
Chapter 6
Finding Patterns in Time Series
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Abstract Large datasets are often time series data, and such datasets present
challenging problems that arise from the passage of time reflected in the datasets. A
problem of current interest is clustering and classification of multiple time series.
When various time series are fitted to models, the different time series can be
grouped into clusters based on the fitted models. If there are different identifiable
classes of time series, the fitted models can be used to classify new time series.

For massive time series datasets, any assumption of stationarity is not likely to
be met. Any useful time series model that extends over a lengthy time period must
either be very weak, that is, a model in which the signal-to-noise ratio is relatively
small, or else must be very complex with many parameters. Hence, a common
approach to model building in time series is to break the series into separate regimes
and to identify an adequate local model within each regime. In this case, the problem
of clustering or classification can be addressed by use of sequential patterns of the
models for the separate regimes.

In this chapter, we discuss methods for identifying changepoints in a univariate
time series. We will emphasize a technique called alternate trends smoothing.

After identification of changepoints, we briefly discuss the problem of defining
patterns. The objectives of defining and identifying patterns are twofold: to cluster
and/or to classify sets of time series, and to predict future values or trends in a time
series.
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6.1 Introduction

Many really large datasets are time series, and such datasets present unique
problems that arise from the passage of time reflected in the datasets. A problem
of current interest is clustering and classification of multiple time series; see, for
example, Lin and Li (2009), Fu (2011), Zhou et al. (2012), and He et al. (2014).
When various time series are fitted to models, the different time series can be
grouped into clusters based on the fitted models. If there are different identifiable
classes of time series, the fitted models can be used to classify new time series.

For massive time series datasets, any assumption of stationarity is not likely to
be met. It is generally futile to attempt to model large time series using traditional
parametric models.

In all statistical models, we seek to identify some random variable with zero
autocorrelations whose realizations are components of the observable variables.
The model is then composed of two parts, a systematic component plus a random
component.

The problem in modeling time series is identification of any such randomvariable
in a model over a long time period, or even in a short time period when the data are
massive.

Any useful time series model that extends over a lengthy time period must either
be very weak, that is, a model in which the signal-to-noise ratio is relatively small,
or else must be very complex with many parameters.

A common approach to model building in time series is to break the series into
separate regimes and to identify an adequate local model within each regime. In
this case, the problem of clustering or classification can be addressed by use of
sequential patterns of the models for the separate regimes.

6.1.1 Regime Descriptors: Local Models

Within a particular time regime the time series data exhibit some degree of
commonality that is captured in a simple model. The model may specify certain
static characteristics such as average value (mean, median, and so on) or scale
(variance, range, and so on). The model may also specify certain time-dependent
characteristics such as trends or autocorrelations. The model within any regime
may be very specific and may fit most of the observations within that regime, or
it may be very general with many observations lying at some distance from their
fitted values. For the data analyst, the choice of an appropriate model presents the
standard tradeoff between a smooth fit and an “over” fit.

The beginning and ending points of each regime are important components of
the model. Independent of the actual beginning and ending points, the length of the
regime is also an important characteristic.
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The model may be formulated in various ways. For purposes of clustering and
classification of time series, it may be desirable for the model to be one of a small
pre-chosen set of models. It may also be desirable that the individual characteristics
be specified as one a particular small set. For example, if the model specifies
location, that is some average value within the regime, we may use categorical
labels to specify ranked levels of location; “a” may denote small, “b” may denote
somewhat larger average values, and so on. These relative values are constant within
a given regime, but the set of possible categories depends on the values within other
regimes in the time series.

Specifying a model in place of the full dataset allows for significant data
reduction. Substitution of the individual values within a regime by the sufficient
statistical descriptors is an important form of data reduction in time series.

6.1.2 Changepoints

Once we accept that different models (or models with different fitted parameters)
are needed in different regimes, the main problem now becomes identification of the
individual regimes; that is, identification of the changepoints separating regimes.

The complexity of this problem depends to a large extent on the “smoothness” of
our individual models; if the models are linear in time, then changepoints are easier
to identify than if the models are nonlinear in time or if they involve features other
than time, such as autoregressive models.

The two change points that determine the extent of a regime together with the
sufficient statistical descriptors describing the regime may be an adequate reduction
of the full set of time series data within the regime.

6.1.3 Patterns

Once regimes within a time series are identified, the patterns of interest now become
the sequences—or subsequences—of local models for the regimes.

Between any two changepoints, we have a local model, say �i.t/. A particular
sequence of local models, �i.t/; �iC1.t/; : : : ; �iCr.t/, defines a pattern. We will
often denote a pattern in the form Pri, where Pri D .�i.t/; �iC1.t/; : : : ; �iCr.t//.
While the model is a function of time together with descriptions of other model
components of the temporal relationships, such as the probability distribution of a
random “error” component, we may represent each �i.t/ as a vector whose elements
quantify all relevant aspects of the model.
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6.1.4 Clustering, Classification, and Prediction

There is considerable interest currently in learning in time series data. “Learning”
generally means clustering and/or classification of time series. This is one of the
main motivations of our work in pattern recognition within time series.

Forecasting or prediction is also an important motivation for time series analysis,
whether we use simple trend analysis, ARMA-type models, or other techniques of
analysis.

Prediction in time series, of course, is often based on unfounded hopes. We
view the prediction problem as a simple classification problem, in which statistical
learning is used to develop a classifier based on patterns. The response could be
another local model within the class of local models used between changepoints, or
the response could be some other type of object, such as a simple binary “up” or
“down.” The length of time over which the prediction is made must, of course, be
considered in the classification problem.

