Chapter 8 )
Hypothesis Testing Shethie
for High-Dimensional Data

Wei Biao Wu, Zhipeng Lou, and Yuefeng Han

Abstract We present a systematic theory for tests for means of high-dimensional
data. Our testing procedure is based on an invariance principle which provides
distributional approximations of functionals of non-Gaussian vectors by those
of Gaussian ones. Differently from the widely used Bonferroni approach, our
procedure is dependence-adjusted and has an asymptotically correct size and power.
To obtain cutoff values of our test, we propose a half-sampling method which
avoids estimating the underlying covariance matrix of the random vectors. The latter
method is shown via extensive simulations to have an excellent performance.

Keywords Gaussian approximation - Goodness-of-Fit Test - Half-sampling -
High-dimensional data - Hypothesis testing - Large p small n - Rademacher
weighted differencing

8.1 Introduction

With the advance of modern data collection techniques, high-dimensional data
appear in various fields including physics, biology, healthcare, finance, marketing,
social network, and engineering among others. A common feature in such datasets
is that the data dimension or the number of involved parameters can be quite large.
As a fundamentally important problem in the study of such data, one would like
to perform statistical inference of those parameters such as multiple testing or
construction of confidence regions. With that one is able to provide an answer to the
question whether there is signal in the dataset, or whether the dataset consists only of
random noises. Due to the high-dimensionality, the inferential procedures developed
for low-dimensional problems may no longer be valid in the high-dimensional
setting. Different approaches should be designed to account for high-dimensionality.
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There exists a huge literature on multiple testing; see, for example, Dudiot and van
der Laan (2008), Efron (2010) and Dickhaus (2014).

We now introduce the setting of our testing problem. Assume that X}, X,, ..., are
independent and identically distributed (i.i.d.) p-dimensional random vectors, with
mean vector & = (i1,...,1p)" = E(X;) and covariance matrix ¥ = cov(X;) =
(ojk)jk<p- We are testing the hypothesis of existence of a signal

Hy:u=0vsHy:u#0 8.1

based on the sample X, ..., X,. This formulation is actually very general and its
solution can be applied to many other problems; see Sect. 8.2. We can estimate u
by the sample mean vector i = X, = n~! >, X;. The classical Hotelling’s 7-
squared test has the form

P (8.2)

where

Si==D7 Y X — X)X —X,)" (8.3)

i=1

is the sample covariance matrix estimate of X. If p is small and fixed, by the Central
Limit Theorem (CLT),

Vn(X, — p) = N, ). (8.4)
By the Law of Large Numbers, if ¥ is non-singular,
ﬁ];l — ¥~ almost surely. (8.5)

Clearly (8.4) and (8.5) imply that under Hy, the Hotelling’s 7-squared statistic
nT = )([2, (x?* distribution with degrees of freedom p). Thus we can reject H at
level 0 < o < 1ifnT > )(;l_a, the (1 — a)th quantile of X,z;-

In the high-dimensional situation in which p can be much larger than n, the
CLT (8.4) is no longer valid; see Portnoy (1986). Furthermore, XAIH is singular and
thus T is not well-defined. Also the matrix convergence (8.5) may not hold, see
Marcéenko and Pastur (1967). In this chapter we shall apply a testing functional
approach that does not use fln_l or the precision matrix X~'. A function g : R” —
[0, 00) is said to be a testing functional if the following requirements are satisfied:
(1) (monotonicity) for any x = (x1,...,x,)7 € R and0 < ¢ < 1, g(cx) < g(x); (2)
(identifiability) g(x) = 0 if and only if x = 0. We shall consider the test statistic

T, = g(V/nX,). (8.6)

Examples of g include the L>-based test with g(x) = lexf, the L*°-

based test with g(x) = max;<, |xj|, the weighted empirical process g(x) =
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supMZO(Zf=l 1)|>4h(u)), where h(-) is a nonnegative-valued non-decreasing
function, among others. We reject Hy in (8.1) if 7}, is too big.

As a theoretical foundation, we base our testing procedure on the following
invariance principle result

sup |Plg(v/n(X, — n)) < 1] — Plg(v/nZ,) < 1]| - 0, (8.7)

where Z,Z;, 7, ... are ii.d. N(0, ¥) random vectors and Z, = n~" Y Zi =p
n~'/2Z. Interestingly, though the CLT (8.4) does not generally hold in the high-
dimensional setting, the testing functional form (8.7) may still be valid. Cher-
nozhukov et al. (2014) proved (8.7) with the L* norm g(x) = max;<, |x;|, while
Xu et al. (2014) consider the L* based test with g(x) = >-7_, x7. In Sect. 8.5 we
shall provide a sufficient condition so that (8.7) holds for certain testing functionals.

In applying (8.7) for testing (8.1), one needs to know the distribution of
g(/nZ,) =p g(Z) so that a suitable cutoff value can be obtained. The latter problem
is highly nontrivial since the covariance matrix %, which is viewed as a nuisance
parameter here, is typically not known and the associated estimation issue can be
quite challenging. In Sect. 8.5 we shall propose a half-sampling technique which
can avoid estimating the nuisance covariance matrix .

8.2 Applications

Our paradigm (8.1) is actually quite general and it can be applied to testing of high-
dimensional covariance matrices, testing of independence of high-dimensional data,
analysis of variances with non-normal and heteroscedastic errors.

