1(t) + x2

2(t) + x2
3(t)) (thus

ψ can be chosen as ψ = 0.5). Our aim is to design the SMC law u(t) in (24) such
that the resulting closed-loop system is stable for Ta > T ∗

a = 0.1 (the allowable
minimum of μ is μmin = 1.0513). Solving conditions (21)–(23) in Theorem 8, we
have

K(1) =
[−0.4406 −2.6407 −1.9182

]
,

K(2) =
[−2.9942 −0.7920 −1.5538

]
.

We choose G(1) =
[
5 1 −8

]
and G(2) =

[
4 2 −5

]
. Thus, the sliding surface

function defined in (2) is given by

s(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

s(t, 1) =
[
5 1 −8

]
x(t)

−
∫ t

0

[−6.5338 −20.3939 −20.5708
]
x(θ)dθ, i = 1,

s(t, 2) =
[
4 2 −5

]
x(t)

−
∫ t

0

[−3.8862 −0.3008 1.0708
]
x(θ)dθ, i = 2,
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Fig. 1. Simulation results
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and the SMC law designed in (24) can be computed as

u(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(t, 1) =
[−0.4406 −2.6407 −1.9182

]
x(t)

−0.3571 (+ 1.4 ‖x(t)‖) sign (s(t, 1)) , i = 1,

u(t, 2) =
[−2.9942 −0.7920 −1.5538

]
x(t)

−0.4167 (+ 1.2 ‖x(t)‖) sign (s(t, 2)) , i = 2.

Set the initial condition be x(0) =
[−1 0.5 1

]T and  = 0.5. By using the
discretization approach [15], we simulate the standard Brownian motion. Some
initial parameters are given as follows: the simulation time t ∈ [0, T ∗] with
T ∗ = 10, the normally distributed variance δt = T∗

N∗ with N∗ = 211, the step size
Δt = ρδt with ρ = 2, and the number of discretized Brownian paths p = 10. Figs.
1(a)–1(b) display the simulation results along an individual discretized Brownian
path. Specifically, Fig. 1(a) shows the states of the closed-loop system, and the
sliding surface function is given in Fig. 1(b). Figs. 1(c)–1(d) are, respectively,
the simulation results on x(t) and s(t) along 10 individual paths (dotted lines)
and the average over 10 paths (solid line).

5 Conclusions

The problems of SMC of continuous- and discrete-time switched stochastic hy-
brid system have been investigated in this chapter, respectively. For both
continuous- and discrete-time cases, integral sliding surface functions have been
designed, and sufficient conditions for the existence of sliding mode have been
established in terms of LMIs, and the explicit parametrization of the desired slid-
ing surface functions has also been given. Then, SMC laws for reaching motion
have been synthesized to drive the state trajectories of the closed-loop systems
onto the predefined sliding surface in a finite time. A numerical example has
been provided to illustrate the effectiveness of the proposed design scheme for
the continuous-time case.
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Abstract. This chapter focuses on the applications of Sliding Mode Control
(SMC) in unmanned aerial vehicle applications. It considers small scale vehi-
cles and its autopilot as a sliding mode controller. The needs of the reality are
discussed and a simulation example is given to support the claims. It is seen that
robustness property of sliding mode control is an important feature in applica-
tions subject to uncertainty and imprecision. Unmanned aerial vehicle applica-
tions therefore best suit the discussion of the versatility of sliding mode control
technique.

1 Introduction

The research on the applications of Unmanned Aerial Vehicles (UAVs) has been a hot
topic of the previous 20 years. The rapid advances in the Very Large Scale Integration
(VLSI), electronics, Microelectromechanical Systems (MEMS) and signal processing
and single chip Application Specific Integrated Circuit (ASIC) solutions motivate the
construction of lightweight vehicles having some payload to perform a specific task.
Today, UAV design and development is considered by a wide range of researchers from
senior level student to experienced engineers working for UAV companies. A good
indicator of the growing interest to fly without human is illustrated in Fig. 1, where
the results of a Web of Science searches are shown. The search is made by the key-
word “unmanned aerial vehicle” and the total number of documents were counted for
each year. The trend shows that we will see more interesting UAV applications in the
future and UAVs will continue to be the subject of research papers/projects and com-
mercial/military applications.

A UAV is a flying robot having its own power supply, having no human pilot and
maintaining the flight through an appropriate scheduling of aerodynamic forces either
autonomously or by remote control. The UAV systems are capable of being invisible to
radars and of performing formation flight. With such properties, a UAV system is cheap
enough to sacrifice and powerful enough to carry sensors, camera and communication
systems and lightweight weapons. More importantly, a UAV can maintain the flight
beyond the limits of a human pilot.

The formal categorization of UAVs is made in according to their maximum altitude
and endurance. Figure 2 illustrates the classes of UAVs, namely mini, tactical, operative
and strategic UAVs are today being considered by academia, industry and governments

c© Springer International Publishing Switzerland 2015 239
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240 M. Önder Efe

1990 1995 2000 2005 2010
0

50

100

150

200

250

300

350

400

Years

Number of Published Documents According to Web of Science

Fig. 1. The trend of UAV research outcomes since 1991

for purposes ranging from agriculture to military applications. The complexity of sys-
tems is the highest for the strategic UAVs whereas that for mini and micro UAVs is
minimal. The focus of this work is the use of SMC for mini UAVs.
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Fig. 2. Categorization of UAVs according to their maximum altitude and endurance

Such kinds of small scale and highly versatile systems are used in a wide spectrum
of applications. For instance, collecting information (imaging, pursuit, searching, video
acquisition and reconnaissance), security, surveillance, control (smuggling prevention),
targeting, meteorologic and agricultural applications, traffic management and steering,
telemetry (remote sizing) and crisis management after natural disasters are some of the
examples at a first glance.
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Accomplishing these high level missions with UAV systems is critically depen-
dent upon the performance at low level command and control schemes. This fact has
made the design, prototyping, implementation and manufacturing of autopilot systems
a growing industry. The choice of the autopilot for a UAV system may depend upon the
mission statement yet, regardless of the mission statement, the vehicle must be robust
enough to cope with the difficulties of the operating environment. SMC systems are
very well known for their robustness against disturbances and invariances during the
sliding mode. The technique is known also as Variable Structure Control (VSC) as the
system during the sliding regime operates in a predefined subset of the phase space.

Conceptually, the controller design in this framework is based on the nominal repre-
sentation of the system about which the bounds of the uncertainties are assumed to be
available. The decision mechanism operates on the basis of switching on the different
sides of a decision boundary, which is called the sliding hypersurface [1–3], and the
goal of the design is to enforce the error vector toward this hypersurface during the
reaching phase. Once the error vector is confined to the sliding hypersurface, it obeys
the behavior imposed by the set of equations describing the hypersurface, i.e. sliding
mode starts and the error vector converges to origin. The control strategy is therefore
called sliding mode control in the related literature, [1–3]. During the sliding mode,
the control system becomes insensitive to the disturbances and uncertainties unless the
decision mechanism violates the physical limits for maintaining the sliding motion.

SMC strategy has been applied successfully in a wide variety of design problems
ranging from the control of motion control systems, and chemical processes to the con-
trol of chaotic systems. Hung et al., [1], review the control strategy for linear and nonlin-
ear systems and discuss the design for systems represented in canonical forms. Another
systematic examination of SMC approach is presented in [4], in which the practical
aspects of SMC design are assessed for both continuous-time and discrete-time cases
and a special consideration is given to the finite switching frequency, limited bandwidth
actuators and parasitic dynamics. Misawa discusses the SMC design for discrete-time
systems in [5] for the linear case and in [6] for the nonlinear case with unmatched un-
certainties, Sabanovic et al. [7] elaborate the chattering free SMC design, Bartolini et
al. [8] formulate the chattering-free SMC for MIMO systems, and Erbatur et al. [9] in-
vestigate the robustness properties of SMC technique on a 2-DOF direct drive SCARA
robot.

An extensive range of application domains of the SMC scheme with robustness prop-
erties motivate us to design the low level control laws for the quadrotor rotorcraft sys-
tem considered in this chapter and by some other researchers. For example Castillo
et al. [10, 11] perform real time experiments and assess the performance of a non-
linear controller. In [12], classical PID controller is considered and model based de-
sign is experimented. Hanford et al., [13], present a simple closed loop equipped with
MEMS sensors and PIC based processing unit. Hoffman et al., [14], achieve the for-
mation control by SMC technique and focuse on collision and obstacle avoidance by
extracting the state variables with a Kalman filter. Vision based control of the quadro-
tor rotorcraft system is studied in [15], which exploits the Moiré patterns, and in [16],
which utilizes double cameras. Camlica dwells on a linear quadratic controller in [17],
and Waslander puts an emphasis on the insufficiency of classical control methods and
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proposes the integral SMC associated with reinforcement learning to achieve multi
agent control. In [19], vehicle stabilization based on the backstepping technique is pre-
sented with successful results.

The current SMC design problem is involved with coupled and highly nonlinear
dynamics, noisy observations and demanding performance requirements. The organi-
zation of the chapter is as follows: The dynamic model of the vehicle is presented in
the next section, the SMC technique is presented in the third section, behavior control
is discussed next, simulation results and concluding remarks are given at the end of the
paper.

2 Quadrotor UAV Dynamics

A sketch of the quadrotor rotorcraft system studied in this study is shown in Fig. 3,
where the Euler angles and the cartesian coordinate frame are shown. The equations of
motion are given in (1) and the values of some variables seen are tabulated in Table 1.

Mẍ =−usθ (1a)

Mÿ = ucθ sφ (1b)

Mz̈ = ucθ cφ −Mg (1c)

ψ̈ = τ̃ψ (1d)

θ̈ = τ̃θ (1e)

φ̈ = τ̃φ (1f)

ψ

φ 

θ

Mg

u
f1f3

f2

f4

x

y

z
m1m3

m4

m2

ζ 

Fig. 3. General view of the quadrotor rotorcraft system
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where sθ is an abbreviation for sinθ while cθ stands for cosθ .

τ̃ =

⎛
⎝ τ̃ψ

τ̃θ
τ̃φ

⎞
⎠= J

−1(τ −C(η , η̇)η̇) (2)

Here η =
(

ψ θ φ
)T

, J(η) = T T
η ITη and

Tη =

⎛
⎝ −sθ 0 1

cθ sφ cφ 0
cθ cφ −sφ 0

⎞
⎠ (3)

I =

⎛
⎝ Ixx 0 0

0 Iyy 0
0 0 Izz

⎞
⎠=

⎛
⎝ Ixx 0 0

0 Ixx 0
0 0 2Ixx

⎞
⎠ (4)

The Coriolis and centripetal vector denoted by C(η , η̇) is defined as below and com-
puted as given by (31).

C(η , η̇) = J̇− 1
2

∂
∂η

(η̇T
J) (5)

J= Ixx

⎛
⎝ 1+ c2

θ c2
φ −cθ sφ cφ −sθ

−cθ sφ cφ 2− c2
φ 0

−sθ 0 1

⎞
⎠ (6)

J̇= Ixx

⎛
⎝ θ̇ s2θ c2

φ + φ̇s2φ c2
θ θ̇ sθ sφ cφ − φ̇c2φ cθ θ̇cθ

θ̇ sθ sφ cφ − φ̇c2φ cθ φ̇s2φ 0
θ̇cθ 0 0

⎞
⎠ (7)

C1,1 = C1,2 = C1,3 = 0

C2,1 = Ixx(ψ̇c2
φ s2θ + θ̇sφ cφ sθ − φ̇cθ )

C2,2 = Ixxψ̇sφ cφ sθ

C2,3 = −Ixxψ̇cθ (8)

C3,1 = −Ixx(ψ̇c2
θ s2φ + θ̇cθ c2φ )

C3,2 = −Ixx(ψ̇cθ c2φ − θ̇s2φ )

C3,3 = 0

where Ixx = Iyy =m�2, Izz = 2m�2. Model inputs and the aerodynamic forces ( fi) created
by each propeller are related to each other as described below.



244 M. Önder Efe

τψ =
4

∑
i=1

τmi (9a)

τθ = ( f3 − f1)� (9b)

τφ = ( f2 − f4)� (9c)

u =
4

∑
i=1

fi (9d)

In the above, fi = kω2
i and k > 0 is a motor gain, ωi denotes the angular velocity of ith

motor. (See [10, 11] for details).

Table 1. Physical Parameters of the Quadrotor UAV

mi Motor weight 0.08 kg
mb Battery weight 0.20 kg
M Total weight of the vehicle 0.52 kg
� Distance from motors to COG 0.205 m
g Gravitational acceleration 9.81 m/s2

The difficulties in the control of such an aerial robot is that the differential equations
describing it are nonlinear and coupled. Further, the system is an underactuated one
making the control a challenge under the presence of modeling uncertainties, imperfect
observations and the mathematical difficulties. In the next section, we consider the SMC
technique and then its application to the UAV considered here,[20].

3 An Overview of Sliding Mode Control

Assume that the plant under control has the structure described in (10), where ξ and ξ̇
are the states, and δ is the control input.

ξ̈ = F
(

ξ , ξ̇
)
+G

(
ξ , ξ̇

)
δ (10)

where G
(

ξ , ξ̇
)
�= 0. The design problem is to enforce the behavior of the system states

towards the desired trajectories, which are known. Denote the reference trajectories by
ξr and ξ̇r and the tracking errors by eξ = ξ − ξr and ėξ = ξ̇ − ξ̇r.

The crux of the SMC scheme is the definition of a sliding manifold, along which the
sliding motion is to take place. This quantity is denoted by s and is defined as below

s =

(
d
dt

+λ
)

eξ

= ėξ +λ eξ (11)
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where λ > 0 is the slope of the sliding line1. If a control law enforces the trajectories
in the phase space such that s = 0 holds true, then the errors converge asymptotically to
the origin as prescribed by ėξ =−λ eξ , whose solution is eξ (t) = eξ (0)e

−λ t .
In order to demonstrate stability, adopt the Lyaponuv function candidate given as

V =
1
2

s2 (12)

The time derivative of the Lyapunov function in (12) can be computed as follows

V̇ = sṡ

= s
(
ëξ +λ ėξ

)
= s

(
ξ̈ − ξ̈r +λ ėξ

)
= s

(
F
(

ξ , ξ̇
)
+G

(
ξ , ξ̇

)
δ − ξ̈r +λ ėξ

)
(13)

We would like to have V̇ = sṡ ≤ −σ |s| with σ being a positive constant. Dropping the
arguments of the functions F and G, and equating F +Gδ − ξ̈r +λ ėξ to −σsgn(s) and
solving for δ yields

δ =
1
G

(
−σsgn(s)−λ ėξ + ξ̈r −F

)
(14)

which ensures ṡ =−σsgn(s) and V̇ =−σ |s| is achieved in the closed loop. The control
law in (14) has two properties.

– If an initial condition, say (eξ (0), ėξ (0)) is not on the sliding hypersurface charac-
terized by s = 0, it is forced towards the hypersurface. In other words, the sliding
hypersurface is an attractor and the regime until it is reached is called the reaching
mode.

– If a trajectory is trapped into the sliding hypersurface, the system in the closed loop
behaves exactly as how the sliding regime prescribes. During this regime, the closed
loop control system becomes insensitive to disturbances to the extent allowed by
the design, and this mode is known as the sliding mode.

With such a control law, one naturally questions the selection of σ > 0. Assume the
plant given in (10) is a nominal plant, on which the SMC law is based. If the real plant
has uncertainties that enter the right hand side of (10) as below;

ξ̈ = F
(

ξ , ξ̇
)
+G

(
ξ , ξ̇

)
δ +Δ

(
ξ , ξ̇ , t

)
(15)

then the application of the control signal computed for the nominal plant would yield
the following result

ṡ =−σsgn(s)+Δ(·) (16)

1 In the current problem the system dynamics is a second order one, therefore the sliding man-
ifold is a line. In general, λ is mentioned as the slope parameter determining the speed of
convergence during the sliding regime.
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Clearly if σ > supξ ,ξ̇ ,t |Δ(ξ , ξ̇ , t)| then sṡ < 0 is ensured. The practical interpretation of
this is as follows: For large σ , the result stipulates that larger uncertainties are tolerable
however one has to consider the system specific details, e.g. time constants to determine
the best σ since a large value of σ will require very fast hitting the sliding hypersurface
as formulated by th ≤ |s(0)|

σ , the proof of which is straightforward.
In the practical applications of SMC systems, the original sign function is smoothed

by utilizing the approximation sgn(s) ≈ s
|s|+ε , where ε > 0. Since the sliding mode

entails s ≈ 0, the noise in the observed quantities becomes highly effective and the con-
troller can generate unnecessarily large control signals. This is known as the chattering
in the related literature, [3]. Utilizing the above approximation introduces a boundary
layer and eliminates the undesired chattering phenomenon significantly, [3]. This paper
adopts the same strategy in computing the sign of the quantity s. In the next section, we
present the design of SMC for the considered UAV system.

4 Control of the Vehicle Behavior

The control of the vehicle behavior is scrutinized under three subtitles as discussed
below. The underlying idea is to compute the desired value of the Euler angles and
quickly drive these angles to their desired values. In Fig. 4, the general structure of the
control system is shown, where the reference angle generation is followed by the angle
controllers thereby resulting in desired behavioral response.

rx

ry

rz

r

r

r

x y z 

x y z 
. . . . . . . . . 

z y x 

z y x 
. . .

U1

U2

U3

U4

Fig. 4. The block diagram of the control system structure

4.1 SMC of the Yaw Angle (ψ) and Altitude (z)

Denote the desired altitude by zr, the desired velocity in z-direction by żr and the desired
acceleration by z̈r. Define ez := z− zr, ėz := ż− żr and sz := ėz +λzez.

With these definitions, the controller postulated below will drive the vehicle to the
desired altitude.

u = M
z̈r −λzėz −σz

sz
|sz|+ε − μzsz + g

cθ cφ
(17)
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The control law above is accompanied by the following selection with ψr = 0.

τ̃ψ =−6ψ̇ − 9(ψ −ψr) (18)

The SMC law in (17) and the stabilizing law in (18) result in the maintenance of the
desired altitude.

4.2 SMC of the Roll Angle (φ ) and y-Position

Denote the desired position in y-direction by yr, the desired velocity by ẏr and the
desired acceleration by ÿr. Define ey := y− yr, ėy := ẏ− ẏr and sy := ėy +λyey. Define
the reference roll angle value as

φr := tan−1

(
ÿr −λyėy −σy

sy
|sy|+ε − μysy

z̈r −λzėz −σz
sz

|sz|+ε − μzsz + g

)
(19)

Clearly the control input u in (17) keeps the desired altitude and the behavior in z-
direction obeys ṡz =−σz

sz
|sz|+ε −μzsz. As soon as the transient regime in z direction and

ψ angle ends, the dynamic behavior in y-direction is governed by

ÿ =

(
z̈r −λzėz −σz

sz

|sz|+ ε
− μzsz + g

)
tanφ (20)

Obviously for φ ≡ φr, we would have ṡy =−σy
sy

|sy|+ε −μysy, then one could drive φ →
φr as quickly as possible and would ensure the stability in y-direction too. The control
of the roll angle is achieved by choosing

τ̃φ =−10φ̇ − 25(φ −φr) (21)

4.3 SMC of the Pitch Angle (θ ) and x-Position

Denote the desired position in x-direction by xr, the desired velocity by ẋr and the
desired acceleration by ẍr. Define ex := x− xr, ėx := ẋ− ẋr and sx := ėx +λxex. Define
the reference pitch angle value as

θr := tan−1

(
−

ẍr −λxėx −σx
sx

|sx|+ε − μxsx

z̈r −λzėz −σz
sz

|sz|+ε − μzsz + g
cosφ

)
(22)

The choice of u in (17) makes the behavior in x-direction as follows:

ẍ =

(
z̈r −λzėz −σz

sz

|sz|+ ε
− μzsz + g

)
tanθ
cosφ

(23)

If θ ≡ θr, we would have ṡx =−σx
sx

|sx|+ε −μxsx, then one could drive θ → θr as quickly
as possible and would ensure the stability in x-direction too. The control of the Euler
angle θ is achieved by setting

τ̃θ =−10θ̇ − 25(θ −θr) (24)
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Briefly, in order to achieve a desired response in the Cartesian space, as illustrated
in Fig. 4, the desired values for the Euler angles are computed and the orientation of
the UAV is driven to those particular values which eventually drives the vehicle to the
target position in cartesian coordinate system.

5 Simulation Studies

Two sets of simulation scenarios have been studied. In the first scenario, the reference
trajectories of the vehicle change only in one direction while the other two coordinates
are maintained at a constant value. This results in movements along the vertices of
rectangular volumes in the cartesian space. The second scenario illustrates the results
obtained when the quadrotor rotorcraft system is desired to move along a continuously
changing trajectory designed for takeoff.

In Table 2, the parameters of the SMC law and the simulations are summarized. One
should note that for such applications the selection of the best parameter set is a matter
of the design specifications as well as the capabilities of the vehicle under investigation.
After a short period of fine tuning by trial and error, we have fixed the values to the
tabulated values.

Table 2. Simulation Parameters

Δ t Simulation stepsize 0.1 sec.
T Simulation time (Flight time) 1300 sec.
σp Variance of positional noise 1e-5
σv Variance of velocity noise 1e-5

σx,σy,σz Reaching law parameter 0.1
μx,μy,μz Reaching law parameter 0.05
λx,λy,λz Slope parameters 0.1

ε Sign function smoothing par. 0.050

The results of the first scenario are illustrated in Fig. 5, where the UAV system follows
the reference trajectory very precisely. In the simulations, we have assumed that the
actuators are able to respond quickly and accurately, and we have not enforced limits on
the control signals. Further, we assume observation noise corrupting the measurements.
In the simulations, all velocities are assumed to be zero and positions are x(0) =−1.5,
y(0) = 1 and z(0) = 0 for Cartesian positions; and ψ(0) = 0.16 rad., θ (0) = 0.19 rad.
and φ(0) = −0.17 rad. Under these conditions, the obtained results have been found
satisfactory.

With the same initial conditions and controller settings, the reference profile is
changed to the one given below.

xr(t) =

{
0 t < 200 sec.

t−200
6 sin

( 2πt
200

)
t ≥ 200 sec.

(25)
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yr(t) =

{
0 t < 200 sec.

t−200
6 cos

(
2πt
200

)
t ≥ 200 sec.

(26)

zr(t) =
t

50
+ 1 (27)

The results obtained with these command signals are shown in Fig. 7 and Fig. 8.
Clearly the vehicle takes off and follows a spiral trajectory as the altitude is gradually
increased. The trajectory tracking ability is found to be very promising in this scenario
too. Clearly, the simultaneous changes in the command signals causes a difficulty for
the controller presented, yet, it displays certain degrees of robustness against such diffi-
culties and the adverse effects of the observation noise are alleviated successfully. The
effect of sudden changes in the command signals is also visible from the phase space
behaviors shown in Fig. 8.
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6 A Discussion of the Variants of SMC Technique

6.1 Intelligent and Adaptive Sliding Mode Control Techniques

Sliding mode control has benefited from the solutions offered in the realm of neural
networks, fuzzy logic, support vector machines, evolutionary computation and the like.
The essence of this collaboration lies in the fact that physical systems have mathemat-
ical models that are based on some assumptions. However, these assumptions are not
met fully in reality and a mismatch appears in between the reality and the model. In-
evitably, the engineer’s resource is the model upon which the closed loop is designed,
yet the controller staying in the loop is expected to alleviate difficulties caused by the
model mismatch. Despite the presence of numerous approaches based on hard comput-
ing, the solutions offered by intelligent and adaptive systems theory assume that there
are some numerical data that can be exploited toward the design of a learning control
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system. Indeed, having significant amount of nonlinearity and redundancy, neural net-
works and fuzzy systems introduce an massively interconnected structure into the loop,
where the controller can adapt itself to meet the desired performance specifications.

If we consider this discussion for the design and implementation of SMC systems,
obtaining an a priori information about the functional details of the plant under con-
trol via a number of numerical data is considered as a good initial condition to start
adaptation. Today, very powerful tuning algorithms are known and any SMC scheme
can exploit the power of those when an unknown or uncertain function is available in
the design. A detailed discussion and a list of most relevant literature on intelligent and
adaptive SMC approaches can be found in [21–23].

Another avenue exploiting the robustness property of sliding mode control is to use
the technique in the adaptation law of computationally intelligent systems. The dynam-
ics of the update law is designed using the switching nature of sliding mode control
and the tuning dynamics becomes robust against instantaneous spikes prescribed by the
conventional laws thereby providing a smoother convergence to desired solutions, [24].

6.2 Fractional Order SMC Technique

The birth of fractional calculus goes back to 1695, with a letter from Leibniz to
L’Hôpital, asking the meaning of derivative of order 1

2 . For few centuries the devel-
opments in the calculus of fractional mathematics have remained in theory yet with the
advances in the high speed computing technology, the operators of fractional domain
has become visible in applications covering a wide range from all disciplines, [26]. The
two popular definitions of fractional order differintegration are by Riemann-Liouville
and Caputo. Though both of them produce the same results, Caputo’s definition is more
suitable for the control systems engineering.

Caputo’s definition of the fractional order differentiation is given in (28), where β ∈
ℜ+ is the order of the differentiation and Γ (β ) =

∫ t
0 e−ttβ−1dt is the Gamma function.

Dβ u(t) =
1

Γ (m−β )

∫ t

0

Dmu(τ)
(t − τ)β+1−m

dτ, m− 1 ≤ β < m (28)

Now consider the fractional order state space system

x(βi)
i = xi+1, i = 1,2, . . . ,n− 1

x(βn)
n = F(·)+G(·)u (29)

where 0 < βi < 1 are the fractional differentiation orders, F(·) and G(·) are functions
of the state variables. Consider a given reference trajectory d1 = r, possessing the frac-
tional derivatives di = r(Qi),Qi =∑i−1

k=1 βk, i= 2,3, . . . ,n all being finite. Define the state
tracking errors ei := xi−di. Choose a sliding hypersurface s := en +∑n−1

i=1 λiei such that
the dynamics described by s = 0 is stable. Now differentiate s at order βn. This yields

s(βn) := e(βn)
n +

n−1

∑
i=1

λie
(βn)
i = f (·)+ g(·)u− d(βn)

n +
n−1

∑
i=1

λie
(βn)
i

:= −σsgn(s) (30)
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Solving the control signal would let us have

u =
d(βn)

n −F(·)−∑n−1
i=1 λie

(βn)
i −σsgn(s)

G(·) (31)

Indeed, the application of this signal forces the reaching dynamics s(βn) = −σsgn(s),
which enforces ss(βn) = −σ |s|< 0, s �= 0. Obtaining s(βn)(t)s(t)< 0 can arise in the

following cases. In the first case, s(t)> 0 and the integral
∫ t

0
s(ξ )

(t−ξ )β dξ is monotonically

decreasing. In the second case s(t) < 0 and the integral
∫ t

0
s(ξ )

(t−ξ )β dξ is monotonically

increasing. In both cases, the signal |s(t)| is forced to converge the origin faster than t−β .
A natural consequence of this is to observe a very fast reaching phase as the signal t−β

is a very steep function around t ≈ 0. In conventional sense, one can have the following
equalities to see the closed loop stability, [27].

s(βn) =−σsgn(s) (32)

Defining the fractional differintegration operator of order β by D(β ), integrating both
sides by order βn yields (33), and differentiating once at order unity gives (34).

s =−σD(−βn)sgn(s) (33)

ṡ =−σD(1−βn)sgn(s) (34)

According to [27], sgn(D(1−βn)sgn(s)) = sgn(s) and this proves that the chosen form
of the control signal causes sṡ ≤ 0. This result practically tells us that the locus de-
scribed by s = 0 is an attractor, and when confined to this subspace, the errors tend
towards the origin and the closed loop systems displays certain degrees of robustness
to uncertainties and becomes insensitive to disturbances entering the system through
control channels, [25].

6.3 Backstepping SMC Technique

Backstepping method is one of the approaches adopted in the control of mini UAVs. The
dynamics of the vehicle is suitable to apply the backstepping technique as it requires
an iterative design procedure. The control law obtained at the final stage necessitates
the knowledge of functional details embodying the vehicle dynamics and integrating
the scheme with SMC introduces robustness to alleviate plant-model mismatch. In the
literature, significant amount of work considering the backstepping SMC is reported
and some of which are devoted to the quadrotor particular form.

Consider the dynamic system

ẋi = xi+1, i = 1,2, . . . ,n (35)

ẋn = F(x1,x2, . . . ,xn)+G(x1,x2, . . . ,xn)u, G ≥ 0 (36)
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Let ri be the reference signal and the goal of the feedback control is to enforce xi → ri

and we have ṙi = ri+1 for i = 1,2, . . . ,n− 1. Choose the control law given by

u =− 1
G(x1,x2, . . . ,xn)

(
F(x1,x2, . . . ,xn)− ṙn − Ȧn + zn−1 + knzn

)
(37)

where kn > 0, A1 = 0 and z0 = 0. With these initial values, the intermediate variables
can be iterated as given below.

Ai+1 =−kizi + Ȧi − zi−1, i = 1,2, . . . ,n− 1 (38)

With such a control law, the following stability result is obtained.

n

∑
i=1

ziżi =
n

∑
i=1

−kiz
2
i (39)

This result shows asymptotic stability in the space spanned by the variables
z1,z2, . . . ,zn.

In ordinary SMC, the differences between the state variables and the corresponding
reference signals are considered as the variables of the phase space. When the back-
stepping technique is blended with SMC, phase space variables are defined in terms of
zis and the nested structure of the design procedure is followed similar to the discussion
presented above, [28]. The closed loop system, while controlled by a backstepping type
of a nonlinear controller, exhibits the desired features of SMC scheme.

7 Conclusions

Sliding mode control, since its birth, has been an interesting research topic for many re-
searchers. The robustness and invariance properties of the scheme has made it appealing
when the design environment is subject to uncertainties. Unmanned aerial vehicles is
another hot topic in control engineering and mechatronics. Having this picture in the
front, researchers have used the SMC not only for autopiloting, but also in the design of
adaptation laws. This work briefly describes the state of the art for SMC and unmanned
aerial vehicles research and considers the extensions with intelligence, adaptiveness,
non-integer designs and iterative nonlinear control designs. As a robust feedback con-
trol scheme, SMC can easily be integrated into many such domains and in the future,
its use in aggressive maneuver UAVs, robust and intelligent autopilots and enhanced
autonomy based on vision feedback will be the focus of research.
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Abstract. In this Chapter a combined discontinues sliding mode control (SMC) 
with feedback linearization control (FLC) applied for voltage source inverter-
fed induction motor are presented. The FLC guarantees the exactly decoupling 
of the motor speed and rotor flux control. Thus this control method gives a 
possibility to get very good behavior in both dynamic and steady states. The 
SMC approach assures direct control of inverter legs and allows using a simple 
table instead of performing PWM online calculation. Moreover, the SMC is 
robust to drive uncertainties. The good behaviour of rotor flux and mechanical 
speed Sliding Mode Observers (SMO) is the important feature of the system. 
Therefore, the presented approaches are very useful in a variety of applications 
and, in particular, in drive systems, robotics and power electronics. 

Keywords: induction motor control, discontinuous control, variable structure 
control, sliding mode control, sliding mode observers, feedback linearization, 
speed sensorless control, rotor flux observers, voltage source inverters.  

1 Introduction and Overview 

DC motors by their construction allow for a completely decoupled control of the flux-
forming current in exciting winding and the torque producing current in armature 
winding. Thanks to the complete separation of control winding and mechanical 
commutator operation, a very simple and low computing time control algorithms can 
be applied for high performance industrial DC drives. Contrary, the induction motor 
(IM) has simple construction, high reliability, low cost, and it can operates in 
aggressive or volatile environments (no problems with spark and corrosion). 
However, the IM with multi-phase winding and cage rotor is high order nonlinear 
dynamic system with internal coupling and therefore, it’s flux and torque cannot easy 
be controlled separately. Moreover, some state variables, rotor currents and fluxes, 
are directly not measurable. Additionally, rotor resistance (due to heating) and 
magnetising inductance (due to saturation) varies considerably with a significant 
impact on the system dynamics. Therefore, for high dynamic performance IM drives, 
complex control algorithms have to be used. Nevertheless, the advancements in 
semiconductor power electronic devices and Digital Signal Processors (DSP) enabled 
to apply IM in variable speed applications. Implementation of new control techniques 
in drive systems has made IM a reasonable alternative to DC motors. 



258       D.L. Sobczuk and M.P. Kazmierkowski 

 

The most popular high performance IM vector control method, known as Field 
Oriented Control (FOC) has been proposed by Blaschke [1]. In this method the IM 
equations are transformed in a coordinate system that rotates with the rotor flux 
vector. These new coordinates are called field coordinates. In field coordinates – only 
for the constant rotor flux amplitude - there is a linear relationship between control 
variables and speed [12]. Alternative to the FOC is the feedback linearization control 
(FLC) [2]. The application of this approach can take many forms, depending on the 
choice of variables used for the linearization. Marino et al. [3, 4] have proposed a 
nonlinear transformation of the IM state variables, so that in the new coordinates, the 
speed and rotor flux amplitude are decoupled by feedback. Note, that using the 
feedback linearization approach strictly linear and strictly decoupled system are 
obtained. Next, for the decoupled linear system several control algorithms could be 
applied. One of the important requirements in the control system is robustness against 
changing of object parameters. In this case the discontinues control such as Sliding 
Mode Control (SMC) could be used.  

The SMC creates a large group of theoretical research works and it’s applications. 
Basically, the SMC is a type of control using the Variable Structure Systems (VSS). 
The first works in these fields started in 50th of the 20th century in the Soviet Union 
and were developed in 60th and 70th (Emelyanow, 1967 [5], Itkis, 1976 [8], Utkin, 
1977 [6]) and still are continued. While it is impossible, in this connection, to quote 
all the relevant publications, mention should be made of the research group where 
much of the important works in this area has been done. These include those led by 
Professors Kaynak [16-23, 28, 30], Utkin [6,7, 38], Sabanovic [23, 29, 31], Slotine 
[26, 27],  Levant [14, 15], Orlowska-Kowalska [34], Boldea [37] and others.  

This chapter is divided into four sections. In section 2 the theoretical basics of the 
SMC will be introduced. In section 3 the application of feedback linearization to IM 
control will be presented. In Section 4 two algorithms will be presented. At first the 
sliding mode control will be used to control IM linearized in feedback [10]. The 
application of sliding mode control to such a system allows creating the direct control 
algorithms of the inverter [11]. Secondly, the Sliding Mode Observer (SMO) of rotor 
flux and mechanical speed used in the linearized IM control will be described [13]. 

2 Sliding Mode Control (SMC) 

2.1 Introduction 

At the beginning of 80th started more and more often applying the SMC methods in 
the various practical systems. Thus, the SMC methods found application in:   

- systems of automatic control in planes (Singh, 1989) [24], 
- control of servomechanisms (Hikita, 1988) [25], 
- design observers (Slotine, de Wit, 1991)  [26], 
- control robots (Slotine, Sastry, 1983) [27] and (Kaynak et al. 1984) [28], 
- control electric motors and in power electronics (Sabanovic, Izosimov, 1981) 

[29], 
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- current control in power converters (Kaynak, Sabanovic, 1994) [31],  
- speed sensorless control (Lascu, Boldea, 2009) [37] and (Comanescu, 2009) [40], 
and many others. 

Later, a second order SMC (2-SMC) was proposed by A. Levant [14,15] and 
Bartolini [32]. The 2-SMC is sometimes called SMC without chattering, because this 
disadvantageous phenomenon of classical first order SMC is strongly limited. 

Since in this book there are a few earlier theoretical chapters which cover the 
basics of SMC, the content of Section 2 is reduced to focus only on the specifics 
needed for control of induction motors discussed later. 

2.2 SMC for Linear Systems 

Let us assume, that the object is described by matrix equation:  
 

 x Ax b= + u                                                             (1) 
 
where:  
 

A ∈ Rn×n; b, x, ∈ Rn; u ∈ R.                                        (2) 
 
For SMC description the single input and single output (SISO) object can be 

written in the canonical form:  
 

 
uxax

xx

i

n

i
in

ii

+−=

=

∑
=

+

1

1 1-n,1,2, = ifor             …

                                

 (3) 

 
Let us assume that aim of control is zeroing of the output y = x1. Let u will be a 

function of the vector x with discontinuity surface determined by the equation s = 0, 
where  

 

 1  ,  ,
1

===∑
=

nii

n

i
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 (4)  

If trajectories are directed at the surface s = 0, then SMC occurred. The sufficient 
condition is:  
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 (5)  

 
It means that if s is positive, then its derivative should be negative and if s is 

negative, then its derivative should be positive. So, when the Eq.(5) is fulfilled, 
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trajectories will be attracted to the sliding surface. Thus, the resulting equation of the 
system working with SMC is as follows:  

 

 
i

n

i
in

ii

xx

xx

∑
=

−

+

−=

=

1
1

1

c

2-n,1,2, = ifor             …
                           (6) 

 
Note, that these equations are not dependent from control parameters but only from 

parameters ci.  
The main problem is to select control to meet the following properties:  

- the sliding mode must exist in all points of the surface s = 0,  
- control should provide reaching this surface.  

In the case of classical SM, the switching function, used in control is function 
sign(). 
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⎧

<
≥+

=
0  sif   1-

0 sif   1
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 (7) 

 
So the control of the SISO system is equal : 
 

 u=Vm sign(s)                                                               (8) 

3   Feedback Linearization Control (FLC) of Induction Motor 

The induction motor equations in per unit (pu) system is described in the following 
form: 

 
 x  = f (x) + usα gα + u sβ gβ                                                                        (9) 

 
Where 
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 (10) 

 
 gα = [0, 0, 1/σxs, 0, 0]T, gβ = [0, 0, 0, 1/σxs , 0]T                      (11) 

 
 x = [ψrα, ψrβ, isα, isβ, ωm]T                                                      (12) 
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and α= rr/xr; β = xM /(σxs xr ); γ=( rs xr
2 + rr xM

2
 )/(σxs xr 

2); μ= xM / (τMxr );  
σ = 1 - xM

2
 /(σxs xr ),  

 
where motor parameters  rr, rs are rotor and stator resistance in pu. system, and xr, 

xs, xM, are rotor, stator and main inductance in pu. system. 
 
Note that ωm, ψrα, ψrβ, are not directly dependent on control signals usα, usβ. In this 

case it is easy to choose two variables dependent on x only. Now the feedback 
linearization procedure will be applied. So we can define [2]: 

 
 φ1(x) = ψrα

2 + ψrβ
2 = ψ2                                           (13) 

 
 φ2(x) = ωm                                                                                                 (14) 

 
Let φ1(x), φ2(x) are the output variables. The aim of control is to obtain: 

 • constant flux amplitude, 
 • reference angular speed. 
 

Part of the new state variables we can choose according to (13), (14). So, the full 
definition of new coordinates is given by [3, 4]: 

 
                         z1  = φ1(x) 
                         z2  = Lf φ1(x) 

 z3  = φ2(x)                                                                          (15) 
                         z4  = Lf φ2(x) 

                         

z5 =
⎛

⎝
⎜
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⎞

⎠
⎟
⎟

arctan
ψ

ψ
r

r

β

α   
 

Where Lfh is the Lie derivative of h with respect to a vector field f : Lfh = (∇h)T f 

Note, that the fifth variable cannot be linearizable and the linearization can be only 
partial. Denote: 

 
 φ3(x) = z5                                                                                                       (16) 

 
then the dynamic of the system is given by: 

 
z1 = z2 

 

z2 = Lf
 2 φ1(x) + Lgα Lf φ1(x)  usα + Lgβ Lf φ1(x)  usβ  

           z3 = z4       (17) 

           z4  = Lf 
2 φ2(x) + Lgα Lf φ2(x)  usα + Lgβ Lf φ2(x)  usβ  

z5 = Lf 
2 φ3(x) 
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In the further part of this section we will consider the system consists of the first 
four equations, because the fifth variable is only responsible for the zero dynamics of 
the system. We can define linearizing feedback as [4]: 
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D is given by: 
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⎡
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After simple calculation, with the assumption that det(D) ≠ 0 what means that ψr ≠ 

0, the following equation is fulfilled: 
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and Lf
2φ1 , Lf

2φ2 are equal: 

 
Lf 

2φ1 = 2α [ (2α + αβ xM (ψrα
2 + ψrβ

2) + α xM
2 (isα

2 + isβ
2) -  

          (γxM + 3α xM) (ψrα isα +ψrβ isβ) + xM ωm (ψrα isβ - ψrβ isα)]        (21) 
Lf 

2φ2  = -μ [ωm (ψrα isα +ψrβ isβ) + βωm (ψrα
2 + ψrβ

2) +  
           (γ + α) (ψrα isβ - ψrβ isα)]     (22) 

 
The resulting system is described by the equations: 
 

z1 = z2 
z2 = v1       (23) 
z3 = z4 
z4  = v2 

 
So, the block diagram of the linearized system is shown in the Fig. 1(b) 
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Fig. 1. Block diagram of induction motor: a) in x-y field coordinates, b) with new control signals 
v1, v2 (feedback linearization) 

Control signals can be calculated by the following formulas: 

v1= k11 (z1 - z1ref) - k12z2                                                                             (24) 
 

v2= k21 (z3 - z3ref) - k22z4                                                                             (25) 

where coefficients k11, k12, k21, k22 are chosen to determinate closed loop system dynamic. 
Control algorithm consists of two steps (Fig. 2): 
 
• calculations v1 ,v2 according to Eq. (24), Eq. (25), 
• calculations usα , usβ according to Eq. (18). 

 
Fig. 2. Block diagram of Feedback Linearization Control (FLC) of inverter fed IM 

Application of the feedback linearization method gives us a possibility to get very 
good behaviour in steady and dynamical states. The main features and advantages of 
the presented control are: 
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• with control variables v1, v2 the FLC guarantee the exactly decoupling of the  
 motor speed and rotor flux control in both dynamic and steady states.  
• the FLC is implemented in a state feedback fashion and needs more complex signal  
 processing (full information about motor state variables and load torque is required). 
 
One should notice, that in contrast to the classical FOC system, where the control 

variables isx, isy, (see the block diagram in Fig. 1a) are not directly influences to the 
output variables m and ψr , in the FLC approach control variables v1, v2, (see the block 
diagram in Fig. 1b) causes that the system is directly and fully decoupled. However, 
the transformation and new control variables v1, v2 used in the FLC have no so direct 

physical meaning as isx, isy (flux and torque current, respectively) in the FOC system.  

A-FLC  B-FOC

 

Fig. 3. Comparison of speed reversal including field weakening of induction motor controlled 
via feedback linearization (left) with classical field oriented control (right). From the top:  
a) actual and reference speed (ωmref, ωm) b) torque m, c) flux component and amplitude  

(ψrα, ψr), d) flux current isx, e) torque current isy, f) current component isβ. 
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Fig. 3. shows oscillograms illustrating comparison of speed reversal including field 
weakening of IM controlled via feedback linearization with classical FOC.  

