
Chapter 8
Hypothesis Testing
for High-Dimensional Data

Wei Biao Wu, Zhipeng Lou, and Yuefeng Han

Abstract We present a systematic theory for tests for means of high-dimensional
data. Our testing procedure is based on an invariance principle which provides
distributional approximations of functionals of non-Gaussian vectors by those
of Gaussian ones. Differently from the widely used Bonferroni approach, our
procedure is dependence-adjusted and has an asymptotically correct size and power.
To obtain cutoff values of our test, we propose a half-sampling method which
avoids estimating the underlying covariance matrix of the random vectors. The latter
method is shown via extensive simulations to have an excellent performance.

Keywords Gaussian approximation · Goodness-of-Fit Test · Half-sampling ·
High-dimensional data · Hypothesis testing · Large p small n · Rademacher
weighted differencing

8.1 Introduction

With the advance of modern data collection techniques, high-dimensional data
appear in various fields including physics, biology, healthcare, finance, marketing,
social network, and engineering among others. A common feature in such datasets
is that the data dimension or the number of involved parameters can be quite large.
As a fundamentally important problem in the study of such data, one would like
to perform statistical inference of those parameters such as multiple testing or
construction of confidence regions. With that one is able to provide an answer to the
question whether there is signal in the dataset, or whether the dataset consists only of
random noises. Due to the high-dimensionality, the inferential procedures developed
for low-dimensional problems may no longer be valid in the high-dimensional
setting. Different approaches should be designed to account for high-dimensionality.
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There exists a huge literature on multiple testing; see, for example, Dudiot and van
der Laan (2008), Efron (2010) and Dickhaus (2014).

We now introduce the setting of our testing problem. Assume that X1;X2; : : : ; are
independent and identically distributed (i.i.d.) p-dimensional random vectors, with
mean vector � D .�1; : : : ; �p/

T D E.Xi/ and covariance matrix † D cov.Xi/ D
.�jk/j;k�p. We are testing the hypothesis of existence of a signal

H0 W � D 0 vs HA W � 6D 0 (8.1)

based on the sample X1; : : : ;Xn. This formulation is actually very general and its
solution can be applied to many other problems; see Sect. 8.2. We can estimate �
by the sample mean vector O� D NXn D n�1Pn

iD1 Xi. The classical Hotelling’s T-
squared test has the form

T D NXn O†�1
n

NXn; (8.2)

where

O†n D .n � 1/�1
nX

iD1
.Xi � NXn/.Xi � NXn/

T (8.3)

is the sample covariance matrix estimate of†. If p is small and fixed, by the Central
Limit Theorem (CLT),

p
n. NXn � �/ ) N.0;†/: (8.4)

By the Law of Large Numbers, if † is non-singular,

O†�1
n ! †�1 almost surely. (8.5)

Clearly (8.4) and (8.5) imply that under H0, the Hotelling’s T-squared statistic
nT ) �2p (�2 distribution with degrees of freedom p). Thus we can reject H0 at
level 0 < ˛ < 1 if nT > �2p;1�˛ , the .1 � ˛/th quantile of �2p.

In the high-dimensional situation in which p can be much larger than n, the
CLT (8.4) is no longer valid; see Portnoy (1986). Furthermore, O†n is singular and
thus T is not well-defined. Also the matrix convergence (8.5) may not hold, see
Marčenko and Pastur (1967). In this chapter we shall apply a testing functional
approach that does not use O†�1

n or the precision matrix †�1. A function g W Rp !
Œ0;1/ is said to be a testing functional if the following requirements are satisfied:
(1) (monotonicity) for any x D .x1; : : : ; xp/T 2 R

p and 0 < c < 1, g.cx/ � g.x/; (2)
(identifiability) g.x/ D 0 if and only if x D 0. We shall consider the test statistic

Tn D g.
p
n NXn/: (8.6)

Examples of g include the L2-based test with g.x/ D Pp
jD1 x2j , the L1-

based test with g.x/ D maxj�p jxjj, the weighted empirical process g.x/ D
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supu�0.
Pp

jD1 1jxjj�uh.u//, where h.�/ is a nonnegative-valued non-decreasing
function, among others. We reject H0 in (8.1) if Tn is too big.

As a theoretical foundation, we base our testing procedure on the following
invariance principle result

sup
t2R

jPŒg.pn. NXn � �// � t� � PŒg.
p
n NZn/ � t�j ! 0; (8.7)

where Z;Z1;Z2; : : : are i.i.d. N.0;†/ random vectors and NZn D n�1Pn
iD1 Zi DD

n�1=2Z. Interestingly, though the CLT (8.4) does not generally hold in the high-
dimensional setting, the testing functional form (8.7) may still be valid. Cher-
nozhukov et al. (2014) proved (8.7) with the L1 norm g.x/ D maxj�p jxjj, while
Xu et al. (2014) consider the L2 based test with g.x/ D Pp

jD1 x2j . In Sect. 8.5 we
shall provide a sufficient condition so that (8.7) holds for certain testing functionals.

In applying (8.7) for testing (8.1), one needs to know the distribution of
g.

p
n NZn/ DD g.Z/ so that a suitable cutoff value can be obtained. The latter problem

is highly nontrivial since the covariance matrix †, which is viewed as a nuisance
parameter here, is typically not known and the associated estimation issue can be
quite challenging. In Sect. 8.5 we shall propose a half-sampling technique which
can avoid estimating the nuisance covariance matrix†.

8.2 Applications

Our paradigm (8.1) is actually quite general and it can be applied to testing of high-
dimensional covariance matrices, testing of independence of high-dimensional data,
analysis of variances with non-normal and heteroscedastic errors.

8.2.1 Testing of Covariance Matrices

There is a huge literature on testing covariance matrices such as uncorrelatedness,
sphericity, or other patterns. For Gaussian data, tests for † D �2Ip, where Ip is
the identity matrix, can be found in Ahmad (2010), Birke and Dette (2005), Chen
et al. (2010), Fisher et al. (2010) and Ledoit and Wolf (2002). Tests for equality of
covariance matrices are studied in Bai et al. (2009) and Jiang et al. (2012), and for
sphericity is in Onatski et al. (2013). Minimax properties are considered in Cai and
Ma (2013). For other contributions, see Qu and Chen (2012), Schott (2005, 2007),
Srivastava (2005), Xiao and Wu (2013) and Zhang et al. (2013).