8.2.1 Testing of Covariance Matrices

There is a huge literature on testing covariance matrices such as uncorrelatedness,
sphericity, or other patterns. For Gaussian data, tests for ¥ = 0211,, where I, is
the identity matrix, can be found in Ahmad (2010), Birke and Dette (2005), Chen
et al. (2010), Fisher et al. (2010) and Ledoit and Wolf (2002). Tests for equality of
covariance matrices are studied in Bai et al. (2009) and Jiang et al. (2012), and for
sphericity is in Onatski et al. (2013). Minimax properties are considered in Cai and
Ma (2013). For other contributions, see Qu and Chen (2012), Schott (2005, 2007),
Srivastava (2005), Xiao and Wu (2013) and Zhang et al. (2013).

Assume that we have data matrix Y, = (Y;j)i<i<ni<j<p, Where (¥j;
i=1,...,n, arei.i.d. p-dimensional random vectors. Let

4
j=1’

o =cov(Yi;, Yip), 1=jk=p, (8.8)
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be the covariance function. Consider testing hypothesis for uncorrelatedness:
Hy : gy = 0 forall j # k. (8.9)

For simplicity assume that E(Y;;) = 0. For a pair a = (j, k) write X;, = Y;;Yi,
and X, = n! Z?=1 X4 and the ( p2 — p)-dimensional vector X = ()_(a)ae A, Where

= {(j,k) : j # k,j < p,k < p}. The hypothesis Hy in (8.9) can be tested
by using the test statistics T = g(/nX). Xiao and Wu (2013) considered the L
based test with g(x) = max; |x;|, generalizing the result in Jiang (2004) which
concerns the special case for i.i.d. vectors with independent entries. Han and Wu
(2017) performed an L? based test for patterns of covariances with the test statistic

T=Y X:=) 6. (8.10)

a€A JjFk
With slight modifications, one can also test the sphericity hypothesis
Hy:>X = O'ZIP for some 62 > 0, (8.11)

where I, is the p x p identity matrix. Let Ay = {(j, k) : j,k < p} with diagonal
entries added to A. Fora = (j,j) € Ao, let X;, = Y}, — 0. If 6 is known, then H
in (8.11) can be rejected at level « € (0,1) if T = g(\/n}_() > ti—o, Where t1—q is
the (1 — «)th quantile of g(Z) and Z is a centered Gaussian vector With covariance
structure cov(Z,,Zp) = E(XioXip), a,b € Ayp. In the case that o2 is not known,
we shall use an estimate. For example, we can let 62 =n"! j 1 crjj , and consider
X = Y2 — 62 LetX? = X, if a = (j, k) withj # k. The hypothesis Hy in (8.11)

La a

can be tested by the statistic 7° = g(/nX°).

8.2.2 Testing of Independence

LetY;, = (YLJ i=15 i =1,...,n, be ii.d. p-dimensional random vectors with joint
cumulative distribution function

Fii o jaOpseo5 i) = Py < Vis ooy Yigy < Vjg)- (8.12)

Consider the problem of testing whether entries of Y; are independent. Assume that
the marginal distributions are standard uniform|0, 1]. For j = (ji,...,j4), write
F;(vy) = Fj,,..j,Oj,» - . - yj,)- For fixed d, the hypothesis of d-wise independence is

Hy: Fj(3)) =j, ...y, holdsforall y;,...,y; € (0,1)and j € Ay, (8.13)
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where A4y = {j = (J1,-.-,Ja) : j1 < - < ja < p}. Pairwise and triple-wise
independence correspond to d = 2 and d = 3, respectively. We estimate Fj(yj) by
the empirical cdf

R 1 &
FJ(y.]) = n Z lYi_ijjv (814)
i=1
where the notation Y;; < yjmeans Y;;, <y;, forallh =1,...,d. Letyy,,...,Ymy,

N — oo, be a dense set of [0, 1]%. For example, we can choose them to be the
lattice set {1/K,...,(K — 1)/K} with N = (K — 1)?. Let X;, | < i < n, be the
Np!/(d!(p — d)!)-dimensional vector with the (£j)th component being 1y, ;<y,, —
]_[hEml v, 1 <€ < N,je Ay Then the L*-based test for (8.13) on the dense set
(ym()llyzl has the form n|)_(|%

8.2.3 Analysis of Variance

Consider the following two-way ANOVA model
Yp=p+oi+Bi+8i+epi=1...Lj=1...Jk=1,...K, (815)

where u is the grand mean, o; and B; are the main effects from the first and
the second factors, respectively, and §; are the interaction effect. Assume that
Yiw)i<rj<s» k= 1,..., K, are i.i.d. Consider the hypothesis of interaction:

Hy: é§;=0foralli=1,....1, j=1,....J. (8.16)

In the classical ANOVA procedure, one assumes that g, i < I,j < J, are i.i.d.
N(0, 0?) and makes use of the fact that the sum of squares

1 J
SS; = Z Z(Ej. — Y. - Y.+ 71.)? (8.17)

i=1 j=1

is distributed as ¢ )((21_1)( J—1)" Here f/ij. =K Zf:l Y« and other sample averages

Y., )_/, and Y. are similarly defined. The null hypothesis H is rejected at level
a € (0,1)if

MY

SSEF (1—1)(j— “Dl—a 8.18
U—1)J—1) > SSEF (1—1)(7—1),U(K—1).1 (8.18)
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where Fg_nyy—1)u&—-1),1—« 18 the (1 — «)th quantile of the F-distribution
Fa-1@-1).0x-1) and

I J v
Zi=1 Z,’:l(yz‘jk - Yij~)2

SSp =
£ UK -1)

(8.19)

is an estimate of 0.