 
(a) (b)

v1

v2

m̂

rψ̂

v1

v2

m̂

rψ̂

 

Fig. 4. Experimental oscillograms illustrating decoupling performance with new control 
variables v1, v2 in the FLC scheme of Fig. 2; (a) torque tracking, (b) flux amplitude tracking 

The experimental oscillograms showing control signal v1, which controls flux 

amplitude and control signal v2, which controls electromagnetic torque are presented 

in Fig. 4. These results were measured on the laboratory setup with 3 kW IM, 
Mitsubishi 1200V and 50A IGBT inverter and dSPACE DS1102 control board. Note 
that well decoupling of flux and torque control as well as perfect flux amplitude and 
torque tracking performances are achieved.  

4 Sliding Mode Feedback Linearization Control of Induction 
Motor  

4.1 Introduction 

In this section two application examples of SMC for induction motor (IM) will be 
shown. At first the SMC is used to control of feedback linearized IM. The SMC 
application for such a system gives us the possibility creating the direct control 
algorithms of the transistor inverter. Secondly, the Sliding Mode Observer (SMO) of 
rotor flux vector and speed used in the feedback linearized induction motor will be 
described. 

4.2 Feedback Linearization with Sliding Mode  

In many publications the SMC is applied to FOC controlled IM [3, 4]. In this section 
application of the sliding mode technique to the resulting linear system obtained by 
feedback linearization is described. The robustness and the discontinuous nature of 
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Variable Structure Control permits to use this control technique to the inverter-fed 
induction motor drives. 

In SMC [7] the system structure is switched when the system state crosses the 
predetermined discontinuity line, so that the plant state slides along the reference 
trajectory. The design of SMC requires a suitable control law. The simplest way to 
solve this problem is to use bang-bang controller. In this case the absolute value of the 
control command v is constant and the sign is given by the sign of a commutation 
function s as follows: 

 
 v = vmax sgn(s)                                                                 (24) 

 
The controller gain vmax can be evaluated based on the existing condition of sliding 

mode Eq. (5). 
In the case of linearized IM, there are two error signals: 
 

e1 = z1ref - z1                                                            (25a) 
e2 = z3ref - z3                                                                                           (25b) 

 
where z1 and z3 are given in equations (3.5) – (3.7). Two sliding lines are defined as: 
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giving two control signals: 
 

v1 = v1max sgn(s1)                                                     (27a) 

v2 = v2max sgn(s2)                                                    (27b) 

 
Note that for each vector v1, v2 the conditions of Eq. (5) must be fulfilled and this 

gives us possibilities to choose a vector pattern for inverter control.  
In many papers [2-4], [33-36], where the nonlinear control of induction motor is 

described, the inverter model does not take into account. However, in the case of two-
level three-phase inverter, it is easy to show that using SMC approach one can find 
the voltage vector, from the set of eight possible vectors, which assure the correct 
system behaviour (i.e. according to sliding mode conditions). It is obvious that this 
approach is easy to extend for multilevel inverters.  

The simplest way of producing the inverter switch states is to check all possibilities 
and choose this one, which fulfil the sliding mode conditions. The algorithm could be 
performed in different ways using an appropriate Switching Table in the scheme 
shown in Fig. 5 (algorithm 1). 
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Fig. 5. The sliding mode control with switching table applied to the feedback linearized 
inverter-fed induction motor 

Table 1. Switching table in classical sliding mode 

sector s2>0, s1>0 s2>0, s1<0 s2<0, s1>0 s2<0, s1<0 

1 2 3 6 5 
2 3 4 1 6 
3 4 5 2 1 
4 5 6 3 2 
5 6 1 4 3 
6 1 2 5 4 

 
where sectors are defined by the angle of the rotor flux vector as shown in Table 2. 

Table 2. Definition of rotor flux sectors 

-π/6<ϕψr<π/6 1 
π/6<ϕψr<π/2 2 
π/2<ϕψr<5π/6 3 

5π/6<ϕψr<7π/6 4 
7π/6<ϕψr<3π/2 5 

3π/2<ϕψr<11π/6 6 
 

The algorithm could be modified in such a way, that in some situations we can 
choose zero vector instead of active vectors. In this case the sign of mechanical speed 
is taken to account, and the switching table is shown in Table 3 (algorithm 2). 

This approach is correct in steady state, but not correct in transients, because the SMC 
condition is not fulfilled in every time instance. In transient state another modification 
could be used. Inside the ε-neighborhood the algorithm with modification will be used 
and outside this region the algorithm which strictly fulfilled the sliding mode conditions 
will be applied (algorithm 3). 
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Table 3. Switching table in modified sliding mode 

sect. 
ωm>0, 

 s2>0, s1>0 

ωm>0, 

 s2>0, s1<0 ωms2<0 

ωm<0, 

s2<0, s1>0 

ωm<0, 

s2<0, s1<0 

1 2 3 0 6 5 

2 3 4 0 1 6 

3 4 5 0 2 1 

4 5 6 0 3 2 

5 6 1 0 4 3 

6 1 2 0 5 4 
 

 
The simulations of these algorithms are performed. The oscillograms obtained for 

FLC with sinusoidal PWM and with linear speed and rotor flux controllers as well as 
for FLC with sliding mode (algorithm 1) are shown in Fig. 6A and 6B. These 
oscillograms show the steady state behaviour of the above systems. As can be seen 
from figure 6B, it exists torque stress in some time instances. To guarantee better 
performance one can apply algorithm 2 presented in the Table 3. In Fig. 6C the 
simulation results obtained for SMC with modification are shown. When compare 
stator voltage vector path usβ(usα) of Fig. 6B and Fig. 6C, it can be seen that modified 
SMC algorithm select only neighbour voltage vectors. This guarantees elimination of 
the torque stress like in the case of operation with sinusoidal PWM (Fig. 6A).  

In Fig. 7 the transient response to speed reference step change is presented. The 
simulated oscillograms obtained for FLC with sinusoidal PWM and with linear speed 
and rotor flux controllers as well as for FLC with modified sliding mode (algorithm 3) 
are shown. These oscillograms show the dynamic behaviour of the above systems, 
which are similar to each other. 

A) FLC + PWM   B) FLC + SMC    C) FLC + modified SMC 

 

Fig. 6. Steady state operation of the induction motor controlled via feedback linearization with linear 
feedback and PWM (A), with SMC (B), and with modified SMC (C): a) stator currents isα, isβ, b) 
stator voltage usβ, c) electromagnetic torque m,  d) stator voltage vector path usβ(usα), e) stator current 
vector path isβ(isα) 
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A) FLC + PWM B) FLC + modified SMC 

 

Fig. 7. Transients to step change of the reference speed with induction motor controlled via 
feedback linearization with linear feedback and PWM (A) and with modified SMC (B);  
a) reference speed ωmref, b) actual speed ωm, c) electromagnetic torque m, d) rotor flux 
components and absolute value (ψrα, ψrβ, ψr), e) stator current component isα, f) stator voltage 
component usα 

4.3 Sliding Mode Observers 

4.3.1   Application of Sliding Mode Observers 
The sliding mode condition should be fulfilled, which imply the convergence to the 
prescribed surface. The main advantage of SMC is the robustness of the system. The 
sliding mode could be applied to observers in which the discontinues terms are used. 
In this section the Sliding Mode Observers (SMO) used for induction motor are 
presented. Recently many papers devoted to this topic were written [37] – [43]. In this 
work two different observers are presented, the parallel and serial SMO. 

The parallel Sliding Mode Observer of rotor flux we can calculate using following 
formulas: 
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Fig. 8. Parallel Sliding Mode Flux Observer 
 

where ψ α
ˆ

r , ψ β
ˆ

r , i s
ˆ

α , i s
ˆ

β  are estimated values of the rotor flux and stator currents, k is 

a positive convergence rate coefficient and Vα, Vβ  are discontinues functions of the 
current errors: 
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and V0>0. 
The block scheme of this observer is presented in Fig. 8. 
The serial SMO is based on current observer which is calculated by following 

formula: 
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and in this case the flux observer is 
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and 0

0
>V . 

The scheme of this observer is presented in Fig. 9. 
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Fig. 9. Serial Sliding Mode Flux Observer 

Knowing the estimated current, estimated rotor flux, and λ function values, we can 
express estimated rotor speed as [39]: 
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4.3.2   SMO Results 
The simulated and experimental oscillograms were obtained for FLC with space 
vector PWM and with Sliding Mode Flux Observers (Fig. 10).  

 

Fig. 10. Control of induction motor via feedback linearization with SM observers 
 
Simulation of two described flux vector estimators is shown in Fig. 11 and Fig. 12 

(steady state operation) and Fig. 13 and Fig. 14 (dynamic behaviour). It can be seen, 
that the parallel flux estimator has lower flux estimation error then serial one. 

These oscillograms confirm the good dynamic behaviour of the system, and the 
correct operation of Sliding Mode Flux Observers. Additionally, using a serial SMO 
there is possible to obtain mechanical speed (33). It should be noted, that for 
estimation of the rotor flux in FLC scheme (Fig. 10) the parallel SM observer is used. 
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Fig. 11. Simulation results for steady state operation (ωm=0.5 i mL=0.2) for parallel SMO a) 
current and voltage, b) speed and speed command, c) flux estimation errors, d) electromagnetic 
torque  
 
 

 
Fig. 12. Simulation results for steady state operation (ωm=0.5 i mL=0.2) for serial SMO a) 
current and voltage, b) speed and speed command, c) flux estimation errors, d) electromagnetic 
torque  
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Fig. 13. Dynamic behavior. The speed reversal ωm=-0,3 0,3 for parallel SMO. a) current and 
voltage, b) speed and speed command, c) flux estimation errors, d) electromagnetic torque. 

 

 
Fig. 14. Dynamic behavior. The speed reversal ωm=-0,3 0,3 for serial SMO. a) current and 
voltage, b) speed and speed command, c) flux estimation errors, d) electromagnetic torque. 

5 Summary and Conclusions 

This chapter presents several applications of sliding mode control (SMC) and sliding 
mode observers (SMO) for voltage sourced inverter-fed feedback linearized induction 
motor drives. Main features and advantages of described algorithms can be 
summarized as follows. 
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• The feedback linearization control (FLC) guarantees the exactly decoupling of the 
motor speed and rotor flux control in both steady and transient states. Since in 
the FLC chosen variables (ωm, ψr

2) and its derivative (ωm , ψ r
2) are used as new 

coordinates - this approach is well suited for sliding mode speed and position 
controllers. The SMC is robust. Therefore, the combination of these two 
methods allows achieving the advantages of both algorithms: decoupled and 
robust control system. 

• SMC assures direct control of inverter legs and allows using a simple table instead 
of performing complicated online calculation. 

• In speed sensorless systems the good behaviour of rotor flux and mechanical speed 
SMOs is the important feature which allows achieving very good performances. 

 
Thus, the sliding mode and feedback linearization, both together and separately, offer 
an interesting perspective in future research. These approaches are also a good 
alternative to other modern solutions, such as predictive and adaptive systems, and 
soft computing. SMOs are frequently used in drive systems. The SM based controllers 
work well in switching systems, and are recommended for systems which parameters 
are variable or not accurately set. Therefore, one can say that these approaches are 
very useful in a variety of applications, in particular, in the drive systems, robotics 
and power electronics. 
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Abstract. The main contribution of this chapter is a new sliding mode
design for nonlinear systems. This method is based on Tensor Product
Model Transformation. It is partially extension and combination of the
classical optimal manifold design for linear (or linearized) system and
sector sliding mode control. This new approach enables a systematic
design and decomposition of optimal sliding sector by the High Order
Singular Value Decomposition (HOSVD)-based canonical description of
a wide class of nonlinear systems. Two design examples and experimen-
tal results of a DSP-controlled single-degree-of-freedom motion-control
system are presented.

Keywords: Sector sliding mode, Tensor Product model based transfor-
mation, LPV systems.

1 Introduction

Sliding mode control of variable structure systems has a special role in the field
of robust control. On one hand, the exact description of sliding mode needs ad-
vanced mathematics, which was established by [3], [4] in the early sixty’s. On
the other hand, it is quite easy to implement in most engineering systems ([18],
[22]), a simple relay is satisfactory in most cases. The main utility of sliding
mode in control design problems is to decouple the highly coupled nonlinear dy-
namics, and to desensitize the performance to variations of the unknown system
parameters.

The initial works on sliding mode control were followed by a large number
of research papers in robotic manipulator control, in motor drive control and in
the field of power electronics since they are typical variable structure systems.
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The sliding mode is applied for disturbance rejection [12] and substantial efforts
placed in integration of sliding mode control with soft computing [36].

Nowadays sliding mode control is one of the most popular robust control meth-
ods for the engineering systems ([2], [30], [28]). However, despite the theoretical
predictions of superb closed-loop system performance of sliding mode, some of
the experimental work indicated that sliding mode has limitations in practice,
due to the need for a high sampling frequency to reduce the high-frequency os-
cillation phenomenon about the sliding mode manifold, collectively referred to
as ”chattering”. In most of the experimental work involving sliding mode ([35]),
the effort spent on understanding the theoretical basis of sliding mode control
is generally minimized, while a great deal of energy was invested in empirical
techniques to reduce chattering.

Sliding sector was introduced by [5], [6], [24] as a promising method to reduce
the chattering. Another approach of sliding sector is proposed by [31], [17]. The
systematic sliding manifold design for linear systems was proposed by [25]. As
an extension of that method, various linear control design methods based on
state feedback (pole placement, LQ optimal, frequency shaped method, H∞)
were proposed for optimal sliding manifold design.

A new HOSVD-based canonical description of a wide class of nonlinear sys-
tems was proposed by [1] which enables a systematic controller design for a
wide class of nonlinear systems. A new approach of sliding sector design will
be proposed in this chapter, which enables a systematic and tractable design
for linear parameter variant (LPV) systems as well. This chapter will propose
and investigate the combination of three concepts: sector sliding mode control
[31], the classical surface design for the linear systems [25] and the TP model
transformation (see in Fig. 1)). The first initial works were published in [13],
[15].

2 Brief Overview of a Sliding-Mode Controller Design for
Linear Time Invariant Systems

The design of a sliding-mode controller consists of three main steps. First is the
design of the sliding surface, the second step is the design the control law which
holds the system trajectory on the sliding surface, and the third and key step is
the chattering-free implementation.

2.1 Sliding Manifold Design for Linear Time Invariant Systems

The following linear time invariant (LTI) system is considered; first the reference
signal is supposed to be constant and zero.

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
, (1)

where x(t) ∈ R
n is the state, u(t) ∈ R

m is the input and y(t) ∈ R
l is the output

with l ≤ n and A,B,C,D are constant matrices of suitable dimensions.
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Fig. 1. Sliding mode control

The LTI system in Eq. (1) can be transformed to a regular form [20]:[
ẋ1

ẋ2

]
=

[
A11 A12

A21 A22

] [
x1

x2

]
+

[
0
B2

]
u, (2)

where x1 ∈ R
n−m, x2 ∈ R

m.
The switching surfaces of the sliding mode, where the control vector compo-

nents have discontinuities, can be written in the following form

σ = x2 +Kx1 , σ ∈ R
m. (3)

When sliding mode occurs, σ = 0 and x2 = −Kx1. The design problem of the
sliding surfaces can be regarded as a linear state feedback control design for the
following subsystem:

ẋ1 = A11x1 +A12x2. (4)

In Eq. (4), x2 can be considered as the input of the subsystem. A state feedback
controller x2 = −Kx1 for this subsystem gives the switching surface of the whole
variable structure system (VSS) controller. In sliding mode

ẋ1 = (A11 −A12K)x1. (5)

Various linear control design methods based on state feedback are applicable to
the design of the switching surfaces. Recently, many papers have appeared on
optimal sliding surface design.
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Table 1. Summary of Optimal Switching Surface Design

Method Cost Function Design Parameter

LQ [27],[26] J =
∫ ∞
0

(
x1(t)

TQx1(t) + xT
2 Rx2

)
dt

Q
R

Frequency
shaped LQ
[33]

J = 1
2π

∫∞
−∞

(
x∗
1(jω)Qx1(jω) + x∗

2(jω)R(ω2)x2(jω)
)
dω

Q
R(ω2) =

W ∗
2 (jω)W2(jω)

H2,H∞ [11] J = ‖Gzw‖2, ‖Gzw‖∞ (Gzw is the transfer matrix
of the generalized plant)

weights of control
input and error, ...

Linear Quadratic Approach. According to LQ design [27],[26], the cost func-
tion (6) is minimized by solving the well known Riccati equation to achieve the
optimal feedback gain for subsystem (4):

J =

∫ ∞

ts

(xT
1 Qx1 + 2xT

1 Nx2 + xT
2 Rx2) dt. (6)

where ts is the time at which sliding mode begins. (For simplicity, N = 0 is
assumed.) The LQ optimal sliding surface is given by

σ = x2 +KLQx1, KLQ = R−1AT
12P, (7)

where P > 0 is a unique solution of the following Riccati equation

PA11 +AT
11P − PA12R

−1AT
12P +Q = 0. (8)

Frequency Shaped LQ Approach. The frequency shaped sliding mode [33]
comes from frequency shaped LQ method [7]. Frequency shaped LQ approach is
based on frequency dependent weights. The cost function (6) can be written in
the frequency domain using Perseval’s theorem as

J =
1

2π

∫ ∞

−∞
xT
1 (jω)Qx1(jω) + xT

2 (jω)Rx2(jω) dω. (9)

In the time domain (6), Q and R are constant matrices. If instead of a constant
R, a frequency dependent weight matrix R(ω2) is introduced, control inputs for
certain frequencies can be amplified or suppressed. We can choose R to have
high-pass characteristics for reduction of high frequency control inputs of the
subsystem (4).

This idea is realized using state space representation. The frequency depen-
dent weight R(ω2) must be a rational function of ω2 to solve this problem [7].
The transfer matrix W (s) is defined as

R(ω2) = W ∗(jω)W (jω), (10)
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where W ∗(s) stands for the conjugate transpose of W (s). The subsystem (4)
should be augmented by the states (written in the vector xw) of W (s). W (s)
has the following state space representation

ũ = W (s)x2

d
dtxw = Awxw +Bwx2

ũ = Cwxw +Dwx2

. (11)

Then the cost function (9) with a frequency dependent weight matrix R(ω2) can
be rewritten in the time domain as

J =

∫ ∞

0

xT
aQaxa + 2xT

aNax2 + xT
2 Rax2 dt, (12)

where ẋa = Aaxa+Bax2, xa =
[
xw x1

]T
, Aa = diag(Aw, A11), Ba =

[
Bw A12

]T
,

Qa = diag(CT
wCw, Q), Na =

[
CT

wDw 0
]T

, Ra = DT
wDw.

Minimization of this cost function with cross term between state and control
input is formulated as solving following Riccati equation

PaAa +AT
a Pa − (PaBa +Na)R

−1
a (BT

a Pa +NT
a ) +Qa = 0. (13)

The optimal switching plane is written using the solution of this Riccati equation
as

σ = x2 +KFSxa, KFS = R−1
a (BT

a Pa +NT
a ). (14)

H∞ Optimal Control Approach. Recently, linear control theory is well de-
veloped especially in the field of robust control. H∞ optimal control theory is
an excellent result of this development. Hashimoto [11] introduces H∞ control
methods for the optimal sliding surface design based on H∞ norm.

The control goal is formulated through a norm minimization of the generalized
plant G(jω), where H∞ norms are used to formulate the cost function. If G(jω)
is a stable transfer matrix in the frequency domain, than the H∞ norms are

‖G(s)‖∞ = sup
ω

σmax[G(jω)]. (15)

Various linear control design methods based on state feedback (pole place-
ment, LQ optimal, frequency shaped method, H∞) were proposed for (5) to
design the switching surfaces in the last decade. The main problem is that these
methods are not suitable for a non-linear system which is more challenging. The
solution can be the Tensor Product model transformation.

2.2 Control Law

To ensure that the system remains in the sliding mode (σ = 0) the condition

σ̇σ < 0 (16)
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should hold. The simplest control law which can lead to sliding mode is the relay:

u = M · sign(σ) (17)

This is easy to realize by power electronic circuits. The relay type of controller
can directly control the semiconductor switching elements, but it does not ensure
the existence of sliding mode for the whole state space, and relatively big values
of M is necessary which might cause a severe chattering phenomenon. This
control law is preferable if the controller’s sample frequency is nearly equal to
the maximum switching frequency of semiconductor switching elements.

If sliding mode exists then there is a continuous control, so-called ”equiva-
lent” control, ueq, which can hold the system on the sliding manifold. It can be
calculated from σ̇ = 0

σ̇ = ẋ2 +Kẋ1 = 0
σ̇ = A21x1 +A22x2 +B2u+K(A11x1 +A12x2) = 0

(18)

ueq can be expressed from (18)

ueq = − ((A21 +KA11)x1 + (A22 +KA12)x2) /B2 (19)

In the practice, there is never perfect knowledge of the whole system and its
parameters. Only ûeq, the estimation of ueq, can be calculated. Since ueq does not
guarantee the convergence to the switching manifold in general, a discontinuous
term is usually added to ûeq.

u = ûeq +M · sign(σ) (20)

The control laws (20) do not control the semiconductor switching elements di-
rectly; additional PWM is needed. Usually, this is no problem since the switching
frequency of the semiconductor elements can be much higher than the sampling
frequency of the fastest digital controller.

2.3 Chattering Free Implementation, Sector Sliding Mode

The chattering in the basic sliding mode control is essentially due to the require-
ment that the system state must stick to the switching surface. (detailed in [31])
There are several solutions for elimination of chattering. Here the sector sliding
mode is discussed since it can be extended for TP model based sliding mode
control.

Obviously this requirement is too restrict when only finite switching rate is
available. Replacing the switching surface to the sliding sector may enable the
system state to move continuously.

To implement the proposed approach, two sliding surfaces are defined first

σr = x2 +Krx1 = 0 r = 1, 2 (21)

Then the two sliding surfaces divide the whole state space into three regions
defined as
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Definition 1. Classical sector

R1 = {x |σ1(x) > 0 and σ2(x) > 0}
R2 = {x |σ1(x) < 0 and σ2(x) < 0}
R3 = {x |σ1(x)σ2(x) ≤ 0}

(22)

Here the region R3 is the sliding sector.
The control strategy of the proposed modified sliding mode control method is

u = ueq + ud, (23)

where ueq is the continuous ”equivalent” and ud is defined as

ud =

{
Msign

(
σ1+σ2

2

)
x ∈ R1 ∪R2

M σ1+σ2

|σ1|+|σ2| , x ∈ R3
(24)

As shown in Fig. 2, let’s represent the sector by the a surface of

σ = x2 +Kx1 = 0, (25)

where K = K1+K2

2 .

Fig. 2. Sliding sectors (In case of n = 2)

3 Sliding-Mode Controller Design for Linear Parameter
Varying (LPV) System

The three main steps of sliding mode design discussed in the previous chapter
are extended here for LPV systems.



284 P. Korondi et al.

3.1 Sliding Surface Design Based on Tensor Product Model
Transformation

This section is intended to discuss the fundamental of tensor product (TP) mod-
els. Consider a parametrically varying dynamical system

ẋ(t) = A(p(x))x(t) +B(p(x))u(t)

y(t) = C(p(x))x(t) +D(p(x))u(t)
, (26)

with input u (t), output y (t) and state vector x (t). The system matrix

S(p(x)) =

(
A(p(x)) B(p(x))
C(p(x)) D(p(x))

)
, S(p(x)) ∈ R

(n+1)×(n+1) (27)

is a parameter-varying object, where p(x) ∈ Ω is time varying N -dimensional
parameter vector, and is an element of the closed hypercube Ω = [a1, b1] ×
[a2, b2] × · · · × [aN , bN ] ∈ R

N . The parameter p(x) includes some elements of
x(t).

The TP model transformation starts with the given LPV model (27). First a
numerical discretization is performed over a hyper-rectangular grid on Ω. The
system is known in the discrete points and an interpolation technique is necessary
between the discrete points. The next step is reduction of the discrete model by
High Order Singular Value Decomposition [1], [21], which results in the TP
model representation:

S(p(x)) =

R∑
r=1

wr(p(x))Sr , (28)

where wr(p(x)) are weighting coefficients and

Sr =

⎛
⎝
(
A11r A12r

A21r A22r

) (
0

B2r

)
Cr Dr

⎞
⎠ . (29)

There are several selections of wr(p(x)) and Sr, from now on the canonical
form is applied [1] when

wr (p (x)) ∈ [0, 1] and

R∑
r=1

wr(p(x)) = 1. (30)

For further details about TP model transformation, refer to [1].
Since there are R system components Sr a sliding surface is designed for each

of them.
σr = x2 +Krx1 = 0. (31)

There are three cases:

– The nonlinearity is only inside of subspace (4)
– The nonlinearity is only outside of subspace (4)
– The nonlinearity is inside and outside of subspace (4)

The actual sliding mode design depends on the above cases.
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3.2 Control Law for Tensor Product Model Based Sliding Mode

If the nonlinearity is only inside of subspace (4), than the same poles are selected
for each subspace (4) and the sliding surfaces are calculated for the selected poles
in the each component system.

If the nonlinearity is only outside of subspace (4), than the equivalent control
is selected in such a way that

ûeq = ueq1 = ueq2 · · · = ueqR, (32)

where ueqi is calculated for each system Sr according to (19)

ueqi = − (A21i +KiA11i)x1 + (A22i +KiA12i)x2

B2i
. (33)

Note, ueqi is not the real equivalent control signal, and (32) itself cannot definite
the sliding surface.

If the nonlinearity is inside and outside of subspace (4), than the combination
of the above two solution is applied.

3.3 Sliding Mode Design Based on Tensor Product Transformation

The sliding sector design method can be extended for nonlinear systems given
in the form of (28).

The definition of the three regions can be extended in the following way

Definition 2. TP based sector

R1 ∈ {x |
R⋂

r=1

σr(x) < 0}

R2 ∈ {x |
R⋂

r=1

σr(x) > 0}

R3 ∈ {x |
R⋃
i,j

σi(x)σj(x) ≤ 0}

(34)

Here the region R3 is a sliding sector. R = 5 in case of Fig. 3.
A modified version of (24) is applied

u = uc + ud (35)

where uc is a feed forward compensation term based on the estimation of the
”equivalent” control according to (4). ud is a switching term to suppress the
system parameter variations and disturbances.
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Fig. 3. Sliding sectors (In case of n = 2 and R = 5)

uc = ûeq

ud =

⎧⎪⎪⎨
⎪⎪⎩

−Msign (σeq) if x ∈ R1 ∪R2

−M

⎛
⎝ σeq

R∑
r=1

wr(p(Xs)|σr |

⎞
⎠ if x ∈ R3

σeq = wr(p(Xs)σr)

(36)

where Xs is the value of x at a properly selected point of the sliding sector and
σeq is the equivalent surface of the sliding sector.

3.4 Robustness of the Proposed Method

The stability of the proposed sliding sector can be checked by the Lyapunov
function candidate

V =
σ2
eq

2
(37)

To define V̇ , the value of σ̇eq is necessary. Outside of the sector (in R1 and
R2), according to (19), (36) and the (30)

σ̇eq = −
R∑

r=1

wr(p(Xs)B2rMsign (σeq) V̇ = σeq σ̇eq < 0 (38)

According to (38), V̇ is always negative outside of the sector. It means the
system trajectory enters into the sector in finite time. In side of the sector

σ̇eq = −
R∑

r=1
wr(p(Xs)B2rM

σeq

R∑
r=1

wr(p(Xs)|σr |

V̇ = σeqσ̇eq ≤ 0

(39)
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Since V̇ = 0 implies σeq = 0, the sector sliding mode inherits the most im-
portant characteristic of classical sliding mode. As the system state approaches
the middle of the sector the absolute value of the discontinuous term is getting
smaller that ensures the chattering free applications.

4 Applications

The experimental system consists of a conventional DC servo gear motor with
encoder feedback and variable inertia load coupled by a relatively rigid shaft,
as shown in Fig. 4 and the structure can be seen in Fig. 5. The controller is
implemented using a DSP as the computation engine. The main source of non-
linearity is the friction. The harmonic gear connected to the motor has relative
big friction, which is modeled in two different ways. In case of the first model,
the nonlinearity (the friction term) is only outside of subspace (4). In case of the
second model, the nonlinearity (the friction term) is only inside of subspace (4).
Since the same system is used the results of two cases are quite similar. The aim
of the two solutions is to show examples for two basic cases, when the friction
term is only inside or outside of subspace (4). The main difference between the
two approaches is that the armature inductance of the servo motor is ignored in
the first case and it is calculated in the second case. In the course of control de-
sign, the flexibility of the shaft is ignored. The effect of massd is considered as a
disturbance. A TPTool (http://tptool.sztaki.hu), a free MATLAB Toolbox
for Tensor-Product Model Transformation is used for numeric calculation. The
toolbox is available for download together with documentation and examples.

Fig. 4. The experimental system

4.1 The Friction Term Is Only Outside of Subspace (4)

System Equations. The state variables are the shaft position θ and the shaft
angular velocity ω, the control signal u is the motor voltage.The model calculated

http://tptool.sztaki.hu
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Fig. 5. System structure

from the nominal parameters of the system is as follows (when the friction is
ignored) (

θ̇
ω̇

)
=

(
0 1
0 −76

)(
θ
ω

)
+

(
0
18

)
u (40)

Coulomb has nonlinear characteristic, which is modeled in the following way

u = u′
(
1− 1

|u′|+ 2.7

)
(41)

where u′ is the control signal of the original linear system. The first part of
the correction of the control signal in (41) is achieved empirically. It is quite
straightforward to explain. The Coulomb friction torque is independent of the
input voltage of the motor. If the input voltage is small the effect of the Coulomb
friction is relative big. As you increase the absolute value of the motor voltage,
the effect of Coulomb friction is getting relatively smaller and smaller. The sec-
ond (dynamic) term is necessary because of TP model transformation.

The system matrix

S(p(x)) =

⎛
⎝0 1 0
0 −76 p(x)
1 0 0

⎞
⎠ , (42)

where

p(x) ≡ p(u) = 18− 18

2.7abs(u) + 1
. (43)

The parameter vector is

Ω = [umin, umax] = [−22, 22]. (44)

Since equidistant sampling is applied and the sampling density must be high
around zero voltage, the interval Ω is sampled at 1370 grid points. The sampled
system is arranged into a tensor

Su =
(
S1 S2 · · · S1370

) ∈ R
137×(3×3) (45)
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where tensor Su has only two singular values (1061.6 and 31.7). That is why the
above nonlinear system can be modelled by weighted combination of two linear
systems

S1 =

⎛
⎝0 1 0

0 −76 17.7
1 0 0

⎞
⎠ and S2 =

⎛
⎝0 1 0

0 −76 13.9
1 0 0

⎞
⎠ . (46)

The two weighing coefficients as a function of the control are shown in Fig. 6.
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Fig. 6. The weighing coefficients as a function of the control signal

Sliding Surface Design. Since a second-order model is applied, the sliding
”surface” is a sliding line that can be described by a scalar parameter Kr in (31).
The subspace of the sliding surface (5) is

ω = −Krθ where r = 1, 2 (47)

The sliding surface is

σr = ω +Krθ = 0 where r = 1, 2 (48)

According to (36) and (40)

ûeq = − (−76 +Kr)x2

B2r
. (49)

where the values of B2r can be read from (46). One equation cannot definite
two parameters. The sliding surface is carefully designed (i.e. pole K is selected
according to [16]) to satisfy both fast response both vibration suppression for
the both systems. K = 15 in [16], the sector around that value is selected. If
K1 = 8 than K2 = 22 according to (49) which is acceptable. Xp is selected in
such a way that w1(p(Xs)) = 0.5, w2(p(Xs)) = 0.5.
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4.2 The Friction Term Is Only Inside of Subspace (4)

System Equations. The state variables are the shaft position, θ, the shaft
angular velocity, ω, and the armature current, i, the control signal is the motor
voltage u. ⎛

⎝ θ̇
ω̇

i̇

⎞
⎠ =

⎛
⎝0 1 0

0 0 Kt

J

0 −Kω

La
−Ra

La

⎞
⎠

⎛
⎝ θ

ω
i

⎞
⎠+

⎛
⎝ 0

0
1
La

⎞
⎠u (50)

Here J is the inertia of the motion control system, Kt and Kω are the torque
constant and the back-EMF constant, respectively, Ra and La are the resistance
and the inductance of the armature. The effect of massd is considered as a
disturbance. The viscous, Coulomb and Stribeck frictions were modelled in the
following way,

ω̇ = − Fv

J
ω︸︷︷︸

viscous term

−
(

2Fc

J(1 + e−500ω)
− Fc

J

)
︸ ︷︷ ︸

Coulomb term

−

−
(

2(Fs−FC)
1+e−500ω − (Fs − FC)

J(1 + (ω/ωs)
2
)

)
︸ ︷︷ ︸

Stribeck term

+
Kt

J
i︸︷︷︸

term for
electric
torque

(51)

where the second two terms are nonlinear and the signum function is approxi-
mated as

sign(ω) =
2

(1 + e−500ω)
− 1 (52)

Fv was given in the data sheet of the servo motor, Fc, Fs and ωs were deter-
mined through testing. Fig. 7 shows the simulated Stribeck curve. The model
calculated from the rated parameters of the system is:⎛

⎝ θ̇
ω̇

i̇

⎞
⎠ =

⎛
⎝0 1 0

0 p(t) 42
0 −4600 −2450

⎞
⎠

⎛
⎝ θ

ω
i

⎞
⎠+

⎛
⎝ 0

0
1100

⎞
⎠u

S(p(t)) =

⎛
⎜⎜⎝

0 1 0 0
0 p(t) 42 0
0 −4600 −2450 1100
1 0 0 0

⎞
⎟⎟⎠

(53)

where

p(t) ≡ p(ω) = −Fv

J
− 2Fc

ωJ(1 + e−500ω)
− Fc

ωJ
−

2(Fs−FC)
1+e−500ω − (Fs − FC)

ωJ(1 + (ω/ωs)
2)

(54)
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Fig. 7. Simulated Stribeck curve

where Ω = [ωmin, ωmax] = [−4, 4] Since equidistant sampling is applied and the
sampling density must be high around zero velocity, the interval Ω is sampled
at 1370 grid points (even number is necessary to avoid division by zero). The
sampled system is arranged into a tensor

Sω =
(
S1 S2 · · · S1370

) ∈ R
1370×(4×4) (55)

where tensor , Sω, has only two singular values (197.32 ∗ 103 and 10.61 ∗ 103).
That is why the above nonlinear system can be modelled by two linear systems
(it is a significant reduction of Sω ∈ R

1370×4×2):

S1(p(t)) =

⎛
⎜⎜⎝

0 1 0 0
0 −19.3 42 0
0 −4600 −2450 1100
1 0 0 0

⎞
⎟⎟⎠ (56)

S2(p(t)) =

⎛
⎜⎜⎝

0 1 0 0
0 −3151.8 42 0
0 −4600 −2450 1100
1 0 0 0

⎞
⎟⎟⎠ (57)

The weightings (w1 (ω) and w2 (ω)) are functions of the velocity as shown in
Fig. 8 The shape of the weighting functions is quite straightforward to explain.
The nonlinear friction terms are modelled using a varying viscosity coefficient,
which is represented by the s22 element in the system matrix. S1 with small
viscous coefficient dominates at high speed, where the Coulomb friction is rela-
tively small. The S2 system matrix with very large viscous coefficient dominates
at low speed, where the Coulomb friction is comparatively large.
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Fig. 8. The weighting coefficients as function of velocity

The subspace of the sliding surface (5) is(
θ̇
ω̇

)
=

(
0 1
0 s22

)(
θ
ω

)
−
(

0
42

)(
k1 k2

)( θ
ω

)
(58)

The state feedback controller is designed by pole placement. The poles of the
sliding surface are selected as

Poles = (−15 − 1500) (59)

The first pole is related to the closed loop ”mechanical” time constant.
Using the MATLAB toolbox for pole placement

K1 = (5359 357)

K2 = (5359 433)
(60)

Because of that big values the effect of the third state variable i is ignorable
according to (31).

4.3 Experimental Results

The normalized form of the two sliding sectors in the two design examples are
quite similar as it was expected. There is no significant difference in the experi-
mental results in the two cases that is why the experimental results of the first
case and a conventional controller are compared in Fig. 9-Fig. 13.
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Fig. 9. The open loop response

The nonlinearity of the system is borne from the huge friction of the harmonic
gear. To verify the friction model, the real and simulated velocities (ωr, ωs) are
compared in Fig. 9, where the input voltage of the motor is a shifted sinusoid
with amplitude of 12 V (open loop response). Note, the voltage input is divided
by 5 to use the same scale as the speed. It can be seen in the Fig. 9, if the motor
is in standstill, at least 2 V should be switched across the motor to start it.
On the other hand, the motor is stick, if the input voltage is under 1.2 V. The
power electronic PWM unit is saturated at 22 V. It is also a kind of nonlinearity
which could be handled using a TP model. Because this chapter concentrates
on sliding sector design, only the nonlinearity of the friction is handled by TP
model.

The chattering of the classical sliding mode and the chattering free response
of the sector sliding mode control can be compared in Fig. 10. and Fig. 11.

After entering into the sector, the trajectory reaches the surface (σeq = 0)
gradually and smoothly, in case of sector sliding mode. The phase trajectory of
the conventional sliding mode controller reaches the sliding surface directly and
earlier than that of the sector sliding mode controller. After reaching the surface,
the trajectory chatters around the surface. In Fig. 13, the system enters into the
sliding sector approximately at t = 0.5s (σ1 = 0) in case of the sector sliding
mode control. The main difference appears in the control activity. Two control
signals are compared in Fig. 12. The conventional sliding mode is very robust but
it needs intensive control action (see in Fig. 12), which causes significant audio
noise as well. The sampling rate was quite rare. Tsampling = 10ms. The chat-
tering could be reduced by increasing the sampling frequency but this chapter
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demonstrates that the reduction of chattering (the intensity of the control action
and the audio noise) is significant at the same sampling rate, if the TP based
sector sliding mode (Fig. 12) is applied instead of the traditional sliding mode
control. The oscillation in the control signal is caused by the friction (Fig. 12.
t = 0.5− 08s).
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5 Conclusion

In this chapter, a modified variable structure control strategy with continuous
switching control has been developed in detail for the nonlinear system with un-
certainty. The control strategy can be regarded as the extension of conventional
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VSS based sliding mode control method through expanding the switching surface
to the sliding sector. The sliding sector is designed by a tensor product model
transformation. The major advantage of the proposed control scheme is the intro-
duction of the continuous switching control which successfully achieves smooth
control response and retains the robustness of sliding mode control simultane-
ously. Both theoretical analysis and simulations demonstrate the attractiveness
and the asymptotic stability of the sliding sector with the use of the proposed
switching control which is essentially an interpolated control.
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Abstract. In this chapter, a sliding mode control scheme is designed for
a biomimetic robotic fish, in which parameter uncertainties and external
disturbances present. The Carangiform robotic fish consists of N links
and N − 1 joints, and its dynamic model of motion is given in terms
of Lagrangian mechanics. Through this model, the relationship between
the motion of the fish and the torques applied is made clear. By giving
particular reference angles of joints, forward locomotion is obtained as a
kind of trajectory tracking task. Due to the presence of parameter uncer-
tainties and environmental disturbances especially from fluid dynamics,
we adopt sliding mode control (SMC) to warrant a robust control per-
formance. Comparisons are carried out between SMC and traditional
computed torque control, and results of numerical examples validate the
effectiveness of SMC when performing the tracking task in joint space.

Keywords: sliding mode control, robotic fish, Carangiform, under-
actuation.

1 Introduction

With increasing underwater activities, such as underwater archaeology, leakage
detection, military reconnaissance [2], Autonomous Underwater Vehicle (AUV)
is receiving more and more attention [3]. Traditional AUV, usually thrusted by
rotatory propellers, may not be satisfactory in efficiency and maneuverability.
Thus, new type of AUV is needed. During the long period time of nature se-
lection, fish have evolved body structures and swimming patterns that highly
adapt to aquatic environments [4]. Actually, they are more advanced swimming
machines with higher efficiency, more remarkable maneuverability and less noise
than conventional AUV.

Inspired by these appealing merits, researchers developed many theories and
numerous robotic fish prototypes to study and mimic the way that real fish
moves. Generally, swimming modes of fish are classified into three main cate-
gories: Anguilliform, Carangiform and Thunniform [5,6]. In Anguilliform mode,
the whole body participates in large amplitude undulations. While in Carangi-
form swimming, the fish body undulations are confined to the last third of the
body length, and in Thunniform, the undulation proportion is even less. Elon-
gated body theory (EBT) [7,8], assuming sinusoidal motion of the fish body, was
principally used to study steady state propulsion. In [9] a four-link robotic fish
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X. Yu and M. Önder Efe (eds.), Recent Advances in Sliding Modes,
Studies in Systems, Decision and Control 24, DOI: 10.1007/978-3-319-18290-2_15



300 J.-X. Xu

is designed and implemented with a PID controller and a fuzzy logic controller
to control the speed and orientation respectively. In [10], a neuronal model and
a mechanical model of fish swimming are presented, and the two models are
combined together by the transformation of the motoneuron activity to mechan-
ical forces and feedback of fish movements to stretch receptors. Based on the
quasi-steady fluid flow theory, fish’s propulsion model was established in [11,12],
and nonlinear control method was investigated for trajectory stabilization of the
robotic fish.

Due to the complexity of modeling interaction force between fish body and
water, most existing works considered steady speed of the robotic fish [7,8], and
the dynamic process remains not handled. Moreover, little attention was paid
to parameter uncertainties in the fish model in existing works. In this chapter,
we present a links-and-joints based robotic fish model. Motion dynamics is de-
rived from Lagrangian formulation. Two kinds of control laws, computed torque
control, and sliding mode control, are designed and applied. It is shown that, by
designing particular reference joint angles, forward locomotion of Carangiform
fish is achieved. Further, Parameter uncertainties and external disturbances are
handled successfully by sliding mode control.

The chapter is organized as follows. In Section 2, the mechanical model of
the robotic fish and dynamics of the system are given. In Section 3, locomotion
patterns and reference trajectories are briefly introduced. In Section 4, the for-
mulation of the actual system is first given, which contains uncertainties and
disturbances. Next, a sliding mode controller is designed with the analysis on
the stability. In Section 5, numerical examples are provided to validate the effec-
tiveness of the controller. Section 6 concludes the chapter with a brief summary.

2 Dynamic Model of the Robotic Fish

In this section, an Carangiform fish (carps, mackerels) model is given to study
its motion and control problems. From a biological perspective, in this swim-
ming mode, only the latter part of the fish body participates in large amplitude
undulations, while the amplitude of the undulation of the former part is small,
which is different from the way that Anguilliform fish moves. The most remark-
able characteristic in moving process of Carangiform fish is that there exists a
body wave, traveling from head to tail [7]. Obviously, the traveling direction of
the body wave in the fish is backwards, which is opposite to the direction that
fish moves forward.