Assume that we have data matrix Yn D .Yi;j/1�i�n;1�j�p, where .Yi;j/
p
jD1,

i D 1; : : : ; n, are i.i.d. p-dimensional random vectors. Let

�jk D cov.Y1;j; Y1;k/; 1 � j; k � p; (8.8)
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be the covariance function. Consider testing hypothesis for uncorrelatedness:

H0 W �jk D 0 for all j 6D k: (8.9)

For simplicity assume that E.Yi;j/ D 0. For a pair a D . j; k/ write Xi;a D Yi;jYi;k,
and NXa D n�1Pn

iD1 Xi;a and the . p2 � p/-dimensional vector NX D . NXa/a2A, where
A D f. j; k/ W j 6D k; j � p; k � pg. The hypothesis H0 in (8.9) can be tested
by using the test statistics T D g.

p
n NX/. Xiao and Wu (2013) considered the L1

based test with g.x/ D maxi jxij, generalizing the result in Jiang (2004) which
concerns the special case for i.i.d. vectors with independent entries. Han and Wu
(2017) performed an L2 based test for patterns of covariances with the test statistic

T D
X

a2A
NX2a D

X

j6Dk

O�2jk: (8.10)

With slight modifications, one can also test the sphericity hypothesis

H0 W † D �2Ip for some �2 > 0; (8.11)

where Ip is the p � p identity matrix. Let A0 D f. j; k/ W j; k � pg with diagonal
entries added to A. For a D . j; j/ 2 A0, let Xi;a D Y2i;j � �2. If �2 is known, then H0
in (8.11) can be rejected at level ˛ 2 .0; 1/ if T D g.

p
n NX/ > t1�˛ , where t1�˛ is

the .1 � ˛/th quantile of g.Z/ and Z is a centered Gaussian vector with covariance
structure cov.Za;Zb/ D E.Xi;aXi;b/, a; b 2 A0. In the case that �2 is not known,
we shall use an estimate. For example, we can let O�2 D n�1Pn

jD1 O�2jj , and consider
Xı
i;a D Y2i;j � O�2. Let Xı

i;a D Xi;a if a D . j; k/ with j 6D k. The hypothesis H0 in (8.11)

can be tested by the statistic Tı D g.
p
n NXı/.

8.2.2 Testing of Independence

Let Yi D .Yi;j/
p
jD1, i D 1; : : : ; n, be i.i.d. p-dimensional random vectors with joint

cumulative distribution function

Fj1;:::;jd .yj1 ; : : : ; yjd/ D P.Yi;j1 � yj1 ; : : : ;Yi;jd � yjd /: (8.12)

Consider the problem of testing whether entries of Yi are independent. Assume that
the marginal distributions are standard uniformŒ0; 1�. For j D . j1; : : : ; jd/, write
Fj.yj/ D Fj1;:::;jd .yj1 ; : : : ; yjd /. For fixed d, the hypothesis of d-wise independence is

H0 W Fj.yj/ D yj1 : : : yjd holds for all y1; : : : ; yd 2 .0; 1/ and j 2 Ad; (8.13)
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where Ad D fj D . j1; : : : ; jd/ W j1 < � � � < jd � pg. Pairwise and triple-wise
independence correspond to d D 2 and d D 3, respectively. We estimate Fj.yj/ by
the empirical cdf

OFj.yj/ D 1

n

nX

iD1
1Yi;j�yj ; (8.14)

where the notation Yi;j � yj means Yi;jh � yjh for all h D 1; : : : ; d. Let ym1 ; : : : ; ymN ,
N ! 1, be a dense set of Œ0; 1�d. For example, we can choose them to be the
lattice set f1=K; : : : ; .K � 1/=Kgd with N D .K � 1/d. Let Xi, 1 � i � n, be the
NpŠ=.dŠ. p � d/Š/-dimensional vector with the .`j/th component being 1Yi;j�ym`

�
Q

h2m`
yh, 1 � ` � N, j 2 Ad. Then the L2-based test for (8.13) on the dense set

.ym`
/N`D1 has the form nj NXj22.

8.2.3 Analysis of Variance

Consider the following two-way ANOVA model

Yijk D �C ˛i C ˇj C ıij C "ijk; i D 1; : : : ; I; j D 1; : : : ; J; k D 1; : : : ;K; (8.15)

where � is the grand mean, ˛i and ˇj are the main effects from the first and
the second factors, respectively, and ıij are the interaction effect. Assume that
.Yijk/i�I;j�J , k D 1; : : : ;K, are i.i.d. Consider the hypothesis of interaction:

H0 W ıij D 0 for all i D 1; : : : ; I; j D 1; : : : ; J: (8.16)

In the classical ANOVA procedure, one assumes that "ijk, i � I; j � J, are i.i.d.
N.0; �2/ and makes use of the fact that the sum of squares

SSI D
IX

iD1

JX

jD1
. NYij� � NYi�� � NY�j� C NY���/2 (8.17)

is distributed as �2�2.I�1/.J�1/. Here NYij� D K�1PK
kD1 Yijk and other sample averages

NYi��, NY�j� and NY��� are similarly defined. The null hypothesis H0 is rejected at level
˛ 2 .0; 1/ if

SSI
.I � 1/.J � 1/ > SSEF.I�1/.J�1/;IJ.K�1/;1�˛ (8.18)
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where F.I�1/.J�1/;IJ.K�1/;1�˛ is the .1 � ˛/th quantile of the F-distribution
F.I�1/.J�1/;IJ.K�1/ and

SSE D
PI

iD1
PJ

jD1.Yijk � NYij�/2
IJ.K � 1/ (8.19)

is an estimate of �2.
The classical ANOVA procedure can be invalid when the assumption that "ijk,

i � I; j � J are i.i.d. N.0; �2/ is violated. In the latter case SSI may no longer have
a �2 distribution. However we can still approximate the distribution of SSI in terms
of (8.7). For a D .i; j/ let Xak D NYijk � NYi�k � NY�jk C NY��k. Then SSI D P

a2A NX2a�, where
NXa� D K�1PK

kD1 Xak.