The classical ANOVA procedure can be invalid when the assumption that g,
i < I ,j < Jareiid. N(0,0?) is violated. In the latter case SS; may no longer have
a x? distribution. However we can still approximate the distribution of SS; in terms
of (8.7). Fora = (i,j) let X = Y,jk—Ylk—Y/k +Y.r. Then S§S; = ZaeAX where

X, =K~ Zk:l ak-

8.3 Tests Based on L Norms

Fan et al. (2007) considered the L* norm based test of (8.1) with the form

M, = max \/nmf B Hj', where 6 cr Z(XU p,j)2 (8.20)
J=p 0;

Assume that the dimension p satisfies
logp = o(n'?) (8.21)
and the uniform bounded third moment condition

max E|X;; — wil* = o). (8.22)
J=p

Let @ be the standard normal cumulative distribution function and z, = ®~!(«).
Then

PM, > z1—a/p)) < a + o(1). (8.23)
Namely, if we perform the test by rejecting Hy of (8.1) whenever M,, > z1—4/(2p),
the familywise type I error of the latter test is asymptotically bounded by «. As
a finite sample correction, the cutoff value zi—q/(2) in (8.23) can be replaced by
the r-distribution quantile #,—1,1—«/(2p) With degree of freedom n — 1, noting that
(n— 1)1/ 2,&/ / Erj ~ t,—1 if X;; are Gaussian. Due to the Bonferroni correction, the
test by Fan et al. (2007) can be quite conservative if the dependence among entries
of X; is strong. For example, if X;; = X; = --- = X, then instead of using the
cutoff value z1—4/(2), one should use z1—4/2, since the cutoff value z;—4/(2p) leads to
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the extremely conservative type I error oo/ (2p). If entries of X; are independent and
X; is Gaussian, then the type L erroris 1 — (1 — a/p)? — 1 —e™* and it is slightly
conservative. For example, when ¢ = 0.05, 1 — e™® = 0.04877058.

Liu and Shao (2013) obtained Gumbel convergence of M, under the following
conditions: (1) for some r > 3, the uniform bounded rth moment conditions
max;<, E|X; — p;|” = O(1) holds, which is slightly stronger than (8.22) and (2)
weak dependence among entries of X;. For ¥ = (oj);«<p, assume the correlation

matrix R = (rjx)jk<p With rig = ojx/ (crj]l./ zcrlgk/ 2) has the property: for some y > 0,

max#{j <p: |ri| = (logp) ™' 7"} = O(p") (8.24)

holds for all p > 0. Then under (8.21), Theorem 3.1 in Liu and Shao (2013) asserts
the Gumbel convergence

M, —2logp + loglogp = G, (8.25)

where G follows the Gumbel distribution P(G < y) = exp(—e/2/x'/?). By (8.25),
one can reject Hy in (8.1) at level & € (0, 1) based on the L norm test

max V" - 2 10gp — toglogp + g1-a. (8.26)
Jj=r 0j

where g1, is chosen such that P(G < g1—,) = 1 — «. Clearly the latter test has an
asymptotically correct size.

Applying Theorem 2.2 in Chernozhukov et al. (2014), we can have the following
Gaussian approximation result. Assume that there exist constants cj,c; > 0 such
that c; < E(X; — ,uj)2 < ¢ holds for all j < p and assume that u = u,, satisfies

P |:max X1 — ujl = u:| =o(n™) (8.27)
Jj=p

Let my = max;<,(E|X1; — 14j|©)"/* and further assume that

1/2

n~ 8t + my?) (log(pn))’* + n~ 2 (log(pn))*?u — 0. (8.28)

Let Z ~ N(0, R). Then we have the Gaussian approximation result: as n — oo

sup |P(M, > t) — P(|Z|c = 1)| — 0. (8.29)
t

Let 1,4 be the (1 —a)th quantile of |Z|«. The Gaussian approximation (8.29) leads
to L norm based test: Hy is rejected at level « if maxj<, «/n|f;|/6; > ti—y. In
comparison with the result in Fan et al. (2007), the latter test has an asymptotically
correct size and it is dependence adjusted. To obtain an estimate for the cutoff value
t1—y, Chernozhukov et al. (2014) proposed a Gaussian Multiplier Bootstrap (GMB)
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method. Given X, ..., X, let 7;_, be such that

—1/2 e ~ _
P (I}lfapxn |ZXl]el| = tl—alxl,...,Xn) o, (830)

i=1

where e; are ii.d. N(0,1) random variables independent of (Xj)i>1j>1. Note
that 7, can be numerically calculated by extensive Monte Carlo simulations.
In Sect.8.5 we shall propose a Hadamard matrix and a Rademacher weighted
approaches. The simulation study in Sect. 8.6 shows that, for finite-sample perfor-
mance, the latter approach gives a more accurate size than the method based on
Gaussian Multiplier Bootstrap (8.30).

Chen et al. (2016) generalized Fan, Hall and Yao’s L* norm to high-dimensional
dependent vectors. Assume that (X;);ez is a p-dimensional stationary process of the
form

X = G(]:I‘) = (Gl (]:I‘)v s Gp(]:t))Ts (8.31)

where &, t € Z, are ii.d. random variables, 7; = (...,&—1,&) and G(-) is
a measurable function such that X; is well-defined. Assume that the long-run
covariance matrix

o0

Zoo = ) cov(Xo. X)) = (@p)jizp (8.32)

i=—00

exists. Let €7, ¢j,1,j € Z, be i.i.d. random variables. Assume that X, has finite rth
moment, r > 2. Define the functional dependence measures (see, Wu 2005, 2011)
as

0,(m) = max IXi — Gi(. ... €im—2. Eimm—1. 1> Eicmt1s - €Dl (8.33)