6.1.5 Measures of Similarity/Dissimilarity

Clustering or classification is often based on some metric for measuring dissim-
ilarity of elements in a set. For clustering and classification of time series or
subsequences of time series based on patterns, we need a metric �.Pri;Psj/, where
Pri is a pattern consisting of a sequence �i; �iC1; : : : ; �iCr and Psj is a pattern
consisting of a sequence over s regimes beginning at the jth one.

6.1.6 Outline

In the following we discuss methods for identifying changepoints in a univariate
time series. In massive datasets a major challenge is always that of overfitting. With
so much data, very complex models can be developed, but model complexity does
not necessarily result in better understanding or in more accurate predictions.

We will generally consider linear models, either simple constant models or
simple linear trends. By restricting our attention to models that are linear in time,
we avoid some kinds of overfitting. In smoothing time series using a sequence of
linear models, “overfitting” is the identification of spurious changepoints.

Our main concern will be on the identification of changepoints, and we will
emphasize a technique called alternate trends smoothing.

After identification of changepoints, we briefly discuss the problem of defining
patterns. The objectives of defining and identifying patterns are twofold: to cluster
and/or to classify sets of time series, and to predict future values or trends in a time
series.
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Although we do not emphasize any specific area of application, some of our work
has been motivated by analysis of financial time series, so we occasionally refer to
financial time series data, in particular, to series of stock prices or of rates of return.

6.2 Data Reduction and Changepoints

Analysis of massive data sets, whether they are time series or not, often begins
with some form of data reduction. This usually involves computation of summary
statistics that measure central tendencies and other summary statistics that measure
spread. These two characteristics of a dataset are probably the most important ones
for a stationary population in which a single simple model is adequate.

Even assuming a single model for all data, just concentrating on summary
measures can miss important information contained in some significant individual
observations. These significant observations are often the extreme or outlying points
in the dataset. One simple method of analyzing a time series is just to assume a
single constant model and to identify the extreme points, say the 10% outliers, with
respect to that model. These outliers may carry a significant amount of information
contained in the full dataset. The set of outliers may be further reduced. Fink
and Gandhi (2011), for example, described a method for successively identifying
extreme points in a time series for the purpose of data reduction. The extreme points
alone provide a useful summary of the entire time series.

Another type of significant point in a time series is one that corresponds to a
change in some basic characteristic of the time series. A changepoint may or may
not be an extreme point. Changepoints can also be used for data reduction because
they carry the most significant information, at least from one perspective.

In a time series, a changepoint is a point in time at which some property of
interest changes. A changepoint, therefore, has meaning only in the context of a
model. The model for the observable data may be some strong parametric model,
such as an ARMA model, or it may be some weak parametric model, such as
constant median and nothing more. In the former case, a changepoint would be
a point in time at which one of the parameters changes its value. (Here, we are
assuming ARMAmodels with constant parameters.) In the latter case, a changepoint
would be any point at which the median changes. A changepoint may also be a point
in time at which the class of appropriatemodel changes. Perhaps an ARMAmodel is
adequate up to a certain point and then beyond that the constant variance assumption
becomes entirely untenable.

From one perspective, the problem of identification of changepoints can be
viewed as just a part of a process of model building. This, of course, is not a well-
posed problem without further restrictions, such as use of some pre-selected class
of models and specification of criteria for ranking models.

In the following, we will focus on identification of changepoints in simple
piecewise linear models of an observable random variable. We do not assume finite
moments, so we will refer to the parameter of central tendency as the “median,” and



130 J. E. Gentle and S. J. Wilson

the parameter of variability as the “scale.” We will also focus most of our study on
univariate time series, although we will consider some extensions to multivariate
series.

There is a vast literature on identification of changepoints, but we do not attempt
any kind of general review; rather we discuss some of the methods that have proven
useful for the identification of patterns.

6.2.1 Piecewise Constant Models

The simplest model for time series with changepoints is one in which each regime
is modeled by a constant. The constant is some average value of the data over that
regime. For our purposes, the nature of that “average” is not relevant; however,
because of possibly heavy tails in the frequency distributions and asymmetry of the
data, we often think of that average as a median.

There are various approaches to modeling time series with median values that
change over time. The first step in any event is to determine the breakpoints.
Sometimes, when the data-generating process is indeed a piecewise constant model,
the breakpoints may be quite apparent, as in Fig. 6.1.

In other cases, we may choose to approximate the data with a piecewise constant
model, as in Fig. 6.2, even though it is fairly obvious that the underlying data-
generating process is not piecewise constant or even piecewise linear.

Fig. 6.1 Time series
following a piecewise
constant model

0 20 40 60 80 100

−
15

−
10

−
5

0
5

10
15

Time

x



6 Finding Patterns in Time Series 131

Fig. 6.2 Time series
approximated by a piecewise
constant model
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There are various straightforward ways of determining the values of the approxi-
mating constants. A simple batch process is to use sample quantiles of the data that
correspond to some parametric model, such as a normal distribution.

6.2.2 Models with Changing Scales

Piecewise constant models, such as the data in Fig. 6.1 seem to follow, or other
simple models for changing location may not to be of much interest, but there is a
type of derived financial data that exhibit similar behavior. It is rates of return. The
standard way of defining the rate of return for stock prices or stock indexes from
time t to time t C 1 is logXtC1 � logXt, where XtC1 and Xt are the prices at the
respective times.