8.3 Tests Based on L1 Norms

Fan et al. (2007) considered the L1 norm based test of (8.1) with the form

Mn D max
j�p

p
nj O�j � �jj

O�j ; where O�2j D 1

n

nX

iD1
.Xij � O�j/

2: (8.20)

Assume that the dimension p satisfies

log p D o.n1=3/ (8.21)

and the uniform bounded third moment condition

max
j�p

EjXij � �jj3 D O.1/: (8.22)

Let ˆ be the standard normal cumulative distribution function and z˛ D ˆ�1.˛/.
Then

P.Mn � z1�˛=.2p// � ˛ C o.1/: (8.23)

Namely, if we perform the test by rejecting H0 of (8.1) whenever Mn � z1�˛=.2p/,
the familywise type I error of the latter test is asymptotically bounded by ˛. As
a finite sample correction, the cutoff value z1�˛=.2p/ in (8.23) can be replaced by
the t-distribution quantile tn�1;1�˛=.2p/ with degree of freedom n � 1, noting that
.n � 1/1=2 O�j= O�j � tn�1 if Xij are Gaussian. Due to the Bonferroni correction, the
test by Fan et al. (2007) can be quite conservative if the dependence among entries
of Xi is strong. For example, if Xi1 D Xi2 D � � � D Xip, then instead of using the
cutoff value z1�˛=.2p/, one should use z1�˛=2, since the cutoff value z1�˛=.2p/ leads to
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the extremely conservative type I error ˛=.2p/. If entries of Xi are independent and
Xi is Gaussian, then the type I error is 1 � .1 � ˛=p/p ! 1 � e�˛ and it is slightly
conservative. For example, when ˛ D 0:05, 1 � e�˛ D 0:04877058.

Liu and Shao (2013) obtained Gumbel convergence of Mn under the following
conditions: (1) for some r > 3, the uniform bounded rth moment conditions
maxj�p EjXij � �jjr D O.1/ holds, which is slightly stronger than (8.22) and (2)
weak dependence among entries of Xi. For † D .�jk/j;k�p, assume the correlation

matrix R D .rjk/j;k�p with rjk D �jk=.�
1=2
jj �

1=2
kk / has the property: for some � > 0,

max #f j � p W jrjkj � .log p/�1��g D O. p�/ (8.24)

holds for all � > 0. Then under (8.21), Theorem 3.1 in Liu and Shao (2013) asserts
the Gumbel convergence

Mn � 2 log p C log log p ) G; (8.25)

where G follows the Gumbel distribution P.G � y/ D exp.�e�y=2=�1=2/. By (8.25),
one can reject H0 in (8.1) at level ˛ 2 .0; 1/ based on the L1 norm test

max
j�p

p
nj O�jj
O�j > 2 log p � log log p C g1�˛; (8.26)

where g1�˛ is chosen such that P.G � g1�˛/ D 1 � ˛. Clearly the latter test has an
asymptotically correct size.

Applying Theorem 2.2 in Chernozhukov et al. (2014), we can have the following
Gaussian approximation result. Assume that there exist constants c1; c2 > 0 such
that c1 � E.Xij � �j/

2 � c2 holds for all j � p and assume that u D un;p satisfies

P

�

max
j�p

jX1j � �jj � u

�

D o.n�1/ (8.27)

Let mk D maxj�p.EjX1j � �jjk/1=k and further assume that

n�1=8.m3=43 C m1=24 /.log. pn//7=8 C n�1=2.log. pn//3=2u ! 0: (8.28)

Let Z � N.0;R/. Then we have the Gaussian approximation result: as n ! 1

sup
t

jP.Mn � t/ � P.jZj1 � t/j ! 0: (8.29)

Let t1�˛ be the .1�˛/th quantile of jZj1. The Gaussian approximation (8.29) leads
to L1 norm based test: H0 is rejected at level ˛ if maxj�p

p
nj O�jj= O�j � t1�˛ . In

comparison with the result in Fan et al. (2007), the latter test has an asymptotically
correct size and it is dependence adjusted. To obtain an estimate for the cutoff value
t1�˛ , Chernozhukov et al. (2014) proposed a Gaussian Multiplier Bootstrap (GMB)
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method. Given X1; : : : ;Xn, let Ot1�˛ be such that

P

 

max
j�p

n�1=2j
nX

iD1
Xijeij � Ot1�˛jX1; : : : ;Xn

!

D ˛; (8.30)

where ei are i.i.d. N.0; 1/ random variables independent of .Xij/i�1;j�1. Note
that Ot1�˛ can be numerically calculated by extensive Monte Carlo simulations.
In Sect. 8.5 we shall propose a Hadamard matrix and a Rademacher weighted
approaches. The simulation study in Sect. 8.6 shows that, for finite-sample perfor-
mance, the latter approach gives a more accurate size than the method based on
Gaussian Multiplier Bootstrap (8.30).

Chen et al. (2016) generalized Fan, Hall and Yao’s L1 norm to high-dimensional
dependent vectors. Assume that .Xi/i2Z is a p-dimensional stationary process of the
form

Xt D G.Ft/ D .G1.Ft/; : : : ;Gp.Ft//
T ; (8.31)

where "t, t 2 Z, are i.i.d. random variables, Ft D .: : : ; "t�1; "t/ and G.�/ is
a measurable function such that Xt is well-defined. Assume that the long-run
covariance matrix

†1 D
1X

iD�1
cov.X0;Xi/ D .!jl/j;l�p (8.32)

exists. Let "�
i ; "j; i; j 2 Z, be i.i.d. random variables. Assume that Xt has finite rth

moment, r > 2. Define the functional dependence measures (see, Wu 2005, 2011)
as

	r.m/ D max
j�p

kXij � Gj.: : : ; "i�m�2; "i�m�1; "�
i�m; "i�mC1; : : : ; "i/kr: (8.33)