If X; are i.i.d., then £ = X and 6,(m) = 0if m > 1. We say that (X,) is geometric
moment contraction (GMC; see Wu and Shao 2004) if there exist p € (0, 1) and
a; > 0 such that

0,(m) < a;p™ =aje”®

2" with a = —log p. (8.34)
Let © = EX;. To test the hypothesis Hy in (8.1), Chen et al. (2016) introduced the
following dependence-adjusted versions of Fan, Hall, and Yao’s M,. Let n = mk,
where m = n'/* and blocks B; = {i : m(I— 1)+ 1 <i < ml}. Let¥; = > icn, Xij
1 <j<p,1 <1<k, be the block sums. Define the block-normalized sum

A k
— 1
e = max Y1 TR e @)= Y W-mp?, (839
=p 9j mk =



8 Hypothesis Testing for High-Dimensional Data 211

and the interlacing normalized sum: let k* = k/2, ,u;.r = (mk*)™! Z;‘; Yy and

M =m

n

Vn/2lf =
ax
J=p 57

k*
. 1
. where (6])* = - > (Yo —mp)?. (8.36)
=1

By Chen et al. (2016), we have the following result: Assume exists a constant { > 0
such that the long-run variance w;; > ¢ forj < p, (8.34) holds with r = 3, and

logp = o(n'/*). (8.37)

Then (8.23) holds for both the block-normalized sum M, and the interlacing

normalized sum M,I. Note that, while (8.37) still allows ultra high dimensions, due
to dependence, the allowed dimension p in condition (8.37) is smaller than the one
in (8.21). Additionally, if the GMC (8.34) holds with some r > 3, (8.24) holds with
the long-run correlation matrix R = D™'/?%D™'/2 where D = diag(Z), and
for some 0 < v < 1/4,

logp = o(n"), (8.38)
then we have the Gumbel convergence for the interlacing normalized sum:
M} —2logp + loglogp = G, (8.39)

where G is given in (8.25). Similarly as (8.26), one can perform the following test
which has an asymptotically correct size: we reject Hy in (8.1) at level @ € (0, 1) if

/2]
max ’

+ > 2logp —loglogp + g1—. (8.40)
Jj=p 6‘/.

8.4 Tests Based on L?> Norms

In this section we shall consider the test which is based on the L? functional with
glx) = le sz LetA; > ---> A, > 0 be the eigenvalues of X. For Z ~ N(0, X),
we have the distributional equality g(Z) = Z'Z =p }7/_, Ajm7, where 7; are i.i.d.
standard N(0, 1) random variables. Let fy = (37—, A})"/%, k > 0, and f = f>. Then
Eg(Z) = fi = tr(X) and var(g(Z)) = 2f%. Xu et al. (2014) provide a sufficient
condition for the invariance principle (8.7) with the quadratic functional g. For some
0<d<lletqg=2+3.
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Condition 1 Let § > 0. Assume EX; = 0, E|X;|* < 0o and let

2,

Ks(X)7 := E‘ |X1|2f Y R (8.41)
T q

Ds(X)? :=E leXZ < 0. (8.42)

Observe that Condition 1, (8.41) and (8.42) are Lyapunov-type conditions.
Assume that

Ko(X)2+K5(X)" EX{EX)?*  Ds(X)*

) a1 w24 o — 0asn — oo. (8.43)

Then (8.7) holds (cf Xu et al. 2014). Consequently we have

P
sup [P((nlX, 5 —f1)/f <) —P(V < 1)| > 0, where V.= Y "f~' A, —1). (8.44)
teER

j=1
In the literature, researchers primarily focus on developing the central limit theorem

— n|}_(n|% _fl — n)_(z-}_(n _fl
! f f

or its modified version; see, for example, Bai and Saranadasa (1996), Chen and Qin
(2010) and Srivastava (2009). Xu et al. (2014) clarified an important issue on the
CLT of R,. By the Lindeberg—Feller central limit theorem, V = N(0,2) as p — oo
holds if and only if A;/f — 0. The distributional approximation (8.44) indicates
that, if A;/f does not go to 0, then the central limit theorem cannot hold for R,,.

Let t;_, be the (1 — a)th quantile of g(Z) = |Z|> = Z'Z. By (8.7) we can reject
(8.1)atlevel ¢ € (0, 1) if

= N(0,2) (8.45)

n|Xu)? > t1—o (8.46)

To calculate #;_, one needs to know the eigenvalues A1, ..., A,. However, estima-
tion of those eigenvalues is a very challenging problem, in particular if one does not
impose certain structural assumptions on 2. In Sect. 8.5.2 we shall propose a half-
sampling based approach which does not need estimation of the covariance matrix
.

The L based tests discussed in Sect. 8.3 have a good power when the alternative
consists of few large signals. If the signals are small and have a similar magnitude,
then the L? test is more powerful. To this end, assume that there exists a constant
¢ > 0and asmall § > 0such that c6 < p; < 6/choldsforallj=1,...,p. We can
interpret § as the departure parameter (from the null Hy with u = 0). For the L*°-
based test to have power approaching to 1, one necessarily requires that /né — oo.
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Elementary calculation shows that, under the much weaker condition np'/2§> — oo,
then the power of the L? based test, or the probability that event (8.46) occurs going
to one. In the latter condition, larger dimension p is actually a blessing as it requires
a smaller departure §.

