
Chapter 20
Construction of Tight
Frames on Graphs and Application
to Denoising

Franziska Göbel, Gilles Blanchard, and Ulrike von Luxburg

Abstract Given a neighborhood graph representation of a finite set of points
xi 2 R

d; i D 1; : : : ; n; we construct a frame (redundant dictionary) for the space of
real-valued functions defined on the graph. This frame is adapted to the underlying
geometrical structure of the xi, has finitely many elements, and these elements are
localized in frequency as well as in space. This construction follows the ideas of
Hammond et al. (Appl Comput Harmon Anal 30:129–150, 2011), with the key
point that we construct a tight (or Parseval) frame. This means we have a very
simple, explicit reconstruction formula for every function f defined on the graph
from the coefficients given by its scalar product with the frame elements. We use
this representation in the setting of denoising where we are given noisy observations
of a function f defined on the graph. By applying a thresholding method to the
coefficients in the reconstruction formula, we define an estimate of f whose risk
satisfies a tight oracle inequality.

Keywords Neighborhood graph · Tight frame · Dictionary learning ·
Denoising · Thresholding · Oracle inequality

20.1 Introduction

20.1.1 Motivation

When dealing with high-dimensional data, a general principle is that the curse of
dimensionality can be efficiently fought if one assumes the data points to lie on a
structure of smaller intrinsic dimensionality, typically a manifold. Somewell-known
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methods to discover such a lower dimensional structure include Isomap (Tenenbaum
et al. 2000), LLE (Roweis and Saul 2000), and Laplacian Eigenmaps (Belkin and
Niyogi 2003).

In this work, our main interest is not in visualizing or representing by an explicit
mapping the underlying structure of the observed data points; rather, we want
to represent or estimate efficiently a real-valued function on these points. More
specifically, we focus on the following denoising problem: assuming we observe
a noisy version of the function f , yi D f .xi/ C "i at points .x1; : : : ; xn/, we would
like to recover the values of f at these points. An important step for solving this
problem is to find a dictionary of functions to represent the signal f , which is adapted
to the structure of the data. Ideally, we would like this dictionary to exhibit the
features of a wavelet basis. In traditional signal processing on a flat space, with
data points on a regular grid, orthogonal wavelet bases offer a very powerful tool
to sparsely represent signals with inhomogeneous regularity (such as a signal that is
very smooth everywhere except at a few singular points where it is discontinuous).
Such bases are in particular well suited to the denoising task. Can this be generalized
to irregularly scattered data on a manifold?

We present such a method to construct a so-called Parseval frame of functions
exhibiting wavelet-like properties while adapting to the intrinsic geometry of the
data. Furthermore, we use this dictionary for the denoising task using a simple
coefficient thresholding method.

This work is organized as follows. In the coming section, we discuss the
relationship to previous work on which the present chapter is built, as well as
pointing out our new contributions. In Sect. 20.2, we recall important notions of
frame theory as well as of neighborhood graphs needed for our construction.
The construction of the frame and its properties is presented in Sect. 20.3. In
Sect. 20.4, we develop a coefficient thresholding strategy for the denoising problem.
In Sect. 20.5, we present numerical results and method comparison on testbed data.

20.1.2 Relation to Previous Work

Regression methods that adapt to an underlying lower dimension of the data have
been considered by Bickel and Li (2007), Kpotufe and Dasgupta (2012) and Kpotufe
(2011) using local polynomial estimates, random projection trees, and nearest-
neighbors, respectively. However, these methods are not constructed to adapt to an
inhomogeneous regularity of the target function: in these three cases, the smoothing
scale (determined by the smoothing kernel bandwidth, the tree partition’s average
data diameter, or the number of neighbors, respectively) is fixed globally. In the
experimental Sect. 20.5, for data lying on a smooth manifold but a target function
exhibiting a sharp discontinuity, we demonstrate the advantage of our method over
kernel smoothing.
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Based on the motivations similar to ours, a method for constructing a wavelet-
like basis on scattered data was proposed by Gavish et al. (2010). It is based on a
hierarchical tree partition of the data, on which a Haar-like basis of 0–1 functions
is constructed. However, the performance of that method is then adapted to the
geometry of the tree, in the sense that the distance of two points is measured through
tree path distance. This can strongly distort the original distance: two close points
in original distance can find themselves in very separated subtrees.

The construction proposed here, based on a transform of the spectral decompo-
sition of the graph Laplacian, follows closely the ideas of Hammond et al. (2011).
Two important contributions brought forth in the present work are that we construct
a Parseval (or tight) frame, rather than a general frame; and we consider an explicit
thresholdingmethod for the denoising problem. The former point is crucial to obtain
sharp bounds for the thresholding method, and also eliminates the computational
problem of signal reconstruction from the frame coefficients, since Parseval frames
enjoy a reconstruction formula similar to that of an orthonormal basis. The choice
of multiscale bandpass filter functions leading to the tight frame is inspired by the
recent work of Coulhon et al. (2012), where the spectral decomposition principle is
also studied, albeit in the setting of a quite general metric space.

