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Preface

A tremendous growth of high-throughput techniques leads to huge data collections
that are accumulating in an exponential speed with high volume, velocity, and
variety. This creates the challenges of big data analytics for statistical science.
These challenges demand creative innovation of statistical methods and smart com-
putational Quantlets, macros, and programs to capture the often genuinely sparse
informational content of huge unstructured data. Particularly, the development of
analytic methodologies must take into account the co-design of hardware and
software to handle the massive data corpus so that the veracity can be achieved
and the inherent value can be revealed.

This volume of the Handbook of Computational Statistics series collects twenty-
one chapters to provide advice and guidance to the fast developments of big
data analytics. It covers a wide spectrum of methodologies and applications
that provide a general overview of this new exciting field of computational
statistics. The chapters present topics related to mathematics and statistics for
high-dimensional problems, nonlinear structures, sufficient dimension reduction,
spatiotemporal dependence, functional data analysis, graphic modeling, variational
Bayes, compressive sensing, density functional theory, and supervised and semi-
supervised learning. The applications include business intelligence, finance, image
analysis, compress sensing, climate changes, text mining, neuroscience, and data
visualization in very large dimensions. Many of the methods that we present are
reproducible in R or MATLAB or Python language. Details of the Quantlets are
found at http://www.quantlet.com/.

We would like to acknowledge the dedicated work of all the contributing authors,
reviewers, and members in the editorial office of Springer, including Alice Blanck,
Frank Holzwarth, Jessica Fäcks, and the related members. Finally, we also thank
the great support of our families and friends for this long journey of editing process.

Berlin, Germany Wolfgang Karl Härdle
Hsinchu, Taiwan Henry Horng-Shing Lu
Minneapolis, USA Xiaotong Shen
July 4, 2017
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Overview



Chapter 1
Statistics, Statisticians, and the Internet
of Things

John M. Jordan and Dennis K. J. Lin

Abstract Within the overall rubric of big data, one emerging subset holds particular
promise, peril, and attraction. Machine-generated traffic from sensors, data logs, and
the like, transmitted using Internet practices and principles, is being referred to as
the “Internet of Things” (IoT). Understanding, handing, and analyzing this type of
data will stretch existing tools and techniques, thus providing a proving ground for
other disciplines to adopt and adapt new methods and concepts. In particular, new
tools will be needed to analyze data in motion rather than data at rest, and there
are consequences of having constant or near-constant readings from the ground-
truth phenomenon as opposed to numbers at a remove from their origin. Both
machine learning and traditional statistical approaches will coevolve rapidly given
the economic forces, national security implications, and wide public benefit of this
new area of investigation. At the same time, data practitioners will be exposed to the
possibility of privacy breaches, accidents causing bodily harm, and other concrete
consequences of getting things wrong in theory and/or practice. We contend that the
physical instantiation of data practice in the IoT means that statisticians and other
practitioners may well be seeing the origins of a post-big data era insofar as the
traditional abstractions of numbers from ground truth are attenuated and in some
cases erased entirely.

Keywords Machine traffic · Internet of Things · Sensors · Machine learning ·
Statistical approaches to big data
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4 J. M. Jordan and D. K. J. Lin

1.1 Introduction

Even though it lacks a precise definition, the notion of an “Internet of Things” refers
generally to networks of sensors, actuators, and machines that communicate over the
Internet and related networks. (Some years ago, the number of inanimate objects
on the Internet surpassed the number of human beings with connections.) In this
chapter, we will first elaborate on the components of the IoT and discuss its data
components. The place of statistics in this new world follows, and then we raise
some real-world issues such as skills shortages, privacy protection, and so on, before
concluding.

1.1.1 The Internet of Things

The notion of an Internet of Things is at once both old and new. From the earliest
days of the World Wide Web, devices (often cameras) were connected so people
could see the view out a window, traffic or ski conditions, a coffee pot at the
University of Cambridge, or a Coke machine at Carnegie Mellon University. The
more recent excitement dates to 2010 or thereabouts and builds on a number of
developments: many new Internet Protocol (IP) addresses have become available,
the prices of sensors are dropping, new data and data-processing models are
emerging to handle the scale of billions of device “chirps,” and wireless bandwidth
is getting more and more available.

1.1.2 What Is Big Data in an Internet of Things?

Why do sensors and connected devices matter for the study of statistics? If one
considers the definition of a robot—an electromechanical device that can digitally
sense and think, then act upon the physical environment—those same actions
characterize large-scale Internet of Things systems: they are essentially meta-robots.
The GE Industrial Internet model discussed below includes sensors on all manner of
industrial infrastructure, a data analytics platform, and humans to make presumably
better decisions based on the massive numbers from the first domain crunched by
algorithms and computational resources in the second. Thus, the Internet of Things
becomes, in some of its incarnations, an offshoot of statistical process control, six-
sigma, and other established industrial methodologies.

Unlike those processes that operated inside industrial facilities, however, the
Internet of Things includes sensors attached to or otherwise monitoring individual
people in public. Google Glass, a head-mounted smartphone, generated significant
controversy before it was pulled from distribution in 2015. This reaction was a
noteworthy step in the adoption of Internet of Things systems: both technical
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details and cultural norms need to be worked out. Motion sensors, cameras, facial
recognition, and voice recording and synthesis are very different activities on a
factory floor compared to a city sidewalk.

Thus, the Internet of Things is both an extension of existing practices and the
initial stage in the analysis of an ever-more instrumented public sphere. The IoT
(1) generates substantially large bodies of data (2) in incompatible formats (3)
sometimes attached to personal identity. Statisticians now need to think about new
physical-world safety issues and privacy implications in addition to generating new
kinds of quantitative tools that can scale to billions of data points per hour, across
hundreds of competing platforms and conventions. The magnitude of the task cannot
be overstated.

1.1.3 Building Blocks1

The current sensor landscape can be understood more clearly by contrasting it to
the old state of affairs. Most important, sensor networks mimicked analog com-
munications: radios couldn’t display still pictures (or broadcast them), turntables
couldn’t record video, and newspapers could not facilitate two- or multi-way dialog
in real time. For centuries, sensors in increasing precision and sophistication were
invented to augment human senses: thermometers, telescopes, microscopes, ear
trumpets, hearing aids, etc. With the nineteenth-century advances in electro-optics
and electromechanical devices, new sensors could be developed to extend the human
senses into different parts of the spectrum (including infrared, radio frequencies,
measurement of vibration, underwater acoustics, etc.).

Where they were available, electromechanical sensors and later sensor net-
works

• Stood alone
• Measured one and only one thing
• Cost a lot to develop and implement
• Had inflexible architectures: they did not adapt well to changing circumstances

Sensors traditionally stood alone because networking them together was expen-
sive and difficult. Given the lack of shared technical standards, in order to build
a network of offshore data buoys for example, the interconnection techniques
and protocols would be uniquely engineered to a particular domain, in this case,
saltwater, heavy waves, known portions of the magnetic spectrum, and so on.
Another agency seeking to connect sensors of a different sort (such as surveillance
cameras) would have to start from scratch, as would a third agency monitoring road
traffic.

1This section relies heavily on John M. Jordan, Information, Technology, and Innovation
(Hoboken: John Wiley, 2012), ch. 23.



6 J. M. Jordan and D. K. J. Lin

In part because of their mechanical componentry, sensors rarely measured
across multiple yardsticks. Oven thermometers measured only oven temperature,
and displayed the information locally, if at all (given that perhaps a majority of
sensor traffic informs systems rather than persons, the oven temperature might only
drive the thermostat rather than a human-readable display). Electric meters only
counted watt-hours in aggregate. In contrast, today a consumer Global Positioning
Satellite (GPS) unit or smartphone will tell location, altitude, compass heading, and
temperature, along with providing weather radio.

Electromechanical sensors were not usually mass produced, with the exception
of common items such as thermometers. Because supply and demand were both
limited, particularly for specialized designs, the combination of monopoly supply
and small order quantities kept prices high.

1.1.4 Ubiquity

Changes in each of these facets combine to help create today’s emerging sensor
networks, which are growing in scope and capability every year. The many examples
of sensor capability accessible to (or surveilling) the everyday citizen illustrate the
limits of the former regime: today there are more sensors recording more data to
be accessed by more end points. Furthermore, the traffic increasingly originates and
transits exclusively in the digital domain.

• Computers, which sense their own temperature, location, user patterns, number
of printer pages generated, etc.

• Thermostats, which are networked within buildings and now remotely controlled
and readable.

• Telephones, the wireless variety of which can be understood as beacons, bar-
code scanners, pattern matchers (the Shazam application names songs from a
brief audio sample), and network nodes.

• Motor and other industrial controllers: many cars no longer have mechanical
throttle linkages, so people step on a sensor every day without thinking as they
drive by wire. Automated tire-pressure monitoring is also standard on many new
cars. Airbags rely on a sophisticated system of accelerometers and high-speed
actuators to deploy the proper reaction for collision involving a small child versus
a lamp strapped into the front passenger seat.

• Vehicles: the OBD II diagnostics module, the toll pass, satellite devices on heavy
trucks, and theft recovery services such as Lojack, not to mention the inevitable
mobile phone, make vehicle tracking both powerful and relatively painless.

• Surveillance cameras (of which there are over 10,000 in Chicago alone, and more
than 500,000 in London).2

2Brian Palmer, “Big Apple is Watching You,” Slate, May 3, 2010, http://www.slate.com/id/
2252729/, accessed 29 March 2018.

http://www.slate.com/id/2252729
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• Most hotel door handles and many minibars are instrumented and generate
electronic records of people’s and vodka bottles’ comings and goings.

• Sensors, whether embedded in animals (RFID chips in both household pets and
race horses) or gardens (the EasyBloom plant moisture sensor connects to a
computer via USB and costs only $50), or affixed to pharmaceutical packaging.

Note the migration from heavily capital-intensive or national-security applica-
tions down-market. A company called Vitality has developed a pill-bottle moni-
toring system: if the cap is not removed when medicine is due, an audible alert is
triggered, or a text message could be sent.3

A relatively innovative industrial deployment of vibration sensors illustrates the
state of the traditional field. In 2006, BP instrumented an oil tanker with “motes,”
which integrated a processor, solid-state memory, a radio, and an input/output board
on a single 2” square chip. Each mote could receive vibration data from up to ten
accelerometers, which were mounted on pumps and motors in the ship’s engine
room. The goal was to determine if vibration data could predict mechanical failure,
thus turning estimates—a motor teardown every 2000 h, to take a hypothetical
example—into concrete evidence of an impending need for service.

The motes had a decided advantage over traditional sensor deployments in that
they operated over wireless spectrum. While this introduced engineering challenges
arising from the steel environment as well as the need for batteries and associated
issues (such as lithium’s being a hazardous material), the motes and their associated
sensors were much more flexible and cost-effective to implement compared to hard-
wired solutions. The motes also communicate with each other in a mesh topology:
each mote looks for nearby motes, which then serve as repeaters en route to the
data’s ultimate destination. Mesh networks are usually dynamic: if a mote fails,
signal is routed to other nearby devices, making the system fault tolerant in a
harsh environment. Finally, the motes could perform signal processing on the chip,
reducing the volume of data that had to be transmitted to the computer where
analysis and predictive modeling was conducted. This blurring of the lines between
sensing, processing, and networking elements is occurring in many other domains
as well.4

All told, there are dozens of billions of items that can connect and combine in
new ways. The Internet has become a common ground for many of these devices,
enabling multiple sensor feeds—traffic camera, temperature, weather map, social
media reports, for example—to combine into more useful, and usable, applications,
hence the intuitive appeal of “the Internet of Things.” As we saw earlier, network
effects and positive feedback loops mean that considerable momentum can develop
as more and more instances converge on shared standards. While we will not

3Ben Coxworth, “Ordinary pill bottle has clever electronic cap,” New Atlas, May 5, 2017, https://
newatlas.com/pillsy-smart-pill-bottle/49393/, accessed 29 March 2018.
4Tom Kevan, “Shipboard Machine Monitoring for Predictive Maintenance,” Sensors Mag, Febru-
ary 1, 2006. http://www.sensorsmag.com/sensors-mag/shipboard-machine-monitoring-predictive-
maintenance-715?print=1

http://www.unwiredview.com/2009/10/08/pill-bottle-caps-to-call-you-via-att-and-remind-you-to-take-your-medicine
http://www.sensorsmag.com/sensors-mag/shipboard-machine-monitoring-predictive-maintenance-715?print=1
http://www.sensorsmag.com/sensors-mag/shipboard-machine-monitoring-predictive-maintenance-715?print=1


8 J. M. Jordan and D. K. J. Lin

discuss them in detail here, it can be helpful to think of three categories of sensor
interaction:

• Sensor to people: the thermostat at the ski house tells the occupants that the
furnace is broken the day before they arrive, or a dashboard light alerting the
driver that the tire pressure on their car is low.

• Sensor to sensor: the rain sensor in the automobile windshield alerts the
antilock brakes of wet road conditions and the need for different traction-control
algorithms.

• Sensor to computer/aggregator: dozens of cell phones on a freeway can serve
as beacons for a traffic-notification site, at much lower cost than helicopters or
“smart highways.”

An “Internet of Things” is an attractive phrase that at once both conveys
expansive possibility and glosses over substantial technical challenges. Given 20C
years of experience with the World Wide Web, people have long experience
with hyperlinks, reliable inter-network connections, search engines to navigate
documents, and Wi-Fi access everywhere from McDonalds to over the mid-Atlantic
in flight. None of these essential pieces of scaffolding has an analog in the
Internet of Things, however: garage-door openers and moisture sensors aren’t able
to read; naming, numbering, and navigation conventions do not yet exist; low-
power networking standards are still unsettled; and radio-frequency issues remain
problematic. In short, as we will see, “the Internet” may not be the best metaphor for
the coming stage of device-to-device communications, whatever its potential utility.

Given that “the Internet” as most people experience it is global, searchable, and
anchored by content or, increasingly, social connections, the “Internet of Things”
will in many ways be precisely the opposite. Having smartphone access to my
house’s thermostat is a private transaction, highly localized and preferably NOT
searchable by anyone else. While sensors will generate volumes of data that are
impossible for most humans to comprehend, that data is not content of the sort that
Google indexed as the foundation of its advertising-driven business. Thus, while an
“Internet of Things” may feel like a transition from a known world to a new one,
the actual benefits of networked devices separate from people will probably be more
foreign than being able to say “I can connect to my appliances remotely.”

1.1.5 Consumer Applications

The notion of networked sensors and actuators can usefully be subdivided into
industrial, military/security, or business-to-business versus consumer categories. Let
us consider the latter first. Using the smartphone or a web browser, it is already
possible to remotely control and/or monitor a number of household items:

• Slow cooker
• Garage-door opener
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• Blood-pressure cuff
• Exercise tracker (by mileage, heart rate, elevation gain, etc.)
• Bathroom scale
• Thermostat
• Home security system
• Smoke detector
• Television
• Refrigerator

These devices fall into some readily identifiable categories: personal health
and fitness, household security and operations, and entertainment. While the data
logging of body weight, blood pressure, and caloric expenditures would seem to be
highly relevant to overall physical wellness, few physicians, personal trainers, or
health insurance companies have built business processes to manage the collection,
security, or analysis of these measurements. Privacy, liability, information overload,
and, perhaps most centrally, outcome-predicting algorithms have yet to be devel-
oped or codified. If I send a signal to my physician indicating a physical abnormality,
she could bear legal liability if her practice does not act on the signal and I
subsequently suffer a medical event that could have been predicted or prevented.

People are gradually becoming more aware of the digital “bread crumbs” our
devices leave behind. Progressive Insurance’s Snapshot campaign has had good
response to a sensor that tracks driving behavior as the basis for rate-setting:
drivers who drive frequently, or brake especially hard, or drive a lot at night,
or whatever could be judged worse risks and be charged higher rates. Daytime
or infrequent drivers, those with a light pedal, or people who religiously buckle
seat belts might get better rates. This example, however, illustrates some of the
drawbacks of networked sensors: few sensors can account for all potentially causal
factors. Snapshot doesn’t know how many people are in the car (a major accident
factor for teenage drivers), if the radio is playing, if the driver is texting, or when
alcohol might be impairing the driver’s judgment. Geographic factors are delicate:
some intersections have high rates of fraudulent claims, but the history of racial
redlining is also still a sensitive topic, so data that might be sufficiently predictive
(postal codes traversed) might not be used out of fear it could be abused.

The “smart car” applications excepted, most of the personal Internet of Things
use cases are to date essentially remote controls or intuitively useful data collection
plays. One notable exception lies in pattern-recognition engines that are grouped
under the heading of “augmented reality.” Whether on a smartphone/tablet or
through special headsets such as Google Glass, a person can see both the physical
world and an information overlay. This could be a real-time translation of a road sign
in a foreign country, a direction-finding aid, or a tourist application: look through
the device at the Eiffel Tower and see how tall it is, when it was built, how long
the queue is to go to the top, or any other information that could be attached to the
structure, attraction, or venue.
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While there is value to the consumer in such innovations, these connected devices
will not drive the data volumes, expenditures, or changes in everyday life that will
emerge from industrial, military, civic, and business implementations.

1.1.6 The Internets of [Infrastructure] Things

Because so few of us see behind the scenes to understand how public water mains,
jet engines, industrial gases, or even nuclear deterrence work, there is less intuitive
ground to be captured by the people working on large-scale sensor networking.
Yet these are the kinds of situations where networked instrumentation will find its
broadest application, so it is important to dig into these domains.

In many cases, sensors are in place to make people (or automated systems) aware
of exceptions: is the ranch gate open or closed? Is there a fire, or just an overheated
wok? Is the pipeline leaking? Has anyone climbed the fence and entered a secure
area? In many cases, a sensor could be in place for years and never note a condition
that requires action. As the prices of sensors and their deployment drop, however,
more and more of them can be deployed in this manner, if the risks to be detected
are high enough. Thus, one of the big questions in security—in Bruce Schneier’s
insight, not “Does the security measure work?” but “Are the gains in security worth
the costs?”—gets difficult to answer: the costs of IP-based sensor networks are
dropping rapidly, making cost-benefit-risk calculations a matter of moving targets.

In some ways, the Internet of Things business-to-business vision is a replay
of the RFID wave of the mid-aughts. Late in 2003, Walmart mandated that all
suppliers would use radio-frequency tags on their incoming pallets (and sometimes
cases) beginning with the top 100 suppliers, heavyweight consumer packaged goods
companies like Unilever, Procter & Gamble, Gillette, Nabisco, and Johnson &
Johnson. The payback to Walmart was obvious: supply chain transparency. Rather
than manually counting pallets in a warehouse or on a truck, radio-powered scanners
could quickly determine inventory levels without workers having to get line-of-sight
reads on every bar code. While the 2008 recession contributed to the scaled-back
expectations, so too did two powerful forces: business logic and physics.

To take the latter first, RFID turned out to be substantially easier in labs than in
warehouses. RF coverage was rarely strong and uniform, particularly in retrofitted
facilities. Electromagnetic noise—in the form of everything from microwave ovens
to portable phones to forklift-guidance systems—made reader accuracy an issue.
Warehouses involve lots of metal surfaces, some large and flat (bay doors and
ramps), others heavy and in motion (forklifts and carts): all of these reflect radio
signals, often problematically. Finally, the actual product being tagged changes
radio performance: aluminum cans of soda, plastic bottles of water, and cases
of tissue paper each introduce different performance effects. Given the speed of
assembly lines and warehouse operations, any slowdowns or errors introduced by a
new tracking system could be a showstopper.
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The business logic issue played out away from the shop floor. Retail and
consumer packaged goods profit margins can be very thin, and the cost of the
RFID tagging systems for manufacturers that had negotiated challenging pricing
schedules with Walmart was protested far and wide. The business case for total
supply chain transparency was stronger for the end seller than for the suppliers,
manufacturers, and truckers required to implement it for Walmart’s benefit. Given
that the systems delivered little value to the companies implementing them, and
given that the technology didn’t work as advertised, the quiet recalibration of the
project was inevitable.

RFID is still around. It is a great solution to fraud detection, and everything from
sports memorabilia to dogs to ski lift tickets can be easily tested for authenticity.
These are high-value items, some of them scanned no more than once or twice in a
lifetime rather than thousands of times per hour, as on an assembly line. Database
performance, industry-wide naming and sharing protocols, and multiparty security
practices are much less of an issue.

While it’s useful to recall the wave of hype for RFID circa 2005, the Internet
of Things will be many things. The sensors, to take only one example, will be
incredibly varied, as a rapidly growing online repository makes clear (see http://
devices.wolfram.com/).5 Laboratory instruments are shifting to shared networking
protocols rather than proprietary ones. This means it’s quicker to set up or
reconfigure an experimental process, not that the lab tech can see the viscometer
or Geiger counter from her smart phone or that the lab will “put the device on the
Internet” like a webcam.

Every one of the billions of smartphones on the planet is regularly charged by
its human operator, carries a powerful suite of sensors—accelerometer, temperature
sensor, still and video cameras/bar-code readers, microphone, GPS receiver—and
operates on multiple radio frequencies: Bluetooth, several cellular, and Wi-Fi. There
are ample possibilities for crowdsourcing news coverage, fugitive hunting, global
climate research (already, amateur birders help show differences in species’ habitat
choices), and more using this one platform.

Going forward, we will see more instrumentation of infrastructure, whether
bridges, the power grid, water mains, dams, railroad tracks, or even sidewalks.
While states and other authorities will gain visibility into security threats, potential
outages, maintenance requirements, or usage patterns, it’s already becoming clear
that there will be multiple paths by which to come to the same insight. The state of
Oregon was trying to enhance the experience of bicyclists, particularly commuters.
While traffic counters for cars are well established, bicycle data is harder to gather.
Rather than instrumenting bike paths and roadways, or paying a third party to do
so, Oregon bought aggregated user data from Strava, a fitness-tracking smartphone
app. While not every rider, particularly commuters, tracks his mileage, enough do
that the bike-lane planners could see cyclist speeds and traffic volumes by time of
day, identify choke points, and map previously untracked behaviors.

5Wolfram Connected Devices Project, (http://devices.wolfram.com/), accessed 29 March 2018.

http://devices.wolfram.com/
http://devices.wolfram.com/
http://devices.wolfram.com/
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Strava was careful to anonymize user data, and in this instance, cyclists were
the beneficiaries. Furthermore, cyclists compete on Strava and have joined with the
expectation that their accomplishments can show up on leader boards. In many other
scenarios, however, the Internet of Things’ ability to “map previously untracked
behaviors” will be problematic, for reasons we will discuss later. To provide merely
one example, when homes are equipped with so-called smart electrical meters, it
turns out that individual appliances and devices have unique “fingerprints” such that
outside analysis can reveal when the toaster, washing machine, or hair dryer was
turned on and off.6 Multiply this capability across toll passes, smartphones, facial
recognition, and other tools, and the privacy threat becomes significant.

1.1.7 Industrial Scenarios

GE announced its Industrial Internet initiative in 2013. The goal is to instrument
more and more of the company’s capital goods—jet engines are old news, but also
locomotives, turbines, undersea drilling rigs, MRI machines, and other products—
with the goal of improving power consumption and reliability for existing units and
to improve the design of future products. Given how big the company’s footprint is
in these industrial markets, 1% improvements turn out to yield multibillion-dollar
opportunities. Of course, instrumenting the devices, while not trivial, is only the
beginning: operational data must be analyzed, often using completely new statistical
techniques, and then people must make decisions and put them into effect.

The other striking advantage of the GE approach is financial focus: 1% savings
in a variety of industrial process areas yields legitimately huge cost savings oppor-
tunities. This approach has the simultaneous merits of being tangible, bounded, and
motivational. Just 1% savings in aviation fuel over 15 years would generate more
than $30 billion, for example. To realize this promise, however, GE needs to invent
new ways of networking, storage, and data analysis. As Bill Ruh, the company’s
vice president of global software services, stated, “Our current jet aircraft engines
produce one terabyte of data per flight. : : : On average an airline is doing anywhere
from five to ten flights a day, so that’s 5–10 terabytes per plane, so when you’re
talking about 20,000 planes in the air you’re talking about an enormous amount
of data per day.”7 Using different yardsticks, Ruh framed the scale in terms of
variables: 50 million of them, from 10 million sensors.

To get there, the GE vision is notably realistic about the many connected
investments that must precede the harvesting of these benefits.

6Ariel Bleicher, “Privacy on the Smart Grid,” IEEE Spectrum, 5 October 2010, http://spectrum.
ieee.org/energy/the-smarter-grid/privacy-on-the-smart-grid, accessed 29 March 2018.
7Danny Palmer, “The future is here today: How GE is using the Internet of Things, big data and
robotics to power its business,” Computing 12 March 2015, http://www.computing.co.uk/ctg/
feature/2399216/the-future-is-here-today-how-ge-is-using-the-internet-of-things-big-data-and-
robotics-to-power-its-business, accessed 29 March 2018.

http://spectrum.ieee.org/energy/the-smarter-grid/privacy-on-the-smart-grid
http://spectrum.ieee.org/energy/the-smarter-grid/privacy-on-the-smart-grid
http://www.computing.co.uk/ctg/feature/2399216/the-future-is-here-today-how-ge-is-using-the-internet-of-things-big-data-and-robotics-to-power-its-business
http://www.computing.co.uk/ctg/feature/2399216/the-future-is-here-today-how-ge-is-using-the-internet-of-things-big-data-and-robotics-to-power-its-business
http://www.computing.co.uk/ctg/feature/2399216/the-future-is-here-today-how-ge-is-using-the-internet-of-things-big-data-and-robotics-to-power-its-business
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1. The technology doesn’t exist yet. Sensors, instrumentation, and user interfaces
need to be made more physically robust, usable by a global workforce, and
standardized to the appropriate degree.

2. Information security has to protect assets that don’t yet exist, containing value
that has yet to be measured, from threats that have yet to materialize.

3. Data literacy and related capabilities need to be cultivated in a global workforce
that already has many skills shortfalls, language and cultural barriers, and
competing educational agendas. Traditional engineering disciplines, computer
science, and statistics will merge into new configurations.8

1.2 What Kinds of Statistics Are Needed for Big IoT Data?

The statistical community is beginning to engage with machine learning and
computer science professionals on the issue of so-called big data. Challenges
abound: data validation at petabyte scale; messy, emergent, and dynamic underlying
phenomena that resist conventional hypothesis testing; and the need for program-
ming expertise for computational heavy lifting. Most importantly, techniques are
needed to deal with flowing data as opposed to static data sets insofar as the
phenomena instrumented in the IoT can be life-critical: ICU monitoring, the power
grid, fire alarms, and so on. There is no time for waiting for summarized, normalized
data because the consequences of normal lags between reading and analysis can be
tragic.

1.2.1 Coping with Complexity

In the Internet of Things, we encounter what might be called “bigˆ2 data”: all the
challenges of single-domain big data remain, but become more difficult given the
addition of cross-boundary complexity. For example, astronomers or biostatisticians
must master massive data volumes of relatively homogeneous data. In the Internet
of Things, it is as if a geneticist also had to understand data on particle physics or
failure modes of carbon fiber.

Consider the example of a military vehicle instrumented to determine transmis-
sion failure to facilitate predictive maintenance. The sensors cannot give away any
operational information that could be used by an adversary, so radio silencing and
data encryption are essential, complicating the data acquisition process. Then comes
the integration of vast quantities of multiple types of data: weather (including tem-

8Peter C. Evans and Marco Annunziata, Industrial Internet: Pushing the Boundaries of Minds and
Machines, 26 November 2012, p. 4, http://www.ge.com/docs/chapters/Industrial_Internet.pdf, p.
4., accessed 29 March 2018.

http://www.ge.com/docs/chapters/Industrial_Internet.pdf
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perature, humidity, sand/dust, mud, and so on); social network information (think
of a classified Twitter feed on conditions and operational updates from the bottom
of the organization up); vibration and other mechanical measurements; dashboard
indicators such as speedometer, gearshift, engine temperature, and tachometer;
text-heavy maintenance logs, possibly including handwriting recognition; and
surveillance data (such as satellite imagery).

Moving across domains introduces multiple scales, some quantitative (tempera-
ture) and others not (maintenance records using terms such as “rough,” “bumpy,”
and “intermittent” that could be synonymous or distinct). How is an X change in
a driveshaft harmonic resonance to correlate with sandy conditions across 10,000
different vehicles driven by 50,000 different drivers? What constitutes a control or
null variable? The nature of noise in such a complex body of data requires new
methods of extraction, compression, smoothing, and error correction.

1.2.2 Privacy

Because the Internet of Things can follow real people in physical space (whether
through drones, cameras, cell phone GPS, or other means), privacy and physical
safety become more than theoretical concerns. Hacking into one’s bank account
is serious but rarely physically dangerous; having stop lights or engine throttles
compromised is another matter entirely, as the world saw in the summer of 2015
when an unmodified Jeep was remotely controlled and run off the road.9 Given
the large number of related, cross-domain variables, what are the unintended
consequences of optimization?

De-anonymization has been shown to grow easier with large, sparse data sets.10

Given the increase in the scale and diversity of readings or measurements attached
to an individual, it is theoretically logical that the more sparse data points attach to
an individual, the simpler the task of personal identification becomes (something
as basic as taxi fare data, which intuitively feels anonymous, can create a pri-
vacy breach at scale: http://research.neustar.biz/2014/09/15/riding-with-the-stars-
passenger-privacy-in-the-nyc-taxicab-dataset/).11 In addition, the nature of IoT
measurements might not feel as personally risky at the time of data creation: logging
into a financial institution heightens one’s sense of awareness, whereas walking
down the street, being logged by cameras and GPS, might feel more carefree than it

9Andy Greenberg, “Hackers Remotely Kill a Jeep on the Highway - With Me in It,” Wired,
21 July 2015, http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/, accessed 29
March 2018.
10Arvind Narayanan and Vitaly Shmatikov, “Robust De-anonymization of Large Sparse Datasets,”
no date, https://www.cs.utexas.edu/�shmat/shmat_oak08netflix.pdf, accessed 29 March 2018.
11Anthony Tockar, “Riding with the Stars: Passenger Privacy in the NYC Taxicab Dataset,” neustar
Research, 15 September 2014, accessed 29 March 2018 [Note: “neustar” is lower-case in the
corporate branding].

http://research.neustar.biz/2014/09/15/riding-with-the-stars-passenger-privacy-in-the-nyc-taxicab-dataset/
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perhaps should. The cheapness of computer data storage (as measured by something
called Kreider’s law) combines with the ubiquity of daily digital life to create
massive data stores recording people’s preferences, medications, travels, and social
contacts. The statistician who analyzes and combines such data involving flesh-
and-blood people in real space bears a degree of responsibility for their privacy
and security. (Researchers at Carnegie Melon University successfully connected
facial recognition software to algorithms predicting the subjects’ social security
numbers.12) Might the profession need a new code of ethics akin to the Hippocratic
oath? Can the statistician be value-neutral? Is there danger of data “malpractice”?

1.2.3 Traditional Statistics Versus the IoT

Traditional statistical thinking holds that large samples are better than small ones,
while some machine learning advocates assert that very large samples render
hypotheses unnecessary.13 At this intersection, the so-called the death of p-value is
claimed.14 However, fundamental statistical thinking with regard to significance, for
example, still applies (although the theories may not be straightforwardly applied
in very large data sets). Big data on its own cannot replace scientific/statistical
thinking. Thus, a wishlist for needed statistical methodologies should have the
following properties:

• High-impact problems
Refining existing methodologies is fine, but more efforts should focus on

working high-impact problems, especially those problems from other disciplines.
Statisticians seem to keep missing opportunities: examples range from genetics to
data mining. We believe that statisticians should seek out high-impact problems,
instead of waiting for other disciplines to formulate the problems into statistical
frames. Collaboration across many disciplines will be necessary, if unfamiliar,
behavior. This leads to the next item.

• Provide structure for poorly defined problems
A skilled statistician is typically most comfortable and capable when dealing

with well-defined problems. Instead, statisticians should develop some method-
ologies for poorly defined problems and help devise a strategy of attack. There
are many opportunities for statistical applications, but most of them are not
in the “standard” statistics frame—it will take some intelligent persons to

12Deborah Braconnier, “Facial recognition software could reveal your social security num-
ber,” Phys.org, 2 August 2011, https://phys.org/news/2011-08-facial-recognition-software-reveal-
social.html, accessed 29 March 2018.
13Chris Anderson, “The End of Theory: The Data Deluge Makes the Scientific Method Obsolete,”
Wired, 23 June 2008, https://www.wired.com/2008/06/pb-theory/, accessed 29 March 2018.
14Tom Siegfried, “P value ban: small step for a journal, giant leap for science,” ScienceNews,
17 March 2015, https://www.sciencenews.org/blog/context/p-value-ban-small-step-journal-giant-
leap-science, accessed 29 March 2018.

https://phys.org/news/2011-08-facial-recognition-software-reveal-social.html
https://phys.org/news/2011-08-facial-recognition-software-reveal-social.html
https://www.wired.com/2008/06/pb-theory
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formulate these problems into statistics-friendly problems (then to be solved by
statisticians). Statisticians can devote more efforts to be such intelligent persons.

• Develop new theories
Most fundamental statistical theories based upon iid (independently identi-

cally distributed) for one fixed population (such ascentral limit theorem, or law
of large number) may need to be modified to be appropriately applied to big data
world. Many (non-statisticians) believe that big data leads to “the death of p-
value.” The logic behind this is that when the sample size n becomes really large,
all p-values will be significant—regardless how little the practical significance
is. This is indeed a good example of misunderstanding the fundamentals. One
good example is about “small n and large p” where the sparsity property
is assumed. First, when there are many exploratory variables, some will be
classified as active variables (whether or not this is true!). Even worse, after the
model is built (mainly based on the sparsity property), the residuals may highly
correlate with some remaining variables—this contradicts the assumption for all
fundamental theorems that “error is independent with all exploratory variables.”
New measurement is needed for independence in this case.

1.2.4 A View of the Future of Statistics in an IoT World

Having those wishlist items in mind, what kinds of statistics are needed for big
data? For an initial approximation, here are some very initial thoughts under
consideration.

• Statistics and plots for (many) descriptive statistics. If conventional statistics are
to be used for big data, and it is very likely there will be too many of them
because of the heterogeneity of the data, what is the best way to extract important
information from these statistics? For example, how to summarize thousands of
correlations? How about thousands of p-values? ANOVAs? Regression models?
Histograms? etc. Advanced methods to obtain “sufficient statistics” (whatever it
means in a particular context: astrophysics and biochemistry will have different
needs, for example) from those many conventional statistics are needed.

• Coping with heterogeneity. Numbers related to such sensor outputs as check-
engine lights, motion detectors, and flow meters can be extremely large, of
unknown quality, and difficult to align with more conventional measurement
systems.

• Low-dimension behavior. Whatever method is feasible for big data (the main
concern being the computational costs), the reduction in resolution as it is con-
verted to low-dimension resolution (especially 2D graphs) is always important to
keep in mind.

• As we have mentioned, analyzing real-time measurements that are derived
from actual ground truth demands stream-based techniques that exceed standard
practice in most statistical disciplines.
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• Norm or Extreme. Depending on the problem, we could be interested in either
norm or extreme, or both. Basic methods for both feature extraction (mainly for
extremes) and pattern recognition (mainly for norm) are needed.

• Methods for new types/structures of data. A simple example would be “How
to build up a regression model, when both inputs and outputs are network
variables?” Most existing statistical methodologies are limited to numbers
(univariate or multivariate), but there is some recent work for functional data
or text data. How to extract the basic information (descriptive statistics) or even
analysis (inferential statistics) of these new types of data are highly demanding.
This includes network data, symbolic data, fingerprints data, 2D or 3D image
data, just to name a few. There is more that can be done, if we are willing to open
our minds.

• Prediction vs estimation. One difference between computer science and statistics
methods has to do with the general goal—while CS people focus more on
prediction, statisticians focus more on estimation (or statistical inference). Take
Artificial Neural Networks (ANN) as an example: the method can fit almost
anything, but what does it mean? ANN is thus popularly used in data mining,
but has received relatively low attention from statisticians. For big data, it is
clear that prediction is probably more feasible in most cases. Note: in some
very fundamental cases, we believe that statistical inference remains important,
always bearing in mind the essential research question at hand.

1.3 Big Data in the Real World

Moving statistical and analytical techniques from academic and laboratory settings
into the physical world sensed and measured by the IoT introduces new challenges.
Not surprisingly, organizational and technical matters are emerging, and even the
limits of human cognition must be appreciated and accounted for.

1.3.1 Skills

Here’s a quiz: ask someone in the IT shop how many of his of her colleagues
are qualified to work in Hive, Pig, Cassandra, MongoDb, or Hadoop. These are
some of the tools that are emerging from the front-runners in big data, web-scale
companies including Google (that needs to index the entire Internet), Facebook
(manage a billion users), Amazon (construct and run the world’s biggest online
merchant), or Yahoo (figure out what social media is conveying at the macro
scale). Outside this small industry, big data skills are rare; then consider how
few people understand both data skills and the intricacies of industrial and other
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behind-the-scenes processes, many of them life critical (e.g., the power grid or
hospital ICU sensor networks).

1.3.2 Politics

Control over information is frequently thought to bring power within an orga-
nization. Big data, however, is heterogeneous, is multifaceted, and can bring
performance metrics where they had not previously operated. If a large retailer,
hypothetically speaking, traced its customers’ purchase behavior first to social
media expressions and then to advertising channel, how will the various budget-
holders respond? Uncertainty as to ad spend efficacy is as old as advertising, but
tracing ad channels to purchase activity might bring light where perhaps it is not
wanted. Information sharing across organizational boundaries (“how are you going
to use this data?”) can also be unpopular. Once it becomes widely understood how
one’s data “bread crumbs” can be manipulated, will consumers/citizens demand
stricter regulation?

1.3.3 Technique

Given that relational databases have been around for about 35 years, a substantial
body of theory and practice makes these environments predictable. Big data, by
contrast, is just being invented, but already there are some important differences
between the two: Most enterprise data is generated by or about humans and
organizations: SKUs are bought by people, bills are paid by people, health care
is provided to people, and so on. At some level, many human activities can be
understood at human scale. Big data, particularly social media, can come from
people too, but in more and more cases, it comes from machines: server logs, point
of sale scanner data, security sensors, and GPS traces. Given that these new types
of IoT data don’t readily fit into relational structures and can get massively large
in terms of storage, it’s nontrivial to figure out what questions to ask of these data
types.

When data is loaded into relational systems, it must fit predefined categories that
ensure that what gets put into a system makes sense when it is pulled out. This
process implies that the system is defined at the outset for what the designers expect
to be queried: the questions are known, more or less, before the data is entered
in a highly structured manner. In big data practice, meanwhile, data is stored in
as complete a form as possible, close to its original state. As little as possible is
thrown out so queries can evolve and not be constrained by the preconceptions of the
system. Thus, these systems can look highly random to traditional database experts.
It’s important to stress that big data will not replace relational databases in most
scenarios; it’s a matter of now having more tools to choose from for a given task.
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1.3.4 Traditional Databases

Traditional databases are designed for a concrete scenario, then populated with
examples (customers, products, facilities, or whatever), usually one per row: the
questions and answers one can ask are to some degree predetermined. Big data can
be harvested in its original form and format, and then analyzed as the questions
emerge. This open-ended flexibility can of course be both a blessing and a curse.

Traditional databases measured the world in numbers and letters that had to be
predicted: zip codes were 5 or 10 digits, SKU formats were company specific,
or mortgage payments were of predictable amounts. Big data can accommodate
Facebook “likes,” instances of the “check engine” light illuminating, cellphone
location mapping, and many other types of information.

Traditional databases are limited by the computing horsepower available: to
ask harder questions often means buying more hardware. Big data tools can scale
up much more gracefully and cost-effectively, so decision-makers must become
accustomed to asking questions they could not contemplate previously. To judge
advertising effectiveness, one cable operator analyzed every channel-surfing click
of every remote across every household in its territory, for example: not long ago,
such an investigation would have been completely impractical.

1.3.5 Cognition

What does it mean to think at large scales? How do we learn to ask questions of
the transmission of every car on the road in a metropolitan area, of the smartphone
of every customer of a large retail chain, or of every overnight parcel in a massive
distribution center? How can more and more people learn to think probabilistically
rather than anecdotally?

The mantra that “correlation doesn’t imply causation” is widely chanted yet
frequently ignored; it takes logical reasoning beyond statistical relationships to test
what’s really going on. Unless the data team can grasp the basic relationships of
how a given business works, the potential for complex numerical processing to
generate false conclusions is ever present. Numbers do not speak for themselves;
it takes a human to tell stories, but as Daniel Kahneman and others have shown, our
stories often embed mental traps. Spreadsheets remain ubiquitous in the modern
enterprise, but numbers at the scale of Google, Facebook, or Amazon must be
conveyed in other ways. Sonification—turning numbers into a range of audible
tones—and visualization show a lot of promise as alternative pathways to the brain,
bypassing mere and non-intuitive numerals. In the meantime, the pioneers are both
seeing the trail ahead and taking some arrows in the back for their troubles. But
the faster people, and especially statisticians, begin to break the stereotype that “big
data is what we’ve always done, just with more records or fields,” the faster the
breakthrough questions, insights, and solutions will redefine practice.
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1.4 Conclusion

There’s an important point to be made up front: whether it originates in a financial
system, public health record-keeping, or sensors on electrical generators, big data
is not necessarily complete, or accurate, or true. Asking the right questions is in
some cases learned through experience, or made possible by better theory, or a
matter of luck. But in many instances, by the time investigators figure out what they
should be measuring in complex systems, it’s too late to instrument the “before”
state to compare to the “after.” Signal and noise can be problematic categories as
well: one person’s noise can be a goldmine for someone else. Context is everything.
Value is in the eye of the beholder, not the person crunching the numbers. However,
this is rarely the case. Big data is big, often because it is automatically collected.
Thus, in many cases, it may not contain much information relative to noise. This is
sometimes called a DRIP—Data Rich, Information Poor—environment. The IoT is
particularly prone to these issues, given both (a) notable failure and error rates of the
sensors (vs the machines they sense) and (b) the rarity of certain kinds of failures:
frequencies of 1 in 10,000,000 leave many readings of normal status as their own
type of noise. In any event, the point here is that bigger does not necessarily mean
better when it comes to data.