If Xi are i.i.d., then†1 D † and 	r.m/ D 0 if m � 1. We say that .Xt/ is geometric
moment contraction (GMC; see Wu and Shao 2004) if there exist � 2 .0; 1/ and
a1 > 0 such that

	r.m/ � a1�
m D a1e

�a2m with a2 D � log �: (8.34)

Let � D EXt. To test the hypothesis H0 in (8.1), Chen et al. (2016) introduced the
following dependence-adjusted versions of Fan, Hall, and Yao’s Mn. Let n D mk,
where m � n1=4 and blocks Bl D fi W m.l � 1/C 1 � i � mlg. Let Ylj D P

i2Bl
Xij,

1 � j � p, 1 � l � k, be the block sums. Define the block-normalized sum

Mı
n D max

j�p

p
nj O�j � �jj

O�ı
j

; where . O�ı
j /
2 D 1

mk

kX

lD1
.Ylj � m O�j/

2; (8.35)
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and the interlacing normalized sum: let k� D k=2, �
j D .mk�/�1
Pk�

lD1 Y2lj and

M

n D max

j�p

p
n=2j�
j � �jj

O�
j
; where . O�
j /2 D 1

mk�
k�

X

lD1
.Y2lj � m�
j /

2: (8.36)

By Chen et al. (2016), we have the following result: Assume exists a constant � > 0
such that the long-run variance !jj � � for j � p, (8.34) holds with r D 3, and

log p D o.n1=4/: (8.37)

Then (8.23) holds for both the block-normalized sum Mı
n and the interlacing

normalized sum M

n . Note that, while (8.37) still allows ultra high dimensions, due

to dependence, the allowed dimension p in condition (8.37) is smaller than the one
in (8.21). Additionally, if the GMC (8.34) holds with some r > 3, (8.24) holds with
the long-run correlation matrix R D D�1=2†1D�1=2, where D D diag.†1/, and
for some 0 < � < 1=4,

log p D o.n� /; (8.38)

then we have the Gumbel convergence for the interlacing normalized sum:

M

n � 2 log p C log log p ) G; (8.39)

where G is given in (8.25). Similarly as (8.26), one can perform the following test
which has an asymptotically correct size: we reject H0 in (8.1) at level ˛ 2 .0; 1/ if

max
j�p

p
n=2j�
j j

O�
j
> 2 log p � log log p C g1�˛: (8.40)

8.4 Tests Based on L2 Norms

In this section we shall consider the test which is based on the L2 functional with
g.x/ D Pp

jD1 x2j . Let 
1 � � � � � 
p � 0 be the eigenvalues of †. For Z � N.0;†/,
we have the distributional equality g.Z/ D ZTZ DD

Pp
jD1 
j�2j , where �j are i.i.d.

standard N.0; 1/ random variables. Let fk D .
Pp

jD1 
kj /1=k, k > 0, and f D f2. Then
Eg.Z/ D f1 D tr.†/ and var.g.Z// D 2f 2. Xu et al. (2014) provide a sufficient
condition for the invariance principle (8.7) with the quadratic functional g. For some
0 < ı � 1 let q D 2C ı.
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Condition 1 Let ı > 0. Assume EX1 D 0, EjX1j2q < 1 and let

Kı.X/
q WD E

ˇ
ˇ
ˇ
ˇ
jX1j22 � f1

f

ˇ
ˇ
ˇ
ˇ

q

< 1 (8.41)

Dı.X/
q WD E

ˇ
ˇ
ˇ
ˇ
XT
1X2
f

ˇ
ˇ
ˇ
ˇ

q

< 1: (8.42)

Observe that Condition 1, (8.41) and (8.42) are Lyapunov-type conditions.
Assume that

K0.X/2

n
C Kı.X/q

nq�1 C E.XT
1 †X1/

q=2

nı=2f q
C Dı.X/q

nı
! 0 as n ! 1: (8.43)

Then (8.7) holds (cf Xu et al. 2014). Consequently we have

sup
t2R

jP..nj NXnj22 � f1/=f � t/ � P.V � t/j ! 0; where V D
pX

jD1

f�1
j.�
2
j � 1/: (8.44)

In the literature, researchers primarily focus on developing the central limit theorem

Rn WD nj NXnj22 � f1
f

D n NXT
n

NXn � f1
f

) N.0; 2/ (8.45)

or its modified version; see, for example, Bai and Saranadasa (1996), Chen and Qin
(2010) and Srivastava (2009). Xu et al. (2014) clarified an important issue on the
CLT of Rn. By the Lindeberg–Feller central limit theorem, V ) N.0; 2/ as p ! 1
holds if and only if 
1=f ! 0. The distributional approximation (8.44) indicates
that, if 
1=f does not go to 0, then the central limit theorem cannot hold for Rn.

Let t1�˛ be the .1 � ˛/th quantile of g.Z/ D jZj2 D ZTZ. By (8.7) we can reject
(8.1) at level ˛ 2 .0; 1/ if

nj NXnj2 > t1�˛ (8.46)

To calculate t1�˛ , one needs to know the eigenvalues 
1; : : : ; 
p. However, estima-
tion of those eigenvalues is a very challenging problem, in particular if one does not
impose certain structural assumptions on †. In Sect. 8.5.2 we shall propose a half-
sampling based approach which does not need estimation of the covariance matrix
†.

The L1 based tests discussed in Sect. 8.3 have a good power when the alternative
consists of few large signals. If the signals are small and have a similar magnitude,
then the L2 test is more powerful. To this end, assume that there exists a constant
c > 0 and a small ı > 0 such that cı � �j � ı=c holds for all j D 1; : : : ; p. We can
interpret ı as the departure parameter (from the null H0 with � D 0). For the L1-
based test to have power approaching to 1, one necessarily requires that

p
nı ! 1.
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Elementary calculation shows that, under the much weaker condition np1=2ı2 ! 1,
then the power of the L2 based test, or the probability that event (8.46) occurs going
to one. In the latter condition, larger dimension p is actually a blessing as it requires
a smaller departure ı.