20.2 Notation and Basics

20.2.1 Setting

We consider a sample of n points xi 2 R
d. These points are assumed to belong

to an unknown low-dimensional submanifold M � R
d. We denote the design by

D D fx1; : : : ; xng � M . Furthermore, we observe on these points the (noisy) value
of a function f W D ! R. Since D is finite, we can represent the function f as
vector f D . f .x1/; : : : ; f .xn//t 2 R

n. The space of all (square-integrable) functions f
defined onD is denoted L2.D/ and endowed with the usual Euclidean inner product.

We denote by yi D f .xi/ C �i the noisy observation of f at xi, where �i are
independent identically distributed centered random variables. The problem we
consider in this work is that of denoising, that is, try to recover the underlying value
of the function f at the points xi.

While the existence of a low-dimensional supporting manifoldM for the design
points motivates the construction of the proposed method, we underline (again) that
M is not known to the user and the method only uses the knowledge of the design
points. In such a setting, a key idea to recover implicitly some information on the
geometry of M is to construct a neighborhood graph based on the design points
(see Sect. 20.2.3 for details).
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20.2.2 Frames

For the construction in Sect. 20.3, we rely on the notion of a vector frame, for which
we recall here some important properties (see, e.g., Casazza et al. 2013; Han 2007;
Christensen 2008). A frame is an overcomplete dictionary with particular properties
allowing it to act almost as basis.

Definition 1 Let H be a Hilbert space. Then a countable set fzigi2I � H is a
frame with frame bounds A and B for H if there exists constants 0 < A � B < 1
such that

8z 2 H W A kzk2 �
X

i2I
jhz; ziij2 � B kzk2 : (20.1)

A frame is called tight if A D B, in particular the frame is called Parseval if A D
B D 1.

In the remainder of this work we consider the case of a Euclidean space
H D R

n, and assume that fzigi2I is a frame with a finite number of elements.
Two important operators associated to the frame are the analysis operator

T W Rn ! R
I ; Tz WD .hz; zii/i2I (20.2)

(sequence of frame coefficients), and its adjoint the synthesis operator:

T� W RI ! R
n; T�a D T�.ai/ti2I D

X

i2I
aizi: (20.3)

Further, the frame operator is defined as S D T�T:

S W Rn ! R
n; Sz D T�Tz D

X

i2I
hz; zii zi; (20.4)

and finally the Gramian operator as U D TT�,

U W RI ! R
I; Ua D TT�a D

(*
X

i2I
aizi; zk

+)

k2I
: (20.5)

In matrix form, the columns of T� are the vectors zi; i 2 I, T is its transpose and
Uij D ˝

zi; zj
˛
.

The definition of a frame implies that S is invertible, and it is possible to
reconstruct any z from its frame coefficients by z D P

i2I hz; zii z�
i D P

i2I
˝
z; z�

i

˛
zi,

where z�
i WD S�1zi; i 2 I is called the canonical dual frame of .zi/i2I .

We recall some properties of finite Parseval frames over Euclidean spaces (see,
e.g., Han 2007, chapter 3).
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Theorem 1 (Properties of Parseval frames) Let H be a Hilbert space with
dimH D n < 1. The following statements are equivalent:

1. fzig1�i�k � H is a Parseval frame.
2. 8y 2 H W y D Pk

iD1 h y; zii zi.
3. The frame operator S is the identity on Rn.
4. The Gramian operator U is an orthogonal projector of rank n in Rk.

Furthermore if fzig1::k � H is a Parseval frame, then

• kzik � 1 for i 2 f1; : : : ; kgI
• dimH D n D Pk

iD1 kzik2 I
• the canonical dual frame is the frame itself.

For the present work, the two most important points of this theory are the following:
first, the reconstruction formula (point two above), where we see that a Parseval
frame acts similarly to an orthonormal basis; secondly, if we construct a vector
v D T�a D P

i aizi from an arbitrary vector of coefficients .ai/, then

�����
X

i

aizi

�����

2

D hT�a;T�ai D ha;Uai D kUak2 � kak2 ; (20.6)

which follows from property 4 above.