Accordingly, big data skills cannot be purely a matter of computer science,
statistics, or other processes. Instead, the backstory behind the creation of any given
data point, category, or artifact can be critically important and more complex given
the nature of the environments being sensed. While the same algorithm or statistical
transformation might be indicated in a bioscience, a water main, and a financial
scenario, knowing the math is rarely sufficient. Having the industry background
to know where variance is “normal,” for instance, comes only from a holistic
understanding of the process under the microscope. As we move into unprecedented
data volumes (outside the Large Hadron Collider perhaps), understanding the
ground truth of the data being collected and the methods of its collection, automated
and remote though they may be, will pose a significant challenge.

Beyond the level of the device, data processing is being faced with new
challenges—in both scope and kind—as agencies, companies, and NGOs (to name
but three interested parties) try to figure out how to handle billions of cellphone
chirps, remote-control clicks, or GPS traces. What information can and should be
collected? By what entity? With what safeguards? For how long? At what level of
aggregation, anonymization, and detail? With devices and people opting in or opting
out? Who is allowed to see what data at what stage in the analysis life cycle? For a
time, both Google (in its corporate lobby) and Dogpile (on the web) displayed real-
time searches, which were entertaining, revealing, and on the whole discouraging:
porn constituted a huge percentage of the volume. Will ski-lift webcams go the same
way in the name of privacy?

Once information is collected, the statistical and computer science disciplines
are challenged to find patterns that are not coincidence, predictions that can
be validated, and insights available in no other way. Numbers rarely speak for



1 Statistics, Statisticians, and the Internet of Things 21

themselves, and the context for Internet of Things data is often difficult to obtain or
manage given the wide variety of data types in play. The more inclusive the model,
however, the more noise is introduced and must be managed. And the scale of this
information is nearly impossible to fathom: according to IBM Chief Scientist Jeff
Jonas, mobile devices in the United States alone generated 600 billion geo-tagged
transactions every day—as of 2010.15 Finally, the discipline of statistics is being
forced to analyze these vast bodies of data in near real time—and sometimes within
seconds—given how many sensors have implications for human safety and well-
being.

In addition to the basic design criteria, the privacy issues cannot be ignored. Here,
the history of Google Glass might be instructive: whatever the benefits that accrue to
the user, the rights of those being scanned, identified, recorded, or searched matter
in ways that Google has yet to acknowledge. Magnify Glass to the city or nation-
state level (recall that England has an estimated 6 million video cameras, but nobody
knows exactly how many16), as the NSA revelations appear to do, and it’s clear that
technological capability has far outrun the formal and informal rules that govern
social life in civil society.

In sum, data from the Internet of Things will challenge both the technical
capabilities and the cultural codes of practice of the data community: unlike
other categories of big data, people’s faces, physical movements, and public
infrastructures define much of their identity and well-being. The analytics of these
things becomes something akin to medicine in the gravity of its consequences:
perhaps the numbers attached to the IoT should be referred to a “serious data” rather
than merely being another category of “big.”

15Marshall Kirkpatrick, “Meet the Firehose Seven Thousand Times Bigger
than Twitter’s,” Readwrite 18 November 2010, http://readwrite.com/2010/11/18/
meet_the_firehose_seven_thousand_times_bigger_than#awesm =�oIpBFuWjKFAKf9, accessed
29 March 2018.
16David Barrett, “One surveillance camera for every 11 people in Britain, says CCTV survey,” The
Telegraph, 10 July 2013, https://www.telegraph.co.uk/technology/10172298/One-surveillance-
camera-for-every-11-people-in-Britain-says-CCTV-survey.html, accessed 29 March 2018.
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Chapter 2
Cognitive Data Analysis for Big Data

Jing Shyr, Jane Chu, and Mike Woods

Abstract Cognitive data analysis (CDA) automates and adds cognitive processes
to data analysis so that the business user or data analyst can gain insights from
advanced analytics. CDA is especially important in the age of big data, where
the data is so complex, and includes both structured and unstructured data, that
it is impossible to manually examine all possible combinations. As a cognitive
computing system, CDA does not simply take over the entire process. Instead,
CDA interacts with the user and learns from the interactions. This chapter reviews
IBM Corporation’s (IBM SPSS Modeler CRISP-DM guide, 2011) Cross Industry
Standard Process for Data Mining (CRISP-DM) as a precursor of CDA. Then,
continuing to develop the ideas set forth in Shyr and Spisic’s (“Automated data
analysis for Big Data.” WIREs Comp Stats 6: 359–366, 2014), this chapter defines a
new three-stage CDA process. Each stage (Data Preparation, Automated Modeling,
and Application of Results) is discussed in detail. The Data Preparation stage
alleviates or eliminates the data preparation burden from the user by including
smart technologies such as natural language query and metadata discovery. This
stage prepares the data for specific and appropriate analyses in the Automated
Modeling stage, which performs descriptive as well as predictive analytics and
presents the user with starting points and recommendations for exploration. Finally,
the Application of Results stage considers the user’s purpose, which may be to
directly gain insights for smarter decisions and better business outcomes or to
deploy the predictive models in an operational system.
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2.1 Introduction

The combination of big data and little time, or simply the lack of data science exper-
tise in an organization, motivates the need for cognitive data analytic processes.
Cognitive data analysis (CDA) refers to research and applications that seek to fill
this need.

This chapter begins by defining CDA and discussing its role in the era of big data
and then provides a framework for understanding the stages of CDA. Subsequent
sections explore each stage in depth.

2.1.1 Big Data

Much of the data science industry describes big data in three dimensions: volume
(scale of data), velocity (speed of streaming data), and variety (different forms of
data). IBM Corporation (2014) adds another dimension: veracity (uncertainty of
data). These four V’s of big data are summarized in Fig. 2.1.

Sources of big data include social media (e.g., Facebook, Twitter, and YouTube),
streaming data (e.g., web log tracking, sensors, and smart meters), collections of
customer activities (e.g., transactions and demographics), and publicly available
data (e.g., the US government’s data.gov web site).

Big data includes structured data and unstructured data. Traditionally, organiza-
tions analyzed structured data, like that in relational databases. But it is widely held
that 80% or more of organizational data now comes in unstructured forms, such

Fig. 2.1 The four V’s of big data

https://en.wikipedia.org/wiki/Volume
https://en.wikipedia.org/wiki/Velocity
https://en.wiktionary.org/wiki/variety
http://data.gov
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as videos, images, symbols, and natural language—e.g., see Barrenechea (2013) or
Maney (2014). Big data thus requires a new computing model for businesses to
process and make sense of it and to enhance and extend the expertise of humans.

Clearly, unstructured data requires more effort to be wrangled into a form suitable
for analysis, but both types of data present challenges for CDA. For example, with
structured data it is easy to retrieve a customer’s data given his or her customer
ID. But it may not be so easy to assess the quality of the customer’s data if it
includes hundreds or thousands of transactions, along with demographics and survey
responses. Numerous decisions need to be made when preparing the data for any
analysis: Should the data be aggregated? Which fields are best for a segmentation
analysis? How should invalid or missing values be identified or handled?

We argue that CDA needs to adequately handle structured data before it can claim
to handle unstructured data. Both types are considered in this chapter, but we focus
on structured data.

2.1.2 Defining Cognitive Data Analysis

CDA is a type of cognitive computing, which aims to develop in computers a
capacity to learn and interact naturally with people, and to extend what either a
human or machine could accomplish independently. Hurwitz et al. (2015) state that
in a cognitive computing system, humans and computers work together to gain
insights from data. In the realm of data science, these systems help humans to
manage the complexity of big data and to harvest insights from such data.

CDA can be viewed as consolidating and automating the phases of the Cross-
Industry Standard Process for Data Mining (CRISP-DM), which is a methodology
and process model of data mining. Figure 2.2, from IBM Corporation (2011), shows
a summary of the CRISP-DM process.

As shown in Fig. 2.2, CRISP-DM has six phases, beginning with Business
Understanding and Data Understanding and proceeding to Data Preparation, Mod-
eling, Evaluation, and Deployment. The arrows indicate important dependencies
between phases, but these should be taken as guidelines. In practice, there may be
dependencies and re-iteration among all phases.

One characteristic of CRISP-DM, which is not apparent in Fig. 2.2, is that
the process is largely manual. The analyst needs to request or specify the various
operations on the data. Furthermore, these operations involve many routine activ-
ities, including data cleaning, inspection of univariate statistics, and inspection of
bivariate relationships. Moving from these initial activities to statistical modeling
(regression analysis, time series analysis, neural networks, etc.), the analyst is faced
with a complex array of decisions (what type of model to fit, which modeling
criteria to use, how to assess model fit, etc.). Especially in the context of big
data, this process is inefficient. The analyst cannot manually examine all possible
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Fig. 2.2 The CRISP-DM process

combinations of data, and the choice of the best model can be daunting. Analytic
results thus may be invalid or incomplete, and decisions based on such results may
be substandard.

The journey toward an automated data analytic system with cognitive capabilities
is described in Shyr and Spisic’s (2014) “Automated Data Analysis for Big Data.”
This system automates routine data analytic tasks in a Data Analysis Preparation
phase and then automates data exploration and modeling in a Relationship Discov-
ery phase. But the system does not completely automate decision making or make
obsolete any human involvement in the process. In contrast, the ideal is for the
machine to handle technical issues so that the human can focus on understanding
the results for better decision making. The system achieves this ideal by introducing
cognitive processes that interact with the human analyst and learn from these
interactions.

CDA, as defined in the current chapter, continues the journey by further
exploration and development of ideas in adding automation and cognition to the
system—including natural language query, data type detection, starting points, and
system recommendations. CDA also directly considers the application of the results,
whether for gaining insights about the data, or for sharing or deployment.
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Finally, it should be stated that CDA is neither an all-or-nothing nor a one-
size-fits-all enterprise. Any CDA system needs to give careful attention to the
intended user base. A system geared toward more novice users automates more
of the data preparation and analytic choices and puts more effort into clear and
simple presentation of the analytic results to guide users to the best insights. In
contrast, a system intended for more knowledgeable users allows or requires human
intervention at key points and perhaps provides a more detailed presentation of the
results for users to find extra insights. Similarly, a system might be developed for
general purpose usage, or it might be domain specific.

2.1.3 Stages of CDA

CDA begins with a Data Preparation stage that combines CRISP-DM’s Data
Understanding and Data Preparation phases. The Data Preparation stage includes
these features:

• Natural language query
• Data integration
• Metadata discovery
• Data quality verification
• Data type detection
• Data lineage

CRISP-DM’s Data Understanding phase includes collecting data, describing
data, exploring data, and verifying data quality. CDA does not specifically call
for an initial assessment of the data separate from the final assessment but instead
(potentially) automates the entire preparation of the data under the Data Preparation
stage. Exploring the data, like modeling it, is then done in CDA’s Automated
Modeling stage.

After Data Preparation, CDA proceeds to an Automated Modeling stage. This
stage not only discovers and fits an appropriate model but automates the evaluation
of that model. Thus, Automated Modeling encompasses CRISP-DM’s Modeling
and Evaluation phases and includes designed interactions with the user (e.g., system
recommendations). In sum, Automated Modeling includes these features:

• Descriptive analytics
• Predictive analytics
• Starting points
• System recommendations

The final stage of CDA, Application of Results, includes but is not limited to
CRISP-DM’s Deployment phase:

• Gaining insights
• Sharing and collaborating
• Deployment
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Table 2.1 The relationship
between CRISP-DM and
CDA

CRISP-DM phase CDA stage

Business Understanding

Data Understanding Data preparation
Data Preparation Data preparation
Modeling Automated modeling
Evaluation Automated modeling
Deployment Application of results

Table 2.1 captures the relationships between the CRISP-DM phases and the CDA
stages.

Note that CRISP-DM’s Business Understanding phase seems to be outside
of the CDA system. This phase comprises determining the business objectives,
assessing the situation (resources, risks, etc.), determining the data mining goals,
and producing a project plan. In fact, this phase is inherent in the human interaction
element of CDA and can/should be spread through all CDA stages, depending on
the implementation.

The CDA user experience is also highly interactive, with human–machine
interaction involved in the decision making at key points. Figure 2.3 depicts the
CDA system. Although CDA automates much of the workflow, the human analyst
is an essential part of the system.

Fig. 2.3 The CDA system



2 Cognitive Data Analysis for Big Data 29

The rest of this chapter is organized as follows. Section 2.2 discusses Data
Preparation, giving in-depth descriptions of natural language query, data integration,
metadata discovery, data quality verification, data type detection, and data lineage.
Section 2.3 discusses Automated Modeling, covering the main categories of analyt-
ics (descriptive and predictive), as well as the main approaches to presenting analytic
results to users in a CDA system (starting points versus system recommendations).
Section 2.4 covers Application of Results, including summaries of gaining insights,
sharing and collaborating, and deployment. Section 2.5 presents a use case involving
a real-world data set and how it might be handled by an ideal CDA system. Finally,
Sect. 2.6 ends the chapter with a reiteration of the CDA workflow and the place of
the human analyst in it.

2.2 Data Preparation

For data scientists, it is common knowledge that data preparation is the most time-
consuming part of data analysis. Lohr (2014) noted that data scientists claim to
spend 50–80% of their time collecting and preparing data.

Data preparation was traditionally done through an ETL (Extract, Transform,
Load) process, which facilitates data movement and transformation. ETL requires
business experts to specify the rules regarding which data sources are extracted, how
they are transformed, and where the resulting data is loaded, before the process can
be scheduled to perform data movement jobs on a regular basis.

In the CDA system, some smart technologies and methods are applied to the
different steps in data preparation, such that business users and data analysts can
manage it without help from IT and business experts.

We separate these steps based on whether the data is ready for analysis. If
there is no data or there are multiple data sources, then data needs to be found
or merged/joined. These efforts are referred to as the “data acquisition” and “data
integration” steps, respectively. Then, additional data preparation steps—such as
metadata discovery, data quality verification, data type detection, and data cleaning
and transformation—can be applied before analysis. Note that these steps are not a
linear process but are interdependent.

For the data acquisition and integration steps, smart technologies include, but are
not limited to:

• Using natural language processing to suggest data sets to answer the user’s
questions.

• Implementing entity analytics to detect related entities across disparate collec-
tions of data sources.

• Applying text mining to social media data to extract sentiment and identify author
demographics.

For other steps, the CDA system can apply semantic data analysis to enhance
metadata discovery, provide identification of data quality issues and novice-oriented
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detection of data types, and so forth. These steps run automatically, but the user can
control the process and direction.

These smart technologies and methods are described in more detail next.

2.2.1 Natural Language Query

Current data discovery practices often assume that specific data sources have been
collected and loaded into data warehouses, operational data stores, or data marts.
Then, data preparation is applied to these data sources to answer the user’s business
questions. Because only the user understands the business questions, they would
need to know which data sources to collect and what data preparation processes to
conduct.

The CDA system employs natural language processing to decipher the user’s
business questions and connect the user to other possible data sources. Moreover,
CDA can search both internal and external data sources to suggest the most relevant
sources. The benefits of this additional functionality include an increased likelihood
of getting better insights and more complete answers than might be obtained based
only on the data at hand.

For example, the HR staff in a pharmaceutical company wants to understand
the reasons for voluntary attrition among employees. The staff has access to a base
data set containing tens of thousands of records for company employees in the last
10 years. The CDA system detects that this is an employee data set via semantic data
analysis. Furthermore, the system uses natural language processing to understand
the user’s business question and suggests using the existing “Attrition” field as
the target/outcome field. The data set also contains a “Salary” field, and the CDA
system automatically searches for related data sources. Knowing from experience
that “Salary” is likely to be an important predictor/input field of “Attrition,” the
system searches for data sources containing salary averages by industry, position,
and geography.

Sometimes, a user forgets which data sets have some desired information, or the
user simply has some business questions without data sets handy. The user can type
in questions, and the CDA system’s natural language query can be used to find and
suggest relevant data sources.

For example, if an HR staff member cannot find the employee data set, he or
she might enter “human resources” or “employee attrition” into a type-in interface,
and the CDA system would proceed by finding relevant data sources, such as the
employee attrition and salary averages discussed above.

Another example is a company that wants to forecast sales for its products. In
this case, the system might query weather and social media data to assess how
temperature and customers’ sentiments about products impact sales.
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2.2.2 Data Integration

Any data set, whether from the user or automatically found, presents an opportunity
to apply transformations appropriate to the user’s purpose. And if there are multiple
data sets, all of them need to be integrated into one before analysis commences. The
CDA system can provide relevant advice to, and possibly perform these actions for,
the user.

For example, having found a data source of salary averages by different
categories, the CDA system can join the new data to the base file—e.g., by
adding a field containing national average salary conditional on the employee’s
position and experience. This kind of join goes beyond traditional data discovery
tools that join by the same key field in all data sets. The CDA system can also
automatically compute the difference between each employee’s observed salary and
the corresponding national average. Subsequent predictive analytics can assess both
fields (the observed salary and the difference). A clear benefit of this approach is
that it assesses more relationships than would be available using the base file only.
It would be a valuable insight if our example discovered that the difference is a
better predictor of attrition than the observed salary.

As mentioned above, these data sources might come from various structured
and unstructured formats. Before integration, all sources need to be converted to a
structured format. We describe below two smart technologies: social media analytics
for handling unstructured social media data and entity analytics for detecting like
and related entities from different data sources.

Social media data—such as Twitter, Facebook, blogs, message boards, and
reviews—is an increasingly attractive source of information for public relationships,
marketing, sales, and brand/product management for many companies. But its
unstructured format makes it a challenge to use.

Social media analytics uses natural language processing to extract meaning from
social media data. It applies a two-level approach. First, document-level analysis—
with concept detection, sentiment detection, and author features extraction—is
applied. Next, collection-level analysis—with evolving topics, consolidation of
author profiles, influence detection, and virality modeling—is applied. The resulting
data is a structured data set, which can be integrated with other data sets. Similarly,
if the social media data is in image or sound format, the CDA system can apply
appropriate tools to convert it to structured formats.

Another challenge is to integrate diverse company-wide data sources, say
customer, product, and order, all of which may be managed by different divisions.
One critical data preparation activity involves recognizing when multiple references
to the same entity, across different data sets or within the same data set, are indeed
the same entity. For example, it is important to know the difference between three
loan applications done by three different people versus one person applying to all
three loans. Entity analytics (Sokol and Jonas 2012) in the CDA system includes
entity resolution (whether entities are the same, despite efforts to hide them) and
entity relationships (how the resolved entities are related to each other, e.g., by the
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same birthday or address). In addition, entity analytics incrementally relates new
data to previous data, updates resolved entities, and remembers these relationships.
This process can improve data quality, which in turn may provide better analytic
solutions.

2.2.3 Metadata Discovery

Traditional statistical tools have offered some basic metadata discovery, such as
storage type (e.g., numeric, string, date), measurement level (continuous, nominal,
ordinal), and field role (target, input, record ID). These characteristics are based on
summary statistics with some or all of the data.

CDA employs semantic data analysis to enhance this basic metadata discovery.
We describe some principles below. More details can be found in Rais-Ghasem et
al. (2013) and Shyr and Spisic (2014).

Semantic data analysis uses natural language processing to map lexical clues to
both common concepts (time, geography, etc.) and business concepts (revenue, sales
channel, etc.) and can be trained to be sensitive to language-specific patterns. For
example, semantic data analysis can identify fields named “Employee Number,”
“Employee No,” or “Employ_Num” to be record identifiers, while “Number of
Employees,” “No. Employees,” or “Num_Employees” are treated as count fields.

Metadata discovery can also build or detect hierarchies in the data. For example,
it checks if unique one-to-many relationships exist in the values of fields to detect
hierarchies. If semantic analysis finds that a country consists of states, and each
state consists of different cities, then country-state-city is detected as a hierarchy.
Similarly, it will build a hierarchy of year-month-day given a date field with value
02/28/2015, and include derived fields “Year,” “Month,” “Day.” These derived fields
are useful in the Automated Modeling stage.

Metadata discovery can further detect whether each time field is regular (equally
spaced in time) or irregular (e.g., transactional data). If a time field is regular, it
will further detect the time interval (e.g., days) and its related parameters (e.g., the
beginning of week and the number of days per week). If a time field is irregular, it
will suggest the most plausible time interval for aggregation to transform irregular
transactional data to regular time series data. The basic idea is to select the smallest
time interval in which most time bins have at least one record. These smart methods
are important in determining data types. Details about the time interval detection
method are described in the USPTO patent application by Chu and Zhong (2015).

Semantic data analysis also differentiates between numeric categorical and
continuous fields. For example, a field named “Zip Code” may contain large
integer values that would usually indicate a numeric field with a continuous
measurement level. Matching the field name against a known concept reveals that
the measurement level should be set to nominal.

These discovered characteristics are applied to narrow down the applicable
algorithms used in the Automated Modeling stage. For example, the presence of
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one or more record ID fields greatly assists in automatically detecting the domain.
A field named “Employee ID” with a different value for each record almost certainly
indicates an employee data set, and the system might infer that the data set is from
the HR domain. If a field named “Attrition” is detected and suggested as a target field
because it can help to answer a user question such as “what influences employees to
quit?,” then the system might fit a logistic regression model. The system might also
focus on finding predictors that are potentially mutable (e.g., salary or satisfaction
ratings) rather than on those that are not (e.g., demographics)—assuming that the
idea is to act on the results and try to retain some employees.

The CDA system could benefit further from these metadata discovery rules if
they were used to group similar fields. For example, several field groups can be
created for a data set, such as demographics, survey responses, and user metrics.
Different processes can leverage this grouping information for specific tasks.

• A target detection process might ignore field groups unlikely to contain targets
(e.g., demographics) and focus on groups likely to contain targets (e.g., user
metrics).

• An automated segmentation process might restrict cluster features to groups
likely to yield insights (e.g., survey responses).

• The system might provide a summary of records based on groups with relevant
information (e.g., demographics).

The CDA system should also automatically detect field roles or problematic
data values. At the automated extreme, these detected field roles could be taken
as truth, problematic data values could be automatically corrected, and the system
could proceed with the analysis. But if the detected roles or values are not handled
properly, the user experience will suffer. Hence the CDA system should get users’
input before decisions are committed. For example, the system might allow the user
to review and adjust each field, including:

• Setting target fields
• Specifying missing values
• Selecting outliers handling
• Changing or specifying a hierarchy

2.2.4 Data Quality Verification

For any data set, the CDA system identifies data quality problems at several levels:
the entire data set, each field/column, each record/row, or each cell in the table.

At the cell level, the system verifies whether each cell contains a missing/null or
outlying value and confirms that a value in a cell is compliant to the domain of the
column (e.g., text in a US zip code field).
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At the field level, the system checks completeness by counting the number of
missing values in each field, checks uniqueness by counting the number of repeated
values, and identifies constant or nearly constant fields.

At the record level, the system finds records that violate automatic or manual
rules (e.g., values in “Revenue” should be larger than those in “Profit”) and detects
duplicated records by leveraging entity analytics.

The CDA system might aggregate all the findings in a unified quality score
for the entire data set and for each column. It can further categorize the score as
low/medium/high quality and recommend actions for improving data quality. These
recommendations can be delivered automatically or (ideally) interactively so that
the user understands the issues and accepts them before the data are transformed.

Furthermore, more complex, domain-specific, data quality assessments might be
performed. For example, consider a survey data set about customers’ responses
to 100 questions with a common Likert scale (e.g., Strongly Agree, Agree,
Neutral, Disagree, Strongly Disagree). For such a long survey, the reliability of the
responses could be assessed. Assuming the order of the questions/fields in the data
corresponds to the order in which the questions were administered in the survey, the
sequence might be split to do assessments. For example, the CDA system splits the
sequence into quarters, computes the variance of responses for each question, and
averages them for each quarter. Suppose the average variance for the last quarter
is significantly lower than the preceding three. This might suggest customers were
tired and not paying attention for the final questions. In this case, the questions/fields
in the fourth quarter might be flagged as low quality or actively excluded. Or the
CDA system might compare the response variances of the first 75 questions and the
last 25 questions for each customer. If the former is much higher than the latter for
some customers, it might suggest that the responses from these customers are not
trustworthy and that the records should be excluded from the data set.

2.2.5 Data Type Detection

This section focuses on detecting data types for structured data sets. As mentioned
previously, unstructured data is converted to a structured format before analysis is
performed. The most commonly encountered structured data set types for business
users are cross-sectional (characteristics about customers, products, etc.) and time
series (metrics measured over time). The importance of data type detection is that
certain analytic techniques are suitable for only specific data types, so the number of
possible analytic techniques to consider will be smaller in the Automated Modeling
stage. For example, regression models and tree models are used for cross-sectional
data, and exponential smoothing and autoregressive integrated moving average
(ARIMA) models are used for time series data, while neural network models might
be useful for both.

However, there are many more types than these two. For example, panel/longitu-
dinal data combines cross-sectional and time series, so none of analytics mentioned
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above are suitable. Instead, generalized linear mixed models or generalized estimat-
ing equation models should be considered.

Even when a data set contains one or more timestamp fields, it is not necessarily
time series data. For example, if the timestamps are taken irregularly, the data
might be transactional. In this case, traditional time series analysis might not be
appropriate without aggregation, or possibly other algorithms should be applied
depending on the intent/goal. In fact, a data set with time or duration information
involving an event (e.g., death from a certain disease, broken pipe, crime committed
again after a criminal is released from prison) might be about lifetime data, with
the intent being to find survival rate past a certain time or what factors impact
the survival time of an event. Lifetime analysis (also called survival analysis or
reliability analysis) should be used in this condition.

In addition to temporal/time fields, spatial information is often embedded in
business data. Spatial fields may be a predetermined set of location points/areas, or
they may be irregular. As with time, the appropriate analytics will differ depending
on the intent/goal.

If the data set has a hierarchical structure, then there are additional challenges.
For example, the data includes hierarchies in both time (year-month-day) and
geospatial (country-state-city) fields, and the user wants to forecast future monthly
sales for all levels in the geospatial hierarchy. We can apply analysis to monthly
time series at the city level to obtain forecasts and then aggregate from the bottom
up to get forecasts for state and country levels. However, such forecasting results
might not be optimal, and other algorithms are available to obtain better results.

In short, different types of data pose challenges to the CDA system but also offer
a potentially rich source of insights from multiple perspectives.

2.2.6 Data Lineage

According to Techopedia (2018), data lineage is defined as a kind of data life cycle
that includes the data’s origins and where it moves over time. This term can also
describe what happens to data as it goes through diverse processes.

In the age of big data, with challenges of massive scale, unstructured data types,
uncertainty, and complex platforms, data lineage is more important than ever. The
CDA system should store all data preparation steps/recipes, including user inputs,
for reuse on the same data sets or extended data sets with additional records.

As a cognitive computing system, CDA will continuously learn from users,
thereby improving the existing methods, or adding new methods of data preparation.
Such learning will make data lineage more challenging, especially for users who
are unaware of changes to the default settings of the methods mentioned previously.
Ideally, the CDA system should offer user-friendly access to such changes.
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2.3 Automated Modeling

Automated Modeling is the automated application of various types of analytics to
the prepared data, to find patterns and uncover relationships. This stage is especially
important for big data, where manual examination without guidance is unlikely to
be efficient or complete.

Current data discovery tools use interactive user controls in this stage, including
filtering, sorting, pivoting, linking, grouping, and user-defined calculation. These
tools enable users to explore patterns manually. However, this approach, while
important, is not sustainable in the age of big data. Especially when there are many
fields, it is not feasible to manually explore all possible combinations of analytics.
In such conditions, users tend to explore their own hypotheses, often using small
samples, and will likely miss important patterns and relationships.

In the CDA system, suitable analytic techniques are applied to the data auto-
matically. This automated approach tends to generate many results. The CDA
system needs to score and rank these results and present the most important to the
user. Moreover, the typical user is a business user or data analyst who might not
have well-formed business questions to answer or hypotheses to test. The system
should guide such users through starting points and recommendations. Starting
points can be expressed as questions that lead the user to data exploration, while
recommendations can present relevant results for further exploration.

The two main types of analytics applied in this stage are descriptive analytics
and predictive analytics. Descriptive analytics applies business intelligence (BI)
and basic statistical methods, while predictive analytics applies advanced statistical
methods and data mining or machine learning algorithms. Current data discovery
tools often focus on one type of analytics, or sometimes only on a few techniques
(e.g., using decision tree models to build all predictive models). The ideal CDA
system comprises both types of analytics, and multiple techniques within each, to
give users a more complete and accurate picture of the data.

The next two sections discuss descriptive and predictive analytics in the context
of CDA, after which starting points and recommendations are discussed in more
detail.

2.3.1 Descriptive Analytics

Descriptive analytics uses BI and basic statistical techniques to summarize the data.
BI and statistical analysis provide patterns and relationships from different angles
and should complement each other.

Davenport and Harris (2007) define BI as “a set of technologies and processes
that use data to understand and analyze business performance.” Basically, BI
includes reports, dashboards, and various types of queries by applying some
filters on data before computing descriptive statistics (e.g., sums, averages, counts,
percentages, min, max, etc.).
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Statistical analysis, on the other hand, computes univariate statistics, such as
the mean and variance, for each field. Bivariate statistics may also be computed
to uncover the association between each pair of fields. In a CDA system, univariate
and bivariate statistics will likely be computed and used in the metadata discovery
process. Thus, there is no need to compute them again—though the computations
will need to be updated if the user has adjusted the metadata, fixed data quality
issues, or applied data transformations.

A big challenge to CDA is consolidating results from BI and statistical analysis,
which tend to use different terminologies. For example, metrics and dimensions
in BI correspond to continuous and categorical fields, respectively, in statistical
analysis. Also, BI does not have the concept of a field role, while statistical analysis
largely depends on each field’s role (target, input, record identifier, etc.). BI metrics
are often treated as targets in statistical analysis.

The method proposed by Shyr et al. (2013) bridges the gap between BI and
statistical analysis. Basically, it produces a series of aggregated tabular reports that
illustrate the important metric-dimension relationships by using some statistical
exploratory and modeling techniques mentioned in this and subsequent sections
of this chapter. These dimensions are referred to as “key drivers” for the specific
metric/target and provide useful insights. Additional information on bivariate
statistics and aggregated tabular reports can be found in Shyr and Spisic (2014)
and the references therein.

2.3.2 Predictive Analytics

Predictive analytics builds models by using advanced statistical analysis and data
mining or machine learning algorithms. One of the main purposes of predictive
models is to extrapolate the model to generate predictions for new data. However,
it is also possible to extract useful insights regarding the relationship between the
target field and a set of input fields. In general, statistical algorithms are used to build
a model based on some theory about how things work (relationships in the data),
while machine learning algorithms focus more on prediction (generating accurate
predictions). The CDA system needs to understand the user’s intent to employ the
right algorithms.

There are two types of modeling algorithms, depending on whether a target field
is needed.

• Supervised learning algorithms require a target and include algorithms such as
regression, decision trees, neural networks, and time series analysis.

• Unsupervised learning algorithms, in contrast, do not designate a target. These
algorithms include cluster analysis and association rules.

As mentioned previously, not all algorithms would be applicable for all data.
The CDA system will know which algorithms should be run for each specific type
of data.
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There are conditions when the same data set can be identified with multiple data
types, so that seemingly disparate algorithms may be appropriate. For example, an
employee data set might include fields “Starting Date” (for an employee’s date of
hire) and “Ending Date” (for the employee’s date of leaving). Other fields might
include “Salary,” “Job Category,” and “Attrition.” If the business question asks what
factors influence an employee to quit, then a decision tree algorithm is appropriate.
In this case, the data set is treated as cross-sectional. However, if user’s intent is
to know the expected duration of time until attrition for an employee, then a Cox
regression model is appropriate. In this case, the data set is treated as lifetime data.

Many business users and data analysts are confused by the idea that predictive
analytics is not limited to the time domain. Prediction can be used for all data types
to score new data. To avoid confusion, “forecast” is used for time series data and
“predict” for other types of data.

Finally, there is often an endless amount of hyper-parameter choices for each
algorithm. Parameters may include kernel type, pruning strategy, learning rate,
number of trees in a forest, and so forth. As with the exploration of relationships, it
is impossible for a user to try every combination of parameters for each algorithm.
The CDA system should apply some additional algorithms, such as Bayesian
optimization (Thornton et al. 2013) or model-based genetic algorithm (Ansotegui
et al. 2015) to tune these hyper-parameters automatically.

Algorithm selection itself is not new, but the new thing is that the CDA system is
cognitive and can learn from the user’s past behavior to fine-tune algorithm selection
for the future.

2.3.3 Starting Points

There are many ways to display the results of the data preparation steps to users.
One approach uses system-generated questions. For example, if metadata discovery
detects fields “Salary” and “Attrition” with measurement level continuous and
nominal, and field role input and target, respectively, then relevant questions can be
constructed and presented. Depending on the system’s understanding of the user’s
intent, the system might ask “What are the values of Salary by Attrition?” or “What
factors influence Attrition?”

Alternatively, the user might have specific business questions or hypotheses in
mind. The CDA system should provide an interface in which the user can enter their
questions. These questions can provide additional starting points for users to explore
their data.

For the system-generated questions, the CDA system relies on declarative rules
from semantic analysis to make recommendations on how to best analyze the data.

First, the CDA system selects all eligible fields, with the categorical ones further
filtered with hierarchies from the semantic model or the user’s input. The result is
a list of valid fields or combinations of fields for the various analytic techniques
mentioned above.
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Second, the CDA system scores and ranks each item in the list based on metadata
information, such as the fields’ concept types, the data characteristics, and the
association between fields. The system should also provide an interface that allows
users to search or guide this process. If a user enters one or more field names,
then the system might emphasize techniques that involve those fields and adjust
the ranking accordingly. Similarly, if the user enters a question, the system might
handle it with natural language processing and consider only relevant techniques.

Third, the CDA system creates a set of responses in which the wording
reflects the underlying analytic techniques. The set should be constructed such
that it demonstrates accuracy (the results are consistent with the user’s intent)
and variability (multiple similar results from different types of analytics are not
presented at the same time).

2.3.4 System Recommendations

In addition to producing a set of starting points to guide the user in exploring
the data, the CDA system can also provide automatic system recommendations.
In this sense, the CDA system is both automated and guided. When the user is
inspecting a result, the system can recommend other important results, thereby
engaging the user in drill-down on key analytics or navigation to other analytics.
These recommendations should be tied to the user’s current context. For example,
if the user is inspecting a predictive model with target field “Attrition,” then
recommendations might include generating attrition predictions on some new
data. Or they might include exploring relationships among the predictor fields—
e.g., whether “Salary” values differ across combinations of “Job Category” and
“Education Level.”

The analysis of any data set, especially big data, will produce many results
from various analytics. These results should be ranked and the system should
only recommend the most important and relevant results. Like starting points, a
scoring and ranking process is needed for recommendations. For example, a system
might derive interestingness scores based on statistics that characterize each analytic
technique (e.g., predictive strength and unusualness of nodes for a tree model).
The choice of which statistics to use for this purpose requires careful thought. For
example, in a big data context where nearly any hypothesis test will be statistically
significant, statistics other than the conventional p-value should be considered. One
possibility is to rank the test results based on the effect size, which should not vary
much with the number of records. For additional information on interestingness
indices and effect size, see Shyr and Spisic (2014).

Again, CDA can learn the user’s interactions to improve the results of both
starting points and recommendations over time.
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2.4 Application of Results

In addition to Data Preparation and Automated Modeling, it is important to consider
how the user will apply the results. Often a user will have multiple purposes, but for
convenience we consider three categories of application:

• The user wants to directly gain insights about the business problem.
• The user is interested in sharing insights, and possibly collaborating, with

colleagues.
• The user wants to formally deploy the obtained model(s) in a larger process.

2.4.1 Gaining Insights

Perhaps the most common use case is when the user wants to directly gain insights
about the business problem at hand. This section considers how to guide the user to
the best insights, and how to present those insights so the user understands them.

Big data is so large and complex that it is difficult to analyze efficiently with
traditional tools, which require many data passes to execute multiple analyses prior
to exploration. Furthermore, data scientists with the necessary analysis skills are a
scarce resource. Hence, for the business user or data analyst who may not be savvy
in data science skills, it is important to find the right balance of automated versus
guided analytics.

An automated system will do most or all the analyst’s work and present important
results first. In contrast, a guided analytics system is a conversation between the user
and the system that guides the user through the data discovery journey.

Presentation style is important too. Traditional statistical software, such as SPSS
and SAS, focused on numeric output in tables. Over time, as statistical software
sought to become more user-friendly, more emphasis was put on visual output.
Visualizations became especially important with the advent of big data, where a
large amount of information often needs to be summarized in a single visualization.

Although visualizations are powerful means of communication, they do not
always lead the user to the most significant results. The addition of natural language
interpretation, either separately or in conjunction with visualizations, alleviates this
problem. Ideally, natural language interpretations will follow the principles of plain
language, so that the reader can “easily find what they need, understand what they
find, and use that information” (International Plain Language Federation, 2018).
Techniques for achieving this goal include using short sentences and common
words.

Using plain language for analytic output interpretation presents many challenges.
Analytics are highly technical, and terms will not always have common equivalents.
A term such as “mean” can be replaced by its everyday equivalent “average,” but
there is no common equivalent to “standard deviation.” Attempts to create a new,
easily understood equivalent (e.g., “regular difference”) can be unsatisfying at best.
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In cases like this, one should consider whether the analytic is really needed by
most users. If it is, then presenting it with the technical name, along with a hidden
but accessible definition, may be a reasonable solution. If most users do not need it,
then showing it in some other container (e.g., an under-the-hood container, where
the user can find statistical details) may be best. Such a container also allows experts
to assess the methods and detailed results of the CDA system.

The combined presentation of visual and text insights is a form of storytelling.
Visual and text insights can be coupled and flat, or coupled and interactive. The latter
can be presented as dynamic visual insights, for example, by modifying the visual-
ization depending on the text selected (and being read) by the user. Alternatively,
visual and text insights can be presented hierarchically in a progressive disclosure
of insights. Under-the-hood insights, mentioned above, also should be available for
more analytic-savvy users.

Finally, the CDA system should also allow user interactions such as the ability
to “favorite” specific results or views, as well as the selection and assembling of the
output in dashboards or reports.

2.4.2 Sharing and Collaborating

Another important area of application involves allowing users to share data sets
or findings (as visualizations, dashboards, reports, etc.). The CDA system should
include relevant options for sharing output on the cloud, either a public or a private
cloud. In addition, there should be a capacity to post findings directly to social media
(e.g., Facebook or Twitter).

Collaboration between users on the same project is also important. This can range
from allowing other users to view one’s project and add comments to allowing
multiple users to work on the same project in real time. This is especially important
in an analytic context where different users will provide different opinions about the
results. Just as different analytic models give multiple perspectives of the same data
set, a CDA system will learn from its interactions with multiple humans who provide
their own perspectives on the data, analytics, and interpretation of the results.

2.4.3 Deployment

After predictive models have been built and validated, they can be deployed by
embedding them into an operational system to make better business decisions.
This extends predictive analytics to prescriptive analytics, where business rules
and optimization tell the user what is likely to happen or what they should do.
Prescriptive analytics can recommend alternative actions or decisions given a set
of objectives, requirements, and constraints.
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For example, suppose the marketing department of an insurance company uses
past campaign data to gain insight into how historical revenue has been related
to campaign and customer profile. They may also build a predictive model to
understand the future and predict how campaign and other factors influence revenue.
Then they may apply the model to a new set of customers to advise possible options
for assigning campaigns to new customers to maximize expected revenue.

Prescriptive analytics can be complex. It is unlikely that business users or data
analysts can directly specify their business problems as optimization models. And
getting a good specification of the problem to solve may require iterations with the
user. The CDA system should express a prescriptive problem based on the user’s
data set(s) and, in plain language, review interactively suggested actions/decisions,
refine the specification of the problem, and compare multiple scenarios easily.

Prescriptive analytics can recommend one or more possible actions to guide the
user to a desired outcome based on a predictive model. It is important that the
selected predictors/inputs in the predictive model are attributes that the user can act
upon, and the CDA system should focus on selecting such predictors if deployment
is important.

For example, a department store has weekly sales data for the past 10 years and
uses it to forecast future sales. In addition, the store has set the sales value to meet
for each week of the next quarter and wants to know what actions it can take to
achieve the planned sales values. The CDA system discovers that temperature and
advertisement expenditure would influence sales. Because advertisement expendi-
ture, but not temperature, is under the store’s control, the time series model built
by the system should include advertisement expenditure as a predictor to make the
results actionable.

2.5 Use Case

This section presents a use case involving real-world data and how it might be
handled by an ideal CDA system. For our use case, suppose that an analyst wants
to analyze crime trends in Chicago. After launching the ideal system, the analyst
is presented with a set of possible actions (e.g., analyze popular data sets, review
previous interactions with the system, etc.). The system also offers a prompt, “What
do you want to analyze?” The analyst enters “Chicago crimes.”

The CDA system proceeds by searching the Internet, as well as all connected
databases, for any data sets relevant to Chicago crimes. Then the system presents
the analyst with a list of found data sets. The most relevant data set contains data
about Chicago crimes from 2001 to the present. This public data set is available
from the City of Chicago (2011). Table 2.2 presents a sample of five records. The
analyst selects this data set.
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The system continues by using metadata discovery on the selected data set and
discovers that it contains temporal and spatial fields. The system further detects
that the time fields are irregular (not equally spaced in time), and it determines that
this is a transactional data set. Based on these and other discoveries, the system
enumerates various statistical methods that might be applied. For example, time
series analysis could be used to assess trends, or spatial-temporal analysis could be
used to discover spatial-temporal patterns, such as associations between crimes and
spatial or temporal intervals.

For each possible statistical method, the system considers the types of data sets
that might be joined with the crimes data to allow or enhance the analysis. The
system also performs another search for these secondary data sets. For the time
series analysis, weather data might be useful for enhancing the time series model
with weather-related predictors. For the temporal-spatial analysis, a map data set
containing details about the neighborhoods and streets, which can be inferred from
the crime location fields in the crimes data set, would be needed for the associations
algorithm.