8.5 Asymptotic Theory

In Sects. 8.3 and 8.4, we discussed the classical L1 and L2 functionals, respectively.
For a general testing functional, we have the following invariance principle (cf The-
orem 1), which asserts that functionals of sample means of non-Gaussian random
vectors X1;X2; : : : can be approximated by those of Gaussian vectors Z1;Z2; : : :
with same covariance structure. Assume g 2 C

3.Rp/. For x D .x1; : : : ; xp/T write
gj D gj.x/ D @g.x/=@xj. Similarly we define the partial derivatives gjk and gjkl. For
all j; k; l D 1; : : : ; p, assume that

�jkl WD sup
x2Rp

.jgjgkglj C jgjkglj C jgjlgkj C jgklgjj C jgjklj/ < 1: (8.47)

For Z1 � N.0;†/ write Z1 D .Z11; : : : ;Z1p/T . Define

Kp D
pX

j;k;lD1
�jkl.EjX1jX1kX1lj C EjZ1jZ1kZ1lj/: (8.48)

For g.Z1/ DD g.
p
n NZn/, we assume that its c.d.f. F.t/ D PŒg.Z/ � t� is Hölder

continuous: there exists `p > 0, index ˛ > 0, such that for all  > 0, the
concentration function

sup
t2R

P.t � g.Z1/ � t C  / � `p 
˛: (8.49)

Theorem 1 (Lou and Wu (2018)) Assume (8.47), (8.49) and Kp`
3=˛
p D o.

p
n/.

Then

sup
t2R

jPŒg.pn. NXn � �// � t� � PŒg.
p
n NZn/ � t�j D O.`3pK˛

p n
�˛=2/ ! 0: (8.50)

To apply Theorem 1 for hypothesis testing, we need to know the c.d.f. F.t/ D
PŒg.Z/ � t�. Note that F.�/ depends on g and the covariance matrix †. Thus we
can also write F.�/ D Fg;†.�/. If † is known, the distribution of g.Z/ is completely
known and its cdf F.t/ D PŒg.Z/ � t� can be calculated either analytically or by
extensive Monte Carlo simulations. Let t1�˛ , 0 < ˛ < 1, be the .1 � ˛/th quantile
of g.Z/. Namely

PŒg.Z/ > t1�˛� D ˛: (8.51)
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Then the null hypothesis H0 in (8.1) is rejected at level ˛ if the test statistic Tn D
g.

p
n NXn/ > t1�˛ . This test has asymptotically correct size ˛. Additionally, the .1 �

˛/ confidence region for � can be constructed as

f� 2 R
p W g.

p
n. NXn � �// � t1�˛g D f NXn C � 2 R

p W g.
p
n�/ � t1�˛g: (8.52)

If † is not known, as a straightforward way to approximate F.t/ D Fg;†.t/,
one may use an estimate Q† so that Fg;†.t/ can be approximated by Fg; Q†.t/. Here
we do not adopt this approach for the following two reasons. First, it can be quite
difficult to consistently estimate † without assuming sparseness or other structural
conditions. The latter assumptions are widely used in the literature; see, for example,
Bickel and Levina (2008a), Bickel and Levina (2008b), Cai et al. (2011) and Fan
et al. (2013). Second, it is difficult to quantify the difference Fg; Q†.�/�F.�/ based on

operator norm or other type of matrix convergence of the estimate Q†. Xu et al.
(2014) argued that, for the L2 test with g.x/ D Pp

jD1 x2j , one needs to use the

normalized consistency of Q†, instead of the widely used operator norm consistency.
We propose using half-sampling and balanced Rademacher schemes.

8.5.1 Preamble: i.i.d. Gaussian Data

In practice, however, the covariance matrix † is typical unknown. Assume at the
outset that X1; : : : ;Xn are i.i.d. N.�;†/ vectors. Assume that n D 4m, where m is a
positive integer. Then we can estimate the cumulative distribution function F.t/ D
PŒg.Z/ � t� by using Hadamard matrices (see, Georgiou et al. 2003; Hedayat and
Wallis 1978; Yarlagadda and Hershey 1997). We say that H is an n � n Hadamard
matrix if its first row consisting all 1s, and all its entries taking values 1 or �1 such
that

HHT D nIn; (8.53)

where In is the n � n identity matrix. Let

Yj D 1p
n

nX

iD1
HjiXi; j D 1; : : : ; n: (8.54)

By (8.53), we have
Pn

iD1Hji D 0 for 2 � j � n and
Pn

iD1HjiHj0i D 0 if
j 6D j0. Since X1; : : : ;Xn are i.i.d. N.�;†/, it is clear that Y2; : : : ;Yn are also i.i.d.
N.0;†/ vectors. Hence the random variables g.Y2/; : : : ; g.Yn/ are independent and
identically distributed as g.Z/. Therefore we can construct the empirical cumulative
distribution function

OFn.t/ D 1

n � 1

nX

jD2
1g.Yj/�t; (8.55)
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which converges uniformly to F.t/ as n ! 1, and t1�˛ can be estimated by
Ot1�˛ D OF�1

n .1 � ˛/, the .1 � ˛/th empirical quantile of OFn.�/. As an important
feature of the latter method, one does not need to estimate the covariance matrix †,
the nuisance parameter. In combinatorial experiment design, however, it is highly
nontrivial to construct Hadamard matrices. If n is a power of 2, then one can simply
apply Sylvester’s construction. The Hadamard conjecture states that a Hadamard
matrix of order n exists when 4jn. The latter problem is still open. For example, it is
unclear whether a Hadamard matrix exists when n D 668 (see Brent et al. 2015).

8.5.2 Rademacher Weighted Differencing

To circumvent the existence problem of Hadamard matrices in Sect. 8.5.1, we shall
construct asymptotically independent realizations by using Rademacher random
variables. Let "jk; j; k 2 Z, independent of .Xi/i�1, be i.i.d. Bernoulli random
variables with P."jk D 1/ D P."jk D �1/ D 1=2. Define the Rademacher weighted
differences

Yj D D.Aj/; where D.A/ D jAj1=2.n � jAj/1=2
n1=2

 P
i2A Xi

jAj �
P

i2f1;:::;ng�A Xi

n � jAj

!