20.2.3 Neighborhood Graphs

In order to exploit the structure and geometry of the unknown submanifold M
on which the sample D is supposed to lie, a powerful idea is to use a graph-
based representation of the data D through a neighborhood graph. The points in
D correspond to the vertices of the graph, and two vertices of the graph are joined
by an edge when the two corresponding points are neighbors (in some appropriate
sense) in Rn. The underlying idea is that the local geometry of Rn is reflected in the
local connectivity of the graph, while the long-range geometry of the graph reflects
the geometrical properties of the manifoldM , rather than those of Rn.

Formally, a finite graph G D .V;E/ is given by a finite set of vertices V and a set
of edges E � V � V . The jVj � jVj adjacency matrix A of the graph is defined by
Ai;j D 1 if .vi; vj/ 2 E and Ai;j D 0 otherwise. An undirected graph is such that its
adjacency matrix is symmetric.

The graph is called weighted if every edge e 2 E has a positive weight w.e/ 2
RC. In this case the notion of adjacency matrix is extended to Ai;j D w..vi; vj//
if .vi; vj/ 2 E and Ai;j D 0 otherwise. The degree of a vertex vi in a (possibly

weighted) graph is defined as di D d.i/ D PjVj
jD1 Ai;j.

As announced, we focus on geometric graphs, which (can) approximate the
structure of the unknown M . Each point xi is represented by a vertex, say vi. An
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edge between two vertices represents a small distance, or a high similarity, of the
two associated points. The weight of an edge can quantify the similarity more finely.

We use the Euclidean distance d.xi; xj/ D ��xi � xj
�� :We recall three usual ways

to construct the edges of a neighborhood graph:

• (undirected) k-nearest-neighbor graph: an undirected edge connects the two
vertices vi and vj iff xi belongs to the k nearest neighbors of xj, or xj belongs
to the k nearest neighbors of xi (“the k-NN-graph”).

• �-graph: an undirected edge connects two vertices vi and vj iff d.xi; xj/ � �.
• complete weighted neighborhood graph: for each pair of vertices there exists an

undirected edge with a weight depending on the distance/similarity of the two
vertices.

A k-NN graph or an �-graph can be made weighted by additionally assigning
weights to the edges depending on d.xi; xj/, for instance by choosing Gaussian
weights w.f i; jg/ D exp.�d2.xi; xj/=2�2/.

20.2.4 Spectral Graph Theory

If one considers real-valued functions f W M ! R defined on a submanifold
M � R

d, it is known that under some regularity assumptions on the submanifold
M , the eigenfunctions of the Laplace-Beltrami-operator give a basis of the space
of squared-integrable functions on M . Since M is unknown in our setting, the
principle of the Laplacian Eigenmaps method (Belkin and Niyogi 2003) is to use a
discrete analogon, namely the graph Laplace operator L on a neighborhood graph.

Given a finite weighted undirected graph with adjacency matrix A (n � n) and
vertex degrees .di/i, as introduced in the previous section, we will either use the
unnormalized graph Laplace operator Lu or the normalized (symmetric) graph
Laplace operator Lnorm defined by

Lu D D � A (20.7)

Lnorm D In � D�1=2AD�1=2;

where D D diag .d1; : : : ; dn/ is a diagonal matrix with entries di on the diagonal.
By construction Lu and Lnorm are symmetric matrices. The positive semidefiniteness
follows from

f tLuf D 0:5
X

.i;j/

Ai;j. fi � fj/
2 and f tLnormf D 0:5

X

.i;j/

Ai;j
� fip

di
� fjp

dj

�2
;

respectively. The spectral theorem for matrices indicates that the normalized
eigenvectors˚i of the graph Laplace operator L (Lu resp. Lnorm) form an orthonormal
basis of R

n and all eigenvalues are nonnegative. Furthermore the number of
components of the graph is given by the number of eigenvalues equal to 0.
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20.3 Construction and Properties

20.3.1 Construction of a Tight Graph Frame

As discussed earlier, the principle of Laplacian Eigenmaps is to use the basis
.˚i/1�i�n to represent and process the data. An important advantage of this basis
as compared with the natural basis of Rd is that it will be adapted to the geometry
of the underlying submanifoldM supporting the data distribution. For instance, in
the denoising problem, a reasonable estimator of f could be a truncated expansion
of the noisy vector of observations Y in the basis .˚i/1�i�n.

On the other hand, a disadvantage of this basis is that it is not spatially localized.
To get an intuitive view, consider the simple case of the interval Œ0; 1�with uniformly
distributed data. In the population view, the eigenbasis of the Laplacian is the
Fourier basis. While a truncated expansion in this basis is well-adapted to represent
functions that are uniformly regular, it is not well-suited for functions exhibiting
locally varying regularity (as an extreme example, a signal that is very smooth
everywhere except at a few singular points where it is discontinuous). By contrast,
wavelet bases, because they are localized both in space and frequency, allow for an
efficient (i.e., sparse) representation of signals with locally varying regularity.