Next, the system presents the analyst a set of possible analyses, where time
series analysis is given a more prominent position than spatial-temporal analysis
based on the analyst’s past interactions. The system also presents information about
recommended secondary data sets, giving the analyst full information and choice.
The analyst selects the time series analysis to discover trends and chooses to join
weather data as a source of possible predictors of crime.

The system now has two data sets to be integrated: the primary crimes data
set and the secondary weather data set. The system next determines and suggests
that the best time interval for aggregation of the crimes data set, to transform the
irregular transactional data to regular time series data, is by date. That is, the system
recommends aggregating the crimes data set to create a new data set containing
daily crime counts.

The system informs the analyst of its findings and recommendations and waits
for the analyst’s consent. The system tells the analyst that the data needs to be
aggregated into a regular time series data set to perform time series analysis. By
default, the system will treat total crime count per day as the time series but allows
the analyst to select other fields to be used instead or in addition. For example,
based on the system’s natural language processing, it has discovered that there is
a “Primary Type” field giving the category of each crime event. These categories
could be aggregated to get category counts for particular crime types. The analyst
selects the option of aggregating by date, and treating the total crime count per day
as the time series field, to get a general view of overall crime trends.

Next, the system extracts a subset of weather data corresponding to the time
range in the crimes data and aggregates the weather data by date before joining the
crimes and weather data sets by date. Table 2.3 presents a sample of 5 days from the
new joined data set. For brevity, only two weather fields are presented in the table.

The system also automatically performs data quality checks and saves a history of
all data checks and transformations. Now, with the data acquisition and preparation
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Table 2.3 Five records from
the Aggregated Chicago
Crimes and Weather Data Set

Date N crimes Mean temperature F Mean humidity

1/1/2012 1387 37 69
1/2/2012 699 23 66
1/3/2012 805 19 56
1/4/2012 799 34 59
1/5/2012 869 38 62

done—as with human analysts—most of the hard work is done, and the system
proceeds to Automated Modeling.

The system computes basic descriptive analytics for all fields (e.g., the mean
and variance for continuous fields). But more directly applicable to the analyst’s
request, the system fits various time series models, treating daily crime count as
the time series. For example, the system uses exponential smoothing to create a
traditional time series model containing only the time series field, daily crime count,
where each day’s crime count is predicted by the crime counts of the immediately
preceding days. The system also fits a temporal causal model, treating various
weather fields (e.g., temperature and humidity) as predictors of daily crime count.
The system performs related analyses too and generates graphs to assist the analyst
in understanding the trend, seasonality, and other properties of the time series.

The system presents these analytic results to the analyst in a meaningfully
ordered interface—e.g., beginning with a line chart showing the daily crime
count time series itself and proceeding to various time series models of the data.
As the analyst interacts with the results, the system makes context-dependent
recommendations for further examination. When the analyst views the exponential
smoothing results, the system recommends a more sophisticated model, such as
the temporal causal model with weather-related predictors. The system presents all
analytic results with appropriate visual and written insights added, such as pointing
out the trend and seasonal pattern in the crime count time series.

The system also offers various post-analysis applications, including options to
share the results on the cloud or to deploy one of the models for forecasting. The
analyst selects the option to deploy the traditional time series model for forecasting.
The system automatically saves the model and provides an interface for the analyst
to request a forecast. The analyst proceeds by deploying the selected time series
model to forecast daily crime counts for the next 7 days.

Note that this entire sequence was initiated with two words from the analyst,
namely “Chicago crimes.” Throughout the CDA stages, the system checked in with
the analyst regarding key decisions. Clearly, the entire process could be automated,
and all decisions made using heuristics or other default rules. But with minimal
inputs by the analyst, the system has provided a custom analysis geared to the
analyst’s needs.
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2.6 Conclusion

In conclusion, we have seen that the CDA workflow includes Data Preparation,
Automated Modeling, and Application of Results and furthermore that the human
analyst is an integral part of CDA’s operation.

Data preparation has traditionally been the most time-consuming part of data
analysis for humans, and in CDA it is also the most intensive stage computationally.
By incorporating natural language query and smart metadata discovery, CDA
relieves much of the data preparation burden from the human analyst but in doing
so necessarily adds to the backend complexity of CDA systems.

Similarly, Automated Modeling in CDA, being automated and exhaustive, also
reduces the error-prone burden of manually sifting through large amounts of data
looking for insights. And by the judicious presentation of discovered patterns as
starting points and system recommendations, CDA offers the added benefit of
guiding the human analyst to the best insights.

Finally, the Application of Results in CDA can be greatly enhanced by incor-
porating ideas from information and visualization design in the presentation of
insights, as well as investing in sharing, collaboration, and deployment technologies.

Contrary to the idea that CDA automates all decision making, we have seen that
CDA is in fact very human centered, both in its heavy reliance on human–machine
interaction and in its goal of reducing human workload.

References

Ansotegui C, Malitsky Y, Samulowitz H, Sellmann M, Tierney K (2015) Model-based genetic
algorithms for algorithm configuration. In: Proceedings of the twenty-fourth international
joint conference on artificial intelligence. Association of for the Advancement of Artificial
Intelligence Press, Palo Alto, CA, pp 733–739

Barrenechea M (2013) Big data: big hype? Forbes, February 4:2013. http://www.forbes.com/sites/
ciocentral/2013/02/04/big-data-big-hype/

Chu J, Zhong WC (2015) Automatic time interval metadata determination for business intelligence
and predictive analytics. US Patent Application 14/884,468. 15 Oct 2015

City of Chicago (2011) Crimes—2001 to present. City of Chicago Data Portal. https://
data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2. Accessed 5 Apr 2018

Davenport TH, Harris JG (2007) Competing on analytics: the new science of winning. Harvard
Business School Press, Boston, MA

Hurwitz JS, Kaufman M, Bowles A (2015) Cognitive computing and big data analytics. Wiley,
Indianapolis, IN

IBM Corporation (2011) IBM SPSS Modeler CRISP-DM guide. IBM Corporation, Armonk, NY
IBM Corporation (2014) The four V’s of big data. IBM Big Data & Analytics Hub. http://

www.ibmbigdatahub.com/infographic/four-vs-big-data
International Plain Language Federation (2018). Plain Language definition. http://

www.iplfederation.org/. Accessed 5 Apr 2018
Lohr S (2014) For big-data scientists, ‘Janitor Work’ is key hurdle to insights. New

York Times, August 17 2014. http://www.nytimes.com/2014/08/18/technology/for-big-data-
scientists-hurdle-to-insights-is-janitor-work.html?_r=0

http://www.forbes.com/sites/ciocentral/2013/02/04/big-data-big-hype/
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.iplfederation.org
http://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html?_r=0


2 Cognitive Data Analysis for Big Data 47

Maney K (2014) ‘Big Data’ will change how you play, see the doctor, even eat. Newsweek, July
24 2014. http://www.newsweek.com/2014/08/01/big-data-big-data-companies-260864.html

Rais-Ghasem M, Grosset R, Petitclerc M, Wei Q (2013) Towards semantic data analysis. IBM
Canada, Ltd., Ottawa, Ontario

Shyr J, Spisic D (2014) Automated data analysis for Big Data. WIREs Comp Stats 6:359–366
Shyr J, Spisic D, Chu J, Han S, Zhang XY (2013). Relationship discovery in business analytics. In:

JSM Proceedings, Social Statistics Section. Alexandria, VA: American Statistical Association.
pp 5146–5158

Sokol L, Jonas J (2012) Using entity analytics to greatly increase the accuracy of your models
quickly and easily. IBM Corporation, Armonk, NY

Techopedia (2018). Data lineage. https://www.techopedia.com/definition/28040/data-lineage.
Accessed 5 Apr 2018

Thornton C, Hutter F, Hoos HH, Leyton-Brown K (2013) Auto-WEKA: combined selection and
hyperparameter optimization of classification algorithm. In: Proceedings of the 19th ACM
SIGKDD international conference on knowledge discovery and data mining. New York, NY:
Association for Computing Machinery. 847–855

http://www.newsweek.com/2014/08/01/big-data-big-data-companies-260864.html
https://www.techopedia.com/definition/28040/data-lineage


Part II
Methodology



Chapter 3
Statistical Leveraging Methods
in Big Data

Xinlian Zhang, Rui Xie, and Ping Ma

Abstract With the advance in science and technologies in the past decade, big data
becomes ubiquitous in all fields. The exponential growth of big data significantly
outpaces the increase of storage and computational capacity of high performance
computers. The challenge in analyzing big data calls for innovative analytical and
computational methods that make better use of currently available computing power.
An emerging powerful family of methods for effectively analyzing big data is called
statistical leveraging. In these methods, one first takes a random subsample from
the original full sample, then uses the subsample as a surrogate for any computation
and estimation of interest. The key to success of statistical leveraging methods is to
construct a data-adaptive sampling probability distribution, which gives preference
to those data points that are influential to model fitting and statistical inference. In
this chapter, we review the recent development of statistical leveraging methods. In
particular, we focus on various algorithms for constructing subsampling probability
distribution, and a coherent theoretical framework for investigating their estimation
property and computing complexity. Simulation studies and real data examples are
presented to demonstrate applications of the methodology.

Keywords Randomized algorithm · Leverage scores · Subsampling · Least
squares · Linear regression

3.1 Background

With the advance in science and technologies in the past decade, big data has
become ubiquitous in all fields. The extraordinary amount of big data provides
unprecedented opportunities for data-driven knowledge discovery and decision
making. However, the task of analyzing big data itself becomes a significant
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challenge. Key features of big data, including large volume, vast variety and high
velocity, all contribute to the challenge of the analysis. Among these, the large
volume problem is of great importance. On one hand, the number of predictors
for big data may be ultra-large, and this is encountered frequently in genetics and
signal processing study. The ultra-high dimension of predictors is referred to as the
curse of dimensionality. One of the most pressing needs and continuous efforts in
alleviating the curse of dimensionality is to develop new techniques and tools to
achieve dimension reduction and variable selection with good properties (Bhlmann
and van de Geer 2011; Friedman et al. 2001). On the other hand, we often encounter
cases in which sample size is ultra-large. When the sample size reaches a certain
scale, although it is considered as preferable in the classical regime of statistical
theory, the computational costs of many statistical methods become too expensive
to carry out in practice. The topic of this chapter focuses on analyzing big data with
ultra-large sample sizes.

A Computer Engineering Solution A computer engineering solution to the big
data problem is to build more powerful computing facilities. Indeed, in the past
decade, high performance computing platforms such as supercomputers and cloud
computing have been developed rapidly. However, none of these technologies by
themselves can fully solve this big data problem. The supercomputers are precious
computing resources and cannot be allocated to everyone. As for cloud computing,
it does possess the advantage of large storage capacities and relatively cheap
accessibility. However, problems arise when transferring big data over limited
Internet uplink bandwidth. Not to mention that the transferring process also raises
new privacy and security concerns. More importantly, the exponential growth of
the volume of big data significantly outpaces the increase of the storage and
computational capacity of high performance computers.

Computational Capacity Constrained Statistical Methods Given fixed compu-
tational capacity, analytical and computational methods need to be adapted to this
constraint. One straightforward approach is divide-and-conquer. In this approach,
one divides the large dataset into small and manageable pieces and performs
statistical analysis on each of the small pieces. These results from small pieces
are then combined together to provide a final result for the full sample. One
notable feature of this procedure is the significant reduction in computing time in
a distributed computing environment. However, divide-and-conquer method has its
own limitations. On one hand, the efficiency of divide-and-conquer methods still
relies on the parallel computing environment, which is not available at all times; on
the other hand, it is challenging to develop a universal scheme for combining the
results from smaller pieces to form a final estimate with good statistical properties.
See Agarwal and Duchi (2011), Chen and Xie (2014), Duchi et al. (2012), Zhang
et al. (2013) for applications of this approach.

Fundamentally novel analytical and computational methods are still much
needed to harness the power and capture the information of these big data. Another
emerging family of methods to tackle the super-large sample problem is the family
of statistical leveraging methods (Drineas et al. 2006, 2010; Ma et al. 2013, 2014;
Ma and Sun 2015; Mahoney 2011). The key idea is to draw a manageable small
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subsample from the full sample, and perform statistical analysis on this subsample.
For the rest of this chapter, we focus on the statistical leveraging methods under a
linear model setup. Consider the following linear model

yi D xTi ˇ0 C �i; i D 1; : : : ; n (3.1)

where yi is the response, xi is the p-dimensional fixed predictor, ˇ0 is the p � 1
coefficient vector, and the noise term is �i

i:i:d:� N.0; �2/. To emphasize, we are
dealing with big data in cases where sample size n is ultra large, and n� p.

Written in vector-matrix format, the linear model in (3.1) becomes

y D Xˇ0 C �; (3.2)

where y is the n� 1 response vector, X is the n� p fixed predictor or design matrix,
ˇ0 is the p � 1 coefficient vector, and the noise vector is � � N.0; �2I/. In this
case, the unknown coefficient ˇ0 can be estimated through a least squares (LS)
procedure, i.e.,

Ǒ
LS D argminˇjjy� Xˇjj2;

where jj � jj represents the Euclidean norm on R
n. If the predictor matrix X is of full

column rank, the LS estimator Ǒ LS can be expressed as

Ǒ
LS D .XTX/�1XTy: (3.3)

The general statistical leveraging method in linear model (Drineas et al. 2012, 2006;
Mahoney 2011) is given below.

As a by-product, Step 1 of Algorithm 1 provides a random “sketch” of the
full sample. Thus visualization of the subsamples obtained enables a surrogate
visualization of the full data, which is one of the unique features of subsample
methods.

Successful application of statistical leveraging methods relies on both effective
design of subsampling probabilities, through which influential data points are
sampled with higher probabilities, and an appropriate way to model the subsampled
data. So we will review a family of statistical algorithms that employ different sub-
sampling probabilities as well as different modeling approaches for the subsampled
data.

Algorithm 1: Statistical leveraging in linear model

1 Step 1(subsampling): Calculate the sampling probability f�igniD1 based on
leveraging-related methods with the full sample fyi; xigniD1, use f�igniD1 to take a random
subsample of size r > p and denote the subsample as fy�

i ; x
�

i griD1.
2 Step 2(model-fitting): Fit the linear model to the subsample fy�

i ; x
�

i griD1 via a weighted LS

with weights 1=�i, and return the estimator Q̌ .
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For the rest of this chapter, we first describe the motivation and detailed layout for
statistical leveraging methods. Then corresponding asymptotic properties for these
estimators are demonstrated. Furthermore, synthetic and real-world data examples
are analyzed. Finally, we conclude this chapter with a discussion of some open
questions in this area.

3.2 Leveraging Approximation for Least Squares Estimator

In this chapter, the idea of statistical leveraging is explained with a focus on the
linear model. We mainly tackle the challenge of designing subsampling probability
distribution, which is the core of statistical leveraging sampling. Various leveraging
sampling procedures are discussed from different perspectives. A short summary of
all discussed approaches for modeling the subsampled data concludes this section.

3.2.1 Leveraging for Least Squares Approximation

For linear model in (3.2), the LS estimator is Ǒ LS D .XTX/�1XTy. The predicted
response vector can be written as Oy D Hy, where H D X.XTX/�1XT is the
named as hat matrix for its purpose of getting Oy. The ith diagonal element of H,
hii D xTi .X

TX/�1xi, where xTi is the ith row of X, is the statistical leverage of
ith observation. The concept of “statistical leverage” is historically originated from
regression diagnostics, where the statistical leverage is used in connection with
analyses aiming at quantifying the extent of how influential an observation is for
model prediction (Chatterjee and Hadi 1986; Hoaglin and Welsch 1978; Velleman
and Welsch 1981). If rank.H/ D rank.X/ D p (assuming that n � p), then we
have trace.H/ D p, i.e.

Pn
iD1 hii D p. A widely recommended rule of thumb in

practice for “large” leverage score is hii > 2p=n (Hoaglin and Welsch 1978). Also
note that Var.ei/ D Var.Oyi � yi/ D .1� hii/�2. Thus if the ith observation is a “high
leverage point,” then the value of yi has a large impact on the predicted value Oyi and
the corresponding residual has a small variance. To put it another way, the fitted
regression line tends to pass closer to the high leverage data points.

As an illustration, we provide a toy example in Fig. 3.1. For i D 1; : : : ; 10;000,
we simulate yi D �1 C xi C �i, where xi is generated from t-distribution with

2 degree of freedom and �i
i:i:d:� N.0; 4/. The left panel of Fig. 3.1 displays the

scatterplot for the full sample and associated fitted LS regression line. The right
panel displays the scatterplot for a subsample of size 20 drawn using sampling
probabilities constructed from leverage scores (hii), i.e.

�i D hii
Pn

iD1 hii
D hii

p
; i D 1; : : : ; n: (3.4)
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Fig. 3.1 Illustration of motivation of statistical leveraging. The left panel displays the scatterplot
of full sample and the corresponding fitted LS regression line. In the right panel, only 20 points
were chosen using sampling probabilities constructed from leverage scores (hii) are plotted. The
solid line is the fitted LS regression line with full dataset and the dashed line is the fitted weighted
LS regression line from 20 sampled points. In both panels, the color of points corresponds to the
leverage score, the higher the leverage score, the darker the color

The solid line is the fitted LS regression line with full sample and dashed line is
the fitted weighted LS regression (as described in Step 2 of Algorithm 1) line with
20 subsampled data points. As shown in the left panel of Fig. 3.1, there are several
points on the upper right and lower left corner with relatively higher leverage scores,
and they are close to the fitted regression line of the full sample. The right panel
of Fig. 3.1 implies that fitted weighted LS regression line from the 20 subsampled
points (dashed line) is good enough to recover the LS regression line using the full
sample.

It is worth noting that one cannot take the subsample by simply using 20
points with highest leverage scores in a deterministic way. The reason is that once
the observations are ordered with respect to corresponding leverage scores, then
the joint distribution of certain part of the data, e.g. the top 20 observations, will
be different from the distribution of original data. Estimators constructed from these
deterministic subsamples are biased compared to both the true parameter and the LS
estimators from the full sample (Coles et al. 2001). However, if the subsamples
are collected in a random fashion, with the probabilities formed by normalizing
leverage scores of all observations, the estimates based on the random samples are
still guaranteed to be asymptotically unbiased to the true parameter as well as the
LS estimators of the full sample. See Sect. 3.3 for more details.

Figure 3.1 also shows how the statistical leveraging methods provide a way of
visualizing large datasets.

Following Algorithm 1, the statistical leveraging methods involve computing the
exact or approximating statistical leverage scores of the observations, constructing
subsample probabilities according to those scores as in Eq. (3.4), sampling data
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points randomly, and estimating the weighted LS estimator from subsampled data as
the final estimate for the full data. We refer to this sampling procedure as leverage-
based sampling and denote the estimator from this particular procedure as basic
leveraging estimator (BLEV). Statistical analysis of the leveraging method is pro-
vided in Drineas et al. (2006, 2010), Ma et al. (2013), Raskutti and Mahoney (2014).

As an extension of BLEV, Ma et al. (2014, 2013) proposed shrinked leveraging-
based sampling, which takes subsample using a convex combination of an exact
or approximate leverage scores distribution and the uniform distribution, thereby
obtaining the benefits of both. For example, we let

�i D �hii
p
C .1 � �/1

n
; i D 1; : : : ; n; (3.5)

where 0 < � < 1.
We refer to the estimator resulting from sampling data points using (3.5), and

estimating the weighted LS estimation on the sampled data points as shrinked
leveraging estimator (SLEV). In particular, we use the notation SLEV(�) to
differentiate various levels of shrinkage whenever needed.

3.2.2 A Matrix Approximation Perspective

Most of the modern statistical models are based on matrix calculation, so in a
sense when applied to big data, the challenges they face can be solved through
using easy-to-compute matrices to approximate the original input matrix, e.g., a
low-rank matrix approximation. For example, one might randomly sample a small
number of rows from an input matrix and use those rows to construct a low-rank
approximation to the original matrix. In this way, it is not hard to construct “worst-
case” inputs for which uniform random sampling performs very poorly (Drineas
et al. 2006; Mahoney 2011). Motivated by this idea, a substantial amount of
efforts have been devoted to developing improved algorithms for matrix-based
problems that construct the random sample in a nonuniform and data-dependent
approach (Mahoney 2011), such as least-squares approximation (Drineas et al.
2006, 2010), least absolute deviations regression (Clarkson et al. 2013; Meng and
Mahoney 2013), and low-rank matrix approximation (Clarkson and Woodruff 2013;
Mahoney and Drineas 2009).

In essence, these procedures are composed of the following steps. The first step
is to compute exact or approximate (Drineas et al. 2012; Clarkson et al. 2013),
statistical leverage scores of the design matrix. The second step is to use those scores
to form a discrete probability distribution with which to sample columns and/or rows
randomly from the input data. Finally, the solution of the subproblem is used as an
approximation to the solution of the original problem. Thus, the leveraging methods
can be considered as a special case of this approach. A detailed discussion of this
approach can be found in the recent review monograph on randomized algorithms
for matrices and matrix-based data problems (Mahoney 2011).
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3.2.3 The Computation of Leveraging Scores

The key for calculating the leveraging scores lies in the hat matrix H, which
can be expressed as H D UUT , where U is a matrix with its columns formed
by any orthogonal basis for the column space of X, e.g., the Q matrix from a
QR decomposition or the matrix of left singular vectors from the thin singular
value decomposition (SVD). Thus, the leverage score of the ith observation, i.e.
the ith diagonal element of H, hii, can also be expressed as

hii D jjuijj2; (3.6)

where ui is the ith row of U. Using Eq. (3.6), the leverage scores hii, for i D
1; 2; : : : ; n can be obtained. In practice, as a surrogate, Qhii are computed as the
approximated leverage score in some cases.

The theoretical and practical characterization of the computational cost of
leveraging algorithms is of great importance. The running time of the leveraging
algorithms depends on both the time to construct the sampling probabilities,
f�igniD1, and the time to solve the optimization problem using the subsample.
For uniform sampling, the computational cost of subsampling is negligible and
the computational cost depends on the size of the subsample. For statistical
leveraging methods, the running time is dominated by computation of the exact
or approximating leverage scores. A naïve implementation involves computing a
matrix U, through, e.g., QR decomposition or SVD, spanning the column space
of X and then reading off the Euclidean norms of rows of U to obtain the exact
leverage scores. This procedure takes O.np2/ time, which is at the same order
with solving the original problem exactly (Golub and Van Loan 1996). Fortunately,
there are available algorithms, e.g., Drineas et al. (2012), that compute relative-error
approximations to leverage scores of X in roughly O.np logp/ time. See Drineas
et al. (2006) and Mahoney (2011) for more detailed algorithms as well as their
empirical applications. These implementations demonstrate that, for matrices as
small as several thousand by several hundred, leverage-based algorithms can be
competitive in terms of running time with the computation of QR decomposition
or the SVD with packages like LAPACK. See Avron et al. (2010), Meng et al. (2014)
for more details on this topic. In the next part of this section, another innovative
procedure will provide the potential for reducing the computing time to the order of
O.np/.

3.2.4 An Innovative Proposal: Predictor-Length Method

Ma et al. (2016) introduced an algorithm that allows a significant reduction of
computational cost. In the simple case of p D 1, and no intercept, we have
that hii D x2i , i.e. the larger the absolute value of an observation, the higher the
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leverage score. The idea for our new algorithm is to extend this idea to the case of
p > 1 by using simply Euclidean norm of each observation to approximate leverage
scores and indicate the importance of the observation. That is, we define sampling
probabilities

�i D kxik
Pn

iD1 kxik
; i D 1; : : : ; n: (3.7)

If the step 1 of Algorithm 1 is carried out using the sampling probabilities in
Eq. (3.7), then we refer to the corresponding estimator as the predictor-length
estimator (PL). It is very important to note that the computational cost for this
procedure is only O.np/, i.e. we only need to go through each observation and
calculate its Euclidean norm.

For illustration, in Figs. 3.2 and 3.3, we compare the subsampling probabilities
in BLEV, SLEV(0.1), and PL using predictors generated from normal distribution
and t-distribution. Compared to normal distribution, t-distribution is known to have
heavier tail. So it is conceivable that observations generated from normal distri-
bution tend to have more homogeneous subsampling probabilities, i.e. the circles
in Fig. 3.2 are of similar sizes, whereas observations generated from t-distribution
tend to have heterogeneous subsampling probabilities, i.e. high probabilities will
be assigned to only a few data points, represented in Fig. 3.3 as that a few relatively
huge circles on the upper right corner and down left corner. From Fig. 3.3, we clearly
observe that the subsampling probabilities used to construct BLEV are much more
dispersive than SLEV(0.1) especially in the case of t. It is interesting to note that
the probabilities of observations for PL roughly lie in between that of BLEV and
SLEV(0.1).

BLEV SLEV(0.1) PL

−4 0 4 −4 0 4 −4 0 4

−5

0

5

x

y

Fig. 3.2 Illustration of different subsampling probabilities with predictor generated from normal
distribution. For i D 1; : : : ; 1000; yi D �1C xi C �i, where xi is generated i.i.d. from N.0; 4/ and
�i � N.0; 1/. Each circle represents one observation, and the area of each circle is proportional to
its subsampling probability under each scheme. The area of point with maximum probability in all
three probability distributions are set to 100 times that of the point with minimum probability
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Fig. 3.3 Illustration of different subsampling probabilities with predictor generated from t-
distribution. For i D 1; : : : ; 1000; yi D �1CxiC�i, where xi is generated i.i.d. from t-distribution

with df=2 and �i
i:i:d:� N.0; 1/. Each circle represents one observation, and the area of each circle is

proportional to its subsampling probability under each scheme. The area of point with maximum
probability in all three probability distributions are set to 100 times that of the point with minimum
probability

3.2.5 More on Modeling

As mentioned in Step 2 of Algorithm 1, after subsampling, the basic framework
of statistical leveraging requires to rescale, i.e. weight subsamples appropriately
using the same probability distribution as used for subsampling. The purpose for
this weighted LS step is essentially to construct unbiased estimator of coefficient
vector for the linear regression analysis (Drineas et al. 2012, 2006; Mahoney 2011).
However, unweighted leveraging estimators, in which the modeling of sampled
data is carried out by plain least square, is also considered in the literature. That
means, in Step 2 of Algorithm 1, instead of solving weighted LS problem, we
solve for an unweighted LS estimator. Ma et al. (2013) first proposed several
versions of unweighted methods that suggest potential improvement over BLEV.
The asymptotic properties of unweighted estimators will be discussed later.

3.2.6 Statistical Leveraging Algorithms in the Literature: A
Summary

Based on the different combinations of subsampling and modeling strategies we list
several versions of the statistical leveraging algorithms that are of particular interest
in practice.
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• Uniform Subsampling Estimator (UNIF) is the estimator resulting from
uniform subsampling and weighted LS estimation. Note that when the weights
are uniform, then the weighted LS estimator is the same as the unweighted LS
estimator.

• Basic Leveraging Estimator (BLEV) is the estimator resulting from leverage-
based sampling and weighted LS estimation on the sampled data, which is
originally proposed in Drineas et al. (2006), where the empirical statistical
leverage scores of X were used to construct the subsample and weight the
subsample optimization problem.

• Shrinked Leveraging Estimator (SLEV) is the estimator resulting from sam-
pling using probabilities in (3.5) and weighted LS estimation on the sampled data.
The motivation for SLEV will be further elaborated in Sect. 3.3. Similar ideas are
also proposed in the works of importance sampling (Hesterberg 1995).

• Unweighted Leveraging Estimator (LEVUNW) is the estimator resulting from
leverage-based sampling and unweighted LS estimation on the sampled data. The
sampling and reweighing steps in this procedure are done according to different
distributions, so the results for the bias and variance of this estimator might differ
from the previous ones.

• Predictor Length Estimator (PL) is the estimator resulting from sampling using
probabilities in (3.7) and weighted LS estimation on the sampled data.

3.3 Statistical Properties of Leveraging Estimator

In this section, we provide an analytic framework for evaluating the statistical
properties of statistical leveraging. We examine the results for bias and variance
of leveraging estimator discussed in previous sections.

The challenges for analyzing the bias and variance of leveraging estimator come
from two parts. One is the two layers of randomness in the estimation, randomness
in the linear model and from the random subsampling; the other is that the estimation
relies on random sampling through a nonlinear function of the inverse of random
sampling matrix. A Taylor series analysis is used to overcome the challenges so that
the leveraging estimator can be approximated as a linear combination of random
sampling matrices.

3.3.1 Weighted Leveraging Estimator

We start with bias and variance analysis of leveraging estimator Q̌ in Algorithm 1.
The estimator can be written as

Q̌ D .XTWX/�1XTWy; (3.8)

where W is an n � n diagonal matrix. We can treat Q̌ as a function of w D
.w1;w2; : : : ;wn/

T , the diagonal entries of W, denoted as Q̌ .w/. Randomly sampling
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with replacement makes w D .w1;w2; : : : ;wn/
T have a scaled multinomial

distribution,

Pr
�

w1 D k1
r�1

;w2 D k2
r�2

; : : : ;wn D kn
r�n

�

D rŠ

k1Šk2Š : : : ; knŠ
�
k1
1 �

k2
2 � � ��kn

n ;

with mean EŒw� D 1. To analyze the statistical properties of Q̌ .w/, Taylor series
expansion is performed around the vector w0, which is set to be the all-ones vector,
i.e., w0 D 1. As a result, Q̌ .w/ can be expanded around the full sample ordinary
LS estimator Ǒ LS, as we have Q̌ .1/ D Ǒ LS. Then we come up with the following
lemma, the proof of which can be found in Ma et al. (2013).

Lemma 1 Let Q̌ be the output of the Algorithm 1, obtained by solving the weighted
LS problem of (3.8), wherew denotes the probabilities used to perform the sampling
and reweighting. Then, a Taylor expansion of Q̌ around the point w0 D 1 yields

Q̌ D Ǒ LS C .XTX/�1XTDiag fOeg .w � 1/C RW ; (3.9)

where Oe D y�X Ǒ LS is the LS residual vector, and where RW is the Taylor expansion
remainder.

Given Lemma 1, we establish the expression for conditional and unconditional
expectations and variances for the weighted sampling estimators in the following
Lemma 2.

Conditioned on the data y, the expectation and variance are provided by the first
two expressions in Lemma 2; and the last two expressions in Lemma 2 give similar
results, except that they are not conditioned on the data y.

Lemma 2 The conditional expectation and conditional variance for the algo-
rithmic leveraging procedure Algorithm 1, i.e., when the subproblem solved is a
weighted LS problem, are given by:

Ew

h Q̌ jy
i
D Ǒ LS C Ew ŒRW � I (3.10)

Varw
h Q̌ jy

i
D .XTX/�1XT

�

Diag fOegDiag
�
1

r�

�

Diag fOeg
�

X.XTX/�1

CVarw ŒRW � ; (3.11)

where W specifies the probability distribution used in the sampling and rescaling
steps. The unconditional expectation and unconditional variance for the algorithmic
leveraging procedure Algorithm 1 are given by:

E
h Q̌ i D ˇ0I (3.12)

Var
h Q̌ i D �2.XTX/�1 C �2

r
.XTX/�1XTDiag

�
.1 � hii/2

�i

�

X.XTX/�1

CVar ŒRW � : (3.13)
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The estimator Q̌ , conditioning on the observed data y, is approximately unbiased
to the full sample LS estimator Ǒ LS, when the linear approximation is valid, i.e.,
when the E ŒRW � is negligible; and the estimator Q̌ is unbiased relative to the true ˇ0
of the parameter vector ˇ.

For the first term of conditional variance of Eq. (3.11) and the second term of
unconditional variance of Eq. (3.13), both of them are inversely proportional to the
subsample size r; and both contain a sandwich-type expression, the middle of which
involves the leverage scores interacting with the sampling probabilities.

Based on Lemma 2, the conditional and unconditional expectation and variance
for the BLEV, PLNLEV, and UNIF procedures can be derived, see Ma et al. (2013).
We will briefly discuss the relative merits of each procedure.

The result of Eq. (3.10) shows that, given a particular data set .X; y/, the
leveraging estimators (BLEV and PLNLEV) can approximate well Ǒ LS. From the
statistical inference perspective, the unconditional expectation result of Eq. (3.12)
shows that the leveraging estimators can infer well ˇ0.

For the BLEV procedure, the conditional variance and the unconditional variance
depend on the size of the n � p matrix X and the number of samples r as p=r. If
one chooses p� r� n, the variance size-scale can be controlled to be very small.
The sandwich-type expression containing the leverage scores 1=hii, suggests that the
variance could be arbitrarily large due to small leverage scores. This disadvantage
of BLEV motivates the SLEV procedure. In SLEV, the sampling/rescaling prob-
abilities approximate the hii but are bounded from below, therefore preventing the
arbitrarily large inflation of the variance. For the UNIF procedure, since the variance
size-scale is large, e.g., compared to the p=r from BLEV, these variance expressions
will be large unless r is nearly equal to n. Moreover, the sandwich-type expression
in the UNIF procedure depends on the leverage scores in a way that is not inflated
to arbitrarily large values by very small leverage scores.

3.3.2 Unweighted Leveraging Estimator

In this section, we consider the unweighted leveraging estimator, which is different
from the weighted estimators, in that the sampling and reweighting are done accord-
ing to different distributions. That is, modifying Algorithm 1, no weights are used
for least squares. Similarly, we examine the bias and variance of the unweighted
leveraging estimator Q̌ LEVUNW. The Taylor series expansion is performed to get the
following lemma, the proof of which may be found in Ma et al. (2013).

Lemma 3 Let Q̌ LEVUNW be the output of the modified Algorithm 1, obtained
by solving the unweighted LS problem of (3.3), where the random sampling is
performed with probabilities proportional to the empirical leverage scores. Then,
a Taylor expansion of Q̌ LEVUNW around the point w0 D r� yields

Q̌
LEVUNW D ǑWLS C .XTW0X/�1XTDiag fOewg .w � r�/C RLEVUNW ; (3.14)
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where Oew D y �X ǑWLS is the LS residual vector, ǑWLS D .XTW0X/�1XW0y is the
full sample weighted LS estimator,W0 D Diag fr�g D Diag frhii=pg, and RLEVUNW

is the Taylor expansion remainder.

Even though Lemma 3 is similar to Lemma 1, the point about which the Taylor
expansion is calculated, and the factors that left multiply the linear term, are dif-
ferent for the LEVUNW than they were for the weighted leveraging estimators due
to the fact that the sampling and reweighting are performed according to different
distributions.

Then the following Lemma 4, providing the expectations and variances of the
LEVUNW, both conditioned and unconditioned on the data y, can be established
given the Lemma 3.

Lemma 4 The conditional expectation and conditional variance for the LEVUNW
procedure are given by:

Ew

h Q̌
LEVUNW jy

i
D ǑWLS C Ew ŒRLEVUNW� I

Varw
h Q̌

LEVUNW jy
i
D .XTW0X/�1XTDiag fOewgW0Diag fOewgX.XTW0X/�1

CVarw ŒRLEVUNW� :

where W0 D Diag fr�g, and where ǑWLS D .XTW0X/�1XW0y is the full sample
weighted LS estimator. The unconditional expectation and unconditional variance
for the LEVUNW procedure are given by:

E
h Q̌

LEVUNW

i
D ˇ0I

Var
h Q̌

LEVUNW

i
D �2.XTW0X/�1XTW2

0X.X
TW0X/�1

C�2.XTW0X/�1XTDiag fI � PX;W0gW0Diag fI � PX;W0g
�X.XTW0X/�1 C Var ŒRLEVUNW � (3.15)

where PX;W0 D X.XTW0X/�1XTW0.

The estimator Q̌ LEVUNW, conditioning on the observed data y, is approximately
unbiased to the full sample weighted LS estimator ǑWLS, when Ew ŒRLEVUNW� is
negligible; and the estimator Q̌ LEVUNW is unbiased relative to the “true” value ˇ0 of
the parameter vector ˇ.

Note that the unconditional variance in Eq. (3.15) is the same as the variance
of uniform random sampling, since the leverage scores are all the same. The
solutions to the weighted and unweighted LS problems are identical, since the
problem being solved, when reweighting with respect to the uniform distribution,
is not changed. Moreover, the variance is not inflated by small leverage scores. The
conditional variance expression is also a sandwich-type expression. The center of
the conditional variance, W0 D Diag frhii=ng, is not inflated by very small leverage
scores.
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3.4 Simulation Study

In this section, we use some synthetic datasets to illustrate the efficiency of various
leveraging estimators.

One hundred replicated datasets of sample size n D 100;000 were generated
from

yi D xTi ˇ0 C �i;

where coefficient ˇ0 was set to be .110; 0:230; 110/T , and �i
i:i:d:� N.0; 3/, the predictor

xi was generated from three different distributions: multivariate normal distribution
(denoted as Normal here and after), multivariate t-distribution with df D 2 (denoted
as T2 here and after), and multivariate Cauchy distribution (denoted as Cauchy here
and after). Compared to normal distribution, t-distribution has a heavy tail. Tail of
Cauchy distribution is even heavier compared to that of the t-distribution. For the
multivariate normal distribution, the mean vector was set to be 150 and the covari-
ance matrix to be †, the .i; j/th element of which was †i;j D 3 � .0:6/ji�jj. For the
multivariate t-distribution, we set the non-centrality parameter as 150, the covariance
matrix as† and the degree of freedom as 2. For the multivariate Cauchy distribution,
we used 150 for position vector and† defined above for dispersion matrix.

3.4.1 UNIF and BLEV

We applied the leveraging methods with different subsample sizes, r D 2p; : : : ; 10p,
to each of 100 datasets, and calculated squared bias and variance of the leveraging
estimators to the true parameters ˇ0. In Fig. 3.4, we plotted the variance and squared
bias of Q̌ BLEV and Q̌ UNIF for three multivariate distributions.
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Fig. 3.4 Comparison of variances and squared biases of Q̌BLEV and Q̌UNIF in three distributions.
In the graph, “Normal” stands for multivariate normal distribution, “T2” stands for multivariate t-
distribution with degree of freedom 2, and “Cauchy” stands for the multivariate Cauchy distribution
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Several features are worth noting about Fig. 3.4. First, in general the magnitude
of bias is small compared to that of variance, corroborating our theoretical results
on unbiasedness of estimators of leveraging methods in Sect. 1. Second, when the
predictor vectors xi were generated from normal distribution, the bias of BLEV and
UNIF are close to each other, which is expected since we know from Fig. 3.2 that the
leverage scores are very homogeneous. Same observation exists for the variance. In
contrast, in case of T2 and Cauchy, both bias and variance of BLEV estimators are
substantially smaller than bias and variance of UNIF estimators correspondingly.

3.4.2 BLEV and LEVUNW

Next, we turn to the comparison between BLEV and LEVUNW in Fig. 3.5. As
we mentioned before, the difference between these two methods is from modeling
approach. BLEV was computed using weighted least squares, whereas LEVUNW
was computed by unweighted LS. Moreover, both Q̌ BLEV and Q̌ LEVUNW are unbiased
estimator for the unknown coefficient ˇ0. As shown in Fig. 3.5, the biases are in
general small for both estimators; but when predictors were generated from T2 and
Cauchy, LEVUNW consistently outperforms BLEV at all subsample sizes.

3.4.3 BLEV and SLEV

In Fig. 3.6, we compare the performance of BLEV and SLEV. In SLEV, the
subsampling and weighting steps are performed with respect to a combination
of the subsampling probability distribution of BLEV and UNIF. As shown, the
SLEV(0:9) performs uniformly better than BLEV and SLEV(0:1); and BLEV is

−15

−10

−5

subsample size

lo
g(

sq
ua

re
d 

bi
as

)

−10

−5

0

100 200 300 400 500 100 200 300 400 500
subsample size

lo
g(

va
ria

nc
e)

Dist
Normal
T2
Cauchy

Method
BLEV
LEVUNW

Fig. 3.5 Comparison of squared biases and variances of Q̌BLEV and Q̌LEVUNW in three distributions
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Fig. 3.6 Comparison of squared biases and variances of Q̌BLEV and Q̌SLEV in three distributions.
In the graph, SLEV(0.1) corresponds to choosing �i D �

hii
p C .1 � �/ 1n ; where � D 0:1, and

SLEV(0.9) corresponds to � D 0:9

better than SLEV(0:1) in terms of both squared bias and variance. By construction,
it is easy to understand that SLEV(0:9) and SLEV(0:1) enjoy unbiasedness, in the
same way that UNIF and BLEV do. In Fig. 3.6, the squared biases are uniformly
smaller than the variances for all estimators at all subsample sizes. Note that for
SLEV �i � .1��/=n, and the equality holds when hii D 0. Thus, the introduction of
� with uniform distribution in f�gniD1 helps bring up extremely small probabilities
and suppress extremely large probabilities correspondingly. Thus SLEV avoids the
potential disadvantage of BLEV, i.e. extremely large variance due to extremely
small probabilities and the unnecessary oversampling in BLEV due to extremely
large probabilities. As shown in the graph, also suggested by Ma et al. (2013), as a
rule of thumb, choosing � D 0:9 strikes a balance between needing more samples
and avoiding variance inflation.

3.4.4 BLEV and PL

In Fig. 3.7, we consider comparing BLEV and PL. As shown, the squared bias and
variance for PL and BLEV are very close to each other in Normal distribution.
In T2 distribution, as subsample size increases, we notice some slight advantage
of PL over BLEV in both squared bias and variance. The superiority of PL over
BLEV is most appealing in Cauchy distribution and as subsample size increases,
the advantage of PL in terms of both bias and variance gets more significant.

3.4.5 SLEV and PL

Lastly, in Fig. 3.8 we compare SLEV(0.9) and PL. The squared bias and variance
of SLEV(0.9) are slightly smaller than those of PL at all subsample sizes in T2
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Fig. 3.7 Comparison of squared biases and variances of Q̌ PL and Q̌BLEV in three distributions
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Fig. 3.8 Comparison of squared biases and variances of Q̌ SLEV.0:9/ and Q̌ PL in three distributions

distribution. PL has smaller squared bias and variances compared to SLEV(0.9) at
subsample sizes greater than 400. Considering that PL reduces computational time
to O.np/, which makes PL especially attractive in extraordinarily large datasets.