A stylized property of rates of return is volatility clustering. Figure 6.3 is an
illustration of this property for a small monthly sequence of the S&P 500 Index
over a period from January, 2010, through November, 2015. (This short time series
was just chosen arbitrarily. More data and data over other time spans may illustrate
this better; but here, our emphasis is on a simple exposition. See Gentle and Härdle
(2012) for more complete discussions of volatility clustering and other properties of
financial time series.)

Volatility clustering is an example of changes in a time series in which the
location (mean or median) may be relatively unchanged, but the scales change from
one regime to another. The changepoints in this case are points in the time series
where the scales change. The derive time series, that is, the volatility time series can
be approximated with a piecewise constant model.
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Fig. 6.3 Monthly log rates of
return of S&P 500
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In order to identify changes in scale or volatility, we must have some measure
of volatility. It may not be obvious how to measure volatility in a time series,
and this is especially true if the volatility is changing. A simple measure, called
“statistical volatility” by economists, is just the sample standard deviation, which
of course ignores any autocorrelations. To illustrate, however, we compute the
statistical volatilities over the apparent separate regimes of the log returns shown
in Fig. 6.3. This type of analysis results in a piecewise constant time series shown
in Fig. 6.4 of the type we discussed in Sect. 6.2.1. There are various methods for
detecting changepoints for scales, but we will not discuss them here.

6.2.3 Trends

The main interest in patterns in time series most often focuses on changes in trends.
This is particularly true in financial time series, see, for example, Bao and Yang
(2008) and Badhiye et al. (2015) for methods that focus solely on trends.

More interesting simple linear models in time series are those that exhibit a
“trend” either increasing or decreasing. Changepoints are the points at which the
trend changes.

Identification of changepoints is one of the central aspects of technical analysis
of financial data, and is the main feature of the so-called point and figure charts that
have been used for many years (Dorsey 2007). Point and figure charts are good for
identification of changepoints and the amount of change within an up or a down
trend.
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Fig. 6.4 Monthly statistical
volatility of log returns of
S&P 500
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Some interesting patterns are easily seen in a point and figure chart. For example,
a pattern that many technical analysts believe carries strong predictive powers is the
“head-and-shoulders” pattern. Figure 6.5 shows the stock price for Intel Corporation
(NASDAQ:INTC), and on the right side, a modified point and figure chart. (The
modifications, suggested in Gentle (2012), among other things involve the definition
of threshold change.) The head-and-shoulders pattern is clearly visible in both the
graph of the raw prices on the left and the trend chart on the right. (This is a very
strong head-and-shoulders pattern; most head-and-shoulders patterns that technical
analysts would identify are not this clear.)

Notice in the trend chart in Fig. 6.5 that the time axis is transformed into an axis
whose values represent only the ordered changepoints. One of the major deficiencies
of point and figure charts and trend charts is that information about the length of time
between changepoints is not preserved.

A very effective smoothing method is use of piecewise linear models. Piecewise
linear fits are generalizations of the piecewise constant models, with the addition of
a slope term. There are many variations on this type of fit, including the criterion for
fitting (ordinary least squares is most common) and restrictions such as continuity
(in which case the piecewise linear fit is a first degree spline). New variations on
the basic criteria and restrictions are suggested often; see, for example, Zhou et al.
(2012).

Some breaks between trends are more interesting than others, depending on
the extent to which the trend changes. Within a regime in which a single trend is
dominant, shorter trends of different direction or of different magnitude may occur.
This raises the issue of additional regimes, possibly leading to overfitting or of
leaving a regime in which many points deviate significantly from the fitted model.
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Fig. 6.5 Intel price, 2014-6-1, through 2015-7-31, and the associated trend chart

6.3 Model Building

One of the main objectives of building a model for a time series is to reduce
the amount of data by use of an approximate representation of the dataset. While
the main objectives of the standard models for analysis of time series, such
as ARIMA and GARCH extensions in the time domain and Fourier series or
wavelets in the frequency domain, may be to understand the data-generating process
better, such models also provide an approximation or smoothing of the data and
thereby achieve significant data reduction. Several approximations based on simple
piecewise models, each with its three-letter-acronym, have been proposed. These
obviously depend on identification of changepoints prior to or in conjunction with
the modeling within the individual regimes. Representation of the sequence of
models then becomes an important issue. While a model is usually represented
as a parameterized equation, a common method of simplifying the representation
further is to define a set of models, often of a common form, but each instantiated
with fixed values of all parameters, and then to associate a symbol with each
instantiation of each model. Two methods following this approach are symbolic
aggregate approximation (SAX), see Lin et al. (2007), and nonparametric symbolic
approximate representation (NSAR), see He et al. (2014). Fu (2011) provides a
general review of various methods of smoothing time series.

Because the identification of changepoints, that is, the identification of regimes,
is intimately tied to the identification and fitting of models within the individual



6 Finding Patterns in Time Series 135

regimes, it is not possible to separate those two steps. Usually, a form of the model
is chosen and then regimes are chosen based on the goodness of fits of potential
models of that form. Often, especially in the analysis of stock prices, there is no
model within the regimes other than simple increasing or decreasing trends. Bao and
Yang (2008) and Gentle (2012), for example, described methods for determining
changepoints between increasing and decreasing price trends.

6.3.1 Batch Methods

For fitting piecewise constant models, there are various straightforward ways of
determining the values of the approximating constants. If all of the data are available
as we mentioned above, a simple batch process is to use sample quantiles of the data
that correspond to some parametric model, such as a normal distribution, and then
just identify regimes as those subsequences clustering around the sample quantiles.

Another simple batch approach is to fit a single model of the specified form,
and then to identify subsequences based on points that are outliers with respect to a
fitted model. This process is repeated recursively on subsequences, beginning with
the full sequence.