2.1 Fish Body Prototype

As shown in Fig. 1, we select the central line, which locates at the center of the
fish body and stretches from head to tail, to represent the Carangiform fish, and
we use links and joints to mimic its shape. The fish consists of N links and N−1
joints, where two connective links are connected by one joint. There is one motor
on each joint, which exerts torques to its neighbor links.
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Fig. 1 shows the top view of the central curve of the Carangiform fish. xoy
is the world coordinates system. The position and orientation of each link i are
described by three coordinates xi, yi and φi: xi and yi denote the position of
the midpoint of link i, while φi denotes the angle from +x-axis to link i. The
links are numbered from head to tail (see Fig. 1b). Each link i is impacted by
two types of external forces: hydrodynamic forces wi and torques τi, τi−1 (see
Fig. 2).

(a) The position(xi, yi) and orientation
φi of each link i

(b) Numbering of links

Fig. 1. Sketch map of the Carangiform robotic fish model. (a) Position and orientation
representation. (b) Link numbering.

2.2 Hydrodynamic Force

When there is relative motion between the fish and the surrounding fluid, fluid
is displaced and hydrodynamic force arises. The force can be obtained through
surface integrals of vector force per area around the fish body. Since this force is
related with the geometry of the object immersed in water and relative velocity
between the object and water, in principle, the exact force distribution can be
obtained by solving the Navier-Stokes equation. However, the calculation is quite
complicated and time consuming [6]. In [10], the force is simplified and easy to
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Fig. 2. External forces acting on link i

compute. As shown in Fig. 2, we adopt a simplified approximation of this force
as (1) and (2) indicate

wi⊥ = −fi⊥(vi⊥)2sgn(vi⊥) (1)

wi‖ = −fi‖(vi‖)2sgn(vi‖) (2)

where vi⊥, vi‖ are parallel component and perpendicular component of the ve-
locity vi, and fi⊥, fi‖ are the water resistance coefficients in corresponding
directions. The notation sgn(·) represents +1 if the element in the parenthe-
ses is positive or −1 if negative. Based on the geometric relationship (refer
to Fig. 2), we have vi⊥ = −vix sinφi + viy cosφi, vi‖ = vix cosφi + viy sinφi,
wix = −wi⊥ sinφi + wi‖ cosφi, wiy = wi⊥ cosφi + wi‖ sinφi, where vix, viy are
projection of the velocity vi on x-axis and y-axis; wix, wiy are projection of
the hydrodynamic force wi on x-axis and y-axis, respectively. All of them are
scalars. Hydrodynamic forces experienced by all the links can be calculated the
same way.

Since the link velocity vi can be possibly in any direction, it is arduous to
find each water resistance coefficient f in corresponding direction. Fortunately,
f remains unchanged in the direction of paralleling the link, as well as in the
perpendicular direction. Thus, we calculate the hydrodynamic forces in such a
way that the need of the value of f in arbitrary direction is avoided.

2.3 Lagrangian Formulation of the Mechanical Model

In this part, we give dynamics of the fish model. Details of derivation see [1].
First, we define coordinates vector p ∈ �3N as

p = [x1, y1, φ1, x2, y2, φ2, · · · , xN , yN , φN ]T



SMC of Robotic Fish 303

where the notation (·)T denotes transpose of a vector or a matrix (·). The con-
straints in the system can be formulated in a matrix form

g(p) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 +
l1
2 cosφ1 − x2 +

l2
2 cosφ2

y1 +
l1
2 sinφ1 − y2 +

l2
2 sinφ2

x2 +
l2
2 cosφ2 − x3 +

l3
2 cosφ3

y2 +
l2
2 sinφ2 − y3 +

l3
2 sinφ3

...

xN−1 +
lN−1

2 cosφN−1 − xN + lN
2 cosφN

yN−1 +
lN−1

2 sinφN−1 − yN + lN
2 sinφN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

where li is the length of link i, g(p) ∈ �2(N−1).
Define J(p) as the Jacobian of the constraints matrix g(p)

J(p) =
∂g(p)

∂p

where J(p) ∈ �2(N−1)×3N . The external forces vector, that acts on individual
coordinate of p, is

w = [w1x, w1y, τ1, w2x, w2y, τ2 − τ1, · · · ,
wNx, wNy,−τN−1]

T (3)

where τi − τi−1 represents the total torque exerted on link i. It is worth noting
that τ0 = τN = 0, since there are no torques at the endpoints.

The system dynamics is then given as

p̈ = A(p)ṗ+B(p)w (4)

whereA(p)=−M−1JT (JM−1JT )−1J̇ , B(p)=M−1[I−JT (JM−1JT )−1JM−1],
A(p) ∈ �3N×3N , B(p) ∈ �3N×3N , M ∈ �3N×3N is the mass matrix and it can
be written as

M = diag{m1,m1, I1,m2,m2, I2, · · · ,mN ,mN , IN}

where mi is the mass and Ii is the moment of inertia of link i. The notation
diag{} represents that M is a diagonal matrix, and the diagonal elements are in
the braces. I is identity matrix with the same dimension as M .

The dynamics (4) contains all the acceleration terms, of which we are more
interested in angular acceleration terms φ̈i. By partitioning (4), we obtain dy-
namics of φ

φ̈ = A1(p)ṗ+B1(p)wx +B2(p)wy +B3(p)Bτ τ (5)
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where φ = [φ1, φ2, · · · , φN ]T

wx = [w1x, w2x, · · · , wNx]
T

wy = [w1y, w2y , · · · , wNy]
T

τ = [τ1, τ2, · · · , τN−1]
T

Bτ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

−1 1
. . .

...

0 −1
. . . 0

...
. . .

. . . 1
0 · · · 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and A1(p)∈�N×3N , B1(p)∈�N×N , B2(p)∈�N×N , B3(p)∈�N×N are correspond-
ing coefficient matrices obtained from matrix A(p), B(p) in (4). It is worth
noting that the dimension of τ is N − 1, one less than the total number of links
N .

3 Gait Generation for the Robotic Fish

In this section, three locomotion patterns of Anguilliform fish are investigated.
We adopt the control torques τ derived from computed torque control method
[1]

τ = (BT
τ B3Bτ )

−1BT
τ [φ̈r + k1(φr − φ) + k2(φ̇r − φ̇)

−(A1ṗ+B1wx +B2wy)] (6)

where φr = [φ1r, φ2r, · · · , φNr]
T , φjr (j = 1, 2, · · · , N) is orientation of link j,

and k1, k2 are coefficients relating to feedback terms. Here we choose k1 = 10,
k2 = 1.

3.1 Forward Gait

We define that the reference φj,r that assumes the following form

φj,r = Am(j) · sin[ωt+ (2− j)θ] (7)

where j = 1, 2, · · · , N . t denotes time instant. Am(j), ω are the amplitude and
angular frequency of φj,r respectively, and θ is the phase lead of link i comparing
with its latter one. Note that in Carangiform fish, the amplitude of the body
wave gradually increases from its head to its tail, thus we have the following
relation: Am(1) < · · · < Am(j) < · · · < Am(N).

In this case, we choose Am(j) = 0.15π, ω = 2π, θ = π
2 . x1 trajectory with

respect to time is shown in Fig. 3.
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Fig. 3. x trajectory of forward motion

3.2 Backward Gait

Despite conducting forward motion, Anguilliform fish can also move backwards.
In this case, the direction of the body wave is opposite to that of the forward
locomotion case, i.e., the wave moves forwards. Thus, the movement of the former
part of the body has a phase lag than its latter one. The reference φj,r now
assumes the following form

φj,r = Am(j) · sin[ωt− (2− j)θ] (8)

In this case, we choose Am(j) = 0.15π, ω = 2π, θ = π
2 . x trajectory with respect

to time is shown in Fig. 4.
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Fig. 4. x trajectory of backward motion
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3.3 Turning Gait

In previous two cases, the reference angles are symmetric about zero, thus the
fish neither deflects to left nor to right, but moves in a straight line. While
in turning locomotion, in order to let the fish turn, we add deflections on the
reference angles:

φj,r = Am(j) · sin[ωt+ (2− j)θ] + γ(j) (9)

where γ(j) represents angle deflection added on different joints. By using com-
puted torque control, the fish can achieve turning movement. In this case, we
choose Am(j) = 0.15π, ω = 2π, θ = π

2 , and the deflection γ = [π4
π
6

π
12 0]. x− y

trajectory of the fish is shown in Fig. 5. Now we change ω, while remaining other

Fig. 5. x− y trajectory of the fish

parameters the same as previous, then we can explore the effects of ω on the
turning diameter and turning period of the fish. The result is shown in Table
1. From the table, we find that when ω increases, the turning period decreases
correspondingly, while there is no noticeable change on the turning diameter.
These phenomena may be due to the fact that, when ω increases, the turning
angular velocity of the fish also increases, thus the turning period drops. From
another point of view, the linear velocity of the fish also increases as ω increases.

Table 1. Effect of ω on Turning Diameter D and Turning Period P

ω(rad/s) π 1.5π 2π 2.5π 3π

D(m) 1.84 1.83 1.83 1.82 1.82

P (sec) 77.9 52 39 31.2 25.3
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Since both the angular velocity and the linear velocity of the fish increase, as a
trade-off of these two variables, the turning diameter remains almost the same.

4 Sliding Mode Control Design for the Robotic Fish
System

Modeling inaccuracies always exist and have strong adverse effects on control
systems. Thus, any practical design must address them explicitly [13]. Other-
wise, the control law may lose effect since the actual parameters deteriorate the
performance of the whole system. Here we adopt sliding mode control, which
belongs to robust controllers. In this robotic fish system, it is obvious that the
number of actuators is one less than that of reference inputs. In other words,
this robotic fish is under-actuated, and therefore, special consideration is taken
on matched as well as unmatched components when we design the sliding mode
control law.

4.1 Parameter Uncertainties

In the robotic fish model we constructed, many parameters involve uncertainties.
These uncertainties either come from inaccuracy in the modeling, or come from
unpredictable influence of surroundings. The water resistance coefficient f can
be affected by many factors, such as different velocities of fish with respect to
the environment. Thus, it is rather an estimated parameter than an accurate
one. The mass matrix M can be measured accurately on ground, but when
the fish comes into water, M becomes inaccurate because of added mass effect.
Though we cannot know the exact information of the interested parameters due
to complex factors, those parameters always change in a predictable range. This
is reasonable because every parameter has its own physical meaning, thus it
neither blows up to infinity nor becomes too small. Then, we can always give an
upper bound and a lower bound for each parameter.

We define that

F⊥ = diag{f1⊥, f2⊥, · · · , fN⊥}
F‖ = diag{f1‖, f2‖, · · · , fN‖}

Assume that there exist parameter uncertainties on M , F⊥ and F‖, and their
norms are bounded.

For derivation convenience, we define that

v⊥sin = [v21⊥sgn(v1⊥) sinφ1, · · · , v2N⊥sgn(vN⊥) sinφN ]T

v⊥cos = [v21⊥sgn(v1⊥) cosφ1, · · · , v2N⊥sgn(vN⊥) cosφN ]T

v‖sin = [v21‖sgn(v1‖) sinφ1, · · · , v2N‖sgn(vN‖) sinφN ]T

v‖cos = [v21‖sgn(v1‖) cosφ1, · · · , v2N‖sgn(vN‖) cosφN ]T
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Then, hydrodynamic forces wx and wy can be written as

wx = F⊥v⊥sin − F‖v‖cos (10)

wy = −F⊥v⊥cos − F‖v‖sin (11)

where wx0,wy0 are nominal values of wx,wy. From a practical point of view,
the coordinate p and its derivative ṗ are always bounded, which indicates that
both A(p) and B(p) are bound, because A(p) and B(p) are functions of p and
ṗ. Together with the fact that F⊥ and F‖ are bounded, we thus know that wx

and wy are bounded from (10) and (11).

4.2 External Disturbances

Besides parameter uncertainties, we have to take into account environmental
disturbances when considering system dynamics. Disturbances are always exist-
ing in the robotic fish system, no matter in outdoor or indoor environments.
In outdoor environment, such as seas or rivers, the robotic fish will experience
unpredictable currents or waves, which are generated by winds or heat exchange,
either beneath or on the surface of the water. In indoor environment, such as a
water tank, the robotic fish will experience the reflection wave from the water
container, which are generated by the swimming motion of the fish itself.

In general, these disturbances can be both additive and multiplicative to the
dynamic equations of motion. However, the additive disturbances are a good
approximation for most marine control applications [14]. Hence, we assume that
the disturbances have additive format in this work.

The disturbances function as external forces, which are similar to wx, wy and
τ in (5). Since the disturbances adhere to the original external forces and they
are additive, (5) can be written as follows

φ̈ = A1(p)ṗ +B1(p)(wx + dx) +B2(p)(wy + dy)

+B3(p)Bτ (τ + dτ ) (12)

where dx ∈ �N and dy ∈ �N are the disturbance vectors in the directions of x-
axis and y-axis, respectively, dτ ∈ �N−1 is the disturbance vector on the torque
τ . In practice, dx, dy and dτ will change in a reasonable range.

Note that among the parameter uncertainties and external disturbances that
appear in (12), only dτ is matched, while all the others are unmatched, because
they are not in the range space of the input matrix B3(p)Bτ .

4.3 Sliding Mode Control Law Design

Generally, there are two standard steps in sliding mode control design: 1) a
sliding surface is given such that system on it manifests desired behavior; 2) a
discontinuous control law is utilized to drive the system states into that surface
and stay on it for all future time [15].
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The sliding mode control law is composed of two parts. The first part is
used to handle the nominal model, while the second is used to handle system
uncertainties. Since there are not enough number of actuators to track all the
reference inputs, we have to make a trade-off when setting the control objective,
i.e., tracking the same number of reference inputs as that of actuators. In this
model, the number of actuators, i.e., the number of torques, applied on the fish
is N − 1. Thus, we make the dimension of the sliding surface be N − 1.

Before designing the sliding surface, we first define angular error and its deriva-
tive

e = φNew − φrNew ė = φ̇New − φ̇rNew

where φNew = [φ1, φ2, · · · , φN−1]
T , representing the first N − 1 actual joint an-

gles, and φrNew = [φ1r, φ2r, · · · , φ(N−1)r]
T , representing the first N−1 reference

joint angles. The dynamics of φNew is

φ̈New = A2(p)ṗ+B4(p)(wx + dx) +B5(p)(p)(wy + dy)

+B6(p)Bτ (τ + dτ )

= A2n(p)ṗ+B4n(p)wxn +B5n(p)wyn

+B6n(p)Bτ τ + d(p, τ, t) (13)

where A2(p), B4(p), B5(p), B6(p), are submatrices obtained from matrix A(p),
B(p) in (4), corresponding to φ̈New, and A2n(p), B4n(p), B5n(p), B6n(p) are
their nominal values. d(p, τ, t) = (A2 − A2n)ṗ + (B4wx − B4nwxn + B4dx) +
(B5wy−B5nwyn+B5dy)+(B6Bττ −B6nBτ τ +B6Bτdτ ), represents the differ-
ence between the actual terms and nominal terms. In the expression of d(p, τ, t),
all the terms are bounded, thus we assume that the norm of it has an upper
bound

||d(p, τ, t)|| ≤ dmax

From the definition of e, we set the control objective as tracking the first N−1
reference inputs. Next, we define the sliding surface as

σ = Ce+ ė (14)

where C is a diagonal matrix whose entries are positive scalars.
Assume that information of the coordinate vector p and its velocity ṗ is

available by means of vision or other measurement system. Now, we give the
control law. As stated before, the control law consists of two parts

τ = τ0 + τs (15)

τ0 = (B6nBτ )
−1[φ̈rNew − C(φ̇New − φ̇rNew)

−(A2nṗ+B4nwxn +B5nwyn)] (16)

τs = −ρ(B6nBτ )
−1 σ

||σ|| (17)
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where ρ = dmax+η, η is a positive constant. τ0 is used to handle nominal model,
τs is used to handle the uncertainties.

Then, we have the following theorem.

Theorem 1. Consider the nonlinear system (13) associated with the chosen
sliding surface σ = 0. Under the control law (15)-(17), the sliding surface will
be reached in finite time.

Proof. First we define the Lyapunov function

V =
1

2
σTσ

Differentiating it, we obtain

V̇ = σT σ̇ = σT (Cė+ ë)

= σT [C(φ̇New − φ̇rNew)− φ̈rNew + (A2ṗ+B4wx

+B4dx +B5wy +B5dy + B6Bττ +B6Bτdτ )]

= σT [C(φ̇New − φ̇rNew)− φ̈rNew

+(A2nṗ+B4nwxn +B5nwyn +B6nBττ) + d]

Substituting (15), (16) and (17) into V̇ , one obtains

V̇ = −ρ||σ||+ σTd ≤ −ρ||σ||+ ||σ|| · ||d||
≤ −ρ||σ||+ dmax||σ|| = −η||σ||

It is obvious that V̇ is negative definite. By Lyapunov theorem for stability,
the equilibrium at the origin σ = 0 is asymptotically stable. If φNew(t = 0) is
off φrNew(t = 0) in the beginning, the sliding surface is reached in a finite time
treach ≤ ‖σ(t = 0)‖∞/η, where ‖(·)‖∞ denotes the ∞−norm of (·). After the
system reaches the sliding surface σ = 0, it stays there. In the sliding mode,
σ(t) = 0, σ̇(t) = 0, the equivalent control is τeq = (B6Bτ )

−1[φ̈rNew −C(φ̇New −
φ̇rNew) − (A2ṗ + B4wx + B4dx + B5wy + B5dy + B6Bτdτ )]. (14) gives the
dynamics of e, which contains the first three angular errors. Since all entries of
the diagonal matrix C are chosen to be positive scalars, it is easy to show that on
the sliding surface, each single element of e always converges to 0, thus yielding
the result that the firstN−1 reference inputs can be tracked.

5 Numerical Examples

Forward motion is the most common locomotion pattern of Carangiform fish
(in this work, all the examples are given by using forward locomotion). If the
fish moves forward, there exists a body wave traveling backwards. Since the
wave travels from its head to tail, the head is preceding the tail affected by the
wave. More generally, the movement of the former part of the body has a phase
lead than the latter one, and it is reflected in the phase difference among the link
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orientation angle φj (j = 1, · · · , N). For the reason that the backward moving
wave has the same oscillating frequency at different places, we suppose each φj

follow the same angular frequency. Following these considerations, we let the
reference φj,r assume the form (7).

In this model, we select N = 3, i.e., the robotic fish consists of three links.
The first link is the longest, and the third link is the shortest. Their length
proportion is referred to [2]. Table 2 shows mechanical parameters of the links,
where li, mi, Ii are the length, mass and moment of inertia of link i respectively,
fi⊥ and fi‖ are estimated water resistance coefficients [10]. Their SI units are
m(meter), kg, kg ·m2, Ns2/m2, Ns2/m2.

Table 2. Mechanical Parameters of the Links

Link # li mi Ii fi⊥ fi‖

1. 0.15 0.45 1.4603 × 10−3 2.7 2.70
2. 0.108 0.168 2.721 × 10−4 5.4 1.40
3. 0.0975 0.1236 1.632 × 10−4 5.4 1.141

Based on (7), we give the reference angles φj,r. Since this robotic fish is essen-
tially an underactuated system, tracking of arbitrary number of reference inputs
is impossible. However, by reference planning approach in [1], which conducts
equilibrium analysis at the neighborhood of the equilibrium point, this problem
can be handled. Following this method and the relation between the amplitudes
of the body wave, we choose θ = 2.003, Am(1) = 0.3142, Am(2) = 0.3227,
Am(3) = 1.0090. Other parameter is appropriately chosen as ω = 2π. In this
section, the above set of parameters (θ, Am, ω), applies to all scenarios, and we
only consider the forward moving case due to space limitation.

For simplicity, we suppose that the parameter uncertainties are in the fol-
lowing form: M = (1 + α)M0, F⊥ = (1 + β1)F⊥0, F‖ = (1 + β2)F‖0, where
α = 0.2, β1 = 0.2, β2 = 0.2. The disturbances parameters are: dx = 10−3 × [1 +
sin t,−2+cos t, 0.5−2 sin t]T , dy = 10−3× [0.2+0.3 sin t, 1+2 cos t, 0.3−4 sin t]T ,
dτ = 10−3×[0.2+0.2 sin t, 0.1−0.2 cos t]T . Chattering phenomenon always exists
in sliding mode control, which is a character of it. To have a smoother control
signal, we replace σ

‖σ‖ in (17) with a saturation function sat(σ).

sat(σ) =

⎧⎪⎨
⎪⎩

σ

||σ|| , if ||σ|| > ε,

σ

ε
, otherwise.

and here we choose ε = 0.1
In the first scenario, we use sliding mode control, and select the parameters

as C = diag{10, 1} (a diagonal matrix), dmax = 40, η = 0.1. At time t = 0, the
fish is still, and its three links are aligned on x-axis with its head at the origin,
which means p = [0.15 0 0 0.45 0 0 0.75 0 0 1.05 0 0]T . The control torques are
shown in Fig. 6.
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Fig. 6. Scenario 1: Torques trajectory (Sliding mode control)

In the second scenario, we use computed torque control method [1] in (19).

τ = (BT
τ B3Bτ )

−1BT
τ [φ̈r + k1(φr − φ) + k2(φ̇r − φ̇)

−(A1ṗ+B1wx +B2wy)] (19)

where φr = [φ1r, φ2r, · · · , φNr]
T is the vector of reference angles for all the links,

and k1, k2 are coefficients relating to feedback terms. Here we choose feedback
gains k1 = 10, k2 = 1. Other parameters and initial condition are the same
as the first scenario. The comparison of angular error between sliding mode
controller and computed torque controller is shown in Fig. 7. It is obvious that
by SMC method, the first two joint angular errors quickly converge to 0 after a
short period of time. The third joint angular error changes around 0 but cannot
converge. While by computed torque method, the three joint angular errors are
much larger than those obtained from SMC method, and none of them converge
to 0 in the end.

In the third scenario, we still use sliding mode control. Note that the chat-
tering phenomenon exists in the second scenario, which is a character of sliding
mode control. To have a smoother control signal, we replace σ

‖σ‖ in (17) with a

saturation function sat(σ)

sat(σ) =

⎧⎪⎨
⎪⎩

σ

||σ|| , if ||σ|| > ε1,

σ

ε1
, otherwise.

and here we choose ε1 = 0.1, with other parameters and initial condition are
the same as the first scenario. The control torques are shown in Fig. 8, and the
comparison of angular errors between using saturation function and sign function
is shown in Fig. 9.
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and Scenario 2: computed torque control (CTC)
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Fig. 9. Comparison of angular errors between Scenario 3: SMC with saturation function
and Scenario 1: SMC with sign function

Comparing those scenarios, we find that when there exist parameter and un-
modeled uncertainties, computed torque control cannot work very well, because
the error between the actual joint angles and reference joint angles are large and
always exists. When we use sliding mode control, the first two reference inputs
can be perfectly tracked, thus we achieve the goal in Sec. IV-B when designing
the sliding surface.

In Scenario 1, though φ1r and φ2r can be tracked accurately, perfect tracking
of φ3r cannot be promised theoretically. The fundamental reason is that the
system is underactuated, i.e., the number of actuators in the system is fewer than
the number of independent physical variables, which means arbitrary number of
trajectory tracking is impossible. Furthermore, robustness can not be guaranteed
for unmatched uncertainties or disturbances.

6 Conclusion

In this chapter, the dynamic model of the Carangiform robotic fish is first given.
Based on the fact that body wave exists on the body of a traveling fish, we give
the reference angles for all the links’ orientation by using sinusoidal functions.
We find that when the former reference angle has a phase lead compared with
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the latter one, the fish moves forward. Sliding mode control is proposed to han-
dle the actual system model, which takes into account parameter uncertainties
and external disturbances. SMC design can promise theoretically that angular
error of the first two links converge to zero. Numerical results show that the
effectiveness of SMC to resist uncertainties, and better tracking performance is
obtained compared with that using computed torque control.
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Abstract. An under-actuated 5 degrees of freedom parametrically excited crane
is the subject of study. In particular, a control methodology is proposed in or-
der to avoid the parametric resonance effect and at the same time to attenuate
the load oscillations, ensuring precise load transfer during the load movement
despite model uncertainties and un-modeled dynamic actuators. The nonlinear
controllers proposed in this chapter are motivated by the Super-Twisting and
Twisting algorithms and the design uses the vector and non-smooth Lyapunov
function approaches providing the stability of the overall closed-loop system. The
experiments conducted over a laboratory platform, including a comparison with a
PID controller, resemble quite well the simulations, verifying the obtained results.

Keywords: Parametric Resonance, Ship Onboard Crane, Twisting and Super-
Twisting Algorithms, Vector and Non-smooth Lyapunov Functions, Under-
Actuated Systems.

1 Introduction

The maneuvering with overhead crane systems has become the main part in many in-
dustrial activities where the efficiency in the cargo transportation process is crucial. This
has motivated an intensive research on modeling and control during the last decades.
A brief summary can be found in [1]. Cranes are under-actuated mechanical systems
and the accelerations needed to move the trolley induce high oscillations in the pay-
load. The measurement of these oscillations, in order to use feedback, is not trivial. On
the other hand, measurements of the states are limited on industrial cranes where just
the position of the trolley is available, in most of the cases, complicating the control
design. In addition, uncertainties and external perturbations occur during regular oper-
ation conditions, degrading the overall control performance and increasing the risk of
damages and accidents, see [39]. In particular, if the crane is installed on a ship, the
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wave-induced motions may contain significant energy close to the natural frequency of
the free swinging load, or even twice its value. These kinds of variations are the cause of
parametric resonance1, see [1] and [54]. This phenomenon is not exclusive to this case,
several mechanical, electrical and electromechanical systems are subject to parametric
resonances, see [41]. There are a few methods for controlling the parametric resonance
phenomena: active, semi-active and feedback controllers, where detuning the resonance
condition requires the study of linear periodic systems, see [41] and [8]. Moreover, the
subject of parametric resonance is still far from being fully understood and this chapter
represents a step forward in that direction.

1.1 State of the Art

For shipboard cranes, the resulting load oscillation, which can reach 30-40 degrees
may bring the load into a dangerous condition for the ship, the cargo and the crew.
For this reason, operation of the shipboard crane is not allowed if the sea state is not
acceptable. Moreover, there are reports that this phenomenon has been observed at full
scale, even in moderate sea states, see [53]. Since much time and money can be wasted
waiting for acceptable sea conditions, it is important to develop new schemes capable
of transferring cargo in marginal conditions where the significant wave height may vary
around one meter, or 10% of the maximum rope length, see [53] and [20]. On the other
hand, new methods of operating the shipboard cranes are not implemented in the field
if the stability is not guaranteed.

Three fundamental architectures of shipboard cranes have been presented in litera-
ture: the US Navy crane, ship cranes with Maryland rigging system and the mooring
system, see [23], [22] and [32] respectively. In [23], using the flatness property, a feed-
back controller was proposed which only needs motor measurements. The combination
of a feedforward and feedback controllers was presented in [22]. In both schemes the
parametric resonance risk is not considered. Some methods to measure the payload os-
cillations have been proposed in [46], [43] and [9], opening new possibilities to include
the payload oscillation measurements in real environments. Other control strategies are
based on delayed feedback, see [20] and [32]. However, the mentioned approaches are
not suitable in the presence of perturbations or unmodeled dynamics. In this context, in
[3] the Suboptimal Second Order Sliding Mode Control was successfully applied for an
overhead crane system of three degrees of freedom. Also, an Output Feedback Scheme
was proposed in [5]. An extension for the decoupled three dimensional case was im-
plemented in [42] using the Super-Twisting algorithm. In [38] a sliding mode antisway
control of an offshore container crane was proposed. The case of periodic variation in
the base support has been considered in [50], [51] and [36].

1.2 Methodology

The design of control laws under the presence of heavy uncertainty conditions is one
of the main problems of modern control theory. In this scenario, the sliding mode (SM)

1 Parametric resonance occurs when the frequency ω with which the parameter varies is close
to any value 2ω0/n, where ω0 is the natural frequency and n is any integer, see [54].
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methodology offers very good robustness/insensitivity properties against a wide vari-
ety of external disturbances as well as model uncertainties, see [47], [6], [21], [55],
[15]. The main disadvantage of the SM controllers is the so-called chattering effect,
a high frequency commutation in the control signal. This discontinuous input of high
frequency is not suitable for the majority of the actuators. For this purpose, High Or-
der Sliding Modes (HOSM) have been proven to reduce the chattering effect without
compromising the SM robustness/insensitivity properties, see [28], [29], [4], [44] and
[10].

In order to deal with unmatched perturbations two directions have been taken: the
minimization of unmatched perturbations in combination with robust schemes, see [11]
and the compensation via observer and sliding-surface designs, see [17], [16] and [14].
In our study, the case of periodic variations and the presence of parametric resonance
is considered. We introduced a new sliding surface and the proposed control scheme
is formed by two components: the Twisting and Super-Twisting algorithms. Both Sec-
ond Order Sliding Mode Controllers has been widely studied by the control research
community during the last two decades, see [28], [30] and [47].

1.3 Main Contribution

This chapter presents the modeling and control of a five degrees of freedom overhead-
crane system under the presence of parametric resonance. Two methods are introduced
which are motivated by the Twisting and Super-Twisting algorithms, together with the
appropriate design of the sliding surface. The trolley and payload angular positions
are assumed to be available for measurement and their corresponding derivatives are
obtained via differentiators. In summary:

• The model of a parametrically excited crane is presented. The crane is modeled as a
spherical pendulum attached to a moving support which is parametrically excited.
By using the appropriate small angle assumptions, the model results in a time-
varying system which is decoupled and symmetric with respect to the traveling and
traversing motions of the crane. This model includes two time-varying parameters:
the periodic oscillation in the base support and the rope length variation.

• The design of a new sliding surface is proposed together with the design of a Super-
Twisting Algorithm (STA) achieving the desired tracking, chattering alleviation,
oscillation attenuation and the avoidance of parametric resonance. The design of
the sliding surface is inspired by the work of [3] and the robustness of the zero
dynamics stability is improved using the method of Hill infinite determinants. The
convergence time to the sliding surface is estimated with the non-differentiable
Lyapunov function approach. The obtained results are validated experimentally on
a Laboratory IntecoTM 3D crane with a cam mechanism adaptation to produce the
parametric excitation.

• A new control law is proposed which is formed by two components: a linear and
nonlinear controller. The nonlinear component is discontinuous and is motivated by
the Twisting algorithm. However, in our case the theoretical switching frequency
is finite and we are not enforcing the sliding modes, see [19]. The ultimate bounded



320 C. Vázquez, J. Collado, and L. Fridman

stability analysis of the overall closed-loop system, which includes two intercon-
nected dynamics: the error of the trolley position and the payload oscillation, is
achieved with the design of a non-smooth vector Lyapunov function, see [7], [26]
and [33].

1.4 Chapter’s Structure

The remainder of this chapter is organized as follows. The mathematical model and
problem statement is described in Section 2. In Section 3 the design of a super-twisting
algorithm is presented. In Section 4 the vector Lyapunov approach is introduced. Sim-
ulations and experiments are shown in both sections 3 and 4, where the obtained results
are validated experimentally over a Laboratory IntecoTM 3D crane with a cam mecha-
nism adaptation. Finally in section 5, the conclusions are drawn for this study.

2 Mathematical Model

The considered overhead crane system consists of a spherical pendulum attached to
a moving support, the trolley, which is parametrically excited. Moving a suspended
load along a pre-specified path is not an easy task since the system is under-actuated
and the parametric resonance risk is present. Without parametric excitation the crane is
asymptotically stable for any configuration and loads. On the contrary, in the presence
of parametric excitation, there are some excitation frequencies and lengths in the rope
that makes the crane exponentially unstable.

The coordinate representation is shown in Figure 1. Here, XYZ is the fixed coordi-
nate system and X1Y1Z1 is the trolley coordinate system which moves with the trolley.
In the fixed coordinate system the trolley position is (x,y,z =acos(ω1t +η)) where z
is the parametric perturbation. This perturbation represents the vertical component of
the regular waves of the sea, which is simulated by a cam mechanism attached to the
laboratory crane as is shown in Figure 2. The swing angles projected on X1Z1 and Y1Z1

planes are θx and θy, respectively; β is the swing angle measured from X1Z1 plane. The
load is considered as a point mass and the mass and stiffness of the rope are neglected.

The position of the load in the fixed coordinate system is: (xm,ym,zm)= (x +
l sin θx cosβ ,y + l sin β ,z − l cosβ cosθx), where x, y, l, θx and β are defined as the
generalized coordinates to describe the motion. The Lagrangian L = T −P is formed
by the kinetic and potential energies of the crane and its load, T = 1

2 m(ẋ2
m + ẏ2

m + ż2
m)+

1
2 mc(ẋ2 + ẏ2)+ 1

2 mr(ẋ2), P = mgl(1− cosθx cosβ ). Rayleigh’s dissipation function is
given by: R = 1

2 (μxẋ2 + μyẏ2 + μl l̇2), where μx, μy and μl are the viscous friction co-
efficients associated with the x, y and l motions. The equations of motion of the crane
system are obtained by inserting L and R into Lagrange’s equations associated with the
generalized coordinates:

(mc +mr +m)ẍ+ μxẋ+ml cosθx cosβ θ̈x −ml sinθx sinβ β̈
+msinθx cosβ l̈ + 2mcosθx cosβ l̇θ̇x − 2msinθx sinβ l̇β̇

−ml sinθx cosβ θ̇ 2
x − 2ml cosθx sin β θ̇xβ̇ −ml sinθx cosβ β̇ 2 = fx,

(1)
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Fig. 1. Coordinate system

Fig. 2. Laboratory platform

l2mθ̈x cos2 β + lmẍcosθx cosβ − 2l2mθ̇xβ̇ cosβ sinβ
+2lml̇θ̇x cos2 β + lm(g+ z̈)cosβ sinθx = 0,

(2)

(mc +m)ÿ+ μyẏ+ml cosβ β̈ +ml sinβ l̈
+2mcosβ l̇β̇ −ml sinβ β̇ 2 = fy,

(3)

l2mβ̈ + lmÿcosβ − lmẍsinθx sinβ + 2mll̇β̇
+l2mθ̇ 2

x cosβ sinβ + lm(g+ z̈)cosθx sinβ = 0,
(4)

ml̈ +msinθx cosβ ẍ+ μl l̇ +msinβ ÿ−ml cos2 β θ̇ 2
x

−mlβ̇ 2 −m(g+ z̈)cosβ cosθx = fl .
(5)
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Setting q = [x,θx,y,β , l]T , system (1)-(5) can be represented by the following matrix-
vector form:

M(q)q̈+Dq̇+C(q̇,q)q̇+G(q, t) = F , (6)

where the driving force F , the damping matrix D and the gravitational force vector
G(q, t) are defined as F = [ fx,0, fy,0, fl ]

T , D = diag(μx,0,μy,0,μl) and G = [0, lm(g+
z̈)cosβ sinθx,0, lm(g+ z̈(t))cosθx sinβ ,−m(g+ z̈)cosβ cosθx]

T , respectively.

Remark 1

The 5×5 matrix M(q) can be readily obtained from the q̈ terms and is positive definite
when l > 0 and | β |< π

2 ; the 5×5 Coriolis and centrifugal force matrix C(q̇,q) satisfies
Ṁ(q)− 2C(q̇,q) =−(Ṁ(q)− 2C(q̇,q))T and can be found from the q and q̇ terms.

2.1 Model Simplification

In practice, the maximum acceleration of overhead cranes is much smaller than the
gravitational acceleration and the rope length is kept constant or slowly varying while
the cranes are in motion. In this chapter we adopt the model simplification proposed in
[27], where the practical cases: | ẍ |� g, | ÿ |� g and | l̈ |� g and the small angles as-
sumptions: cosθx � 1, cosβ � 1, sinθx � θx and sinβ � β are considered; furthermore
β = arctan(cosθxtanθy), and θx � 0 ⇒ β � arctan(tanθy) = θy. For small oscillations,
the linear equations for the parametrically excited crane under the action of gravity and
inertia forces are:

Mxẍ+ μxẋ− 2ml̇θ̇x −m(g+ z̈)θx = fx, (7)

θ̈x +
2
l

l̇θ̇x +
1
l
(g+ z̈)θx =− ẍ

l
, (8)

mcÿ+ μyẏ− 2ml̇θ̇y −m(g+ z̈)θy = fy, (9)

θ̈y +
2
l

l̇θ̇y +
1
l
(g+ z̈)θy =− ÿ

l
, (10)

ml̈ + μl l̇ −m(g+ z̈) = fl , (11)

where mc is the trolley mass, m is the load mass, mr is the girder mass, Mx= mc +mr, g
is the gravitational acceleration and μx, μy and μl are the viscous damping coefficients
associated with the x, y and l motions, respectively.

Remark 2

The system parameters considered in this chapter are: m = 1kg, mc = 0.6kg, mr = 1kg,
μx = 3.1kg/s, μy = 4.1kg/s and μl = 4.1kg/s.
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Remark 3

In the parametrically excited crane, shown in Figure 2, the parametric resonance phe-
nomenon appears when the frequency ω1 of z is twice the natural frequency, i.e., ω1 =
2ω0 = 2

√
g/l0, see [54] and [34]. Figure 3 shows the exponential growth due to the

parametric resonance in the laboratory overhead crane with the cam mechanism ad-
justed to ω1 = 6.26rad/s and a = 0.06m. When the oscillations are greater than 40◦,
the nonlinear dynamic phenomena are dominant and limit the oscillations. See the ex-
periment video at the URL [49].

Fig. 3. Experiment: Parametric resonance (ω1 = 2ω0)

In conclusion, the three-dimensional overhead crane consists of the travel dynam-
ics (7) and (8), the traverse dynamics (9) and (10), and the independent load hoisting
dynamics (11). The travel and traverse dynamics are decoupled and symmetric, which
means that the control of the three-dimensional overhead crane is transformed into a
control problem of two independent two-dimensional overhead cranes having the same
load hoisting dynamics. In this work, using the travel dynamics, the control law will be
designed, and it will be used for the control of both the traveling and traversing motions.
An independent controller, will be the responsible for the control of the load hoisting
dynamic represented by equation (11).

2.2 Design of Trajectories

The control objective is to move the payload from the initial position (x0, l̄) to a fi-
nal desired position, along a pre-specified smooth trajectory keeping the swing angle
sufficiently small in the presence of parametric variations on the base support. Two tra-
jectories are designed in order to avoid a known obstacle, one for the car position and
other for the rope length position, as shown in Figure 5.

The reference for the car position rref(t), r = x,y, is required to be three times differ-
entiable, and the derivatives need to be Lipschitz continuous. Such trajectory is given
by:

rref(t) =

{
a0 + a1t + a2t2 + a3t3 + a4t4 + a5t5 + a6t6 + a7t7,
x f ,

t ≤ t f ,
t > t f ,

(12)

the constants ai, i = 1,2,3,4,5,6,7 should be calculated. Based on the crane dimen-
sions, we choose: t0 = 0, t f = 6, r0 = 0.1 and r f = 0.7; then, in order to satisfy the
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relations: rref(t0) = r0, rref(t f ) = r f , ṙref(t0) = r̈ref(t0) =
...
r ref(t0) = 0 and ṙref(t f ) =

r̈ref(t f ) =
...
r ref(t f ) = 0, we obtain: a0 = 0.1, a1 = a2 = a3 = 0, a4 = 0.0162, a5 =

−0.006481, a6 = 0.0009002 and a7 =−0.00004286.

Fig. 4. Trajectory for the car position and its derivatives

Remark 4

The suggested trajectory is three times differentiable and its derivatives ṙref(t), r̈ref(t)
and

...
r ref(t) are Lipschitz continuous. These conditions will be required in the STA

design.
For the rope length we consider the reference function:

lref(t) =

⎧⎨
⎩

L(1+ ε cos(ω2t)), 0 < ω2t ≤ ta,
l f = L(1+ ε), ta < ω2t ≤ tb,
L(1+ ε cos(ω2t − tb −π)), tb < ω2t ≤ t f ,

(13)

The frequency ω2 is given by ω2 =
1
p ω0 with p > 0 an integer. In this paper we consider

L = 1.25, ε = 0.16 and ω2 =
1
4 ω0.

3 Super-Twisting Algorithm

The STA is one of the popular algorithms among the second order sliding mode con-
trollers and is characterized for belonging to the class of Lipschitz continuous con-
trollers, which is suitable for mechanical and electromechanical systems. The STA is
used for plants with relative degree one and the derivative of the sliding surface is not
required, see [28] and [30]. Moreover, new results in the field of sliding mode control
theory offer a methodology to construct Lyapunov functions for the STA in order to
estimate the convergence time to the sliding surface, see [45].
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Fig. 5. Trajectories for the car position and rope length

In this section, based on the travel dynamics, equations (7) and (8), we propose using
the STA in order to attenuate the payload oscillations and to eliminate the parametric
resonance in a parametrically excited crane. Additionally, the robustness stability of
the zero dynamics is improved with the Hill infinity determinants. This is important
because the overall system is under-actuated and at least two degrees of freedom would
result in parametric resonance.

3.1 Sliding Output

Two degrees of freedom must be controlled by using one control action, thus, the first
step is the design of a suitable sliding output that includes the two variables, x and θx;
motivated by the sliding output designed in [3], we proposed:

σ(t) = kdė(t)+ kpe(t)+ ki

∫ t

0
e(t)dτ − k1θx(t)− kpk1

∫ t

0
θx(t)dτ, (14)

where e(t) = x(t)−xref(t) is the position error and new integral terms were added. Note
that the relative degree with respect to σ(t) is one. In the following, we will omit the
dependence on time. Then the derivative of σ is given by:

σ̇ =
kd

Mx
fx + g0(θx, θ̇x,e, ė)+ d(t), (15)

with: g0 = (kp − μx
Mx

)ė + kie − k1θ̇x + (mg
Mx

− kpk1)θx and d(t) = −kd(ẍre f +
μx
Mx

ẋre f ),
where Mx = mc +mr. Now defining:

fx =
Mx

kd
(ux − g0), (16)

we obtain:
σ̇ = ux + d(t), (17)
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Then the sliding mode enforcement will be designed in order to compensate the Lip-
schitz continuous perturbation d(t). If g0 is not available, another possibility is to use
a sliding mode observer in order to obtain the estimation of g0, see [13]. Taking into
account σ̇ = 0 and the system dynamics (7) and (8), the obtained zero dynamics for the
payload and the car, respectively, are:

lθ̈x +(α +β ω2
1 cos(ω1t +η))θx +(2l̇+ 2μ)θ̇x − kp

kd
ė− ki

kd
e =−ẍre f , (18)

ë+
kp

kd
ė+

ki

kd
e− k1θ̇x − (kpk1 − mg

Mx
)θx = 0, (19)

where: 2μ = k1
kd

and α = g+ kpk1
kd

. With the designed trajectory, see Figure 4, the term
ẍr is bounded, Lipschitz continuous and it vanish at the finite time t f = 6. The zero
dynamics stability depends on the homogeneous equations:

lθ̈x +(α +β ω2
1 cos(ω1t +η))θx +(2l̇+ 2μ)θ̇x − kp

kd
ė− ki

kd
e = 0, (20)

ë+
kp

kd
ė+

ki

kd
e− k1θ̇x − (kpk1 − mg

Mx
)θx = 0. (21)

The stability of the zero dynamics (20)-(21) and the sliding mode enforcement via the
STA will be studied in the next two subsections.