Our simulation study shows that the statistical leveraging methods perform well
in relatively large sample size data sets. Overall, compared to other methods,
PL performs reasonably well in estimation in most cases being evaluated and it
requires significantly less computing time than other estimators. In practice, we
recommend starting analysis with constructing the PL subsampling probabilities,
using the probability distribution to draw random samples from the full sample,
and performing scatterplots on the sampled data to get a general idea of the dataset
distribution. If the distribution of explanatory variables are more close to normal
distribution, then we suggest also try BLEV, SLEV, LEVUNW using exact or
approximating leverage scores; if the distribution of explanatory variables is close
to t or Cauchy distribution, then we refer to the PL estimator.
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3.5 Real Data Analysis

In this section, we analyze the “YearPredictionMSD” dataset (Lichman 2013),
which is a subset of the Million Song Dataset (http://labrosa.ee.columbia.edu/
millionsong/). In this dataset, 515,345 songs are included, and most of them are
western, commercial tracks ranging from the year 1922 to 2011, peaking in the
early 2000s. For each song, multiple segments are extracted and each segment is
described by a 12-dimensional timbre feature vector. Then average, variance, and
pairwise covariance are taken over all “segments” for each song.

In this analysis, the goal of analysis is to use 12 timbre feature averages and 78
timbre feature variance/covariances as predictors, totaling 90 predictors, to predict
the year of release (response). We chose a linear model in (3.2) to accomplish this
goal. Considering the large sample size, we opt to using the statistical leveraging
methods.

First, we took random samples of size 100 using sampling probabilities of BLEV
and PL to visualize the large dataset. Figure 3.9 shows the scatterplot for the
subsample of one predictor using two different sampling probability distributions.
In Fig. 3.9, we can see that there are several points with extra dark color standing out
from the rest, indicating that the data distribution might be closer to t or Cauchy than
to Normal distribution and that statistical leveraging methods will perform better
than uniform sampling according to the simulation study. Also, these two sampling
probability distributions are very similar to each other, suggesting that PL might be
a good surrogate or approximation for BLEV. Since the computation of PL is more
scalable, it is an ideal method for exploratory data analysis before other leveraging
methods are applied to the data.

1970

1980

1990

2000

2010

7−th timber covariance

ye
ar

0.000025
0.000050
0.000075
0.000100
0.000125

πBLEV

1970

1980

1990

2000

2010

−2 0 2 4 −2 0 2 4
7−th timber covariance

ye
ar

0.000025
0.000050
0.000075
0.000100
0.000125

πPL

Fig. 3.9 Scatterplots of a random subsample of size 100 from “YearPredictionMSD”
dataset (Lichman 2013). In this example, we scale each predictor before calculating the subsam-
pling probabilities. The left panel displays the subsample drawn using subsampling probability
distribution in BLEV in (3.4). The right panel displays the subsample drawn using subsampling
probability distribution in PL in (3.7). Color of the points corresponds to the sampling probabilities:
the darker the color, the higher the probability
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Fig. 3.10 The squared bias, variance and MSE (with respect to the LS estimator of whole dataset)
of different statistical leveraging algorithms using “YearPredictionMSD” dataset

Next, we applied various reviewed statistical leveraging methods with different
subsample sizes to the data. We scaled the predictors and centered the response
prior to analysis. Each method is repeated 100 times and the bias, variance and
mean squared error (MSE) to the full sample LS estimator are plotted in Fig. 3.10.

Consistent with results in the simulation study, the variance is larger compared
to bias for all statistical leveraging estimators at all subsample sizes. As shown in
Fig. 3.10, LEVUNW has the smallest MSE and variance, but the largest bias. As
reviewed in Sect. 3.3 about the asymptotic properties of LEVUNW, we discerned
that it is an unbiased estimator for the underlying true parameter ˇ0 but a biased
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estimator for the LS estimator Ǒ LS. Thus in the figure, as subsample size is getting
larger, the bias of the LEVUNW estimator becomes significantly larger than all
other estimators. But since variance dominates bias, LEVUNW still outperforms
other estimators in terms of MSE. The squared bias of BLEV and SLEV(0.9) are
consistently smaller than that of PL at each subsample size; however, the variances
and MSEs of BLEV and SLEV(0.9) are close to those of PL, especially at sample
sizes larger than 400. This means that PL may be considered as a computationally
practical surrogate for BLEV and SLEV(0.9), as suggested in Fig. 3.9.

3.6 Beyond Linear Regression

3.6.1 Logistic Regression

Wang et al. (2017) generalized the idea of statistical leveraging to logistic model
defined as below:

yi � Binomial.ni; pi/

logit.pi/ D log

�
pi

1 � pi

�

D xTi ˇ0:

Logistic regression is one of the most widely used and typical examples of
generalized linear models. The regression coefficients ˇ0 are usually estimated by
maximum likelihood estimation (MLE), i.e.

Ǒ
MLE D max

ˇ

nX

iD1
Œyi log pi.ˇ/C .1 � yi/ logf1 � pi.ˇ/g�; (3.16)

where pi.ˇ/ D exp.xTi ˇ/=f1C exp.xTi ˇ/g.
Unlike linear regression with normally distributed residuals as stated in (3.1),

there exists no closed-form expression for (3.16). So an iterative procedure must
be used instead; for example, Newton’s method. As shown, Newton’s method for
numerically solving (3.16) corresponds to an iterative weighted least square (IWLS)
problem (McCullagh and Nelder 1989). However, the generalization of BLEV
is not trivial. The weights in each iterated WLS involve ǑMLE. Consequently, to
construct the leverage scores one has to obtain ǑMLE first. The mutual dependence
of subsampling probabilities and ǑMLE under GLM settings poses a dilemma for the
intended generalization.

To tackle this problem, Wang et al. (2017) proposed a two-step procedure.
First, we draw a subsample of size r1 using uniform subsampling probabilities
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and obtain an estimate of coefficient values, denoted as Q̌ .1/. Second, with the
Q̌ .1/, the weight matrix or variance-covariance matrix can be estimated and the
subsampling probabilities for BLEV can be further constructed. Finally, we obtain
another subsample of size r2 to get the final estimator Q̌ .

The computation time for Q̌ .1/ in the first step is O.m1r1p2/ where m1 is the
number of iterations of IWLS in the first step; the computation time for construction
of the subsampling probabilities can be as low as O.np/; the computation time for Q̌
in the second step is O.m2r2p2/ where m2 is the number of iterations of IWLS in the
second step. So the overall time complexity is O.npCm1r1p2Cmr2p2/. Considering
that p is fixed and m1, m2, r1, and r2 are all much smaller than n, the time complexity
of whole procedure stays at the order of O.np/.

Another remark about the two-step procedure concerns the balance between r1
and r2. On one hand, in order to get a reliable estimate Q̌ .1/, r1 should not be too
small; on the other hand, the efficiency of the two-step algorithm decreases if r1
grows larger compared to r2. In practice, we find that the algorithm works well
when the ratio r1=r1 C r2 is between 0.2 and 0.4 and this is the rule of thumb
recommended by Wang et al. (2017).

3.6.2 Time Series Analysis

Although we have reviewed so far on the setting of independent and identically
distributed data, the natural extension of statistical leveraging methods can be made
to handle the dependent data settings, e.g. time series data. Time series in big data
framework are widely available in different areas, e.g. sensors data, which is the
most widespread and is a new type of time series data. With storage costs coming
down significantly, there are significant efforts on analyzing these big time series
data (including instrument-generated data, climatic data, and other types of sensor
data). However, analyzing the big time series data has new challenge due to the
computational cost. Autoregressive and moving average (ARMA) model has been
extensively used for modeling time series. But the traditional ARMA model is
facing the limit from the computational perspective on analyzing big time series
data. The leveraging theory and method thus have been proposed for fitting ARMA
model (Xie et al. 2017). A distinguished feature of the novel leveraging method is
that instead of sampling individual data points, we subsample blocks of time series
so that the time dependence can be well estimated. Such leveraging subsampling
approach has a significant challenge related to stationarity. In time series analysis,
it is necessary to assume that at least some features of the underlying probability
are sustained over a time period. This leads to the assumptions of different types
of stationarity. However, a block of time series in stationarity does not necessarily
imply the stationarity of the whole time series. Thus novel statistical methods are
needed.
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In the context of ARMA model, Xie et al. (2017) propose a novel sequential
leveraging subsampling method for non-explosive AR(p) series. The sequential
leveraging subsampling method can adapt to the availability of computing resources.
When only single (or a few) computing processor but a large memory is available,
we design a sequential leveraging method starting with one single data point. The
idea is that we sample a single data point base on leverage-probability, and then
expand the single data point to its neighborhood to form a block of time series
sequentially. The key is that as long as the single block is long enough, all the
features of the full sample are captured in the single block time series. When there
are a large number of computing processors, each of which has moderate memory,
we sample several points and perform the leveraging sequential sampling on each
of them so that we have a snapshot of the whole time series.

3.7 Discussion and Conclusion

When analyzing big data with large sample size, one faces significant computational
challenge, i.e., the high computational cost renders many conventional statistics
methods inapplicable in big data. There is an extensive literature in the computer
science community on efficient storage and computation of the big data, such
as parallel computing algorithms using GPUs, etc. However, very few of them
overcome the computational challenge from statistical perspective, e.g. the bias
and variance of the big data estimation. In this chapter, we reviewed the statistical
leveraging methods for analyzing big data. The idea of statistical leveraging is very
simple, i.e., to take a random subsample, on which all subsequent computation
steps are performed. Sampling is one of the most common tools in statisticians’
toolkit and has a great potential to overcome the big data challenge. The key to
success of statistical leveraging methods relies on the effective construction of
the sampling probability distribution, based on which influential data points are
sampled. Moreover, we also presented some preliminary ideas about extending
the statistical leveraging to GLM and time series model. But obviously the power of
the leveraging methods has not been fully exploited in this chapter. The performance
of leveraging methods is waiting to be examined on more complicated problems,
such as penalized regression.
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Chapter 4
Scattered Data and Aggregated Inference

Xiaoming Huo, Cheng Huang, and Xuelei Sherry Ni

Abstract Scattered Data and Aggregated Inference (SDAI) represents a class of
problems where data cannot be at a centralized location, while modeling and
inference is pursued. Distributed statistical inference is a technique to tackle a type
of the above problem, and has recently attracted enormous attention. Many existing
work focus on the averaging estimator, e.g., Zhang et al. (2013) and many others.
In this chapter, we propose a one-step approach to enhance a simple-averaging
based distributed estimator. We derive the corresponding asymptotic properties of
the newly proposed estimator. We find that the proposed one-step estimator enjoys
the same asymptotic properties as the centralized estimator. The proposed one-step
approach merely requires one additional round of communication in relative to the
averaging estimator; so the extra communication burden is insignificant. In finite-
sample cases, numerical examples show that the proposed estimator outperforms
the simple averaging estimator with a large margin in terms of the mean squared
errors. A potential application of the one-step approach is that one can use multiple
machines to speed up large-scale statistical inference with little compromise in the
quality of estimators. The proposed method becomes more valuable when data can
only be available at distributed machines with limited communication bandwidth.
We discuss other types of SDAI problems at the end.
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4.1 Introduction

In many important contemporary applications, data are often partitioned across
multiple servers. For example, a search engine company may have data coming
from a large number of locations, and each location collects tera-bytes of data per
day (Corbett et al. 2012). On a different setting, high volume of data (like videos)
have to be stored distributively, instead of on a centralized server (Mitra et al. 2011).
Given the modern “data deluge,” it is often the case that centralized methods are no
longer possible to implement. It has also been notified by various researchers (e.g.,
Jaggi et al. 2014) that the speed of local processors can be thousands time faster
than the rate of data transmission in a modern network. Consequently it is evidently
advantageous to develop communication-efficient method, instead of transmitting
data to a central location and then apply a global estimator.

We name the above scenario a scattered data with aggregated inference (SDAI)
situation. The associated techniques can play an increasingly significant role in a
modern society, such as:

• A major web search engine has to save its data in a range of platforms, storage
units, and even geographical locations; a company-wide policy may require
knowledge on these distributed data.

• An international organization may have information stored all over the world,
while between different world offices, there are limited communication and data
sharing bandwidth.

• A major supply chain company (or a superstore giant) has collected tremendous
amounts of information at many different locations, and it can be costly and
unrealistic to transfer them to a common storage unit.

• A government may have enormous quantities of information saved across
different agencies and locations; sharing these data requires substantial political
and/or administrative struggle.

• In public health surveillance, the Centers for Disease Control and Prevention
(CDC) have a tremendous volume of potentially useful data across VA hospitals
and city/county/state agencies; creating a warning system with few false alarms
is a challenge.

• Hospital across the nation (or even worldwide) has enormous amount of health
and/or disease related data. They all want to build some predictive models,
however sharing the data is largely deterred due to privacy, legal, and proprietary
concerns.

All the above illustrate possible scenarios of scattered data and aggregated inference,
in which data were stored locally, with limited amount of information transferred to
other nodes.

In statistical inference, estimators are introduced to infer some important hidden
quantities. In ultimate generality, a statistical estimator of a parameter � 2 � is
a measurable function of the data, taking values in the parameter space �. Many
statistical inference problems could be solved by finding the maximum likelihood
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estimators (MLE), or more generally, M-estimators. In either case, the task is to
minimize an objective function, which is the average of a criterion function over
the entire data, which is typically denoted by S D fX1;X2; : : : ;XNg, where N is
called the sample size. Here we choose a capitalized N to distinguish from a lower
n that will be used later. Traditional centralized setting requires access to entire
data set S simultaneously. However, due to the explosion of data size, it may be
infeasible to store all the data in a single machine like we did during past several
decades. Distributed (sometimes, it is called parallel) statistical inference would be
an indispensable approach for solving these large-scale problems.

At a high level, there are at least two types of distributed inference problems.
In the first type, each observation Xi is completely observed at one location; and
different observations (i.e., Xi and Xj for i ¤ j) may be stored at different locations.
This chapter will focus to this type of problems. In the second type, it is possible that
for the same sample Xi, different parts are available at different locations, and they
are not available in a centralized fashion. The latter has been studied in the literature
(see Gamal and Lai (2015) and the references therein). This paper will not study the
second type.

For distributed inference in the first type of the aforementioned setting, data are
split into several subsets and each subset is assigned to a processor. This paper will
focus on the M-estimator framework, in which an estimator is obtained by solving
a distributed optimization problem. The objective in the distributed optimization
problem may come from an M-estimator framework (or more particularly from
the maximum likelihood principle), empirical risk minimization, and/or penalized
version of the above. Due to the type 1 setting, we can see that the objective
functions in the corresponding optimization problem are separable; in particular,
the global objective function is a summation of functions such that each of them
only depends on data reside on one machine. The exploration in this paper will
base on this fact. As mentioned earlier, a distributed inference algorithm should
be communication-efficient because of high communication cost between different
machines or privacy concerns (such as sensitive personal information or financial
data). It is worth noting that even if the data could be handled by a single machine,
distributed inference would still be beneficial for reducing computing time.

Our work has been inspired by recent progress in distributed optimization. We
review some noticeable progress in numerical approaches and their associated
theoretical analysis. Plenty of research work has been done in distributed algorithms
for large-scale optimization problems during recent years. Boyd et al. (2011)
suggest to use Alternating Direction Method of Multipliers (ADMM) to solve
distributed optimization problems in statistics and machine learning. Using a trick
of consistency (or sometimes called consensus) constraints on local variables and a
global variable, ADMM can be utilized to solve a distributed version of the Lasso
problem (Tibshirani 1996; Chen et al. 1998). ADMM has also been adopted in
solving distributed logistic regression problems, and many more. ADMM is feasible
for a wide range of problems, but it requires iterative communication between
local machines and the center. In comparison, we will propose a method that only
requires two iterations. Zinkevich et al. (2010) propose a parallelized stochastic
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gradient descent method for empirical risk minimization and prove its convergence.
The established contractive mappings technique seems to be a powerful method
to quantify the speed of convergence of the derived estimator to its limit. Shamir
et al. (2014) present the Distributed Approximate Newton-type Method (DANE)
for distributed statistical optimization problems. Their method firstly averages the
local gradients then follows by averaging all local estimators in each iteration
until convergence. They prove that this method enjoys linear convergence rate
for quadratic objectives. For non-quadratic objectives, it has been showed that
the value of the objective function has a geometric convergence rate. Jaggi et al.
(2014) propose a communication-efficient method for distributed optimization in
machine learning, which uses local computation with randomized dual coordinate
descent in a primal–dual setting. They also prove the geometric convergence rate
of their method. The above works focus on the properties of numerical solutions
to the corresponding optimization problems. Nearly all of them require more than
two rounds of communication. Due to different emphasis, they did not study the
statistical asymptotic properties (such as convergence in probability, asymptotic
normality, Fisher information bound) of the resulting estimators. Our paper will
address these issues.

Now we switch the gear to statistical inference. Distributed inference has been
studied in many existing works, and various proposals have been made in different
settings. To the best of our knowledge, the distributed one-step estimator has not
been studied in any of these existing works. We review a couple of state-of-the-
art approaches in the literature. Our method builds on a closely related recent
line of work of Zhang et al. (2013), which presents a straightforward approach to
solve large-scale statistical optimization problem, where the local empirical risk
minimizers are simply averaged. They showed that this averaged estimator achieves
mean squared errors that decays as O.N�1 C .N=k/�2/, where N stands for the
total number of samples and k stands for the total number of machines. They also
showed that the mean squared errors could be even reduced to O.N�1 C .N=k/�3/
with one more bootstrapping sub-sampling step. Obviously, there exists efficiency
loss in their method since the centralized estimator could achieve means squared
error O.N�1/. Liu and Ihler (2014) propose an inspiring two-step approach: firstly
find local maximum likelihood estimators, then subsequently combine them by
minimizing the total Kullback–Leibler divergence (KL-divergence). They prove
the exactness of their estimator as the global MLE for the full exponential family.
They also estimate the mean squared errors of the proposed estimator for a curved
exponential family. Due to the adoption of the KL-divergence, the effectiveness of
this approach heavily depends on the parametric form of the underlying model. Chen
and Xie (2014) propose a split-and-conquer approach for a penalized regression
problem (in particular, a model with the canonical exponential distribution) and
show that it enjoys the same oracle property as the method that uses the entire
data set in a single machine. Their approach is based on a majority voting,
followed by a weighted average of local estimators, which somewhat resembles
a one-step estimator however is different. In addition, their theoretical results
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require k 	 O.N
1
5 /, where k is the number of machines and N is again the total

number of samples. This is going to be different from our needed condition for
theoretical guarantees. Their work considers a high-dimensional however sparse
parameter vector, which is not considered in this paper. Rosenblatt and Nadler
(2014) analyze the error of averaging estimator in distributed statistical learning
under two scenarios. The number of machines is fixed in the first one and the number
of machines grows in the same order with the number of samples per machine. They
present the asymptotically exact expression for estimator errors in both scenarios
and show that the error grows linearly with the number of machines in the latter
case. Their work does not consider the one-step updating that will be studied in
this paper. Although it seems that their work proves the asymptotic optimality of the
simple averaging, our simulations will demonstrate the additional one-step updating
can improve over the simple averaging, at least in some interesting finite sample
cases. Battey et al. (2015) study the distributed parameter estimation method for
penalized regression and establish the oracle asymptotic property of an averaging
estimator. They also discuss hypotheses testing, which is not covered in this paper.
Precise upper bounds on the errors of their proposed estimator have been developed.
We benefited from reading the technical proofs of their paper; however unlike our
method, their method is restricted to linear regression problems with penalty and
requires the number of machine k D o.

p
N/. Lee et al. (2015) devise a one-

shot approach, which averages “debiased” lasso estimators, to distributed sparse
regression in the high-dimensional setting. They show that their approach converges
at the same order of rate as Lasso when the data set is not split across too many
machines.

It is worth noting that nearly all existing distributed estimators are averaging
estimators. The idea of applying one additional updating, which correspondingly
requires one additional round of communication, has not been explicitly proposed.
We may notice some precursor of this strategy. For example, in Shamir et al. (2014),
an approximate Newton direction was estimated at the central location, and then
broadcasted to local machines. Another occurrence is that in Lee et al. (2015), some
intermediate quantities are estimated in a centralized fashion, and then distributed
to local machines. None of them explicitly described what we will propose.

In the theory on maximum likelihood estimators (MLE) and M-estimators, there
is a one-step method, which could make a consistent estimator as efficient as MLE
or M-estimators with a single Newton–Raphson iteration. Here, efficiency stands
for the relative efficiency converges to 1. See van der Vaart (2000) for more details.
There have been numerous papers utilizing this method. See Bickel (1975), Fan
and Chen (1999), and Zou and Li (2008). A one-step estimator enjoys the same
asymptotic properties as the MLE or M-estimators as long as the initial estimators
are
p
n-consistent. A

p
n-consistent estimator is much easier to find than the MLE or

an M-estimator. For instance, the simple averaging estimator [e.g., the one proposed
by Zhang et al. (2013)] is good enough as a starting point for a one-step estimator.

In this paper, we propose a one-step estimator for distributed statistical inference.
The proposed estimator is built on the well-analyzed simple averaging estimator. We
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show that the proposed one-step estimator enjoys the same asymptotic properties
(including convergence and asymptotic normality) as the centralized estimator,
which would utilize the entire data. Given the amount of knowledge we had on
the distributed estimators, the above result may not be surprising. However, when
we derive an upper bound for the error of the proposed one-step estimator, we found
that we can achieve a slightly better one than those in the existing literature. We also
perform a detailed evaluation of our one-step method, comparing with the simple
averaging method and a centralized method using synthetic data. The numerical
experiment is much more encouraging than the theory predicts: in nearly all cases,
the one-step estimator outperformed the simple averaging one with a clear margin.
We also observe that the one-step estimator achieves the comparable performance
as the global estimator at a much faster rate than the simple averaging estimator.
Our work may indicate that in practice, it is better to apply a one-step distributed
estimator than a simple-average one.

This paper is organized as follows. Section 4.2 describes details of our problem
setting and two methods—the simple averaging method and the proposed one-step
method. In Sect. 4.3, we study the asymptotic properties of the one-step estimator
in the M-estimator framework and analyze the upper bound of its estimation error.
Section 4.4 provides some numerical examples of distributed statistical inference
with synthetic data. A discussion on statistical inference for scattered data where
aggregated inference is necessary is furnished in Sect. 4.5. This section presents
other techniques that have been developed by other researchers. In surveying the
current landscape of SDAI, we discuss some other types of SDAI problems in
Sect. 4.6, though this chapter does not tackle these problems. We conclude in
Sect. 4.7. Due to space limitation, all detailed proofs are relegated to an online
document (Huang and Huo 2015).

4.2 Problem Formulation

This section is organized as follows. In Sect. 4.2.1, we describe some notations
that will be used throughout the paper. In Sect. 4.2.2, the M-estimator framework
is reviewed. The simple averaging estimator will be presented in Sect. 4.2.3. The
proposed one-step distributed estimator will be defined in Sect. 4.2.4.

4.2.1 Notations

In this subsection, we will introduce some notations that will be used in this paper.
Let fm.xI �/ W � 2 � 
 R

dg denote a collection of criterion functions, which should
have continuous second derivative. Consider a data set S consisting of N D nk
samples, which are drawn i.i.d. from p.x/ (for simplicity, we assume that the sample
size N is a multiple of k). This data set is divided evenly at random and stored in
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k machines. Let Si denote the subset of data assigned to machine i, i D 1; : : : ; k,
which is a collection of n samples drawn i.i.d. from p.x/. Note that any two subsets
in those Si’s are not overlapping.

For each i 2 f1; : : : ; kg, let the local empirical criterion function that is based on
the local data set on machine i and the corresponding maximizer be denoted by

Mi.�/ D 1

jSij
X

x2Si
m.xI �/ and �i D arg max

�2�
Mi.�/: (4.1)

Let the global empirical criterion function be denoted by

M.�/ D 1

k

kX

iD1
Mi.�/: (4.2)

And let the population criterion function and its maximizer be denoted by

M0.�/ D
Z

X
m.xI �/p.x/dx and �0 D arg max

�2�
M0.�/; (4.3)

where X is the sample space. Note that �0 is the parameter of interest. The gradient
and Hessian of m.xI �/ with respect to � are denoted by

Pm.xI �/ D @m.xI �/
@�

; Rm.xI �/ D @2m.xI �/
@� @�T

: (4.4)

We also let the gradient and Hessian of the local empirical criterion function be
denoted by

PMi.�/ D @Mi.�/

@�
D 1

jSij
X

x2Si

@m.xI �/
@�

; RMi.�/ D @2Mi.xI �/
@� @�T

D 1

jSij
X

x2Si

@2m.xI �/
@� @�T

;

(4.5)
where i 2 f1; 2; : : : ; kg, and let the gradient and Hessian of global empirical criterion
function be denoted by

PM.�/ D @M.�/

@�
; RM.�/ D @2M.�/

@� @�T
: (4.6)

Similarly, let the gradient and Hessian of population criterion function be denoted
by

PM0.�/ D @M0.�/

@�
; RM0.�/ D @2M0.�/

@� @�T
: (4.7)
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The vector norm k � k for a 2 R
d that we use in this paper is the usual Euclidean

norm kak D .
Pd

jD1 a2j /
1
2 . And we also use jjj�jjj to denote a norm for matrix A 2

R
d�d, which is defined as its maximal singular value, i.e., we have

jjjAjjj D sup
uWu2Rd ;kuk�1

kAuk:

The aforementioned matrix norm will be the major matrix norm that is used
throughout the paper. The only exception is that we will also use the Frobenius
norm in Huang and Huo (2015). And the Euclidean norm is the only vector norm
that we use throughout this paper.

4.2.2 Review on M-Estimators

In this paper, we will study the distributed scheme for large-scale statistical
inference. To make our conclusions more general, we consider M-estimators, which
could be regarded as a generalization of the Maximum Likelihood Estimators
(MLE). The M-estimator O� could be obtained by maximizing the empirical criterion
function, which means

O� D arg max
�2�

M.�/ D arg max
�2�

1

jSj
X

x2S
m.xI �/:

Note that, when the criterion function is the log likelihood function, i.e., m.xI �/ D
log f .xI �/, the M-estimator is exactly the MLE. Let us recall that M0.�/ DR
X m.xI �/p.x/dx is the population criterion function and �0 D arg max�2�M0.�/

is the maximizer of population criterion function. It is known that O� is a consistent

estimator for �0, i.e., O� � �0 P�! 0. See Chapter 5 of van der Vaart (2000).

4.2.3 Simple Averaging Estimator

Let us recall that Mi.�/ is the local empirical criterion function on machine i,

Mi.�/ D 1

jSij
X

x2Si
m.xI �/:

And, �i is the local M-estimator on machine i,

�i D arg max
�2�

Mi.�/:
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Then as mentioned in Zhang et al. (2013), the simplest and most intuitive method is
to take average of all local M-estimators. Let �.0/ denote the average of these local
M-estimators, we have

�.0/ D 1

k

kX

iD1
�i; (4.8)

which is referred to as the simple averaging estimator in the rest of this paper.

4.2.4 One-Step Estimator

Under the problem setting above, starting from the simple averaging estimator �.0/,
we can obtain the one-step estimator �.1/ by performing a single Newton–Raphson
update, i.e.,

�.1/ D �.0/ � Œ RM.�.0//��1Œ PM.�.0//�; (4.9)

where M.�/ D 1
k

Pk
iD1Mi.�/ is the global empirical criterion function, PM.�/ and

RM.�/ are the gradient and Hessian of M.�/, respectively. Throughout this paper,
the dimension d of the parameter space � that was introduced at the beginning of
Sect. 4.2.1 is assumed to be at most moderate. Consequently, the Hessian matrix
RM.�/, which should be d � d, is not considered to be large. The whole process to

compute one-step estimator can be summarized as follows.

1. For each i 2 f1; 2; : : : ; kg, machine i compute the local M-estimator with its local
data set,

�i D arg max
�2�

Mi.�/ D arg max
�2�

1

jSij
X

x2Si
m.xI �/:

2. All local M-estimators are averaged to obtain simple averaging estimator,

�.0/ D 1

k

kX

iD1
�i :

Then �.0/ is sent back to each local machine.
3. For each i 2 f1; 2; : : : ; kg, machine i compute the gradient and the Hessian matrix

of its local empirical criterion function Mi.�/ at � D �.0/. Then send PMi.�
.0//

and RMi.�
.0// to the central machine.
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4. Upon receiving all gradients and Hessian matrices, the central machine computes
the gradient and the Hessian matrix of M.�/ by averaging all local information,

PM.�.0// D 1

k

kX

iD1
PMi.�

.0//; RM.�.0// D 1

k

kX

iD1
RMi.�

.0//:

Then the central machine would perform a Newton–Raphson iteration to obtain
a one-step estimator,

�.1/ D �.0/ � Œ RM.�.0//��1Œ PM.�.0//�:

Note that �.1/ is not necessarily the maximizer of empirical criterion function
M.�/ but it shares the same asymptotic properties with the corresponding global
maximizer (M-estimator) under some mild conditions, i.e., we will show

�.1/
P�! �0;

p
N.�.1/ � �0/ d�! N.0;†/; asN !1;

where the covariance matrix † will be specified later.
The one-step estimator has advantage over simple averaging estimator in terms

of estimation error. In Zhang et al. (2013), it is showed both theoretically and
empirically that the MSE of simple averaging estimator �.0/ grows significantly
with the number of machines k when the total number of samples N is fixed. More
precisely, there exists some constant C1;C2 > 0 such that

EŒk�.0/ � �0k2� 	 C1
N
C C2k2

N2
C O.kN�2/C O.k3N�3/:

Fortunately, one-step method �.1/ could achieve a lower upper bound of MSE with
only one additional step. We will show the following in Sect. 4.3:

EŒk�.1/ � �0k2� 	 C1
N
C O.N�2/C O.k4N�4/:

4.3 Main Results

First of all, some assumptions will be introduced in Sect. 4.3.1. After that, we
will study the asymptotic properties of one-step estimator in Sect. 4.3.2, i.e.,
convergence, asymptotic normality, and mean squared errors (MSE). In Sect. 4.3.3,
we will consider the one-step estimator under the presence of information loss.
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4.3.1 Assumptions

Throughout this paper, we impose some regularity conditions on the criterion
function m.xI �/, the local empirical criterion function Mi.�/, and the population
criterion function M0.�/. We use the similar assumptions in Zhang et al. (2013).
Those conditions are also standard in classical statistical analysis of M-estimators
(cf. van der Vaart 2000).

The first assumption restricts the parameter space to be compact, which is
reasonable and not rigid in practice. One reason is that the possible parameters lie
in a finite scope for most cases. Another justification is that the largest number that
computers could cope with is always limited.

Assumption 1 (Parameter Space) The parameter space � 2 R
d is a compact

convex set. And let D � max�;� 02� k� � � 0k denote the diameter of �.

We also assume that m.xI �/ is concave with respect to � and M0.�/ has some
curvature around the unique optimal point �0, which is a standard assumption for
any method requires consistency. The constant � below could depend on the sample
size—this is a delicate issue and (due to space) is not addressed in the present paper.

Assumption 2 (Invertibility) The Hessian of the population criterion function
M0.�/ at �0 is a nonsingular matrix, which means RM.�0/ is negative definite and
there exists some � > 0 such that supu2RdWkuk<1 ut RM.�0/u 	 ��.

In addition, we require the criterion function m.xI �/ to be smooth enough, at
least in the neighborhood of the optimal point �0, Bı D f� 2 � W k� ��0k 	 ıg. So,
we impose some regularity conditions on the first and second derivatives of m.xI �/.
We assume the gradient of m.xI �/ is bounded in moment and the difference between
Rm.xI �/ and RM0.�/ is also bounded in moment. Moreover, we assume that Rm.xI �/
has Lipschitz continuity in Bı.

Assumption 3 (Smoothness) There exist some constants G and H such that

EŒk Pm.XI �/k8� 	 G8 and E

hˇ
ˇ
ˇ
ˇ
ˇ
ˇ Rm.XI �/� RM0.�/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ8
i
	 H8;8� 2 Bı:

For any x 2X , the Hessian matrix Rm.xI �/ is L.x/-Lipschitz continuous,
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ Rm.xI �/ � Rm.xI � 0/ˇˇˇˇˇˇ 	 L.x/k� � � 0k;8�; � 0 2 Bı;

where L.x/ satisfies

EŒL.X/8� 	 L8 and EŒ.L.X/ � EŒL.X/�/8� 	 L8;

for some finite constant L > 0.
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By Theorem 8.1 in Chapter XIII of Lang (1993), m.xI �/ enjoys interchange-
ability between the differentiation on � and the integration on x, which means the
following two equations hold:

PM0.�/ D @

@�

Z

X
m.xI �/p.x/dx D

Z

X

@m.xI �/
@�

p.x/dx D
Z

X
Pm.xI �/p.x/dx;

and

RM0.�/ D @2

@� t@�

Z

X
m.xI �/p.x/dx D

Z

X

@2m.xI �/
@� t@�

p.x/dx D
Z

X
Rm.xI �/p.x/dx:

4.3.2 Asymptotic Properties and Mean Squared Errors (MSE)
Bounds

Our main result is that the one-step estimator enjoys the oracle asymptotic properties
and has the mean squared errors of O.N�1/ under some mild conditions.

Theorem 4 Let ˙ D RM0.�0/
�1
EŒ Pm.xI �0/ Pm.xI �0/t� RM0.�0/

�1, where the expecta-
tion is taken with respect to p.x/. Under Assumptions 1–3, when the number of
machines k satisfies k D O.

p
N/, �.1/ is consistent and asymptotically normal, i.e.,

we have

�.1/ � �0 P�! 0 and
p
N.�.1/ � �0/ d�! N.0;˙/asN !1:

See an online document (Huang and Huo 2015) for a proof. The above theorem
indicates that the one-step estimator is asymptotically equivalent to the centralized
M-estimator.

It is worth noting that the condition kpN.�.0/ � �0/k D OP.1/ suffices for our
proof to Theorem 4. Let Q�.0/ denote another starting point for the one-step update,
then the following estimator

Q�.1/ D Q�.0/ � RM. Q�.0//�1 PM. Q�.0//

also enjoys the same asymptotic properties as �.1/ does (and the centralized M-
estimator O�) as long as

p
N. Q�.0/ � �0/ is bounded in probability. Therefore, we can

replace �.0/ with any estimator Q�.0/ that satisfies

kpN. Q�.0/ � �0/k D OP.1/:

We also derive an upper bound for the MSE of the one-step estimator �.1/.
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Theorem 5 Under Assumptions 1–3, the mean squared errors of the one-step
estimator �.1/ is bounded by

EŒk�.1/ � �0k2� 	 2TrŒ˙�

N
C O.N�2/C O.k4N�4/:

When the number of machines k satisfies k D O.
p
N/, we have

EŒk�.1/ � �0k2� 	 2TrŒ˙�

N
C O.N�2/:

See an online document (Huang and Huo 2015) for a proof.
In particular, when we choose the criterion function to be the log likelihood

function, m.xI �/ D log f .xI �/, the one-step estimator has the same asymptotic
properties as the maximum likelihood estimator (MLE) holds, which is described
below.

Corollary 1 If m.xI �/ D log f .xI �/ and k D O.
p
N/, one-step estimator �.1/ is a

consistent and asymptotic efficient estimator of �0,

�.1/ � �0 P�! 0 and
p
N.�.1/ � �0/ d�! N.0; I.�0/�1/; as N !1;

where I.�0/ is the Fisher’s information at � D �0. And the mean squared errors of
�.1/ is bounded as follows:

EŒk�.1/ � �0k2� 	 2TrŒI�1.�0/�
N

C O.N�2/C O.k4N�4/:

A proof follows immediately from Theorems 4, 5 and the definition of the Fisher’s
information.

4.3.3 Under the Presence of Communication Failure

In practice, it is possible that the information (local estimator, local gradient and
local Hessian) from a local machine cannot be received by the central machine due
to various causes (for instance, a network problem or a hardware crash). We assume
that the communication failure on each local machine occurs independently.

We now derive a distributed estimator under the scenario with possible infor-
mation loss. We will also present the corresponding theoretical results. We use
ai 2 f0; 1g; i D 1; : : : ; k, to denote the status of local machines: when machine i
successfully sends all its local information to the central machine, we have ai D 1;
when machine i fails, we have ai D 0. The corresponding simple averaging
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estimator is computed as

�.0/ D
Pk

iD1 ai�i
Pk

iD1 ai
:

And one-step estimator is as follows:

�.1/ D �.0/ �
"

kX

iD1
ai RMi.�

.0//

#�1 " kX

iD1
ai PMi.�

.0//

#

:

Corollary 2 Suppose r is the probability (or rate) that a local machine fails to
send its information to the central machine. When n D N=k ! 1, k ! 1 and
k D O.

p
N/, the one-step estimator is asymptotically normal:

p
.1 � r/N.�.1/ � �0/ d�! N.0;˙/:

And more precisely, unless all machines fail, we have

EŒk�.1/ � �0k2� 	 2TrŒ˙�

N.1 � r/
C 6TrŒ˙�

Nk.1 � r/2
C O.N�2.1 � r/�2/C O.k2N�2/:

See an online document (Huang and Huo 2015) for a proof. Note that the probability
that all machines fail is rk, which is negligible when r is small and k is large.

4.4 Numerical Examples

In this section, we will discuss the results of simulation studies. We compare the
performance of the simple averaging estimator �.0/ and the one-step estimator �.1/,
as well as the centralized M-estimator O� , which maximizes the global empirical
criterion function M.�/ when the entire data are available centrally. Besides, we
will also study the resampled averaging estimator, which is proposed by Zhang
et al. (2013). The main idea of a resampled averaging estimator is to resample bsnc
observations from each local machine to obtain another averaging estimator �.0/1 .
Then the resampled averaging estimator can be constructed as follows:

�.0/re D
�.0/ � s�.0/1
1 � s

:

In our numerical examples, the resampling ratio s is chosen to be s D 0:1

based on the past empirical studies. We shall implement these estimators for logistic
regression (Sect. 4.4.1), Beta distribution (Sect. 4.4.2), and Gaussian Distribution
(Sect. 4.4.4). We will also study the parameter estimation for Beta distribution with
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occurrence of communication failures (Sect. 4.4.3), in which some local machines
could fail to send their local information to the central machine.

4.4.1 Logistic Regression

In this example, we simulate the data from the following logistic regression model:

y � Bernoulli.p/;wherep D exp.xt�/

1C exp.xt�/
D exp

�Pd
jD1 xj�j

	

1C exp
�Pd

jD1 xj�j
	 : (4.10)

In this model, y 2 f0; 1g is a binary response, x 2 Rd is a continuous predictor, and
� 2 Rd is the parameter of interest.

In each single experiment, we choose a fixed vector � with each entry �j; j D
1; : : : ; d; drawn from Unif.�1; 1/ independently. Entry xj; j D 1; : : : ; d of x 2 Rd is
sampled from Unif.�1; 1/ independently. All xj’s are independent with parameters
�j’s too. After generating the parameter � and the predictor x, we can compute the
value of probability p and generate y according to (4.10). We fix the number of
observed samples N D 217 D 131;072 in each experiment, but vary the number of
machines k. The target is to estimate � with different number of parallel splits k of
the data. The experiment is repeated for K D 50 times to obtain a reliable average
error. And the criterion function is the log-likelihood function,

m.x; yI �/ D yxt� � log.1C exp.xt�//:

The goal of each experiment is to estimate parameter �0 maximizing the
population criterion function

M0.�/ D Ex;yŒm.x; yI �/� D Ex;yŒyx
t� � log.1C exp.xt�//�:

In this particular case, �0 is exactly the same with the true parameter.
In each experiment, we split the data into k D 2; 4; 8; 16; 32; 64; 128 non-

overlapping subsets of size n D N=k. We compute a local estimator �i from each
subset. And the simple averaging estimator is obtained by taking average on all local
estimators: �.0/ D 1

k

Pk
iD1 �i. Then the one-step estimator �.1/ could be computed

by applying a Newton–Raphson update to �.0/, i.e., Eq. (4.9).
The dimension is chosen to be d D 20 and d D 100, which could help us

understand the performance of those estimators in both low and high dimensional
cases. In Fig. 4.1, we plot the mean squared errors of each estimator versus the
number of machines k. As we expect, the mean squared errors of the simple
averaging estimator grows rapidly with the number of machines. But, the mean
squared errors of the one-step estimator remains the same with the mean squared
errors of the oracle estimator when the number of machines k is not very large. Even
when the k D 128 and the dimension of predictors d D 100, the performance of the
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(a)

(b)

Fig. 4.1 Logistic Regression: the mean squared errors k O� � �0k2 versus number of machines,
with 50 simulations. The “average” is �.0/ and the “one-step” is �.1/. The “centralized” denotes the
oracle estimator with entire data. (a) d D 20. (b) d D 100

one-step estimator is significantly better than the simple averaging estimator. As we
can easily find out from Fig. 4.1, the mean squared errors of the simple averaging
estimator is about 10 times of that of the one-step estimator when k D 128 and
d D 100. Detailed values of the mean squared errors are listed in Tables 4.1 and 4.2.



4 Scattered Data and Aggregated Inference 91

Table 4.1 Logistic regression (d D 20): detailed values of squared error k O� � �0k2
No. of machines 2 4 8 16 32 64 128

Simple avg 28.036 28.066 28.247 28.865 30.587 38.478 69.898

(�10�4) (7.982) (7.989) (8.145) (8.443) (9.812) (14.247) (27.655)

One-step 28.038 28.038 28.038 28.038 28.038 28.035 28.039

(�10�4) (7.996) (7.996) (7.996) (7.996) (7.996) (7.998) (8.017)

Centralized (�10�4) 28.038 (7.996)

In each cell, the first number is the mean squared errors in K D 50 experiments and the number in
the brackets is the standard deviation of the mean squared errors

Table 4.2 Logistic regression (d D 100): detailed values of squared error k O� � �0k2
No. of machines 2 4 8 16 32 64 128

Simple avg 23.066 23.818 26.907 38.484 87.896 322.274 1796.147

(�10�3) (4.299) (4.789) (6.461) (10.692) (22.782) (67.489) (324.274)

One-step 22.787 22.784 22.772 22.725 22.612 24.589 151.440

(�10�3) (4.062) (4.060) (4.048) (3.998) (3.835) (4.651) (43.745)

Centralized (�10�3) 22.787 (4.063)

In each cell, the first number is the mean squared errors in K D 50 experiments and the number
in the brackets is the standard deviation of squared error

From the tables, we can easily figure out that the standard deviation of the errors
of the one-step estimator is significantly smaller than that of simple averaging,
especially when the number of machines k is large, which means the one-step
estimator is more stable.