Given a single linear trend over some regime, Fu et al. (2008) defined measures
for “perceptually important points,” which would be candidate changepoints. The
perceptually important points are ones that deviate most (by some definition) from
a trendline.

6.3.2 Online Methods

Batch methods, such as ones that base local models on sample quantiles of the
whole time series, or those that recursively identify subsequences with local models,
have limited applicability. In most applications of time series analysis, new data are
continually being acquired, and so an online method is preferable to a batch method.

An online method accesses the data one observation at a time and can retain only
a predetermined amount of data to use in subsequent computations.

6.4 Model Building: Alternating Trends Smoothing

A method of identifying changepoints in a time series based on alternating up
and down linear trends, called alternating trends smoothing, or ATS, is given in
Algorithm 1. It depends on a smoothing parameter, h, which specifies the step size
within which to look for changepoints.
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Algorithm 1: Alternating trends smoothing (h)
1. Set d D 1 (changepoint counter)
2. While (more data in first time step)

(a) for i D 1; 2; : : : ;m, where mD h if h additional data available or else m is last data
item:
input xi;

(b) set bd D 1; cd D x1

(c) determine jC; j�; xjC ; xj� such that
xjC D max x1; : : : ; xh and xj� D min x1; : : : ; xh

(d) set s D .xk � xi/=.k � i/ and r D sign.s/
(e) while r D 0, continue inputting more data; stop with error at end of data

3. Set j D i (index of last datum in previous step); and set d D dC 1

4. While (more data)

(a) for i D jC 1; jC 2; : : : ; jC m, where mD h if h additional data available or else
jC m is last data item:
input xi;

i. while .sign.s/ D r/

A. set k D min.iC h; n/

B. if .k D i/ break
C. set s D .xk � xj/=.k � j/
D. set j D k

ii. determine jC such that rxjC is the maximum of rxjC1; : : : ; rxjCm

iii. set bd D jC; and set cd D xjC
iv. set d D dC 1; set j D jC; and set r D �r

(b) set bd D jC; and set cd D xjC

The output of this algorithm applied to a time series x1; x2; : : : is

.b1; c1/; .b2; c2/; : : : ;

where b1 D 1, c1 D x1, b2 D t.2/, and c1 D xt.2/ , where t.2/ is the time at which the
first trend changes sign.

Between two breakpoints the trend is represented by the slope of the time series
values at the two points divided by the time between the two points, and the
smoothed time series is the piecewise linear trendlines that connect the values at the
changepoints. The method is effective for finding interesting patterns. For example,
the head-and-shoulders pattern in the Intel stock price, shown in Fig. 6.5, is very
apparent in the ATS representation of the time series shown in Fig. 6.6. A step size
of 30 was used in that fit.

The output of the ATS algorithm applied to the INTC data in Fig. 6.6 is

.1; 26:11/; .69; 34:07/; .97; 29:75/; .132; 36:57/; .206; 29:23/; .251; 33:94/; .290; 27:63/:
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Fig. 6.6 A head-and-shoulders pattern in ATS

Thus, the 290 raw data points are summarized in the seven pairs of numbers
representing the changepoints and their values.

While the ATS fit emphasizes only the signs of the trends, the actual slopes are
very easily computed from the values at the changepoints.

6.4.1 The Tuning Parameter

The tuning parameter h in Algorithm 1 is a “step size.” The process of identifying
the next changepoint begins with the datum one step size beyond the current
changepoint. Larger values of h tend to increase the distances between changepoints,
but the actual distance between changepoints can be smaller than h; in fact, the
distance between changepoints can be as small as 1 time unit.

Although in the standard implementation, the identification of trends in ATS is
based on individual points, the aggregate behavior tends to dominate, especially
after the first trend. In identifying the changepoint at the end of the first regime,
however, the dependence of the trend on the point one step size beyond can
lead to misidentification of the trend. This is because ATS works by identifying
changepoints based on changing trends, and in the first trend there is no previous
trend for comparison. This can result in a trend determined by points x1 and xh
differing completely from the apparent trend in the points x1; : : : ; xh�1. For this
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reason, a simple modification of the ATS algorithm in the first step is to use some
other criterion for determining the trend. One simple approach is a least-squares
fit of a line through x1 and that comes close to the points x2; : : : ; xh. Because of the
constraint that the line goes through x1, the least-squares criterionmight be weighted
by the leverages of the other points. If the time-spacing is assumed to be equal over
the points x1; : : : ; xh, the least-squares slope is

argmin
s

hX

iD2

.xi � si/2=i D .h2 � h/=

hX

iD2

xi: (6.1)

If all of the first h observations follow the same trend, the modification has no effect.
This modification can also be at each step, and it often results in what appears

visually to be a better fit. Nevertheless, it is not always easy to pick a good rule
for determining the direction of a trend. Because of the way the algorithm looks
backwards after detecting a change in the sign of the trend, the modification does
not have as much effect in subsequent regimes after the first one.

If the length of the time series is known in advance, a step size equal to about
one tenth of the total length seems to work reasonably well. Even so, it is often
worthwhile to experiment with different step sizes.

Figure 6.7 shows ATS applied to the daily closing price of the stock of
International Business Machines Corporation (NYSE:IBM) from January 1, 1970,
through December 31, 2014. There are n D 11;355 points. Over this full period, a
step size of h D 1136 (a step size of n=10) was used. This resulted in the alternating
trend lines shown as solid red line segments.