If we now think of data supported on a one-dimensional submanifold (curve) of
R

d, we can expect that the Laplacian eigenmaps method will discover a warped
Fourier basis following the curve; and, for a more general submanifold M ,
“harmonics” onM .

In order to go from this basis to a spatially localized dictionary, following ideas
of Coulhon et al. (2012) and Hammond et al. (2011), we use the principle of the
Littlewood-Paley decomposition.

Let G be an undirected geometric neighborhood graph with adjacency matrix
A constructed from D, and L be an associated symmetric graph Laplace operator
with increasing eigenvalues 0 D �1 � �2 � � � � � �n and normalized eigenvectors
˚i 2 R

n; i D 1 : : : n.
We first define a set of vectors using a decomposition of unity and a splitting

operation and we will show that this vector set is a Parseval frame.

Definition 2 Let f�kgk2N be a sequence of functions �k W RC ! Œ0; 1� satisfying

(DoU)
P

j�0 �j.x/ D 1 for all x � 0;
(FD) #f�k W �k.�i/ ¤ 0g < 1 for i D 1; : : : ; n.

Then we define the set of column vectors f�kl 2 R
n; 0 � k � Q; 1 � j � ng by

�kl D
nX

iD1

p
�k.�i/˚i.xl/˚i: (20.8)

with Q WD maxfk W 9i 2 f1; : : : ; ngwith �k.�i/ > 0g.
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Theorem 2 f�klgk;l is a Parseval frame forH D R
n, that is for all x 2 R

n:

X

k;l

jhx; �klij2 D kxk2 : (20.9)

Proof If we can show that
P

.k;l/ �kl�
t
kl D In, we get immediately

y D Iny D
0

@
X

.k;l/

�kl�
t
kl

1

A y D
X

.k;l/

h y; �kli�kl; (20.10)

for y 2 R
n. According to Theorem 1 this equation is equivalent to the condi-

tion (20.1) with A D B D 1. So we are done. It remains to show
P

k;l �kl�
t
kl D In.

We have (since we sum over a finite number of elements)

X

.k;l/

�kl�
t
kl D

X

k;l;i;j

p
�k.�i/

q
�k.�j/˚i.xl/˚j.xl/˚i˚

t
j

D
nX

iD1

QX

kD0
�k.�i/ ˚i˚

t
i

D
nX

iD1
˚i˚

t
i D In: (20.11)

For the second equality, we have used that
P

l˚i.xl/˚j.xl/ D ˝
˚i; ˚j

˛ D 1f i D jg,
since f˚igi is an orthonormal basis (onb). For the third equality, we used (DoU), and
for the last again the onb property. ut

We now choose a special sequence of functions satisfying the decomposition
of unity (DoU) condition while also ensuring (a) a spectral localization property for
the frame elements and (b) a multiscale decomposition interpretation of the resulting
decomposition. This construction follows Coulhon et al. (2012), and is known in the
context of functional analysis as a smooth Littlewood-Paley decomposition.

Definition 3 (Multiscale Bandpass Filter) Let g 2 C1.RC/, supp g � Œ0; 1�,
0 � g � 1, g.u/ D 1 for u 2 Œ0; 1=b� (for some constant b > 1).
For k 2 N D f0; 1; : : :g the functions �k W RC ! Œ0; 1� are defined by

�k.x/ WD
(
g.x/ if k D 0

g.b�kx/ � g.b�kC1x/ if k > 0
(20.12)

The sequence f�kgk�0 is called multiscale bandpass filter.

This definition leads to the following properties: �k.x/ D �1.b�kx/ for k � 1

(multiscale decomposition), �k 2 C1.RC/, 0 � �k � 1, supp �0 � Œ0; 1�,
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supp �k � Œbk�2; bk� for k � 1 (spectral localization property). Moreover, one can
check readily

X

j�0
�j.x/ D 1; (20.13)

i.e., the (DoU) condition holds. In practice, we use a dyadic bandpass filter, that
is, b D 2. The functions �0; : : : ; �5 with b D 2 are displayed in Fig. 20.1b. By
construction, the parameter k in �kl is naturally a spectral scale parameter, while l is
a spatial localization parameter: the frame element �kl is localized around the point
xl, as we discuss next.

20.3.2 Spatial Localization

By construction, the elements of the frame are band-limited, i.e. localized in
the spectral scale, in the sense that for a fixed k, the frame elements �kl (l D
1; : : : ; n) are linear combinations of the eigenvectors of the graph Laplacian (“graph
harmonics”) corresponding to eigenvalues in the range Œbk�2; bk� only.