4.4.2 Beta Distribution

In this example, we use data simulated from the Beta distribution Beta.˛; ˇ/, whose
p.d.f. is as follows:

f .xI˛; ˇ/ D 	 .˛ C ˇ/
	 .˛/	 .ˇ/

x˛�1.1 � x/ˇ�1:

In each experiment, we generate the value of parameter as ˛ � Unif.1; 3/ and
ˇ � Unif.1; 3/, independently. Once .˛; ˇ/ is determined, we can simulate samples
from the above density. In order to examine the performance of the two distributed
methods when k is extremely large, we choose to use a data set with relatively
small size N D 213 D 8192 and let the number of machines vary in a larger range
k D 2; 4; 8; : : : ; 256. And the objective is to estimate parameter .˛; ˇ/ from the
observed data. The experiment is again repeated for K D 50 times. The criterion
function is m.xI �/ D log f .xI˛; ˇ/, which implies that the centralized estimator is
the MLE.



92 X. Huo et al.

(a)

number of machines
0 50 100 150 200 250 300

m
ea

n 
sq

ua
re

d 
er

ro
r

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
centralized
avg
avg-re(rr=0.1)
one-step

(b)

number of machines
0 50 100 150 200 250 300

m
ea

n 
sq

ua
re

d 
er

ro
r

×10-3

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8 centralized
avg
avg-re(rr=0.1)
one-step

Fig. 4.2 Beta Distribution: the error k� � �0k2 versus the number of machines, with 50
simulations, where �0 is the true parameter. The “avg” is �.0/, the “avg-re” is �.0/re with resampling
ratio s D 10% and the “one-step” is �.1/. The “centralized” denotes maximum likelihood estimator
with the entire data. (a) Overview. (b) Detailed view

Figure 4.2 and Table 4.3 show that the one-step estimator has almost the same
performance with the centralized estimator in terms of MSE and standard deviation
when the number of machines k 	 pN (i.e., when k 	 64). However, the
one-step estimator performs worse than the centralized estimator when k >

p
N

(i.e., when k D 128 or 256), which confirms the necessity of condition k D O.
p
N/

in Theorem 4. In addition, we can easily find out that both the simple averaging
estimator and the resampled averaging estimator are worse than the proposed one-
step estimator regardless of the value of k.
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Table 4.3 Beta distribution: detailed values of the squared error k O� � �0k2
Number of Centralized
machines Simple avg (�10�3) Resampled avg (�10�3) One-step (�10�3) (�10�3)

2 1.466 (1.936) 1.616 (2.150) 1.466 (1.943)

4 1.480 (1.907) 1.552 (2.272) 1.466 (1.943)

8 1.530 (1.861) 1.545 (2.177) 1.466 (1.943)

16 1.704 (1.876) 1.594 (2.239) 1.466 (1.946) 1.466 (1.943)

32 2.488 (2.628) 1.656 (2.411) 1.468 (1.953)

64 5.948 (5.019) 2.184 (3.529) 1.474 (1.994)

128 21.002 (11.899) 4.221 (7.198) 1.529 (2.199)

256 89.450 (35.928) 31.574 (36.518) 2.435 (3.384)

In each cell, the first number is the mean squared errors with K D 50 experiments and the number
in the brackets is the standard deviation of the mean squared errors

4.4.3 Beta Distribution with Possibility of Losing Information

Now, we would like to compare the performance of the simple averaging estimator
and our one-step estimator under a more practical scenario, in which each single
local machine could fail to send its information to the central machine. We
assume those failures would occur independently with probability r D 0:05. The
simulation settings are similar to the previous example in Sect. 4.4.2. However,
we will generate N D 409;600 samples from the Beta distribution Beta.˛; ˇ/,
where ˛ and ˇ are chosen from Unif.1; 3/, independently. And the goal of this
experiment is to estimate parameter .˛; ˇ/. In each experiment, we let the number of
machines vary: k D 8; 16; 32; 64; 128; 256; 512. We also compare the performance
of the centralized estimator with entire data and the centralized estimator with
.1 � r/ � 100% D 95% of entire data. This experiment is repeated for K D 50

times (Table 4.4 and Fig. 4.3).

Table 4.4 Beta distribution with possibility of losing information: detailed values of the squared
error k O� � �0k2
Number of Centralized
machines Simple avg (�10�5) One-step (�10�5) Centralized (�10�5) (95%) (�10�5)

8 4.98 (10.76) 4.95 (10.62)

16 4.82 (7.61) 4.75 (7.40)

32 4.85 (9.65) 4.72 (9.31)

64 4.51 (7.89) 4.10 (7.04) 4.07 (6.91) 4.76 (9.81)

128 5.25 (9.16) 4.48 (7.77)

256 7.57 (12.26) 4.52 (7.70)

512 16.51 (20.15) 5.24 (8.02)

In each cell, the first number is the mean squared errors in K D 50 experiments and the number in
the brackets is the standard deviation of the squared error
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Fig. 4.3 Beta Distribution with Possibility of Losing Information: The error k� � �0k2 versus the
number of machines, with 50 simulations, where �0 is the true parameter. The “average” is �.0/

and the “one-step” is �.1/. The “centralized” denotes the maximum likelihood estimator with the
entire data. And the “centralized-partial” denotes the maximum likelihood estimator with .1�r/�
100% D 95% of data. (a) Overview. (b) Detailed view

In Fig. 4.3a, we plot the MSE of each estimator against the number of machines.
As expected, the MSE of the simple averaging estimator grows significantly with the
number of machines while the other three remain nearly the same. We can easily
find out that the performance of the simple averaging estimator is far worse than
the others, especially when the number of machines is large (for instance, when
k D 256or512). If we take a closer look at the other three estimators from Fig. 4.3b,
we will find that the performance of the one-step estimator is volatile but always
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remains in a reasonable range. And as expected, the error of the one-step estimator
converges to the error of the oracle estimator with partial data when the number of
machines k is large.

4.4.4 Gaussian Distribution with Unknown Mean and Variance

In this part, we will compare the performance of the simple averaging estimator, the
resampled averaging estimator, and the one-step estimator when fixing the number
of machines k D pN and letting the value of N increase. We draw N samples from
N.
; �2/, where 
 � Unif.�2; 2/ and �2 � Unif.0:25; 9/, independently. We let
N vary in f43; : : : ; 49g and repeat the experiment for K D 50 times for each N. We
choose the criterion function to be the log-likelihood function

m.xI
; �2/ D � .x � 
/
2

2�2
� 1
2

log.2�/ � 1
2

log �2:

Figure 4.4 and Table 4.5 show that the one-step estimator is asymptotically
efficient while the simple averaging estimator is absolutely not. It is worth noting
that the resampled averaging estimator is not asymptotically efficient though it
is better than the simple averaging estimator. When the number of samples N
is relatively small, the one-step estimator is worse than the centralized estimator.

Fig. 4.4 Gaussian Distribution with Unknown Mean and Variance: the log error (log k� � �0k2)
versus the log number of machines (log2 k), with 50 repeated experiments for each N, where �0
is the true parameter. The “avg,” “avg-re,” and “one-step” denote �.0/, �.0/re with resampling ratio
s D 10% and �.1/, respectively. The “centralized” denotes the maximum likelihood estimator with
the entire data. The sample size is fixed to be N D k2
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Table 4.5 Gaussian distribution with unknown mean and variance: detailed values of squared
error k O� � �0k2
No. of machines No. of samples Simple avg Resampled avg One-step Centralized

8 64 3.022104 2.153958 1.694668 1.388959

(4.385627) (3.458645) (2.882794) (2.424813)

16 256 0.739784 0.392389 0.318765 0.286175

(1.209734) (0.739390) (0.621990) (0.566140)

32 1024 0.118766 0.041050 0.034494 0.032563

(0.151695) (0.053808) (0.046586) (0.045779)

64 4096 0.026839 0.016519 0.014255 0.014414

(0.046612) (0.030837) (0.029258) (0.030533)

128 16,384 0.010996 0.004542 0.004329 0.004357

(0.019823) (0.009089) (0.009453) (0.009315)

256 65,536 0.002909 0.001158 0.001105 0.001099

(0.005785) (0.002733) (0.002779) (0.002754)

512 262,144 0.000843 0.000461 0.000376 0.000376

(0.001426) (0.000744) (0.000596) (0.000595)

In each cell, the first number is the mean squared errors in K D 50 experiments and the number
in the brackets is the standard deviation of squared error

When the number of samples N grows large, the differences between the one-step
estimator and the centralized estimator become minimal in terms of both mean
squared errors and standard deviation. However, the error of the simple averaging
estimator is significantly larger than both the one-step estimator and the centralized
estimator. When the sample size N D 49 � 250;000, the mean squared errors of
the simple averaging estimator is more than twice of that of the one-step and the
centralized estimator.

4.5 Discussion on Distributed Statistical Inference

The M-estimator is a fundamental and high-impact methodology in statistics. The
classic M-estimator theory is based on the assumption that the entire data are
available at a central location, and can be processed/computed without considering
communication issues. In many modern estimation problems arising in contempo-
rary sciences and engineering, the classical notion of asymptotic optimality suffers
from a significant deficiency: it requires access to all data. The asymptotic property
when the data has to be dealt with distributively is under-developed. In this paper,
we close this gap by considering a distributed one-step estimator.

Our one-step estimator is built on the existing averaging estimator. In a nutshell,
after obtaining an averaging estimator, this initial estimate is broadcasted back to
all local machines, to facilitate their computation of the gradients and Hessians
of their objective functions. By doing so, the data do not need to be transmitted
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to the central machine. The central machine then collects the locally estimated
gradients and Hessians, to produce a global estimate of the overall gradient and
the overall Hessian. Consequently, a one-step update of the initial estimator is
implemented. Just like the one-step approach has improved the estimator in the
classical (non-distributed) setting, we found that the one-step approach can improve
the performance of an estimator under the distributed setting, both theoretically and
numerically.

Besides the works that have been cited earlier, there are many other results in
the relevant literature, however they may not be directly technically linked to what’s
been done here. We discuss their influence and insights in the next few paragraphs.

An interesting split-and-merge Bayesian approach for variable selection under
linear models is proposed in Song and Liang (2015). The method firstly split the
ultrahigh dimensional data set into a number of lower dimensional subsets and select
relevant variables from each of the subsets, and then aggregate the variables selected
from each subset and eventually select relevant variables from the aggregated
data set. Under mild conditions, the authors show that the proposed approach is
consistent, i.e., the underlying true model will be selected in probability 1 as the
sample size becomes large. This work differs from all the other approaches that we
discussed in this paper: it splits the variables, while all the other approaches that
we referenced (including ours) split the data according to observations. This paper
certainly is in line with our research, however takes a very distinct angle.

An interesting piece of work that combines distributed statistical inference and
information theory in communication is presented in Zhang et al. (2013). Their
current results need to rely on some special model settings: a uniform location
family U D fP� ; � 2 Œ�1; 1�g, where P� denotes the uniform distribution on the
interval Œ� �1; �C1�, or Gaussian location families Nd.Œ�1; 1�d/ D fN.�; �2Id�d/ j
� 2 � D Œ�1; 1�dg. It will be interesting to see whether or not more general results
are feasible.

Neiswanger et al. (2013) propose an asymptotically exact, embarrassingly
parallel MCMC method by approximating each sub-posterior with Gaussian density,
Gaussian kernel or weighted Gaussian kernel. They prove the asymptotic correct-
ness of their estimators and bound rate of convergence. Our paper does not consider
the MCMC framework. The analytical tools that they used in proving their theorems
are of interest.

Wang et al. (2014) propose a distributed variable selection algorithm, which
accepts a variable if more than half of the machines select that variable. They give
upper bounds for the success probability and mean squared errors (MSE) of the
estimator. This work bears similarity with Song and Liang (2015) and Chen and Xie
(2014), however with somewhat different emphases.

Kleiner et al. (2014) propose a scalable bootstrap (named ‘bag of little bootstraps’
(BLB)) for massive data to assess the quality of estimators. They also demonstrate
its favorable statistical performance through both theoretical analysis and simulation
studies. A comparison with this work will be interesting, however not included here.

Zhao et al. (2014) consider a partially linear framework for massive hetero-
geneous data and propose an aggregation type estimator for the commonality
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parameter that possesses the minimax optimal bound and asymptotic distribution
when the number of sub-populations does not grow too fast.

A recent work Arjevani and Shamir (2015) shed interesting new light on
the distributed inference problem. The authors studied the fundamental limits to
communication-efficient distributed methods for convex learning and optimization,
under different assumptions on the information available to individual machines,
and the types of functions considered. The current problem formulation is more
numerical than statistical properties. Their idea may lead to interesting counterparts
in statistical inference.

Various researchers have studied communication-efficient algorithms for sta-
tistical estimation (e.g., see the papers Dekel et al. (2012), Balcan et al. (2012),
Wainwright (2014), McDonald et al. (2010) and the references therein). They were
not discussed in detail here, because they are pretty much discussed/compared in
other references of this paper.

There is now a rich and well-developed body of theory for bounding and/or
computing the minimax risk for various statistical estimation problems, e.g., see
Yang and Barron (1999) and the references therein. In several cited references,
researchers have started to derive the optimal minimax rate for estimators under
the distributed inference setting. This will be an exciting future research direction.

Other numerical approaches have been proposed and studied. Paper Bradley
et al. (2011) propose a parallel coordinate descent algorithm for minimizing
L1-regularized losses. They presented a comprehensive empirical study of their
methods for Lasso and sparse logistic regression. It’s been reported that their
approach outperforms other published solvers on a range of large problems, proving
to be one of the most scalable algorithms for L1. Due to space, we cannot cite all
the relevant works in this line of research, instead we just single out the above as a
potential starting point for literature search.

4.6 Other Problems

There are many other learning problems, beyond regression. We review a few
possible directions of research along this line, and describe potential future work.

• EM algorithm. Nowak (2003) proposed a distributed expectation-maximization
(EM) algorithm for density estimation and clustering in sensor networks. Though
the studied problem is technically different from ours, it provides an inspiring
historic perspective: distributed inference has been studied more than 10 years
ago.

• Distributed principal component analysis. Besides estimation, other distributed
statistical technique may be of interest, such as the distributed principal compo-
nent analysis (Balcan et al. 2014).
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• Distributed support vector machines. Utilizing ADMM (Boyd et al. 2011),
consensus-based distributed support vector machines were introduced (Forero
et al. 2010).

• Distributed nonnegative matrix factorization. Nonnegative Matrix Factorization
(NMF), as a data analysis technique, has been successfully used in many different
areas. Historically, Lee and Seung (1999) applied NMF to extract parts-based
features of human faces and semantic features of text. Since then, NMF has been
used for extracting features from many kinds of sources, such as hyperspectral
images (Pauca et al. 2006), speeches (Schmidt et al. 2007), and music (Fevotte
et al. 2009). NMF has also been applied to other topics such as text mining
(Xu et al. 2003), clustering (Ding et al. 2005), air emission control (Paatero
and Tapper 1994), and blind source separation (Cichocki et al. 2009). The
Separability condition (Donoho and Stodden 2003) for the exact recovery in
NMF has played an important role in the recent literature. See recent algorithmic
and theoretical developments in Mizutani (2014), Gillis and Luce (2014). A new
condition was established in Huang et al. (2014). Distributed NMF and similar
uniqueness conditions will be an interesting future research topic.

• Sparse nonparametric models. The simplest high-dimensional structured non-
parametric model is the sparse additive model (Ravikumar et al. 2009; Fan 2012).
Through the sieve methods, it can be formulated as a high-dimensional linear
model with group structure (Yuan and Lin 2006). This idea can be applied to
more complicated nonparametric models, via the sieve approximations and the
“kernel tricks.” Distributed inference techniques will be developed under this
contact.

• Mixture models for Big Data. A stylized feature of Big Data is that they are
often comprised of many heterogeneous subgroups (Fan et al. 2014) and are often
modeled by a mixture model (Fan et al. 2014; Städler et al. 2010). An important
application of Big Data is for precision treatments and personalized services,
which hinge on identifications of the features of the mixed sub-populations.
This involves optimizing a nonconvex objective function and requires intensive
computation. This along with distributed storage of data sets makes it very
compelling for the development of distributed inference.

Though various distributed algorithms have been introduced in most of the afore-
mentioned scenarios, the corresponding knowledge on the statistical performance
of them is at least underdeveloped. It will be interesting to extend the theoretical
analysis from regression with low-dimensional (sparse) underlying structure to
the above cases. Note that in the central estimation setting, most of the above
approaches have corresponding supporting statistical theory. For example, it is
known that the centralized support vector machines achieve statistical consistency
(in the sense of approaching to the Bayes classifier) at an optimal rate, if the
underlying distribution satisfies certain properties. These potential research topics
demonstrate the broadness of SDAI problems.
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4.7 Conclusion

Scattered Data and Aggregated Inference (SDAI) is a class of problems where
data cannot be at a centralized location, while aggregated modeling and inference
is desirable and/or necessary. Distributed statistical inference is a technique to
tackle a type of the above problem, and this chapter describes one of them. It is
noticed that many existing work focus on the averaging estimator, e.g., Zhang et al.
(2013) together with many others. In this chapter, we propose a one-step approach
to enhance a simple-averaging based distributed estimator. The corresponding
asymptotic properties of the newly proposed estimator are derived. We found
that the proposed one-step estimator enjoys the same asymptotic properties as
the centralized estimator. The proposed one-step approach merely requires one
additional round of communication in relative to the averaging estimator; so the
extra communication burden is insignificant. In finite sample cases, numerical
examples show that the proposed estimator outperforms the simple averaging
estimator with a large margin in terms of the mean squared errors. The proposed
method becomes more valuable when data can only be available at distributed
machines with limited communication bandwidth. Other distinct types of SDAI
problems are discussed at the end of this chapter. We hope our efforts will attract
more future work on this topic.
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Chapter 5
Nonparametric Methods for Big
Data Analytics

Hao Helen Zhang

Abstract Nonparametric methods provide more flexible tools than parametric
methods for modeling complex systems and discovering nonlinear patterns hidden
in data. Traditional nonparametric methods are challenged by modern high dimen-
sional data due to the curse of dimensionality. Over the past two decades, there
have been rapid advances in nonparametrics to accommodate analysis of large-scale
and high dimensional data. A variety of cutting-edge nonparametric methodologies,
scalable algorithms, and the state-of-the-art computational tools have been designed
for model estimation, variable selection, statistical inferences for high dimensional
regression, and classification problems. This chapter provides an overview of recent
advances on nonparametrics in big data analytics.

Keywords Sparsity · Smoothing · Nonparametric estimation · Regularization ·
GAM · COSSO

5.1 Introduction

Nonparametric methods play a fundamental role in statistics and machine learn-
ing, due to their high flexibility and ability to discover nonlinear and complex
relationship between variables. There is a very rich literature on nonparametrics
and smoothing methods in statistics. Classical smoothing techniques include kernel
estimators (Nadaraya 1964; Altman 1990; Tsybakov 2009), local weighted poly-
nomial regression (Cleveland 1979; Fan and Gijbels 1996), regression splines and
smoothing splines (Kimeldorf and Wahba 1971; de Boor 1978; Wahba 1990; Green
and Silverman 1994; Stone et al. 1994; Mammen and van de Geer 1997; Gu
2002), and wavelets (Mallet 2008; Donoho and Johnstone 1994). When handling
high dimensional data, nonparametric methods face more challenges than linear
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methods, due to the curse of dimensionality and the intrinsic infinite-dimensional
nature of multivariate functions. Many structured models have been developed to
overcome the above difficulties and facilitate model estimation and inferences,
including additive models (Friedman and Stuetzle 1981; Buja et al. 1989; Hastie and
Tibshirani 1990; Fan and Jiang 2005), smoothing spline analysis of variance (SS-
ANOVA; Wahba 1990; Wahba et al. 1995; Gu 2002) models, multivariate adaptive
regression splines (MARS; Friedman 1991), and Friedman and Silverman (1989).
The main idea of these works is to decompose a multivariate function into the sum of
a series of functional components such as main-effect and interaction-effect terms,
truncate the series by ignoring high-order terms, and estimate the truncated model
by regularization approaches.

Driven by the need of analyzing high and ultra-high dimensional data, more and
more commonly collected in modern sciences and industry, there has been a surge of
research interest in developing statistical and machine learning methods which can
effectively reduce data dimension without information loss, automatically conduct
variable selection, and produce sparse models and interpretable results. Over the
past two decades, a large body of penalization methods have been developed to
simultaneously conduct variable selection and model estimation in linear models,
such as the nonnegative garrote (Breiman 1995), the LASSO (Tibshirani 1996;
Efron et al. 2004; Zhao and Yu 2006), the SCAD (Fan and Li 2001, 2004), the
Dantzig selector (Candes and Tao 2007), the elastic net (Zou and Hastie 2005;
Zou and Zhang 2009), the adaptive LASSO (Zou 2006; Zhang and Lu 2007), and
the minimax concave penalty (MCP; Zhang 2010). By effectively removing noise
variables from the model, these methods can greatly improve prediction accuracy
and enhance model interpretability. A variety of state-of-the-art computational
algorithms and tools have been designed to facilitate their implementation for
high dimensional data. When the data dimension is ultra high, it is useful to pre-
screen variables and reduce dimensionality to moderate or low levels before a
refined variable selection procedure is applied. Sure screening methods have been
developed to achieve this, including the SIS and iterative SIS (Fan and Lv 2008),
forward regression screening (Wang 2009), screening for classification problems
(FAIR; Fan and Fan 2008), and interaction screening (Hao and Zhang 2014). All
these works mentioned above mainly focus on linear models.

Motivated by the success of penalization methods for linear models, there are
rapid advances in multivariate nonparametric methods to achieve smooth and sparse
function estimation for high dimensional regression and classification problems.
Recent works include the basis pursuit (Chen et al. 1999; Zhang et al. 2004), the
COmponent Selection and Smoothing Operator (COSSO; Lin and Zhang 2006;
Zhang and Lin 2006), the adaptive COSSO (Storlie et al. 2011), the rodeo (Lafferty
and Wasserman 2008), the sparse additive models (SpAM; Ravikumar et al. 2009),
and the linear and nonlinear discover method (LAND; Zhang et al. 2011). This
chapter reviews these works for both nonparametric regression and classification.

Assume the observations are f.xi; yi/; i D 1; : : : ; ng, where xi’s and yi’s are
realizations of a vector of predictors X D .X1; : : : ;Xp/ 2 X 
 R

p and the response
Y, respectively. Without loss of generality, we assume X D Œ0; 1�p throughout the
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chapter. The dimension p can be fixed, or increase with the sample size n, or much
larger than the sample size with p� n. The output Y 2 Y 
 R is a random variable,
which takes a continuous value (leading to a regression problem) or a categorical
value from a discrete set (leading to a classification problem). Here R denotes
the real line, and R

p denotes the p-dimensional real coordinate space. The random
vector .X;Y/ jointly follows a distribution Pr.X;Y/. The goal of supervised learning
is to learn a function f W X ! Y from the data to characterize the relationship
between X and Y, predict future values of the response based on new predictors,
and make optimal decisions.

5.2 Classical Methods for Nonparametric Regression

5.2.1 Additive Models

Additive models assume that

Yi D bC
pX

jD1
fj.Xij/C �i; i D 1; : : : ; n; (5.1)

where b is the intercept term, fj’s are unspecified smooth functions of Xj, and �i’s
are i.i.d. random variables with mean zero and finite variance. To make b and fj’s
identifiable, it is common to center fj’s over the samples by assuming

nX

iD1
fj.xij/ D 0; j D 1; : : : ; p:

The fj’s are usually estimated by smoothing techniques such as cubic splines, local
polynomial regression, and kernel smoothers. For example, if fj’s have the second-
order continuous derivatives, they can be estimated by minimizing a penalized least
squares

min
b;f1;:::;fp

nX

iD1

8
<

:
yi � b �

pX

jD1
fj.xij/

9
=

;

2

C
pX

jD1
�j

Z 1

0

Œf 00j .xj/�2dxj; (5.2)

where
R
Œf 00j .xj/�2dxj is a roughness penalty imposed on functions to encourage

a smooth fit, and �j � 0 are smoothing parameters. The minimization in (5.2)

takes place in the function space ff1; : : : ; fp W
R 1
0 Œf
00
j .x/�

2dx < 1; j D 1; : : : ; pg.
Each estimated function component in the solution of (5.2) is a cubic smoothing
spline. The values of �j’s are chosen adaptively from the data to assure optimal
results. Commonly used tuning criteria include cross validation, generalized cross
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validation (GCV), and various types of information criteria. It is known that GCV
has computational advantages over CV (Wahba 1990). The optimization problem
in (5.2) is usually solved by a coordinate descent Gauss–Seidel procedure called the
backfitting algorithm (Breiman and Friedman 1985; Buja et al. 1989; Hastie and
Tibshirani 1990; Opsomer and Ruppert 1998).

Besides smoothing splines, additive models can be alternatively estimated via
regression splines. For regression splines, each component fj is represented in terms
of a finite number of pre-selected basis functions

fj.xj/ D
mX

kD1
ˇjk�k.xj/; j D 1; : : : ; p;

where �k’s are basis functions like polynomial basis or B-splines, ˇjk’s are coef-
ficients of basis functions, and m is the number of basis functions. Define ˇj D
.ˇj1; : : : ; ˇjm/

T ; j D 1; : : : ; p and ˇ D .ˇT
1 ; : : : ;ˇ

T
p /

T . The parameter vector ˇ is
estimated by the least squares

min
b;ˇ

nX

iD1

8
<

:
yi � b �

pX

jD1

mX

kD1
ˇjk�k.xij/

9
=

;

2

; (5.3)

In practice, B-splines are commonly used basis functions due to their local support
property and high stability for large-scale spline interpolation (de Boor 1978). The
basis dimension m is a smoothing parameter that controls the degree of smoothness
of the fitted model, and its value needs to be properly chosen to balance the trade-
off between model fit and function smoothness. In practice, the model fit is not very
sensitive to the exact value of m as long as it is sufficiently large to provide adequate
flexibility.

Nonparametric inferences for additive models are challenging due to the curse of
dimensionality and complexity of the backfitting algorithm. Theoretical properties
of backfitting estimators, such as oracle property and rates of convergence, are
studied in Linton (1997), Fan et al. (1998), Mammen et al. (1999), Wand (1999), and
Opsomer (2000). For example, Fan et al. (1998) show that any additive component
in (5.11) can be estimated as well as if the rest of the components were known, and
this is the so-called oracle property. Traditionally, variable selection for additive
models is conducted by testing the null hypotheses: fj.xj/ D 0 vs fj.xj/ ¤ 0 for
j D 1; : : : ; p. Variables with large p-values are regarded as “not significant” or
“not important.” Fan and Jiang (2005) develop generalized likelihood ratio (GLR)
tests and their bias-corrected versions for testing nonparametric hypotheses in
additive models. Under the null models, the GLR test statistics are known to follow
asymptotically rescaled chi-squared distributions, with the scaling constants and the
degrees of freedom independent of the nuisance parameters, which is known as
Wilks phenomenon (Fan and Jiang 2005). The GLR tests are also asymptotically
optimal in terms of rates of convergence for nonparametric hypothesis.
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5.2.2 Generalized Additive Models (GAM)

When the response Y is binary or count, generalized additive models (GAM; Hastie
and Tibshirani 1990) is a popular and useful tool for nonparametric regression and
classification. Given X D x, the conditional distribution of Y is assumed to be from
the exponential family with density

exp

�
y�.x/� h.�.x//

�
C c.y; �/

�

; (5.4)

where h.�/ and c.�/ are known functions, h is twice continuously differentiable and
bounded away from zero, � is the dispersion parameter, and � is the canonical
parameter. It is easy to show that, for (5.4), E.YjX/ D 
.X/ D h0.�.X//
and Var.YjX/ D h00.�.X//�. The exponential family includes normal, binomial,
Poisson, and gamma distributions, as special cases.

Define the link function as g D .h0/�1. Generalized additive models (GAM)
assume

g.
.X// D �.X/ D bC
pX

jD1
fj.Xj/: (5.5)

The estimators of fj’s are obtained by minimizing a penalized negative log-
likelihood

min
f

nX

iD1
l.yi; f .xi//C

pX

jD1
�j

Z

Œf 00j .xj/�2dxj; (5.6)

where l.y; f / is the log likelihood function. The optimization problem (5.6) is
typically solved by minimizing the penalized iteratively re-weighted least squares
(penalized IRLS). There are three R packages for fitting GAMS, and they are
gam written by Trevor Hastie, gss written by Chong Gu, and mgcv written by
Simon Wood. Bayesian confidence intervals of the true function components can
be constructed using the estimated GAM estimators (Wahba 1983; Wood 2006).

5.2.3 Smoothing Spline ANOVA (SS-ANOVA)

Smoothing spline analysis of variance (SS-ANOVA; Wahba 1990) models are
a general family of smoothing methods for multivariate nonparametric function
estimation. In the functional ANOVA setup, any multivariate function f .X1; : : : ;Xp/
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can be decomposed into the sum of functional components

f .X/ D bC
pX

jD1
fj.Xj/C

pX

j<k

fjk.Xj;Xk/C � � � ; (5.7)

where b is a constant, fj’s are main-effect terms, fjk’s are two-way interactions, and
so on. The identifiability of the terms in (5.7) is assured by imposing side conditions
through averaging operators. In SS-ANOVA, assume fj 2 Hj, which is the space of
functions of Xj over Œ0; 1� and satisfies Hj D f1g ˚ NHj. Then the tensor product
space of Hj’s is

pO

jD1
Hj D f1g ˚p

jD1 NHj ˚j<k Œ NHj ˝ NHk�˚ � � � : (5.8)

In (5.8), the space˝p
jD1Hj is decomposed into a direct sum of orthogonal subspaces

such as main effect subspaces NHj’s, two-way interaction subspaces NHj ˝ NHk, and
higher-order interaction subspaces. Correspondingly, each functional component
in (5.7) lies in one corresponding subspace of (5.8), e.g., fj 2 NHj, fjk 2 NHj˝ NHk, and
so on.

To facilitate model estimation and interpretation, higher-order terms are often
truncated in (5.7) and (5.8). For example, when only main effects are retained in the
decomposition, then (5.7) reduces to the additive model

f .X/ D bC
pX

jD1
fj.Xj/; 8 fj 2 NHj (5.9)

If main and pairwise interaction effects are kept in (5.7), we obtain the two-way
interaction model

f .X/ D bC
pX

jD1
fj.Xj/C

pX

j<k

fjk.Xj;Xk/; 8 fj 2 NHj; fjk 2 NHj ˝ NHk:

A convenient way of estimating f is through the reproducing kernel Hilbert
space framework, as shown in Wahba (1990). Assume each Hj is an RKHS.
For example, Hj is the second-order Sobolev space on Œ0; 1�, S2Œ0; 1� D fg W
g; g0are absolutely continuous;

R 1
0
Œg00.t/�2 < 1g. When endowed with the inner

product

hg; hi D
Z 1

0

g.t/dt
Z 1

0

h.t/dtC
Z 1

0

g0.t/dt
Z 1

0

h0.t/dt

C
Z 1

0

g00.t/h00.t/dt;8g; h 2 S2Œ0; 1�;
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the space S2Œ0; 1� D f1g ˚ NS2Œ0; 1� is an RKHS associated with the reproducing
kernel

K.s; t/ D 1C k1.s/k1.t/C k2.s/k2.t/ � k4.js� tj/;

where k1.s/ D s � 0:5; k2.s/ D Œk1.s/2 � 1=12�=2 and k4.s/ D Œk41.s/ � k21.s/=2C
7=240�=24.

Denote the truncated space by H and its norm by k � kH. For the additive
model (5.9), the estimation of f 2 H is done by solving a regularization problem

min
f2H

1

n

nX

iD1
fyi � f .xi/g2 C 0

pX

jD1
��1j kPjfk2H; (5.10)

where 0 > 0 and �j � 0 are smoothing parameters, Pj is the orthogonal projection
of f onto Hj, and k � k2H is a roughness penalty to control complexity of fj. If we
assume fj 2 S2Œ0; 1�, then kjPjfk2Hj

D R
Œf 00j .t/�2dt. Wahba (1990) and Gu (2002)

provide more details on the RKHS theory and implementation. The smoothing
parameter 0 is confounded with �j’s, but it is usually included to facilitate the
computation. The tuning parameters need to be chosen properly to balance the
trade-off between the data fit and function complexity. Computational algorithms
for solving (5.10) are given in Wahba and Wendelberger (1980). One common
procedure of selecting �j’s is generalized cross validation (GCV; Craven and Wahba
1979; Wahba 1985).

5.3 High Dimensional Additive Models

In nonparametric regression, it is assumed that

Yi D f .X/C �i; i D 1; : : : ; n; (5.11)

where the error terms �i’s have mean zero and finite variance, and f is an unspecified
multivariate function of X. For high dimensional data, it is possible that Y depends
on X only through its subset, i.e., not all Xj’s have effects on Y. For example, in the
additive model with f .X/ D bCPp

jD1 fj.Xj/, some fj’s are zero functions, i.e.,

f .X/ D bC
X

fj¤0
fj.Xj/C

X

fj�0
0.Xj/;

implying that only those predictors with nonzero fj’s contribute to the prediction of
Y. In this note, we regard a function g as a zero function on Œ0; 1�, g � 0, if and only
if g.t/ D 0;8t 2 Œ0; 1�. Define A D fXj W fj ¤ 0; j D 1; : : : ; pg, which is the set of
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important variables. The process of identifying A is called the problem of variable
selection, or subset selection, or feature selection.

Traditional methods of variable selection for nonparametric regression are
either based on hypothesis tests or stepwise approaches. For example, the MARS
procedure (Friedman 1991) and other related approaches (Stone et al. 1997) build
the model f by adding and deleting basis functions in a stepwise fashion. These
methods may suffer instability due to the discrete nature of the selection process
(Breiman and Spector 1992). Furthermore, their theoretical properties are not clearly
understood and difficult to investigate. Recently, a variety of modern selection
techniques have been developed for additive models, such as COSSO, adaptive
COSSO, and SpAM. These methods perform variable selection by applying a
sparsity penalty functional to function components to achieve smooth and sparse
estimation simultaneously. These methods are computationally more stable than
stepwise methods, and they also enjoy better theoretical properties.

Given any variable selection method, let bA be the set of variables selected by the
method. A model selection procedure is selection consistent if it can identify the
true set of important variables A correctly with probability going to 1 as the sample
size n increases to infinity, i.e.,

Pr. bA D A/ �! 1; as n!1:

For linear models, a variable selection procedure has oracle properties if it can
asymptotically select the correct subset of predictors with probability tending to
one, and also estimate nonzero parameters as efficiently as would be possible if the
true model structure were known (Fan and Li 2001). The SCAD and the adaptive
LASSO methods have oracle procedures for variable selection in linear models. For
additive models, Storlie et al. (2011) propose the concept of nonparametric oracle.
A nonparametric estimator Of has the nonparametric oracle (np)-oracle property if,
as the sample size goes to infinity, Of converges to the true regression function f at
the optimal rate and Ofj � 0;8j … A with probability tending to one. The adaptive
COSSO is nonparametric oracle as shown by Storlie et al. (2011).

5.3.1 COSSO Method

For the additive model, f .X/ D bCPp
jD1 fj.Xj/, the problem of variable selection is

equivalent to identifying nonzero function components fj’s in (5.7). The component
smoothing and selection operator (COSSO; Lin and Zhang 2006; Zhang and Lin
2006) imposes a soft-thresholding functional to shrink function components to
exactly zero function and therefore achieve sparsity. In particular, the COSSO
procedure for regression solves

min
f2H

1

n

nX

iD1
fyi � f .xi/g2 C �

pX

jD1
kPjfkH; (5.12)



5 Nonparametric Methods for Big Data Analytics 111

wherePj is the projection of f ontoHj and � is the smoothing parameter. The penalty
term

Pp
jD1 kPjfkH is a sum of RKHS norms, and it is a convex functional designed

to encourage both smoothness and sparsity of the solution in function estimation.
The existence of the solution to (5.12) is established in Theorem 1 of Lin and Zhang
(2006).

Theorem 1 (Lin and Zhang 2006) Let H be an RKHS of functions over an input
space X , with a decomposition H D f1g ˚p

jD1 NHj. Then there exists a minimizer
of (5.12) inH.

Furthermore, the minimizer of (5.12) has a finite-dimensional representation.

Lemma 1 (Lin and Zhang 2006) Let Of D Ob CPp
jD1 Ofj be a minimizer of (5.12)

in H D f1g ˚p
jD1 NHj, with Ofj 2 NHj. Then Ofj 2 spanfKj.xi; �/; i D 1; : : : ; ng for

j D 1; : : : ; p, where Kj.�; �/ is the reproducing kernel of NHj.

Asymptotic properties of the COSSO estimators are studied by Lin and Zhang
(2006). For the additive model with fj 2 NS2Œ0; 1�, if the error terms �i’s are
independent N.0; �2/ noise, then the COSSO estimator can achieve the optimal
rate of convergence n�2=5 if the parameter � converges to zero at a proper rate.
The selection consistency property of the COSSO is also studied in Lin and Zhang
(2006). In the special case of a tensor product design with periodic functions, the
COSSO can select the correct model structure with probability tending to one as
the sample size goes to infinity. When f is truly a linear function of Xj’s, then the
COSSO estimator reduces to the LASSO estimator.

To compute the COSSO, we consider the following optimization problem

min
f2H;��0

1

n

nX

iD1
fyi � f .xi/g2 C �0

pX

jD1
��1j kPjfk2H C �1

pX

jD1
�j; (5.13)

where � D .�1; : : : ; �p/
T are nonnegative scale parameters, �0 > 0 is a constant,

and �1 is the smoothing parameter. In Lemma 2 of Lin and Zhang (2006), it is
shown that solving (5.12) and solving (5.13) are equivalent. In (5.13), the penalty
term

Pp
jD1 �j shrinks �j’s toward zero exactly and hence produces sparse solutions,

which results in zero function components in the COSSO estimate. Based on the
finite representer theorem of the smoothing spline, for any fixed �j’s, the COSSO
solution of (5.13) has the form

f .x/ D bC
nX

iD1
ci

2

4
pX

jD1
�jKj.xij; xj/

3

5 ;

where Kj is the reproducing kernel of NHj for j D 1; : : : ; p. Therefore, for any
fixed �0 and �1, the COSSO solution f is fully characterized by b;�, and c D
.c1; : : : ; cn/T . To solve (5.13), one can alternatively update .b; cT/T by fixing �
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at their current values, and update � by fixing .b; cT/T at their current values,
and repeat this until convergence. Furthermore, Zhang and Lin (2006) propose the
following one-step algorithm, which is efficient and provides very good solutions in
practice.

One-Step Algorithm

Step 1. Initialization: Fix �j D 1 for j D 1; : : : ; p, and solve for .b; cT/T in (5.13).
Step 2. Fixing .b; cT/T at their current values, solve for � in (5.13).
Step 3. Fixing � at their current values, solve for .b; cT/T in (5.13).

At step 2, the optimization problem amounts to solving a traditional smoothing
spline, and step 3 amounts to solving the nonnegative garrote. Existing algorithms
can then be adopted for optimization. An R package COSSO is developed to imple-
ment the one-step algorithm, available from Comprehensive R Archive Network
(CRAN) at http://CRAN.R-project.org/package=cosso. To speed up computation in
the context of Big data, the package implements a parsimonious basis method to
reduce the number of parameters.

Example 1 Consider an additive model with p D 60, and the true regression
function is

f .x/ D g1.x1/C g2.x2/C g3.x3/C g4.x4/C 1:5g1.x5/C 1:5g2.x6/C 1:5g3.x7/
C1:5g4.x8/C 2g1.x9/C 2g2.x10/C 2g3.x11/C 2g4.x12/;

where g1.t/ D t; g2.t/ D .2t � 1/2; g3.t/ D sin.2� t/
2 sin.2� t/ , and g4.t/ D 0:1 sin.2�t/ C

0:2 cos.2�t/C 0:3 sin2.2�t/C 0:4 cos3.2�t/C 0:5 sin3.2�t/. The first 12 variables
are important, and the remaining 48 are uninformative. The sample size n D 500.
The variance of noise �2 D 0:52 and the signal-to-noise ratio is 3:1. Consider two
types of covariance structure for X: (1) compound symmetry with corr.Xj;Xk/ D
t2=.1 C t2/ for any j ¤ k; (2) AR(1) with corr.Xj;Xk/ D �jj�kj for any j ¤ k.
We compare performance of the COSSO tuned with GCV, the COSSO tuned with
fivefold cross validation, and the MARS. The prediction accuracy of each method
is measured by the integrated squared error ISE D EXfOf .X/ � f .X/g2, which is
computed by Monte Carlo integration using 10,000 data points. The MARS is
implemented in R with the function “mars” in the “mda” package. The simulation
is repeated 100 times, and Table 5.1 reports the average ISE and model sizes of the
three methods under two covariance structure settings. Standard errors are given in
parentheses. Table 5.1 shows that the COSSO (5CV) produces the smallest ISE and
the most parsimonious model among the three methods. The average model size of
COSSO (5CV) is actually very close to the true model size 12 in all the settings.