8.5 Asymptotic Theory

In Sects. 8.3 and 8.4, we discussed the classical L and L2 functionals, respectively.
For a general testing functional, we have the following invariance principle (cf The-
orem 1), which asserts that functionals of sample means of non-Gaussian random
vectors Xi,X,,... can be approximated by those of Gaussian vectors Z;, 7, ...
with same covariance structure. Assume g € C*(RP). For x = (xq,...,x,)” write
g = gj(x) = 0g(x)/0x;. Similarly we define the partial derivatives gj and gj,. For
allj, k,l=1,...,p, assume that

kit := sup (gjgrgil + |gigil + lgigkl + |gugjl + gml) < oo. (8.47)

xeRP
For Z; ~ N(0, X) write Z; = (Zy1,...,Z1p)". Define

P
K, = Z ki (E1X 1 XuXul + E|Zy;ZwZul). (8.48)
jki=1

For g(Z1) =p g(\/nZ,), we assume that its c.d.f. F(f) = P[g(Z) < f] is Holder
continuous: there exists £, > 0, index & > 0, such that for all ¥ > 0, the
concentration function

sup P(t < g(Zy) <t + ) < L,¥°. (8.49)
teR

Theorem 1 (Lou and Wu (2018)) Assume (8.47), (8.49) and ICPZZ/O‘ = o(+/n).

Then

sup [Plg(v/n(X, — ) < 1] = Plg(v/nZy) < 1]l = O Kn™*") — 0. (850)

To apply Theorem 1 for hypothesis testing, we need to know the c.d.f. F(r) =
P[g(Z) < 1]. Note that F(-) depends on g and the covariance matrix X. Thus we
can also write F(-) = Fg x(-). If X is known, the distribution of g(Z) is completely
known and its cdf F(f) = P[g(Z) < 1] can be calculated either analytically or by
extensive Monte Carlo simulations. Let tj—,, 0 < o < 1, be the (1 — «)th quantile
of g(Z). Namely

Plg(Z) > t1—4] = . (8.51)
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Then the null hypothesis H in (8.1) is rejected at level « if the test statistic 7, =
g(/nX,) > f1—y. This test has asymptotically correct size «. Additionally, the (1 —
«) confidence region for p can be constructed as

{neR: g(WnX, — ) <to} ={X, +veR: g(/n) <114} (852)

If ¥ is not known, as a straightforward way to approximate F(f) = F,x(?),
one may use an estimate 3 so that F, ¢.x(7) can be approximated by F, 5 (r). Here
we do not adopt this approach for the following two reasons. First, it can be quite
difficult to consistently estimate X without assuming sparseness or other structural
conditions. The latter assumptions are widely used in the literature; see, for example,
Bickel and Levina (2008a), Bickel and Levina (2008b), Cai et al. (2011) and Fan
etal. (2013). Second, it is difficult to quantify the difference F s (-) — F(-) based on

operator norm or other type of matrix convergence of the estimate . Xu et al.
(2014) argued that, for the L? test with g(x) = Y_7_, x7, one needs to use the
normalized consistency of 3, instead of the widely used operator norm consistency.
We propose using half-sampling and balanced Rademacher schemes.

8.5.1 Preamble: i.i.d. Gaussian Data

In practice, however, the covariance matrix ¥ is typical unknown. Assume at the
outset that X1, ..., X, are i.i.d. N(u, X) vectors. Assume that n = 4m, where m is a
positive integer. Then we can estimate the cumulative distribution function F(f) =
P[g(Z) < 1] by using Hadamard matrices (see, Georgiou et al. 2003; Hedayat and
Wallis 1978; Yarlagadda and Hershey 1997). We say that H is an n x n Hadamard
matrix if its first row consisting all 1s, and all its entries taking values 1 or —1 such
that

HH" = nl,, (8.53)

where [, is the n x n identity matrix. Let
Y ! ZH:H X, j=1 (8.54)
P = iiAi, =1,...,n. .
I= Jn £ Jidis J

By (8.53), we have Y " |H; = Ofor2 < j < nand ) . H;Hy; = 0if
j # Jj.Since X1, ...,X, are i.i.d. N(u, X), it is clear that Y, ..., Y, are also i.i.d.
N(0, X) vectors. Hence the random variables g(Y>), ..., g(¥,) are independent and
identically distributed as g(Z). Therefore we can construct the empirical cumulative
distribution function

N 1 <&
Fm=— > L (8.55)
=2
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which converges uniformly to F(f) as n — oo, and t;_, can be estimated by
few = I:“n_ '(1 — a), the (1 — a)th empirical quantile of I:“n() As an important
feature of the latter method, one does not need to estimate the covariance matrix X,
the nuisance parameter. In combinatorial experiment design, however, it is highly
nontrivial to construct Hadamard matrices. If n is a power of 2, then one can simply
apply Sylvester’s construction. The Hadamard conjecture states that a Hadamard
matrix of order n exists when 4|n. The latter problem is still open. For example, it is
unclear whether a Hadamard matrix exists when n = 668 (see Brent et al. 2015).

8.5.2 Rademacher Weighted Differencing

To circumvent the existence problem of Hadamard matrices in Sect. 8.5.1, we shall
construct asymptotically independent realizations by using Rademacher random
variables. Let ej,j,k € Z, independent of (X;)i>1, be i.i.d. Bernoulli random
variables with P(ejx = 1) = P(gjx = —1) = 1/2. Define the Rademacher weighted
differences

A1/2 — A 1/2 : Xi i ny— Xi
v, = D@y, where D)y < AIPO = IAD (B Xi  Yienm-aXi)

nl/2 |A] n—|A|
(8.56)

where the random set
Aj={1<i<n:g =1} (8.57)