From our initial motivations, it is desirable that in contrast with the eigen-
functions of the Laplace operator, the frame elements �kl are spatially localized
functions. In the classical Littlewood-Paley construction for the usual Laplacian
on the interval Œ0; 1�, this is a well-known fact: the use of linear combination of
trigonometric functions �kl.y/ WD sin.kl/ sin.ky/ via smooth multiscale bandpass
filters weights as described in Definition 3 gives rise to strongly localized functions
(as illustrated in Fig. 20.1).

Regarding the corresponding discrete construction based on the graph Laplacian,
this localization property is certainly observed in practice (as illustrated in Figs. 20.2
and 20.3, see Sect. 20.5 for the setup of the numerical experiments).

Concerning the theoretical perspective, we first review briefly the existing results
of Hammond et al. (2011), denote d the shortest path distance in the graph.
Theorem 5.5 of Hammond et al. (2011) gives the following localization result for
graph frames:

�kl.x/

k�klk2
� Cb�k ; (20.14)

for all x with d.x; xl/ � K, under the assumption that the scaling function �1 is K-
times differentiable with vanishing first .K�1/ derivatives in 0, non-vanishingK-th
derivative, and the scale parameter k is big enough. This says that �kl is “localized”
around the point xl. Unfortunately, this result is not informative in our framework for
two reasons: first, we chose a function �1 (see (20.12)) vanishing in a neighborhood
of zero, so that all derivatives vanish in the origin, contradicting one of the above
assumptions. Secondly, and independently of this first issue, the condition “k is big
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Fig. 20.1 Littlewood-Paley on L2.0; 1/: (a) eigenfunctions; (b) multiscale bandpass filter; (c)
frame elements

enough,” and the factor C depend on the size n of the graph and of the largest
eigenvalue of the Laplacian. As a consequence it is unclear if this bound covers
any interesting part of the spectrum (for k too large, the spectral support Œbk�2; bk�
does not contain any eigenvalues, so that �kl is trivial). Finally, for fixed k the bound
also does not give information on the behavior of �kl.x/ when the path distance of x
to xl becomes very large.
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Fig. 20.2 Swiss roll data: top: eigenvectors ˚j for j D 10; 30; 50; 100; bottom: frame elements �kl

for l fixed and k D 0; 2; 5; 7 (construction from actual swiss roll data, then “unrolled” for clearer
graphical representation)
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Fig. 20.3 Sphere data: frame elements �kl for l fixed and k D 1; 5; 7 (color encodes the value of
the function)

On the other hand, the form of the scaling function �1 used in the present work
is based on Coulhon et al. (2012) where a theory of multiscale frame analysis is
developed on very general metric spaces under certain geometrical assumptions.
In a nutshell, it is proved there that using this construction, the obtained frame
functions �kl.x/ are upper bounded by O..d.x; xl/=bk/��/ for � arbitrary large. We
observe that this type of localization estimate is sharper than (20.14) for fixed x
and growing k, as well as for fixed scale k and varying x. We conjecture that these
theoretical results apply meaningfully in the discrete setting considered here, under
the assumption that x1; : : : ; xn are iid from a sufficiently regular distribution P0 on
a regular manifold M , but it is out of the intended scope of the present chapter
to establish this formally. In particular “meaningfully” means that the constants
involved in the bounds should be independent of the graph size (otherwise the
bounds could potentially be devoid of interest for any particular graph, as pointed
out above), a question that we are currently investigating.

20.4 Denoising

We consider the regression model for fixed design points D D fxi; i D 1 : : : ng and
observations yi D f .xi/C �i (�i are independent and identically distributed random
variables with E .�i/ D 0 and Var ."/i D �2). The aim of denoising is to recover
the function f W D ! R at the design points themselves. We will use the proposed
Parseval frame in order to define an estimatebf of the function f . In what follows,
since the D is fixed, we identify f with the vector . f .x1/; : : : ; f .xn// and denote
y D .y1; : : : ; yn/.

Given the frame F associated to the data points D with a multiscale bandpass
filter as from Definitions 2 and 3, we denote the frame coefficients akl D h�kl; f i
for f and bkl D h�kl; yi for y. Due to the linearity of the inner product we get
akl D bkl � h�kl; �i : We estimate the unknown coefficients akl by adjusting the
known coefficients bkl by soft-thresholding:

Ss .z; c/ D sgn.z/ .jzj � c/C: (20.15)
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In order to take into account that the frame elements �kl are not normalized, and
generally have different norms, we use element-adapted thresholds of the form
ckl D � k�klk t which depend on the variance of h�; �kli and some global parameter
t. Equivalently, this corresponds to first normalizing the observed coefficients bkl
by dividing by their variance, then applying a global threshold to the normalized
coefficients, and finally inverting the normalization.