;

(8.56)

where the random set

Aj D f1 � i � n W "ji D 1g: (8.57)

When defining Yj, we require that Aj satisfies jAjj 6D 0 and jAjj 6D n. By the
Hoeffding inequality, jAjj concentrates around n=2 in the sense that, for u � 0,
P.jjAjj � n=2j � u/ � 2 exp.�2u2=n/. Alternatively, we consider the balanced
Rademacher weighted differencing: let Aı

1;A
ı
2; : : : be simple random sample drawn

equally likely fromAm D fA 	 f1; : : : ; ng W jAj D mg, wherem D bn=2c. Similarly
as Yj in (8.56), we define

Yı
j D D.Aı

j /: (8.58)

Clearly, given Aj (resp. Aı
j ), Yj (resp. Yı

j ) has mean 0 and covariance matrix†. Based
on Yj in (8.56) (resp. Yı

j in (8.58)), define the empirical distribution functions

OFN.t/ D 1

N

NX

jD1
1g.Yj/�t; (8.59)
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where N ! 1 and

OFı
N.t/ D 1

N

NX

jD1
1g.Yı

j /�t: (8.60)

For sets A;B 	 f1; : : : ; ng, let Ac D f1; : : : ; ng � A, Bc D f1; : : : ; ng � B and

d.A;B/ D max
n
jjA \ Bj � n

4
j; jjAc \ Bj � n

4
j; jjA \ Bcj � n

4
j; jjAc \ Bcj � n

4
j
o
:

If A;B are chosen according to a Hadamard matrix, then d.A;B/ D 0. Assume that

d.A;B/ � 0:1n: (8.61)

Then there exists an absolute constant c > 0 such that

cov.D.A/;D.B// D ı†; where jıj � c
d.A;B/

n
: (8.62)

Again by the Hoeffding inequality, if we choose A1;A2 according to (8.57), there
exists absolute constants c1; c2 > 0 such that P.d.A1;A2/ � u/ � c1 exp.�c2u2=n/,
indicating that (8.61) holds with probability close to 1, d.A1;A2/ D OP.n1=2/ and
hence the weak orthogonality with ı.A1;A2/ D OP.n�1=2/.

Theorem 2 (Lou and Wu (2018)) Under conditions of Theorem 1, we have
supt j OFı

N.t/ � F.t/j ! 0 in probability as N ! 1.

8.5.3 Calculating the Power

The asymptotic power expression is

B.�/ D PŒg.Z C p
n�/ � t1�˛�: (8.63)

Given the sample X1; : : : ;Xn whose mean vector � may not necessarily be 0, based
on the estimated Ot1�˛ from the empirical cumulative distribution functions (8.59)
and (8.60), we can actually estimate the power function by the following:

OB.�/ D OP.g.D.Aı
j /C p

n�/ � Ot1�˛jX1; : : : ;Xn/

D 1

N

NX

jD1
1g.D.Aı

j /C
p
n�/�Ot1�˛ : (8.64)
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8.5.4 An Algorithm with General Testing Functionals

For ease of application, we shall in this section provide details of testing the
hypothesis H0 in (8.1) using the Rademacher weighting scheme described in
Sect. 8.5.2.

To construct a confidence region for �, one can use (8.52) with t1�˛ therein
replaced by the empirical quantile Otı1�˛ .

8.6 Numerical Experiments

In this section, we shall perform a simulation study and evaluate the finite-
sample performance of our Algorithm 1 with OFı

N.t/ defined in (8.60). Tests for
mean vectors and covariance matrices are considered in Sects. 8.6.1 and 8.6.2,
respectively. Section 8.6.3 contains a real data application on testing correlations
between different pathways of a pancreatic ductal adenocarcinoma dataset.

8.6.1 Test of Mean Vectors

We consider three different testing functionals: for x D .x1; : : : ; xp/> 2 R
p, let

g1.x/ D max
j�p

jxjj; g2.x/ D
pX

jD1
jxjj2; g3.x/ D sup

c�0

8
<

:
c2

pX

jD1
jxjj21jxjj�c

9
=

;
:

For the L1 form g1.x/, four different testing procedures are compared: the
procedure using our Algorithm 1 with OFı

N.�/ replaced by OFN.�/; cf (8.59); or by

OF
N.t/ D 1

N

NX

jD1
1
g.Y



j /�t

; where Y
j D 1p
n

nX

iD1
"ji.Xi � NX/ (8.65)

Algorithm 1: Rademacher weighted testing procedure
1. Input X1; : : : ;Xn;
2. Compute the average NXn and the test statistic T D g.

p
n NXn/;

3. Choose a large N in (8.60) and obtain the empirical quantile Otı1�˛;
4. Reject H0 at level ˛ if T > Otı1�˛;
5. Report the p-value as OFı

N.T/.
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and "ji are i.i.d. Bernoulli(1=2) independent of .Xij/; the test of Fan et al. (2007)
(FHY, see (8.20) and (8.23)) and the Gaussian Multiplier Bootstrap method in
Chernozhukov et al. (2014) (CCK, see (8.30)).

For g2.x/, we compare the performance of our Algorithm 1 with OFı
N.�/, OFN.�/ and

OF
N.�/, and also the CLT-based procedure of Chen and Qin (2010) (CQ), which is a
variant of (8.45) with the numerator n NXT

n
NXn � f1 therein replaced by n�1P

i¤j X
>
i Xj.

The portmanteau testing functional g3.x/ is a marked weighted empirical process.
For our Algorithm 1 and the Gaussian Multiplier Bootstrap method, we calculate

the empirical cutoff values with N D 4000. For each functional, we consider two
models and use n D 40; 80 and p D 500; 1000. The empirical sizes for each case
are calculated based on 1000 simulations.

Example 1 (Factor Model) Let Zij be i.i.d. N.0; 1/ and consider

Xi D .Zi1; : : : ;Zip/
> C pı.Zi0; : : : ;Zi0/

>; i D 1; : : : ; n; (8.66)

Then Xi are i.i.d. N.0;†/ with † D Ip C p2ı11>, where 1 D .1; : : : ; 1/>. Larger ı
implies stronger correlation among the entries Xi1; : : : ;Xip.