When defining ¥;, we require that A; satisfies [A;] # 0 and |A;] # n. By the
Hoeftding inequality, |A;| concentrates around n/2 in the sense that, for u > 0,
P(||Ajl — n/2| > u) < 2exp(—2u*/n). Alternatively, we consider the balanced
Rademacher weighted differencing: let A7, AS, ... be simple random sample drawn
equally likely from A,, = {A C {1,...,n}: |A| = m}, where m = |n/2]. Similarly
as Y; in (8.56), we define

Yj° = D(A;’). (8.58)

Clearly, given A; (resp. A?), Y; (resp. Y]f’) has mean 0 and covariance matrix %. Based
on Y; in (8.56) (resp. Yj° in (8.58)), define the empirical distribution functions

N

A 1

FN(l‘) = N E lg(yj)ft, (8.59)
Jj=1
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where N — oo and
| X
Fyw =, h M (8.60)
j=1

ForsetsA,B C {1,...,n},letA°={l,...,n} —A,B°={l1,...,n} — Band
d(A.B) = max {[]A N B| - Z|, |4 N B| Z|, 1A N B| — Z|, A€ N B¢ — Z|} .
If A, B are chosen according to a Hadamard matrix, then d(A, B) = 0. Assume that

d(A,B) <0.1n. (8.61)
Then there exists an absolute constant ¢ > 0 such that

cov(D(A),D(B)) = §%, where |§] < cd(A’B).
n

(8.62)

Again by the Hoeffding inequality, if we choose A, A, according to (8.57), there
exists absolute constants ¢y, ¢; > 0 such that P(d(A},Az) > u) < c; exp(—czuz/n),
indicating that (8.61) holds with probability close to 1, d(A},Ay) = Op(nl/ 2) and
hence the weak orthogonality with §(A1, A2) = Op(n~'/?).

The01:em2 (Lou and Wu (2018)) Under conditions of Theorem 1, we have
sup, |Fy(t) — F(t)| — 0 in probability as N — oo.

8.5.3 Calculating the Power

The asymptotic power expression is

B(p) = Pg(Z + /np) > t1-4]. (8.63)

Given the sample X, . .., X,, whose mean vector i may not necessarily be 0, based
on the estimated 7|, from the empirical cumulative distribution functions (8.59)
and (8.60), we can actually estimate the power function by the following:

B(v) = P(e(D(AY) + Vnv) = thy|Xi.....X,)

N
1
=N D Loty + =i (8.64)
j=1
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8.5.4 An Algorithm with General Testing Functionals

For ease of application, we shall in this section provide details of testing the
hypothesis Hy in (8.1) using the Rademacher weighting scheme described in
Sect. 8.5.2.

To construct a confidence region for w, one can use (8.52) with #;_, therein
replaced by the empirical quantile ii’_a.

8.6 Numerical Experiments

In this section, we shall perform a simulation study and evaluate the finite-
sample performance of our Algorithm 1 with I:"]‘j,(t) defined in (8.60). Tests for
mean vectors and covariance matrices are considered in Sects.8.6.1 and 8.6.2,
respectively. Section 8.6.3 contains a real data application on testing correlations
between different pathways of a pancreatic ductal adenocarcinoma dataset.

8.6.1 Test of Mean Vectors

We consider three different testing functionals: for x = (xi, ... ,x,,)T € RP, let

p p
2 2 2
g1(0) =max|yl. &) =Y |5 g =supc® Y My e
J=p =1 c=>0 =1

For the L*° form g;(x), four different testing procedures are compared: the
procedure using our Algorithm 1 with F5, () replaced by Fy(:); cf (8.59); or by

N n
~ 1 1 _
T i
v = » Lyt Where Y/ = Jn > ei(X; — X) (8.65)
j=1 i=1

Algorithm 1: Rademacher weighted testing procedure

1. Input X, ..., Xy;

. Compute the average X,, and the test statistic T = g(Jnf(,,);

. Choose a large N in (8.60) and obtain the empirical quantile 77_;
. Reject Hy atlevel a if T > 7_;

. Report the p-value as FS(T).

D A~ W
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and ¢j; are i.i.d. Bernoulli(1/2) independent of (Xj); the test of Fan et al. (2007)
(FHY, see (8.20) and (8.23)) and the Gaussian Multiplier Bootstrap method in
Chernozhukov et al. (2014) (CCK, see (8.30)).

For g»(x), we compare the performance of our Algorithm 1 with lAf“]‘\’, (), Fy(-) and
f?}:,(-), and also the CLT-based procedure of Chen and Qin (2010) (CQ), which is a
variant of (8.45) with the numerator n)_(nT X, —fi therein replaced by n~! Z# ' XLTXI

The portmanteau testing functional g3 (x) is a marked weighted empirical process.

For our Algorithm 1 and the Gaussian Multiplier Bootstrap method, we calculate
the empirical cutoff values with N = 4000. For each functional, we consider two
models and use n = 40, 80 and p = 500, 1000. The empirical sizes for each case
are calculated based on 1000 simulations.

Example 1 (Factor Model) Let Z;; be i.i.d. N(0, 1) and consider
Xi=(Zn.....Zp) +0"(Zio..... Zo)". i=1,....n, (8.66)

Then X; are i.i.d. N(0, X) with ¥ =1, +p®117, where 1 = (1,...,1)T. Larger §
implies stronger correlation among the entries X;i, . .., Xjp.

Table 8.1 reports empirical sizes for the factor model with g(-) at the 5%
significance level. For each choice of p, n, and 6, our Algorithm 1 with F5,(-) and

Fy() perform reasonably well, while the empirical sizes using I:";,(~) are generally
slightly larger than 5%. The empirical sizes using Chernozhukov et al.’s (8.30) or
Fan et al.’s (8.23) are substantially different from the nominal level 5%. For large &,
as expected, the procedure of Fan, Hall, and Yao can be very conservative.