The estimator of f is then the plug-in estimator

bfSs D
X

k;l

Ss .bkl; ckl/�kl D T�Ss.b; c/; (20.16)

where Ss.b; c/ denotes the vector of thresholded coefficients, and T� is the synthesis
operator of the frame as introduced in Sect. 20.2.2.

To measure the performance of this estimator, we use the risk measure

Risk.bf ; f / D E�

����bf � f
���
2
�
; (20.17)

that is, the expected quadratic norm at the sampled points (where kfk2 DPn
iD1 f .xi/2 is the Euclidean vector norm of f on the observation points), for the

performance analysis of an estimatorbf 2 R
n.

For bounding the risk of the thresholding estimator bfSs , rather than assuming
some specific regularity properties on the function f , it is useful to compare the
performance ofbfSs to that of a group of reference estimators. This is called the oracle
approach (Candès 2006; Donoho and Johnstone 1994): can the proposed estimator
have a performance (almost) as good as the best estimator (for this specific f ) in a
reference family (that is to say, as good as if an oracle would have given us advance
knowledge of which reference estimator is the best for this function f ). We review
here briefly some important results.

A suitable class of simple reference estimators consists of “keep or kill” (or
diagonal projection) estimators, that keep without changes the observed coefficients
bk;l for .k; l/ in some subset I, and put to zero the coefficients for indices outside of
I:

bfI WD
X

.k;l/2I
bkl�kl D T�baIkl; (20.18)

where baIkl D bkl1f.k; l/ 2 Ig. Now using the frame reconstruction formula
and (20.6), we obtain

E�

����bfI � f
���
2
�

D E�
���T�.a �baI/��2

�

� E�
���a �baI��2

�
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D
X

.k;l/

�
a2kl1f.k; l/ 62 Ig

C�2 k klk2 1f.k; l/ 2 Ig� : (20.19)

Therefore, the optimal (oracle) choice of the index set I� obtained by minimizing
the above upper bound is given by

.k; l/ 2 I� , h f ; �kli2 � �2 k�klk2 (keep)

.k; l/ … I� , h f ; �kli2 � �2 k�klk2 (kill) : (20.20)

One deduces from this that

inf
I

E�

����bfI � f
���
2
�

�
X

.k;l/2N
min

�
h f ; �kli2 ; �2 k�klk2

�
DW OB. f / : (20.21)

The relation of soft thresholding estimators to the collection of keep-or-kill
estimators on a Parseval frame is captured by the following oracle-type inequality
(see Candès 2006, Section 9)1:

Theorem 3 Let f�klgk;l be a Parseval frame and consider the denoising observation
model with Gaussian noise. LetbfSs D P

k;l Ss .h y; �kli ; tkl/ �kl be the soft-threshold

frame estimator from (20.16). Then with tkl D � k�klk
p
2 log.n/ the following

inequality holds:

E�

����bfSs � f
���
2
�

� .2 log.n/C 1/
�
�2 C OB. f /

�
: (20.22)

To interpret this result, observe that if we renormalize the squared norm by 1
n , so

that it represents averaged squared error per point, we expect (depending on the
regularity of f ) the order of magnitude of n�1OB. f / to be typically a polynomial
rate O.n��/ for some � < 1. Then the term �2=n is negligible in comparison, and
the oracle inequality states that the performance ofbfSs is only worse by a logarithmic
factor than the performance obtained with the optimal, f -dependent choice of I in a
keep-or-kill estimator.

For this tight oracle inequality to hold, it is particularly important that a Parseval
frame is used. While thresholding strategies can also be applied to the coefficients
of a frame that is not Parseval, the reconstruction step is less straightforward (the
canonical dual frame must be computed for reconstruction from the thresholded
coefficients, see Sect. 20.2.2); furthermore, an additional factor B=A comes into
the bound (A � 1 � B being the frame bounds from definition (20.1)) (see, for
instance, Haltmeier and Munk 2014, Prop. 3.10). Therefore, the performance of
simple thresholding estimates deteriorates when used with a non-Parseval frame.