3.2 Zero Dynamics

In this section we study the stability of the zero dynamics (20)-(21). The stability is
affected by amplitude β and the rope length variation, l(t). With the proposed reference,
lr, the rope length variation, is in the interval l ≤ l(t) ≤ l. Moreover, it has the form

l(t) = L(1+ ε cos(ω2t)), where ε = l−l
l+l

< 1 and L = l+l
2 . Also, we should note that

1
l(t) =

1
L (1+ lε(t)) where lε (t) = ∑∞

i=1(−1)i(ε cosω2t)i and |lε(t)| ≤ ε
1−ε = εl .

Setting:
q = [q1,q2,q3,q4]

T , (22)

with q1 = lθx, q2 = q̇1, q3 = e and q4 = ė, equations (20)-(21) are rewritten in the next
matrix form:

q̇ = A0q+ΔAq, (23)

with:

A0 =

⎡
⎢⎢⎢⎣

0 1 0 0

−α
L − 2μ

L
ki
kd

kp
kd

0 0 0 1

kpk1 − mg
Mx

k1 − ki
kd

− kp
kd

⎤
⎥⎥⎥⎦ and ΔA =

⎡
⎢⎢⎣

0 0 0
−ψ(t) −δ (t) 0 0

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , (24)

where:

• ψ(t) =−α lε
L − 1+lε

L (2 μ l̇
l + l̈+β ω2

1 cos(ω1t +η)).
• δ (t) =−2 μlε

L .

and ΔAq represents the time-varying perturbation.



Variable Structure Control of a Perturbed Crane 327

Theorem 1. Let the Lyapunov function be V = 1
2 qT Pq, where P = PT > 0 is the solu-

tion of the Lyapunov equation: AT P+PA=−In, then the exponential stability of system
(23) is guaranteed if the following condition is satisfied:

‖ΔAq‖
‖q‖ ≤ 1

λmax[P]
, (25)

where λmax(min)[·] denotes the operation of taking the largest (smallest) eigenvalue of
some symmetric matrix. The Euclidean norm of a vector q and the induced norm of a
matrix A are denoted by ‖q‖ and ‖A‖ respectively.

The perturbation ΔA(t) is bounded, and we have |ΔAi j| ≤ Ei j, then condition (25) is
transformed into:

emax ≤ 1
nλmax[P]

, (26)

where emax � maxi, j Ei j. See [40] and [52] for the proof. With the right selection of
parameters kp, kd , ki and k1, matrix A0 is Hurwitz and the Lyapunov matrix equation
AT

0 P+PA0 = −2In must be solved for robustness. For example, setting the following
control parameters:

kp = .1, kd = 1, ki = .1 k1 = 1.58, (27)

and solving the Lyapunov equation with the command lyap in Matlab, condition (26)
is transformed into emax ≤ 0.00039 which in general is very conservative. In order to
improve the maximum allowed bound of the perturbation, we will use the method of
the infinite Hill determinants, [31] and [37]. We need to study two cases:

• Constant rope length: l = L > 0, L a constant.
• Variable rope length: l = L(1+ ε cosω2t).

3.2.1 Constant Length
Setting the control parameters as in (27), A0 is Hurwitz and the condition emax ≤
0.00039 implies the exponential stability of system (23). In order to improve the sta-
bility of the zero dynamics, we should consider the condition of parametric resonance
ω1 = 2ω0. In this case from equation (20) we obtain the Mathieu equation. Now, consid-
ering η = 0 and scaling the time with t = 1

ω0
τ , where ω2

0 = g
L , we obtain the normalized

Mathieu equation:
θ̈x + 2μθ̇x+(α +β cos2τ)θx = 0, (28)

where 2μ = 1√
gL (

k1
kd
) and α = (1+ kpk1

gkd
). Usually, the stability of Mathieu’s equation

is given in terms of its parameters (α,β ) as a stability chart. By Floquet theorem, sys-
tem (28) has a solution of the form θx = eρt p(t), where p(t) = p(t +T ) and ρ is one
characteristic exponent. This solution can be expressed in Fourier series:

θx =
∞

∑
n=−∞

pne(ρ+2in)t , (29)

where the pn coefficients are constants. Substituting (29) in equation (28) we obtain:

∑∞
n=−∞{(α +2μ(ρ +2in)+(ρ +2in)2)pne(ρ+2in)t}

+ 1
2 β ∑∞

n=−∞{pne(ρ+2i(n−1))t + pne(ρ+2i(n+1))t}= 0.
(30)
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Equating each of the coefficients of the exponential terms to zero, we obtain the follow-
ing infinite set of linear algebraic homogeneous equations for the pn:

1
2

β pn−1 +Q(n)pn +
1
2

β pn+1 = 0, (31)

where Q(n) = α + 2μ(ρ + 2in)+ (ρ + 2in)2. From Floquet’s theorem, the set of equa-
tions (31) must have a nontrivial solution. If the infinite determinant Δ(ρ), formed by
(31), is identically zero, the infinite set of equations have a solution different to the
trivial for the pn coefficients. From (31) we obtain the infinite determinant Δ(ρ):

Δ(ρ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.. . . . . . ..

.. β
2 Q(−2) β

2 0 0 0 ..

.. 0 β
2 Q(−1) β

2 0 0 ..

.. 0 0 β
2 Q(0) β

2 0 ..

.. 0 0 0 β
2 Q(1) β

2 ..

.. 0 0 0 0 β
2 Q(2) ..

.. . . . . . ..

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The determinant Δ(ρ) results in a polynomial of infinity degree. The roots of this poly-
nomial, ρi, are spaced periodically in the ρi plane. Then, all the independent solutions
are represented through those characteristic exponents, ρi. Considering the three central
rows and columns, the convergent infinite determinant Δ(ρ) can be approximated by
truncation, see [12], we have Δ(ρ ,n) =∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Q(−n) β
2 0 . . . . ..

β
2 Q(−(n−1)) β

2 0 . . . ..
.. . . . . . . ..

.. 0 0 β
2 Q(0) β

2 0 ..
.. . . . . . ..

.. . 0 β
2 Q(n−1) β

2 0 ..

.. . . . 0 0 β
2 Q(n)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The transitions curves separating stable solutions from the unstable ones, correspond to
ρ = 0, i.e. periodic solutions with period π , or ρ = ±i, i.e. periodic solutions with pe-
riod 2π . In Figure 6, these regions where obtained evaluating the truncated determinant
Δ(ρ ,n), considering n = 5; the shaded regions correspond to unbounded solutions of
equation (28) and the white regions correspond to bounded solutions. The boundaries
between the two regions are called transitions curves where one solution is either π or
2π periodic, see [54]. The shaded regions are known as Arnold tongues or resonance
zones and in such regions the solution of equation (28) grows exponentially, see [2].
Figure 6 shows the Arnold tongues for equation (28) for different system parameters
and in order to guarantee the stability for maximum expected amplitude of the waves
we need to fix the set point in a stable region. For more details about the method of
infinite Hill determinants, see [31], [12] and [37].
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Fig. 6. Arnold tongues, Mathieu equation

Fig. 7. Arnold tongues, Ince equation

3.2.2 Variable Length
Considering the case of parametric resonance ω1 = 2ω0, normalizing time t = 2p

ω0
τ and

setting l = L(1+ ε cosω2t) with ω2 =
1
p ω0, equation (20) become the normalized Ince

equation:
lθ̈x + 2l̇θ̇x + 2μθ̇x +[α +β0 cos4pτ]θx = 0, (32)

where: β0 =
p2

g β , 2μ = ( 2p√
gL
)( k1

kd
) and α = (2p)2(1+ kpk1

gkd
). Following the procedure

of infinite determinant of Hill, we obtain the stability chart in terms of the parameters
(α,β ). Figure 7 shows the Arnold tongues that emanate from α = (2p)2 for different
values of p, i.e. different values of ω2. Figure 8 shows the Arnold tongue that will be
considered in the experiment.

3.3 STA Design

The input force ux for the STA is given as a sum of two components:

ux =−λ |σ | 1
2 sign(σ)+ f1, (33)

where: ḟ1 = −γsign(σ). Note that the STA does not need the measurement of σ̇ . Sub-
stituting the control law (33) in equation (17) we have:

σ̇ = −λ |σ | 1
2 sign(σ)+ f1 + d,

ḟ1 = −γsign(σ),
(34)
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Fig. 8. Arnold tongues for Ince equation

By means of the transformation:

ξ = d− γ
∫ t

0
sign(σ)dτ, (35)

system (34) may be rewritten as

σ̇ = −λ |σ | 1
2 sign(σ)+ ξ ,

ξ̇ = −γsign(σ)+ ḋ,
(36)

where | ḋ |≤ c. A necessary condition of convergence is γ > c, if in addition, we select
the gain λ sufficiently large, the appearance of a Second Order Sliding Mode is guaran-
teed after a finite time transient, i.e. σ = ξ = 0 in system (36). A very crude condition is
2(γ +c)2/(λ 2(γ −c))< 1, see [45, Theorem 4.6, p. 159.]. In [35], a Lyapunov function
is introduced that permits the design of λ and γ providing the estimation of convergence
time. Recently, in [48], it was demonstrated that for any κ > 0, κ = γ − c, and δ > 0,
there exists λ ∗ such that σ is reduced to zero in finite time less than (σ(0)/κ)+ δ , if
λ > λ ∗. The convergence time cannot be less than e1(0)/κ .

Now, based on the methodology presented in [35], we define ζ = [|σ | 1
2 sign(σ),ξ ]T

in order to design the following candidate Lyapunov function:

V = 1
2 ζ T Pζ , P =

[
ρ1 −ρ2

−ρ2 ρ3

]
, (37)

where ρ1, ρ2 and ρ3 are positive constants. This Lyapunov function is differentiable
almost everywhere. If the inequalities ρ1 > 0, ρ3 > 0 and ρ1ρ3 −ρ2

2 > 0, then V (ζ ) is
positive definite and radially unbounded, i.e.,

1
2

λmin[P]||ζ ||22 ≤V (ζ )≤ 1
2

λmax[P]||ζ ||22, (38)

Its time derivative along the solutions of the system is:

V̇ =−1
2
|σ |− 1

2 (ζ T Q0ζ + ḋ(−ρ2ζ 2
1 +ρ3ζ1ζ2)sign(σ)), (39)
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where:

Q0 =

[
ρ1λ −ρ2γ −ρ1 −ρ2λ +2ρ3γ

−ρ1 −ρ2λ +2ρ3γ ρ2

]
. (40)

Moreover, taking into account:

| ḋ |≤ kmax(| x(3)r |+ | ẍr |) = c (41)

where the constant kmax = max{kd ,
kd μx
Mx

}, we obtain:

V̇ ≤−1
2
|σ |− 1

2 ζ T Q1ζ ,

with:

Q1 =

[
ρ1λ −ρ2γ − (ρ3 − 2ρ2)c −ρ1 −ρ2λ + 2ρ3γ

−ρ1 −ρ2λ + 2ρ3γ ρ2 −ρ3c

]
(42)

Now, setting Q1 = I2×2, and considering P > 0, we obtain the relations:

• ρ2 > 1, ρ3 =
−1+ρ2

c and ρ1 >
cρ2

2
ρ2−1 .

• λ = 2ρ3+ρ2ρ1+2ρ3(ρ3−2ρ2)c
2ρ3ρ1−ρ2

2
and γ = ρ1+ρ2λ

2ρ3
.

Considering that ||ζ ||22 = |σ |+ |ζ |2 is the Euclidean norm of ζ and using the fact that:

|σ | 1
2 ≤ ||ζ ||2 ≤ V

1
2

λ
1
2

min[P]
, (43)

we obtain:
V̇ ≤−φV

1
2 , (44)

where φ =
λ

1
2

min[P]λmin[Q1]

λmax[P]
. From the solution of (44), it follows that ξ (t) converges to

zero in finite time and reaches that value at most after T = 2V
1
2 (ξ (0))

φ . Previous analysis
has proven the following:

Theorem 2. If condition (41) is satisfied together with:

ρ2 > 1, ρ3 =
−1+ρ2

c , ρ1 >
cρ2

2
ρ2−1 , (45)

and defining the controller gains:

λ = 2ρ3+ρ2ρ1+2ρ3(ρ3−2ρ2)c
2ρ3ρ1−ρ2

2
, γ = ρ1+ρ2λ

2ρ3
, (46)

the zero state σ = σ̇ = 0 of system (36) is uniformly global finite time stable with the

time of convergence T = 2V
1
2 (ζ (0))

φ where φ =
λ

1
2

min[P]
λmax[P]

.
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3.4 Simulations

Simulations were performed in Matlab-Simulink considering the nonlinear model (7)-
(11) and the proposed control scheme. The case of parametric resonance is considered,
i.e. ω1 = 2ω0, moreover the amplitude β and the phase η are unknown. An independent
PI controller, fl = 15e1(t)+

∫ t
0 e1(t)dτ with e1(t) = l(t)− lref(t), is responsible for the

control of the rope length. In the time intervals t0 < t < ta and tb < t < t f , the zero
dynamics correspond to Ince equation (32) and Figure 8 shows the set point. In the time
interval ta < t < tb the zero dynamics correspond to Mathieu equation and Figure 6
shows the set point. In both cases, we selected the set point according to the worst case,
i.e., the minimum length available, l = (L− ε) = 1.05m, and the maximum expected
amplitude of β , β = 0.21m. The design of control parameters is achieved in two stages:

1. Sliding surface design. The sliding output (14) depends on the parameters kd , kp,
ki and k1. The design of these parameters is achieved using the Arnold tongues,
Figures 6 and 7.
• With p = 4 and β = .21 we have β0 = 6.5.
• Setting kp = 0.1, ki = 0 and kd = 1, one has α =(2p)2(1+ kpk1

g ), which implies
α = 65.04

• 2μ = ( 2p√
gL )(

k1
kd
); setting μ = 2 and p = 4 one obtains k1 =

2μkd
√

gL
2p = 0.43.

• From Figure 8 the set point: (α,β0) = (64,6.5) belongs to a stable region.
• In the arrival phase we have 2μ = 1√

gl
( k1

kd
); setting μ = 0.7 one obtains, k1 =

2μ
√

gl = 5.45 and α = 1+ kpk1
gkd

= 1.05. From Figure 6 the point (α,β ) =
(.21,1.05) belongs to a stable region.

2. Design of control parameters (λ ,γ) of Super-Twisting algorithm. The control pa-
rameters should be designed using Theorem 2.
• First the bound of ḋ is given by (41); in this case with the trajectory presented

in Figure 4, we have ḋ = 0.775(|ẍr|+ |...x r|)≤ 0.775(0.2+ 0.2)≤ c = 1.
• Setting ρ2 = 2 we have ρ3 =

−1+ρ2
c = 1.

• Finally setting ρ1 = (1.1)
cρ2

2
ρ2−1 = 4.4, we obtain λ = 1 and γ = 3.2 by theorem

2.

The simulation was performed using the obtained control parameters and the results are
presented in Figure 9.

3.5 Experiments

Experiments were performed on the laboratory crane, shown in Figure 2, with ω1 =
2ω0. The laboratory crane has the values of (x,θx,y,θy, l) available for measurement,
and they are interfaced to a personal computer through an IntecoTM Data Acquisition
Board. The control algorithms are implemented in a Matlab/SimulinkTM environment.
The derivatives (ẋ, θ̇x, ẏ, θ̇y) are obtained through sliding mode differentiators. The ob-
tained results are presented in Figure 10. Notice how well the experimental results in
Figure 10 and the simulations results shown in Figure 9 resemble each other.
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Fig. 9. Simulation with the STA

Fig. 10. Experiment with the STA

4 Vector Lyapunov Approach

The problem of time varying perturbations, periodic or not periodic, is a very important
one for all kinds of control applications. In this section we will review some basic
results concerning the Lyapunov stability theory for systems subject to time varying
perturbations and the Vector Lyapunov Method used in this chapter.

4.1 Nonlinear Time Varying Perturbation

Consider the system,
ẋ = Ax+ g(x, t), (47)

where x and g(x, t) are n−dimensional vectors and g(0, t) = 0 ∀t; g(x, t) represents the
time-varying perturbation.
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Theorem 3. Let the Lyapunov function be V = 1
2 xT Px, where P=PT > 0 is the solution

of the Lyapunov equation: AT P+PA=−In, then the stability of system (47) is guaranteed
if the following condition is satisfied:

‖g(x, t)‖
‖x(t)‖ ≤ 1

λmax[P]
, (48)

where λmax(min)[·] denotes the operation of taking the largest (smallest) eigenvalue of
some symmetric matrix. The Euclidean norm of a vector x and the induced norm of a
matrix A are denoted by ‖x‖ and ‖A‖ respectively. See [40] for the proof of (48).

In the case of a linear time-varying perturbation:

g(x, t) = ΔA(t)x, (49)

where the perturbation ΔA(t) is bounded by, |ΔAi j| ≤ Ei j, the condition (48) is trans-
formed into:

emax ≤ 1
nλmax[P]

, (50)

where emax � maxi, j Ei j. See [40] and [52] for the proof.

4.2 Second Order System

The study of second order systems is of fundamental interest because they are present
in a great variety of physical phenomena. Moreover, if one of the parameters of a linear
system is time varying, periodic or non-periodic, the classical theory for stability anal-
ysis, Routh-Hurwitz, Nyquist or Root-Locus, are not applicable and the complexity of
the control problem is increased, see [54]. In addition, the design of Lyapunov functions
for linear time varying systems is more difficult than it is for time-invariant systems. A
particular case of system (47) is given by:

A =

[
0 1

−ψ0 −δ0

]
, g(x, t) =

[
0 0

−Δψ −Δδ

]
x, (51)

where matrix A is Hurwitz and the coefficients Δψ and Δδ are bounded, moreover:

• ψ(t) = ψ0 +Δψ(t)> 0 and δ (t) = δ0 +Δδ (t)> 0.
• ψ = ψ0− || Δψ(t) ||∞ and ψ = ψ0+ || Δψ(t) ||∞.

• δ = δ0− || Δδ (t) ||∞ and δ = δ0+ || Δδ (t) ||∞.
• || ψ̇(t) ||∞≤ β0 and || δ̇ (t) ||∞≤ β1.

In order to study the stability of (51) consider the Lyapunov functionV (x, t) = 1
2 xT P(t)x

with:

P(t) =

[
φψ(t)+ δ (t) 1

1 φ

]
, (52)

If φ > 0, ψ(t)> 0, δ (t)> 0 and φ(φψ +δ )> 1 then P(t)> 0. Now V̇ (x, t) is given by,

V̇ (x, t) =−xT
[

ψ(t)− 1
2(φψ̇ + δ̇ ) 0
0 φδ (t)− 1

]
x, (53)
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where:

ψ >
1
2
(|| ψ̇ ||∞ φ+ || δ̇ ||∞) and δ >

1
φ
, (54)

which implies V̇ (t,x)≤ 0.

Remark 1. In general, condition (50) is conservative. In some applications we have
control of the parameters ψ0 and δ0 and the stability condition (54) gives better results
for (51).

4.3 Vector Lyapunov Functions

In this section we present the basic result of the vector Lyapunov function method used
in this paper, see [26] and [7] for details and further extensions. Consider the system,
given by:

ẋ = f (t,x), (55)

where x and f (x, t) are n−dimensional vectors. Moreover, the function f (x, t) is piece-
wise continuous. The precise meaning of the solution of differential equation (55) with
a piecewise continuous right-hand side is defined in the sense of Filippov, [18]. Stability
of system (55) will be studied via vector Lyapunov functions. For any vector Lyapunov
function V ∈C[R+×R

n,RN
+] we define the function,

D+V (t,x) = lim sup
h→0+

1
h
[V (t +h,x+h f (t,x))−V (t,x)], (56)

for (t,x) ∈ R+×R
n. One could also utilize other generalized derivatives, for example,

D−V (t,x) = lim inf
h→0−

1
h
[V (t +h,x+h f (t,x))−V (t,x)], (57)

We note that if V ∈C1[R+×R
n,RN

+], then D+V = D−V = V̇ , where:

V̇ (t,x) =
∂
∂ t

V (t,x)+
∂
∂x

V (t,x) f (t,x). (58)

In general V (t,x) may not belong to C1, but satisfies the Lipschitz condition in the
neighborhood of each point of this domain and the composite function V (t,x) is ab-
solutely continuous for any solution x(t) of (55). Its time derivative is given by (58)
almost everywhere, wherever the function f (t,x) is continuous and ∂

∂xV (t,x) exists, see
[18]. Let us consider the comparison system,

Ẇ = g(t,W ), W (t0) =W0 ≥ 0, (59)

where g ∈ C[R+×R
n,RN ] and g(t,W ) is quasimonotone nondecreasing in W . Let us

recall that inequalities between vectors are component wise and quasimonotonicity of
g(t,W ) means that W ≤ R, Wi = Ri for 1 ≤ i ≤ N implies gi(t,W )≤ gi(t,R). The crucial
step in the vector Lyapunov function is to assume that,

D+V (t,x)≤ g(t,V(t,x)). (60)
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Furthermore, in order to apply the method to specific problems it is necessary to know
the properties of the solutions of system (59), which is difficult in general. In the present
section we will consider the linear comparison system,

g(t,W(t,x)) = AW (t,x)+ b, (61)

where stability properties are given by the matrix A = [ai j]n×n and the vector b =
[bi1]n×1.

Theorem 4. Assume that:

1. g(t,W ) has the form of (61).
2. V ∈ C[R+ ×R

n,RN ], V (t,x) is locally Lipschitz in x and the function V0(t,x) =
∑N

i=1 Vi(t,x) is positive definite and decreasing.
3. f (t,x) is piecewise continuous and

D+V (t,x)≤ g(t,V (t,x)).

Then the stability properties of the trivial solution of

Ẇ = g(t,W), W (t0)≥ 0, (62)

imply the corresponding stability properties of the trivial solution of (55). See [26] for
the proof.

Corollary 1. In Theorem 4,

• g(t,W )≡ 0 is admissible to yield uniform ultimate bounded stability.
• g(t,W ) = AW +b, with A Hurtwitz and b > 0 is admissible to imply uniform strong

ultimate bounded stability. See [25] for the proof.

The vector Lyapunov function method offers a very flexible mechanism since each func-
tion can satisfy less rigid requirements, see [7], [26] and [33]. Due to the fact that a
given large system may be decomposed into interconnected subsystems to determine
the stability of the system from the stability properties of the subsystems and the nature
of the interconnections, in some situations several Lyapunov functions result naturally
and employing more Lyapunov functions yields better results.

4.4 Control Design

In this section, using the travel dynamics, described by equations (7) and (8), we will
design a twisting controller in order to attenuate the load oscillations and eliminate the
parametric resonance in the shipboard crane. The actual case does not yield a standard
application of the sliding mode control methodology since the crane system is under-
actuated and subject to parametric resonance.

The position variable x is the output of subsystem (7) and θx is the output of sub-
system (8); both outputs have relative degree two and both are available. Besides, in
equation (8) and (10), the term 1

l is included which can be represented by the next
expression:

1
l
=

1
l0
(1+ lε(t))≤ 1

l0
(1+ |lε |), (63)
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where lε(t) = ∑∞
i=1(−1)i(ε cosω2t)i, l0 = l+l

2 , and | lε |≤ ε
1−ε = εl . Finally, setting

θ1 = θx, θ2 = θ̇x, ex = x− xr, ev = ẋ− ẋr and defining θ = [θ1,θ2]
T , e = [ex,ev]

T and
fx = l0Mxux, equations (7) and (8) have the next state-space representation:[

ė
θ̇

]
=

[
A11 A12(t)

A21(t) A22(t)

][
e
θ

]
+

[
b1

b2(t)

]
ux +

[
d1(t)
d2(t)

]
. (64)

The time varying matrices can be decomposed into:

• d1(t) = b1Δd1.
• d2(t) = b20Δd2.
• b2(t) = b20(1+ lε(t)).
• A21(t) = b20ΔA21.
• A22(t) = A220 + b20ΔA22.
• A12(t) = b1ΔA12.

Where: A11 =

[
0 1
0 − μx

Mx

]
, ΔA12 =

[
m(g+z̈)

Mx

2ml̇
Mx

]
, Δd1 =−ẍr − μx

Mx
ẋr, b1 =

[
0
l0

]
,

A220 =

[
0 1

−ω2
0 0

]
, b20 =

[
0
−1

]
, Δd2 =− μx

lMx
ẋr, ΔA21 =

[
0 − μx(1+lε (t))

l0Mx

]
,

ΔA22 =
[
Δψθ (t) Δδθ (t)

]
, Δψθ (t) =

Mx+m
Mx

( z̈
l0
+(ω2

0 +
z̈
l0
)lε (t)+ m

Mx+m ω2
0 )

and Δδθ (t) = 2 l̇
l0
(1+ lε)(

m+Mx
Mx

).
The described crane has two degrees of freedom, x and θx, and must be controlled by

using one control action. The next step is to design a suitable control input that includes
the two control components.

ux =−Kee+Kθ θ +ρ(e,θ ), (65)

where Ke =[ke1,ke2] and Kθ =[kθ1,kθ2] are the corresponding gains of the linear part of
the control law and ρ(e,θ ) corresponds to the twisting controller,

ρ(e,θ ) =−Ksign(e)+Rsign(θ ), (66)

where:

• R = [r1,r2], and sign(θ ) = [sign(θ1),sign(θ2)]
T .

• K = [k1,k2] and sign(e) = [sign(ex),sign(ev)]
T .

The closed-loop version of (64) with control laws (65)-(66):[
ė
θ̇

]
=

[
Ā11 b1 ¯ΔA12

b2(Kx +ΔA21) Ā22 + b2ΔA22

][
e
θ

]
+

[
b1

b2

]
ρ(e,θ )+

[
b1Δd1

b20Δd2

]
, (67)

with Ā11 = A11 − b1Ke, Ā22 = A220 − b20Kθ , ¯ΔA12 = ΔA12 +Kθ . The next properties
are satisfied:

• The pair (A11,b1) is controllable.
• The pair (A220,b20) is controllable.
• ĀT

11Pe +PeĀ11 =−Qe.

where Pe and Qe are symmetric positive definite matrices. Under these assumptions and
using the vector Lyapunov function approach, the stability of the closed loop system
will be studied in the next part of this section.
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4.5 Stability Analysis

Now we propose the vector Lyapunov function, V = [Ve,Vθ ]
T , with: Ve =

1
2 eT Pee+

l0k1γ|ex| and Vθ = 1
2 θ T Pθ (t)θ + r1φ |θ1|, and the matrices Pe and Pθ (t):

Pe =

[
γψe + δe 1

1 γ

]
, Pθ (t) =

[
φψθ (t)+ δθ (t) 1

1 φ

]
,

with:

• ψe = ke1l0 > 0; δe = ke2l0 +
μx
Mx

> 0.
• ψθ (t) = ψθ0 +Δψθ (t)> 0; ψθ = ψθ0+ || Δψθ ||∞.
• ψθ0 = ω2

0 + kθ1; ψθ = ψθ0− || Δψθ ||∞.
• δθ (t) = δθ0 +Δδθ (t)> 0; δθ0 = kθ2.
• δθ = δθ0− || Δδθ ||∞; δθ = δθ0+ || Δδθ ||∞.

Functions Ve and Vθ are definite positive if the next conditions are satisfied:

• γ > 0, γψe + δe > 0 and γψe + δe >
1
γ .

• φ > 0, φψθ0 + δθ0 > φ || Δψθ ||∞ + || Δδθ ||∞ + 1
φ .

Function Vθ satisfies the next inequality:

1
2

θ T Pθ θ <Vθ <
1
2

θ T Pθ θ + r1φ | θ1 |, (68)

where: Pθ =

[
ψθ φ + δθ 1

1 φ

]
and Pθ =

[
ψθ φ + δθ 1

1 φ

]
. Functions Ve and Vθ are positive

definite and decrescent:

λmin[Pe]||e||22 ≤Ve ≤ γ(||e||22 + |ex|), (69)

λmin[Pθ ]||θ ||22 ≤Vθ ≤ φ(||θ ||22 + |θ1|), (70)

where γ = max{λmax[Pe], l0k1}, φ = max{λmax[Pθ ],r1φ}. Now taking the derivative
to the right of Ve, we have:D+Ve ≤ −eT Qee+ eT Peb1 ¯ΔA12θ + eT Peb1Rsign(θ ) ++
eT Peb1Δd1−eT Peb1Ksign(e). The corresponding matrix Qe is given by:

Qe =

[
l0ke1 0

0 γ(l0ke2 +
μx
Mx

)− 1

]
.

Taking the absolute value of the terms with indefinite sign: D+Ve ≤−λmin[Qe](||e||22 +
|ex|)++||Peb1||∞|| ¯ΔA12||∞||e||1||θ ||1 + ε1||e||1, where:

• ||Peb1||∞ = l0γ .
• ε1 = l0γ(r1 + r2)+ l0γ||Δd1||∞ − k.
• k = min{l0(k1 − k2 − λmin[Qe]

l0
), l0γk2}.

• k1 > k2 >
λmin[Qe]

l0
.

• r1 > r2 > k1 + k2 ⇒ 0 < ε1 << 1.
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All norms in R
n are equivalent, for example if z ∈R

n we have ||z||2 ≤ ||z||1 ≤√
n||z||2.

Considering the last inequality:

D+Ve ≤−λmin[Qe](||e||22 + |ex|)++2l0γ|| ¯ΔA12||∞||e||2||θ ||2 +
√

2ε1||e||2.
Now we can rewrite the last expression in terms of Ve and Vθ :

D+Ve ≤−λmin[Qe]

γ
Ve +(2l0γc0|| ¯ΔA12||∞V

1
2

θ +
√

2εe)V
1
2

e , (71)

where c0 = (λmin[Pe]λmin[Pθ ])
− 1

2 and εe = ε1(λmin[Pe])
− 1

2 . Finally setting the change of
variables W 2

1 =Ve and W 2
2 =Vθ we have:

D+W1 ≤−λmin[Qe]

2γ
W1 + l0γc0|| ¯ΔA12||∞W2 +

1√
2

εe. (72)

Expression (72) will be used to construct the comparison system. Now taking the
derivative to the right of Vθ , and considering the bounds of l, l̇, ψθ and δθ , we have:
D+Vθ ≤ − 1

2 θ T Qθ (t)θ − φ2(r1 − r2)|θ1| − φ(r2 − εl r1)|θ2| + (1 + εl)φ(||Kx||∞ +
||ΔA21||∞)||e||1||θ ||1+(1+εl)φ(||K||∞+ ||Δd2||∞)||θ ||1, where the corresponding ma-
trix Qθ (t) is given by:

Qθ =

[
ψθ − 1

2 (ψ̇θ φ + δ̇θ ) 0
0 δθ φ − 1

]
,

Moreover, xT Qθ x ≤ xT Qθ x ≤ 1
2 xT Qθ x where:

Qθ =

[
ψθ − 1

2 (||ψ̇θ ||∞φ + ||δ̇θ ||∞) 0
0 δ θ φ − 1

]
,

Qθ =

[
ψθ − 1

2 (||ψ̇θ ||∞φ + ||δ̇θ ||∞) 0
0 δ θ φ − 1

]
.

In order to have Qθ > 0 we need to satisfy:

ψθ >
1
2
(|| ψ̇θ ||∞ φ+ || δ̇θ ||∞) and δθ >

1
φ
, (73)

which implies, D+Vθ ≤ −λmin[Qθ ]||θ ||22 − (r1 − r2)|θ1|− φ(r2 − εl r1)|θ2|+(1+ εl)φ
(||Kx||∞ + ||ΔA21||∞)||θ ||1||e||1 +(1+ εl)φ(||K||∞ + ||Δd2||∞)||θ ||1. Now, setting:

• r1 > r2 > εl r1, r2 > λmin[Qθ ] and ||e||1 < c.
• r = min{(r1 − r2 −λmin[Qθ ]),φ(r2 − εlr1)}.

We obtain: D+Vθ ≤−λmin[Qθ ](||θ ||22 + |θ1|)− εθ ||θ ||1, with:

εθ = r− (1+ εl)φ((||Kx||∞ + ||ΔA21||∞)c+ ||K||∞+ ||Δd2||∞).
Then, we have two cases:

D+Vθ ≤
{−φ(||θ ||22 + ||θ ||1) if εθ > 0,
−λmin[Qθ ](||θ ||22 + |θ1|)+ |εθ |||θ ||1 if εθ ≤ 0,
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where φ = min{λmin[Qθ ],εθ}; rewriting the last expression in terms of Vθ :

D+Vθ ≤
{−(φ/φ)Vθ if εθ > 0,

−(λmin[Qθ ]/φ)Vθ +
|εθ |√

2
V

1
2

θ if εθ ≤ 0.

Finally, considering the previous change of variables, we obtain:

D+W2 ≤
{
− 1

2 (φ/φ)W2 if εθ > 0,

− 1
2 (λmin[Qθ ]/φ)W2 +

|εθ |√
2

if εθ ≤ 0.
(74)

Now from (72) and (74) we have the comparison system:

Ẇ = AW + b, (75)

where W = [W1,W2]
T , and:

A =

[− 1
2 γ/γ lγ3||Kθ ||∞
0 − 1

2 λmin[Qθ ]/φ

]
, b =

[ εe√
2εθ√
2

]
, if εθ ≤ 0,

A =

[− 1
2 γ/γ lγ3||Kθ ||∞
0 − 1

2 φ/φ

]
, b =

[ εe√
2

0

]
, if εθ > 0.

Matrix A is Hurwitz and upper triangular, which implies ultimate bounded stability of
e and θ . Moreover if εθ > 0 we have exponential stability for θ .

4.6 Simulation

Simulations were performed in Matlab/SimulinkTM considering the proposed control
scheme and the nonlinear model, equations (1)-(5). In simulations we consider the case
of parametric resonance, i.e. ω1 = 2ω0. The phase η and the amplitude a are unknown
parameters, but amplitude a is bounded by the maximum expected amplitude of the
waves. Additionally, an initial payload swing is considered in the simulation, including
the initial conditions x(0) = y(0) = 0.1m, ẋ(0) = ẏ(0) = 0, θx(0) =−6◦, θ̇x = 11.4◦/s,
β (0) = 6◦ and β̇ = 5.7◦/s. An independent generalized twisting controller is responsi-
ble for the control of the rope length, i.e. fl = −10el − 5ėl − 15sign(el)− 12sign(ėl),
where el = l − lr. The design parameters for the travel and traverse dynamics are:

• a ≤ 0.145, i.e. 10% of l
• r1 = 0.2, r2 = 0.18, k1 = 0.16 and k2 = 0.08.
• ke1 = 6, ke2 = 8, kθ1 = 10 and kθ2 = 11.

With these parameters expressions (73) are satisfied. Moreover, εe = 0.1 and εθ = 0.1.
For practical purposes the sign function can be approximated by sign(x) ≈ x

|x|+δ , with

δ � 1. We consider δ = 0.001. The obtained results are presented in Figure 11 and
Figure 12 shows the control forces.
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Fig. 11. Simulation: trolley position and rope length (meters); and payload oscillations (degrees)
vs time (seconds)

Fig. 12. Simulation: control actions (kg m/s2) vs time (s)

4.7 Experiment

Experiments were performed in a Laboratory IntecoTM 3D crane, with a cam mecha-
nism adaptation, shown in Figure 2, adjusted to ω1 = 2ω0 = 6.26 rad/s and a = 0.06m.
The laboratory crane has the variables (x,θx,y,θy, l) available for measurement through
encoders, and they are interfaced to a personal computer with an IntecoTM Data Ac-
quisition Board. The control algorithms are implemented on Matlab/SimulinkTM en-
vironment. The measurement of the velocities, (ẋ, θ̇x, ẏ, θ̇y), is not available; however,
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we can compute the velocities from the position measurements, see [56]. For this pur-
pose, the velocity signal is obtained with s

(T s+1)2 , where the filter constant T is ad-

justed experimentally, in this case we choose T = 0.5. The system frequency as well
as the switching frequency is above 0.4Hz which is less than the filter frequency of
2Hz, then by the classical theory of singular perturbations is not necessary to include
the filter dynamic in the model, see [24]. The obtained results are presented in Fig-
ure 10. Figure 14 shows the control forces. In the experiment, as well as in Simula-
tion, an initial payload swing was introduced. The videos of the experiments, Figures 3
and 13 are available at the URL [49]. Notice how well the experimental results, illus-
trated in Figure 13, resemble the corresponding simulation in Figure 11. For compar-
ison purposes we implemented the control law (65) neglecting the discontinuous term
ρ(e,θ ); in this form this control law corresponds to the PD control. Additionally, we
implemented the PID control provided by INTECOTM. This control law has the form:
fm = kpmem+kdmėm+kim

∫ t
0 emdτ+kmθm for m= x,y and fl = kplel+kdl ėl +kil

∫ t
0 eldτ .

The considered parameters are: kpx = kpy = kpl = 10, kdx = 2, kdy = kdl = 1, kix = 10,

Fig. 13. Experiment: trolley position and rope length (meters), payload oscillations (degrees) vs
time (seconds)
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Fig. 14. Experiment: control actions (kg m/s2) vs time (s)

Fig. 15. Experiment: Comparison of position errors (meters), payload oscillations (degrees) with
our scheme (-), PD control (-.) and PID control (- -)

kiy = 15, kil = 20 and kx = ky = 10. We adjust the parameters in order to add the same
attenuation for the oscillations as is shown in Figure 15. This Figure shows the oscilla-
tions θx and θy, and the position errors for the positions x, y and l obtained with the PID
control (- -), PD control (-.) and the generalized twisting controller (-) presented in this
chapter. The generalized twisting controller not only avoids the parametric resonance
effect but also provides better performance, reducing the positions errors, as we can
observe in Figure 15.
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Remark 5

Since syntonization rules do not exist for the PID controller in order to avoid the para-
metric resonance, it could be possible, for some frequencies and some rope lengths, that
the parametric resonance effect appears with the PID controller. Besides, the proposed
controller is supported by the vector Lyapunov method, and the stability is guaranteed.

5 Conclusions

We presented a solution to the problem of tracking, oscillation attenuation and avoid-
ance of parametric resonance in a parametrically excited crane. We modeled the crane
as a pendulum with an oscillating support, obtaining the Mathieu and Ince equations
in the established zero dynamics. Stability is ensured by analyzing the corresponding
Arnold tongues. Furthermore, the STA was proposed in order to guarantee the Lipschitz
continuous property of the control law as well as the estimation of the time convergence
rate.

On the other hand, based on the vector Lyapunov function approach a new controller
has been introduced. The proposed controller is formed by two components, one of
them is discontinuous motivated by the ”Twisting” algorithm. In this case, we are not
enforcing the sliding modes. The method of vector Lyapunov functions was successful
and provides the ultimate bounded stability conditions for the closed loop system.

We tested and validated the proposed controllers in a laboratory crane which includes
a cam mechanism adaptation, obtaining good results. Extensions of ”Twisting” and
”Super-Twisting” algorithms applied to most general linear periodic systems as well as
the almost periodic case are considered for future work.
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energy, his willing and abilities to help to all of colleagues, the excellent organization
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Abstract. Due to not only having strong nonlinear inter-couplings in its model
but also being an open-loop unstable system, control of a 2-degree of freedom
(DOF) helicopter is a challenging task. This chapter deals with the decentral-
ized control of the Quanser 2-DOF helicopter system by designing an interval
type-2 fuzzy neural network for the control of the pitch and yaw angles by us-
ing a sliding mode control theory-based training algorithm. The proposed control
method is known as feedback error learning in which an intelligent controller, a
type-2 fuzzy neural network in this case, works in parallel with a conventional
PD controller. In the proposed scheme, on one hand, the conventional PD con-
troller is responsible to maintain the stability of the system until the intelligent
controller takes the responsibility of controlling the system. On the other hand,
the intelligent controller learns the system dynamics online with a sliding mode
control-theory based learning algorithm. The simulation results show that without
having neither a priori knowledge about the mathematical model of the system
nor its parameters, the proposed control algorithm is able to track the reference
signals for both yaw and pitch angles without giving a steady state error. In addi-
tion, the simulation results show the superiority of the proposed control scheme
over its type-1 counterpart in the presence of noise in the system. In addition to
its robustness, the sliding mode control theory-based learning algorithm has ad-
ditional advantages such as having no matrix manipulations or partial derivatives
which makes the overall training and control algorithm computationally simple
and fast when compared to other methods, e.g. gradient-descent based methods.

Keywords: 2-DOF helicopter, sliding mode control theory-based learning algo-
rithm, type-2 fuzzy neural network, feedback error learning.

1 Introduction

Over the last decades, control of helicopters has received more attention among other
aerial vehicles due to their abilities of performing agile maneuvers in relatively small
spaces and being able to take-off and land on small areas vertically. These features
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X. Yu and M. Önder Efe (eds.), Recent Advances in Sliding Modes,
Studies in Systems, Decision and Control 24, DOI: 10.1007/978-3-319-18290-2_17



350 M.A. Khanesar and E. Kayacan

make helicopters more versatile aerial vehicles for short distance transportation when
compared to fixed wing aerial vehicles. Consequently, helicopters have found wide ap-
plication areas, e.g. traffic surveillance, air-sea rescue, fire fighting, teleoperation, vi-
sual servoing/tracking, etc. [12,33]. Howbeit, helicopter dynamics are highly nonlinear
with having strong cross-couplings in their models as well as being open loop unstable
systems. Hence, helicopters are benchmark nonlinear systems since their control is a
challenging task [4].

In addition to inherent complexities in helicopter models, identification of these sys-
tems is not a straight forward and easy task. In most of the cases, determination of pa-
rameters of a helicopter model require specific experiments and each experiment needs
to be repeated many times to get more accurate identification results which is an expen-
sive and time-consuming task. In order to reduce the number of experiments and sim-
plify the identification process, a simpler method is proposed in [40]. In the mentioned
investigation, an implementation of soft computing methodologies, genetic algorithm
and fuzzy logic theory, is proposed for the identification and control of 2-DOF nonlin-
ear helicopter model (Humusoft CE 150). Another challenge of controlling helicopters
is that these systems are subject to inherent and external uncertainties, such as operating
under windy environments. What is more, suppression of moments caused by the vari-
ation in loading conditions affect helicopter flight control system adversely [3]. These
moments are listed in [3] as weight variations, turbulence in the fuel tank, coolant tanks
and hydraulic fluid tanks. Similarly, any abrupt and unforeseen changes during the flight
may cause disturbance torques in the system, e.g. change of center of gravity due to pas-
senger or load changes. Since the fuselage acts as a pendulum suspended from the rotor,
the ideal condition for the helicopter is to keep its horizontal position in hovering flight.
The mentioned disturbances will change the center of gravity of the helicopter which
will cause a change in the angle at which it is hung from the support point resulting in
additional torques in the system [31].