The empirical sizes for the factor model using g»(-) are summarized in Table 8.2.
Our Algorithm 1 with 1:",‘(,(') and Fy () perform quite well. The empirical sizes for
Chen and Qin’s procedure deviate significantly from 5%. This can be explained by
the fact that CLT of type (8.45) is no longer valid for model (8.66); see the discussion
following (8.45) and Theorem 2.2 in Xu et al. (2014).

When using functional g;(x), our Algorithm 1 with 1:",‘(,(') and F ~(+) perform

slightly better than lAf“;[, () and approximate the nominal 5% level well (Table 8.3).

Table 8.1 Empirical sizes for the factor model (8.66) with g;(-)

n =40 n =80
p 8 FS  Ccck Fy FHY F) Fy CCK Fy  FHY F}
500 —0.05 0.053 0.028 0052 0028 0059 0053 0037 0052 0031 0.055
1000 0.052 0.023 0052 0035 0057 0051 0.036 0.051 0034 0053
500  0.05 0051 0.034 0054 0014 0064 0047 0.030 0.044 0018 0.047
1000 0.057 0.035 0058 0011 0063 0053 0044 0055 0015 0.056

500 0.1 0.046 0.026 0.048 0.009 0.055 0.053 0.042 0.054 0.007 0.056
1000 0.059 0.041 0.059 0.007 0.063 0.052 0.045 0.054 0.008 0.056
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Table 8.2 Empirical sizes for the factor model (8.66) using functional g, (x)

n=40 n =80
p § CcQ jod Fy B, cQ FS Fy B,
500 —0.05 0078 0.055 0061 0066 0063 0048 0.047  0.048
1000 0.081 0.063 0.066 0072 0066 0050 0.049  0.053
500 0.05 0074 0054 0054 0059 0067 0052 0.053 0.054
1000 0.075 0054 0.052 0056 0076 0058 0057 0.059
500 0.1 0067 0049 0051 0052 0068 0055 0052 0.056
1000 0.083  0.064 0.064 0067 0068 0048 0051 0.051

Table 8.3 Empirical sizes for the factor model (8.66) using functional g3(x)

n =40 n =80
» 5 Bo Fy Py Fo Py B
500 —0.05 0.061 0.059 0.066 0.049 0.048 0.049
1000 0.062 0.064 0.073 0.058 0.059 0.063
500 0.05 0.054 0.058 0.060 0.053 0.053 0.055
1000 0.053 0.054 0.057 0.059 0.059 0.060
500 0.1 0.049 0.049 0.051 0.053 0.053 0.055
1000 0.053 0.054 0.057 0.059 0.059 0.060

Example 2 (Multivariate t-Distribution) Consider the multivariate #,, vector
X = X, ... ,Xip)T = Yi\/v/Wi ~60,X), i=1,...,n (8.67)

where the degrees of freedom v = 4, ¥ = (0j);—;, 05 = 1 forj = 1,...,pand
o =cli—kl™ 1<j#k=<p,

and ¥; ~ N(0, X), W; ~ x? are independent. The above covariance structure allows
long-range dependence among X;i, . .., Xj,; see Veillette and Tagqu (2013).

We summarize the simulated sizes for model (8.67) in Tables 8.4, 8.5, and 8.6.
As in Example 1, similar conclusions apply here. Due to long-range dependence,
the procedure of Fan, Hall, and Yao appears conservative. The Gaussian Multiplier
Bootstrap (8.30) yields empirical sizes that are quite different from 5%. The CLT-
based procedure of Chen and Qin is severely affected by the dependence. In practice
we suggest using Algorithm 1 with lAf“]‘\’, (-) which has a good size accuracy.
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Table 8.4 Empirical sizes for multivariate ¢-distribution using functional g (x)

1y n =40 n =80

¢ d F, cck Fy PHY F, F, ccK Fy  FHY F}

0.5 1/8 0.047 0.011 0044 0.016 0.053 0.051 0.017 0.045 0.013 0.049
0.059 0.015 0.056 0.014 0.061 0.055 0.017 0.055 0.022 0.059

0.5 1/4 0.057 0.010 0055 0.023 0061 0050 0016 0050 0.022 0.053
0.051 0.005 0.048 0.018 0.058 0.054 0.014 0.055 0.022 0.060

0.8 1/8 0.054 0.020 0.050 0.017 0.061 0.052 0.030 0051 0.016 0.053
0.049 0.019 0.044 0.012 0.049 0.049 0.022 0.048 0.017 0.051

0.8 1/4 0.048 0.013 0050 0.022 0.053 0.046 0.019 0.042 0.036 0.044
0.054 0.008 0.053 0.017 0.057 0.051 0.018 0.050 0.018 0.052

For each choice of ¢ and d, the upper line corresponding to p = 500 and the second for p = 1000

Table 8.5 Empirical sizes for multivariate z-distribution using functional g, (x)

1y n =40 n =80

c d CcQ £ Fy El CcQ £ Fy El

05 1/8 0074 0053 0053 0056 0076 0060 0052  0.058
0.073  0.055 0050 0054 0077 0062 0061  0.064

0.5 1/4 0067 0052 0044 0051 0073 0055 0054  0.057
0072  0.057 0054 0060 0070 0056  0.055  0.060

0.8 1/8 0074 0059 0062 0066 0070 0047 0051  0.052
0064 0052 0053 0057 0075 0052 0054  0.055

0.8 1/4 0081 0063 0058 0063 0080 0055 0056  0.061
0.067 0.052 0051 0059 0068 0053 0052  0.056