Table 8.1 reports empirical sizes for the factor model with g1.�/ at the 5%
significance level. For each choice of p, n, and ı, our Algorithm 1 with OFı

N.�/ and
OFN.�/ perform reasonably well, while the empirical sizes using OF
N.�/ are generally
slightly larger than 5%. The empirical sizes using Chernozhukov et al.’s (8.30) or
Fan et al.’s (8.23) are substantially different from the nominal level 5%. For large ı,
as expected, the procedure of Fan, Hall, and Yao can be very conservative.

The empirical sizes for the factor model using g2.�/ are summarized in Table 8.2.
Our Algorithm 1 with OFı

N.�/ and OFN.�/ perform quite well. The empirical sizes for
Chen and Qin’s procedure deviate significantly from 5%. This can be explained by
the fact that CLT of type (8.45) is no longer valid for model (8.66); see the discussion
following (8.45) and Theorem 2.2 in Xu et al. (2014).

When using functional g3.x/, our Algorithm 1 with OFı
N.�/ and OFN.�/ perform

slightly better than OF
N.�/ and approximate the nominal 5% level well (Table 8.3).

Table 8.1 Empirical sizes for the factor model (8.66) with g1.�/
n D 40 n D 80

p ı OFı

N CCK OFN FHY OF
N OFı

N CCK OFN FHY OF
N
500 �0:05 0.053 0.028 0.052 0.028 0.059 0.053 0.037 0.052 0.031 0.055

1000 0.052 0.023 0.052 0.035 0.057 0.051 0.036 0.051 0.034 0.053

500 0:05 0.051 0.034 0.054 0.014 0.064 0.047 0.030 0.044 0.018 0.047

1000 0.057 0.035 0.058 0.011 0.063 0.053 0.044 0.055 0.015 0.056

500 0:1 0.046 0.026 0.048 0.009 0.055 0.053 0.042 0.054 0.007 0.056

1000 0.059 0.041 0.059 0.007 0.063 0.052 0.045 0.054 0.008 0.056
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Table 8.2 Empirical sizes for the factor model (8.66) using functional g2.x/

n D 40 n D 80

p ı CQ OFı

N
OFN OF
N CQ OFı

N
OFN OF
N

500 �0:05 0.078 0.055 0.061 0.066 0.063 0.048 0.047 0.048

1000 0.081 0.063 0.066 0.072 0.066 0.050 0.049 0.053

500 0:05 0.074 0.054 0.054 0.059 0.067 0.052 0.053 0.054

1000 0.075 0.054 0.052 0.056 0.076 0.058 0.057 0.059

500 0:1 0.067 0.049 0.051 0.052 0.068 0.055 0.052 0.056

1000 0.083 0.064 0.064 0.067 0.068 0.048 0.051 0.051

Table 8.3 Empirical sizes for the factor model (8.66) using functional g3.x/

n D 40 n D 80

p ı OFı

N
OFN OFN OFı

N
OFN OF
N

500 �0:05 0.061 0.059 0.066 0.049 0.048 0.049

1000 0.062 0.064 0.073 0.058 0.059 0.063

500 0:05 0.054 0.058 0.060 0.053 0.053 0.055

1000 0.053 0.054 0.057 0.059 0.059 0.060

500 0:1 0.049 0.049 0.051 0.053 0.053 0.055

1000 0.053 0.054 0.057 0.059 0.059 0.060

Example 2 (Multivariate t-Distribution) Consider the multivariate t� vector

Xi D .Xi1; : : : ;Xip/
> D Yi

p
�=Wi � t�.0;†/; i D 1; : : : ; n (8.67)

where the degrees of freedom � D 4, † D .�jk/
p
j;kD1, �jj D 1 for j D 1; : : : ; p and

�jk D cjj � kj�d; 1 � j ¤ k � p;

and Yi � N.0;†/, Wi � �2� are independent. The above covariance structure allows
long-range dependence among Xi1; : : : ;Xip; see Veillette and Taqqu (2013).

We summarize the simulated sizes for model (8.67) in Tables 8.4, 8.5, and 8.6.
As in Example 1, similar conclusions apply here. Due to long-range dependence,
the procedure of Fan, Hall, and Yao appears conservative. The Gaussian Multiplier
Bootstrap (8.30) yields empirical sizes that are quite different from 5%. The CLT-
based procedure of Chen and Qin is severely affected by the dependence. In practice
we suggest using Algorithm 1 with OFı

N.�/ which has a good size accuracy.
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Table 8.4 Empirical sizes for multivariate t-distribution using functional g1.x/

t4 n D 40 n D 80

c d OF
N CCK OFN FHY OF
N OFı

N CCK OFN FHY OF
N
0:5 1/8 0.047 0.011 0.044 0.016 0.053 0.051 0.017 0.045 0.013 0.049

0.059 0.015 0.056 0.014 0.061 0.055 0.017 0.055 0.022 0.059

0:5 1/4 0.057 0.010 0.055 0.023 0.061 0.050 0.016 0.050 0.022 0.053

0.051 0.005 0.048 0.018 0.058 0.054 0.014 0.055 0.022 0.060

0:8 1/8 0.054 0.020 0.050 0.017 0.061 0.052 0.030 0.051 0.016 0.053

0.049 0.019 0.044 0.012 0.049 0.049 0.022 0.048 0.017 0.051

0:8 1/4 0.048 0.013 0.050 0.022 0.053 0.046 0.019 0.042 0.036 0.044

0.054 0.008 0.053 0.017 0.057 0.051 0.018 0.050 0.018 0.052

For each choice of c and d, the upper line corresponding to p D 500 and the second for p D 1000

Table 8.5 Empirical sizes for multivariate t-distribution using functional g2.x/

t4 n D 40 n D 80

c d CQ OFı

N
OFN OF
N CQ OFı

N
OFN OF
N

0:5 1/8 0.074 0.053 0.053 0.056 0.076 0.060 0.052 0.058

0.073 0.055 0.050 0.054 0.077 0.062 0.061 0.064

0:5 1/4 0.067 0.052 0.044 0.051 0.073 0.055 0.054 0.057

0.072 0.057 0.054 0.060 0.070 0.056 0.055 0.060

0:8 1/8 0.074 0.059 0.062 0.066 0.070 0.047 0.051 0.052

0.064 0.052 0.053 0.057 0.075 0.052 0.054 0.055

0:8 1/4 0.081 0.063 0.058 0.063 0.080 0.055 0.056 0.061

0.067 0.052 0.051 0.059 0.068 0.053 0.052 0.056

For each choice of c and d, the upper line corresponding to p D 500 and the second for p D 1000