The simplest case for a given disturbance is a bias resulting in a steady state error
in the control system. The error can be compensated by using an integral action [42].
However, the disturbances in a helicopter system mentioned above are more compli-
cated and hard to model, and they must be dealt with sophisticated control methods. In
the case of dealing with a 2-DOF helicopter, the control is even more complicated than
having a conventional helicopter. The reason for the mentioned complexity is that the
simplicity in the mechanical designs comes at a price of the complexity in the model.
More specifically, in order to simplify the mechanical structure, 2-DOF helicopter is
designed in a way that the blades of the rotors have a fixed angle of attack, but the
speeds of the rotors are manipulated to control the system [3]. As a consequence, 2-
DOF helicopter has significant cross-coupled nonlinearities. Hence, 2-DOF helicopters
have been used as a benchmark system for several advanced control algorithms. In [2],
a new sliding surface is proposed to handle cross-coupling affects in the system, and
it is shown that the designed controller provides robustness against cross-coupling as
well as performance along with the freedom to operate the system in nonlinear range.
An adaptive super-twisting control for a 2-DOF helicopter has been proposed in [36]
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with a nonlinear extended state observer for estimating non-measurable states and ex-
ternal disturbances. The experimental results show that the proposed control scheme
increases robustness under non-modeled dynamics and external disturbances. In [10],
nonlinear predictive control for tracking control of 2-DOF helicopter is proposed, and
it is claimed that while the nonlinear controller can control the system with a high ac-
curacy, its linear counterpart is unable to stabilize the system. In [28], two multivariable
model predictive control strategies, selfish and solidary, are investigated for the con-
trol of 2-DOF helicopter system, and its results are compared with the ones by using a
linear quadratic regulator. It is reported that the main differences between selfish and
solidary control arise at the moment that the constraints are active. In [27], the control
of a 2-DOF helicopter is performed by using a feedback linearization technique, e.g.
input-output linearization.

All the control algorithms listed above have tried to improve their performances by
using more sophisticated algorithms, such as being MIMO instead of SISO or using
nonlinear models instead of using linear models, etc. However, it is to be noted that
all these designs are model-based controllers, and they need an accurate mathematical
model of the system. However, as explained before, to obtain an accurate mathematical
of the helicopter systems is a time consuming and challenging task. When the mathe-
matical model of the system is not precisely known, model-free control methods may
be preferable since they do not need the mathematical model of the system. These ap-
proaches are conceptually simple and they lessen the need for physical and mathemat-
ical knowledge of the system. Artificial neural networks are universal approximators,
and they have been implemented very successfully in the identification and control of
nonlinear dynamic systems. By using their learning ability, neural networks can learn
the system dynamics online and provide better performances when compared to conven-
tional model-based control algorithms. For instance, in [12], neural backstepping and
neural sliding mode block control techniques are proposed in order to control the pitch
and yaw positions of a 2-DOF helicopter. It is reported that although both controllers
are able to show good performance, the block control technique presents slightly better
performance when compared to backstepping algorithm.

Among model-free approaches, fuzzy logic systems are one of the most popular
methods because of their strength to model expert and experienced human knowledge.
When the expert knowledge about a system is not complete and/or sufficient, fuzzy
neural networks (FNNs) can be used to learn more about the system than is avail-
able through the expert. Basically, FNNs are learning machines that find the fuzzy
logic system parameters (i.e., fuzzy sets, fuzzy rules) by exploiting approximation tech-
niques from neural networks [25]. Thus, FNNs can simultaneously use expert human
knowledge and learn from measured input/output data [35, 41]. There are two types of
FNNs: type-1 and type-2 which differ in their membership functions (MFs). The MFs
in T1FNN are totally crisp, while they are themselves fuzzy in type-2 fuzzy neural
networks (T2FNN). Therefore, the antecedents and consequent parts in T2FNNs are
interval rather than a single value resulting in interval and uncertain rule bases. This
uncertain rule base of T2FNN makes it possible to model and minimize the drawbacks
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of uncertainties of real world systems. Moreover, T2FNNs have more degrees of free-
dom and are capable of controlling the system with higher performance specially in the
presence of measurement noise [1, 19, 21, 23, 37]. Regardless of being type-1 or type-
2, FNNs are also preferred to control 2-DOF helicopters. For instance, in [4], a FNN
structure with parameterized conjunctions are used to control the desired pitch and yaw
angles of a 2-DOF helicopter, and its performance is compared with a PID controller.
It is concluded that the FNN structure gives a fast transient response and low RMSE
value as compared to the conventional PID controller.

The earlier FNN controllers (regardless of using type-1 or type-2 MFs) suffer from
the lack of rigorous stability analysis which is the most important consideration in the
design of a controller. This is the main reason why some researchers have made use of
classical control approaches in the design of FNN based controllers. This combination
makes it possible to simultaneously benefit from the flexibility and general function
approximation property of FNNs and guaranteed stability analysis of classical control
methods [20]. Feedback-error-learning (FEL) is one of first introductions of classical
methods to FNN controllers which was first developed by Kawato in an effort to es-
tablish a stable controller which can learn the inverse dynamic of the system under
control [15]. This structure comprises a fixed classical controller to ensure the stability
of the system and an adaptive intelligent feed-forward controller in parallel to the fixed
controller which improves the performance of the controller. The outputs of the fixed
feedback controller is regarded as the error signal and is used to train the inverse model
of the plant [34]. From a control theoretic viewpoint, FEL falls in adaptive control tech-
nique categories [9]. Stability analysis of FEL is considered in several papers. In [29]
the stability of FEL for stable and stably invertible linear systems is proved. In [30] the
stability property of FEL for a class of nonlinear dynamical systems is considered. In
addition, stable FEL approaches based on sliding mode control (SMC) method are con-
sidered in several papers [8, 18]. To date, several implementations of FEL in industrial
plants have been reported. For example in [1] and [11], FEL scheme is used to control
an n-degrees of freedom robotic manipulator and an anti-lock breaking system respec-
tively. It has been shown that FEL method can increase the overall performance of the
system by learning the system dynamics online.

The fusion of SMC with intelligent control approaches has been widely investigated
for the control nonlinear systems in recent years [8, 13, 18, 24, 26, 32]. SMC is widely
known to be a robust control method for the systems with nonlinearities, uncertain pa-
rameters and bounded input disturbances [22]. Although it shows robustness against
nonlinear features of the system, SMC suffers from some drawbacks such as chattering,
measurement noise and conservative control signal [7, 17]. In addition, the design of
an ideal SMC needs an exact model of the system which is not readily on hand and/or
it includes uncertainties almost in all cases [26]. To cope with these problems, SMC is
used in a combination with intelligent approaches e.g. FNNs. Because of proven general
function approximation property, flexibility and capability of using human knowledge
of FNNs, this structure is one of the most important structures used to overcome draw-
backs of SMC [8, 18, 26]. On the other hand, FNN can benefit from the mathematical
stability analysis of SMC if it is used in combination with SMC.



Controlling the Pitch and Yaw Angles of a 2-DOF Helicopter 353

In this study, a novel FEL scheme is proposed to control the yaw and pitch angles of
a 2-DOF helicopter in which a T2FNN works in parallel with a PD controller for each
subsystem, namely yaw and pitch dynamics. The output of the PD controller is used
to train the T2FNN which has two inputs: the error and the time derivate of the error.
The MFs considered for the system are Gaussian type-2 membership functions with
uncertain variance. The sliding mode theory-based parameter update rules are derived
for such a structure, and the stability of the learning algorithm is proved by using an
appropriate Lyapunov function. The required conditions for the stability of the system
are also derived. In addition, an adaptive learning rate for the training of the parame-
ters of T2FNN is introduced. Using this adaptive learning rate, it is shown that a prior
knowledge about the upper bound of the states of the system and their derivatives is no
longer needed. This is the most important superiority of the current approach over sim-
ilar SMC based training of FNN and T2FNN. Another benefit of the current approach
over the similar methods reported in literature is that the training method proposed in
this paper does not include any derivative of states of the system. This is also very im-
portant feature because the derivative of the states of the system amplifies the noise
power significantly. The simulation results show that the proposed approach can con-
trol the 2-DOF helicopter even in the presence of measurement noise and uncertainties
which necessarily exist in the model of the system. The performance of the T2FNN is
also compared with that of its type-1 counterpart in the presence of noise. It is shown
that T2FNN can control the system with smaller error when there is measurement noise
in the system. It is also shown that the states of the system follow the predefined sliding
motion.

2 System Description

In Fig. 1, a 2-DOF helicopter system is shown. There exist two DC motor driven pro-
pellers, one for the pitch and the other for the yaw dynamics, which are mounted on
a fixed base in the system. While the front propeller is responsible for controlling the
elevation of the helicopter nose about the pitch axis, the back propeller controls the side
to side motions of the helicopter about the yaw axis. While the inputs to the system are
the voltages applied to the front and the back propellers, the output of the system is the
pitch and the yaw angles in radians. The system can freely rotate around the yaw axis
angle about 360 degrees [14]. When the helicopter is at rest, the pitch angle is equal
to −40.5◦and its motion is restricted between −40.5◦and 40.5◦. The thrust forces Fp

and Fy shown in Fig. 1 are generated at the distances up and uy from the pitch and the
yaw axes, respectively [14]. The aim of the controlled system is to be able to track time
varying desired trajectories in the pitch and yaw axes. The nonlinear dynamic equations
of motion are given as follows [14]:

(Jp +ml2)θ̈ = KppVm,p +KpyVm,y −mglcosθ −Bpθ̇ (1)

− ml2sinθcosθψ̇2

(Jy +ml2cos2θ )ψ̈ = KypVm,p +KyyVm,y −Byψ̇ + 2ml2sinθcosθψ̇θ̇
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Table 1. Description of the parameters

Description Values

Jp Total moment of inertia about pitch axis 0.0384kgm2

Jy Total moment of inertia about yaw axis 0.0431kgm2

l Center of mass length along helicopter body from pitch axis 0.1855m
Kpp Thrust torque constant acting on pitch axis from pitch propeller 0.2041Nm/V
Kpy Thrust torque constant acting on pitch axis from yaw propeller 0.0068Nm/V
Kyp Thrust torque constant acting on yaw axis from pitch propeller 0.0219Nm/V
Kyy Thrust torque constant acting on yaw axis from yaw propeller 0.072Nm/V
g Gravitational constant 9.81m/s2

Bp Viscous damping about pitch axis 0.8N/V
By Viscous damping about yaw axis 0.318N/V
m Total moving mass of the helicopter 1.3872kg

Vm,p Voltage apply to pitch motor ±24V
Vm,y Voltage apply to yaw motor ±15V

Fig. 1. Free body diagram of 2-DOF helicopter

3 The Adaptive Interval Type-2 Fuzzy Neural Network Control
Framework

3.1 The Control Scheme

In this subsection, the proposed sliding mode T2FNN is presented. Figure 2 shows the
control scheme.
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Fig. 2. Block diagram of the proposed fuzzy neural network scheme

The PD controller is responsible for the global asymptotic stability of the system in
compact space and sliding manifold for the states of the system. The PD control law is
described as follows:

uc = kPe+ kDė (2)

in which e is the feedback error, kP and kD are the gains of the PD controller. The
process of finding the optimal values for the PD controller seems as to find a point
on a 2-D surface. This is a difficult task in real life. However, our method works with
all the PD coefficients which keeps the stability of the system. So, our method seems
like to find a circle in a 2-D surface. The latter case is, of course, more practical when
compared to the former case. The interior of the mentioned circle is the stability region
of the overall system.

Type-2 Fuzzy Neural Network (T2FNN). The T2FNN considered here benefits from
type-2 membership functions in the premise part and crisp numbers for the consequent
part. This structure is called A2-C0 fuzzy system [6] and it is shown in Fig. 2. The
T2FNN has two inputs and one output serving as a feedback controller.

The fuzzy if-then rule Ri j of a zero-order TS model with two input variables where
the consequent part has a constant value and is defined as follows:

Ri j: If e is Ã1i,k and ė is Ã2 j, then u f = fi j

where fi j are constant values which are updated during training. In this paper, for
T2FNN, type-2 MF Gaussian with uncertain standard deviation (please see Fig. 4) are
used. The mathematical expression for the membership function is expressed as:
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Fig. 3. Structure of T2FNN

μ̃(x) = exp

[
− (x− c)2

σ2

]
(3)

where c and σ are the center and the standard deviation of the type-2 MF and x is the
input.
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Fig. 4. Type-2 fuzzy membership function with uncertain value for its standard deviation

Using uncertain values for σ the type-2 MF has a footprint of uncertainty which is
bounded with an upper and lower MF. The upper and the lower MFs are denoted as:
μ(x) and μ(x), respectively. The firing strength of the rule Ri j is obtained as a T-norm
of the membership functions in the premise part (by using a multiplication operator):

W i j = μ
1i
(e)μ

2 j
(ė) (4)
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W i j = μ1i(e)μ2 j(ė) (5)

The Gaussian membership functions μ
1i
(e), μ1i(e), μ

2 j
(ė), and μ2 j(ė) of the inputs

e and ė in the above expression are of the following form:

μ
1i
(e) = exp

[
− (

e− c1i

σ1i
)2
]

(6)

μ1i(e) = exp

[
− (

e− c1i

σ1i
)2
]

(7)

μ
2 j
(ė) = exp

[
− (

ė− c2 j

σ2 j
)2
]

(8)

μ2 j(ė) = exp

[
− (

ė− c2 j

σ2 j
)2
]

(9)

where the real constants σ ,σ > 0 and c are among the tunable parameters of the above
T2FNN structure.

Hence, (4) and (5) can be rewritten as follows:

W i j = exp

[
− (

e− c1i

σ1i
)2 − (

ė− c2 j

σ2 j
)2
]

(10)

W i j = exp

[
− (

e− c1i

σ1i
)2 − (

ė− c2 j

σ2 j
)2
]

(11)

The computational output of A2-C0 structure as it is proposed in [5] is used to de-
termine the output of TSK T2FNN.

u f =
q∑I

i=1 ∑J
j=1 fi jW i j

∑I
i=1 ∑J

j=1W i j

+
(1− q)∑I

i=1 ∑J
j=1 fi jW i j

∑I
i=1 ∑J

j=1W i j
(12)

After the normalization of (12), the output signal of the fuzzy neural network will
acquire the following form:

u f = q
I

∑
i=1

J

∑
j=1

fi jW̃ i j +(1− q)
I

∑
i=1

J

∑
j=1

fi jW̃ i j (13)

where W̃ i j and W̃ i j are the normalized values of the lower and the upper outputs corre-
sponding to i j node of the second hidden layer of the network:

W̃ i j =
W i j

∑I
i=1 ∑J

j=1 W i j

(14)

W̃ i j =
W i j

∑I
i=1 ∑J

j=1 W i j
(15)
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W̃ (t)=
[
W̃ 11 (t) W̃ 12 (t) ... W̃ 21 (t) ... W̃ i j (t) ... W̃ IJ (t)

]T
are the vector of the normal-

ized lower output signals of the neurons from the second hidden layer of the first and the

second T2FNNs respectively;W̃ (t)=
[
W̃ 11 (t) W̃ 12 (t) ... W̃ 21 (t) ... W̃ i j (t) ... W̃ IJ (t)

]T

is the vector of the normalized upper output signals of the neurons from the second hid-
den layer of the IT2FNNs;
σ1 = [σ11 ... σ1i ... σ1I]

T , σ2 =
[
σ21 ... σ2 j ... σ2J

]T
, are vectors of the tuning parame-

ters σ of the lower bounds of type-2 Gaussian MFs with uncertain variance.
σ1 = [σ11 ... σ1i ... σ1I ]

T , σ2 =
[
σ21 ... σ2 j ... σ2J

]T
, are vectors of the tuning param-

eters σ of the upper bounds of type-2 Gaussian MFs with uncertain variance. c1 =

[c11 ... c1i ... c1I]
T and c2 =

[
c21 ... c2 j ... c2J

]T
are vectors of the tuning parameters c

of the lower and upper bounds of type-2 Gaussian MFs with uncertain variance.
It is assumed that due to the control scheme adopted Fig. 2, where the conventional

controller serves to guarantee global asymptotic stability in compact space, the input
signals e(t) and ė(t), and their time derivatives can be considered bounded:

|e(t)| ≤ Be, |ė(t)| ≤ Be |q̈(t)| ≤ Bė ∀t (16)

where Be and Bė are assumed to be some unknown positive constants. The adaptation
law for the tunable parameters is considered such that σ , σ , and c of the Gaussian
membership functions are bounded as follows:

Bσ ≤ ‖σ1‖ ≤ Bσ , Bσ ≤ ‖σ2‖ ≤ Bσ , (17)

‖c1‖ ≤ Bc, ‖c2‖ ≤ Bc

Bσ ≤ ‖σ1‖ ≤ Bσ , Bσ ≤ ‖σ2‖ ≤ Bσ , (18)

‖c1‖ ≤ Bc, ‖c2‖ ≤ Bc
∥∥ f i j

∥∥≤ B f

where Bσ , Bσ , Bc and B f are some unknown positive constants.

Similar to the previous case, it follows that 0< W̃ i j < 1 and 0< W̃ i j < 1. In addition,

by definition, ∑I
i=1 ∑J

j=1W̃ i j = 1 and ∑I
i=1 ∑J

j=1 W̃ i j = 1. It is also considered that, u and
u̇ are bounded signals too, i.e.

|u(t)| ≤ Bu, |u̇(t)| ≤ Bu̇ ∀t (19)

where Bu and Bu̇ are two unknown positive constants. In similar previous papers e.g.
[8, 16, 18, 38] it is assumed that the upper bounds defined by (16), (17), (18) and (19)
are known. But in the current paper, using an adaptive learning rate, these parameters
are no more needed to be known. This is the main improvement of the current approach
with respect to above mentioned papers.

3.2 The Sliding Mode Theory-Based Learning Algorithm

The zero value of the learning error coordinate uc (t) can be defined [39] as time-varying
sliding surface,i.e.,
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Sc
(
u f ,u

)
= uc (t) = u f (t)+ u(t) (20)

which is the condition that the T2FNN is trained to become a nonlinear regulator to
obtain the desired response during the tracking-error convergence movement by com-
pensating the nonlinearity of the controlled plant. The sliding surface for the nonlinear
system under control Sp (e, ė) is defined as:

Sp (e, ė) = ė+ χe (21)

with χk being a constant determining the slope of the sliding surface.
Definition: A sliding motion will appear on the sliding line Sc

(
u f ,u

)
= uc (t) = 0

after a time th, if the condition Sc(t)Ṡc(t) = uc (t) u̇c (t)< 0 is satisfied for all t in some
nontrivial semi-open subinterval of time of the form [t, th)⊂ (−∞, th).

It is desired to design an online learning algorithm for the parameters of T2FNN
such that the sliding mode condition of the above definition is enforced.

The Parameter Update Rules For T2FNN
Theorem 1: If the adaptation laws for T2FNN parameters are chosen as:

ċ1i =−β1
σ2

1i

e− c1i
sgn(uc) (22)

ċ2 j =−β1
σ2

2 j

ė− c2 j
sgn(uc) (23)

σ̇1i =−β1
σ3

1i

(e− c1i)2 sgn(uc) (24)

σ̇2 j =−β1
σ3

2 j

(ė− c2 j)2 sgn(uc) (25)

σ̇1i =−β1
σ3

1i

(e− c1i)2 sgn(uc) (26)

σ̇2 j =−β1
(σ2 j)

3

(ė− c2 j)2 sgn(uc) (27)

ḟi j =−α
qW̃ i j +(1− q)W̃ i j

(qW̃ +(1− q)W̃)T (qW̃ +(1− q)W̃)
sgn(uc) (28)

α̇ = γ1 |uc|−νγ1α (29)

then, given an arbitrary initial condition uc(0), the learning error uc(t) will converge
firmly to zero during a finite time th.

Proof: See appendix A.
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There is a relation between the sliding line Sp and uc(t) (the classical controller
signal). If χ is taken as χ = kP

kD
, the following equation is obtained.

Sc = uc = kDė+ kPe = kD

(
ė+

kp

kD
e

)
= kDSp (30)

Remark: Equation (30) indicates that the convergence of Sc towards zero guarantees
the convergence of Sp towards zero and there exists a sliding motion in the states of the
system.

4 Simulation Results

The 2-DOF helicopter system is controlled using the proposed T2FNN which is previ-
ously shown in Fig. 2. The parameters of the model considered in this study can be time
varying and the measurements are subject to noise. In order to have a better comparison,
the results obtained by the proposed method are compared with its type-1 counterpart.
2-DOF helicopter is a MIMO nonlinear system and two independent controllers are de-
signed to control the pitch and the yaw axes. From the physical model of the 2-DOF
helicopter, the yaw axes can be controlled by appropriate selection of Vm,y while Vm,p

can be used to control the helicopter in pitch axes. The error (ep) is calculated as the
difference between the measured yaw angle and its desired value. This value and its
time derivative are fed to the yaw controller which benefits from the structure which
is discussed completely in the previous sections. The premise part of the T2FNN is
composed of three Gaussian type-2 membership functions with uncertain variance for
each input and hence the type-2 fuzzy system benefits from nine rules. These member-
ship functions are distributed in the closed interval of [−0.5, 0.5] initially and evolved
during the training to find their optimal positions.

Figure 5 shows the step response of the controller for both pitch and yaw subsystems.
The sample time of the controller is considered to be equal to 0.1msec. As can be seen
from the figure, although the 2-DOF helicopter suffers from a non-minimum phase
dynamics, the proposed method is able to control it with a satisfactory performance. The
non-minimum phase characteristic of the system causes an undershoot in the response
in the first few miliseconds. However, the amplitude of this undershoot is no more than
micro radians.

Figure 6 depicts the response of the controller when the reference signal is sinusoid.
As can be seen from the figure, the response of the system for a sinusoidal reference
signal is also satisfactory. In order to show the superiority of T2FNN in the presence
of white Gaussian noise in the system over its type-1 counterpart, another simulation
is performed in which the standard deviation of the noise is considered to be 0.0075.
The experiments are performed 10 times. The mean value of the integral of squared
error obtained in these experiments are equal to 1.98 for type-1 neuro-fuzzy system and
1.79 for T2FNN which shows 9.6% improvement in the favor of T2FNN. Moreover, the
standard deviations of the integral of the squared error are obtained as 0.27 and 0.29 for
T2FNN and its type-1 counterpart, respectively. The results obtained for the standard
deviations also show that the results obtained using T2FNN are more consistent than
that of type-1 neuro-fuzzy system.
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Fig. 5. The step response of the proposed controller for 5(a) pitch 5(b) yaw axes
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Fig. 6. The sinusoidal response of the proposed controller for 6(a) pitch 6(b) yaw axes
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When using a PD controller, abrupt changes in the reference signal may produce
large control signal values resulting in an instability in the system. This behavior is
well-known in control theory that a PD controller is sensitive to the measurement noise
in the system. However, in real-life applications, PD controller is not applied to the
system directly but its output is filtered before applying it to the system. In this inves-
tigation, PD controllers with such a filter are preferred to avoid the issues explained
above especially for the noisy responses.

Acknowledgement. This book chapter could not be written to its fullest without Prof.
Okyay Kaynak, who was guiding us in the area of intelligent controllers and their ap-
plications in real life as well as sliding mode control theory and its use in the tuning of
inteligent controllers. He challenged and encouraged us throughout not only our time
spent studying under his supervision in Bogazici University but also a continuing sup-
port in our research.

5 Conclusions

The main goal of this study is to design a sliding mode control theory-based T2FNN
controller for the control of yaw and pitch angles of a 2 DOF helicopter. The con-
troller introduced in this study benefits from Gaussian membership functions with un-
certain variance. A novel proof for the stability of the controller using an appropriate
Lyapunov function is proposed. In addition, the designed controller benefits from an
adaptive learning rate which makes it possible to control the system with less priori
knowledge about the system. It is to be noted that by the use of such an adaptive pa-
rameter, it is possible to initialize the learning rate by a small value and this parameter
converges to its true value during adaptation. Hence, the learning rate does not become
bigger than needed. The simulation results show that the proposed method is able to
control the system with a satisfactory performance. Furthermore, white Gaussian noise
is added to the measurements of yaw and pitch angles of the system. The results of
these simulations show that T2FNN outperforms T1FNN when there exists noise in the
system. Hence, the proposed controller is a superior choice over its type-1 counterpart
in the presence of measurement noise in the system.
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Appendix A

The stability analysis of the learning algorithm is considered in this section. The fol-
lowing variables are defined.

A1i =

[
− (

e− c1i

σ1i
)2
]

(31)

U1i =

[
− (

e− c1i

σ1i
)2
]

(32)

A2 j =

[
− (

ė− c2 j

σ2 j
)2
]

(33)

U2 j =

[
− (

ė− c2 j

σ2 j
)2
]

(34)

Considering (6)-(9) we have:

μ̇
1i
(e) =−2A1iȦ1iμ1i

(e) (35)

μ̇1i(e) =−2U1iU̇1iμ1i(e) (36)

μ̇
2 j
(ė) =−2A2 j(Ȧ2 j)μ2 j

(ė) (37)

μ̇2 j(ė) =−2U2 j(U̇2 j)μ2 j(ė) (38)

In addition considering (14) and (15), the time derivatives of W̃ i j and W̃ i j are ob-
tained as:

W̃ i j =
W i j

∑I
i=1 ∑J

j=1 W i j

⇒ ˙̃W i j =
(μ

1i
(e)μ

2 j
(ė))′(∑I

i=1 ∑J
j=1W i j)

(∑I
i=1 ∑J

j=1 W i j)
2

−
(W i j)(∑I

i=1 ∑J
j=1 μ

1i
(e)μ

2 j
(ė))′

(∑I
i=1 ∑J

j=1 W i j)
2

(39)

W̃ i j =
W i j

∑I
i=1 ∑J

j=1 W i j
⇒ ˙̃

W i j =
(μ1i(e)μ2 j(ė))

′(∑I
i=1 ∑J

j=1W i j)

(∑I
i=1 ∑J

j=1 W i j)2

− (W i j)(∑I
i=1 ∑J

j=1 μ1i(e)μ2 j(ė))
′

(∑I
i=1 ∑J

j=1 W i j)2
(40)

Since W̃ i j = (W i j)/(∑I
i=1 ∑J

j=1 W i j) and W̃ i j = (W i j)/(∑I
i=1 ∑J

j=1 W i j) we have:
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˙̃W i j =
μ̇

1i
(e)μ

2 j
(ė)+ μ

1i
(e)μ̇

2 j
(ė)

∑I
i=1 ∑J

j=1W i j

−
(W̃ i j)(∑I

i=1 ∑J
j=1(μ̇1i

(e)μ
2 j
(ė)+ μ

1i
(e)μ̇

2 j
(ė))

(∑I
i=1 ∑J

j=1 W i j)

=
−2A1iȦ1iμ1i

(e)μ
2 j
(ė)− 2A2 jȦ2 jμ1i

(e)μ
2 j
(ė))

∑I
i=1 ∑J

j=1W i j

−
(W̃ i j)∑I

i=1 ∑J
j=1−2A2 jȦ2 jμ1i

(e)μ
2 j
(ė))

∑I
i=1 ∑J

j=1Wi j

−
(W̃ i j)∑I

i=1 ∑J
j=1(−2A1iȦ1iμ1i

(e)μ
2 j
(ė))

∑I
i=1 ∑J

j=1 W i j

(41)

and further:

˙̃W i j =−W̃ i jṄi j +W̃ i j

I

∑
i=1

J

∑
i=1

W̃ i jṄi j (42)

˙̃
W i j =−W̃ i jṄi j +W̃ i j

I

∑
i=1

J

∑
i=1

W̃ i jṄi j (43)

in which:

Ṅi j = 2A1iȦ1i + 2A2 jȦ2 j, Ṅi j = 2U1iU̇1i + 2U2 jU̇2 j (44)

Ȧ1i =
(ė− ċ1i)σ1i − (e− c1i)σ̇ 1i

σ2
1i

, Ȧ2 j =
(ë− ċ2 j)σ2 j − (ėk − c2 j)σ̇2 j

σ2
2 j

U̇1i =
(ė− ċ1i)σ 1i − (e− c1i)σ̇1i

σ2
1i

,U̇2 j =
(ë− ċ2 j)σ2 j − (ė− c2 j)σ̇2 j

σ2
2 j

it is possible to use Maclaurin series expansion to obtain following equations.

ẋ1 − ċ1i

σ1i
=

ė− ċ1i

σ1i −σ1i +σ1i
=

ė− ċ1i

σ1i

⎛
⎜⎜⎜⎝1− σ1i −σ1i

σ1i
+

(σ1i −σ1i)
2

σ2
1i

+H.O.T︸ ︷︷ ︸
D1i

⎞
⎟⎟⎟⎠ (45)

and:

e− c1i

σ1i
=

e− c1i

σ1i −σ1i +σ1i
=

e− c1i

σ1i

(
1− σ 1i −σ1i

σ1i
+

(σ 1i −σ1i)
2

σ1i
+H.O.T

)
(46)
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Using (45), we have:

A1iȦ1i =U1iU̇1i +
(ė− ċ1i)

σ1i

(e− c1i)

σ1i

(
2D1i +D2

1i

)
(47)

and similarly using (46) we obtain that:

A2 jȦ2 j =U2 jU̇2 j +
(ë− ċ2 j)

σ2 j

(ė− c2 j)

σ2 j

(
2E2 j +E2 jE

2
2 j

)
(48)

in which:

E2 j =−σ2 j −σ2 j

σ2 j
+

(σ2 j −σ2 j)
2

σ2
2 j

+H.O.T (49)

It can be proved that |D1i| and |E2 j| are bounded as |D1i| < BD and E2 j < BE . In or-
der to analyze the stability of the controller with adaptive learning rate, the following
Lyapunov function is proposed.

Vc =
1
2

u2
c(t)+

1
2γ1

(α −α∗)2 (50)

The time derivative of the Lyapunov function (50) is derived as:

V̇c = ucu̇c = uc(u̇ f + u̇)+
α̇
γ1
(α −α∗) (51)

Since:

u f =
q∑I

i=1 ∑J
j=1 fi jW i j

∑I
i=1 ∑J

j=1W i j
+

(1− q)∑I
i=1 ∑J

j=1 fi jW i j

∑I
i=1 ∑J

j=1W i j

= q
I

∑
i=1

J

∑
j=1

fi jW̃ i j +(1− q)
I

∑
i=1

J

∑
j=1

fi jW̃ i j (52)

and:

u̇ f = q
I

∑
i=1

J

∑
j=1

( ḟi jW̃ i j + fi j
˙̃W i j)+ (1− q)

I

∑
i=1

J

∑
j=1

( ḟi jW̃ i j + fi j
˙̃

W i j) (53)

one obtains:

u̇ f = q
I

∑
i=1

J

∑
j=1

((
−W̃ i jK̇i j +W̃ i j

I

∑
i=1

J

∑
j=1

W̃ i jK̇i j

)
fi j +W̃ i j ḟi j

)

+ (1− q)
I

∑
i=1

J

∑
j=1

((
−W̃ i jK̇i j +W̃ i j

I

∑
i=1

J

∑
j=1

W̃ i jK̇i j

)
fi j +W̃i j ḟi j

)
(54)

Considering adaptation for sigma and center we have:
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V̇c = uc

(
q

I

∑
i=1

J

∑
j=1

(
2

(
−W̃ i j(

ė
σ1i

A1i +
ë

σ2 j
A2 j)

+ W̃ i j

I

∑
i=1

J

∑
j=1

W̃ i j(
ė

σ1i
A1i +

ë
σ2 j

A2 j)

)
fi j +W̃ i j ḟi j

)

+ q
I

∑
i=1

J

∑
j=1

(
2
(
−W̃ i j(2D1i +D2

1i+ 2D2 j +D2
2 j)

+ W̃ i j

I

∑
i=1

J

∑
j=1

W̃ i j(2D1i +D2
1i + 2D2 j +D2

2 j)

)
fi j

)

+ (1− q)
I

∑
i=1

J

∑
j=1

(
2

(
−W̃ i j(

ė
σ1i

A1i +
ë

σ2 j
A2 j)

+ W̃ i j

I

∑
i=1

J

∑
j=1

W̃ i j(
ė

σ1i
A1i +

ë
σ2 j

A2 j)

)
fi j +W̃ i j ḟi j

)
+ u̇

)

+
α̇
γ1
(α −α∗) (55)

Considering assumptions (17) and (18), (55) can be rewritten as:

V̇c ≤ 4Br |uc|+ uc

(
I

∑
i=1

J

∑
j=1

ḟi j(qW̃ i j +(1− q)W̃i j)+ u̇

)
+

α̇
γ1
(α −α∗)

≤ 4Br |uc|−α∗ |uc|+(α∗ −α) |uc|+ |uc|Bu̇ +
α̇
γ1
(α −α∗)< 0 (56)

in which:

Br = B f

(
3BD + 3BE +B2

e +B2
ė +BcBe +BcBė

B2
σ

)
(57)

using the adaptation law for α as:

α̇ = γ1 |uc|−νγ1α

and taking α∗ as:

Bu̇ + 4Br <
1
2

α∗

we have:

V̇c ≤−1
2

α∗ |uc|+να(α −α∗) (58)

=−1
2

α∗ |uc|+ν(α −α∗)2 − να∗2

4
(59)
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Furthermore:

V̇c ≤−1
2

α∗ |uk|+ν(α −α∗)2 (60)

Therefore, the Lyapunov function uc converges exponentially until |uc| ≤ 2 ν
α∗ (α −α∗)2

and the parameters of the controller are bounded. Consequently the system states con-
verge to a compact set R in which:

R =
{

u| |u| ≤ 2
ν

α∗ (α −α∗)2
}

(61)

It should be noted that this region can be chosen to be as small as desired by choosing
a proper value for ν . Consequently, u can be made as small as desired.



 

© Springer International Publishing Switzerland 2015 
X. Yu and M. Önder Efe (eds.), Recent Advances in Sliding Modes, 

371

Studies in Systems, Decision and Control 24, DOI: 10.1007/978-3-319-18290-2_18 
 

Fuzzy Control of Direct Drive Manipulators 

Kemalettin Erbatur 

Sabancı University Mechatronics Engineering Program 
Tuzla, Istanbul, Turkey 

erbatur@sabanciuniv.edu 

Abstract. Direct drive motors, sometimes referred to a torque motors are speciality 
servo actuators which posess high torque capacity without the necessity of gears. 
The author worked on a number of direct drive robots and their control methods 
since early 1990s when Professor Okyay Kaynak taught him fundamentals of fuzzy 
control and gave him the opportunity of experimental work on direct drive 
robotics. This chapter presents samples of the studies of the author on indirect 
fuzzy control implemented on direct drive robots between 1993 and 2012. The role 
of on-line controller parameter adaptation for sliding mode trajectory controllers, 
force controllers and for the integration of visual servoing and force control is 
discussed with case studies. 

1 Introduction 

A direct drive motor is one directly coupled to the load it drives. This configuration 
avoids gear coupling effects. The best known effect of gears is the backlash. Also 
gear flexibility can be a shortcoming of employing reduction between the motor and 
the load. There applications where positioning accuracy is critical and these nonlinear 
effects can not be tolerated. The direct coupling alleviates these problems on the cost 
of two drawbacks. i)Torque amplification capacity of the reductor is lost. ii) 
Measuring resolution, also multiplied by the reduction ratio is compromised. Typical 
industrial servo motors are equipped with 1024-4096 increments per revolution rotary 
resolvers or encoders and this resolution is usually adequate for applications with 
gears or transmission mechanisms like ball screws. However, they are hardly suitable 
for direct drive applications. These drawbacks lead to a speciality design servo 
application motor. The general name coined to the type came from its way of 
coupling to the load: "Direct drive." "Torque motor" is another term to describe the 
same machine, reflecting the fact that the lack of gears is compansated for by the high 
torque capacity of the motor. 

A direct drive motor, unlike the common servo motor architecture in the industry, 
usually has a low axial length / diameter ratio around 1 or less. It has higher torque 
and less speed compared with an equal weight servo motor. It's encoder system is 
designed superior to other servos. The lack of the gear reductor support in encoder 
resolution is taken account for with a huge number of increments per revolution. 
400000 to 1000000 increments per revolution are quite common in current direct 
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drive products. The weaknesses of lacking the gears in the envisaged application area 
are therefore eliminated by hardware design and encoder superiority.  

Still, there is another threat in front of the implementation of the direct drive motor 
in robotics applications. The absence of reduction mechanisms in its application area 
makes the motor highly backdrivable. While desiable in a number of applications, 
backdrivability in the joints of an articulated manipulator means pronounced coupling 
efects. The dynamics equations of a robotic manipulator are highly nonlinear with 
sinificant interlink coupling effects. The velocity and acceleration, as well as the 
position of one joint can affect those of another joint. The interlink coupling effects 
are minimized for robots with high gear ratios. However, these effects are quite 
significant when direct drive motors are employed at the joints. This is where 
manipulator control methods come into the picture. The advantages of the direct drive 
motors can be exploited by employing control methods which cope with adverse 
effects of link-to-link coupling. The same fact makes the direct drive robot an ideal 
test bed for robot control methodologies. 

In robotic manipulator trajectory control, as a robust control strategy, Sliding Mode 
Control (SMC) has many useful properties in coping with the problems of non-
linearity, coupling effects and changing parameters even in cases where the 
knowledge on the plant dynamics is extremely limited. 

Fuzzy control systems, as tools against the problems of uncertainty and vagueness, 
incorporate human experience into the task of controlling a plant. When employed in 
robotic trajectory control, they mainly play one of two roles in the controller structure. 
One of them is to compute the control signal by fuzzy rules. The other is to tune, 
adapt or schedule the parameters of other control mechanisms to accomplish better 
performance in face of uncertainties and different operating points. 

Fuzzy control, when used in combination with sliding mode control (SMC) 
systems, usually aim to alleviate implementation difficulties of sliding mode 
controllers or to intelligently tune the controller parameters. This methodology is 
termed "indirect fuzzy control" since, the basic design and implementation philosophy 
of SMCs is followed to a great extent and FL systems are used to fulfil a secondary 
function [1]. In this chapter, methods which combine fuzzy systems with sliding 
mode controllers to solve the chattering problem of sliding mode control for robotic 
applications are reviewed. In these methods, special attention is paid to schemes that 
eliminate chattering without a degradation of the tracking performanceSections 2 and 
3 present two case studies [2, 3] with fuzzy tuned sliding mode control implemented 
on direct drive SCARA type robots. 

Force control of robotic manipulators is becoming more and more important in 
applications that involve interaction with the environment. Depending on the nature 
of the task at hand, different control algorithms can be suitable to be implemented. In 
Section 4, the task of reaching an object by the robot tool and applying a constant 
force on it is considered as a case study [4]. This task is one of the typical 
manipulation operations. A fuzzy logic scheduling approach, which smoothly changes 
the control action between two force control schemes, is reviewed. The first force 
control method is admittance control, which is suitable to be used in the phase of 
approaching the work piece. The second one is an explicit force control strategy, 
integral force control, suitable for force regulation when the manipulator tool is in 
contact with the work piece. The fuzzy controller scheduling approach is tested via 
experimental work on a direct drive SCARA-type manipulator. 
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Vision and force sensors provide rich information which can enable robots to 
execute complex tasks. However, the integration of these two types of sensors with 
different nature is not straightforward. Section 5 defines a manipulation task as a case 
study problem [5]. In this problem, a constant magnitude normal force is to be exerted 
at a point fixed on an object which is free to rotate. Visual servoing and explicit force 
control techniques are applied next in the task frame formalism to achieve this 
objective. Disadvantages of the constant parameter controllers are addressed and a 
solution in which controller gains are tuned with fuzzy logic systems is presented. 
The solution is in the hybrid control category. Experiments are carried out on a two 
degrees of freedom (DOF) direct drive robot. 

The chapter is concluded in Section 6. 

2 Fuzzy On-Line Tuning of Sliding Mode 
ControllerParameters 

The control mechanism in this section is presented for systems in the following form. 

),( 2111 xxfx =  (1)

)(),(),(),( 21212122 tdxxBuxxBxxfx d++=  (2)

In this state space description mnRx −∈1 , mRx ∈2 , mRu ∈ , mBrank =)( . dd  is 

the disturbance. The components of the control input and the derivative of 2x  are 

bounded with known bounds. The aim is to push the states of the system into the set S 
defined by 

}0),()()(:{ ==−= txsxstxS aφ  (3)

Here, x is the state vector formed by augmenting 21  and xx . The function )(tφ  is 

the time varying part of the sliding function vector ),( txs . It contains reference inputs 

to be applied to the controlled plant. )(xsa  denotes the state dependent part of ),( txs : 

2211 xGxGsa +=  (4)

The matrix 2G  is of rank m. By employing the Lyapunov function candidate  

2/ssV T=  (5)

it can be shown that the control law 

[ ] DsBGfGfGBGdu

equ

d
1

21122
1

2 )()( −− +−−+−= φ  
(6)

can force the derivative of this Lyapunov function to be of the form 

DssV T−=  (7)
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where D is positive definite. For robotic manipulators, the matrix B  is the same as 
the inverse of the positive definite manipulator inertia matrix and 2G  has the rank m . 

Therefore, the existence of the inverse of the matrix BG2  is guaranteed. It can be 

noted that when the part of the control input in (6) designated by equ  is applied to the 

system, the derivative of the sliding function s  will be zero. Such a control is termed 
"equivalent control" in sliding mode control terminology. Thus the control input can 
be written as 

DsBGuu eq
1

2 )( −+=  (8)

It can be also be shown [6-11] that the above equation can be put into the recursive 
form  

−=
−− ++=

tt
sDsBGtutu )()()()( 1

2  (9)

Ttt −=−  (10)

where, −=
− +

tt
sDsBG )()( 1

22  is the updating term and T  is a very small time interval 

corresponding to the sampling interval in digital implementation. 

 

Fig. 1. The direct drive manipulator 

On the sliding manifold, )( −tu  becomes the same as the equivalent control. Since 

the control is bounded, the saturation function is added to the control law above: 

( )−=
−− ++=

tt
sDsBGtutu )()()(sat)( 1

2  (11)

The performance of the control algorithm is checked by experimental 
investigations on a direct drive two degrees of freedom SCARA type arm shown in 
Fig. 1. Various mass, length and inertia parameters of the arm and the direct drive 
motors given in [3]. A floating point DSP based system was used to control the arm . 
C language servo routines are compiled and downloaded onto the DSP. This makes 
short sampling times possible even for the most complicated adaptation scheme 

1q

2q

x

y
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considered in this section. The torque motors used on base and elbow joints provide 
position signals with a resolution of 153600 pulses/rev. 

The angular positions and their derivatives are selected as the states variables: 

21  and xqxq ==  (12)

The following state equations are then obtained. 

21 xx = ,     [ ]FxxWtuxJqx −−== − ),()()( 211
1

2  (13)

Here, J  is the inertia matrix of the manipulator and W  represents the centripetal 
and Coriolis matrix. F  stands for the friction effects. The second equation above can 
also be written as 

[ ] )()(),()( 1
1

211
1

2 tuxJFxxWxJx −− ++−=  (14)

With a comparison of (13) and (14) with (1) and (2) we obtain 

[ ] )(       ,),()(),(     ,),(                    1
1

211
1

2122211 xJBFxxWxJxxfxxxf −− =+−== . (15)

The design of the sliding surface can be carried out as follows: 

),()( qqsts a−= φ  (16)

with 

 (17)

where dq  is the desired position vector. It can be noted that s is a function of position 

and velocity errors. With the definition of position error as 

, (18)

the following expression can be obtained for the sliding function s. 