1Candès (2006) only hints at the proof; we provide a proof in the appendix for completeness.
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20.5 Numerical Experiments

We investigate the performance of the proposedmethod for denoising on two testbed
datasets where the ground truth is known and the design points are drawn randomly
iid from a distribution on a manifold. More precisely, we will consider one example
where the design pointsD are drawn uniformly (n D 500) on the unit square, which
is then rolled up into a “swiss roll” shape in 3D. We consider a very simple target
function represented (on the original unit square) as a piecewise constant function
(with values 5 and �3) on two triangles, displaying a sharp discontinuity along
one diagonal of the square and very smooth regularity elsewhere. This function
is observed with an additional Gaussian noise of variance �2 D 1. In the second
example the design points D are drawn uniformly (n D 500) on the unit sphere in
R
3. The target function remains a piecewise constant function, defined on the two

parts of the sphere when intersecting it with a chosen plane. Again, this function is
observed with an additional Gaussian noise of variance �2 D 1. For the swiss roll
example as well as for the sphere example, one sample consisting of design points
and noisy function values is displayed in Fig. 20.4.
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Fig. 20.4 Left: noisy function on swiss roll data (top) and sphere data (bottom), graph repre-
sentation. Right: MSE for two representative settings (weighted "-Graph and k-NN-Graph) as a
function of threshold level. Red is thresholding in the original Laplacian Eigenmaps ONB, blue is
thresholding of frame coefficients
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In each example, we consider the different types of neighborhood graphs
described in Sect. 20.2.3. Following usual heuristics, for the construction of the k-
NN graph we take k D 7 � log n; for the "-graph, we take for " the average distance
to the k D 7th nearest neighbor, and for weighted graphs we take Gaussian weights,
where the bandwidth � is calibrated so that points at the distance " defined above
are given weight 0:5.

After constructing the (weighted or unweighted) graph Laplacian, we com-
pute explicitly its eigendecomposition. For the construction of the frame via the
multiscale bandpass filter, we use a C 3 piecewise polynomial plateau function g
satisfying the support constraints of Definition 3 for b D 2 (i.e., constant equal to 1
for x � 0:5, and zero for x � 1). While this function is not C1, it has the advantage
of fast computation.

We compare the denoising performance of the following competitors: Parseval
frame with soft thresholding, soft thresholding applied to the Laplacian Eigenmaps
orthonormal basis, and truncated expansion in the Laplacian Eigenmaps basis
(only the k coefficients corresponding to the first eigenvalues are kept, without
thresholding). The latter method is in the spirit of Belkin and Niyogi (2002). It
is well-known (from the regular grid case) that the “universal” theoretical threshold
�

p
log n is often too conservative in practice. For a fair comparison, we therefore

compute the mean squared error (MSE) of both thresholding methods for varying
threshold t (still modulated by k�klk for the Parseval frame). Comparison of the
MSE for one sample across the t-range for two particular settings is plotted in
Fig. 20.4. For all studied settings (different graph and graph Laplacian types), for
the same threshold level t we observed that the frame-based method systematically
shows a noticeable improvement.

In Table 20.1 we report the minimum MSEs and their standard error (averaged
over m D 50 samples of design points and independent noise) for different
methods over the possible range of the parameter (threshold level t, resp. number
of coefficients for truncated expansion), both for the swissroll and for the sphere
example. We observe an improvement of 20–25% across the different settings (the
best overall results being obtained with weighted graphs and the unnormalized
Laplacian). We also compared to the more traditional methods of kernel smooth-
ing (Nadaraya-Watson estimator) and kernel ridge regression, using a Gaussian
kernel (also with optimal choices of bandwidth and regularization parameter), and
observed a comparable performance improvement.While it is not realistic to assume
that the optimal parameter choice is known in practice, it is fair to compare all
methods under their respective optimal parameter settings, as parameter selection
methods will induce a comparable performance hit with respect to the best setting.

20.6 Outlook

Following the recently introduced idea of generalizing the Littlewood-Paley spectral
decomposition, we constructed explicitly a Parseval frame of functions on a neigh-
borhood graph formed on the data points.We established that a thresholding strategy
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Table 20.1 MSE performance under optimal parameter choice

Graph L FrTh LETh LETr

Example 1: sphere, jump function,�2 D 1; n D 500;m D 50

kNN U 0.510 (0.050) 0.693 (0.061) 0.905 (0.108)

kNN N 0.538 (0.046) 0.712 (0.055) 0.931 (0.094)

WkNN U 0.521 (0.049) 0.652 (0.050) 0.800 (0.097)

WkNN N 0.530 (0.049) 0.674 (0.057) 0.749 (0.091)

CGK U 0.520 (0.055) 0.638 (0.065) 0.821 (0.107)

CGK N 0.530 (0.052) 0.670 (0.050) 0.725 (0.081)

�G U 0.505 (0.058) 0.650 (0.068) 0.865 (0.115)

�G N 0.557 (0.052) 0.710 (0.059) 0.902 (0.106)

W�G U 0.482 (0.055) 0.622 (0.064) 0.787 (0.111)

W�G N 0.530 (0.049) 0.674 (0.057) 0.749 (0.091)

Smoothing Kernel Regression: min. MSE = 0.612 (0.066)

Kernel Ridge Regression: min. MSE = 0.594 (0.051)