Table 8.6 Empirical sizes for multivariate t-distribution using functional g3.x/

t4 n D 40 n D 80

c d OFı

N
OFN OF
N OFı

N
OFN OF
N

0:5 1/8 0.053 0.050 0.056 0.055 0.051 0.054

0.050 0.049 0.056 0.059 0.055 0.060

0:5 1/4 0.052 0.048 0.053 0.056 0.056 0.060

0.056 0.048 0.060 0.055 0.056 0.061

0:8 1/8 0.059 0.059 0.066 0.049 0.049 0.052

0.048 0.048 0.054 0.051 0.051 0.058

0:8 1/4 0.067 0.063 0.069 0.053 0.056 0.061

0.049 0.048 0.052 0.048 0.048 0.051

For each choice of c and d, the upper line corresponding to p D 500 and the second for p D 1000
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8.6.2 Test of Covariance Matrices

8.6.2.1 Sizes Accuracy

We first consider testing for H0a W † D I for the following model:

Xij D "i;j"i;jC1; 1 � i � n; 1 � j � p; (8.68)

where "ij are i.i.d. (1) standard normal; (2) centralized Gamma(4,1); and (3) the
student t5. We then study the second test H0b W †1;2 D 0, by partitioning equally
the entire random vector Xi D .Xi1; : : : ;Xip/

T into two subvectors of p1 D p=2 and
p2 D p�p1. In the simulation, we generate samples of two subvectors independently
according to model (8.68). We shall use Algorithm 1 with L2 functional. Tables 8.7
and 8.8 report the simulated sizes based on 1000 replications with N D 1000 half-
sampling implementations, and they are reasonably closed to the nominal level 5%.

8.6.2.2 Power Curve

To access the power for testing H0 W † D Ip using the L2 test, we consider the model

Xij D "i;j"i;jC1 C ��i; 1 � i � n; 1 � j � p; (8.69)

where "ij and �i are i.i.d. Student t5 and � is chosen to be 0; 0:02; 0:04; : : : ; 0:7. The
power curve is shown in Fig. 8.1. As expected, the power increases with n.

Table 8.7 Simulated sizes of the L2 test for H0a

N.0; 1/ �.4; 1/ t5
p

n 64 128 64 128 64 128

20 0.045 0.054 0.046 0.047 0.053 0.048

50 0.044 0.045 0.055 0.045 0.046 0.050

100 0.050 0.054 0.047 0.053 0.051 0.049

Table 8.8 Simulated sizes of the L2 test for H0b

N.0; 1/ �.4; 1/ t5
p

n 64 128 64 128 64 128

20 0.044 0.050 0.043 0.055 0.045 0.043

50 0.045 0.043 0.049 0.044 0.053 0.045

100 0.053 0.053 0.053 0.045 0.050 0.050
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Fig. 8.1 Power curve for testing H0 W † D Ip with model (8.69), and n D 20; 50, using the L2 test

8.6.3 A Real Data Application

We now apply our testing procedures to a pancreatic ductal adenocarcinoma (PDAC)
dataset, preprocessed from NCBI’s Gene Expression Omnibus, accessible through
GEO Series accession number GSE28735 (http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE28735). The dataset consists of two classes of gene expression
levels that came from 45 pancreatic tumor patients and 45 pancreatic normal
patients. There are a total of 28,869 genes. We shall test existence of correlations
between two subvectors, which can be useful for identifying sets of genes which are
significantly correlated.

We consider genetic pathways of the PDAC dataset. Pathways are found to be
highly significantly associated with the disease even if they harbor a very small
amount of individually significant genes. According to the KEGG database, the
pathway “hsa05212” is relevant to pancreatic cancer. Among the 28,869 genes,
66 are mapped to this pathway. We are interested in testing whether the pathway
to pancreatic cancer is correlated with some common pathways, “hsa04950”
(21 genes, with name “Maturity onset diabetes of the young”), “hsa04940” (59
genes, with name “Type I diabetes mellitus”), “hsa04972” (87 genes, with name
“Pancreatic secretion”). Let Wi;Xi;Yi, and Zi be the expression levels of individual
i from the tumor group for pathways “hsa05212,” “hsa04950,” “hsa04940,” and
“hsa04972,” respectively. The null hypotheses are HT

01 W cov.Wi;Xi/ D 066�21,
HT
02 W cov.Wi;Yi/ D 066�59 and HT

03 W cov.Wi;Zi/ D 066�87. Similar null hypothesis
HN
01;H

N
01;H

N
01 can be formulated for the normal group. Our L2 test of Algorithm 1 is

compared with the Gaussian multiplier bootstrap (8.30). The results are summarized

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28735
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28735
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Table 8.9 Estimated p-values of tests for covariances between pathway “pancreatic cancer” and
other different pathways, based on N D 106 half-sampling implementations

Tumor patients Normal patients

Pathway Name CCK L2 test CCK L2 test

hsa04950 Maturity onset diabetes of the young 0:013116 0:000000 0:006618 0:000000

hsa04940 Type I diabetes mellitus 0:066270 0:000000 0:074014 0:002327

hsa04972 Pancreatic secretion 0:063291 0:000003 0:095358 0:001189

in Table 8.9. The CCK test is not able to reject the null hypothesis H03 at 5% level
since it gives a p-value of 0:063291. However using the L2 test, H03 is rejected,
suggesting that there is a substantial correlation between pathways “hsa05212” and
“hsa04972.” Similar claims can be made for other cases. The L2 test also suggests
that, at 0:1% level, for the tumor group, the hypotheses HT

02 and HT
03 are rejected,

while for the normal group, the hypotheses HN
02 and HN

03 are not rejected.
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