There are only five changepoints identified in the IBM daily closing prices, and
the changes are as likely to occur in the area of “low action” (the earlier times) as
in the areas of higher volatility. This is because ATS operates in an online fashion;
when processing the data in the earlier time regimes, it is not known that the trends
will become more interesting. Only one changepoint from the observation at the
time index of 5971 through the end of the series is identified. A smaller step size

Fig. 6.7 ATS with different
stepsizes over different
regions
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Fig. 6.8 ATS applied twice
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may be appropriate. Alternating trend segments were then determined for these data,
beginning with January 1, 1993, (a time index of 5815 in the original series), and
using a stepsize of 554. These are shown as dashed blue line segments in Fig. 6.7.
The ATS fit resulting from those two different stepsizes better captures the pattern
of the time series.

Alternating trends smoothing can be applied recursively. Once the original data
are smoothed, ATS can be applied to the changepoints determined in the original
smoothing. This is illustrated in Fig. 6.8 using the same IBM daily closing price
data as before.

First, a step size of 100 was used. This resulted in 53 changepoints. These are
shown in Fig. 6.8, and the trend lines connecting them are shown as solid red line
segments. Next, ATS was applied to the changepoints (55 points in all, including
the first and last observations). A stepsize of five was used for this smoothing.
This resulted in nine changepoints. The alternating trend lines connecting them are
shown as dashed blue line segments in Fig. 6.8. The original set of 54 trendline
segments may be considered too noisy to be a good overall model. That model may
be considered to be overfit. The subsequent fit of the changepoints is of course much
smoother than the fit of the original data.

This repeated ATS fitting is iterative data reduction. The first fit reduced the
data to 55 points (including the two endpoints). These points may contain sufficient
information to summarize the original 11,355 points. Carrying the reduction further
by applying ATS to the changepoints, we reduce the data to 11 points (again,
including the two endpoints), and this may be sufficient for our purposes.

Making transformations to a time series before applying ATS results in different
changepoints being applied. For example, using a log transformation of the IBM
price data in Fig. 6.7 would result in different changepoints, and even using only
one stepsize for the whole time series, those changepoints on the log data may be
more meaningful.
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6.4.2 Modifications and Extensions

An alternating trends fit can be modified in several ways. One very simple way
is to subdivide the regimes by identifying changepoints within any regime based
on deviations from the trendline within that regime. This type of procedure for
identifying changepoints has been suggested previously in a more general setting.

Consider again the IBM data in Fig. 6.7, with the ATS fit using a stepsize of
1136. (This is the solid red line in the figure.) Over the region from a time of 5971
to a time of 10,901, a single model was fit. This model is the line segment from the
point .5971; 7:63/ to the point .10901; 200:98/. The most deviate point within this
regime, as measured by the vertical residuals is at time point 9818 where the actual
price is 61.90, while the point on the trendline is 158.51.

This point can be considered to be a changepoint, as shown in Fig. 6.9. In this
case the trends on either side of the changepoint are both positive; that is, they are
not alternating trends.

Continuing to consider changepoints within regimes identified with a single
trend, in this case we would likely identify a changepoint at about time 7500, which
would correspond to the maximum deviation from the single trendline between the
original changepoint at time 5971 and the newly identified changepoint at time 9818.
In this case, while the single trend is positive, the first new trend would be positive
and the second new trend would be negative.

While in many applications in finance, only the sign of a trend is of primary inter-
est, occasionally, the magnitude may also be of interest, and a changepoint might
be identified as a point at which the slope of the trend changes significantly. The
basic ideas of ATS can be adapted to this more general definition of changepoints;
however, some of the simplicity of the computations of ATS would be lost.

Fig. 6.9 A linear trend
broken into two trends at the
most extreme point
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This approach would also require an additional tuning parameter to quantify
“significance” of change in trend, when the sign of the trend may not change.

Another possible improvement to the basic ATS algorithm is to allow the stepsize
to be adjusted within the computations. The alterations to the stepsizes could be
based on the number of changepoints or on goodness-of-fit within a regime, and in
either of these general approaches, there are several possible ways of doing it. The
modification shown in Fig. 6.9 could be performed routinely as a postprocessing
step in any ATS fit. That modification of course would require an additional tuning
parameter to be used in deciding whether or not to break up an existing regime.

In very noisy data goodness-of-fit measures can often be misleading. This is
because single or a few outliers can cause the measure to indicate an overall lack
of fit. (Note that the basic ATS fitting, although individual points are used in
determining changepoints, the method is generally resistant to outliers.) As in most
data analysis, outliers often must be treated in ad hoc ways. This is because they
often contain completely new information.

6.5 Bounding Lines

In statistical modeling it is common practice to associate “confidence bounds” with
a fitted model. These are usually based on some underlying probability distribution,
and they can take various forms depending on themodel, which includes the relevant
probability distributions.

In our objective of finding patterns in the data, we have not assumed any specific
probability model. In other applications of trend analysis, it is common to identify
bounding lines within a given regime that generally are in the same directions as
the trend over that region, but which are either above all the points in the regime (a
“resistance line”) or below all the points (a “support line”). Such bounding lines do
not depend on any probability model.

As we have emphasized, finding the changepoints is the paramount problem.
Once the regimes are identified, however, it may be of interest to identify bounding
lines for those regimes.