 (19)

The matrices 21  and GG  used in this design are  

,    (20)

where 2211  and cc  are positive constants. Here, the introduction of the matrix C is 

solely for notational simplicity. It can be noted that the sliding surface in the  
four-dimensional state space can be identified by two independent sliding lines in 
two-dimensional phase planes. The slopes of these lines are 2211  and cc −− . We also 

obtain  

dd qGqGt 21)( +=φ

qq
e

e
e d −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
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⎠
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. (21)

Hence, the following control rule is obtained with a nominal inertia term nJ  

 (22)

In this expression, T is the control cycle time. K is a diagonal gain matrix with 
positive entries used for tuning and D is chosen diagonal as well.  

,  (23)

In discrete time, Euler approximation is used for the derivative of the sliding 
function. 

An obvious difficulty in the implementation of the control scheme described above 
is the selection of the controller parameters. Fuzzy adaptation methods are developed 
for the two-link manipulator described above. In this approach, specifically, the 
selection of the sliding surface specified by the diagonal matrix C, the positive 
definite matrix D and gain K are carried out by fuzzy adaptation rules. These are 
termed C adaptation, D adaptation and gain adaptation, respectively. The three kinds 
of parameter adaptation methods are applied separately. By these schemes, 
parameters are varied continuously. Figures 4 and 5 schematically demonstrate the 
idea behind the adaptation of C and D matrices. For C adaptation, the slopes of the 
sliding lines are varied by considering the absolute position error (Fig. 3).  
The tracking performance of the sliding controller depends highly upon the value of 
the sliding line slope. A large value for the sliding line slope ensures good tracking 
performance but a too large slope can cause instability. By increasing slope when the 
absolute error gets small, good tracking can be achieved without causing overshoot or 
instability. The use of fuzzy rules is proposed for the adaptation. The effect of 
adapting the parameters of the D matrix is illustrated in Fig. 4. The curve labeled 1 
corresponds to the case with a large kkd  value (k=1, 2). System states reach the 

sliding line in short time but make an overshoot. After a while and possibly many 
sliding line crossovers, the line is followed very closely to achieve zero error. The 
curve labeled 2 reflects the case with a small D parameter. No undesirable overshoot 
is observed, but, the sliding line is reached after a long time, may be near the origin. 
Both of these cases are unwanted since the objective in sliding mode control is to 
force the system states onto the sliding line as fast as possible and to ensure that they 
stay there forever. The third curve in the phase plane can be obtained via fuzzy 
adaptation  by increasing D parameters only when states are close to the sliding line. 
The absolute value of the sliding variable ks  will be the measure of closeness to the 

line. The performance and robustness of the controller is affected by the selection of 
the gain matrix K. High gain can easily cause chattering whereas small values of the 

gains kkK  lead to the degradation of the tracking performance. The fuzzy adaptation 

algorithm below balances the chattering and error in the system and tunes the gain 
parameter in such a way to get the best tracking without chattering. Absolute value of 

)()( 1
2 qJBG =−

kTtn sDsJKkTuTku
=

++=+ )( )())1((

⎟⎟
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⎞
⎜⎜
⎝
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position error, absolute value of the sliding function s and the chattering variable, 
which is defined below, are chosen as input linguistic variables. Triangular 
membership functions are employed.  A one-dimensional rule base with six rules is 
used for the C parameter adaptation. The absolute value of the error is used as the 
input of the adaptation scheme. Similarly, a one-dimensional rule base with six inputs 
are used for the D parameter adaptations too. For this type adaptation, however, the 
absolute value of the scalar sliding variable for the corresponding joint replaces the 
absolute value of the joint position error of the joint. Again triangular membership 
functions are used. For the adaptation of the parameters of the gain matrix K to avoid 
chattering, a measure for the chattering in the system has to be devised. Since the 
sliding mode control algorithm is applied in discrete time, the following measure can 
be used for this purpose. 

 (24)

In this expression, kΓ  is the measure of chattering in joint k, taken as the 

cumulative absolute change in control input in the last 30 control cycles. The rule 
base consisted of 36 rules in 6x6 formation in the computation of the parameters 

kkK  and the rule base is repeated for each joint.  

 

 

Fig. 2. C parameter adaptation Fig. 3. D parameter adaptation 

Chattering and absolute joint position error are employed as the inputs. Different 
form the C and D adaptations, the fuzzy system of the K computation compute the 

increment kkKΔ  on the gain parameters to be added every computational cycle. It 

should be noted that in gain adaptation what is calculated is the incremental change to 
the gain, whereas D and C adaptations give the exact values of C and D parameters as 
outputs. Rate limiters are put at the outputs of these adaptations. It is observed that 
this method works successfully. As a summary the adapted parameters are computed 
as follows. 

∑
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,  ,  

 

(25)

 

The constants C
kH , D

kH  and K
kH  are tuning factors for the robot joint k. The letters 

C, D and K indicate in which adaptation they are used. μ  with the appropriate describing 

subscript stands for a membership function. r or R are symbols used for rule strengths.  
To test the applicability and performance of the parameter adaptation schemes 

experimental investigations are carried out with the direct drive manipulator. A control 
cycle period of 1.3 ms is used in the experiments. The reference curve is obtained by 
integrating a "1-cosine" curve and thus smooth position and velocity references are given 
to the system. This represents a smoothed step reference of 1.2 radians, reached in a 1.5 s 
rising time. The same reference is applied to both joints. Only elbow results are presented 
here. Similar results are obtained for the base joint. In Fig. 5, it can be observed with the 
gain adaptation fuzzy system that in the first second, chattering is high and therefore the 
gain parameter is decreased. When chattering diminishes, the gain is increased to remove 
the steady state error. The parameter converges when acceptable chattering and error 
ranges are reached. These ranges are specified in the rule base for the gain adaptation. 
This algorithm removes steady state error without introducing too much chattering.  

C parameter adaptation is presented in Fig. 6. The performance with this adaptation 
method is similar to that obtained with the gain adaptation algorithm. By increasing 
the parameters kkc when the joint position errors get close to zero, the steady state 

errors are reduced without chattering in the control signals. To demonstrate the 
adaptation in the D parameters, a different reference input is employed. This is a step 
of 0.04 radians height. The reason why step inputs are used is that, compared with the 
reference trajectories without initial position error, they create a better test framework 
to observe the phase plane behavior. Fig. 7 shows the error, control and phase plane 
trajectory curves for the elbow with and without D adaptation. Reference steps are 
applied at t = 0.13 sec. The figure indicates that the elbow phase plane trajectory 
without the D adaptation moves about the sliding line but does not converge to it 
before zero error is reached. Therefore the desired error dynamics are only roughly 
obtained. To assure that the trajectories converge to the sliding lines quickly, the 
fuzzy D adaptation algorithm is implemented. The results are presented in Fig. 7, on  
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the right hand side. The elbow phase plane trajectory converges rapidly to sliding line 
without significant overshoot. Considerable amount of control effort is observed to 
keep system motion on the sliding line, as the parameter kkd  is increased by the fuzzy 

parameter computation when the phase plane motion is close to the sliding line. Fig. 8 
indicates that the adapted D parameter converges to its final value as the joint position 
error converges to zero.  
 
 
 

 

Fig. 4. Elbow position error, control torque, adapted parameter and chattering indicator in gain 
adaptation 

 
 
 

 

Fig. 5. Elbow error curve, control input and adapted parameter with C adaptation 
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Fig. 6. Elbow error curve, control input and phase plane trajectory without D adaptation (on the 
left). Elbow error curve, control input and phase plane trajectory with D adaptation (on the 
right). 

 

Fig. 7. Adapted parameter in D adaptation 

3 Fuzzy Adaptation Tuning of Sliding Mode Boundary Layer 
Thickness 

In this section, a SMC method with a varying boundary layer thickness is reviewed. 
For simplicity, second order SISO systems are focused on. The controller is derived 
for the systems with the form 
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.
 (26)

Here, X is an augmented vector of the scalar state variables x , x , defined as 

. (27)

u is the control input and the input gain )(Xb  takes strictly positive values. The 

tracking error is defined by 
 

 (28)

where 
d

x is the desired value for x. The sliding variable s  is defined as  

 (29)

and the desired dynamic response for this system is given by 0=s . λ is a positive 
number for stability. If s can be forced to zero, the desired dynamics can be attained 
and the tracking error will converge to zero with the dynamics dictated by 0=+ ee λ , 
which corresponds to a line with slope λ−  in the phase plane. A Lyapunov function 
candidate V of s is chosen as 

. (30)

The control law is constructed such that the sliding line is attractive for the state 
trajectories. This, can be guaranteed if the derivative of V can be shown to be 
negative definite. This derivative can also be written as,  

.
 (31)

The negative definiteness of V  can be achieved by  control input 

 
(32)

where the "sign" stands for the signum function. H  is a constant which is chosen 
strictly positive for stability. )(XK  is a state dependent gain which also takes only 

positive values. Since )(Xf  and )(Xb  cannot be known exactly, their estimates 

)(ˆ Xf  and )(ˆ Xb  are used in the control law. Using estimates, the control law 

becomes 

. (33)

If the bound of the uncertainties on )(Xf  and )(Xb  are known, the gain )( XK  

can be selected adequately high to assure robustness in face of these uncertainties. Let 
)(XF  be a known upper bound on )(Xf  with  

uXbXfx )()( +=

[ ]TxxX =

xxe d −=

eees λ+=)(

2
2
1 sV =

))()(( euXbXfxsV d λ+−−=

( ))(sign)()(
)(

1
sXKHsXfex

Xb
u d ++−+= λ

( ))(sign)()(ˆ
)(ˆ

1
sXKHsXfex

Xb
u d ++−+= λ
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. (34)

Also, let )(min Xb  and )(max Xb  be known lower and upper bounds for )(Xb : 

. (35)

Let )(Xβ be defined by )()()( minmax XbXbX =β . Suppose that we use the 

geometric mean of the upper and lower bounds of )(Xb  as an estimate: 

)()()(ˆ maxmin XbXbXb = . Let )(ˆˆ Xfexu d −+≡ λ and choose the gain )(XK  such 

that  

. (36)

With this choice of control parameters, it can be shown than the derivative V  of 
the Lyapunov function candidate will be negative definite [3]. The sign function 
requires infinite switching frequency, in the theory, to keep the system states on the 
sliding line. However, because of some factors like actuator limitations and delays 
which are inevitable when the controller is implemented on digital computers, infinite 
frequency switching cannot be realized. As a result, frequent state trajectory jumps 
across the sliding line are observed. Such frequent jumps are called chattering in the 
sliding mode control terminology. It can also be identified as high frequency and high 
amplitude oscillations in the control input and velocity signals in the motion control 
field. Many modifications of the original control law are proposed to alleviate the 
chattering problem. The most simple and popular solution is the so called boundary 
layer approach in which the sign function is replaced by a saturation function (Fig. 9). 
Then the control input becomes 

. (37)

The parameter φ defines the thickness of the boundary layer as shown in Fig. 9. 

 

 

Fig. 8. The saturation function and the boundary layer 
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Fig. 9. Typical boundary layer thickness versus error relation 

Outside the boundary layer, in effect, the unmodified sliding mode control is used. 
Therefore, this control, as discussed above, pushes system trajectories towards the 
sliding line.  

In the digital implementation, even when the classical sliding mode controller with 
the signum function is employed, tracking performance cannot be guaranteed. The 
zigzag behavior is observed even for small values of the boundary layer thickness φ . 

For larger values of φ  chattering disappears, however, with increasing φ , the 

tracking performance deteriorates. This suggests that there is a critical value of φ , 

such that below this value chattering occurs and above this value the tracking 
performance becomes worse (Fig. 10). In the boundary layer approach, this puts the 
limits of the achievable performance, assuming that all other controller parameters are 
kept the same. Such a limiting value for the thickness of the boundary level can be 
found experimentally by trial and error. However, this value may be highly dependent 
on the reference trajectory and the load conditions employed in the experimental 
tuning. Therefore, the value of the boundary layer thickness should be varying 
according to the chattering level in the control signal in order to achieve the best 
performance possible without causing chattering. To this end, a measure of chattering, 
Γ, is introduced: 

.
 (38)

u , the absolute value of the derivative of the control signal is obtained by Euler 

approximation in the digital implementation. Equipped with this measure of 
chattering, a fuzzy parameter adjustment method which relates the boundary layer 
thickness φ  to the control activity can be devised. The main idea is summarized as 

below. 
(i) When chattering occurs, the boundary thickness should be increased to force the 

control input to be smoother. (ii) The boundary layer thickness should be decreased if 
the control activity is low. This is since, in order to obtain best tracking performance, 
some amount of activity in control is needed and our aim is to operate the system at 
the limit of chattering. Low control activity can be identified by small values of the 
chattering variable Γ . (iii) When the absolute value of the sliding variable is low, the 
phase trajectory is close to the sliding line and hence a steep saturation function 
(narrow boundary layer) is likely to introduce chattering effect. (iv) When the 
absolute value of the sliding variable is high, the phase trajectory is far away from the 
sliding line and hence a steep saturation function is desirable to decrease the duration 
of the reaching phase.  

u=Γ
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The method proposed in this paper employs fuzzy systems for the online tuning of 
φ . Fuzzy systems, as also mentioned previously, are natural choices to exploit verbal 

descriptions (like the four guidelines above) of the plant or problem to obtain control 
or adaptation mechanisms.  Table I and Fig. 11 describe the four fuzzy rules 
used in the tuning. In Table I the subscript “ NB ” stands for negative big, “ NS ” is 
negative small and “ PB ” is positive big. The following defuzzification rule is 
employed. 

 (39)

This function characterizes a fuzzy system with singleton fuzzification, product 
inference rule and center average defuzzifier. Finally, φ  is updated by at every 

control cycle k : 

 (40)

Table 1. The Fuzzy Rule Base 

 
 

 

Fig. 10. The membership functions 

The choice of the rule base and the membership functions satisfies the conditions 
(i) - (iv) above. The rules summarized in Table I are restated below.  

If Γ  is small and s  is big, then decrease φ  with the high rate NBφΔ . 

If Γ  is big and s  is small, then increase φ  with the high rate PBφΔ  

If Γ  is big and s  is big, then decrease φ  with the low rate NSφΔ . 

If Γ  is small and s  is small, then do not change φ . 

It is quite intuitive that, because small chattering and small s  are desirable 

conditions, the thickness which achieves them should not be changed. Note the shapes 
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of the Small Γ  and Small s  membership functions. They assume the value 1 in their 

respective neighborhoods of zero. These regions close to zero act as a dead-zone 
which stops the evolution of φ  by commanding zero φΔ . For the convergence of φ , 

this dead-zone characteristics is quite useful. The membership corner positions SmallΓ  

and 
Small

s  act as borders of the dead-zone, and hence, they are very important design 

parameters. They convey the control engineer’s notion of the acceptable performance 
and the acceptable level of chattering into the controller design. Whenever the pair (
Γ , s ) leaves the dead-zone, nonzero φΔ  will be computed in (39) and φ  will 

continue evolving.  
The SMC method described above is implemented with and without the online 

fuzzy tuning of the parameter φ . The robustness of this algorithm is tested by several 

experiments using additional weights mounted on the robot tool tip in order to 
introduce modeling uncertainties. A two-dof direct drive manipulator built at Sabanci 
University Robotics Laboratory is shown in Fig. 12. This manipulator is used as the 
test bed in the experimental studies. A dSPACE 1102 DSP-based system is used to 
control the arm. The user interface software runs on a PC. C language servo routines 
are compiled in this environment and downloaded to the DSP. The Yokogawa 
Dynaserv direct drive motors used at base and elbow joints provide position 
measurement signals with a resolution of 1024000 pulses/rev. The base motor torque 
capacity is 200 Nm and that of the elbow motor is 40 Nm. The dynamics equation of 
the robot can be expressed as 

.
 

(41)

In (41), 1q  is the base joint angular position and 2q  is the angular position of the 

elbow as shown in Fig. 12. 1J  and 2J  are the rotor inertia values for the base and 

elbow joints, respectively. D  is the manipulator inertia matrix and C  represents the 
matrix for centripetal and Coriolis effects. 1B  and 2B  are constant viscous friction 

coefficients for the two joints. 1cF  and 2cF  stand for the Coulomb friction torques. 

The robot is controlled by the joint actuation torques 1τ  and the various link length, 

mass and inertia parameters are described in [3]. Since this control law is derived for 
single input single output (SISO) systems, it is applied to the robot joints in an 
independent joint control scheme. Simplified SISO equations of motion are obtained 
from (41) with fixed effective inertia and effective damping parametersand the control 
law is applied as is (37). 
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Fig. 11. The direct drive SCARA type robot arm 

 

Fig. 12. Control signals in experiments with various payload values with and without fuzzy φ  

parameter tuning 
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The next step in the SMC application is the selection of the controller gain function 
)( 11 XK  and controller parameters 1H , 1λ  and 1φ  for the base. The discussion above 

states the condition (36) on )( 11 XK  for robust performance. However, it should be 

noted that in practice, we are faced with another constraint when assigning )( 11 XK . 

This constraint is chattering which is not considered in the design of the control law. 
Large values of )( 11 XK  cause chattering even when a boundary layer is employed. 

Therefore, rather than seeking uncertainty bounds for 1f  and 1b , manual tuning of the 

parameters which will achieve acceptable performance with limited chattering is 
carried out in this work. This is a trial and error based process. Also, because it is 
more suitable for manual tuning, not a function varying over the domain of 1X , but a 

constant value 1K  is used for )( 11 XK . The gains 1H , 1λ  and 1φ  are manually tuned 

too. The control law for the elbow is obtained similarly. The control parameters are 
obtained by manual tuning. It should be noted that these parameters are obtained for 
the fixed boundary layer SMC method. This method and the SMC method in which 
φ  is determined online by fuzzy rules are compared in the experiments. In the SMC 

with the fuzzy boundary layer thickness, the parameters other than φ  are kept 

constant.  
A control cycle time of 1 ms is used. The position reference trajectory consists of 

step joint references of 0.1 rad applied to the two joints. The initial condition 
corresponds to a stationary pose with extended elbow. Below, we present results for 
the elbow joint. However, the step references are applied simultaneously to the joints 
and similar results are obtained for the base joint. The strength of this online tuning 
system becomes apparent when tested under changing operating conditions. 
Experiments are carried out with 2 kg, 4.5 kg, 7 kg and 9.5 kg payloads. Fig. 13 
shows the elbow control signals in ten experiments. The results with fixed φ  are 

shown on left hand side and the ones with the fuzzy φ  method are shown on the 

right. The payload increases from 0 to 9.5 kg from the top plots to the bottom in Fig. 
13. With increasing payload, the task of the controller becomes more difficult. 
Keeping a heavier load on the sliding line is more demanding than the task in the zero 
payload case. The fixed φ  parameter SMC method acts with high control activity and 

chattering phenomenon emerges. The oscillations on the control signal become more 
and more significant with increasing payload. The five plots on the right hand side 
show the control signals with the fuzzy SMC method. When these plots are compared 
with the corresponding left column plots with the same payload, it can be observed 
that the level of chattering or ringing is kept the same, independent from the weight of 
the payload. The fuzzy tuning on φ  regulates the control effort. The initial value of 

the boundary layer thickness was zero in all five experiments with fuzzy tuning. We 
also observed that the steady state value of φ  increased with increasing payload. It 

should also be noted that the steady state error did not change significantly in the ten 

experiments of Fig. 13. It was less than 410−  rads in all cases. The proposed fuzzy 
tuning method adjusts the boundary layer thickness successfully and this makes the 
use of the SMC controller practical even under changing payloads.  
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4 Online Control Scheme Scheduling in Robot Force Control 
by a Fuzzy Logic System 

This section defines a manipulation case study and describes the admittance and 
integral force controllers used in the reaching and contact phases in a force control 
problem. The operation of approaching an object with the robot tool tip, establishing 
contact and exerting a desired constant amount of force is a typical manipulation task. 
The phase when the contact is established is quite important in this task. Large 
overshoots over the desired contact force can be observed. Fig. 14 illustrates such a 
manipulation task with the CAD model of the experimental direct drive manipulator. 
The “tool” is a bolt which is fixed vertically on a six-axis force sensor mounted to the 
end of the elbow link. In Fig. 14.a, the manipulator is in its initial position. Starting 
from this configuration, the tool tip travels towards the work piece. In Fig. 14.b he 
contact is established. The main concern of the control algorithm in this phase is force 
regulation. It is intuitive to expect that the best performing controller structures for the 
phases of approach and contact should be of different nature, since the control 
problems are different. Although in many manipulation applications, the workpiece 
will be a rigidly fixed one, the task description in this paper does not exclude moving 
or free-to-move workpieces. In this problem definition, the exact position of the 
workpiece contact surface is only roughly known, with a precision of a few 
centimeters. 

 

Fig. 13. The manipulation task. The robot starts its motion off the surface of the workpiece. It 
moves towards it and establishes contact. The contact force should be regulated at a desired 
constant value after the establishment of the contact. 

In the task considered in this section, in the approach phase and for the contact 
establishment with the surface, admittance control is used as the main control method. 
Amass-spring-damper model is used to compute the variation of the tool tip x -
directional Cartesian position reference as expressed in the robot base coordinate 
frame (Fig.14). For the sake of simplicity, the −y directional motion is kept constant 

in the position control mode, with a constant Cartesian position reference: 

 (42)

Here, 0y  is constant value. The x -directional Cartesian reference increases smoothly 

to reach the workpiece. Specifically, a reference of the form 

                    
a)                                                   b) 

0yyref =
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 (43)

is implemented in the experiments. 0x  and fx  are the initial and final values of the x

-directional reference, respectively. The “speed” of this reference is adjusted by 
setting the angular frequency ω  in (43). In order to track the reference trajectory 
described in (42, 43), the inverse kinematics problem for the planar elbow 
manipulator is solved with the elbow-right configuration assumption [12] and joint 

position references [ ]T
refrefref qqq 21= which correspond to the Cartesian references 

refx  and refy  are computed. A joint space PID controller is employed to track the 

joint position references obtained in this way: 

 (44)

Here, q  represents the actual joint position vector. pK , dK  and iK  are diagonal 

matrices with positive entries and they stand for the proportional, derivative and 
integral gain matrices, respectively. τ  is the vector of joint control torques. The 
variation of the x -directional Cartesian position reference under admittance control is 
denoted by )(tc  where t  stands for the continuous time. The reference varies as 

. (45)

The modified reference variable )(txapplied
ref  then replaces )(txref  in (2). The Laplace 

transform )(sC  of )(tc  is related to that of the sensed x -directional force )(tFe  as 

 (46)

where M , B  and K  are the parameters which define the behavior of the tool tip in 
contact with the workpiece. This equation is discretized by Tustin approximation and 
converted into a difference equation which is suitable for the on-line computation of 

)(kTc  by a computer, where T  is the sampling period and k  is a discrete time 

sampling index. Admittance control offers a performance equivalent to position 
control during the approach in free space. Since exact location of the workpiece is 
only very roughly known to the controller, the final position target is set, again 
roughly, inside the workpiece. If the controller parameters are tuned appropriately, 
under admittance control, once the robot is in contact with the workpiece surface, it 
responds quickly without overshoots and keeps the contact. However, this strategy is 
not useful for controlling the force applied in the steady state, since parameters on 
which this force depends also determine the stability of the robot and its first impact 
behavior against the workpiece. Varying the parameters in order to obtain the desired 
force, we would deteriorate the stability and smoothness of the establishment of the 
contact. For the steady state, a more appropriate strategy is the integral control. The 
integral force controller integrates the error between a desired steady state constant 
force level and the actual (sensed) force exerted by the tool-tip. The integral force 

2))cos(1)(( 00 txxxx fref ω−−+=
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error intF is multiplied then by the integral action constant
Fi

K  to compute the 

Cartesian control force cF : 

 (47)

 

 (48)

refF  in (6) is the two dimensional vector 

 (49)

where 
xrefF  is the constant force reference in the x -direction mentioned above. By 

(49), a force reference of 0 N is applied in the y -direction. Then the torque to be 

applied on the robot joints is computed as [12]: 

 (50)

The integral in (6) is computed by a digital approximation.  
Once the contact is settled, integral force control prevents loosing contact with the 

surface; provides zero steady state error for a constant reference force and it is more 
stable and accurate than proportional action force controllers. On the other hand, 
when the initial tool tip position is in free space, integral force control generates 
undesired large accelerations. Also, after an approach phase where the integral control 
is active, this control causes contact force overshoots. In this case the force error 
integral will grow during the approach since no (or very small) force is sensed in free 
space and there will always be a nonzero and positive force error. The impact force 
when reaching the workpiece can be excessive. The magnitude of this force depends 
on the initial distance between surface and tool-tip. With this motivation, it is 
proposed to use the admittance control dominantly in the reaching phase and the 
integral control as the primary controller after the establishment of the contact with a 
smooth transition between the controllers dictated by a fuzzy scheduler.  

There are three objectives to be reached with the proposed fuzzy scheduling 
system: 

1) Avoiding a brusque impact when reaching the surface of the workpiece. 
2) Avoiding the application of integral control while the tool-tip is not in stable 
contact with the workpiece. 
3) Switching the control action from admittance into integral force control without 
causing a large force overshoot, once the tool-tip is in stable contact with the 
workpiece. 

In order to achieve a controller-to-controller transition a weighting variable, 
)(kTW , is introduced. This variable varies between 0 and 1 and when 1)( =kTW  

only admittance control is applied. Similarly, at the other extreme, that is, when 
0)( =kTW  the applied control input is computed purely by integral force control 

dtFFF eref∫ −= )(int

intFKF iFc =

[ ]Trefref x
FF 0=

c
T
M FJ=τ
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action. A linear combination of the two controllers’ outputs is applied for cases in 
which ).1,0()( ∈kTW  In other words, the two controllers are combined with the 

relation 

, (51)

where aτ  and iτ  are the admittance and integral force control actions, respectively. 

With formulation in the above equation, the task of the fuzzy system is to determine 
)(kTW  at every sampling instant k . 

In order to identify sudden changes in force, the following measure of contact force 
activity, denoted by Γ  is introduced. 

 (52)

Here, ΓT  is the sampling period for the computation of .Γ  Again it is a multiple of 

the controller sampling period T . ΓN  is the number of samples used in the 

computation and ρ  is a variable which indicates whether the force is changing 

direction or not. A force difference which keeps the same direction (increasing or 
decreasing) from sample to sample is added up to contribute to Γ . 

 (53)

The third input of the fuzzy scheduler, W  is also a useful one since it provides 
valuable information about in which mode the control algorithm is. In order to apply 
the most suitable control scheme at every moment the following guidelines are 
developed: 

(i) If the integral force control is dominant (if W  is small) and the average force is 
small, it may be the case that the integral force control is active with the robot tooltip 
in free space. Admittance control should be made dominant and the weight of integral 
control should be decreased quickly to avoid unnecessary force error integration. (ii) 
If the admittance controller is dominant (W  close to 1), the average force is large and 
rate of change of the average force is small, we can infer that the contact is well 
established and increase the weight of the integral controller gradually to reach a 
steady state and desired level of force without large overshoots. 

(iii) No change in W  is necessary in other conditions.  

Formulated as fuzzy rules, these guidelines can be written as: 

1) If W is small, Γ is small and F is small, then W should be increased with a big 
increment 

2) If W is small, Γ is big and F is small, then W should be increased with a big 
increment 

3) If W is big, Γ is small and F is big, then W should be decreased with a small 
decrement 

4) In any other case, W should be kept constant.  
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Fig. 15 shows the membership functions. Product inference rule and center average 
defuzzification is applied. 

 

 

Fig. 14. Membership functions for W , Γ  and F  

 

Fig. 15. The sliding work piece 

A constant force reference is applied and the task is to reach the workpiece and to 
regulate force at this constant reference. In order to test the control algorithms under 
different working conditions two manipulation scenarios are prepared. In the first one 
the workpiece is kept rigidly fixed, and in the other one the workpiece is initially free-
to-move on a linear guide until the motion range of the linear slide comes to an end 
when the workpiece is stopped by a hard stopper. In this scenario the robot firstly 
works against the friction of the linear guide, and then against the effectively fully 
fixed workpiece, after its stop (Fig. 16).  

The refF is set as 12 N. In order to simplify computations, the workpiece assembly 

is arranged in a particular position, so as to make the x -direction of the robot base 
frame and the normal to the workpiece surface coincide.  Fig. 17 shows the 
experimental results obtained by the fuzzy scheduling for the rigidly fixed workspace 
case. With the impact of the contact, an increasing average force and high force 
activity is observed. The fuzzy rule base decides to decrease the weight of the 
admittance control and increase that of the integral controller. The admittance 
controller weight chances from one to zero. This smooth change keeps admittance 
control active for a while after the contact establishment too. Fig. 18 shows the 
performance of the fuzzy scheduling with the sliding work piece. Actually the motion 
in this case is divided into three phases rather than into two. The first phase is that of 
reaching the workpiece. In the second one the workpiece is pushed by the robot and 
the force sensor reads nonzero force values due to the friction on the linear guide. In 
the third phase of this motion sequence, the hard stop of the linear guide is reached 
and the workpiece poses a solid obstacle in touch with the robot tool tip. Basically, 
the operation of the scheduler remained the same as in the case with the fixed 
workpiece. The scheduler adjusts the controller contribution weight W  by evaluating 
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the average force and activity variables together with the current weight of the 
controllers to avoid the misinterpretation of slightly rising contact forces (due to 
friction) as the forces of an established rigid contact. The performance of the force 
control system with the fuzzy scheduler with fixed and sliding workpieces is quite 
similar. This suggests that the performance of this control system is not affected 
severely by working condition variations of this kind.  

 

 
 

Fig. 16. Fixed workpiece. Plots of the evolution of the measured force and the fuzzy system 
variables 

 
 

Fig. 17. Constrained motion of the workpiece on the linear guide. Plots of the evolution of the 
measured force and the fuzzy system variables. 

5 Visual Servoing and Force Control Integration by Fuzzy 
Parameter Adjustment 

Fig. 19 shows the scenario of a manipulation task with a free to rotate object. From 
left to the right, the task description goes through following phases: In the first phase, 
robot tool tip starts far away from the workpiece, like the point I  in Fig. 19 a). The 
aim of the robot is to apply a constant magnitude force on the point O  normal to the 
edge of the workpiece where O  is located. This is a planar manipulation task. To 
accomplish this aim, robot should approach to point O  perpendicularly. First the 
robot should be brought on the y -axis as shown in Fig. 19 a). As the tool tip reaches 
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the y -axis, robot should approach to the workpiece by following the y -axis as 

shown in Fig. 19 b). When a contact with the workpiece is sensed, desired constant 
force should be exerted on the workpiece in normal direction as shown in Fig. 19 c). 
The robot is also expected to continue exerting the force reference, and should 
reestablish the contact in the case of a contact loss. The workpiece is free to rotate 
about the pivot point P . In the experiments, the workpiece is rotated intentionally 
about this point in order to create contact losses. This phase is shown in Fig. 19 d). 
This is the most demanding phase for a control system, because application of forces 
on points on the edge of the workpiece other than the location indicated by the black 
point in Figure 19 is undesired. The interaction of the robot tool tip with the 

workpiece can be in many different ways while it moves from point O  to point O  in 
Fig. 19 d). However, our target in control synthesis is to achieve an interaction which 
fulfills demands described above. Firstly, we design a fixed parameter controller for 
the problem definition stated in the previous section. This controller is based on the 
task frame approach. The origin of the task frame is attached on the contact point of 
the workpiece. Hybrid control is applied with a visual servoing component in the 
direction tangent to the straight edge of the workpiece and force control component 
normal to this straight edge. Since a force normal to its contour is to be applied on the 
workpiece, the orientation of the task frame can be identified with the slope of the 
edge detected on the workpiece by vision system. The x , y -axis and origin O  

shown in Fig. 19 describe the task frame. For force control, an explicit force 
controller in PI structure is used [13], [14]. The force error is defined as the difference 
between the task space force reference rF  and the measured interaction force F : 

. (54)

The “selected force error” is then obtained by 

, (55)

where the diagonal matrix S  is called the selection matrix. 
 

 

Fig. 18. The manipulation scenario 

The entries of the matrix S  specify the force controlled task space directions. If 
the ith direction is a force controlled one, then the ith diagonal term iis  of S  is equal 

to 1 and it is equal to 0 otherwise. The force control law is expressed as  

)( FFe r
F −=

)( FFSe r
FS −=

 
             a)                                                    b)                                     c)                                   d) 
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. (56)

In (55), c
FF  stands for the Cartesian control force defined in the task space. 

FpK  is 

the diagonal proportional force control gain matrix and FK  is the diagonal integral 

gain matrix: 

 (57)

The control c
FF is then transformed into robot joint torques by using the robot 

Jacobian RJ  as, 

 (58)

where q  is the vector of joint positions and t
wR  is the rotation matrix between the 

task frame and the world frame attached to the base link of the manipulator. Fu  

stands for the force control component in the joint control torques. The vision based 
position control adopted in this section is in the so-called “dynamic look-and-move” 
control category. In dynamic look-and-move approach, visual servoing generates 
position references for an inner position control loop based on joint encoder feedback. 

Task space errors x
Ve  and y

Ve  (measured in pixels) for visual servoing are defined in 

Fig. 20. Augmenting them together, the task space position error Ve is obtained: 

. (59)

Its “selected” version is obtained by 

 (60)

where I  stands for the identity matrix. The position errors in the force controlled 
directions are ignored. The visual servoing rule in the image space is defined as, 

 (61)

In (61), c
VF  is the task space control force vector generated by visual servoing and 

VK  is the gain  

 (62)

The output of the visual control, c
VF , should be interpreted in the following way. 

Because of our choice of the visual control structure as dynamic look-and-move, we 
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are not using this vector as a Cartesian control force to be converted to joint torques 
via a Jacobian-Transpose relation. Rather, this vector is used to generate world frame 

Cartesian tool tip position references. c
VF  is regarded as the task space velocity 

demand for the visual servoing task. It is expressed firstly in the image frame 
coordinates by multiplying it by the rotation matrix relating the task frame 
coordinates to the image frame coordinates and then using the rotation matrix relating 
image frame and world frame coordinates, it is represented in world frame: 

 (63)

Here v  is the task space velocity demand in m/sec. JI is the image Jacobian which 

includes camera intrinsic parameters. The position reference rp in the world frame is 

obtained by integrating this velocity demand as in the following equation. 

 (64)

Let p  be the actual Cartesian position of the robot tool. ( p  is obtained through 

joint encoder readings and forward kinematics with the position control loop sampling 
rate, which is higher than the camera sampling rate.) Defining Pe , the Cartesian 

position error expressed in the world frame, by ppe r
P −= , a PID position controller 

is used to generate a Cartesian control force for the robot tool as below.  

. (65)

This force is reflected to joint control torques by the use of the manipulator 
Jacobian:  

. (66)

 

 

Fig. 19. Visual servoing errors 

As in the case of Fu , Pu  is a component in the joint control torque vector. The 

joint control vector u  is finally computed as 

. (67)
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Our task is the application of a normal force to a workpiece. We divided this task 
into two phases: i) Reaching phase and ii) manipulation phase. In the reaching phase, 
the tool tip of the robot is brought near the force application point using visual 
servoing in task frame. In this phase the both of the task frame directions are visually 
controlled. Therefore, the selection matrix S  is given by 

. (68)

In the reaching phase, the visual servoing gain in x direction is specified higher 
than the visual servoing gain in y  direction, in order to quickly bring the tool tip to 

the line of concern (task frame y -axis). After intersecting it, the robot tool moves 

along with the y axis of the task frame and touches the surface of the workpiece. The 
contact is sensed by the force sensor by measuring the force in y -direction in task 

space. A force threshold is employed for the contact detection. With the contact, 
second phase begins. In the second phase hybrid position/force control guided by 
visual servoing is applied. Along the y  direction force control is applied, and visual 

servoing is implemented along the x  direction. This corresponds to the following 
selection matrix. 

. (69)

Since the problem definition involves a free-to-rotate workpiece, after the reaching 
phase, the object is manually rotated around the pivot point P  shown in Fig. 19. In 
this phase, even if there appears a position error in x -direction, the controller 
continues applying force. This results with the application of force on undesired 
points of the workpiece. High values for visual servoing gains may be suggested as a 
solution of this problem. With high control gains, visual servoing can push the x -
direction position error quickly to zero. However, using a high gain values can result 
with overshoot and oscillations. As another problem, if force control continues when 
the contact is lost, some hard impacts are inevitable. Though hard impacts can be 
avoided by using very low force control gains, low gains result in a very slow force 
control reaction. The dominant control gain in force control is FK . According to [13] 

an effective use of the explicit force control scheme can be obtained by selecting a 

FK  value much larger than 
FpK . Therefore the gain FK  is chosen for tuning the 

force controller by fuzzy rules. In the vision control law the only gain is VK , and this 

gain is tuned by a fuzzy system. The main principles of the tuning are as follows. 
(i) If the position error is big and force error is small, then this means that the robot 

is applying the reference force to an undesired point. The robot should be brought on 
the line of concern (task space y -axis) without applying too much force on the 

workpiece. To accomplish this force gain should be decreased, and vision gain should 
be increased. (ii) If the position error is small and force error is big, this means the 
robot is at the right position, but force control gain is too low that the desired force 
value has not reached yet. To overcome this, force control gain should be increased. 
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And also to avoid fast movements in tangential direction, motion in visually guided 
direction should be softened. (iii) If both position and force error are big, this means 
the workpiece went through a large motion. In this case, the force gain should be 
decreased rapidly and visual servoing should be increased. (iv) If both of the position 
error and force error are small, then there is no need to change the control gains. 

These four principles can be implemented by two independently running fuzzy 
tuning systems for the two controller gains mentioned above. The rule bases for these 
fuzzy systems for FK  and VK are summarized in Tables II and III, respectively. Note 

that the tuning is carried out for the “active” entries of the gain matrices 
corresponding to the force and vision controlled directions chosen by the selection 
matrix .S  Fig. 21 shows the membership functions for the input variables. “ Δ ” in the 
notation for the rule strengths signifies that, instead of computing the control gains 
directly, incremental changes in the control gains are computed by the fuzzy systems. 
Center average defuzzification with singleton fuzzification and product inference rule 
is implemented.  Finally, yF

K  and xV
K  are obtained by 

         (70)

In (70) k  is the computation cycle of the digital controller. When the error in x 
direction is reduced via visual servoing, according to the fuzzy rules, force control gain 
begins to rise. If there is a nonzero position error in y -direction in that instance, this 

fuzzy tuned control system cannot avoid a hard impact. The two-dof direct drive 
manipulator built at Sabanci University Robotics Laboratory is used in the experiments 
(Fig. 22). A 6-axis force sensor is assembled at the tip of link 2. A M8 stud is mounted on 
top of this device, concentric with it, and used as the tool in the experiments. The camera 
which overlooks the scene has a resolution of 320x240 pixels. The workpiece, a polymer 
sheet of 10 mm thickness with rectangular shape is pivoted around a vertical axis, and is 
free to rotate. Soft linear springs attached to the workpiece from both sides keep the 
orientation of it fixed when no external forces are applied on it. The integrated 
visual/force control is tested in a hybrid approach with a fuzzy gain tuning. The task 
frame orientation is identified with the angle α  between the image frame and task frame 
x-axes in Fig. 20, and this angle is termed “task angle.” 

The results obtained with the approach are shown in Fig. 23. In this approach 
undesired sheer forces are overcome by fuzzy gain scheduling. With fuzzy tuning, when 
there appears a position error in x- direction, visual servoing gain in x-direction begins to 
climb where force control gain drops rapidly. As the position error decreases to some 
specified degree which is defined by the fuzzy rule, force control gain rises.  

Table 2. The Fuzzy Rule Base for Tuning 
the y-Direction Force Gain 

Table 3. The Fuzzy Rule Base for Tuning 
the x-Direction Visual Control Gain 
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Fig. 20. Membership functions used in the fuzzy inference of the first fuzzy tuning system 

 

Fig. 21. The experimental setup. This scene is overlooked by the camera which is fixed at a 
location above the workpiece. The robot is equipped by a 6-axis force sensor at its tool tip.  

 

Fig. 22. Task angle, y-direction force, and x-direction visual servoing error and the tuned 
controller gains in the fuzzy tuning approach 
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6 Conclusion 

On-line fuzzy parameter adeptation techniques for position, force and visual control 
applications implemented on direct drive manipulators are reviewd as case studies in 
this chapter.  

Fuzzy adaptive sliding mode control of a direct drive manipulator is considered in 
Section 2. Three different fuzzy logic based adaptation schemes are proposed. 
Implementation results with these algorithms applied separately reveal that the 
methods presented improve the performance of the original algorithm. Another 
important aspect is that there is no need for an off-line tuning of controller parameters 
when the adaptation schemes are used. Faster convergence to desired trajectories can 
be obtained, without the need for off-line tuning of control parameters. Furthermore, 
dependency on a particular reference signal is avoided. 

Sliding mode controller structures with boundary layers are widely used to solve 
the chattering problem. However, tracking performance is degraded when a too wide 
boundary layer is used and chattering prevails when the boundary layer is too narrow. 
The determination of a suitable boundary layer thickness which can eliminate 
chattering and at the same time achieve acceptable performance is an important 
design issue. Section 3 reviewed an online fuzzy tuning method to adjust the 
thickness of the boundary layer. The thickness of the boundary layer is obtained 
without the offline trial and error processes. The online algorithm reacts to changes in 
the sliding variable and the chattering level to adjust the boundary layer thickness 
continuously. This enables the controller to perform under changing operating 
conditions without chattering. The results are verified by experiments with various 
payload values on a direct drive robot. The performance and chattering elimination 
properties of the proposed method make it a candidate for industrial applications. 

Section 4 concentrated on a manipulation problem as a case study. In this task the 
robot tool tip should travel in free space to reach the surface of a workpiece and after 
reaching it, it should exert a desired constant value of normal force on it. Two simple 
structured and robust control techniques are chosen as dominant controllers in the two 
phases mentioned. These are the admittance control and integral force control for the 
reaching and force regulation phases, respectively. A fuzzy logic system for smooth 
switching between the controllers is proposed. Experimental studies are carried out on 
a direct drive SCARA type manipulator. Different working conditions are introduced 
by working with free-to-move workpieces as well as with rigidly fixed ones. The 
experimental results indicate that the fuzzy scheduler is applicable to a wide range of 
working conditions.  

A hybrid vision/force control approach with fuzzy logic tuned controller gains is 
discussed in Section 5. It is seen that with online fuzzy tuning, the system behaves 
more stable and avoids sheer forces. The results show that fuzzy logic can be very 
useful in this kind of integration of control methodulogies. 

In the case studies above fuzzy parameter adaptation performed well in on-line 
tuning, in providing the controllers with an adaptive nature and in combining control 
methodologies for exploiting their benefits and avoiding their drawbacks. It can be 
stated that these techniques can be employed in demanding industrial applications of 
direct drive motors and direct drive robotics. 
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Abstract. In order to control the temperature on the wafer in a rapid thermal
processing system, we develop a reduced model of the dynamic based on the
spectrum of the system operator and then develop a sliding mode controller for
the system. The dominant modes of the system are extracted through the analysis
of the spectrum. Galerkin’s method is utilized to construct the reduced model of
the system with the dominant modes as the trial functions. Then, sliding mode
controller is designed based on the reduced model. Simulations are performed by
comparing the high-order model with the proposed reduced model and applying
the control scheme to the system. Simulation results show that the proposed re-
duced model has relatively small order but the same ability to model the process
and the sliding mode control actions can heat the wafer to a desired temperature
with a uniform distribution.