The COSSO can also be used to select important main effects in generalized
additive models (Zhang and Lin 2006), select nonparametric two-way interaction
effects (Zhang and Lin 2006), and select important variables for nonparametric
hazard regression models in survival data analysis (Leng and Zhang 2007). For

http://CRAN.R-project.org/package=cosso


5 Nonparametric Methods for Big Data Analytics 113

Table 5.1 Model estimation and variable selection results for Example 1

Compound symmetry AR(1)

t D 0 t D 1 � D 0:5 � D �0:5
ISE COSSO (GCV) 201 (4) 178 (5) 199 (6) 183 (5)

COSSO (5CV) 144 (4) 162 (5) 153 (4) 149 (5)

MARS 353 (7) 302 (7) 286 (6) 280 (5)

Model size COSSO (GCV) 18.0 (4.1) 18.0 (4.1) 19.0 (5.1) 18.0 (4.3)

COSSO (5CV) 12.0 (0.2) 11.7 (1.4) 12.1 (1.4) 11.9 (1.0)

MARS 35.2 (2.3) 36.1 (2.1) 35.2 (2.5) 35.9 (2.4)

variable selection in high dimensional classification, Zhang (2006) generalizes the
COSSO for variable selection in support vector machines (SVMs). Very recently,
Zhu et al. (2014) extend the COSSO to select important functional principal
components (FPCs) in the context of functional additive regression.

5.3.2 Adaptive COSSO

In the COSSO estimation (5.12), all the functional components are equally penal-
ized. To improve the COSSO, Storlie et al. (2011) propose to penalize different
components differently, such that important components are less penalized and
unimportant components are more heavily penalized. This leads to the procedure
of the adaptive COSSO (ACOSSO). In particular, the adaptive COSSO employs a
weighted penalty functional and solves

min
f2H

1

n

nX

iD1
fyi � f .xi/g2 C �

pX

jD1
wjkPjfkH; (5.14)

where wj’s are positive weights associated with each functional component. The
choices of wj’s are crucial to guarantee desired theoretical and empirical properties
of the adaptive COSSO estimator. Storlie et al. (2011) suggest to construct the
weights as

wj D kPjQfk��L2 ; j D 1; : : : ; p

where Qf is some initial estimator of f , kPjQfkL2 is the L2 norm of PjQf , and � > 0 is a
pre-specified constant. In practice, the initial estimator Qf can be either the traditional
smoothing spline solution or the COSSO solution. A nonparametric estimator Of has
the nonparametric-oracle property if kOf � fkn �! 0 at the optimal rate, and Ofj � 0

for all j … A with probability tending to one, as the sample size increases to infinity.
Here k fk2n D 1

n

Pn
iD1ff .xi/g2 is the squared norm of f evaluated at the design points.
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The adaptive COSSO estimator has the nonparametric oracle (np-oracle) property
when the weights are chosen properly, as shown in Corollary 2 of Storlie et al.
(2011).

Corollary 2 (Nonparametric Oracle Property) Assume that the input X follows
a tensor product design. Let f 2 H with H D f1g ˚ NS2per;1 ˚ � � � ˚ NS2per;p, where
S2per;j D f1g ˚ NS2per;j is the second-order Sobolev space of periodic functions of
Xj defined on Œ0; 1�. Assume the error terms �i’s are independent, mean zero, and
uniformly sub-Gaussian. Define the weights, wj;n D kPjQfk��L2 , where Qf is given by
the traditional smoothing spline with 0 � n�4=5, and � > 3=4. If �n � n�4=5, then
the adaptive COSSO estimator has the np-oracle property.

When the true model is linear, the adaptive COSSO reduces to the adaptive
LASSO. The tuning parameter can be chosen by cross validation or BIC. In practice,
when the number of parameters grows with the sample size, a modified BIC taking
into account the dimension can be used. The computation of the adaptive COSSO is
similar to COSSO, by iteratively fitting a traditional smoothing spline and solving a
non-negative garrote problem until convergence. In practice, � D 2 is often used.

Example 2 Consider an additive model with p D 10 and the true regression
function is

f .x/ D 5g1.x1/C 3g2.x2/C 4g3.x3/C 6g4.x4/;

with � � N.0; 3:03/ and the signal-to-noise ratio 3:1. Assume X is uniform
in Œ0; 1�10. We compare performance of adaptive COSSO (ACOSSO), COSSO,
MARS, GAM, and the oracle. Four versions of ACOSSO are considered: ACOSSO-
5CV-T, ACOSSO-5CV-C, ACOSSO-BIC-T, and ACOSSO-BIC-C, where (-T) and
(-C) stand for using the traditional smoothing spline solution and the COSSO
solution, respectively, as the initial estimator. Table 5.2 summarizes performance
of all the methods over 100 simulations. Besides the average ISE, model size, we
also report Type-I error (false negative rate) and power (true positive rate) for each
method. Standard errors are given in parentheses. From Table 5.2, it is observed that

Table 5.2 Model estimation and variable selection results for Example 2

ISE Type-I error Power Model size

ACOSSO-5CV-T 1.204 (0.042) 0.252 (0.034) 0.972 (0.008) 5.4 (0.21)

ACOSSO-5CV-C 1.186 (0.048) 0.117 (0.017) 0.978 (0.007) 4.6 (0.11)

ACOSSO-BIC-T 1.257 (0.048) 0.032 (0.008) 0.912 (0.012) 3.8 (0.08)

ACOSSO-BIC-C 1.246 (0.064) 0.018 (0.006) 0.908 (0.014) 3.7 (0.07)

COSSO 1.523 (0.058) 0.095 (0.023) 0.935 (0.012) 4.3 (0.15)

MARS 2.057 (0.064) 0.050 (0.010) 0.848 (0.013) 3.7 (0.08)

GAM 1.743 (0.053) 0.197 (0.019) 0.805 (0.011) 4.4 (0.13)

ORACLE 1.160 (0.034) 0.000 (0.000) 1.000 (0.000) 4.0 (0.00)
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Fig. 5.1 Solution paths of ACOSSO and COSSO on a realization for Example 2

the ACOSSO procedures tend to work better than the COSSO by showing smaller
ISE, lower Type-I error, and higher power.

Figure 5.1 plots the solution paths of ACOSSO and COSSO as the tuning
parameter M changes. Here M is a tuning parameter, which has a one-to-one
correspondence relationship with �1. Each plot shows how the magnitude of each
estimated components kPjOfkL2 changes as M increases for j D 1; : : : ; 10, in one
simulation. Dashed lines represent the true functional component norms kPjfkL2 for
all j. It is observed that the ACOSSO solutions are generally closer to the truth than
the COSSO solution.

5.3.3 Linear and Nonlinear Discover (LAND)

Partially linear models are more flexible than linear or nonparametric models by
allowing some predictors to have linear effects while others to have nonlinear
effects. The underlying true regression model f .x/ is additive and has the following
structure

f .x/ D bC
X

j2IL
xjˇj C

X

j2IN
fj.xj/C

X

j2IO
0.xj/; (5.15)

where b is the intercept, 0.�/ is zero function which maps any input value to zero,
and IL; IN ; IO are the index sets for nonzero linear effects, nonzero nonlinear effects,
and null effects, respectively. Denote the total index set by I D f1; : : : ; pg, then
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I D IL[IN[IO and the three subgroups are mutually exclusive. One central question
to model (5.15) is to estimate its true model structure, i.e., to estimate IL; IN ; IO from
the data. Two traditional methods for structure estimation are the screening method
and hypothesis testing based procedures. Both of them are useful in practice but
not guaranteed to identify the correct model structure asymptotically. The linear
and nonlinear discoverer (LAND; Zhang et al. 2011) is a regularization approach
to structure selection for partially linear models. Constructed in the frame of SS-
ANOVA, the LAND method can asymptotically distinguish linear and nonlinear
terms, identify uninformative covariates, and provide a consistent estimate for f .

Consider the additive model (5.9) in the SS-ANOVA setup. Assume fj 2 NHj,
where NHj is the second-order Sobolev space of functions of Xj defined on Œ0; 1�.
Furthermore, NHj has the following orthogonal decomposition

NHj D NH0j ˚ NH1j; (5.16)

where NH0j D f fj W f 00j .t/ � 0g is the linear contrast subspace, and NH1j D f fj W
R 1
0 fj.t/dt D 0;

R 1
0 f 0j .t/dt D 0; f 00j 2 L2Œ0; 1�g is the nonlinear contrast subspace.

Both NH0j and NH1j are RKHS and associated with kernel K0j.�; �/ and K1j.�; �/,
respectively. This leads to an orthogonal decomposition of H

H D f1g
pM

jD1
NHj D f1g

pM

jD1
NH0j

pM

jD1
NH1j D f1g

M NH0

M NH1; (5.17)

where NH0 D ˚p
jD1 NH0j and NH1 D ˚p

jD1 NH1j. In this way, any function fj 2 NHj can be
expressed as

fj.xj/ D ˇj
�

xj � 1
2

�

C f1j.xj/; (5.18)

where the term f0j.xj/ D ˇj.xj � 1
2
/ 2 NH0j is the “linear” component of fj, and

f1j.xj/ 2 NH1j is the “nonlinear” component of fj. We say that Xj is a linear predictor
if ˇj ¤ 0 and f1j � 0, and Xj is a nonlinear predictor if f1j.xj/ is not zero function.
Therefore, we define

Linear index set: IL D f j D 1; : : : ; p W ˇj ¤ 0; f1j � 0g;
Nonlinear index set: IN D f j D 1; : : : ; p W f1j ¤ 0g;
Null index set: IO D f j D 1; : : : ; p W ˇj D 0; f1j � 0g:

Then the nonlinear index set IN can be expressed as IN D IPN [ ILN , where IPN D
fˇj D 0; f1j ¤ 0g consists of purely nonlinear predictors, and ILN D fˇj ¤ 0; f1j ¤
0g consists of predictors whose linear and nonlinear terms are both nonzero.



5 Nonparametric Methods for Big Data Analytics 117

Assume f .x/ D b C Pp
jD1 fj.xj/, where fj has the form (5.18). The LAND

procedure solves

min
f2H

1

n

nX

iD1
fyi � f .xi/g2 C �1

pX

jD1
w0jkP0jfk NH0

C �2
pX

jD1
w1jkP1jfk NH1

; (5.19)

where P0j and P1j are the projection operators, respectively, from H to NH0j and
NH1j. For each predictor Xj, two types of regularization are employed in (5.19):
kP0jfk NH0

D jˇjj is the L1 penalty on linear coefficient, and kP1jfk NH1
D

fR 1
0
Œ f 001j.t/�2dtg1=2 is the RKHS norm of fj in NH1j. Two tuning parameters .�1; �2/

control shrinkage on linear and nonlinear terms, respectively. The weights w0j
and w1j are adaptively chosen from data such that unimportant components are
penalized more and important components are penalized less. Assume Qf is an initial
and consistent estimator of f 2 H, then the weights can be constructed as:

w0j D 1

jějj˛
; w1j D 1

kef 1jk�2
; for j D 1; : : : ; p; (5.20)

where Q̌j; Qf1j are from the decomposition of Qf based on (5.18), k � k2 represents the
L2 norm, and ˛ > 0 and � > 0 are pre-specified constants. A natural choice of Qf
is the standard SS-ANOVA solution to (5.10). For the LAND estimator Of , its model
structure is defined as

bIL D f j D 1; : : : ; p W b̌j ¤ 0;bf1j � 0g;bIN D f j D 1; : : : ; p W bf1j ¤ 0g;bIO D InfbIL [bINg:

To compute the LAND solution, we consider the following optimization problem

min
��0;f2H

1

n

nX

iD1
fyi � f .xi/g2 C �1

pX

jD1
w0jkP0jfk NH0

C0
pX

jD1
��1j w1jkP1jfk2NH1

C 1
pX

jD1
w1j�j;

subject to �j � 0; j D 1; : : : ; p; (5.21)

where � D .�1; : : : ; �p/
T , 0 > 0 is a constant, and .�1; 1/ are tuning parameters.

It can be shown that there is one-to-one correspondence between the solutions
of (5.19) (for all .�1; �2/) and those of (5.21) (for all (�1; 1)). When � is fixed,
solving (5.21) amounts to fitting a partial spline model, so its solution has a finite
representation

Of .x/ D ObC
pX

jD1
Ǒ
jk1.xj/C

nX

iD1
Oci
2

4
pX

jD1
O�jw�11j K1j.xij; xj/

3

5 :
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We iteratively update c D .c1; : : : ; cn/T and .ˇT ;�T/T , until convergence.
Asymptotic properties of the LAND estimator are studied in Zhang et al. (2011).

When .�1; �2/ are chosen properly, the LAND is consistent in both structure
selection and model estimation. In particular, the convergence rates of the LAND
estimator is n�2=5, which is optimal for nonparametric regression. Furthermore,
under the tensor product design, the LAND can identify the correct model structure
asymptotically, i.e.,bIL ! IL,bIN ! IN ,bIO ! IO with probability tending to one as
n ! 1. In other words, the LAND procedure can distinguish linear and nonlinear
predictors as the sample size goes to infinity.

5.3.4 Adaptive Group LASSO

Consider a partition of Œ0; 1� by the knots 0 D �0 < �1 < � � � < �K < �KC1 D 1

into K subintervals, IKt D Œ�t; �tC1/; t D 0; : : : ;K � 1 and IKK D Œ�K ; �KC1�, where
the positive integer K � Kn D n� with 0 < � < 0:5 such that max1�k�KC1 j�k �
�k�1j D O.n��/. Furthermore, let Wl

nŒ0; 1� be the space of polynomial splines of
degree l � 1 consisting of functions s satisfying: (1) s is a polynomial degree of l
on IKt, for 1 	 t 	 K; (2) for l � 2 and 0 	 l0 	 l � 2, s is l0 times continuously
differentiable on Œ0; 1�. Define mn D KnC l. Then there exists a normalized B-spline
basis f�k; 1 	 k 	 mng for Wl

nŒ0; 1� (Schumaker 1981).
For the additive model (5.9), assume fj 2 Wl

nŒ0; 1� for each j. Then it can be
expressed as

fj.xj/ D
mnX

kD1
ˇjk�k.xj/; 1 	 j 	 p: (5.22)

Define ˇnj D .ˇj1; : : : ; ˇjmn/
T and ˇn D .ˇT

n1; : : : ;ˇ
T
np/

T . In (5.22), each functional
component fj is fully determined by a group of coefficients ˇnj, and therefore
the problem of selecting nonzero components fj’s amounts to identify nonzero
coefficient groups ˇj’s. Huang et al. (2010) propose to apply the adaptive group
lasso penalty on the coefficients to select functional components

min
ˇn

nX

iD1

8
<

:
yi � b �

pX

jD1

mnX

kD1
ˇjk�k.xij/

9
=

;

2

C �n
pX

jD1
wjkˇnjjk2; (5.23)

subject to
nX

iD1

mnX

kD1
ˇjk�k.xij/ D 0; j D 1; : : : ; p;

where kˇnjk2 is the L2 norm of ˇnj 2 R
mn , the weights w D .w1; : : : ;wp/

T � 0

are given constants, and �n > 0 is a tuning parameter. To assure identifiability of
the parameters, the optimization (5.23) is subject to the centering constraints over
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the samples. Define the centralized response vector as yc D .y1 � Ny; : : : ; yn � Ny/T ,
where Ny D Pn

iD1 yi=n. To get rid of the constraints, define N�jk D 1
n

Pn
iD1 �k.xij/

and  k.xij/ D �k.xij/ � N�jk. Let Zij D . 1.xij/; : : : ;  mn.xij//
T , which consists of

(center) values of basis functions evaluated at xij. Let Zj D .Z1j; : : : ;Znj/T and Z D
.Z1; : : : ;Zp/. Then (5.23) is converted to the following unconstrained minimization
problem

min
ˇn

kyc � Zˇnk22 C �n
pX

jD1
wjkˇnjk2 (5.24)

Huang et al. (2010) suggest to construct the weights by

wj D k Q̌ njk�12 ; j D 1; : : : ; p;

where Q̌ n is obtained by solving (5.24) with w1 D � � � D wp D 1, i.e., the group
lasso estimator. The parameter � can be selected by BIC (Schwarz 1978) or EBIC
(Chen and Chen 2008).

The selection and estimation properties of the adaptive group LASSO estimator
are studied in Huang et al. (2010). Under certain regularity conditions, if the
group lasso estimator is used as the initial estimator, then the adaptive group
lasso estimator is shown to select nonzero components correctly with probability
approaching one, as the sample size increases to infinity, and also achieve the
optimal rate of convergence for nonparametric estimation of additive models. The
results hold even when p is larger than n.

5.3.5 Sparse Additive Models (SpAM)

In the additive model (5.9), assume y is centered, so the intercept can be omitted.
Ravikumar et al. (2009) propose to impose the L2 norm penalty on nonparametric
components for variable selection. In particular, assume fj 2 Hj, a Hilbert space
of measurable functions fj.xj/ such that E.fj.Xj// D 0, E.f 2j .Xj// < 1, with inner

product hfj; f 0j i D E



fj.Xj/f 0j .Xj/

�
. The SpAM estimation procedure solves

min
fj2Hj

E

0

@Y �
pX

jD1
fj.Xj/

1

A

2

(5.25)

subject to
pX

jD1

q
E.f 2j .Xj// 	 L;

E.fj/ D 0; j D 1; : : : ; p;
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where L is the tuning parameter. The penalty function above shares similar spirits
as the COSSO, and it can encourage smoothness and sparsity in the estimated
functional components.

The optimization problem (5.25) is convex and therefore computationally feasi-
ble for high dimensional data analysis. The SpAM backfitting algorithm can be used
to solve (5.25). Theoretical properties of the SpAM, including its risk consistency
and model selection consistency, are studied in Ravikumar et al. (2009). Define the
risk function of f by R.f / D E.Y � f .X//2. An estimator Ofn is said to be persistent
relative to a class of functions Mn is

R.Ofn/� R.f �n / �!p 0;

where f �n D arg minf2Mn R.f / is the predictive oracle. The SpAM is persistent
relative to the class of additive models when the tuning parameter L is chosen
properly, under some technical assumptions. The SpAM is also persistent, i.e.,
P. OAn D A/ �! 1 as n ! 1 when the regularization parameter has a proper
rate.

5.3.6 Sparsity-Smoothness Penalty

Consider the additive model (5.9). Without loss of generality, assume y is centered,
so the intercept can be omitted. For each j D 1; : : : ; p, define k fjk2n D 1

n

Pn
iD1 f 2j .xij/

and the smoothness measure I2.fj/ D
R 1
0

h
f 00j .t/

i2
dt. In order to achieve sparse

and smooth function estimation, Meier et al. (2009) propose the following sparsity-
smooth penalty function

J�1;�2 .fj/ D �1
q
k fjk2n C �2I2.fj/;

where �1; �2 � 0 are tuning parameters to control the degree of penalty on
functional components. The estimator is given by solving

min
f2H

1

n

nX

iD1
fyi � f .xi/g2 C

pX

jD1
J�1;�2 .fj/: (5.26)

The solution of (5.26), Ofj’s, are natural cubic splines with knots at xij; i D 1; : : : ; n,
so each function component has a finite-representer expression. Each fj can be
expressed by a set of cubic B-spline basis, fj.xj/ D Pm

kD1 ˇjk�k.xj/ as in (5.22),
where �k are B-spline basis. One typical choice is that mn � 4  pn. For each
j D 1; : : : p, let Bij D .�1.xij/; : : : ; �mn.xij//

T , which consists of the values of basis
functions evaluated at xij. Let Bj D .B1j; : : : ;Bnj/

T and B D .B1; : : : ;Bp/. Then the
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optimization problem (5.26) is equivalent to

arg min
ˇ
ky � Bˇk2n C �2

pX

jD1

r
1

n
ˇT
j B

T
j Bjˇj C �2ˇT

j �jˇj; (5.27)

where�j is an mn �mn matrix with its kl entry equal to
R 1
0
�00k .x/�00l .x/dx, with 1 	

k; l 	 mn. The optimization problem (5.27) can be seen as a group lasso problem, so
efficient coordinate-wise algorithms can be used to obtain the solution. Theoretical
properties of the penalized estimator are studied in Meier et al. (2009). In particular,
an oracle inequality is derived for the penalized estimator under the compatibility
condition.

5.4 Nonparametric Independence Screening (NIS)

In Big data analytics, it is possible that the number of predictors p grows at a much
faster rate than the sample size n, e.g., log.p/ D O.n˛/ with 0 < ˛ < 1. For
such ultra-high dimensional data, it is useful to first reduce data dimensionality to a
moderate scale using a pre-screening procedure, before a refined variable selection
is applied. This is the idea of variable screening. A variable screening method is
said to be screening-consistent if

Pr. bA 
 A/ �! 1; as n �!1;

where A is the set of important variables for the true model f , and OA is the model
selected by the procedure based on the data. In the context of linear models, a variety
of sure screening methods have been developed, including Fan and Lv (2008), Wang
(2009), Fan and Fan (2008), Hao and Zhang (2014).

Fan et al. (2011) extend the concept to nonparametric independence screening
(NIS) by ranking the importance of predictors by the goodness fit of marginal
models. Assume the random sample .xi; yi/; i D; : : : ; n follow the nonparametric
regression model

Y D f .X/C �; E.�/ D 0: (5.28)

Consider the marginal nonparametric regressions problem,

min
fj2L2.P/

E
˚
Y � fj.Xj/

�2
; j D 1; : : : ; p; (5.29)

where P is the joint distribution of .X;Y/ and L2.P/ is the class of square integrable
functions under the measure P. The minimizer of (5.29) is given by fj D E.YjXj/.
Furthermore, assume fj 2 Wl

nŒ0; 1�, the space of polynomial splines of degree l � 1
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defined in Sect. 5.3.4, then it can be expressed as a linear combination of a set of
B-spline basis as (5.22). Then the estimator of fj is given by

Ofj D arg min
fj2Wl

nŒ0;1�

1

n

nX

iD1

˚
yi � fj.xij/

�2
:

The nonparametric independent screening (NIS; Fan et al. 2011) selects a set of
variables by ranking the magnitude of marginal estimators Ofj’s,

cM�n D f j D 1; : : : ; p W kOfjk2n � �ng;

where kOfjk2n D 1
n

Pn
iD1 Of 2j .xij/ and �n is pre-specified thresholding value. The NIS

procedure can reduce the data dimensionality from p to jcMnj, which is typically
much smaller than p. Under some technical conditions, Fan et al. (2011) show that
the SIS has the sure screening property, i.e., P.A 
 cM�n/ �! 1, when �n is
selected properly. This sure screening result holds even if p grows at an exponential
rate of the sample size n. Furthermore, the false selection rate converges to zero
exponentially fast. To further reduce the false positive rate and increase stability, an
iterative NIS (INIS) is proposed and studied by Fan et al. (2011).
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Chapter 6
Finding Patterns in Time Series

James E. Gentle and Seunghye J. Wilson

Abstract Large datasets are often time series data, and such datasets present
challenging problems that arise from the passage of time reflected in the datasets. A
problem of current interest is clustering and classification of multiple time series.
When various time series are fitted to models, the different time series can be
grouped into clusters based on the fitted models. If there are different identifiable
classes of time series, the fitted models can be used to classify new time series.

For massive time series datasets, any assumption of stationarity is not likely to
be met. Any useful time series model that extends over a lengthy time period must
either be very weak, that is, a model in which the signal-to-noise ratio is relatively
small, or else must be very complex with many parameters. Hence, a common
approach to model building in time series is to break the series into separate regimes
and to identify an adequate local model within each regime. In this case, the problem
of clustering or classification can be addressed by use of sequential patterns of the
models for the separate regimes.

In this chapter, we discuss methods for identifying changepoints in a univariate
time series. We will emphasize a technique called alternate trends smoothing.

After identification of changepoints, we briefly discuss the problem of defining
patterns. The objectives of defining and identifying patterns are twofold: to cluster
and/or to classify sets of time series, and to predict future values or trends in a time
series.
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6.1 Introduction

Many really large datasets are time series, and such datasets present unique
problems that arise from the passage of time reflected in the datasets. A problem
of current interest is clustering and classification of multiple time series; see, for
example, Lin and Li (2009), Fu (2011), Zhou et al. (2012), and He et al. (2014).
When various time series are fitted to models, the different time series can be
grouped into clusters based on the fitted models. If there are different identifiable
classes of time series, the fitted models can be used to classify new time series.

For massive time series datasets, any assumption of stationarity is not likely to
be met. It is generally futile to attempt to model large time series using traditional
parametric models.

In all statistical models, we seek to identify some random variable with zero
autocorrelations whose realizations are components of the observable variables.
The model is then composed of two parts, a systematic component plus a random
component.

The problem in modeling time series is identification of any such random variable
in a model over a long time period, or even in a short time period when the data are
massive.

Any useful time series model that extends over a lengthy time period must either
be very weak, that is, a model in which the signal-to-noise ratio is relatively small,
or else must be very complex with many parameters.

A common approach to model building in time series is to break the series into
separate regimes and to identify an adequate local model within each regime. In
this case, the problem of clustering or classification can be addressed by use of
sequential patterns of the models for the separate regimes.

6.1.1 Regime Descriptors: Local Models

Within a particular time regime the time series data exhibit some degree of
commonality that is captured in a simple model. The model may specify certain
static characteristics such as average value (mean, median, and so on) or scale
(variance, range, and so on). The model may also specify certain time-dependent
characteristics such as trends or autocorrelations. The model within any regime
may be very specific and may fit most of the observations within that regime, or
it may be very general with many observations lying at some distance from their
fitted values. For the data analyst, the choice of an appropriate model presents the
standard tradeoff between a smooth fit and an “over” fit.

The beginning and ending points of each regime are important components of
the model. Independent of the actual beginning and ending points, the length of the
regime is also an important characteristic.
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The model may be formulated in various ways. For purposes of clustering and
classification of time series, it may be desirable for the model to be one of a small
pre-chosen set of models. It may also be desirable that the individual characteristics
be specified as one a particular small set. For example, if the model specifies
location, that is some average value within the regime, we may use categorical
labels to specify ranked levels of location; “a” may denote small, “b” may denote
somewhat larger average values, and so on. These relative values are constant within
a given regime, but the set of possible categories depends on the values within other
regimes in the time series.

Specifying a model in place of the full dataset allows for significant data
reduction. Substitution of the individual values within a regime by the sufficient
statistical descriptors is an important form of data reduction in time series.

6.1.2 Changepoints

Once we accept that different models (or models with different fitted parameters)
are needed in different regimes, the main problem now becomes identification of the
individual regimes; that is, identification of the changepoints separating regimes.

The complexity of this problem depends to a large extent on the “smoothness” of
our individual models; if the models are linear in time, then changepoints are easier
to identify than if the models are nonlinear in time or if they involve features other
than time, such as autoregressive models.

The two change points that determine the extent of a regime together with the
sufficient statistical descriptors describing the regime may be an adequate reduction
of the full set of time series data within the regime.

6.1.3 Patterns

Once regimes within a time series are identified, the patterns of interest now become
the sequences—or subsequences—of local models for the regimes.

Between any two changepoints, we have a local model, say 
i.t/. A particular
sequence of local models, 
i.t/; 
iC1.t/; : : : ; 
iCr.t/, defines a pattern. We will
often denote a pattern in the form Pri, where Pri D .
i.t/; 
iC1.t/; : : : ; 
iCr.t//.
While the model is a function of time together with descriptions of other model
components of the temporal relationships, such as the probability distribution of a
random “error” component, we may represent each
i.t/ as a vector whose elements
quantify all relevant aspects of the model.
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6.1.4 Clustering, Classification, and Prediction

There is considerable interest currently in learning in time series data. “Learning”
generally means clustering and/or classification of time series. This is one of the
main motivations of our work in pattern recognition within time series.

Forecasting or prediction is also an important motivation for time series analysis,
whether we use simple trend analysis, ARMA-type models, or other techniques of
analysis.

Prediction in time series, of course, is often based on unfounded hopes. We
view the prediction problem as a simple classification problem, in which statistical
learning is used to develop a classifier based on patterns. The response could be
another local model within the class of local models used between changepoints, or
the response could be some other type of object, such as a simple binary “up” or
“down.” The length of time over which the prediction is made must, of course, be
considered in the classification problem.

6.1.5 Measures of Similarity/Dissimilarity

Clustering or classification is often based on some metric for measuring dissim-
ilarity of elements in a set. For clustering and classification of time series or
subsequences of time series based on patterns, we need a metric �.Pri;Psj/, where
Pri is a pattern consisting of a sequence 
i; 
iC1; : : : ; 
iCr and Psj is a pattern
consisting of a sequence over s regimes beginning at the jth one.

6.1.6 Outline

In the following we discuss methods for identifying changepoints in a univariate
time series. In massive datasets a major challenge is always that of overfitting. With
so much data, very complex models can be developed, but model complexity does
not necessarily result in better understanding or in more accurate predictions.

We will generally consider linear models, either simple constant models or
simple linear trends. By restricting our attention to models that are linear in time,
we avoid some kinds of overfitting. In smoothing time series using a sequence of
linear models, “overfitting” is the identification of spurious changepoints.

Our main concern will be on the identification of changepoints, and we will
emphasize a technique called alternate trends smoothing.

After identification of changepoints, we briefly discuss the problem of defining
patterns. The objectives of defining and identifying patterns are twofold: to cluster
and/or to classify sets of time series, and to predict future values or trends in a time
series.
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Although we do not emphasize any specific area of application, some of our work
has been motivated by analysis of financial time series, so we occasionally refer to
financial time series data, in particular, to series of stock prices or of rates of return.

6.2 Data Reduction and Changepoints

Analysis of massive data sets, whether they are time series or not, often begins
with some form of data reduction. This usually involves computation of summary
statistics that measure central tendencies and other summary statistics that measure
spread. These two characteristics of a dataset are probably the most important ones
for a stationary population in which a single simple model is adequate.

Even assuming a single model for all data, just concentrating on summary
measures can miss important information contained in some significant individual
observations. These significant observations are often the extreme or outlying points
in the dataset. One simple method of analyzing a time series is just to assume a
single constant model and to identify the extreme points, say the 10% outliers, with
respect to that model. These outliers may carry a significant amount of information
contained in the full dataset. The set of outliers may be further reduced. Fink
and Gandhi (2011), for example, described a method for successively identifying
extreme points in a time series for the purpose of data reduction. The extreme points
alone provide a useful summary of the entire time series.

Another type of significant point in a time series is one that corresponds to a
change in some basic characteristic of the time series. A changepoint may or may
not be an extreme point. Changepoints can also be used for data reduction because
they carry the most significant information, at least from one perspective.

In a time series, a changepoint is a point in time at which some property of
interest changes. A changepoint, therefore, has meaning only in the context of a
model. The model for the observable data may be some strong parametric model,
such as an ARMA model, or it may be some weak parametric model, such as
constant median and nothing more. In the former case, a changepoint would be
a point in time at which one of the parameters changes its value. (Here, we are
assuming ARMA models with constant parameters.) In the latter case, a changepoint
would be any point at which the median changes. A changepoint may also be a point
in time at which the class of appropriate model changes. Perhaps an ARMA model is
adequate up to a certain point and then beyond that the constant variance assumption
becomes entirely untenable.

From one perspective, the problem of identification of changepoints can be
viewed as just a part of a process of model building. This, of course, is not a well-
posed problem without further restrictions, such as use of some pre-selected class
of models and specification of criteria for ranking models.

In the following, we will focus on identification of changepoints in simple
piecewise linear models of an observable random variable. We do not assume finite
moments, so we will refer to the parameter of central tendency as the “median,” and
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the parameter of variability as the “scale.” We will also focus most of our study on
univariate time series, although we will consider some extensions to multivariate
series.

There is a vast literature on identification of changepoints, but we do not attempt
any kind of general review; rather we discuss some of the methods that have proven
useful for the identification of patterns.

6.2.1 Piecewise Constant Models

The simplest model for time series with changepoints is one in which each regime
is modeled by a constant. The constant is some average value of the data over that
regime. For our purposes, the nature of that “average” is not relevant; however,
because of possibly heavy tails in the frequency distributions and asymmetry of the
data, we often think of that average as a median.

There are various approaches to modeling time series with median values that
change over time. The first step in any event is to determine the breakpoints.
Sometimes, when the data-generating process is indeed a piecewise constant model,
the breakpoints may be quite apparent, as in Fig. 6.1.

In other cases, we may choose to approximate the data with a piecewise constant
model, as in Fig. 6.2, even though it is fairly obvious that the underlying data-
generating process is not piecewise constant or even piecewise linear.

Fig. 6.1 Time series
following a piecewise
constant model
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Fig. 6.2 Time series
approximated by a piecewise
constant model
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There are various straightforward ways of determining the values of the approxi-
mating constants. A simple batch process is to use sample quantiles of the data that
correspond to some parametric model, such as a normal distribution.

6.2.2 Models with Changing Scales

Piecewise constant models, such as the data in Fig. 6.1 seem to follow, or other
simple models for changing location may not to be of much interest, but there is a
type of derived financial data that exhibit similar behavior. It is rates of return. The
standard way of defining the rate of return for stock prices or stock indexes from
time t to time t C 1 is logXtC1 � logXt, where XtC1 and Xt are the prices at the
respective times.

A stylized property of rates of return is volatility clustering. Figure 6.3 is an
illustration of this property for a small monthly sequence of the S&P 500 Index
over a period from January, 2010, through November, 2015. (This short time series
was just chosen arbitrarily. More data and data over other time spans may illustrate
this better; but here, our emphasis is on a simple exposition. See Gentle and Härdle
(2012) for more complete discussions of volatility clustering and other properties of
financial time series.)

Volatility clustering is an example of changes in a time series in which the
location (mean or median) may be relatively unchanged, but the scales change from
one regime to another. The changepoints in this case are points in the time series
where the scales change. The derive time series, that is, the volatility time series can
be approximated with a piecewise constant model.
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Fig. 6.3 Monthly log rates of
return of S&P 500
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In order to identify changes in scale or volatility, we must have some measure
of volatility. It may not be obvious how to measure volatility in a time series,
and this is especially true if the volatility is changing. A simple measure, called
“statistical volatility” by economists, is just the sample standard deviation, which
of course ignores any autocorrelations. To illustrate, however, we compute the
statistical volatilities over the apparent separate regimes of the log returns shown
in Fig. 6.3. This type of analysis results in a piecewise constant time series shown
in Fig. 6.4 of the type we discussed in Sect. 6.2.1. There are various methods for
detecting changepoints for scales, but we will not discuss them here.

6.2.3 Trends

The main interest in patterns in time series most often focuses on changes in trends.
This is particularly true in financial time series, see, for example, Bao and Yang
(2008) and Badhiye et al. (2015) for methods that focus solely on trends.

More interesting simple linear models in time series are those that exhibit a
“trend” either increasing or decreasing. Changepoints are the points at which the
trend changes.

Identification of changepoints is one of the central aspects of technical analysis
of financial data, and is the main feature of the so-called point and figure charts that
have been used for many years (Dorsey 2007). Point and figure charts are good for
identification of changepoints and the amount of change within an up or a down
trend.
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Fig. 6.4 Monthly statistical
volatility of log returns of
S&P 500
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Some interesting patterns are easily seen in a point and figure chart. For example,
a pattern that many technical analysts believe carries strong predictive powers is the
“head-and-shoulders” pattern. Figure 6.5 shows the stock price for Intel Corporation
(NASDAQ:INTC), and on the right side, a modified point and figure chart. (The
modifications, suggested in Gentle (2012), among other things involve the definition
of threshold change.) The head-and-shoulders pattern is clearly visible in both the
graph of the raw prices on the left and the trend chart on the right. (This is a very
strong head-and-shoulders pattern; most head-and-shoulders patterns that technical
analysts would identify are not this clear.)

Notice in the trend chart in Fig. 6.5 that the time axis is transformed into an axis
whose values represent only the ordered changepoints. One of the major deficiencies
of point and figure charts and trend charts is that information about the length of time
between changepoints is not preserved.

A very effective smoothing method is use of piecewise linear models. Piecewise
linear fits are generalizations of the piecewise constant models, with the addition of
a slope term. There are many variations on this type of fit, including the criterion for
fitting (ordinary least squares is most common) and restrictions such as continuity
(in which case the piecewise linear fit is a first degree spline). New variations on
the basic criteria and restrictions are suggested often; see, for example, Zhou et al.
(2012).

Some breaks between trends are more interesting than others, depending on
the extent to which the trend changes. Within a regime in which a single trend is
dominant, shorter trends of different direction or of different magnitude may occur.
This raises the issue of additional regimes, possibly leading to overfitting or of
leaving a regime in which many points deviate significantly from the fitted model.
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Fig. 6.5 Intel price, 2014-6-1, through 2015-7-31, and the associated trend chart

6.3 Model Building

One of the main objectives of building a model for a time series is to reduce
the amount of data by use of an approximate representation of the dataset. While
the main objectives of the standard models for analysis of time series, such
as ARIMA and GARCH extensions in the time domain and Fourier series or
wavelets in the frequency domain, may be to understand the data-generating process
better, such models also provide an approximation or smoothing of the data and
thereby achieve significant data reduction. Several approximations based on simple
piecewise models, each with its three-letter-acronym, have been proposed. These
obviously depend on identification of changepoints prior to or in conjunction with
the modeling within the individual regimes. Representation of the sequence of
models then becomes an important issue. While a model is usually represented
as a parameterized equation, a common method of simplifying the representation
further is to define a set of models, often of a common form, but each instantiated
with fixed values of all parameters, and then to associate a symbol with each
instantiation of each model. Two methods following this approach are symbolic
aggregate approximation (SAX), see Lin et al. (2007), and nonparametric symbolic
approximate representation (NSAR), see He et al. (2014). Fu (2011) provides a
general review of various methods of smoothing time series.

Because the identification of changepoints, that is, the identification of regimes,
is intimately tied to the identification and fitting of models within the individual
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regimes, it is not possible to separate those two steps. Usually, a form of the model
is chosen and then regimes are chosen based on the goodness of fits of potential
models of that form. Often, especially in the analysis of stock prices, there is no
model within the regimes other than simple increasing or decreasing trends. Bao and
Yang (2008) and Gentle (2012), for example, described methods for determining
changepoints between increasing and decreasing price trends.

6.3.1 Batch Methods

For fitting piecewise constant models, there are various straightforward ways of
determining the values of the approximating constants. If all of the data are available
as we mentioned above, a simple batch process is to use sample quantiles of the data
that correspond to some parametric model, such as a normal distribution, and then
just identify regimes as those subsequences clustering around the sample quantiles.

Another simple batch approach is to fit a single model of the specified form,
and then to identify subsequences based on points that are outliers with respect to a
fitted model. This process is repeated recursively on subsequences, beginning with
the full sequence.

Given a single linear trend over some regime, Fu et al. (2008) defined measures
for “perceptually important points,” which would be candidate changepoints. The
perceptually important points are ones that deviate most (by some definition) from
a trendline.

6.3.2 Online Methods

Batch methods, such as ones that base local models on sample quantiles of the
whole time series, or those that recursively identify subsequences with local models,
have limited applicability. In most applications of time series analysis, new data are
continually being acquired, and so an online method is preferable to a batch method.

An online method accesses the data one observation at a time and can retain only
a predetermined amount of data to use in subsequent computations.

6.4 Model Building: Alternating Trends Smoothing

A method of identifying changepoints in a time series based on alternating up
and down linear trends, called alternating trends smoothing, or ATS, is given in
Algorithm 1. It depends on a smoothing parameter, h, which specifies the step size
within which to look for changepoints.
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Algorithm 1: Alternating trends smoothing (h)
1. Set d D 1 (changepoint counter)
2. While (more data in first time step)

(a) for i D 1; 2; : : : ;m, where mD h if h additional data available or else m is last data
item:
input xi;

(b) set bd D 1; cd D x1
(c) determine j

C
; j

�
; xj

C

; xj
�

such that
xj

C

D max x1; : : : ; xh and xj
�

D min x1; : : : ; xh
(d) set s D .xk � xi/=.k � i/ and r D sign.s/
(e) while r D 0, continue inputting more data; stop with error at end of data

3. Set j D i (index of last datum in previous step); and set d D dC 1
4. While (more data)

(a) for i D jC 1; jC 2; : : : ; jC m, where mD h if h additional data available or else
jC m is last data item:
input xi;

i. while .sign.s/ D r/

A. set k D min.iC h; n/
B. if .k D i/ break
C. set s D .xk � xj/=.k � j/
D. set j D k

ii. determine j
C

such that rxj
C

is the maximum of rxjC1; : : : ; rxjCm

iii. set bd D j
C

; and set cd D xj
C

iv. set d D dC 1; set j D j
C

; and set r D �r
(b) set bd D j

C
; and set cd D xj

C

The output of this algorithm applied to a time series x1; x2; : : : is

.b1; c1/; .b2; c2/; : : : ;

where b1 D 1, c1 D x1, b2 D t.2/, and c1 D xt.2/ , where t.2/ is the time at which the
first trend changes sign.

Between two breakpoints the trend is represented by the slope of the time series
values at the two points divided by the time between the two points, and the
smoothed time series is the piecewise linear trendlines that connect the values at the
changepoints. The method is effective for finding interesting patterns. For example,
the head-and-shoulders pattern in the Intel stock price, shown in Fig. 6.5, is very
apparent in the ATS representation of the time series shown in Fig. 6.6. A step size
of 30 was used in that fit.

The output of the ATS algorithm applied to the INTC data in Fig. 6.6 is

.1; 26:11/; .69; 34:07/; .97; 29:75/; .132; 36:57/; .206; 29:23/; .251; 33:94/; .290; 27:63/:
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Fig. 6.6 A head-and-shoulders pattern in ATS

Thus, the 290 raw data points are summarized in the seven pairs of numbers
representing the changepoints and their values.

While the ATS fit emphasizes only the signs of the trends, the actual slopes are
very easily computed from the values at the changepoints.

6.4.1 The Tuning Parameter

The tuning parameter h in Algorithm 1 is a “step size.” The process of identifying
the next changepoint begins with the datum one step size beyond the current
changepoint. Larger values of h tend to increase the distances between changepoints,
but the actual distance between changepoints can be smaller than h; in fact, the
distance between changepoints can be as small as 1 time unit.