For a given time series fxt W t D 1; : : : ; ng, we seek a lower bounding line
x D a C bt that satisfies the optimization problem

mina;b
Pn

tD1 �.xt � a C bt/
s:t: xt � a C bt; for t D 1; : : : ; n;

(6.2)

where �.�/ is a nonnegative function such that for a vector v D .v1; : : : ; vn/, kvk DPn
tD1 �.vt/ is a norm. An upper bounding line is defined the same way, except that

the inequality in the constraint is reversed.
In general, this is a hard optimization problem, but for the L1 norm, that is, when

�.�/ D j � j, it is straightforward; and a method is given in Algorithm 2. The method
depends on the fact that the L1 norm satisfies the triangular inequality with equality:
that is, ky C zk1 D kyk1 C kzk1. The method also depends on the fact that the data
are equally spaced along the time axis.
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Algorithm 2: L1 lower bounding line: xt D Qa C Qbt
1. Fit the data xt D aC bt by a minimum L1 criterion to obtain parameters a� and b�.
2. Determine the position of the minimum residual, k, and adjust a�:

a� xk � b�k.
3. If k � 1 D n� k, then set Qb D b� and Qa D a�, and stop.
4. Else if k � n=2,

(a) rotate the line x D a� C b�t clockwise about the point .k; xk/ until for some point
.i; xi/, xi D a� C b�i.

(b) set Qb D .xi � xk/=.i� k/ and Qa D xk � Qbk, and stop.

5. Else if k > n=2,

(a) rotate the line x D a� C b�t counterclockwise about the point .k; xk/ until for some
point .j; xj/, xj D a� C b�j.

(b) set Qb D .xk � xj/=.k � j/ and Qa D xk � Qbk, and stop.

Theorem 1 Algorithm 2 yields a solution to optimization problem (6.2), when
�.�/ D j � j.
Proof Let a� and b� be such that

Pn
tD1 jxt � a� � b�tj D mina;b

Pn
tD1 jxt � a � btj.

Let k be such that

xk D argmin
xi

.xi � a� � b�i/:

For the optimal values of Qa and Qb, we must have xk � Qa C Qbk.
There are three cases to consider: k D .n C 1/=2 (corresponding to step 3 in

Algorithm 2), k � n=2 (corresponding to step 4 in the algorithm), and k > n=2

(corresponding to step 5 in the algorithm). We will first consider the case k � n=2.
The case k > n=2 follows the same argument. Also following that argument, it will
be seen that the solution given for case k D .n C 1/=2 is optimal.

If k � n=2, consider the line x D xk � b�k C b�t. (The intercept here is what
is given in step 2 of the algorithm.) This line goes through .k; xk/, and also satisfies
the constraint xt � xk � b�k C b�t, for t D 1; : : : ; n. The residuals with respect to
this line are xt � xk C b�k � b�t and all residuals are positive. Any point t for t < k
is balanced by a point Qt > k, and there are an additional n � 2k points xQt with Qt > k.
If any point xQt with Qt > k lies on the line, that is, xQt D xk � b�k C b�Qt, then this line
satisfies the optimization problem (6.2) because any change in either the intercept
xk � b�k or the slope b� would either violate the constraints or would change the
residuals in a way that would increase the norm of the residuals. In this case the
solution is as given at the end of step 4, because Qb D b�.

The step now is to rotate the line in a clockwise direction, which results in an
increase in any residuals indexed by t for t < k and a decrease of the same amount
in the same number of residuals xQt with Qt > k. (This number may be 0.) It is the
decrease in the residuals of the additional points indexed by Qt > k that allows for
a possible reduction in the residual norm (and there is a positive number of such
points).
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Consider the line x D xk � b�k C .b� C ıb/t such that ıb is the minimum value
such that there is a point xQt with Qt > k such that xQt D xk �b�kC .b�Cıb/Qt. This line
satisfies the constraints and by the argument above is optimal. Hence, the solution
is as given at the end of step 4, because Qb D b� C ıb.

Now consider the case k D .n C 1/=2. (In this case, n is an odd integer, and
k � 1 D n � k as in Algorithm 2.) Following the same argument as above, we
cannot change the intercept or the slope because doing so would either violate the
constraints or would change the residuals in a way that would increase the norm of
the residuals. Hence, we have Qb D b� and Qa D xk � b�k as given in the algorithm is
a solution to optimization problem (6.2) when �.�/ D j � j.

One possible concern in this method is that the L1 fit may be nonunique.
This does not change any of the above arguments about an optimal solution to
optimization problem (6.2) when �.�/ D j � j. It is possible that the solution to this
optimization problem is nonunique, and that is the case independently of whether
or not the initial fit in Algorithm 2 is nonunique.

The discussion above was for lower bounding lines under an L1 criterion. Upper
bounding lines are determined in the same way following a reversal of the signs on
the residuals.

Bounding lines can easily be drawn over any region of a univariate time series.
They may be more meaningful if separate ones are drawn over separate regimes of
a time series, as in Fig. 6.10, where separate bounding lines are shown for the six
regimes corresponding to alternating trends, that were shown in Fig. 6.6.
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6.6 Patterns

One of our motivations for fitting time series is for clustering and classification of
time series based on similarities of trends and patterns. Usually, in large time series
datasets a single model does not fit well, so our approach has been to identify a
sequence of local models, �1.t/; �2.t/; : : : ; �k.t/, in k regimes.

The models�i.t/ may be of various forms, and they may contain various levels of
information. For example, in piecewise constant modeling, the form of the model is

�i.t/ D ciIŒti1;ti2�.t/; (6.3)

where IS.t/ is the indicator function: IS.t/ D 1 if t 2 S, and IS.t/ D 0 otherwise.
(This formulation allows the global model to be written as

P
i �i.t/.) The form of

the model in ATS is

�i.t/ D .ai C sit/IŒti1;ti2�.t/; (6.4)

where in the notation of Algorithm 1, ai D ci, si D .ciC1 � ci/=.biC1 � bi/, ti1 D ci
and ti2 D ciC1, and of course a global is just the sum of these local models.