1 Introduction

Rapid thermal processing (RTP) is a mainstream technique in the manufacturing of
semiconductor. RTP has large advantage over batch furnaces processing with its smaller
thermal mass. The RTP technique was firstly applied to implantation annealing, on
GaAs in an inert ambient [1]. In [2], the technique was further utilized on Si to activate
ion implanted dopants, remove defects, and regrow amorphized silicon, with minimal
diffusion of the dopant atoms. [3] generalized various applications of the RTP which
include silicidation, gate dielectric formation, gas reflow, metal alloying, shallow junc-
tion dopant diffusion and multilayer deposition. It was pointed out in this work that
RTP is not only a superior alternative to furnace processing, but it is also the only way
to perform certain crucial steps in the processing of compound semiconductor devices
such as highmobility transistors, resonant tunneling devices, and high-efficiency solar
cells.

Dedicated equipment design, efficiency temperature measure and control technique
are needed in the development of the RTP. The following sections will present some
current methods of the equipment design, temperature measure and temperature control.
The problem of modeling arises in the design of measurement sensor and controller. We
will introduce some existing modeling methods for RTP system and their weaknesses
in section 1.3.

c© Springer International Publishing Switzerland 2015 403
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1.1 Equipment Design

The components of an RTP system needed to be designed are energy source, the process
chamber, the gas panel and the wafer transfer system etc. In this section, we will focus
our effect to review the dominant techniques used to design the energy source and the
process chamber.

1.1.1 Energy Source
In the commercially available RTP systems, there are three basically heating sources.
Two are lamp sources: tungsten filament lamp and long-arc noble gas discharge lamp.
The third type is the continuous resistive heat source.

The tungsten lamp is made up of a linear double-ended quartz tube and a tungsten fil-
ament contained in it which is resistively heated. In order to increase the filaments color
temperature, halogen gas rather than inner gas is chosen to be the fill gas. The chemical
and physical mechanisms can be found in [4] where experiments were performed.

The second type of heating source is the long-arc lamp. Most of the long-arc lamps
used in the RTP systems are the dc water-wall argon lamps [5,6]. This kind of lamp has
advantage over the tungsten-halogen lamp and conventional arc lamps for that it pro-
vides high power output and has the ability to change power levels rapidly. Annealing
experiments using the water-wall lamp have shown that good activation and essentially
complete removal of implant damage can be achieved. In [7], it is pointed out that the
vary rapid heating and cooling rates obtainable with the water-wall lamp offer a great
deal of flexibility in the time/temperature cycles used for annealing.

The third type of heating source is the classical resistive heating. A resistively heated
silicon carbide bell jar is used as the reaction chamber and the heat source [8]. There
exists a well-defined temperature gradient in the bell jar. The wafer is moved up and
down to a position which corresponds to a certain process temperature.

1.1.2 Process Chamber
There are three basic chamber designs employed in the commercially available systems:
the cold wall, the warm wall and hot wall design.

The schematic of the cold wall chamber is shown in the Figure 1. The cold wall
chamber is made using metals like aluminum, stainless steel or other alloy which are
sometimes coated with a thin quartz layer. Because the chamber is water cooled, it is re-
ferred to as a cold wall system. The strength of using the cold wall chamber is that there
is no potential secondary radiation source which complicates temperature measurement
as the chamber walls are kept at a fixed temperature. However, the weakness of using
the cold wall chamber is that the wall can be contaminated by parasitic deposition which
cause particles and decrease temperature uniformity [9].

The second chamber design is the warm wall chamber which is made up of quartz
envelop. As the quartz envelop is air cooled, it is referred to as a warm wall chamber.
The wall of the chamber is kept at a significantly lower temperature than the wafer. The
schematic of warm wall chamber is shown in Figure 2. The advantage of the warm wall
chamber is that it minimizes metal contamination from the metal chamber. However,
preheat cycles are needed in this type of system as the warm wall has thermal memory
effects.
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Fig. 1. Schematic diagram of the RTP system

The third type of chamber design is the hot wall chamber with its bell-jar shaped
silicon carbide [8]. The temperature of the wall is higher than the wafer as it serves as
the uniform heat radiator to the wafer in the hot wall chamber. A schematic of hot wall
chamber can be found in Figure 3.

1.2 Temperature Measure

There are basically two methods of temperature measurement in the RTP systems:
an absolute method and an optical method. The absolute method uses a thermocou-
ple which contact with the wafer directly to measure the temperature while the optical
method uses a noncontact pyrometer as the measurement tool. The optical method is
preferred to absolute method because it can minimize foreign objects in contact with
wafers. Most of todays RTP systems use the optical method to measure the temperature
of the wafer.

However, the major problem of using the pyrometer is that the measurement can be
affected by some sources of error. The first order radiation which comes from the heat
source or from the reflectors and the second order radiation which is reflected off the
silicon wafer can disturb the Lambertian radiation from the hot wafer.

There are two primary methods to solve this problem. The fundamental idea of the
first approach is to avoid the overlap of the spectral wavelength distribution of the ra-
diation from the heat source with the bandpass wavelength range of the sensor. In [10],
there was a strong absorption peak in the lamp which does not emit radiation beyong
1.4m while the band-pass of the pyrometer is 1.4-1.5m.

The fundamental idea of the second approach is to exclude the interfering radiation
from the heat source to the pyrometer. The pyrometer views the wafer through a win-
dow of materials like calcium fluoride [11]. The window absorbs radiation of a specific
wavelength and composes a selective narrow-band absorption filter.
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Fig. 2. Schematic diagram of the RTP system

Fig. 3. Schematic diagram of the RTP system

1.3 Modeling of Temperature

The model of the system plays an important role in the design of the measurement
sensor and controller. There are numerous works [12–16] proposing model of the RTP
system. In [12], two-dimensional model was used to simulate rapid thermal processing
process where the dominant factors governing heat transfer and fluid flow inside the
reactor were identified. Then a finite-difference method was used to get the numerical
solution of the system. [13] developed a numerical model that incorporated radiative
and convective heat transfer and then thermal stresses were analyzed. Nonlinear numer-
ical model was proposed in [15] and control method was developed.

One weak point of the above models is that the orders of the models are relatively
high. A reduced model is demanded for most designs of sensor and controller. There are
a few works [17–19] proposing some model reduction methods for the RTP system. [17]
and [18] extracted the low-order models using the proper orthogonal decomposition
(POD) method. [19] made use of the excellent predictive capabilities of the reduced
model to optimize power inputs to achieve a desired polysilicon deposition thickness.
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However, the data-based POD method is a non-causal procedure, meaning that the
models cannot be derived before the system response is known. In this work, a causal
analytical method based on the spectrum of the system operator is presented for the
model reduction of the RTP system. The dominant modes of the system are firstly ob-
tained and the system can be partitioned into two subsystem: the dominant slow system
and a remaining fast subsystem. By ignoring the affection of the fast subsystem with
the Galerkin’s method, a reduced model with relatively low order is obtained.

1.4 Temperature Control

First research effects focus on the temperature accuracy of the wafer in the steady state.
However, with the development of the manufacturing of semiconductor, temperature
uniformity in the transient states is required. It was shown in [20] that the temperature
uniformity was limited by radiation loss at the wafer edge in the stationary state and
by non-uniform illumination of the wafer during ramp-up. Structures on wafers were
also potential sources for non-uniform heating. In the case of wafers with patterned
over-layers on the front side, [21] showed the non-uniformity of the temperature exper-
imentally and theoretically and also claimed that highly reflective reflectors at the front
side of the wafer may help. In [22], a use of a gradient in the reflection coefficient in
the reflector was proposed to compensate for edge dissipation. We will propose a slid-
ing mode control method in this work to heat the wafer in the RTP system to a desired
temperature with an uniform distribution.

The work is organized as follows. In section 2, a model formulation using physical
principles is presented. The methodology of model reduction is proposed in section 3.
The sliding mode control method is given in Section 4. Section 5 gives the simulation
results of the proposed reduced model and control schemes. Section 5 concludes the
work.

2 Model Formulation

The system we deal with in this work is the same as in the [23] which is named as Steag
CVD system. The system has halogen lamps above which are arranged in five zones
as the heating system. The silicon wafer is placed on a rotating support to decrease
the temperature distribution in different azimuths. The reaction chamber is closed from
above by a quartz window, which allows for radiative heating of the wafer, while at
the same time permits wafer processing under vacuum. Figure 1 illustrates a schematic
diagram of the RTP system.

There are three types of heat transfer on the wafer: conduction, convection and radi-
ation which are presented as qk, qc and qr respectively in the following energy balance
equation of the wafer in the rapid thermal processing chamber.

ρC
∂ T̄
∂ t

= qk + qc + qr (1)

where ρ is the wafer density, T̄ is the wafer temperature pertaining to position and time,
C is the specific heat, and t is the time.



408 T. Xiao and H.-X. Li

2.1 Conduction

As mentioned above, the wafer is placed on a rotating support and the dynamic is iden-
tical along the positions with the same radius. The polar angle of the position thus can
be ignored and the full three-dimensional model (in radius, polar angle and thickness)
can be reduced into a two-dimensional one (in radius and thickness). And because the
wafer is very thin, we ignore the thickness of the wafer and consider the upper of the
wafer only. The two-dimensional model can be further reduced into a one-dimensional
model(in radius). With these assumptions, the conduction on the wafer can be expressed
as:

qk =
k

R2

∂
∂x

(
∂ T̄
∂x

)
(2)

where x is the radius coordinate, and k is the thermal conductivity.

2.2 Convection

Considering the boundary condition, we have

k
∂ T̄
∂x

= 0 at x = 0 (3)

and due to the convection on the edge of the wafer, we obtain

k
R

∂ T̄
∂x

=−he(T̄ − T̄w) at x = 1 (4)

where he is the convective heat transfer coefficient at the wall, T̄w is the wall tempera-
ture, and R is the radial length of the wafer.

2.3 Radiation

The energy on the upper surface of the wafer comes from the radiation of the lamp and
the heat exchange between the wafer and quartz window as follows:

qr =
ε
Z

q(x, t)− Fεσ
Z

(
T̄ 4 − T̄ 4

a

)
(5)

where ε is the emissivity of the upper surface, Z is the thickness of the wafer, q(x, t) is
the heat transfer from the lamp to a given point at x, F is the reflective coefficient of the
upper surface, and T̄a is the temperature of the quartz window.

The radiation from the lamps to the wafer can be expressed as a function of view
factor. The view factor in RTP system can be derived from the system geometry as:

(6)Vj =
1
2

⎛
⎜⎜⎝ x2 + d2 − r2

i[
x2 + d2 + r2

i

]√
1 − 4x2r2

i

[x2+d2+r2
i ]

2

− x2 + d2 − r2
o

[x2 + d2 + r2
o]

√
1 − 4x2r2

o

[x2+d2+r2
o]

2

⎞
⎟⎟⎠
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Table 1. Heating System Arrangement

Zone rin (cm) rout (cm)

1 0 1.35
2 1.85 4.55
3 5.05 7.75
4 8.25 10.95
5 11.45 14.15

where ri and ro are the radiuses of inner ring and outer ring of the power lamp zones
respectively. The power lamps are divided into five zones with their ri and ro as shown
in Table 1.

The total energy from the lamps to the wafer can be derived with the view factor as

q(x, t) =
5

∑
j=1

Vju( j, t) (7)

where j is the ring number, u( j, t) is the power of different zones.
For convenience, we can define dimensionless variables T = T̄−Te

Te
, Ta =

T̄a−Te
Te

, Tw =
T̄w−Te

Te
where Te is the temperature of the environment. The energy balance then be-

comes:

∂T
∂ t

=
k

R2ρC
∂
∂x

(
∂T
∂x

)
− Fεσ

ZρCTe

(
(TeT + Te)

4 − (TeTa + Te)
4
)
+

ε
ZρCTe

5

∑
j=1

Vu( j, t)

(8)

with the boundary conditions:
∂T
∂x

= 0 at x = 0 (9)

∂T
∂x

=−heR
k

(T −Tw) at x = 1 (10)

and initial condition:
T = Tini when t = 0 (11)

The system parameters can be found in Table 2.

3 Model Reduction

3.1 Spectrum of the System Operator

Before introducing the Galerkin’s method, we first define the spectrum of the system
in order to derive the dominant modes of the system. Considering the convection at the

edge of wafer, we define PT = ∂
∂x

(
∂T
∂x

)
, with boundary conditions:

∂T
∂x

= 0 at x = 0 (12)
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Table 2. Parameters for RTP system

Parameter Meaning Value

k( W
cmK ) the thermal conductivity 0.6211 at 600K

ρ( kg
cm3 ) the wafer density 2.3

C( J
gK ) the heat capacity 0.7894 at 600K

F the reflective coefficient 1
ε the emissivity 0.7

σ( W
cm2K4 ) the Stephan-Bolzman 5.674×10−12

constant
Z(cm) the wafer thickness 0.0525
Te(K) the temperature of 300

the environment
T a(K) the temperature of 300

the quartz window
T w(K) the temperature of the wall 300
R(cm) the radius of the wafer 12

∂T
∂x

=−e(T −Tw) at x = 1 (13)

Considering the eigenvalue problem PT = λkφk, we have the following results. The
eigenvalues are real and the corresponding eigenfunctions may be chosen to be real.
After analysis, we can get the spectrum of the system. We define θ as the positive roots
of

tan(θ ) =−e/θ (14)

and have λ =−θ 2.The corresponding eigenfunctions are:

φ =

√∫ 1

0
cos2(θx)dxcos(θx) (15)

3.2 Galerkin’s Method

We now turn to the Galerkin’s method.
The solution of the RTP system can be represented by

T (x, t) =
∞

∑
k=1

Tk(t)φk(x) (16)

Projecting the state variable in Hilbert space onto a finite dimension subspace

TN(x, t) = PNT ≡
N

∑
k=1

Tk(t)φk(x) (17)
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and an infinite dimension subspace

TR(x, t) = PRT ≡
∞

∑
k=N+1

Tk(t)φk(x) (18)

and then projecting the system (8) onto the finite dimension subspace, we have

(19)

PN
∂T
∂ t

=
k

R2ρC
PN

∂
∂x

(
∂T
∂x

)
− Fεσ

ZρCTe
PN

(
(Te (TN + TR) + Te)

4 − (TeTa + Te)
4
)

+
ε

ZρCTe
PN

5

∑
j=1

Vju( j, t)

If the infinite part TR is ignored, the following approximated subsystem is obtained:

(20)

∂TN

∂ t
=

k
R2ρC

∂
∂x

(
∂TN

∂x

)
− Fεσ

ZρCTe
PN

(
(TeTN + Te)

4 − (TeTa + Te)
4
)

+
ε

ZρCTe
PN

5

∑
j=1

Vju( j, t)

In order to get the best approximation, we define the residual as

(21)

R =
∂TN

∂ t
− k

R2ρC
∂
∂x

(
∂TN

∂x

)
+

Fεσ
ZρCTe

PN

(
(TeTN + Te)

4 − (TeTa + Te)
4
)

− ε
ZρCTe

PN

5

∑
j=1

Vju( j, t)

By using the Galerkins method, we set the test function ϕk = φk and make 〈R,ϕk〉= 0
at k = 1, . . . ,N. Then we have the following reduced system model

(22)

Ṫk =
k

R2ρC

〈
∂
∂x

(
∂TN

∂x

)
,φk

〉
− Fεσ

ZρCTe

〈
PN

(
(TeTN + Te)

4 − (TeTa + Te)
4
)
,φk

〉

+
ε

ZρCTe

〈
PN

5

∑
j=1

Vju( j, t),φk

〉

for k = 1, . . . ,N.
Because we use the eigenfunctions as the basis functions, we have

(23)

〈
∂
∂x

(
∂TN

∂x

)
,φk

〉
= λkTk

for k = 1, . . . ,N.
We have the following reduced system

(24)

Ṫk =
k

R2ρC
λkTk − Fεσ

ZρCTe

〈
PN

(
(TeTN + Te)

4 − (TeTa + Te)
4
)
,φk

〉

+
ε

ZρCTe

〈
PN

5

∑
j=1

Vju( j, t),φk

〉

for k = 1, . . . ,N.
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4 Sliding Mode Control

We can rewrite the reduced model as follows:

(25)Ṫ = AT + F(T) + Bu(t)

where
T = [T1,T2, · · · ,TN ]

T

A =
k

R2ρC

⎡
⎢⎣

λk
. . .

λN

⎤
⎥⎦

F(T) =− Fεσ
ZρCTe

⎡
⎢⎢⎢⎣
〈
(TeTN +Te)

4 − (TeTa +Te)
4 ,φ1

〉
...〈

(TeTN +Te)
4 − (TeTa +Te)

4 ,φN

〉
⎤
⎥⎥⎥⎦

B =
ε

ZρCTe

⎡
⎢⎣
〈PNV1,φ1〉 · · · 〈PNVm,φ1〉

. . .
〈PNV1,φN〉 · · · 〈PNVm,φN〉

⎤
⎥⎦

and
u(t) = [u(1, t), · · · ,u(m, t)]T (26)

Based on the reduced model of the RTP system, we propose a sliding mode control
algorithm in this section to control the temperature on the wafer to a desired one. Firstly,
a sliding surface is chosen linearly as:

S = DT (27)

where D ∈ R
m×N is a parameter matrix.

The sliding mode control algorithm is composed of two term

u = ueq +Δu (28)

where ueq is given as:

ueq =−(DB)−1 D [AT+F(T)] (29)

to guarantee that Ṡ = 0 when S = 0 and

Δu =−ksign(S). (30)

k is a suitable gain chosen to eliminate the perturbation effect. In this algorithm, we
require that (DB)−1 exists. Fortunately, this is satisfied in the model of RTP system we
consider.



Model Reduction for Sliding Mode Control of Rapid Thermal Processing System 413

Fig. 4. High-order model

Fig. 5. Basis functions

5 Simulation

The simulation is composed of two parts. In the first part, we compare the reduced
model with the high-order model to show the capacity of the model we obtain with
Galerkin’s method. In the second part, we apply the sliding mode control scheme to the
RTP system to show the effectiveness of the control algorithm.

5.1 Capacity of the Reduced Model

Firstly, we construct a high-order model with finite-difference method to represent the
dynamic of the RTP process. The partial differential equation of the wafer temperature
is discretized with finite differences in the spatial dimension with 50 points. A model
of 50 dimensions is obtained. The model runs for 15s with fixed lamps power. The time
evolution of the temperature is illustrated in Figure 4.
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Fig. 6. Proposed low-order reduced model

Fig. 7. Comparison of two models as t = 15s

Then, a simulation on the proposed low-order reduced model (24) is performed. We
choose two basis functions and thus the reduced model has dimension of 2. The model
also runs for 15s with the identical lamps power as before. The dominant modes we get
using the spectrum are shown in Figure 5. And the temperature profile of the proposed
model is shown in Figure 6.

Comparing two models at the time 15s, we have the result shown in Figure 7. From
that, we find these two models have the identical ability to model the RTP, while the
model we propose has dimension much lower.

5.2 Sliding Mode Control for the RTP System

In this part, we apply the sliding mode control algorithm we proposed in the last section
to the RTP system. The temperature on the wafer is required to rise from 850K to 900K
in a few seconds. In the simulation, D is selected as the identity matrix and k is chosen
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Fig. 8. Temperature distribution when applying the sliding mode control to the system

as

[
2 2
2 −2

]
. We can see from Figure 8. that the control actions successfully heat the

wafer from 850K to 900K with a uniform temperature distribution.

6 Conclusion

A spectrum-based reduced model is proposed to model a RTP process and a sliding
mode control based on the reduced model is developed in this work. Firstly, a model
in the form of partial differential equation is constructed using the physical principles.
Then, dominant modes are extracted by applying the spectrum of the operator of the sys-
tem. Based on the dominant modes, a reduced model is obtained by using the Galerkin’s
method. The proposed model has much lower dimension compared to other methods
such as finite-difference method. However, from the numerical simulations, we find
that they have similar ability to model the process. The approach seems very promising
for model reduction of RTP process. At last, based on the reduced model, we success-
fully design the sliding mode control scheme to control the system. Simulation results
show that the control actions can heat the temperature on the wafer in RTP system to a
desired one with a uniform temperature distribution.

Acknowledgment. Authors would like to thank Professor Okyay Kaynak for his gen-
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Abstract. Sliding mode control provides insensitivity to parameter variations 
and complete rejection of disturbances. However, this property is only valid in 
the sliding phase. Sliding surface design can be used to improve controller per-
formance by minimizing or eliminating the time to reach the sliding phase. In 
this study, we review and classify the methods available in the literature for 
sliding surface design focusing on single-input systems. 

Keywords: sliding mode control, sliding surface design, linear and nonlinear 
sliding surface. 

1 Introduction 

The state-space trajectory of a sliding mode control system can be divided into two 
parts representing two different modes of system operation. The trajectories start from 
a given initial condition off the sliding surface and tend towards the sliding surface. 
The part of the trajectory before reaching the sliding surface is known as the reaching 
or hitting mode and its duration is called the reaching time. When the trajectories 
converge to the sliding surface, the sliding mode starts. In general, the design of a 
sliding mode controller (SMC) involves the design of a sliding surface that represents 
desired stable dynamics and a control law that guarantees the reaching mode and slid-
ing mode. The system trajectories are sensitive to parameter variations and disturb-
ances during the reaching mode of the trajectory but are insensitive in sliding mode. 

The design problem in systems with discontinuous control laws can usually be  
reduced to the selection of the parameters of the sliding surfaces that completely de-
termine the performance of the control system [1]. Thus, there are various sliding 
surface design strategies in the literature to improve SMC performance by minimizing 
or even eliminating the reaching mode [2, 3]. This study surveys and classifies con-
tinuous-time SMC studies based on their different sliding surface design methods. 
The terminology used in the SMC literature can sometimes be confusing making it 
hard to understand, compare and classify design approaches. For instance, a sliding 
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surface with a linear combination of state variables can be called a nonlinear sliding 
surface as the dynamics of the sliding phase may become a nonlinear trajectory as a 
result of other parameters such as time-varying ones. However time-varying parame-
ters do not introduce nonlinearities in terms of state variables. We therefore classify 
sliding surface design methods according to properties such as dimension, linearity, 
time dependence, and the nature of their moving algorithm. The first classification is 
arranged based on the number of sliding surfaces to be designed which in turn de-
pends on the number of input variables. For single-input systems, the sliding surface 
is scalar while for multi-input systems it is a vector. Another property is the time de-
pendence of the sliding surface. If the parameters of the sliding surface during the 
operation of the system are stationary with respect to time, it is called a constant slid-
ing surface. In conventional SMC, the sliding surface is naturally constant. However, 
a time-varying function can also be used for defining a sliding surface to obtain a 
time-varying sliding surface. If the changes in the parameters of the time-varying 
sliding surface are all functions of the continuous-time variable t, they are called con-
tinuously-moving sliding surfaces. If any parameter change is made at discrete time 
instants, the sliding surface is a discretely-moving sliding surface. If the sliding sur-
face is defined by a linear function of the state variables, the sliding surface is linear; 
otherwise, it is nonlinear. 

The remainder of this chapter is organized as follows. In Section 2, the notation 
and structure of the conventional SMC are explained. Then, in Section 3, sliding sur-
face design methods are presented based on the above classification. Section 4 pro-
vides conclusions and suggestions for future work. 

2 Conventional Continuous-Time Sliding Mode Control 

A single-input non-autonomous dynamic open-loop system of order n can be given as 

),()().,(),()()( tdtutbtftx n xxx ++=                         (1) 

where ( 1)( ) [ ( ) ( ) ... ( )]n Tt x t x t x t−=x  is the state vector with ( 1) ( )nx t−  denoting 

the (n-1)th derivative of x(t) with respect to time, u(t) is the input signal, d(x,t) is a 
time-dependent disturbance with known upper bound and f (x,t) and b(x,t) are func-
tions determining the system characteristics. For single-input systems, the commonly 
used sliding surface for the tracking problem can be defined as 

( ) ( )s t=e ce                                  (2) 

where c=[ cn-1 cn-2 ... c1 1]∈ xn1ℜ  is a vector with strictly positive real elements that 

determine the coefficients of the sliding surface, 1 )( nxt ℜ∈e  is the tracking error 

defined as ( 1)
d( ) ( ) ( ) [ ( ) ( ) ... ( )]ˆ n Tt t t e t e t e t−= − =e x x where xd(t) is the desired trajecto-

ry. For second order systems, (2) can be written as 

)()()( 1 tectes +=e                                    (3) 
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which gives a linear function of the error with slope c1. A homogeneous differential 
equation that has a unique solution is obtained by setting s(e)=0. Thus, the error will 
asymptotically reach zero with an appropriate control law that keeps the trajectory on 
the sliding surface. Since it is necessary and sufficient to differentiate (2) or (3) once 
for the input u(t) to appear, this is a first order stabilization problem based on s(e). 
Lyapunov's direct method can be used to obtain the control law that keeps s(e) at zero 
and a candidate Lyapunov function is 

)(
2

1
)( 2 essV =

                             
 (4) 

with V(0)=0, V(s)>0 for ∀s(e)>0. A sufficient condition for the stability of the system 
is 

)()(
d

d

2

1
)( 2 ee ss

t
sV η−≤=

                  
 (5) 

where η is a strictly positive real constant that determines the convergence velocity of 
the trajectory to the sliding surface [4]. The inequality (5) ensures that the distance to 
the sliding surface decreases along all trajectories and consequently, the system is 
stable. Therefore, (5) is called the reaching condition for the sliding surface. By sub-
stituting (3) into (5) and omitting the arguments of the dependent variables one ob-
tains 

secxdubfs d η−≤+−++ )..( 1                      (6) 

A control input satisfying the reaching condition can be chosen as 

1
1

ˆ( ) ( ( , ) ( ) ( )) sign( ( )) ( ) ( )ˆd eq disu t b f t x t c e t k s u t u t−= − − + − = +x e
        

 (7) 

where f̂  is the estimated state equation, k is the discontinuous control gain that is a 

strictly positive real constant with a lower bound dependent on the estimated system 
parameters and bounded external disturbances. The function sign(.) denotes the 
signum function defined as follows 
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Note that at s=0, (8) is undefined. In SMC design, this definition is adequate since 
(8) provides opposite signs in the neighbourhood of s=0, that is 
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s

s                       
 (9) 

The control input u(t) in (7) consists of two parts. The first part, ueq is a continuous 
term known as the equivalent control. It is based on the estimated system parameters 
and it compensates the estimated undesirable dynamics of the system. The second part 
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with the signum function is the discontinuous control law, udis that requires infinite 
switching on the part of the control signal and actuator at the intersection of the error 
state trajectory and the sliding surface. Thus, the trajectory is forced to always move 
towards the sliding surface [1]. 

3 Sliding Surface Design Methods 

Designing the sliding surface is a powerful method to improve system performance. It 
is also possible to shorten the reaching time and thus lessen the effect of disturbances 
by increasing the amplitude of the discontinuous control gain k in (7). This reduces 
the reaching time by increasing the amplitude of the control signal during the reaching 
mode. However, the gain increase has negative effects such as high sensitivity to 
unmodeled system dynamics, undesired high amplitude chattering, and actuator satu-
ration. Therefore, increasing the discontinuous control gain is generally undesirable 
for physical systems and is not a viable alternative to sliding surface design. 

A good trade-off between reaching time and speed of response is obtained by 
changing the parameters of the sliding surface. We discuss surface design methodolo-
gies for selecting these parameters next. 

3.1 Linear Constant Sliding Surface 

Conventional sliding mode control (SMC) has linear constant sliding surfaces and the 
sliding surface parameters directly determine the system performance [1]. For exam-
ple, for second order systems in the form of single-input non-autonomous dynamic 
open-loop system (1) simulations for xtf =),(x , 1=),( tb x  and 0=),( td x  give 

underdamped, critically damped or overdamped system responses with different val-
ues of sliding surface parameter c1 as shown in Figure 1. 

 

 

Fig. 1. Error state-space responses obtained with different c1 parameters 

For small values of c1, the reaching time is small but the system dynamics is slow. 
For larger values of c1, the system response becomes faster but the reaching time  
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increases. Thus, the same feedback controllers may either result in a stable system or 
may lead to instability depending on the switching rule applied. 

An upper bound of c1 for physical systems is determined by each of three main fac-
tors: the frequency of the lowest unmodeled structural resonant mode, neglected time 
delays, and the sampling rate. The first two bounds are directly related to the physical 
system characteristics but the sampling rate bound depends on the available technolo-
gy and the performance of the control algorithm. The upper bound on the sliding sur-
face parameter c1 is chosen as the minimum of these three bounds. Smaller c1 values 
give longer tracking times. Therefore, the lower limit of c1 directly depends on the 
maximum allowable tracking time. To achieve the desirable closed loop performance, 
the switching rule must be appropriately chosen considering the upper and lower lim-
its. The determination of the parameters of the constant scalar sliding surface is an 
important step in the sliding mode control strategy. Generally, these parameters are 
selected either by empirical rules or by trial and error. However, optimization meth-
ods can be used to obtain the constant parameters and improve the system perfor-
mance [5]. 

For the conventional SMC introduced in Section 2, the sliding surface (2) naturally 
results in a PD sliding surface. An integral action can also be included to obtain PID 
control structures. The integral action is typically used with a boundary layer SMC 
because the integral term can eliminate the steady-state error resulting from the 
boundary layer. Slotine and Spong [6] added an integral term to the sliding surface as 
follows 

∫++=
t

Ipd dekekeks
0

)()( ττe

                   
 (10) 

where kd must be non-zero for a causal input-output relation [7]. Stepanenko et al. [8] 
proposed a sliding surface where the integral action is active only when the system 
enters a predetermined region to avoid overshoot as a result of large initial errors.  

Integral action is not only used with boundary layer SMC. For instance, in [9, 10] 
integral action is used to eliminate the reaching time. Without using the conventional 
equivalent control term and analyzing the global asymptotic stability for the robot 
arm, Jafarov et al. [11] improved the simulation performance given in [8]. The effec-
tiveness of integral sliding surfaces has been demonstrated with various experimental 
set-ups such as DC motor control [12, 13]. 

3.2 Linear Discretely-Moving Sliding Surface  

Conventional SMC has reaching and sliding modes, and if the initial state is far from 
the sliding surface, the system may have an undesirable and unpredictable transient 
response. Hence, we need to minimize the reaching time by decreasing the distance 
between the sliding surface and the initial state. This is achieved by decreasing the 
magnitudes of the sliding surface parameter vector c in (2). However, large parame-
ters are required to reduce the steady state error. Time-varying linear sliding surfaces 
provide a compromise between reaching time and steady-state error. Although they 
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naturally have a linear structure in state space, their variation with time brings a non-
linear trajectory in sliding mode [14].  

An important study about linear and time-varying sliding surfaces is the rotation 
and shifting schemes of Choi et al. [15]. They initially choose the sliding surface pa-
rameters to pass through arbitrary initial conditions then move the sliding surface 
towards a predetermined final sliding surface. This reduces the time during which the 
disturbances affect the system and reduces sensitivity to parameter variations and 
external disturbances. For trajectory tracking with second order systems, the sliding 
surface is defined in [15] as 

0)()()()(),(ˆ 1 =−+= ttetctets αe                        (11) 

In stable regions, α  is chosen zero and only c1> 0 is adjusted to obtain the desired 
dynamics. On the other hand, in unstable regions, c1 is constant as in conventional 
SMC and α  is adjusted to provide the shifting scheme. Thus, no reaching mode 
exists in stable regions and the system is insensitive to uncertainties including param-
eter variations and external disturbance. The SMC without reaching mode is called 
global SMC [16] or total SMC [10]. To place the surface near the current state, the 
sliding surface is rotated at discrete steps. The newly calculated sliding surface is 
fixed for a determined time instance in discretely-moving algorithms. This time peri-
od is known as the dwelling time and it is another controller parameter that must be 
adjusted to preserve robustness, subject to hardware capabilities. When the initial 
conditions are in the unstable regions, if the rotation process is applied, c1(t0) becomes 
negative and e(t)=e(t0)exp(-c1(t0)t) becomes unbounded. In this case, the trajectory 
moves away from the origin until the sliding surface enters the stable region. By ap-
plying the rotation scheme in unstable regions the system can also be taken to the 
equilibrium state. Nevertheless, rotation in the unstable region increases the reaching 
time. In [15], the shifting scheme was proposed for unstable regions to avoid this 
situation. The rotation and shifting schemes in [15] were extended and implemented 
for second order nonlinear systems with both disturbances and parameter variations 
[17].  

The moving algorithms can be easily determined with respect to the stable and un-
stable regions for second order systems and the algorithm works until a predefined 
final sliding surface is reached. However, the determination of the rotation and shift-
ing regions is more complex for higher order systems. Roy and Olgac [18] arranged 
(11) for nth order systems and moved the sliding surface represented by the initial 
conditions and the final sliding surface parameters. Robust stability for parameters in 
the bounded ranges of the rotation scheme can be tested using Kharitinov’s theorem 
[19]. The rotation scheme is used if the system is robustly stable for this range. Oth-
erwise, the shifting scheme is used. The experimental results of discretly shifting and 
rotating schemes are also demonstrated for single-phase PWM inverters [20]. 

In another study for higher order systems, Park and Choi [21] assumed that all the 
desired eigenvalues diλ of the sliding surface ),(ˆ ts e  are equal to )(tdλ  to simplify 

the difficulties arising for higher order systems. The rotation and shifting schemes are 
obtained by adjusting )(tdλ  and ).(tα In discretely-moving sliding surfaces, as the 
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sliding surface is taken to be constant during the dwelling time, the derivatives of the 
sliding surface parameters c in (2) is not necessary for the calculation of the control 
law. Therefore, the control law calculated for conventional SMC is used. This is an 
advantage of discretely-moving sliding surfaces.  

3.3 Linear Continuously-Moving Sliding Surface 

In discretely-moving sliding surfaces, the sliding surface is fixed during the dwelling 
time but has a discontinuity at the end of each dwelling period. The discontinuity 
causes sensitivity to disturbances. Slotine [22] introduced the continuously-moving 
sliding surface to eliminate this. He used the time derivatives of the sliding surface 
parameter to calculate the control input u(t). Salamci et al. [23] approximated the 
nonlinear system by a linear time-varying system and designed linear continuously-
moving sliding surfaces to minimize a specified optimization criterion.  

Bartoszewicz [24] also considered the dwelling time in discretely-moving sliding 
surfaces for second order systems and defined the sliding surface as a function of 
time. The sliding surface parameter c1(t) and shifting parameter )(tα  in (11) are writ-

ten as first degree polynomials of time. The rotation and shifting schemes are then 
obtained by choosing the polynomial parameters. When c1(t) is varied at a constant 
value, the amount of rotation differs with the current value of c1(t). Therefore, Tokat 
[25] directly used angular information to define the rotation scheme. The continuous-
ly-moving sliding surface for second order systems is obtained in [26] as a shifting 
scheme using s(e) in (3) and a quadratic polynomial as follows 
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where c1 in s(e) and tb> 0, a1, a2, a3 and are constant design parameters. When a1=0 as 
in [24], the time-dependent shifting in stable regions is directly proportional to time. 
Thus, (12) is called a constant-velocity sliding surface. Otherwise, the sliding surface 
is shifted to the conventional sliding surface as a quadratic function of time and the 
speed of convergence to the conventional sliding surface increases as time passes. In 
the quadratic case, (12) is called a constant-acceleration sliding surface. The state can 
be initially set on the sliding surface by adjusting the design parameters. The new idea 
in (12) is continuously shifting the sliding surface until time tb. The idea is also ap-
plied to third order systems considering various input and state constraints [3]. Con-
tinuously shifting was also accomplished in [27] using (3) as  

1 1 0( ) ( 1) ,
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( ) ,
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≤ ≤− −⎧
= ⎨ >⎩

e
e

e                
 (13) 

where it is assumed that the desired states are fixed and the initial conditions are 
(x1(0),x2(0))=(0,0). The sliding surface (13) will initially be zero and the state will be 
on the sliding surface. When t reaches tb, the sliding surface is fixed as in the conven-
tional sliding surface. In [28], sliding surfaces was proposed for second order systems 



424 S. Tokat, M. Sami Fadali, and O. Eray 

 

obtained by inserting a time-dependent function in the conventional sliding surface of 
(3) as 

1ˆ( , ) ( ) ( ( ) ( ))s t s v t c v t= − +e e                           (14) 

where v(t) is a second order differentiable, time-dependent, continuous function de-
fined in the range [ )+∞,0 . The sliding surface (14) starts at the initial conditions with  

3 2
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Time-dependent variables for shifting and rotation schemes are frequently used to 
obtain continuously-moving sliding surfaces and generally provide a global SMC 
[29]. To eliminate the reaching time for nth order single-input systems in controllable 
canonical forms, an error function as )()()(ˆ ttete γ−=  was used in [30] where )(tγ  is 

a time-dependent function that initially places the trajectories on the sliding surface. 
To preserve the sliding dynamics of the original system, )(tγ  must vanish as the 

motion of the system evolves in time. Therefore, it is chosen in an exponential form 
and the new sliding surface is defined as 

( 1)ˆˆ ˆ ˆ ˆ( , ) ( ) ( ) ( )
T

ns t e t e t e t−⎡ ⎤= ⎣ ⎦e ce c
                     

 (16) 

As a result of the linear time-dependent structure of )(ˆ te , (16) is a continuously-

moving linear sliding surface. Using )(ˆ te , sliding surfaces for multi-input systems 

were also developed [31]. Adding an exponential time-dependent term to obtain a 
continuously time-varying sliding surface provides better performance and improves 
robustness with a simple engineering design [16, 32]. Tokat et al. [33] proposed a 
continuously time-varying linear sliding surface in a new (s-p) plane with the coordi-
nates defined as the original sliding surface s=0 in the ( )ee −  plane and 

1( ) ( ) ( ) 0p e t c e t−= − =e                           (17) 

which is perpendicular to s(e)=0 in (3). A linear sliding surface is defined in the (s-p) 
plane as 

ˆ( , ) ( ) ( ). ( )ss t s k t p= −e e e                         (18) 

where ks(t) determines the position of the proposed sliding surface. A rotating sliding 
surface is obtained by continuously adjusting the parameter ks. One way of generating 
ks(t) is using a time dependent function with simple first-order derivatives. For exam-
ple, ks(t) for stable regions can be chosen as the shifted sigmoid function  

1
max min min( ) ( )(1 )mt a

s s s sk t k k e k+ −= − + +                (19) 
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where m and a are parameters that determine the shape of the function. The surface 
modified by adjusting the parameter ks(t) within a predefined interval [33]. 

Integrating fuzzy logic control and sliding mode control to achieve stability and 
meet desired performance criteria is an active area of research [34]. These studies can 
be classified in two groups. The first group use conventional sliding mode control 
strategies and employ fuzzy models to simplify or to improve the control mechanism. 
The controllers obtained using these approaches are known as sliding mode fuzzy 
controller (SMFC). The second group, known as fuzzy sliding mode controller 
(FSMC) obtains an approximate input-output relation for a conventional SMC and 
realizes it with a single input fuzzy logic controller (FLC). With these definitions in 
mind, sliding surface design using fuzzy theory can be classified as SMFC. For in-
stance, Ha et al. [35] proposed a fuzzy logic tuning algorithm for second order sys-
tems in which the FLC generates the rotation for stable regions and the shifting for 
unstable regions. However, only the output error e1 is used in the antecedents of the 
fuzzy rules and, consequently, rotation is only permitted in a slope-increasing direc-
tion. Komurcugil [36] used a one-input FLC structure for continuous rotation and 
implemented the design for a single-phase UPS inverter. Lee et al. [14] proposed a 
linear continuously time-varying sliding surface as in (11) with c1(t)=0 for unstable 
regions. As this is parallel to the e(t)=0 plane, the sliding surface is shifted until 

0)( =tα . A Takagi-Sugeno (TS) type fuzzy model is then designed to generate c1(t) 

and )(tα for the regulation of the time-varying sliding surface. Also, a TS type fuzzy 

model was utilized in [37] for directly obtaining the sliding surface with rule conse-
quents )()( tectes ii +=  (i=1,2,...,r), where r is the number of rules, si, ci are the slid-

ing surface and the sliding surface slope for the ith rule, respectively. For higher order 
systems, a continuously-moving linear sliding surface was proposed in [21] designing 
a Mamdani-type fuzzy moving algorithm based on the sliding surface design in [18]. 
In this algorithm, the inputs are the distance of the current state to the sliding surface 
and the discontinuous control gain and the output is the change in the sliding surface. 
The rules result in larger changes in the sliding surface when either the distances of 
the current state to the sliding surface or the discontinuous control gain increases [21]. 

Artificial neural networks have also been used for continuously time-varying slid-
ing surface design. For instance, a radial basis function neural network was proposed 
in [38] to adjust the sliding surface and controller parameters. The delayed control 
input and system output are the inputs and the adaptive parameters are obtained on-
line using the artificial neural network outputs. 

3.4 Constant Nonlinear Sliding Surface 

For large tracking errors, linear sliding surface design methods require a large control 
input to keep the system states on the sliding surface [39]. This is because the magni-
tude of the control signal is usually directly proportional to the distance between the 
states and reference states. Another problem with a linear sliding surface is that it 
replaces nonlinear dynamics with linear dynamics that may not fit the global dynam-
ics of the controlled system. 
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These disadvantages can be avoided by using a nonlinear sliding surface that offers 
a wider variety of design alternatives than their linear counterparts [40]. Thus, a non-
linear sliding surface can provide better system performance if the nonlinearity is 
chosen judiciously. SMC with nonlinear sliding surfaces is called nonlinear SMC. 
Sliding mode control is similar to bang-bang control [41]; they both have a relay-like 
structure. With this similarity in mind, for a nth order single-input linear time-invariant 
system  

ubxAx +=                                 (20) 

the Hamiltonian function to obtain the time-optimal control strategy is  

)(1 uh T bxAq ++=                          (21) 

where  is a co-state vector. Finally, for A= [0 1;0 0], b=[b1 0]T, and for the 

minimum time problem with the constraint |u(t)| , the solution of the state equa-
tions are obtained with  as [41] 
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If the two solutions in (22) are combined, we have 
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Therefore, taking c5=0, c6=0 and defining 
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Fig. 2. The sliding surface obtained by using time-optimal control strategy 

1nxℜ∈q

1≤
1±=u

-2 -1.5 -1 -0.5 0.5 1 1.5 2 

-2

-1.5

-1

-0.5

0.5

1

1.5

2

x1 

x2



 A Classification and Overview of SMC Sliding Surface Design Methods 427 

 

Thus, the control signal can be written in terms of (24) as u(t)=-sign(s). From Fig-
ure 2, it is seen that (24) has a parabolic structure obtained by combining optimal 
control and sliding mode control. 