Although in the standard implementation, the identification of trends in ATS is
based on individual points, the aggregate behavior tends to dominate, especially
after the first trend. In identifying the changepoint at the end of the first regime,
however, the dependence of the trend on the point one step size beyond can
lead to misidentification of the trend. This is because ATS works by identifying
changepoints based on changing trends, and in the first trend there is no previous
trend for comparison. This can result in a trend determined by points x1 and xh
differing completely from the apparent trend in the points x1; : : : ; xh�1. For this
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reason, a simple modification of the ATS algorithm in the first step is to use some
other criterion for determining the trend. One simple approach is a least-squares
fit of a line through x1 and that comes close to the points x2; : : : ; xh. Because of the
constraint that the line goes through x1, the least-squares criterion might be weighted
by the leverages of the other points. If the time-spacing is assumed to be equal over
the points x1; : : : ; xh, the least-squares slope is

arg min
s

hX

iD2
.xi � si/2=i D .h2 � h/=

hX

iD2
xi: (6.1)

If all of the first h observations follow the same trend, the modification has no effect.
This modification can also be at each step, and it often results in what appears

visually to be a better fit. Nevertheless, it is not always easy to pick a good rule
for determining the direction of a trend. Because of the way the algorithm looks
backwards after detecting a change in the sign of the trend, the modification does
not have as much effect in subsequent regimes after the first one.

If the length of the time series is known in advance, a step size equal to about
one tenth of the total length seems to work reasonably well. Even so, it is often
worthwhile to experiment with different step sizes.

Figure 6.7 shows ATS applied to the daily closing price of the stock of
International Business Machines Corporation (NYSE:IBM) from January 1, 1970,
through December 31, 2014. There are n D 11;355 points. Over this full period, a
step size of h D 1136 (a step size of n=10) was used. This resulted in the alternating
trend lines shown as solid red line segments.

There are only five changepoints identified in the IBM daily closing prices, and
the changes are as likely to occur in the area of “low action” (the earlier times) as
in the areas of higher volatility. This is because ATS operates in an online fashion;
when processing the data in the earlier time regimes, it is not known that the trends
will become more interesting. Only one changepoint from the observation at the
time index of 5971 through the end of the series is identified. A smaller step size

Fig. 6.7 ATS with different
stepsizes over different
regions
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Fig. 6.8 ATS applied twice
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may be appropriate. Alternating trend segments were then determined for these data,
beginning with January 1, 1993, (a time index of 5815 in the original series), and
using a stepsize of 554. These are shown as dashed blue line segments in Fig. 6.7.
The ATS fit resulting from those two different stepsizes better captures the pattern
of the time series.

Alternating trends smoothing can be applied recursively. Once the original data
are smoothed, ATS can be applied to the changepoints determined in the original
smoothing. This is illustrated in Fig. 6.8 using the same IBM daily closing price
data as before.

First, a step size of 100 was used. This resulted in 53 changepoints. These are
shown in Fig. 6.8, and the trend lines connecting them are shown as solid red line
segments. Next, ATS was applied to the changepoints (55 points in all, including
the first and last observations). A stepsize of five was used for this smoothing.
This resulted in nine changepoints. The alternating trend lines connecting them are
shown as dashed blue line segments in Fig. 6.8. The original set of 54 trendline
segments may be considered too noisy to be a good overall model. That model may
be considered to be overfit. The subsequent fit of the changepoints is of course much
smoother than the fit of the original data.

This repeated ATS fitting is iterative data reduction. The first fit reduced the
data to 55 points (including the two endpoints). These points may contain sufficient
information to summarize the original 11,355 points. Carrying the reduction further
by applying ATS to the changepoints, we reduce the data to 11 points (again,
including the two endpoints), and this may be sufficient for our purposes.

Making transformations to a time series before applying ATS results in different
changepoints being applied. For example, using a log transformation of the IBM
price data in Fig. 6.7 would result in different changepoints, and even using only
one stepsize for the whole time series, those changepoints on the log data may be
more meaningful.
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6.4.2 Modifications and Extensions

An alternating trends fit can be modified in several ways. One very simple way
is to subdivide the regimes by identifying changepoints within any regime based
on deviations from the trendline within that regime. This type of procedure for
identifying changepoints has been suggested previously in a more general setting.

Consider again the IBM data in Fig. 6.7, with the ATS fit using a stepsize of
1136. (This is the solid red line in the figure.) Over the region from a time of 5971
to a time of 10,901, a single model was fit. This model is the line segment from the
point .5971; 7:63/ to the point .10901; 200:98/. The most deviate point within this
regime, as measured by the vertical residuals is at time point 9818 where the actual
price is 61.90, while the point on the trendline is 158.51.

This point can be considered to be a changepoint, as shown in Fig. 6.9. In this
case the trends on either side of the changepoint are both positive; that is, they are
not alternating trends.

Continuing to consider changepoints within regimes identified with a single
trend, in this case we would likely identify a changepoint at about time 7500, which
would correspond to the maximum deviation from the single trendline between the
original changepoint at time 5971 and the newly identified changepoint at time 9818.
In this case, while the single trend is positive, the first new trend would be positive
and the second new trend would be negative.

While in many applications in finance, only the sign of a trend is of primary inter-
est, occasionally, the magnitude may also be of interest, and a changepoint might
be identified as a point at which the slope of the trend changes significantly. The
basic ideas of ATS can be adapted to this more general definition of changepoints;
however, some of the simplicity of the computations of ATS would be lost.

Fig. 6.9 A linear trend
broken into two trends at the
most extreme point
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This approach would also require an additional tuning parameter to quantify
“significance” of change in trend, when the sign of the trend may not change.

Another possible improvement to the basic ATS algorithm is to allow the stepsize
to be adjusted within the computations. The alterations to the stepsizes could be
based on the number of changepoints or on goodness-of-fit within a regime, and in
either of these general approaches, there are several possible ways of doing it. The
modification shown in Fig. 6.9 could be performed routinely as a postprocessing
step in any ATS fit. That modification of course would require an additional tuning
parameter to be used in deciding whether or not to break up an existing regime.

In very noisy data goodness-of-fit measures can often be misleading. This is
because single or a few outliers can cause the measure to indicate an overall lack
of fit. (Note that the basic ATS fitting, although individual points are used in
determining changepoints, the method is generally resistant to outliers.) As in most
data analysis, outliers often must be treated in ad hoc ways. This is because they
often contain completely new information.

6.5 Bounding Lines

In statistical modeling it is common practice to associate “confidence bounds” with
a fitted model. These are usually based on some underlying probability distribution,
and they can take various forms depending on the model, which includes the relevant
probability distributions.

In our objective of finding patterns in the data, we have not assumed any specific
probability model. In other applications of trend analysis, it is common to identify
bounding lines within a given regime that generally are in the same directions as
the trend over that region, but which are either above all the points in the regime (a
“resistance line”) or below all the points (a “support line”). Such bounding lines do
not depend on any probability model.

As we have emphasized, finding the changepoints is the paramount problem.
Once the regimes are identified, however, it may be of interest to identify bounding
lines for those regimes.

For a given time series fxt W t D 1; : : : ; ng, we seek a lower bounding line
x D aC bt that satisfies the optimization problem

mina;b
Pn

tD1 �.xt � aC bt/
s:t: xt � aC bt; for t D 1; : : : ; n; (6.2)

where �.�/ is a nonnegative function such that for a vector v D .v1; : : : ; vn/, kvk DPn
tD1 �.vt/ is a norm. An upper bounding line is defined the same way, except that

the inequality in the constraint is reversed.
In general, this is a hard optimization problem, but for the L1 norm, that is, when

�.�/ D j � j, it is straightforward; and a method is given in Algorithm 2. The method
depends on the fact that the L1 norm satisfies the triangular inequality with equality:
that is, kyC zk1 D kyk1 C kzk1. The method also depends on the fact that the data
are equally spaced along the time axis.
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Algorithm 2: L1 lower bounding line: xt D QaC Qbt
1. Fit the data xt D aC bt by a minimum L1 criterion to obtain parameters a

�
and b

�
.

2. Determine the position of the minimum residual, k, and adjust a
�

:
a

�
 xk � b

�
k.

3. If k � 1 D n� k, then set Qb D b
�

and Qa D a
�

, and stop.
4. Else if k � n=2,

(a) rotate the line x D a
�
C b

�
t clockwise about the point .k; xk/ until for some point

.i; xi/, xi D a
�
C b

�
i.

(b) set Qb D .xi � xk/=.i� k/ and Qa D xk � Qbk, and stop.

5. Else if k > n=2,

(a) rotate the line x D a
�
C b

�
t counterclockwise about the point .k; xk/ until for some

point .j; xj/, xj D a
�
C b

�
j.

(b) set Qb D .xk � xj/=.k � j/ and Qa D xk � Qbk, and stop.

Theorem 1 Algorithm 2 yields a solution to optimization problem (6.2), when
�.�/ D j � j.
Proof Let a� and b� be such that

Pn
tD1 jxt � a� � b�tj D mina;b

Pn
tD1 jxt � a� btj.

Let k be such that

xk D arg min
xi

.xi � a� � b�i/:

For the optimal values of Qa and Qb, we must have xk � QaC Qbk.
There are three cases to consider: k D .n C 1/=2 (corresponding to step 3 in

Algorithm 2), k 	 n=2 (corresponding to step 4 in the algorithm), and k > n=2
(corresponding to step 5 in the algorithm). We will first consider the case k 	 n=2.
The case k > n=2 follows the same argument. Also following that argument, it will
be seen that the solution given for case k D .nC 1/=2 is optimal.

If k 	 n=2, consider the line x D xk � b�k C b�t. (The intercept here is what
is given in step 2 of the algorithm.) This line goes through .k; xk/, and also satisfies
the constraint xt � xk � b�k C b�t, for t D 1; : : : ; n. The residuals with respect to
this line are xt � xk C b�k � b�t and all residuals are positive. Any point t for t < k
is balanced by a point Qt > k, and there are an additional n � 2k points xQt with Qt > k.
If any point xQt with Qt > k lies on the line, that is, xQt D xk � b�kC b�Qt, then this line
satisfies the optimization problem (6.2) because any change in either the intercept
xk � b�k or the slope b� would either violate the constraints or would change the
residuals in a way that would increase the norm of the residuals. In this case the
solution is as given at the end of step 4, because Qb D b�.

The step now is to rotate the line in a clockwise direction, which results in an
increase in any residuals indexed by t for t < k and a decrease of the same amount
in the same number of residuals xQt with Qt > k. (This number may be 0.) It is the
decrease in the residuals of the additional points indexed by Qt > k that allows for
a possible reduction in the residual norm (and there is a positive number of such
points).
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Consider the line x D xk � b�k C .b� C ıb/t such that ıb is the minimum value
such that there is a point xQt with Qt > k such that xQt D xk�b�kC .b�Cıb/Qt. This line
satisfies the constraints and by the argument above is optimal. Hence, the solution
is as given at the end of step 4, because Qb D b� C ıb.

Now consider the case k D .n C 1/=2. (In this case, n is an odd integer, and
k � 1 D n � k as in Algorithm 2.) Following the same argument as above, we
cannot change the intercept or the slope because doing so would either violate the
constraints or would change the residuals in a way that would increase the norm of
the residuals. Hence, we have Qb D b� and Qa D xk � b�k as given in the algorithm is
a solution to optimization problem (6.2) when �.�/ D j � j.

One possible concern in this method is that the L1 fit may be nonunique.
This does not change any of the above arguments about an optimal solution to
optimization problem (6.2) when �.�/ D j � j. It is possible that the solution to this
optimization problem is nonunique, and that is the case independently of whether
or not the initial fit in Algorithm 2 is nonunique.

The discussion above was for lower bounding lines under an L1 criterion. Upper
bounding lines are determined in the same way following a reversal of the signs on
the residuals.

Bounding lines can easily be drawn over any region of a univariate time series.
They may be more meaningful if separate ones are drawn over separate regimes of
a time series, as in Fig. 6.10, where separate bounding lines are shown for the six
regimes corresponding to alternating trends, that were shown in Fig. 6.6.
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Fig. 6.10 Bounding lines in six regimes



144 J. E. Gentle and S. J. Wilson

6.6 Patterns

One of our motivations for fitting time series is for clustering and classification of
time series based on similarities of trends and patterns. Usually, in large time series
datasets a single model does not fit well, so our approach has been to identify a
sequence of local models, 
1.t/; 
2.t/; : : : ; 
k.t/, in k regimes.

The models
i.t/may be of various forms, and they may contain various levels of
information. For example, in piecewise constant modeling, the form of the model is


i.t/ D ciIŒti1;ti2�.t/; (6.3)

where IS.t/ is the indicator function: IS.t/ D 1 if t 2 S, and IS.t/ D 0 otherwise.
(This formulation allows the global model to be written as

P
i 
i.t/.) The form of

the model in ATS is


i.t/ D .ai C sit/IŒti1;ti2�.t/; (6.4)

where in the notation of Algorithm 1, ai D ci, si D .ciC1 � ci/=.biC1 � bi/, ti1 D ci
and ti2 D ciC1, and of course a global is just the sum of these local models.

For comparing different time series for clustering or classification, we may
focus on patterns of models, 
i.t/; 
iC1.t/; : : : ; 
iCr.t/, on r successive regimes,
not necessarily beginning at the start of the time series and not necessarily
extending over the full extent of the time series. We compare the pattern Pri D
.
i.t/; 
iC1.t/; : : : ; 
iCr.t// with patterns from other time series. The obvious basis
for comparison would be a metric, or a measure with some of the properties of
a metric, applied to the patterns; that is, we define a a metric function �.Pri;Psj/,
where Pri is a pattern consisting of a sequence 
i.t/; 
iC1.t/; : : : ; 
iCr.t/ and Psj is
a pattern consisting of a sequence over s regimes beginning at the jth one.

Because the patterns depend on fitted models, the fact that a pattern

.
i.t/; 
iC1.t/; 
iC2.t//

in one time series is exactly the same as a pattern

.
j.t/; 
jC1.t/; 
jC2.t//

in another time series does not mean that the actual values in the two time series are
the same over those regimes or even that the values have some strong association,
such as positive correlation, with each other. This is generally not inconsistent
with our objectives in seeking patterns in time series or in using those patterns in
clustering and classification.

In this section, we discuss some of the issues in clustering and classification of
time series, once a sequence of regimes is identified. An important consideration
in analyzing multiple time series is registration of the different time series; that is,
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shifting and scaling the time series so that the regimes in the separate time series can
be compared. We also briefly indicate possible approaches for further data reduction.
Once these issues have been addressed, the problems of clustering and classification
are similar to those in other areas of application. Examples and the details of the use
of the clustering and classification methods are discussed by Wilson (2016).

6.6.1 Time Scaling and Junk

Prior to comparing two time series or the patterns in the two series, we generally
need to do some registration of the data. Usually, only subsequences of time series
are to be compared, and so the beginning and ending points in the two series must
be identified. The actual time associated with the subsequences may be different,
and the subsequences may be of different lengths. There are various methods of
registering two subsequences. The most common methods are variants of “dynamic
time warping” (DTW), which is a technique that has been around for many years.
There are several software libraries for performing DTW.

In the overall task of identifying and comparing patterns in time series, the
registration step, whether by DTW or some other method, can be performed first
or later in the process. Our preference generally is to identify breakpoints prior to
registration.

Similarity of patterns is not an absolute or essential condition. Similarity, or
dissimilarity, depends on our definition of similarity, which in turn depends on
our purposes. We may wish to consider two patterns to be similar even in the time
intervals of the piecewise models do not match. We also may wish to ignore some
models within a pattern, especially models of brief duration.

In Fig. 6.11 we see three patterns that for some purposes we would wish to
consider to be similar to each other. The times as well as the actual values are
rather different, however. Among the three time series, the times are both shifted
(the starting time of course is almost always arbitrary) and scaled. The unit of
time is not always entirely arbitrary. It depends on our ability to sample at different
frequencies, and the sampling rate is not always adjustable. The unit of time may
also be important in an entirely different way. It is a well-recognized property of
markets that frequency of trading (or frequency of recording data) results in different
market structures (see, for example, Gentle and Härdle 2012).

Figure 6.11 also illustrates another problem for comparing patterns. The blip in
the time series on the right side results in two additional model terms in the fitted
time series. We would actually like to compare the patterns

.
1; 
2; 
3; 
4/

and

.�1;S.�2; �3; �4/; �5; �6/;
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Fig. 6.11 Three patterns that are similar

where the specific correspondences are 
1 � �1, 
3 � �5, 
4 � �6, and 
2 �
S.�2; �3; �4/, where S.�2; �3; �4/ is some smooth of the three models �2, �3, and �4.

The plot on the right side of Fig. 6.11 compared with the other two plots
illustrates the intimate connection between smoothing or model fitting and pattern
recognition. A smoother fit of the time series shown on the right side would have
resulted in just four models (three changepoints), in which the second model would
be some smooth of �2, �3, and �4, that is, S.�2; �3; �4/.

The extra blip in the time series on the right side of Fig. 6.11 is “junk” at a lower
level of resolution.

6.6.2 Further Data Reduction: Symbolic Representation

While the individual components of a pattern Pri may contain various details of the
models, in some cases some details can be suppressed while salient features of the
pattern, that is, the sequence, are retained. For example, for a sequence of constant
models such as in Eq. (6.3), the most important features of the sequence may be a
sequence of indicators whether the ci were small, mid-size, or large; that is, the
pattern is a sequence of the form abcde : : :, where each of the as, bs, and so on, are
just the values s, m, and l, indicating “small,” “medium,” and “large.” For example,
the pattern sllmls would indicate a sequence of six piecewise constant models of
the form of Eq. (6.3), in which c1 is (relatively) small, c2 and c2 are large, and so on.
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This representation, of course, does not include information about the ti1s or ti2s or
even the exact values of the cis, but the patterns of small, medium, and large may
be information for clustering or classifying time series.

This further step of data reduction of forming categories of models and associ-
ating each category with a single symbol can be very useful in data mining of time
series, and has been used in various ways for some time. One widely used symbolic
approximation for time series is SAX, which is based on a modification of a
sequence of piecewise constant models (called PAA), see Lin et al. (2007). Another
type of symbolic approximation of a time series, called NSAR for nonparametric
symbolic approximate representation, was described by He et al. (2014). This
method is based on preliminary wavelet transformations and so enjoys the multi-
resolution properties of wavelets.

The transformation of models with quantitative parameters to models of categor-
ical symbols requires some a priori definition of the symbols, possibly a complete
listing or catalogue of the symbols, or at least some formula for defining new
symbols. In batch processing of the data, the range of possible models can be
determined before the transformation of quantitative models to categorical models.

In ATS, each model is characterized by four real numbers. A sequence of r
models is characterized by 2r C 2 real numbers. To reduce the data further, the
real numbers are binned into ordered groups. These ordered bins can be associated
with a unique set of symbols.

The replacement of models with continuous numeric parametrizations by sym-
bolic representations results in loss of data. A linear model in a given regime may
be transformed into a model that carries only the information that a particular
coefficient is large, relative to the same coefficient in other regimes. The symbolic
approximations may even lose information concerning the time of the changepoints.

6.6.3 Symbolic Trend Patterns (STP)

The symbolic approximation of SAX is based on a type of piecewise constant
modeling called “piecewise aggregate approximation” (“PAA”) as described by Lin
et al. (2007). The same idea of SAX can be applied to the models in ATS, as
described by Gentle (2012) who called it “symbolic trend patterns,” or “STP.” These
symbols consist of pairs of symbols or syllables. They are formed by selection of a
consonant

J;K;L;M;N

that represents duration of an upward trend, or of a consonant

P;Q;R;S;T
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that represents duration of an downward trend, and selection of a vowel

A;E; I;O;U

that represents magnitude of a trend. In many cases, however, the vowels could
represent the magnitude of the change in value instead of the magnitude of a trend,
that is the slope of the segment between the changepoints.

In each case, the individual letters as listed above represent increasing magni-
tudes. Thus, “P” represents a downward trend of short duration, and “A” represents
a trend (up or down) of very small magnitude.

If these symbols are defined and assigned in a batch fashion, they can represent
quantiles (or approximate quantiles) of the fully observed time series.

For example, the ATS fit of the INTC data in the head-and-shoulders pattern
shown in Fig. 6.6 could be represented by the STP symbolic approximation

LO;PE;KO;RO; JE;QI

where the vowel is used to represent magnitude of change, rather than rate of change.
The ATS fit of the IBM price data shown by the solid red lines in Fig. 6.7 could be
represented by the symbolic approximation

PA;LE;QE;NU

where again the vowel represents magnitude of change.
Of course, because the trends in ATS alternate, if a single direction is given, then

there would be no need for different symbols to be used to designate up and down
moves.

6.6.4 Patterns in Bounding Lines

Following any kind of data reduction, there are enhanced opportunities for identify-
ing patterns. Trends are a simple form of data reduction that offer various methods
of pattern identification. Likewise, the bounding lines discussed in Sect. 6.5 may be
used to develop patterns. The bounding lines have the same kinds of characteristics
as the trend lines of Sect. 6.4; they have slopes and duration. When bounding lines
are determined in regions determined by the ATS their slopes will generally (but not
necessarily) have the same sign as the slopes of the trends.

Another interesting characteristic of bounding lines is their relationship to each
other; in particular, whether they seem to be converging or diverging. (By their
definition, they can never cross within the region for which they are defined.) In
Fig. 6.10, for example, we see that the bounding lines in the leftmost regime seem to
be converging, while those in the second regime from the left seem to be diverging.
Technical security analysts sometimes attach meaning to such patterns.
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6.6.5 Clustering and Classification of Time Series

In clustering and classification of data we need appropriate measures of similarity
or dissimilarity. The most useful measures of dissimilarity are metrics, because of
their uniqueness and the ordering they induce, and the most useful metrics on Rd are
those induced by a norm. For a given class of patterns, whether defined on a finite set
of symbols or on Rd, there is a wide choice of possible metrics. For metrics induced
by norms the equivalence relation among any set of norms yields an equivalence of
metrics. This equivalence carries over to metrics on a set of ordered bins or symbols
(see Gentle 2012).

The problem of clustering or classification on a set of time series is essentially the
problem of clustering or classification on a set of patterns. Despite the equivalence
of metrics, on a given class of patterns, different metrics can lead to different clusters
or different classifiers.

The most challenging problem in clustering and classification of time series
arises from the time scaling and “junk” models that constitute a pattern. The three
similar time series shown in Fig. 6.11, for example, may be associated with the STP
approximations

JO;PU;ME;RA

MO;RU;KE;PA

MO;PI; JA;RI;KE;PA

The question here is how to recognize the similarity of the patterns. These
patterns exhibit different time scalings and in one case include a superfluous model.
An approach to the problem at this point is the same approach that was used from
the start: further discretization; that is, further data reduction, with its concomitant
loss of information.

One way of dealing with the time scale is a further discretization; instead of ten
different values, we may just use two, up or down. The first two patterns are now
the same:

CO;�U;CE;�A

A model with both short duration and small change in magnitude is a candidate
for a superfluous modes; that is, one that can be smoothed away by combinations
with nearby models. Applying this approach to the smoothed time series on the right
side of Fig. 6.11 would result in the second through fourth models being combined
into a single model, which would be represented as RU or �U.

This approach to the problem involves combinations and adjustments of any or
all of the models in a set of patterns, and so is obviously not entirely satisfactory.
For clustering and classification, of course, we do not need for the patterns to be
exactly alike, so another approach would be based on use of appropriate metric.
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A metric that weights differences in direction of a trend much more heavily than
differences in length of two trends in the same direction would achieve some of the
same effect as considering the duration to be a binary variable.

Classification of time series is closely related to the standard problem of
prediction or forecasting in time series. For a given pattern, the predicted value is
merely the predicted class of the pattern.
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Chapter 7
Variational Bayes for Hierarchical
Mixture Models

Muting Wan, James G. Booth, and Martin T. Wells

Abstract In recent years, sparse classification problems have emerged in many
fields of study. Finite mixture models have been developed to facilitate Bayesian
inference where parameter sparsity is substantial. Classification with finite mixture
models is based on the posterior expectation of latent indicator variables. These
quantities are typically estimated using the expectation-maximization (EM) algo-
rithm in an empirical Bayes approach or Markov chain Monte Carlo (MCMC) in a
fully Bayesian approach. MCMC is limited in applicability where high-dimensional
data are involved because its sampling-based nature leads to slow computations
and hard-to-monitor convergence. In this chapter, we investigate the feasibility
and performance of variational Bayes (VB) approximation in a fully Bayesian
framework. We apply the VB approach to fully Bayesian versions of several finite
mixture models that have been proposed in bioinformatics, and find that it achieves
desirable speed and accuracy in sparse classification with finite mixture models for
high-dimensional data.
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7.1 Introduction

Variational Bayes (VB) methods in statistics arose from the family of variational
approximation methods (Jaakkola 2000) for performing approximate Bayesian
inference for graphical models with latent variables (Bishop 1999; Attias 2000;
Beal 2003). Since then, VB has been promoted and employed in several fields of
modern applications, such as signal processing (Smídl and Quinn 2005; Blei and
Jordan 2006; Tzikas et al. 2008), political science (Grimmer 2011), bioinformatics
(Logsdon et al. 2010; Li and Sillanpää 2012), and in medical research such as
brain imaging (Friston et al. 2011; Goldsmith et al. 2011). In the early years,
VB was applied to Gaussian mixture models, factor analysis, principal component
analysis, hidden Markov models, and their mixtures, for model learning (Bishop
1999; Ghahramani and Beal 2000; Bishop et al. 2002; Beal 2003) and model
selection (Corduneanu and Bishop 2001; Teschendorff et al. 2005; McGrory and
Titterington 2007). Since then, VB has also been used for learning nonlinear latent
variable models (Honkela and Valpola 2005; Salter-Townshend and Murphy 2009),
conducting functional regression analysis (Goldsmith et al. 2011), dealing with
missing data in regression (Faes et al. 2011), and fitting location-scale models that
contain elaborate distributional forms (Wand et al. 2011). Recently, Logsdon et al.
(2010) apply VB based on the model proposed by Zhang et al. (2005) and show that
their VB solution outperforms single-marker testing in QTL analysis. Li et al. (2011)
utilize VB as an alternative to Markov chain Monte Carlo (MCMC) for hierarchical
shrinkage-based regression models in QTL mapping with epistasis.

VB has been promoted as a fast deterministic method of approximating marginal
posterior distributions and therefore as an alternative to MCMC methods for
Bayesian inference (Beal 2003; Bishop 2006; Ormerod and Wand 2010). Posterior
means computed from VB approximated marginal posterior density have been
observed to be extremely accurate. For example, Bishop (2006) illustrates the VB
solution of a simple hierarchical Gaussian model. Comparison with Gelman et al.
(2003), where the true marginal posteriors for the same model is provided, shows
that the VB solution in Bishop (2006) recovers the posterior mean exactly. However,
it has also been observed that VB often underestimates posterior variance. This
property is explained in Bishop (2006) to be due to the form of Kullback–Leibler
divergence employed in the VB theory. In the setting where n observations follow
a Gaussian distribution with large known variance and a zero-mean Gaussian-
distributed mean whose precision is assigned a Gamma prior, Rue et al. (2009) use
a simple latent Gaussian model to illustrate that VB may underestimate posterior
variance of the precision parameter by a ratio of O.n/. Ormerod (2011) proposes a
grid-based method (GBVA) that corrects the variance in VB approximated marginal
posterior densities for the same model.

Finite mixture models have been widely used for model-based classification
(McLachlan and Peel 2004; Zhang et al. 2005). Mixtures of distributions provide
flexibility in capturing complex data distributions that cannot be well described by a
single standard distribution. Finite mixture models, most commonly finite Gaussian
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mixture models, facilitate classification where each component distribution charac-
terizes a class of “similar” data points.

Many problems in bioinformatics concern identifying sparse non-null features
in a high-dimensional noisy null features space. This naturally leads to sparse
classification with a finite mixture of “null” and “non-null” component distributions
and latent indicator variables of component membership. The two-groups model
in Efron (2008) is a finite mixture model with an implicit latent indicator variable
for detection of non-null genes from a vast amount of null genes in microarray
analysis. Bayesian classification results are obtained based on posterior expectation
of the latent indicators. Typically, latent indicator variables are treated as missing
data for an EM algorithm to be implemented in an empirical Bayes approach.
Alternatively, fully Bayesian inference based on hierarchical structure of the model
can be conducted via MCMC which approximates marginal posterior distributions.
Finite-mixture-model-based classification allows strength to be borrowed across
features in high-dimensional problems, in particular “large p small n” problems
where p, the number of features to be classified, is several orders of magnitude
greater than n, the sample size. However, in such high-dimensional problems it
is difficult to assess convergence of fully Bayesian methods implemented using
MCMC algorithms and the computational burden may be prohibitive.

In the context of finite mixture models, model complexity prevents exact
marginal posteriors from being derived explicitly. For example, consider the
following simple two-component mixture model in a fully Bayesian framework,
with observed data fdgg and known hyperparameters 0; �20 ;  0; �

2
 0
; a0; b0; ˛1; ˛0:

dgjbg; ;  ; �2 D .1 � bg/N.; �
2/C bgN. C  ; �2/; (7.1)

bgjp � Bernoulli.p/;  � N.0; �
2
0
/;  � N. 0; �

2
 0
/;

�2 � IG.a0; b0/; p � Beta.˛1; ˛0/;

where IG.a; b/ denotes an Inverse-Gamma distribution with shape a and scale b.
Classification is conducted based on the magnitude of the posterior mean of the
latent indicator bg; a posterior mean close to 1 indicating membership in the non-
null group for feature g. The Integrated Nested Laplace Approximations (INLA)
framework is another popular approximate Bayesian method, introduced in Rue
et al. (2009), whose implementation is available in the R-INLA package (Martino
and Rue 2009). However, INLA does not fit any of the mixture models mentioned
above because they are not members of the class of latent Gaussian models. In the
context of model (1), numerical experiments show that MCMC produces believable
approximate marginal posterior densities which can be regarded as proxies of
the true marginal posteriors despite the label-switching phenomenon (Marin and
Robert 2007) well-known for finite mixture models. In Sect. 7.2, we show that VB
approximated densities are comparable to MCMC approximated ones in terms of
both posterior mean and variance in this context, but VB achieves substantial gains
in computational speed over MCMC.
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More general finite mixture models are common for (empirical and fully)
Bayesian inference in high-dimensional application areas, such as bioinformatics.
Computations for the two-groups model in Smyth (2004), for example, are burden-
some due to presence of the gene-specific error variance and different variances for
the two-component distributions. Fully Bayesian inference via MCMC procedures
is limited in practicality due to heavy computational burden resulting from the high-
dimensionality of the data.

Our objective in this chapter is to investigate the feasibility and performance of
VB for finite mixture models in sparse classification in a fully Bayes framework. We
will see in later sections that there are significant computational issues with MCMC
implementations in this context, making this approach impractical. In contrast, VB
is fast, accurate, and easy to implement due to its deterministic nature. Moreover, the
VB algorithm results in a very accurate classifier, despite the fact that it significantly
underestimates the posterior variances of model parameters in some cases. To our
knowledge, GBVA has not been evaluated before in this setting and our investigation
indicates that it does not result in improved accuracy while adding substantially to
the computational burden.

The plan for this chapter is as follows. Section 7.2 reviews theory underlying
the VB method and approximation of marginal posterior densities via VB for the
aforementioned simple two-component mixture model. Motivation behind using
a hierarchical mixture model framework and implementation of VB for general
finite mixture models are outlined in Sect. 7.3. We illustrate application of VB via
examples involving simulated and real data in Section 7.4. Finally, we conclude
with some discussion in Sect. 7.5. Many of the technical arguments are given in
Appendix.

7.2 Variational Bayes

7.2.1 Overview of the VB Method

VB is a deterministic estimation methodology based on a factorization assumption
on the approximate joint posterior distribution. This is a free-form approximation in
that implementation of VB does not start with any assumed parametric form of the
posterior distributions. The free-form factors are approximate marginal posterior
distributions that one tries to obtain according to minimization of the Kullback–
Leibler divergence between the approximate joint posterior and the true joint
posterior. As a tractable solution to the minimization problem, the optimal factors
depend on each other, which naturally leads to an iterative scheme that cycles
through an update on each factor. The convergence of the algorithm is monitored via
a single scalar criterion. Ormerod and Wand (2010) and Chapter 10 of Bishop (2006)
present detailed introduction to VB in statistical terms. The VB approximation in
this chapter refers to variational approximation to the joint and marginal posterior
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distributions under, in terminology used in Ormerod and Wand (2010), the product
density (independence) restriction. The concept of a mean-field approximation
has its roots in statistical physics and is a form of VB approximation under a
more stringent product density restriction that the approximate joint posterior fully
factorizes. The basic VB theory is outlined as follows.

Consider a Bayesian model with observed data y, latent variables x and
parameters ‚ D f�1;�2; : : : ;�mg. Denote H D fx;‚g as the collection of
all unknown quantities. The posterior density p.Hjy/ D p.y;H/=p.y/ is not
necessarily tractable due to the integral involved in computing the marginal
data density p.y/. This intractability prevents computing marginal posterior
densities such as p.� ijy/ D

R
p.Hjy/df��ig where f�� ig refers to Hnf� ig D

fx;�1;�2; : : : ;� i�1;� iC1; : : : ;�mg. Two key elements, namely minimization of the
Kullback–Leibler divergence and employment of the product density restriction,
underpin the VB algorithm. The Kullback–Leibler divergence gives rise to a scalar
convergence criterion that governs the iterative algorithm. Through the product
density restriction one assumes independence which allows derivation of tractable
density functions.

For an arbitrary density for H, q.H/,

log p.y/ D
Z

q.H/ log

�
p.y;H/
q.H/

�

dH C
Z

q.H/ log

�
q.H/

p.Hjy/
�

dH: (7.2)

The second integral on the right-hand side of (7.2) is the Kullback–Leibler
divergence between q.H/ and p.Hjy/, i.e. DKL.q.H/kp.Hjy//which is nonnegative.
Hence,

log p.y/ �
Z

q.H/ log

�
p.y;H/
q.H/

�

dH D Cq.y/;

where Cq.y/ denotes the lower bound on the log of the marginal data density. This
lower bound depends on the density q. Given a data set, log p.y/ is a fixed quantity.
This means that if a density q is sought to minimize DKL.q.H/kp.Hjy//, q also
maximizes Cq.y/ making the lower bound a viable approximation to log p.y/.

The product density restriction states that q.H/ factorizes into some partition of
H, i.e. q.H/ D Qk

iD1 qi.hi/, but the parametric form of the qi.hi/ factors is not
specified. It can be shown that, under the product density restriction, the optimal
qi.hi/ takes the following form (Ormerod and Wand 2010):

qi.hi/ / expfE�hi.log p.y;H//g (7.3)

for i D 1; : : : ; k, where expectation is taken over all unknown quantities except hi
with respect to the density

Qk
j¤i qj.hj/.

Since each variational posterior qi.hi/ depends on other variational posterior
quantities, the algorithm involves iteratively updating qi.hi/; 1 	 i 	 k until the
increase in Cq.y/, computed in every iteration after each of the updates qi.hi/; 1 	
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i 	 k has been made, is negligible. Upon convergence, approximate marginal
posterior densities q�i.hi/; 1 	 i 	 k are obtained, as well as an estimate Cq�.y/ of
the log marginal data density log p.y/.

7.2.2 Practicality

As noted in Faes et al. (2011), under mild assumptions convergence of the VB
algorithm is guaranteed (Luenberger and Ye 2008, p. 253). Bishop (2006) refers
to Boyd and Vandenberghe (2004) and states that convergence is guaranteed
because the lower bound Cq.y/ is convex with respect to each of the factors qi.hi/.
Convergence is easily monitored through the scalar quantity Cq.y/. Moreover, upon
convergence, since Cq�.y/ approximates log p.y/, VB can be used to compare
solutions produced under the same model but with different starting values or
different orders of updating the q-densities. Because the optimal set of starting
values corresponds to the largest Cq�.y/ upon convergence, starting values can be
determined empirically with multiple runs of the same VB algorithm. Experiments
on starting values are generally undemanding due to high computational efficiency
of the VB method, and are especially useful for problems where the true solutions
are multimodal.

Computational convenience of VB is achieved if conjugate priors are assigned
for model parameters and the complete-data distribution belongs to the exponential
family. Beal (2003) describes models that satisfy these conditions as conjugate-
exponential models. In these models the approximate marginal posterior densities
qi.hi/ take the conjugate form and the VB algorithm only requires finding the char-
acterizing parameters. The induced conjugacy plays an important role in producing
analytical solutions. Feasibility of VB for models with insufficient conjugacy is an
open research area.

In practice, it suffices to impose some relaxed factorization of q.H/ as long as
the factorization allows derivation of a tractable solution. Although, in many cases,
the chosen product density restriction leads to an induced product form of factors of
q.H/, the imposed factorization and induced factorization of q.H/ are generally not
equivalent and may lead to different posterior independence structures.

As an introductory example, consider a simple fully Bayesian model with
a N.
; �2/ data distribution and a bivariate Normal-Inverse-Gamma prior
p.
;�2/.
; �

2/ D p
j�2.
j�2/p�2.�2/ with p
j�2.
j�2/ D N.
0; �0�2/ and
p�2.�

2/ D IG.A0;B0/. Imposing the product density restriction q.
;�2/.
; �
2/ D q


.
/q�2.�
2/ leads to independent Normal marginal posterior q
.
/ and Inverse-

Gamma marginal posterior q�2.�
2/. However, not imposing the product density

restriction in this case leads to the bivariate Normal-Inverse-Gamma joint posterior
q
j�2.
j�2/q�2.�2/ that reflects a different posterior independence structure.
Hence, although choice of prior and product density restriction is problem-
based, caution should be taken in examining possible correlation between model
parameters, because imposing too much factorization than needed risks poor VB
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approximations if dependencies between the hidden quantities are necessary. This
type of degradation in VB accuracy is noted in Ormerod and Wand (2010). There is a
trade-off between tractability and accuracy with any type of problem simplification
via imposed restrictions.

7.2.3 Over-Confidence

Underestimation of posterior variance of the VB approximate density has been
observed in different settings such as those in Wang and Titterington (2005),
Consonni and Marin (2007), and Rue et al. (2009). We review a possible reason
why the variance of the approximate posterior given by VB tends to be smaller than
that of the true posterior.

As explained previously by (2), a density q.H/ is sought to minimize the
Kullback–Leibler divergence between itself and the true joint posterior p.Hjy/.
Upon examination of the form of the Kullback–Leibler divergence used in the VB
method,

DKL.q.H/kp.Hjy// D
Z

q.H/

�

� log

�
p.Hjy/
q.H/

��

dH;

Bishop (2006) points out that, in regions of H space where density p.Hjy/ is close
to zero, q.H/, the minimizer, has to be close to zero also; otherwise the negative log
term in the integrand would result in a large positive contribution to the Kullback–
Leibler divergence. Thus, the optimal q�.H/ tends to avoid regions where p.Hjy/ is
small. The factorized form of q�.H/ implies that each of the factor q�-densities in
turn tends to avoid intervals where the true marginal posterior density is small. Thus,
the marginal posterior densities approximated by VB are likely to be associated with
underestimated posterior variance and a more compact shape than the true marginal
posterior densities.

7.2.4 Simple Two-Component Mixture Model

For model (1) where g D 1; 2; : : : ;G, with known hyperparameters 0; �20 ;  0; �
2
 0

,
a0; b0; ˛1; ˛0, observed data E D fdgg and hidden quantities H D f;  ; �2; p; fbggg,
imposing the product density restriction q.H/ D qfbgg.fbgg/ � q.;p/.; p/ �
q . / � q�2.�

2/ results in q-densities qfbgg.fbgg/ D
Q

g qbg.bg/ D
Q

g Bernoulli
�

exp. O�1g/
exp. O�1g/C exp. O�0g/

�

, q ./ D N.cM ; bV /, qp.p/ D Beta. Ǫ1; Ǫ0/, q . / D
N.dM ;cV /, and q�2.�

2/ D IG.Oa; Ob/. Optimal q-densities are found by employing
the following iterative scheme for computing variational parameters.
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1. Set Oa D G
2
C a0. Initialize M̂��2 D 1, O�0g D O�1g D 0 for each g, and

dMbg D
�
1 ifrank.dg/ � 0:9G
0 otherwise

foreachg;

dM D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

GX

gD1
dg �

X

fgWrank.dg/�0:9Gg
dg

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
:

2. Update

cM  
P

g M̂��2



.1 �dMbg/dg CdMbg.dg �dM /

�

GM̂��2 C 1
�20

dM  
P

g M̂��2dMbg.dg �cM /
P

g
dMbgM̂��2 C 1

�2 0

Ob 1

2

X

g

0

B
@

1

GM̂��2 C 1
�20

C
dMbg

P
g
dMbgM̂��2 C 1

�2 0

1

C
A

C 1

2

X

g



.1�dMbg/.dg � cM /

2 CdMbg.dg �cM �dM /
2
�
C b0

M̂��2  OaOb

O�1g  �M̂��2

2

0

B
@

1

GM̂��2 C 1
�20

C 1
P

g
dMbgM̂��2 C 1

�2 0

C .dg �cM �dM /
2

1

C
A

C dlog p

O�0g  �M̂��2

2

0

@ 1

GM̂��2 C 1
�20

C .dg �cM /
2

1

AC ̂log.1 � p/

dMbg  
exp. O�1g/

exp. O�1g/C exp. O�0g/ :
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3. Repeat (2) until the increase in

Cq.y/ D
X

g

8
<

:
�1
2

log.2�/ � M̂��2

2
� .1 �dMbg/

0

@ 1

GM̂��2 C 1
�20

C .dg �cM /
2

1

A

� M̂��2

2
�dMbg

0

B
@

1

GM̂��2 C 1
�20

C 1
P

g
dMbgM̂��2 C 1

�2 0

C.dg �cM �dM /
2

1

C
A

9
>=

>;

�
X

g

n
dMbg log dMbg C .1 �dMbg/ log.1 �dMbg/

o

C log

 

Beta

 
X

g

dMbg C ˛1;
X

g

.1 �dMbg/C ˛0
!!