For comparing different time series for clustering or classification, we may
focus on patterns of models, �i.t/; �iC1.t/; : : : ; �iCr.t/, on r successive regimes,
not necessarily beginning at the start of the time series and not necessarily
extending over the full extent of the time series. We compare the pattern Pri D
.�i.t/; �iC1.t/; : : : ; �iCr.t// with patterns from other time series. The obvious basis
for comparison would be a metric, or a measure with some of the properties of
a metric, applied to the patterns; that is, we define a a metric function �.Pri;Psj/,
where Pri is a pattern consisting of a sequence �i.t/; �iC1.t/; : : : ; �iCr.t/ and Psj is
a pattern consisting of a sequence over s regimes beginning at the jth one.

Because the patterns depend on fitted models, the fact that a pattern

.�i.t/; �iC1.t/; �iC2.t//

in one time series is exactly the same as a pattern

.�j.t/; �jC1.t/; �jC2.t//

in another time series does not mean that the actual values in the two time series are
the same over those regimes or even that the values have some strong association,
such as positive correlation, with each other. This is generally not inconsistent
with our objectives in seeking patterns in time series or in using those patterns in
clustering and classification.

In this section, we discuss some of the issues in clustering and classification of
time series, once a sequence of regimes is identified. An important consideration
in analyzing multiple time series is registration of the different time series; that is,
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shifting and scaling the time series so that the regimes in the separate time series can
be compared.We also briefly indicate possible approaches for further data reduction.
Once these issues have been addressed, the problems of clustering and classification
are similar to those in other areas of application. Examples and the details of the use
of the clustering and classification methods are discussed by Wilson (2016).

6.6.1 Time Scaling and Junk

Prior to comparing two time series or the patterns in the two series, we generally
need to do some registration of the data. Usually, only subsequences of time series
are to be compared, and so the beginning and ending points in the two series must
be identified. The actual time associated with the subsequences may be different,
and the subsequences may be of different lengths. There are various methods of
registering two subsequences. The most common methods are variants of “dynamic
time warping” (DTW), which is a technique that has been around for many years.
There are several software libraries for performing DTW.

In the overall task of identifying and comparing patterns in time series, the
registration step, whether by DTW or some other method, can be performed first
or later in the process. Our preference generally is to identify breakpoints prior to
registration.

Similarity of patterns is not an absolute or essential condition. Similarity, or
dissimilarity, depends on our definition of similarity, which in turn depends on
our purposes. We may wish to consider two patterns to be similar even in the time
intervals of the piecewise models do not match. We also may wish to ignore some
models within a pattern, especially models of brief duration.

In Fig. 6.11 we see three patterns that for some purposes we would wish to
consider to be similar to each other. The times as well as the actual values are
rather different, however. Among the three time series, the times are both shifted
(the starting time of course is almost always arbitrary) and scaled. The unit of
time is not always entirely arbitrary. It depends on our ability to sample at different
frequencies, and the sampling rate is not always adjustable. The unit of time may
also be important in an entirely different way. It is a well-recognized property of
markets that frequency of trading (or frequency of recording data) results in different
market structures (see, for example, Gentle and Härdle 2012).

Figure 6.11 also illustrates another problem for comparing patterns. The blip in
the time series on the right side results in two additional model terms in the fitted
time series. We would actually like to compare the patterns

.�1; �2; �3; �4/

and

.�1;S.�2; �3; �4/; �5; �6/;
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Fig. 6.11 Three patterns that are similar

where the specific correspondences are �1 � �1, �3 � �5, �4 � �6, and �2 �
S.�2; �3; �4/, where S.�2; �3; �4/ is some smooth of the three models �2, �3, and �4.

The plot on the right side of Fig. 6.11 compared with the other two plots
illustrates the intimate connection between smoothing or model fitting and pattern
recognition. A smoother fit of the time series shown on the right side would have
resulted in just four models (three changepoints), in which the second model would
be some smooth of �2, �3, and �4, that is, S.�2; �3; �4/.

The extra blip in the time series on the right side of Fig. 6.11 is “junk” at a lower
level of resolution.

6.6.2 Further Data Reduction: Symbolic Representation

While the individual components of a pattern Pri may contain various details of the
models, in some cases some details can be suppressed while salient features of the
pattern, that is, the sequence, are retained. For example, for a sequence of constant
models such as in Eq. (6.3), the most important features of the sequence may be a
sequence of indicators whether the ci were small, mid-size, or large; that is, the
pattern is a sequence of the form abcde : : :, where each of the as, bs, and so on, are
just the values s, m, and l, indicating “small,” “medium,” and “large.” For example,
the pattern sllmls would indicate a sequence of six piecewise constant models of
the form of Eq. (6.3), in which c1 is (relatively) small, c2 and c2 are large, and so on.
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This representation, of course, does not include information about the ti1s or ti2s or
even the exact values of the cis, but the patterns of small, medium, and large may
be information for clustering or classifying time series.

This further step of data reduction of forming categories of models and associ-
ating each category with a single symbol can be very useful in data mining of time
series, and has been used in various ways for some time. One widely used symbolic
approximation for time series is SAX, which is based on a modification of a
sequence of piecewise constant models (called PAA), see Lin et al. (2007). Another
type of symbolic approximation of a time series, called NSAR for nonparametric
symbolic approximate representation, was described by He et al. (2014). This
method is based on preliminary wavelet transformations and so enjoys the multi-
resolution properties of wavelets.