The first such surface as in Figure 2 was also proposed by McDonald [42] who 
used a linear combination of the error in the controlled variable and its square as the 
sliding surface function. In [39], a parabolic sliding surface was used in nonlinear 
SMC design and (24) was modified in [43] by scaling x1 with a constant. All these 
efforts are for improving the robustness without increasing the magnitude of the con-
trol input. 

Nonlinear sliding surfaces also increase the application areas of SMC. For in-
stance, a nonlinear sliding surface was used in [44] for power systems. Cerruto et al. 
[45] defined the sliding trajectory for the position and speed regulator problem of 
electrical servo drives. The motor is stationary at t=t0, accelerates until t=t1, then 
moves with a constant speed between t1> t >t2. Finally, it decelerates with a maximum 
acceleration until the desired reference value. This scheme is appropriate for most 
servo applications [46]. The sliding surface proposed in [45] is given by 
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 (25) 

where ai, and ti (i=1,2,3) are constant design parameters subject to physical system 
constraints. When the current state is close to the origin (t >t3), a linear sliding surface 

is used in (25) to provide smooth settling behaviour. Some sytem dynamics consti-
tutes a nonlinear underactuated system and can be represented by linear system with 
bounded and unmatched uncertainty. Thus, designing a nonlinear sliding surface re-
flecting the nonlinear dynamics of the system provides a novel sliding surface with 
simple and implementable control law [47]. Also, Takahashi et al [48] used SMC to 
obtain a special sinusoidal voltage source. An ideal sinusoidal wave has an elliptical 
trajectory in the current-voltage phase plane. The state variables are taken as capacitor 
voltage cvx =1  and capacitor current cix =2 . The nonlinear constant sliding surface 

is defined as 
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where s(x) has negative values inside the ellipsoid and positive values outside it. 
Thus, SMC provides robustness to variations in magnitude and frequency and better 
tracking of a sinusoidal reference for second order systems [48]. 

For a nonlinear sliding surface, different ideas can be combined in order to im-
prove the performance. For instance Kelly [49], used a nonlinear function of the state 
variables in the integral term of an integral sliding surface to obtain global asymptotic 
stability and better performance. Su and Stepanenko [40] defined the generalized 
sliding surface equation as 
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( )( , , , ) , , ,d d d dt t= −s x x x x v x x x
                        

 (27) 

for an nth order systems with especially n inputs where [ ] 1
21 ... nx

nvvv ℜ∈=v  are 

design functions. The generalized sliding surface (27) includes sliding surface equa-
tions in the robot manipulator literature as each degree of freedom of a robot manipu-
lator is powered with independent torques [40]. For example, for n=2, v1=v2 is defined 
as 
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and to visualize the nonlinear constant sliding surface, (28) is obtained in Figure 3 for 
a1=16, a2=4, a3=0.2, d=0.3125. The similarity between the sliding surfaces given in 
Figure 3 and the parabolic sliding surface of Figure 2 obtained using optimal control 
is notable. Lee [50] proposed a nonlinear sliding surface with cubic polynomials and 
improved the system performance with respect to conventional linear SMC. 
 

 

Fig. 3. Nonlinear constant sliding surface obtained with (28) 

Higher order SMCs are used to retain the property of robustness and to eliminate 
chattering [51]. However this advantage is obtained by tuning the gain parameter 
which must be sufficiently high. A nonlinear sliding surface based higher order SMC 
is applied for controlling the position of a servomotor [52]. Comparisons with the 
higher order SMC using a linear switching surface shows a reduction of chattering as 
in the linear case with superior transient performance. 
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Richter [53] used polytrophic process dynamics to define a sliding surface. For 
ideal gases with pressure x1 and density x2 a polytrophic process is one in which the 
state of the substance is transferred from one point to another following the law 

axx n =21                                   (29) 

where ℜ∈n  is a polytrophic exponent and ℜ∈a  is a constant. The system that 
follows the thermodynamic path is defined by the sliding surface 

axxs n −= 21)(x                              (30) 

In general, the tracking error is large at the early phase of the transient period and 
decreases as the response approaches the steady state. Exploiting this fact, a nonlinear 
sliding surface was proposed in [54] using a state-dependent coefficient for the con-
ventional sliding surface (3) as 

1 1 2( ) ( | |)c e k k e= −                            (31) 

where ε+= |)max(|2 ek , 0>ε  and k1>0. Initially, |)max(||| ee ≈ and hence 

1 1c k ε≈ . Near the desired states, the error is approximately zero and 1 1 2c k k≈ . Thus, 

the sliding surface changes as a function of the tracking error in continuous-time.  
Another method in sliding surface design is inserting the control input term u(t) in 

the sliding surface definition to improve performance. Sliding surfaces that depend on 
the states as well as the control input are called dynamic sliding surfaces and the asso-
ciated SMCs are known as dynamic SMC [55]. In general, this makes the control in-
put a nonlinear function of the states and results in nonlinear constant sliding surfaces. 

Fractional order systems, in the context of SMC design, are used either to improve 
the control performance or to apply SMC to fractional order systems [56, 57]. A hy-
brid system was proposed in [58] that combines the advantages of fractional control 
and sliding mode control. The sliding surface is first defined for nth order single-input 
systems as 

1 1
1 1( ) ... n

n n ns c e c D e c D e D eα α α+ + −
− −= + + + +e                  (32) 

where ),...,2,1(0 nici =>  are sliding surface parameters, ααα dtdD =  with 

ℜ∈α  is the fractional order differintegration operator [58]. Then  and  
fractional order sliding surfaces are obtained from the proposed definition (32). Tang 
et al. [59] used a fractional order  sliding surface for ABS to regulate the slip to 
a desired value. 

In all linear and most nonlinear sliding surface design methods, asymptotic con-
vergence is inevitable and error convergence to zero is achieved in infinite time. Us-
ing the concept of fractional order systems, Zak [60] proposed the terminal attractor 
concept to improve the stability characteristics of dynamic systems. If the Lipschitz 
condition is not satisfied at an equilibrium point, this equilibrium becomes a terminal 
attractor [61]. A function f (x) satisfies the Lipschitz condition at x=0 if  
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lbfhf ≤− )0()(                             (33) 

for all ε<l , where b is independent of l. For example, given the dynamics 
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xβx −=                                  (34) 

(x1, 1x )=(0,0) is an equilibrium point. The Lipcshitz condition (33) is not satisfied 

and therefore the equilibrium is a terminal attractor. The solution of (34) is 
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The solution is obtained by integrating from zero to any time instant t. If the inte-
gral is solved until time t when the equilibrium point is reached, it can be seen that for 
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 (36) 

x1(ts)=0 is obtained and that the equilibrium point is approached in finite time [61]. 
Similarly, it can be shown that 1x  also approaches zero in finite time. The terminal 

SMC was first proposed for second order nonlinear dynamic systems in controllable 
canonical form for which the system dynamics in sliding mode are determined with 
(34). Thus, the terminal sliding surface is defined as 

1

1

112)( b

a

xβxs +=x                                   (37) 

where 1β >0 is positive real, b1 and a1 are odd integer constant design parameters 

with b1>a1 [62]. The sliding mode control law is chosen to provide s=0 in finite time, 
namely providing a stable sliding surface. The nonlinear sliding surface thus obtained 
is known as a terminal sliding surface and the control structure is known as terminal 
SMC. In terminal SMC, while the sliding surface reaches the sliding mode in finite 
time as in conventional SMC, the tracking error also converges to zero in finite time 
unlike conventional SMC. Later, the terminal sliding surface was considered in [63] 
for single-input nth order linear systems in controllable canonical form. For single-
input systems, the (n-1)th order sliding surface is given as  

1

1

212)( −

−

−−− += n

n

b

a

nnn hβhs x                                  (38) 

where hn-2 function is calculated in an hierarchical structure as  
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where 0>iβ  are positive real numbers and bi>ai are odd integer design parameters. 

If a terminal SMC is designed such that 0<ss , the terminal sliding variables hn-1,…, 
h1 in (39) converge to zero in finite time sequentially and the system states reach the 
origin in finite time [64]. This finite time is equal to the sum of the reaching times of 
all the sliding surface variables in (38) and (39) calculated separately by the formula 
in (36) [63]. 

Terminal SMC improves the system performance and reaches the equilibrium point 
in finite time rather than asymptotically. However, the system may not be robust with 
respect to modeling uncertainties. Because of the hierarchical process steps in (39), 
when the initial conditions are not determined carefully, singularities may occur. To 
eliminate this problem, a zero value is avoided for hi (i=0,1,..., j-1). The singularity 
problem for multi-input linear systems with uncertainties was investigated in [65]. 
The terminal SMC for nonlinear uncertain systems was examined in [66]. To remove 
chattering and attenuate disturbances, Yu et al [67] proposed new forms of terminal 
SMC with global finite-time stability and analyzed some of their properties through 
application to the control of robotic manipulators. To completely remove disturb-
ances, disturbance observer based terminal SMC stuructures are also proposed  
[68, 69]. When the state is away from the equilibrium point, namely x1>1, the 1 1/

1
a bx  

term in the sliding surface equation (37) may not provide better system performance. 
The following nonlinear sliding surface eliminates this problem for second order sys-
tems in controllable canonical form 

2

2

1

1

12112)( b

a
b

a

xβxβxs ++=x                             (40) 

where 21, ββ >0 are real, b1>a1 and a2>b2 are odd integer constant design parameters 

[70]. For x1 values near zero, the approximate system dynamics become 
11

111
baxβx −= with finite-time convergence similar to (37). When x1 values are far 

from zero, the system dynamics become 2 2
1 2 1 ,a bx β x= − which has better conver-

gence rate than conventional SMC with constant linear sliding surface. SMC with the 
nonlinear sliding surface (40) is called fast terminal SMC [70]. Both a terminal and a 
fast terminal sliding surface are shown in Figure 4 for parameters a1=3, b1=5, a2=13, 
b2=5, . The figure shows that for regions away from the equilibrium point 

the fast terminal sliding surface and thus the system states are in a faster control re-
gion. As the system converges to the equilibrium point fast terminal and terminal 

sliding surfaces become similar. For negative x values, the fractional power in bax  

terms may lead to .ℜ∉bax  This is avoided in the literature by some assumptions or 

by using extra control effort. Aghababa [71], directly proposed a nonsingular terminal 
SMC to avoid this problem. 

121 == ββ
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Fig. 4. Terminal and fast terminal sliding surfaces 

The hierarchical structure in (39) can also be used for the control of single-input 
higher order nonlinear systems by rearranging it for sliding surface (40) [72]. With 
the help of terminal and fast terminal control structures, the error converges to zero in 
finite time by using constant and nonlinear sliding surfaces. 

3.5 Nonlinear Discretely-Moving Sliding Surface 

As surveyed in Section 3.2 and 3.3, linear sliding surfaces combined with moving 
algorithms result in nonlinear system trajectory. Hence, the moving schemes given for 
linear sliding surfaces can be also applied to nonlinear sliding surface design. Clearly, 
a nonlinear system trajectory can already be obtained when a nonlinear constant slid-
ing surface is used. However, defining the whole trajectory with a nonlinear function 
may result in a highly nonlinear sliding surface and control input. Therefore, moving 
algorithms for nonlinear sliding surfaces can lessen or shorten the reaching mode by 
using relatively simple nonlinear functions in place of a constant nonlinear sliding 
surface.  

Li et al. [73] considered the regulator problem for single-input second order sys-
tems and define the sliding surface for the single-input scalar case of (28). In particu-
lar, to obtain a nonlinear discretely-moving sliding surface, v1(e) was defined in [73] 
as a nonlinear function of the error and then obtain the nonlinear sliding surface as 

)tanh()(),(ˆ 1ectwets p+=e
                           

 (41) 

where c1 is the sliding surface slope of the conventional linear sliding surface and wp 
is a design parameter. 

Using the delta-neighbourhood approach presented by Choi et al. in [15], (41) is 
designed as a discretely-moving nonlinear sliding surface where the parameter wp is 
updated recursively. The discretely-moving nonlinear sliding surface obtained for 
c1=2 and different values of wp is given in Figure 5. The parameter wp is adjusted until 
the last specified sliding surface value is reached [73]. 
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Fig. 5. Discretely-moving nonlinear sliding surfaces obtained by (41) 

3.6 Nonlinear Continuously-Moving Sliding Surface 

Continuously-moving sliding surfaces were developed to avoid the dwelling time of 
discretely-moving sliding surfaces. A sliding surface was defined in [74] using (3) as 

( )( )01010 exp)()(()(),(ˆ ttatectests −−+−= ee               (42) 

where a1>0 is a design parameter. They showed that for known initial conditions, the 
second term keeps the system on the sliding surface and eliminates the reaching 
mode. They also showed that the overall system is globally exponentially stable and 
(42) is a terminal SMC. Inspired by the terminal SMC concept, Bartoszewicz [75] 
also designed the following nonlinear continuously-moving sliding surface for second 
order nonlinear systems with state constraints 

( ) 1ˆ( , ) ( ).sign ( ) . ( )
a

s t e t e t e tγ= +e
                  

 (43) 

In (43), a1 and )(tγ  are design parameters where a1 is a constant in the range 

121 1 <≤ a  and )(tγ  is a time-dependent function that becomes constant at a prede-

termined time instant. Combining (12) and the terminal sliding surface of (37), the 
continuously-moving terminal sliding surface was proposed in [26] as 

22 2 3
b1 2 4 1 2 3 1 2 3

2
3 b

4

( ) 2 sign( ).( ) ,
ˆ( , )

,( ) sign( ).(e)

t te t a t a a e a t a t a e a t a t a
s t

t te t a e

⎧ ≤+ + + + + + + + +⎪= ⎨ >⎪ +⎩
e  (44) 

where tb>0, a1, a2, a3, a4 are constant design parameters. In [76], a parabolic sliding 
surface was proposed using (3) and the (s-p) coordinates defined in (17) as follows 

),().()(),(ˆ 2 tptksts s eee −= ,   (ks=0   if  ee >0)            (45) 
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where ks(t) provides a bending measure of the parabolic sliding surface. The nonlinear 
parabolic sliding surfaces obtained using (45) with different values of ks(t) function 
(19) is illustrated in Figure 6. 
 
 

 

Fig. 6. Nonlinear sliding surfaces obtained by different values of ks in (45) 

4 Conclusion 

In this chapter, sliding surface design methods are classified and surveyed according 
to their properties. In conventional sliding mode control, the sliding surface is con-
stant and linear for simplicity. To improve system performance, moving linear sliding 
surfaces were proposed. The basic philosophy in moving sliding surface design is that 
the sliding surface parameters are initially chosen so that the sliding surface passes 
through the initial conditions. The reaching time which is the period where the dis-
turbances affect the system, is reduced and the system becomes robust with respect to 
parameter variations and external disturbances. The moving algorithm may be dis-
crete or continuous. In discretely-moving sliding surfaces, the sliding surface is con-
stant for a given time period. The discontinuity at the end of this period causes sensi-
tivity to disturbances. To overcome this, a continuously-moving sliding surface may 
be used. Unlike discretely-moving sliding surfaces, they require the derivatives of the 
sliding surface parameters to calculate the control law. This is an advantage of dis-
cretely-moving sliding surfaces. 

Despite their simplicity, linear sliding surfaces have certain disadvantages. For in-
stance, when the sliding surface is linear, the magnitude of the control input required 
to keep the system states on the sliding surface usually increases in direct proportion 
to the magnitude of the tracking error. Another problem with linear sliding surface 
design is the replacement of the nonlinear system characteristics with linear dynamics 
arising from the control law obtained by the linear sliding surface. The linear dynamics 

 

e 

 p=0

ks=0
s=0 

ks>0

ks<0

ks<0

ks>0



 A Classification and Overview of SMC Sliding Surface Design Methods 435 

 

of the linear sliding surface may not fit the global dynamics of the controlled system. 
Therefore, using a nonlinear sliding surface may provide better performance if the 
nonlinearity is appropriately selected. For instance, with the use of a special sliding 
surface (known as a terminal sliding surface), the tracking error converges to zero in 
finite time whereas convergence is asymptotic in conventional sliding mode control.  

Moving algorithms for nonlinear sliding surfaces lessen or eliminate the reaching 
mode by using a simpler nonlinear function. Thus, similar performance is obtained by 
using a moving nonlinear sliding surface in place of a constant but complicated one. 
Because discretely-moving schemes for nonlinear sliding surfaces have the same 
discontinuity effects as in the linear case; various continuously-moving sliding sur-
faces have been developed in the literature to remove this drawback. 

Compared to their linear counterparts, both constant and moving nonlinear sliding 
surface design methods result in analytical difficulties in sliding surface design or in 
determining the sliding surface parameters. For moving nonlinear sliding surfaces, it 
is even more complicated to geometrically predetermine the path of the sliding sur-
face. Moreover, designing the control law and determining the stability boundaries 
based on nonlinear sliding surfaces are more difficult. As a consequence, the trade-off 
between the simplicity of the control algorithm and the desired performance im-
provement must be considered in choosing the sliding surface design methodology. 
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Abstract. The interest into the unmanned aerial vehicles has largely increased 
recently. With the advances in technologies it has become possible to test effi-
ciently and cost effectively different autonomous flight control concepts using 
small-scale aircrafts. In this work the stabilizing and trajectory tracking control 
problem of a quad-rotor helicopter using sliding mode controllers has been in-
vestigated. The well-known ability of the above control approach to stabilize 
under-actuated systems and to deal with existing nonlinear mismatched uncer-
tainties in their dynamic models makes it a suitable choice for controlling  
rotorcrafts. The proposed method is based on the definition of several terminal 
attractors to establish certain relationships between variables to be maintained, 
thus allowing a designed continuous sliding mode controller to drive the sys-
tem’s trajectory to a sliding surface in a finite time. Asymptotic stability of the 
system’s motion in the sliding mode is then achieved. The effectiveness of the 
adopted approach is demonstrated by the results from a simulated flight of an 
automatically controlled small-scale four-rotor helicopter. 

Keywords: unmanned aerial vehicles, quad-rotor rotorcraft, sliding mode con-
trol, stabilization, nonlinear control. 

1 Introduction 

Unmanned helicopters are versatile aerial vehicles designed to operate with high agili-
ty and to be capable to work in degraded environments that include wind gusts etc. In 
comparison with the control approaches applicable to the classical helicopters the 
quad-rotor control design can be implemented more easily. Therefore, different con-
trol techniques for quadro-copters have been recently proposed and investigated in the 
literature. Linearization and linear quadratic regulator (LQR) [1, 2], H-infinity state-
space design and feedback linearization [13, 20], model predictive control [10], 
backstepping control [3] and feedback control laws with saturation elements [16] are 
among the popular design methods. 

Backstepping control approach was proposed in 1990s as a recursive procedure to 
design stable control laws for a wide class of nonlinear systems [12]. Its specificity is 
in the way it combines Lyapunov stability theory with the advanced methods from the 
nonlinear differential-geometric control theory.  The backstepping control technique 
is based on the usage of some states as fictitious controls to control other states.  
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The method gives the possibility to include a broad class of nonlinearities in the con-
troller design. Its stability and error convergence have been rigorously proven.  The 
weak side of the backstepping design procedure, however, is its computational com-
plexity that increases with the system order due to the necessity to perform repeated 
differentiations of the nonlinear functions. So the method suffers from the so called 
‘‘explosion of complexity”. In an attempt to diminish the above disadvantage of the 
backstepping control and to strengthen its robustness new design procedures based on 
the combination of the basic backstepping approach with other robust control tech-
niques and with the variable structure control (VSC) or sliding mode control (SMC) 
approach in particular have emerged [11]. A method, similar to backstepping, called 
multiple sliding surface (MSS) control, has been proposed to simplify the controller 
design for systems where model differentiation is difficult [7, 19, 9]. An earlier work 
on VSC using similar hierarchical and block control principle has been also presented 
in [4]. MSS control has become a preferable control approach for under-actuated sys-
tems where the model structure is in cascade form [12]. It has been used to derive a 
control scheme for the elevation and travel angles of a 3DOF helicopter stand and for 
stabilizing control of a quad-rotor rotorcraft [8, 15]. A different approach has been 
proposed in [21], where the terminal sliding mode control has been extended to con-
trol a class of high-order SISO system. A chain-like structure of the sliding mode 
surfaces has been introduced where the sliding variables converge to zero in a finite 
time sequentially. 

Sliding modes were initially discovered in variable structure systems. The VSC ap-
proach uses a discontinuous control structure to guarantee perfect tracking for a class of 
systems satisfying "matching" conditions and is well known for its invariance against 
various matched uncertainties, such as variations in the parameters of the dynamic model 
and existing external disturbances, when the controlled system is in sliding mode. While 
on the surface, however, due to the involved switching, chattering may occur which has 
to be removed to allow the controller to perform appropriately [6]. A common approach 
to avoid chattering is to smooth out the control discontinuity in a thin boundary layer 
neighboring the switching manifold [18, 5]. Such continuous approximation of the 
switching function however can provide reaching a sliding surface only asymptotically. 
In addition, in the case of existing disturbances and uncertainties, convergence is limited 
only to some vicinity of the sliding manifold [18, 5]. This problem has given impetus to 
the research on continuous sliding mode controllers, as a specific class that do not im-
plement continuous approximation of the switching function [17]. 

The method, adopted in this investigation, is based on the definition of several ter-
minal attractors to establish certain relationships between variables to be maintained, 
thus allowing a continuous sliding mode controller to drive the system’s trajectory to 
a sliding surface in a finite time. Asymptotic stability of the system’s motion in the 
sliding mode is then obtained.  The proposed approach is applied to the stabilizing 
and trajectory tracking control problem of a quad-rotor rotorcraft where continuous 
sliding mode controllers have been designed for its roll, pitch, yaw angles and for the 
altitude control as well.  The presented results from a simulated flight of an automat-
ically controlled small-scale four-rotor rotorcraft demonstrate the effectiveness of the 
proposed control scheme. 
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where iω  is the rotational speed of the propeller and k  is a positive constant. The over-
all lifting force will be normal to the plane of propellers, and its magnitude will be:  

1 2 3 4u f f f f= + + +                                 (2) 

The generalized moments caused by the four propellers are 

4 2

3 1

2 2 2 2
2 4 1 3

( )

( )

( )

f f l

f f l

d

φ

θ

ψ

τ
τ τ

τ ω ω ω ω

⎡ ⎤⎡ ⎤ −
⎢ ⎥⎢ ⎥= = −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ + − −⎣ ⎦ ⎣ ⎦

                           (3) 

where l is the distance from any motor to the center of mass and d  is a drag constant. 
The dynamic model of the rotorcraft can be developed using the Lagrangian form 

of the dynamics [2, 16, 14]. Since the Lagrangian contains no cross-terms in the kinet-

ic energy combining ξ  and η , the  Euler-Lagrange equation is  partitioned into the 
dynamics for the ξ  coordinates and the η  dynamics: 

(cos( )cos( )sin( ) sin( )sin( ))mX u φ ψ θ φ ψ= + , (4) 

(cos( )sin( )sin( ) sin( )cos( ))mY u φ ψ θ φ ψ= − , (5) 

cos( )cos( )mZ u mgφ θ= − ,  (6)  

zz zzI Iψψ τ ψ= − ,                                          (7) 

yy yyI Iθθ τ θ= − ,                                           (8) 

xx xxI Iφφ τ φ= − , (9) 

where ( ), ,xx yy zzJ diag I I I=  is inertia matrix expressed in terms of the η  dynamics. 

In order to obtain an appropriate form of the equations (7) – (9) the following 
change of input variables is proposed [2, 16]  

zz zzI Iψ ψτ τ ψ= +  (10) 

yy yyI Iθ θτ τ θ= +  (11) 

xx xxI Iφ φτ τ φ= +  (12) 

where 
T

ψ θ φτ τ τ τ⎡ ⎤= ⎣ ⎦ are the new inputs. 
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Finally we obtain: 

(cos( )cos( )sin( ) sin( )sin( ))mX u φ ψ θ φ ψ= +               (13) 

(cos( )sin( )sin( ) cos( )sin( ))mY u φ θ ψ ψ φ= −                (14) 

cos( )cos( )mZ u mgφ θ= −                              (15) 

ψψ τ=
    

                           (16) 

θθ τ=                                                   (17) 

φφ τ=                                     (18) 

The generalized coordinates of the rotorcraft are:   [ ] 6T
q X Y Z ψ θ φ= ∈ℜ  

In the dynamical model (13) – (18) the total trust u∈ℜ  and the torque 3τ ∈ ℜ  
are the control inputs, so the quad-rotor rotorcraft is a coupled Lagrangian form un-
der-actuated system with six outputs and four inputs. 

2.2 Altitude Control of the Four Rotor Rotorcraft 

The vertical displacement Z in (15) can be controlled by forcing the altitude to satis-
fy the dynamics of a linear system. Therefore the total trust is set [2, 16]. 

1
( )

cos cos
u r mg

φ θ
= +                          (19) 

where r  is a new control input.   
Introducing (19) into (15) and assuming cos cos 0θ φ ≠ , that is, 

, ( / 2, / 2)θ φ π π∈ −  it can be obtained that 

mZ r=                                           (20) 

This equation describes the dynamics of a second order system and r  has to be cho-
sen such as to guarantee its stability and convergence.  

( , )Zr f Z Z=                                        (21) 

2.3 Yaw Angle Control Approach 

The rotation of the aircraft around z  axis of the body attached frame can be con-
trolled by applying a control law of the following general form 

( , )fψ ψτ ψ ψ=                              (22) 

The equation describing the rotorcraft yaw dynamics can be obtained by introducing 
(22) into (16): 

( , )fψψ ψ ψ=                                     (23) 
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Similarly, ( , )fψ ψ ψ  has to be chosen such as to guarantee its stability and conver-

gence. 

2.4 Quadrotor Pitch and Roll Control Strategy 

In order to reduce the dynamics coupling it is useful to design these control laws with 
respect to the body-fixed frame { }BR . For Z Y X− −  Euler angles the transition 

between non-inertial coordinates ( ), ,x y z  and inertial coordinates ( , , )X Y Z  can be 

done by the rotation matrix R  [16].  

C C C S S C S C C S S S

R C S S S S C C C S S C S

S C S C C

θ ψ ψ θ φ φ ψ φ ψ θ φ ψ

θ ψ θ φ ψ φ ψ φ θ ψ ψ φ

θ θ φ θ φ

⎡ ⎤− +
⎢ ⎥= + −⎢ ⎥
⎢ ⎥−⎣ ⎦

  (24) 

where ( )S ⋅  and ( )C ⋅  represent sin( )⋅  and cos( )⋅  respectively. 

Thus the acceleration vector can be represented as follows 

T T

x X mX

m y mR Y R mY

z Z mZ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ = =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (25) 

Substituting (13)-(15), (19) and (24) in (25) one can obtain 

sin( )mx mg θ=  (26) 

sin( ) cos( )my mg φ θ= −  (27) 

The roll and pitch angles are theoretically limited to 2π± , but in fact during the 
aircraft stabilization they take smaller values since the upper lift, which compensates 
the gravity typically is much greater than the forces producing horizontal movement 
during the flight. To further simplify the analysis we will impose an upper bound on 
φ  and θ  in such a way that ( )sin θ θ≈  and ( )sin φ φ≈ . Therefore the forward 

(longitudinal) movement dynamics can be approximated by the subsystem (28) and 
the dynamics of side (lateral) movements - by subsystem (29). 

x g

θ

θ
θ τ

=

=
                                        

 (28) 

y g

φ

φ
φ τ

= −

=
                                        

(29) 

Let us denote the vector of state variables χ : 

( ) ( ) ( ) ( )
1 2 3 4 5 6 7 8 9 10 11 12[ ]T

T
z z x g x g y g y g

χ χ χ χ χ χ χ χ χ χ χ χ χ

ψ ψ θ θ φ φ

= =

⎡ ⎤= − −⎣ ⎦
  (30) 
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Its time derivative is:     

( )
1 2 3 4 5 6 7 8 9 10 11 12

2 4 6 7 8 10 11 12

[ ]

[ ]

T

Tr m ψ θ φ

χ χ χ χ χ χ χ χ χ χ χ χ χ

χ χ τ χ χ χ τ χ χ χ τ

= =

=
  (31) 

The state error ie  is specified as: 

( 1...12)i id ie iχ χ= − = ,                               (32) 

and ( 1...12)id iχ = is the desired value of the state variable iχ . 
The desired values for the altitude, yaw angle, lateral displacement, and longitudi-

nal displacement - 1 3 5 9, , ,d d d dχ χ χ χ , respectively are set by the operator in accord-
ance with the mission of quadrotor.  

The desired values of the remaining state variables cannot be obtained directly. 
They have to be defined instead by the control strategy in regard to the desired behav-
ior that the quadrotor should have. In this respect the desired values for the state vari-
ables , ( 2, 4,6,7,8,10,11,12)id iχ =  will be chosen in the design stage. 

The control signals ( , , , )r ψ θ φτ τ τ are calculated as follow: 

2 2 2

4 4 4

8 8 8

12 12 12

( )d

d

d

d

r m k e

k e

k e

k e

γ

γ
ψ

γ
θ

γ
φ

χ
τ χ

τ χ
τ χ

= +

= +

= +

= +

               (33)  

where 2 4 8 12, , ,k k k k  are positive; 
q

p
γ =  ; and ,p q  ( p q> ) are positive odd inte-

gers. 
Let us define the following sliding variables 

( ) ( 1,3,5,8)i i i is t e e iλ= + =    (34) 

and the following sliding surfaces respectively 

( ) 0 ( 1,3,5,8)is t i= =       (35) 

3 Finite-reaching-time Continuous Sliding Mode Controller 
Design  

3.1 Terminal Attractor 

It has been shown in [22] that 0z =  is the terminal attractor of the system  

/q pz k z= −   (36) 
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where 0k >  and ,p q  ( p q> ) are positive odd integers. The relaxation time St  
for a solution of a system (36) is given by 

1 /0
1

/
(0)

(0)

(1 / )

q p

S q p
z

zdz
t k

k q pz

−
−= =

−∫   (37) 

3.2 The Altitude Subsystem 

Let us first consider the vertical displacement subsystem including state variables 1χ , 

2χ  and the control signal ( )r t . The time derivative of the error 2 ( )e t  governed by the 

control signal 2 2 2dr m k eγχ= + can be calculated by the next expression 

2 2 2 2 2 2 2 22 2d d d de r m k e k eγ γχ χ χ χ χ= − = − = − − = −    (38) 

Since (38) represents the dynamics of the terminal attractor (36) the error 2 ( )e t  will 

converge to zero and 2χ  will converge to 2dχ : 

2 2

2 2 2

( ) 0

( )
S

S d

e t

tχ χ
=
=

                    (39)  

The relaxation time 2St taken to drive the error 2 (0)e  to 2 2( ) 0Se t = is given by 

2

10
21 2

2 2
22(0)

(0)

(1 )S
e

ede
t k

ke

γ

γ γ

−
−= =

−∫   (40) 

 
A Lyapunov function candidate for the sliding surface 1 0s =  can be chosen as: 

2
1 1

1

2
V s=                                            (41)  

Considering (39) for 2St t≥ the time derivative of error 1( )e t is 

1 1 1 1 2 1 2d d d de χ χ χ χ χ χ= − = − = −                 (42) 

And if we choose  
 

2 1 1 1( ) ( ) ( )d dt t k e tχ χ= +  (43) 

where 1k  is a positive constant, the time derivative of 1V can be determined as: 

1 1 1 1 1 1 1 1 1

2
1 1 1 1 1 1 1 1 1

2 2
1 1 1 1

( )( )

( )( )

(1 ) 0

V s s e e e e

e k e k e k e

e k k

λ λ

λ λ

λ

= = + + =

= − − + =

= − − ≤

 (44) 
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The inequality (44) is satisfied and as a result the error 1( )e t  will converge to zero 

along the sliding manifold 1( ) 0s t =  and the altitude 1χ   will converge to the desired 

value 1dχ : 

1

1 1

0

d d

e

zχ χ
→
→ =

                           (45) 

Remark:  The relaxation time 2St is actually equal to the time 1rt  necessary for 
sliding variable 1s  to reach the sliding surface 1 0s = . 

1 2r st t=                                 (46) 

The block diagram of the altitude subsystem controller is presented on fig.2. 

 

 

Fig. 2. Block diagram of the altitude subsystem controller 

3.3 Yaw Angle Subsystem 

For the yaw angle subsystem that includes state variables 3χ , 4χ  the time deriva-

tive of the error 4 ( )e t  governed by the control signal 4 4 4d k eγ
ψτ χ= + can be calcu-

lated by the next expression 

4 4 4 4 4 4 4 44 4d d d de k e k eγ γ
ψχ χ χ τ χ χ= − = − = − − = −

            
(47) 

Since (47) represents the dynamics of a terminal attractor, the error 4 ( )e t  will con-

verge to zero and 4χ  will converge to 4dχ for a finite time 4St . 
 

4

10
41 4

4 4
44(0)

(0)

(1 )S
e

ede
t k

ke

γ

γ γ

−
−= =

−∫                         (48) 

This means that at time 4St  the state variable 4 ( )tχ  reaches the desired value 

4 ( )d tχ . 

4 4

4 4 4

( ) 0

( )
S

S d

e t

tχ χ
=
=

                              (49)  
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Similarly let us choose a Lyapunov function candidate for the sliding surface 3 0s =
as: 

2
3 3

1

2
V s=                                           (50) 

Considering (49) for 4St t≥ the time derivative of error the 3 ( )e t  is 

3 3 3 3 4 3 4d d d de χ χ χ χ χ χ= − = − = −               (51) 

And if we choose  

4 3 3 3( ) ( ) ( )d dt t k e tχ χ= +  (52) 

where 3k  is a positive constant, the time derivative of 3V can be calculated as follows: 

3 3 3 3 3 3 3 3 3

2
3 3 3 3 3 3 3 3 3

2 2
3 3 3 3

( )( )

( )( )

(1 ) 0

V s s e e e e

e k e k e k e

e k k

λ λ

λ λ

λ

= = + + =

= − − + =

= − − ≤

 (53) 

In case 3 0k >  the inequality (53) is satisfied. As a result the error 3 ( )e t  will con-

verge to zero along the sliding manifold 3 0s =  and the yaw angle 3χ  will converge 

to the desired value 3dχ : 

3

3 3

0

d d

e

χ χ ψ
→
→ =

                            (54) 

3.4 Continuous Sliding Mode Control of the Pitch and Roll Angles Subsystems 

Let us first consider the subsystem describing the rotorcraft pitch angle θ  and posi-
tion x  dynamics (state variables 5χ , 6χ , 7χ  and 8χ ). The time derivative of the 

error 8 ( )e t  governed by the control signal 8 8 8d k eγ
θτ χ= + can be calculated by the 

next expression 

8 8 8 8 8 8 8 88 8d d d de k e k eγ γ
θχ χ χ τ χ χ= − = − = − − = −                   (55) 

Since (55) represents the dynamics of a terminal attractor, the error 8 ( )e t  will con-

verge to zero and 8χ  will converge to 8dχ for a finite time 8St . 

8

10
81 8

8 8
88(0)

(0)

(1 )S
e

ede
t k

ke

γ

γ γ

−
−= =

−∫                         (56) 

This means that at time 8St  the state variable 8 ( )tχ  reaches the desired value 8 ( )d tχ
and will stay at this value until some external forces disturb it. 

8 8

8 8 8

( ) 0

( )
S

S d

e t

tχ χ
=
=

                              (57)  
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Substituting  

8 7 7 7( ) ( ) ( )d dt t k e tγχ χ= +                          (58) 

and considering (57) for 8St t≥  the time derivative of the error 7 ( )e t  can be calcu-
lated by the next expression  

7 7 7 7 8 7 7 7 77 7( )d d d de k e k eγ γχ χ χ χ χ χ= − = − = − + = −   (59)  

In a similar way (59) represents the dynamics of a terminal attractor. The error 7 ( )e t  

will converge to zero and the state variable 7χ  will converge to 7dχ for a finite time 

interval 7St . 

7 8

10
7 81 7

7 7
77( )

( )

(1 )
S

S
S

e t

e tde
t k

ke

γ

γ γ

−
−= =

−∫                       (60) 

This means that  

7 8 7

7 8 7 7

( ) 0

( )
S S

S S d

e t t

t tχ χ
+ =
+ =

                           (61)  

For the state variable 7 ( )tχ  we can set the following desired value: 

7 6 6 6( ) ( ) ( )d dt t k e tγχ χ= +                         (62) 

This allows obtaining the next expression for the dynamics of the state error 6 ( )e t   

6 6 6 6 7 6 6 6 66 6( )d d d de k e k eγ γχ χ χ χ χ χ= − = − = − + = −   (63)  

The equation (63) again represents the dynamics of a terminal attractor and the error 

6 ( )e t  will converge to zero. The state variable 6χ  will converge to 6dχ for a finite 
time 6St  

6 8 7

10
6 8 71 6

6 6
66( )

( )

(1 )
S S

S S
S

e t t

e t tde
t k

ke

γ

γ γ

−
−

+

+
= =

−∫                    (64) 

In consequence the state variable 6χ  reaches the desired value 6dχ  for a time 6St  
starting  at the moment of satisfying (63). 

6 8 7 6

6 8 7 6 6

( ) 0

( )
S S S

S S S d

e t t t

t t tχ χ
+ + =
+ + =

                         (65)  

A Lyapunov function candidate for the sliding surface 5 0s =  can be chosen as: 

2
5 5

1

2
V s=                                         (66)  
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Considering (65) for 8 7 6S S St t t t≥ + +  the time derivative of the error 5 ( )e t  can be 

calculated by the next expression 

5 5 5 5 6 5 6d d d de χ χ χ χ χ χ= − = − = −              (67) 

And if we choose  

6 5 5 5( ) ( ) ( )d dt t k e tχ χ= +  (68) 

where 5k  is a positive constant, the time derivative of 5V can be determined as: 

5 5 5 5 5 5 5 5 5

2
5 5 5 5 5 5 5 5 5

2 2
5 5 5 5

( )( )

( )( )

(1 ) 0

V s s e e e e

e k e k e k e

e k k

λ λ

λ λ

λ

= = + + =

= − − + =

= − − ≤

 (69) 

The inequality (69) is satisfied and as a result the error 5 ( )e t  will converge to zero 

along the sliding manifold 5 0s = . Thus the quadrotor’s position 5χ   will converge 

to the desired position 5dχ : 

5

5 5

0

d

e

χ χ
→
→

                                (70) 

According to the obtained results it follows that the state errors 8 ( )e t , 7 ( )е t , 6 ( )е t , 

5 ( )е t  will consecutively converge to zero.  
For the subsystem describing the dynamics of the roll angle φ  and the rotorcraft’s 

position y  (state variables 9χ , 10χ , 11χ  and 12χ ), governed by the control signal 

12 12 12d k eγ
φτ χ= + , it is possible in analogous manner to repeat the above analysis. As a 

result it can be shown in a similar way that the state errors 12 ( )e t , 11 ( )e t , 10 ( )e t , 

9 ( )e t  will consecutively converge to zero. 

4 Simulation Results 

The performance of the proposed finite-reaching-time continuous sliding mode con-
trollers has been evaluated by conducting flight simulations with an automatically 
controlled small-scale quadrotor. They have been carried in the Matlab/Simulink pro-
gramming environment. The simplified dynamic model of the four rotor rotorcraft 
described by the equations (13) – (18) has been used.  

The proposed continuous sliding mode control strategy has been tested in two consec-
utive simulation experiments.  The first one has considered the rotorcraft stabilization 
problem. During it the step responses of all subsystems have been investigated. The 
quadrotor has been expected to execute separate lateral, longitudinal and altitude dis-
placements at a distance of 2 meters and also to rotate around Z axis at an angle of 2π  

rad. The following desired values of the state variables have been set accordingly: 
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The controller parameters have been chosen as follow 

1 2

3 4
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         (72) 

The obtained results are shown on figures 3 - 10. Fig. 3 represents the error between 
the desired and the current altitude 1( )e t , as well as the error between the desired and 

current vertical velocities 2 ( )e t . It has to be noted that the desired value for the ver-

tical velocity has not been fixed, but it has been calculated instead in accordance with 
equation (34). The phase trajectories of 1( )e t  and 2 ( )e t  are shown on fig. 4. In a 

similar manner fig. 5 shows the evolution of the yaw angle error 3 ( )e t  and the angu-

lar velocity error 4 ( )e t , while fig. 6 represents the phase trajectories of the errors 

3 ( )e t  and 4 ( )e t . Fig. 7 and fig. 8 illustrate graphically the dynamics of the pitch 

angle and the longitudinal displacement subsystem. That is fig. 7 represents the error 
between the desired and current longitudinal position 5 ( )e t , as well as the angular 

speed error of the pitch angle 8 ( )e t . Fig. 8 demonstrates the phase trajectories of the 

errors 5 ( )e t  and 8 ( )e t . The dynamics of the roll angle and lateral displacement 

subsystem is shown on fig. 9 and fig. 10. That is fig. 9 shows the error between the 
desired and the current lateral position 9 ( )e t , as well as the angular speed error of 

the roll angle 12 ( )e t . The phase trajectories are shown on fig. 10 respectively.  

 

Fig. 3. The evolution of the altitude error 1 de z z= − and the vertical speed error 2 de z z= −  
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Fig. 4. The phase trajectories of the errors 1e  and 2e  

 

Fig. 5. The evolution of the yaw angle error 3 de ψ ψ= − and the angular speed error 4 de ψ ψ= −  

 

Fig. 6. The phase trajectories of the errors 3e  and 4e  
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Fig. 7. The evolution of the longitudinal error 5 de x x= −  and the angular speed error of the 

pitch angle 8 de θ θ= −  

 

Fig. 8. The phase trajectories of the errors 5e  and 8e  

 

Fig. 9. The evolution of the lateral error 9 de y y= −  and the angular speed error of the roll 

angle 12 de φ φ= −  



456 N.G. Shakev and A.V. Topalov 

 

 

Fig. 10. The phase trajectories of the errors 9e  and 12e  

The second simulation experiment has investigated the dynamics of the system 
during the trajectory tracking problem. The rotorcraft has been expected to take off 
and to track a circular trajectory with a radius of 1 m, situated on horizontal plane at 
an altitude of 2 m. Fig. 11 shows how the rotorcraft has tracked the desired trajectory 
in the 3D space.  
 

 

Fig. 11. The rotorcraft trajectory in 3D space during the trajectory tracking simulation experiment 
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The results obtained from simulations have demonstrated the good performance of 
the rotorcraft during the automatically guided flights using the designed continuous 
sliding mode controllers. The proposed method ensures high control robustness, good 
static and dynamic performance (features that are typical for the sliding-mode control 
approach). Moreover, the control complexity remains the same as for the standard 
control algorithms. 

5 Conclusions 

In this investigation a continuous SMC strategy has been successfully applied and 
tested to control the position and orientation of a small size quad-rotor rotorcraft dur-
ing autonomous flights. The proposed method is based on the definition of several 
terminal attractors to establish certain relationships between variables to be main-
tained, thus allowing a designed continuous sliding mode controller to drive the  
system’s trajectory to a sliding surface in a finite time. Asymptotic stability of the 
system’s motion in the sliding mode is then achieved.  The flight simulations have 
shown that the proposed controllers demonstrate good performance and are suitable 
for stabilization and implementation of trajectory tracking tasks for small size un-
manned drones. 
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