For each choice of ¢ and d, the upper line corresponding to p = 500 and the second for p = 1000

Table 8.6 Empirical sizes for multivariate z-distribution using functional g3(x)

1y n =40 n =80

c d Fo By B Fo By Bl

0.5 1/8 0.053 0.050 0.056 0.055 0.051 0.054
0.050 0.049 0.056 0.059 0.055 0.060

0.5 1/4 0.052 0.048 0.053 0.056 0.056 0.060
0.056 0.048 0.060 0.055 0.056 0.061

0.8 1/8 0.059 0.059 0.066 0.049 0.049 0.052
0.048 0.048 0.054 0.051 0.051 0.058

0.8 1/4 0.067 0.063 0.069 0.053 0.056 0.061
0.049 0.048 0.052 0.048 0.048 0.051

For each choice of ¢ and d, the upper line corresponding to p = 500 and the second for p = 1000
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8.6.2 Test of Covariance Matrices

8.6.2.1 Sizes Accuracy

We first consider testing for Hy, : ¥ = I for the following model:
XUZSiJ'SiJ'+1,1fifn,lfjfpa (8.68)

where ¢;; are i.i.d. (1) standard normal; (2) centralized Gamma(4,1); and (3) the

student #5. We then study the second test Hy, : X1, = 0, by partitioning equally

the entire random vector X; = (X;q, ... ,Xi,,)T into two subvectors of p; = p/2 and

p>» = p—pi. In the simulation, we generate samples of two subvectors independently

according to model (8.68). We shall use Algorithm 1 with L? functional. Tables 8.7

and 8.8 report the simulated sizes based on 1000 replications with N = 1000 half-

sampling implementations, and they are reasonably closed to the nominal level 5%.

8.6.2.2 Power Curve

To access the power for testing Hy : £ = I,, using the L test, we consider the model

Xij = €ijéijr +pti, 1 <i<n 1<j<p, (8.69)

where ¢; and {; are i.i.d. Student 5 and p is chosen to be 0,0.02,0.04, ...,0.7. The
power curve is shown in Fig. 8.1. As expected, the power increases with n.

Table 8.7 Simulated sizes of the L test for Hy,

N(0,1) I4,1) ts
p
n 64 128 64 128 64 128
20 0.045 0.054 0.046 0.047 0.053 0.048
50 0.044 0.045 0.055 0.045 0.046 0.050
100 0.050 0.054 0.047 0.053 0.051 0.049

Table 8.8 Simulated sizes of the L? test for Hyy,

N(0,1) I4,1) ts
p
n 64 128 64 128 64 128
20 0.044 0.050 0.043 0.055 0.045 0.043
50 0.045 0.043 0.049 0.044 0.053 0.045

100 0.053 0.053 0.053 0.045 0.050 0.050
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Fig. 8.1 Power curve for testing Hy : ¥ = I, with model (8.69), and n = 20, 50, using the L test

8.6.3 A Real Data Application

We now apply our testing procedures to a pancreatic ductal adenocarcinoma (PDAC)
dataset, preprocessed from NCBI’s Gene Expression Omnibus, accessible through
GEO Series accession number GSE28735 (http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE28735). The dataset consists of two classes of gene expression
levels that came from 45 pancreatic tumor patients and 45 pancreatic normal
patients. There are a total of 28,869 genes. We shall test existence of correlations
between two subvectors, which can be useful for identifying sets of genes which are
significantly correlated.

We consider genetic pathways of the PDAC dataset. Pathways are found to be
highly significantly associated with the disease even if they harbor a very small
amount of individually significant genes. According to the KEGG database, the
pathway “hsa05212” is relevant to pancreatic cancer. Among the 28,869 genes,
66 are mapped to this pathway. We are interested in testing whether the pathway
to pancreatic cancer is correlated with some common pathways, “hsa04950”
(21 genes, with name “Maturity onset diabetes of the young™), “hsa04940” (59
genes, with name “Type I diabetes mellitus™), “hsa04972” (87 genes, with name
“Pancreatic secretion”). Let W;, X;, Y;, and Z; be the expression levels of individual
i from the tumor group for pathways “hsa05212,” “hsa04950,” “hsa04940,” and
“hsa04972,” respectively. The null hypotheses are Hgl : cov(Wi, X)) = Ogexals
HE, : cov(W;, Y;) = Ogsxso and HY; : cov(W;, Z;) = Ogexs. Similar null hypothesis
HY)\, HY),, H| can be formulated for the normal group. Our L? test of Algorithm 1 is
compared with the Gaussian multiplier bootstrap (8.30). The results are summarized


http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28735
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28735
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Table 8.9 Estimated p-values of tests for covariances between pathway “pancreatic cancer” and
other different pathways, based on N = 10° half-sampling implementations

Tumor patients Normal patients
Pathway ~ Name CCK L? test CCK L2 test
hsa04950 Maturity onset diabetes of the young 0.013116 0.000000 0.006618 0.000000
hsa04940 Type I diabetes mellitus 0.066270  0.000000 0.074014 0.002327
hsa04972 Pancreatic secretion 0.063291 0.000003 0.095358 0.001189

in Table 8.9. The CCK test is not able to reject the null hypothesis Hys at 5% level
since it gives a p-value of 0.063291. However using the L? test, Hoz is rejected,
suggesting that there is a substantial correlation between pathways “hsa05212” and
“hsa04972.” Similar claims can be made for other cases. The L? test also suggests
that, at 0.1% level, for the tumor group, the hypotheses H(, and H{; are rejected,
while for the normal group, the hypotheses Hf)\'2 and Hg; are not rejected.
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