The transformation of models with quantitative parameters to models of categor-
ical symbols requires some a priori definition of the symbols, possibly a complete
listing or catalogue of the symbols, or at least some formula for defining new
symbols. In batch processing of the data, the range of possible models can be
determined before the transformation of quantitative models to categorical models.

In ATS, each model is characterized by four real numbers. A sequence of r
models is characterized by 2r C 2 real numbers. To reduce the data further, the
real numbers are binned into ordered groups. These ordered bins can be associated
with a unique set of symbols.

The replacement of models with continuous numeric parametrizations by sym-
bolic representations results in loss of data. A linear model in a given regime may
be transformed into a model that carries only the information that a particular
coefficient is large, relative to the same coefficient in other regimes. The symbolic
approximationsmay even lose information concerning the time of the changepoints.

6.6.3 Symbolic Trend Patterns (STP)

The symbolic approximation of SAX is based on a type of piecewise constant
modeling called “piecewise aggregate approximation” (“PAA”) as described by Lin
et al. (2007). The same idea of SAX can be applied to the models in ATS, as
described by Gentle (2012) who called it “symbolic trend patterns,” or “STP.” These
symbols consist of pairs of symbols or syllables. They are formed by selection of a
consonant

J;K;L;M;N

that represents duration of an upward trend, or of a consonant

P;Q;R;S;T
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that represents duration of an downward trend, and selection of a vowel

A;E; I;O;U

that represents magnitude of a trend. In many cases, however, the vowels could
represent the magnitude of the change in value instead of the magnitude of a trend,
that is the slope of the segment between the changepoints.

In each case, the individual letters as listed above represent increasing magni-
tudes. Thus, “P” represents a downward trend of short duration, and “A” represents
a trend (up or down) of very small magnitude.

If these symbols are defined and assigned in a batch fashion, they can represent
quantiles (or approximate quantiles) of the fully observed time series.

For example, the ATS fit of the INTC data in the head-and-shoulders pattern
shown in Fig. 6.6 could be represented by the STP symbolic approximation

LO;PE;KO;RO; JE;QI

where the vowel is used to representmagnitude of change, rather than rate of change.
The ATS fit of the IBM price data shown by the solid red lines in Fig. 6.7 could be
represented by the symbolic approximation

PA;LE;QE;NU

where again the vowel represents magnitude of change.
Of course, because the trends in ATS alternate, if a single direction is given, then

there would be no need for different symbols to be used to designate up and down
moves.

6.6.4 Patterns in Bounding Lines

Following any kind of data reduction, there are enhanced opportunities for identify-
ing patterns. Trends are a simple form of data reduction that offer various methods
of pattern identification. Likewise, the bounding lines discussed in Sect. 6.5 may be
used to develop patterns. The bounding lines have the same kinds of characteristics
as the trend lines of Sect. 6.4; they have slopes and duration. When bounding lines
are determined in regions determined by the ATS their slopes will generally (but not
necessarily) have the same sign as the slopes of the trends.

Another interesting characteristic of bounding lines is their relationship to each
other; in particular, whether they seem to be converging or diverging. (By their
definition, they can never cross within the region for which they are defined.) In
Fig. 6.10, for example, we see that the bounding lines in the leftmost regime seem to
be converging, while those in the second regime from the left seem to be diverging.
Technical security analysts sometimes attach meaning to such patterns.
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6.6.5 Clustering and Classification of Time Series

In clustering and classification of data we need appropriate measures of similarity
or dissimilarity. The most useful measures of dissimilarity are metrics, because of
their uniqueness and the ordering they induce, and the most useful metrics onRd are
those induced by a norm. For a given class of patterns, whether defined on a finite set
of symbols or onRd, there is a wide choice of possible metrics. For metrics induced
by norms the equivalence relation among any set of norms yields an equivalence of
metrics. This equivalence carries over to metrics on a set of ordered bins or symbols
(see Gentle 2012).

The problem of clustering or classification on a set of time series is essentially the
problem of clustering or classification on a set of patterns. Despite the equivalence
of metrics, on a given class of patterns, differentmetrics can lead to different clusters
or different classifiers.

The most challenging problem in clustering and classification of time series
arises from the time scaling and “junk” models that constitute a pattern. The three
similar time series shown in Fig. 6.11, for example, may be associated with the STP
approximations

JO;PU;ME;RA

MO;RU;KE;PA

MO;PI; JA;RI;KE;PA

The question here is how to recognize the similarity of the patterns. These
patterns exhibit different time scalings and in one case include a superfluous model.
An approach to the problem at this point is the same approach that was used from
the start: further discretization; that is, further data reduction, with its concomitant
loss of information.

One way of dealing with the time scale is a further discretization; instead of ten
different values, we may just use two, up or down. The first two patterns are now
the same:

CO; �U; CE; �A

A model with both short duration and small change in magnitude is a candidate
for a superfluous modes; that is, one that can be smoothed away by combinations
with nearbymodels. Applying this approach to the smoothed time series on the right
side of Fig. 6.11 would result in the second through fourth models being combined
into a single model, which would be represented as RU or �U.

This approach to the problem involves combinations and adjustments of any or
all of the models in a set of patterns, and so is obviously not entirely satisfactory.
For clustering and classification, of course, we do not need for the patterns to be
exactly alike, so another approach would be based on use of appropriate metric.
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A metric that weights differences in direction of a trend much more heavily than
differences in length of two trends in the same direction would achieve some of the
same effect as considering the duration to be a binary variable.

Classification of time series is closely related to the standard problem of
prediction or forecasting in time series. For a given pattern, the predicted value is
merely the predicted class of the pattern.
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