Example 2: swiss roll, jump function,�2 D 1; n D 500;m D 50

kNN U 0.462 (0.043) 0.647 (0.039) 0.876 (0.079)

kNN N 0.494 (0.043) 0.676 (0.043) 0.902 (0.071)

WkNN U 0.443 (0.045) 0.600 (0.050) 0.790 (0.102)

WkNN N 0.500 (0.043) 0.659 (0.045) 0.775 (0.079)

CGK U 0.491 (0.053) 0.625 (0.057) 0.844 (0.096)

CGK N 0.520 (0.047) 0.648 (0.049) 0.713 (0.079)

�G U 0.459 (0.049) 0.610 (0.053) 0.872 (0.095)

�G N 0.532 (0.045) 0.681 (0.050) 0.884 (0.089)

W�G U 0.441 (0.049) 0.574 (0.049) 0.793 (0.113)

W�G N 0.503 (0.045) 0.643 (0.051) 0.744 (0.089)

Smoothing Kernel Regression: min. MSE = 0.589 (0.082)

Kernel Ridge Regression: min. MSE = 0.779 (0.052)

FrTh: Frame Thresholding; LETh/LETr: Laplacian Eigenmaps Thresholding/Truncated expansion.
Prefix W indicates edge weighting in the graph. CGK is the complete graph with Gaussian weights.
U/N is un/normalized graph Laplacian. Standard error in brackets. Top: Sphere example. Bottom:
Swiss roll example

on the frame coefficients has superior performance for the denoising problem
as compared to usual, spectral or non-spectral, approaches. Future developments
include extension of this methodology to the semisupervised learning setting, and a
stronger theoretical basis for spatial localization.
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Appendix

Proof of Theorem 3

Theorem 3 states a oracle-type inequality which captures the relation of soft
thresholding estimators OfSs D P

k;l Ss .h y; �kli ; tkl/ �kl defined in (20.16) to the
collection of keep-or-kill estimators on a Parseval frame. This result is known in the
literature (see Candès 2006, Section 9), but we provide a short self-contained proof
for completeness, modulo a technical result from Donoho and Johnstone (1994) for
soft thresholding of a single one-dimensional Gaussian variable, which is basic for
the Proof of Theorem 3.

Lemma 1 For 0 � ı � 1=2, t D p
2 log.ı�1/ and X 	 N .	; 1/

EX

�
.Ss.X; t/� 	/2

�
� .2 log.ı�1/C 1/.ı C min.1; 	2//

D .t2 C 1/

�
exp

�
� t2

2

�
C min.1; 	2/

�
: (20.23)

The proof of this lemma can be found in appendix 1 of Donoho and Johnstone
(1994). Now we are able to prove Theorem 3.

Proof First note that for y D 
x; 
 > 0, we have

Ss. y; u/ D 
Ss
�
x;

u




�
: (20.24)

Secondly we remark that

h y; �kli
� k�klk 	 N

�
akl

� k�klk ; 1
�
: (20.25)

Considering now the risk of the soft thresholding estimator OfSs we get

E
����OfSs � f

���
2
�

D E

0

@
�����
X

k;l

.Ss .h y; �kli ; tkl/� akl/�kl

�����

2
1

A

� E

 
X

k;l

.Ss .h y; �kli ; tkl/� akl/
2

!

D
X

k;l

E
�
.Ss .h y; �kli ; tkl/ � akl/

2
�
: (20.26)
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by using inequality (20.6). By applying (20.24) and then (20.23)with t D p
2 log.n/

it follows that

E
����OfSs � f

���
2
�

�
X

k;l

�2 k�klk2 E

 �
Ss

� h y; �kli
� k�klk ;

p
2 log.n/

�
� akl
� k�klk

�2!

�
X

k;l

�2 k�klk2 .2 log.n/C 1/

�
exp

�
�2 log.n/

2

�
C min

�
1;

a2kl
�2 k�klk2

��

D
X

k;l

.2 log.n/C 1/

�
1

n
�2 k�klk2 C min

�
�2 k�klk2 ; a2kl

��

D .2 log.n/C 1/

 
1

n

X

k;l

�2 k�klk2 C
X

k;l

min
�
�2 k�klk2 ; a2kl

�!
: (20.27)

Recalling the Parseval frame property
P

k;l k�klk2 D n, we finally obtain

E
����OfSs � f

���
2
�

� .2 log.n/C 1/

 
1

n
n�2 C

X

k;l

min
�
�2 k�klk2 ; a2kl

�!

D .2 log.n/C 1/

 
�2 C

X

k;l

min
�
�2 k�klk2 ; a2kl

�!
: (20.28)

where we recognize the upper bound
P

k;l min
�
�2 k�klk2 ; a2kl

�
D OB. f / for the

oracle. ut
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