� log .Beta.˛1; ˛0//

C 1

2

0

@log

0

@ 1

GM̂��2 C 1
�20

1

A� log �20 C 1

�

1

GM̂��2 C 1
�20

C


cM � 0

�2

�20

1

C
C
C
C
A

C 1

2

0

B
B
B
B
B
B
@

log

0

B
@

1
P

g
dMbgM̂��2 C 1

�2 0

1

C
A� log �2 0 C 1

�

1
P

g
dMbgM̂��2 C 1

�2 0

C


dM �  0

�2

�2 0

1

C
C
C
C
C
A

C a0 log b0 � log�.a0/ � b0 Oa
Ob � Oa log.Ob/C log�.Oa/C Oa

from previous iteration becomes negligible.
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4. Upon convergence, the remaining variational parameters are computed:

bV  1

GM̂��2 C 1
�20

and cV  1
P

g
dMbgM̂��2 C 1

�2 0

:

Here, we set starting values for dMbg such that dMbg D 1 for genes that correspond

to the top 10% of dg values and dMbg D 0 otherwise. Classification with a different

set of starting values such that dMbg D 1 for genes that correspond to the top 5% and

bottom 5% of dg values and dMbg D 0 otherwise leads to almost the same results. In
practice, we recommend using the “top-5%-bottom-5%” scheme of setting starting
values for dMbg in the VB algorithm for classification with little prior information on
location of the mixture component distributions rather than randomly generating
values for dMbg—empirical evidence suggests that VB with randomly generated
labels does not produce reasonable solutions.

7.2.5 Marginal Posterior Approximation

To investigate we simulated 20,000 values from the simple two-component model
(1) with true values  D 0,  D 20, p D 0:2, bg � Bernoulli.p/ i:i:d: for
each g, and �2 D 36. In the Bayesian analysis  and  were assigned N.0; 100/
priors, �2 an IG.0:1; 0:1/ prior, and p a Beta.0:1; 0:9/ prior. Starting values and
priors used in VB, MCMC, and the base VB of GBVA are kept the same for
comparison. MCMC was implemented in WinBUGS via R with 1 chain of length
20,000, a burn-in 15,000, and a thinning factor of 10. Figure 7.1 shows that VB-
approximated marginal posterior densities closely match the MCMC-approximates.
In particular, the posterior mean of fbgg estimated by VB, when plotted against
posterior mean of fbgg estimated by MCMC, almost coincides with the intercept
zero slope one reference line, indicating little difference between VB and MCMC in
terms of classification. In fact, with 3972 simulated non-null genes and a 0.8 cutoff
for classification, MCMC identified 3303 genes as non-null with true positive rate
0.803 and false positive rate 0.00705, and VB also detected 3291 genes as non-null
with true positive rate 0.800 and the same false positive rate as MCMC. Moreover,
on an Intel Core i5-2430M 2.40 GHz, 6 GB RAM computer, it took VB 1.26 s to
reach convergence with a 10�6 error tolerance, whereas MCMC procedure took
about 13 min. Both methods are suitable for classification and posterior inference,
with VB demonstrating an advantage in speed, in this example.

The grid-based variational approximations (GBVA) method detailed in Ormerod
(2011) was developed to correct for over-confidence in VB densities. The method
involves running a base VB algorithm and subsequent VB algorithms for density
approximation with the aid of numerical interpolation and integration. For each
marginal posterior density of interest, re-applying VB over a grid of values in GBVA
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is similar in spirit to re-applying Laplace approximation in the INLA (Rue et al.
2009) method, and is the key step towards refining the marginal posterior density
approximated by the base VB algorithm. We observe in Fig. 7.1 that, although
GBVA appears to correct for underestimation of posterior variance of VB, loss
in accuracy occurs in estimation of posterior mean in comparison with MCMC.
Experiments with grid selection and precision of numerical methods did not correct
the shift in posterior mean, and a systematic error caused by grid-based calculations
of the unnormalized density is suspected. Although the shifts in posterior mean of
GBVA densities observed in Fig. 7.1 are small in scale, for posterior inference the
mismatch in mean may incur more serious loss in accuracy than underestimation
of posterior variance of VB densities. Moreover, in the example, the total run time
of GBVA (almost 6 h) is even larger than that of MCMC (13 min). The undesirable
speed of GBVA is due to the fact that refining the marginal posterior of the latent
variable fbgg must go through two iterations, i.e. two grid points 0 and 1, for each
one of the G genes. Therefore, in GBVA implementation, this step alone requires
2 � G iterations. This example suggests that for a “large p small n” problem,
the approach of calculation over grid values can easily render the GBVA method
computationally infeasible.

7.3 VB for a General Finite Mixture Model

7.3.1 Motivation

For large-scale problems that involve complex models on high-dimensional data, it
is natural to consider MCMC for approximation of notoriously intractable marginal
posterior densities. However, in many cases implementation of MCMC is imprac-
tical. MCMC, because of its sampling-based nature, becomes cumbersome for
hierarchical “large p small n” models where high-dimensional unknown quantities
on various hierarchies are inter-dependent. To achieve desirable accuracy of MCMC
therefore requires (multiple) long chains. Yet convergence of high-dimensional
MCMC chains is difficult to monitor (Cowles and Carlin 1996), and optimal MCMC
chain settings often have to be determined based on heuristics. Moreover, in mixture
models, an MCMC chain may produce evaluation of a marginal posterior density
that is the same as other chains but associated with different component labels. The
label-switching issue has been noted, for example in De Freitas et al. (2001), Marin
and Robert (2007), and Grimmer (2011). Without correction of label-switching,
misleading classification may arise in cases where multiple chains are used and the
MCMC solution, taken as an average over chains with different or even contrasting
labels, is wrong.

A common strategy for improving efficiency in approximation problems is
to make simplifying assumptions so that plausible solutions for the complicated
problem are obtained with satisfactory speed and accuracy. This is the motivation
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behind implementing VB for approximation of marginal posterior densities for finite
mixture models in sparse classification problems. In this context, VB is promising in
achieving comparable accuracy to MCMC given limited computational resources,
with easy-to-monitor convergence and no label-switching due to its deterministic
nature, in scenarios where MCMC implementation is unattractive.

7.3.2 The B-LIMMA Model

During the last decade, technological advances in molecular biology have led
researchers toward high-throughput genomic studies, the simultaneous measure-
ment of the expression levels of tens of thousands of genes has become a mainstay
of biological and biomedical research. The use of microarrays to discover genes
differentially expressed between two or more groups has been applied widely and
has made fundamental breakthroughs in biomedical research possible.

The first approach to identify differentially expressed genes was fold-change esti-
mation, however this approach did not take sampling variability into account. The
t-test is likely the most popular naive method for assessing differential expression.
Computing a t-statistic can be problematic because the variance estimates can be
skewed by genes having a very low variance and its application for small sample
sizes gives low statistical power. Consequently, the efficacy of a t-test along with
the importance of variance modeling is problematic and has led to the development
of many alternatives.

We illustrate a VB implementation for a general finite mixture models using
a fully Bayesian version of the LIMMA model introduced by Smyth (2004). The
LIMMA model is designed for testing significance of differential gene expression
in microarray experiments via individual moderated t-tests and posterior log odds
ratios. Model parameters can be estimated via an empirical Bayes approach, from
which closed form test-statistics can be obtained. For a two-sample experimental
design, let yijg denote the normalized log expression of gene g in sample j from
treatment group i, where g D 1; : : : ;G, i D 1; 2, and j D 1; : : : ; nig. Then
dg D Ny2:g � Ny1:g represents the observed differential expression for gene g, and
mg DPi

Pnig
j .yijg � Nyi:g/2=fg, where fg D n1g C n2g � 2, is the mean squared error.

A fully Bayesian version of the LIMMA model in this context is the following
hierarchical mixture model:

dgjbg;  g; �
2
�;g;  D  C bg g C �g; (7.4)

mgj�2�;g �
�2�;g�

2
fg

fg
; wherefg WD n1g C n2g � 2;

 gj�; �2�;g � N.0; ��2�;g/;
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�gj�2�;g � N.0; �2g /; where�2g WD �2�;gcg; cg WD 1

n1g
C 1

n2g
;

bgjp � Bernoulli.p/ i:i:d:; �2�;g � IG .A�;B�/ i:i:d:;

 � N
�

0; �

2
0

	
; � � IG .A�;B�/ ; p � Bernoulli .˛1; ˛0/ :

In this model  represents the overall mean treatment difference,  g is the gene-
specific effect of the treatment, and bg is a latent indicator which takes the value 1
if gene g is non-null, i.e. is differentially expressed in the two treatment groups.

We refer to the above model as the B-LIMMA model. Derivation of the VB
algorithm for the B-LIMMA model, which we refer to as VB-LIMMA, is as follows.

The set of observed data and the set of unobserved data are identified as y
and H, respectively. For the B-LIMMA model, y D ffdgg; fmggg and H D
ffbgg; f gg; f�2g g; ; �; pg. The complete data log likelihood is

log p.y;H/ D
X

g

log p.dgjbg;  g; �
2
g ; /C

X

g

log p.mgj�2g /C
X

g

log p. gj�; �2g /

C
X

g

log p.bgjp/C log p./C log p.�/C
X

g

log p.�2g /C log p.p/:

In particular, the observed data log likelihood involves

log p.dgjbg;  g; �
2
g ; / D

1

2
log

�
2���2g

	

� 1

2�2g


.1 � bg/.dg � /2 C bg.dg �  �  g/

2
�
;

log p.mgj�2g / D � log

 
�2g

cg fg

!

� log

�

2
fg
2 �

�
fg
2

��

C
�
fg
2
� 1

�

log

 
mgcg fg
�2g

!

� 1
2

 
mg cgfg
�2g

!

:

The product density restriction is imposed such that q.H/ D qfbgg.fbgg/ �
qf gg.f gg/ � qf�2g g.f�2g g/ � q.;�;p/.; �; p/. Further factorizations are induced by
applying (3):

qfbgg.fbgg/ D
Y

g

qbg.bg/; qf gg.f gg/ D
Y

g

q g. g/;

qf�2g g.f�2g g/ D
Y

g

q�2g .�
2
g /; and q.;�;p/.; �; p/ D q ./q�.�/qp.p/:
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Then, approximate marginal posterior distributions, with cM� denoting the vari-
ational posterior mean

R
�q� .�/d� , and bV� denoting the variational posterior

variance
R
.� � cM� /

2q� .�/d� , are q ./ D N.cM ; bV /, q�.�/ D IG.bA�; bB�/,
qp.p/ D Beta. b̨1; b̨0/, q g. g/ D N.dM g ;dV g/, q�2g .�

2
g / D IG.dA�2g ;

dB�2g /,

and qbg.bg/ D Bernoulli.dMbg/. Updating the q-densities in an iterative scheme
boils down to updating the variational parameters in the scheme. Convergence is
monitored via the scalar quantity Cq.y/, the lower bound on the log of the marginal
data density

Cq.y/ D Eq.H/

(
X

g

log p.dgjbg;  g; �
2
g ; /C

X

g

log p.mgj�2g /

C
X

g

log p.�2g /�
X

g

log q.�2g /C log p./ � log q./

C
X

g

log p. gj�; �2g /C log p.�/�
X

g

log q. g/� log q.�/

C
X

g

log p.bgjp/C log p.p/�
X

g

log q.bg/ � log q.p/

)

:

It is only necessary to update the variational posterior means bM	 in the iterative
scheme. Upon convergence, the other variational parameters are computed based on
the converged value of those involved in the iterations. Therefore, the VB-LIMMA
algorithm consists of the following steps:

Step 1: Initialize bA�; bB�; fdA�2g g; fdB�2g g; fdM gg; fdMbgg.
Step 2: Cycle through cM ; bB�; fdB�2g g; fdM gg; fdMbgg iteratively, until the increase
in Cq.y/ computed at the end of each iteration is negligible.
Step 3: Compute bV ; fdV gg; b̨1; b̨0 using converged variational parameter values.

7.4 Numerical Illustrations

7.4.1 Simulation

The goal of this simulation study is to assess the performance of VB as a classifier
when various model assumptions are correct, and to determine the accuracy of VB
approximation of marginal posterior distributions.
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7.4.1.1 The B-LIMMA Model

Under the B-LIMMA model (4), the difference in sample means fdgg and mean
squared errors fmgg are simulated according to model (1) of Bar et al. (2010)
with 
 D 0 and �g � 0. VB-LIMMA approximates a marginal posterior density
whose mean is then used as posterior estimate of the corresponding parameter for
classification. Performance comparison is made between VB implemented in R and
the widely used limma (Smyth 2005) package.

A data set containingG D 5000 genes was simulated under the B-LIMMA model
with n1g � n2g � 8;  D 0; �2g � IG.41; 400/ i:i:d:, and  g and bg generated as
specified in model (4). The shape and scale parameter values in the Inverse-Gamma
distribution were chosen such that �2g ; g D 1; : : : ;G; were generated with mean
10 and moderate variation among the G genes. We set p, the non-null proportion,
and �, the variance factor such that p 2 f0:05; 0:25g; � 2 f 1

2
; 2g. Simulations

with various sets of parameter values were investigated, but these values lead to
representative results among our experiments. For classification, a N.0; 100/ prior
for  , IG.0:1; 0:1/ prior for � and for �2�;g, and a Beta.1; 1/ prior for the non-null
proportion p were used. In the VB-LIMMA algorithm, the error tolerance was set
to be 10�6. The starting values were bA� D bB� D 0:1; �2�;g � 1;dM g � 0, and
dMbg D 1 for genes that are associated with the 5% largest values of dg or the

5% smallest values of dg, and dMbg D 0 otherwise. For each gene g, dMbg was the
VB-approximated posterior mean of the latent indicator bg, i.e. the gene-specific
posterior non-null probability. Hence, for detection of non-null genes, gene ranking
based on dMbg can be compared with gene ranking based on the B-statistic, or
equivalently gene-specific posterior non-null probability computable from the B-
statistic, produced by limma.

We note that, varying the value of � while keeping �2�;g unchanged in simulation
varies the level of difficulty of the classification problem based on the simulated
data. This is because, the B-LIMMA model specifies that the null component
N.; �2�;gcg/ differs from the non-null component N.; �2�;gcg C ��2�;g/ only in
variance, and this difference is governed by the multiplicative factor �. Therefore,
data simulated with large � tends to include non-null genes that are far away from
mean  and thus clearly distinguishable from null genes. The less overlap of the non-
null and null component distributions, the easier the task of sparse classification
for either method. This is reflected in improved ROC curves for both methods as
� is changed from 0.5 to 2 in Figs. 7.2 and 7.3. In fact, in Figs. 7.2 and 7.3 we
also see that for simulated data with p 2 f0:05; 0:25g; � 2 f 1

2
; 2g, classification by

VB-LIMMA is almost identical to classification by limma in terms of ROC curve
performance. A cutoff value is defined such that if dMbg � cutoff then gene g is
classified as non-null. Accuracy is defined as TPCTN

PCN and false discovery rate (FDR)
as FP

TPCFP , as in Sing et al. (2007). Focusing on a practical range of cutoff values, i.e.
.0:5; 1/, in Figs. 7.2 and 7.3, we see that accuracy and FDR of VB are both close
to those of limma, and that VB has higher accuracy than limma. In summary,
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our experiment suggests that VB-LIMMA, the fully Bayesian classifier, acts as a
comparable classifier to limma.

7.4.1.2 A Mixture Model Extended from the LIMMA Model

The two-component mixture model in Bar et al. (2010) differs from the LIMMA
model in the assumption on the gene-specific treatment effect  g, specifically

 gj ; �2 � N. ; �2 / .i:i:d:/ (7.5)

where for the random effect the mean  is allowed to be non-zero and the variance
�2 is assumed to be independent of the gene-specific error variance. This model is
referred to as the LEMMA model in Bar et al. (2010). The LEMMA and LIMMA
models both facilitate simultaneous testing of treatment effects on a large number of
genes by “borrowing strength” across the genes. In Bar et al. (2010), an empirical
Bayes approach is adopted in which parameter estimation of the prior on the error
variance �2�;g is accomplished through maximum marginal likelihood and point
estimates of the global parameters are obtained via the EM algorithm. In the EM
algorithm, evaluation of the complete data likelihood involves integrating over the
prior on the error variance �2�;g which is achieved via a Laplace approximation.
In what follows we consider a natural extension to the LEMMA model: a fully
Bayesian three-component mixture model, B-LEMMA. Formulation of the B-
LEMMA model and details of the corresponding VB-LEMMA algorithm are similar
to model (4) and what is outlined in Sect. 7.3.2, and are included in Appendix.

The computational method in Bar et al. (2010) for estimation via Laplace
approximation and EM algorithm is implemented in the lemma R package (Bar and
Schifano 2010). We consider an MCMC procedure for the B-LEMMA model so that
the performance of VB-LEMMA for classification is assessed through comparison
with MCMC-LEMMA with reference to lemma.

A data set containing G D 5000 genes was simulated under the B-LEMMA
model using n1g � 6; n2g � 8;  D 0; p1 D p2 D 0:1;  D 20; �2 D
2; �2g � IG.41; 400/ i:i:d:, and  g was generated based on (5). In the VB-LEMMA
algorithm, the error tolerance was set to be 10�6. Starting values were set under
the same scheme as the VB-LIMMA algorithm, except that the parameter � was
replaced by  . The posterior mean of  , dM , was initialized as the average of the
absolute difference between the mean of dg and the mean of the 5% largest dg, and
the absolute difference between the mean of dg and the mean of the 5% smallest dg.
Non-informative independent priors were assigned to the global parameters, so that
 and  each had a N.0; 100/ prior, �2 and �2g each had an IG.0:1; 0:1/ prior, and
.p1; p2; 1 � p1 � p2/ had a Dirichlet.1; 1; 1/ prior. For comparison of classification
performance, we used the same prior distributions and starting values in MCMC-
LEMMA as in VB-LEMMA. MCMC-LEMMA was run with 1 chain of length
1,200,000, a burn-in period 1,195,000, and a thinning factor 10. We made this choice
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of chain length to ensure chain convergence after experimenting with various chain
settings.

Because point estimates suffice for classification, we present VB-LEMMA and
MCMC-LEMMA classification results using posterior means computed from the
approximate posterior marginal densities. Genes are classified with a prescribed
cutoff value. That is, based on the mean from the approximate marginal posterior
of .b1g; b2g/ outputted by the VB-LEMMA algorithm, dMb1g � cutoff () gene

g belongs to non-null 1 component, and dMb2g � cutoff () gene g belongs to
non-null 2 component. The posterior mean of the .b1g; b2g/ sample for any gene g
is calculable from the MCMC samples and is used to classify gene g with the same
cutoff. Point estimates outputted by lemma run with default starting values are used
as a reference for accuracy of point estimates.

On an Intel Core i5-2430M 2.40 GHz, 6 GB RAM computer, it took lemma,
VB-LEMMA, and MCMC-LEMMA 20.94 s, 29.24 s, and 25,353.88 s (7 h) to run,
respectively. Table 7.1 shows the lemma point estimates and the approximate
marginal posterior means from VB-LEMMA and from MCMC-LEMMA. The
parameter estimates from the three methods are all close to the true values except for
�2 . The disagreement between the MCMC-LEMMA and VB-LEMMA estimates
of �2 is also observable in Fig. 7.4 where the marginal posterior density plots are
displayed. In Fig. 7.4, the posterior means of VB-LEMMA and MCMC-LEMMA
agree well with each other and with lemma, since the vertical lines almost coincide
for all parameters except for �2 . Deviation of the MCMC-LEMMA estimate of �2 
6.993 from the true value 2 renders chain convergence still questionable, despite the
long chain we use. Yet we see in Fig. 7.5, which contains the mixture and component
densities plots, that VB-LEMMA and MCMC-LEMMA appear to identify the
correct non-null 1 and non-null 2 genes since the inward ticks and outward ticks on
the x-axis locate at where the two non-null components truly are in the second and
fourth plots. True positive rate, TPR, is defined as TP1CTP2

P1CP2 and accuracy defined
as TP1CTP2CTN

P1CP2CN , where TP1, TP2, TN, P1, P2, and N are, respectively, number of
correctly labeled non-null 1 genes, number of correctly labeled non-null 2 genes,
number of correctly labeled null genes, number of true non-null 1 genes, number
of true non-null 2 genes, and number of true null genes, such that in this example
P1CP2CN D G. Figure 7.5 and Table 7.1 confirm that VB-LEMMA and MCMC-
LEMMA classify the genes correctly with high true positive rate and accuracy on
the simulated data.

The reason why we implement MCMC-LEMMA with only one chain is that
we wish to avoid the label-switching issue noted in Sect. 7.3.1. For MCMC-
LEMMA with one chain, should label-switching occur,  would have the opposite
sign and the non-null proportions p1 and p2 would exchange positions, leading
to classification results in which the labels of non-null components 1 and 2 are
switched. Thus, with a single chain, the label switching issue is easily resolved. If
multiple chains of  are run, some will have switched labels. The average of the
MCMC simulated samples would then be misleading. Although using one chain
requires a much longer chain than when multiple chains are used for reaching
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Table 7.1 Posterior estimates, deduced number of non-null genes, and TPR and accuracy
for lemma, VB-LEMMA, and MCMC-LEMMA on simulated B-LEMMA data with G D
5000; n1g � 6; n2g � 8; �2g � IG.41; 400/ .i:i:d:/ and cutoffD 0:8

True lemma VB-LEMMA MCMC-LEMMA

 0 �0.00650 0.00432 �0.000682

 20 19.764 19.850 19.737

�2 2 5.247 4.278 6.993

p1 0.1 0.105 0.103 0.105

p2 0.1 0.105 0.104 0.105

Number of genes in non-null 1 525 520 508 510

Number of genes in non-null 2 524 516 518 518

TPR NA 0.987 0.977 0.978

Accuracy NA 0.997 0.995 0.995

convergence, it allows us to distinguish label-switching from non-convergence and
easily correct for label-switching in MCMC-LEMMA output.

One approach to address label-switching issue in mixture models is post-
processing of MCMC solutions. In the B-LEMMA classification problem, once
label-switching is detected, we can post-process MCMC-LEMMA classification
results by giving the opposite sign to the MCMC sample of  , switching the p1
sample for the p2 sample and vice versa, and exchanging the non-null 1 and non-null
2 statuses. To make Fig. 7.6, where performance of VB-LEMMA and MCMC-
LEMMA was recorded for 30 simulated data sets, the data simulation settings and
the settings for the two methods were kept unchanged from the previous experiment,
and MCMC-LEMMA results were post-processed according to the aforementioned
scheme wherever label-switching occurred. Posterior means of �2 estimated by
MCMC-LEMMA persisted as worse over-estimates than those estimated by VB-
LEMMA. Nonetheless, the component densities plots for the 30 simulated data
sets (not shown) with gene labels all appear similar to those in Fig. 7.5, indicating
that both VB-LEMMA and MCMC-LEMMA are reliable classifiers in this context.
However, VB-LEMMA is far superior in terms of computational efficiency.

Another way of avoiding label-switching issue in mixture models is assigning
a prior distribution on the parameter that appropriately restricts the sampling
process in MCMC, as Christensen et al. (2011) point out. Although the mixture
and component densities plots (not shown) show that MCMC-LEMMA, when
implemented with a half-normal prior on  , classifies the genes satisfactorily,
restricting the mean of  to a positive value changes the marginal data distribution
of the B-LEMMA model. Therefore, direct comparisons with the modified MCMC-
LEMMA are no longer valid because VB-LEMMA and MCMC-LEMMA with a
half-normal prior on  are based on two different models.

These B-LEMMA simulation experiments indicate that VB-LEMMA efficiently
and accurately approximates fully Bayesian estimation and classification results. In
contrast, MCMC-LEMMA, although theoretically capable of achieving extremely
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high accuracy, requires substantially more work in overcoming issues such as non-
convergence and label-switching.

7.4.1.3 A Mixture Model for Count Data

Mass-spectrometry-based shotgun proteomics has enabled large-scale identification
and differential profiling of complex proteomes yielding significant insights into
relevant biological systems. This approach typically involves liquid chromatography
tandem mass spectrometry analysis and employs hybrid mass spectrometers with
high data acquisition efficiency for intensity-based sampling of peptide ions. More
recently, label-free techniques, such as peak intensity measurements and spectral
counting, have emerged. Spectral counting involves measuring the abundance of a
given protein based on the number of tandem mass spectral observations for all its
constituent peptides. Spectral counts have been shown to correlate well with the
abundance of the corresponding protein extending over a linear dynamic range of
at least two orders of magnitude for complex protein mixtures. Most proteomics
studies are interested in finding proteins, the abundance of which changes in
different cellular states, under different conditions, or with respect to different
treatments. Simple statistical methods have been employed to perform one protein at
a time analysis using, for example, Wald or likelihood-ratio statistics, analogous to
the t-test in the microarray context. In this subsection we propose an alternative VB
approach for comparing spectral counts under two conditions, the approach allows
for simultaneous testing of several thousand proteins. This two-group classification
approach is analogous to the methods developed in Sect. 7.3.2.

Booth et al. (2011) propose a mixture of log-linear models with random
protein specific factors for classifying proteins into null and non-null (differential
abundance) categories. Their model, which is fully Bayesian, can be written as
follows:

yijj
ij � Poisson.
ij/; (7.6)

log
ijjIi; ˇ0; ˇ1; b0i; b1i D ˇ0 C b0i C ˇ1Tj C b1iIiTj C ˇ2IiTj C logLi C logNj;

Iij�1 � Bernoulli.�1/ i:i:d:; bkij�2k � N.0; �2k / i:i:d:; k D 0; 1;
ˇm � N.0; �2ˇm/; m D 0; 1; 2; ��2k � Gamma.A�2k ;B�2k /; k D 0; 1;
�1 � Beta.˛; ˇ/;

where yij is the spectral count of protein i, i D 1; : : : ; p, and replicate j, j D 1; : : : ; n.
Li is the length of protein i, Nj is the average count for replicate j over all proteins,
and

Tj D
�
1 if replicate j is in the treatment group
0 if replicate j is in the control group.
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In fact, conjugacy in this Poisson GLMM is not sufficient for a tractable solution
to be computed by VB. Therefore, a similar Poisson–Gamma HGLM where the
parameters ˇm;m D 0; 1; 2 and the latent variables bki; k D 0; 1 are transformed is
used for the VB implementation:

yijj
ij � Poisson.
ij/; (7.7)

log
ijjIi; ˇ0; ˇ1; b0i; b1i D ˇ0 C b0i C ˇ1Tj C b1iIiTj C ˇ2IiTj C logLi C logNj;

Iij�1 � Bernoulli.�1/ i:i:d:; bkij�ki D log.��1ki /; k D 0; 1;
�kijık � IG.ık; ık/ i:i:d:; k D 0; 1; ık � Gamma.Aık ;Bık/; k D 0; 1;
ˇmj�m D log.��1m /; m D 0; 1; 2; �m � IG.A�m ;B�m/; m D 0; 1; 2;
�1 � Beta.˛; ˇ/:

As before classification is inferred from the posterior expectations of the latent
binary indicators Ii; i D 1; : : : ; p. This fully Bayesian, two-component mixture
model allows for derivation of a VB algorithm, VB-proteomics, the details of which
are shown in Appendix.

For any real data, the exact model that the data distribution follows is unknown.
To imitate challenges in sparse classification on real data sets, we simulated data
from each of the two models: Poisson GLMM (6) and Poisson–Gamma HGLM
(7), and applied VB-proteomics to both data sets. MCMC-proteomics, also derived
based on Poisson–Gamma HGLM (7), was implemented via OpenBUGS in R
with a chain of length 600,000, a burn-in period 595,000, and a thinning factor
5. Starting values implemented in VB-proteomics were consistent with those in
MCMC-proteomics.

Two data sets, one following the Poisson GLMM (6) with ˇ0 D �7:7009, ˇ1 D
�0:1765, ˇ2 D 0, �20 D 1, �21 D 4 and the other following the Poisson–Gamma
HGLM (7) with �0 D 2210:336, �1 D 1:193, �2 D 1, ı0 D 1, ı1 D 0:2 were
generated. In each data set there were four replicates under each treatment and p D
1307 proteins. The non-null indicator was generated with �1 D 0:2. These values
were chosen so that the simulated data sets were similar to the Synthetic twofold
data analyzed in Booth et al. (2011).

Table 7.2 gives the classification and computational performance of VB-
proteomics and MCMC-proteomics for the two simulated data sets on an Intel
Core i5-2430M 2.40 GHz, 6 GB RAM computer. The longer running time and the
larger deviation of posterior mean of �1 from its true value associated with the
simulated data under Poisson GLMM in Table 7.2 shows that it is indeed more
difficult for VB-proteomics to perform classification on data from the “wrong”
model. Nonetheless, VB-proteomics identifies the extreme proteins for both data
sets with similar accuracy regardless of which model the data was generated from,
and is much more desirable than MCMC-proteomics in terms of computational
speed.
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Table 7.2 Proteomics count data: simulation under the two models and VB-proteomics and
MCMC-proteomics classifications

Poisson GLMM Poisson–Gamma HGLM

True VB MCMC True VB MCMC

Number of non-nulls 259 109 96 262 103 90

�1 0.2 0.0856 0.160 0.2 0.122 0.218

Accuracy 0.878 0.874 0.871 0.865

Time 54 s 7.5 h 10 s 7.4 h

Total number of proteins is 1307. Cutoff is 0.8. Accuracy is defined in Sect. 7.4.1.1

Figures 7.7 and 7.8 show plots of the log ratios of total counts (C1) in treatment
and control groups against protein number, and ROC curves comparing performance
of the model-based VB-proteomics, MCMC-proteomics approaches with one pro-
tein at a time Score tests. These plots clearly indicate that VB-proteomics acts as a
better classifier than individual Score tests and as a comparable classifier to MCMC-
proteomics in terms of ROC curve, accuracy, and false discovery rate performance.

7.4.2 Real Data Examples

In this section, we further illustrate classification performance of VB for fully
Bayesian finite mixture models on real data. Two microarray examples are inves-
tigated, the APOA1 (Callow et al. 2000) and Colon Cancer (Alon et al. 1999) data
sets.

7.4.2.1 APOA1 Data

The APOA1 data (Callow et al. 2000) contains 5548 genes associated with
measurements from 8 control mice and 8 “knockout” mice. The data was originally
obtained from a two-group design. The histogram of dg in Fig. 7.9 indicates that
the B-LIMMA model (4) is a good fit and that both limma and VB-LIMMA are
applicable for classification, under the assumption that majority of the genes are
null. The small proportion of the non-null genes is known since there are eight
true non-null genes. Figure 7.10 shows the top 10 non-null genes by limma. VB-
LIMMA was implemented, with non-informative priors and starting values such
that dMbg D 1 for genes that are associated with the 5% largest values of dg or

the 5% smallest values of dg and dMbg D 0 otherwise. VB-LIMMA identified the
same top eight genes as limma in 53 s, indicated by close-to-one posterior non-null
probability estimate of those genes in Fig. 7.9. The convest function in limma
gave an over-estimate of the non-null proportion p, 0.130114, whereas VB-LIMMA
produced a closer estimate 0.00162162 to the true value 0.00144.
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Fig. 7.9 APOA1 data: histogram of dg with the eight non-null genes classified by VB-LIMMA
indicated by inward ticks on the x-axis, and posterior mean of bg (i.e., posterior non-null probability
of gene g) estimated by VB-LIMMA with the eight non-null gene numbers identified

Fig. 7.10 limma output: Top 10 genes detected as non-null for APOA1 data. Gene numbers are
shown as row names

7.4.2.2 Colon Cancer Data

The Colon Cancer data (Alon et al. 1999) consists of gene expression values from
2000 genes in 22 controls and 40 treatment samples. Since the two-component
mixture model is a special case of the three-component mixture model with one
of the non-null proportions being zero, both B-LIMMA and B-LEMMA models are
suitable for classification of genes on the Colon Cancer data. Therefore, limma,
VB-LIMMA, lemma, and VB-LEMMA were implemented.

A gene rankings table showing genes that are associated with the top 200 largest
posterior non-null probabilities was produced according to results from each of
the four procedures. For all procedures, the posterior non-null probability for any
gene equals one minus the posterior null probability of that gene. Comparing the
top genes tables reveals that out of the top 200 identified non-null genes, limma
agrees with VB-LIMMA on 151 genes, lemma agrees with VB-LEMMA on 190
genes, and all four methods share 140 genes. This high level of agreement between
the procedures shows that fully Bayesian classification via VB is comparable in
accuracy to classification via empirical Bayes approaches on the Colon Cancer data.
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MCMC-LEMMA was also implemented for the Colon Cancer data to illustrate
performance of MCMC for classification on real data under the B-LEMMA model.
A single chain of length 4,000,000, a burn-in period 3,995,000, and a thinning factor
10 was used to ensure convergence and avoid label-switching. MCMC diagnostics
plots (not shown) suggests that convergence is tolerable, although it took MCMC-
LEMMA 11.7 h to run on an Intel Xeon L5410 2.33 GHz, 8 GB RAM computer.
There are 187 genes present in both top 200 genes tables based on MCMC-LEMMA
and VB-LEMMA classifications, which shows accuracy of VB in classification is
comparable with that of MCMC. From the component densities plots in Fig. 7.11 we
see that the three-component mixture evaluated by VB-LEMMA and by MCMC-
LEMMA are two different yet plausible solutions based on the B-LEMMA model.
It is unknown which solution is closer to the truth. Nonetheless, with a 0.9
cutoff, MCMC-LEMMA did not detect any non-null genes, whereas VB-LEMMA
identified 56 group 1 non-null genes and 30 group 2 non-null genes in 7 s.

7.5 Discussion

VB has been promoted in the statistical and computer science literature as an
alternative to MCMC for Bayesian computation. However, the performance and fea-
sibility of VB has not been widely investigated for hierarchical mixture models used
in sparse classification problems. This chapter demonstrates the implementation of
VB in that context and shows that it is capable of efficiently producing reliable
solutions with classification performance comparable to much slower MCMC
methods. A known issue with VB is its tendency to underestimate variability in
marginal posteriors. GBVA is designed to correct this, but its performance in the
context of hierarchical mixture models is not promising either in terms of accuracy
or computational speed.

As the demand for high-dimensional data analysis tools grows the search for
fast and accurate alternatives to MCMC continues to be an important open research
area. Other deterministic alternatives to MCMC in posterior density approximation
include EP (Minka 2001a,b) and INLA (Rue et al. 2009). In EP, while similar
factorization of the joint posterior density to that in VB is assumed, the approximate
posterior is found by moment matching implied by minimization of the reverse
form of Kullback–Leibler divergence to that used in VB theory. However, as noted
in Bishop (2006), drawbacks of EP include lack of guarantee of convergence and
failure to capture any mode if the true posterior density is multimodal. For the class
of latent Gaussian models, approximate Bayesian inference can be achieved via
INLA (Rue et al. 2009). The INLA method relies on Gaussian approximations and
numerical methods and bypasses any assumption of factorized density forms. A
limitation of INLA is the fact that models that contain non-Gaussian latent variables
in the linear predictor do not belong to the class of latent Gaussian models for which
INLA is applicable.



182 M. Wan et al.

0.00.5

–2
–1

0

d_
g

1
2

–2
–1

0

d_
g

1
2

–2
–1

0

d_
g

1
2

1.0

Density

Density

1.52.0

C
o

lo
n

 C
an

ce
r 

d
at

a
V

ar
ia

ti
o

n
al

 B
ay

es nu
ll

no
n-

nu
ll 

1
no

n-
nu

ll 
2

nu
ll

no
n-

nu
ll 

1
no

n-
nu

ll 
2

M
ar

ko
v 

C
h

ai
n

 M
o

n
te

 C
ar

lo

0.00.51.01.52.0

Density

0.00.51.01.52.0

F
ig
.7

.1
1

Fr
om

le
ft

to
ri

gh
t:

H
is

to
gr

am
of

d g
fo

r
C

ol
on

C
an

ce
r

da
ta

,c
om

po
ne

nt
de

ns
iti

es
es

tim
at

ed
by

V
B

-L
E

M
M

A
,a

nd
co

m
po

ne
nt

de
ns

it
ie

s
es

ti
m

at
ed

by
M

C
M

C
-L

E
M

M
A

.
O

n
th

e
x-

ax
is

,
in

w
ar

d
ti

ck
s

in
di

ca
te

th
e

cl
as

si
fie

d
no

n-
nu

ll
1

ge
ne

s
an

d
ou

tw
ar

d
ti

ck
s

in
di

ca
te

th
e

cl
as

si
fie

d
no

n-
nu

ll
2

ge
ne

s
w

it
h

a
0.

9
cu

to
ff



7 Variational Bayes for Hierarchical Mixture Models 183

VB has been criticized (Rue et al. 2009) for its applicability being restricted to the
class of conjugate-exponential (Beal 2003) models. However, provided that VB is
feasible for a reparameterized model whose inference is close to the original model
(Beal 2003), VB is often a good approach for fully Bayesian inference because of
its relative ease of implementation and computational speed.
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Appendix: The VB-LEMMA Algorithm

The B-LEMMAModel

We consider a natural extension to the LEMMA model in Bar et al. (2010): a fully
Bayesian three-component mixture model, B-LEMMA:

dgj.b1g; b2g/;  g; �
2
�;g;  D  C .b1g � b2g/ g C �g

mgj�2�;g �
�2�;g�

2
fg

fg
; wherefg WD n1g C n2g � 2

 gj ; �2 � N. ; �2 / i:i:d:

�gj�2�;g � N.0; �2g /; where�2g WD �2�;gcg;

cg WD 1

n1g
C 1

n2g

.b1g; b2g; 1 � b1g � b2g/j.p1; p2/ � Multinomial .1I p1; p2; 1 � p1 � p2/ i:i:d:

 � N
�

0 ; �

2
0

	

 � N



 0; �

2
 0

�

�2 � IG
�
A ;B 

	

�2�;g � IG .A�;B�/ i:i:d:

.p1; p2; 1 � p1 � p2/ � Dirichlet .˛1; ˛2; ˛0/ ;

where .b1g; b2g/ takes values .1; 0/; .0; 1/, or .0; 0/, indicating that gene g is in non-
null group 1, non-null group 2, or null group, respectively. p1 and p2 are proportions
of non-null group 1 and non-null group 2 genes. Hence, the non-null proportion is
p1 C p2. Each of  and  g represents the same quantity as in the B-LIMMA model.
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Algorithm

The VB-LEMMA algorithm was derived based on an equivalent model to B-
LEMMA. In the equivalent model, the gene-specific treatment effect is treated as
the combination of a fixed global effect and a random zero-mean effect. That is,
conditional distribution of dg and that of  g are replaced with

dgj.b1g; b2g/; ug; �2�;g;  D  C .b1g � b2g/ C .b1g C b2g/ug C �g
ugj�2 � N.0; �2 / i:i:d:

The set of observed data and the set of unobserved data are identified as

y D ffdgg; fmggg
H D ffbgg; fugg; f�2g g; ;  ; �2 ; pg

where bg D .b1g; b2g/ and p D .p1; p2/.
Because of the similarities of the B-LEMMA model to the B-LIMMA model,

derivation of VB-LEMMA was achieved by extending the derivation of VB-
LIMMA that involves a gene-specific zero-mean random effect parameter. The VB
algorithm based on the exact B-LEMMA model was also derived for comparison.
However, little discrepancy in performance between the VB algorithm based on the
exact model and VB-LEMMA was observed. Therefore, VB-LEMMA based on the
equivalent model was adopted.

The product density restriction

q.H/ D qfbgg.fbgg/� qf gg.f gg/ � qf�2g g.f�2g g/ � q.;p/.; p/ � q. ;�2 /. ; �
2
 /

leads to q-densities

q ./ D N


cM ; bV

�

q . / D N


dM ;cV 

�

q�2g .�
2
g / D IG



A�2g ;

dB�2g

�

q.b1g;b2g ;1�b1g�b2g/.
�
b1g; b2g; 1 � b1g � b2g

	
/ D Multinomial



dMb1g ;

dMb2g ;

1 � dMb1g � dMb2g

�

q.p1;p2;1�p1�p2/..p1; p2; 1 � p1 � p2// D Dirichlet
�
c̨p1 ; c̨p2 ; c̨p0

	

q�2 .�
2
 / D IG



A�2 ;

dB�2 

�
:
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It is only necessary to update the variational posterior means OM	 in VB-LEMMA.
Upon convergence, the other variational parameters are computed based on the
converged value of those involved in the iterations. The iterative scheme is as
follows:

1. Initialize

M̂��2
 
D 1

M̂��2
g
D 1

cg
8 g

dMbg D
8
<

:

.1; 0; 0/ ifrank.dg/ � .1� 0:05/G

.0; 1; 0/ ifrank.dg/ 	 0:05G

.0; 0; 1/ otherwise
foreachg

dM D 1

2

0

@
ˇ
ˇ
ˇ
ˇ

X

fgWrank.dg/�.1�0:05/Gg
dg �

GX

gD1
dg

ˇ
ˇ
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ˇC
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ˇ
ˇ
ˇ

GX

gD1
dg �

X
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dg

ˇ
ˇ
ˇ
ˇ

1

A

dMug D 0 8 g

SetA�2 D
G

2
C A and A�2g D

1C fg
2
C A" for each g:

2. Update
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dMb1g C ˛1
!

�digamma

 
X

g



1 � dMb1g � dMb2g

�
C ˛0

!#

c�2g  �
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g
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1
P

g M̂��2
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dMb1g C dMb2g

�
C 1

�2 0

C 1

M̂��2
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dMb1g C dMb2g

�
C M̂��2

 

C


dg �cM CdM �dMug

�2 �


dg �cM

�2
9
=

;

C
"

digamma

 
X

g

dMb2g C ˛2
!

�digamma

 
X

g



1 � dMb1g � dMb2g

�
C ˛0

!#

:

3. Repeat (2) until the increase in

log p .yI q/

D �G
2
� log .2�/ �

X

g

h
dMb1g log dMb1g C dMb2g log dMb2g

C


1 � dMb1g � dMb2g

�
log



1 � dMb1g � dMb1g

�i

C log

 

Beta

 
X

g

dMb1g C ˛1;
X

g

dMb2g C ˛2;
X

g



1 � dMb1g � dMb2g

�
C ˛0

!!

� log .Beta .˛1; ˛2; ˛0//

C
2

4log

0

@ 1
P

g M̂��2
g
C 1

�20

1

A
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� log �20 C 1 �
1
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�

log cg log�


A�2g

�
� log�.A"/
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2
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�

C
�
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2
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�
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�
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�
�

�1
2
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�

dg �cM
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�
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1

A

�
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1

A

3
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C 1

2

X

g

2

4log

0

@ 1

M̂��2
g



dMb1g C dMb2g

�
C M̂��2

 

1

AC 1
3

5

C A logB � log�
�
A 
	C A�2 



� log dB�2 

�
C log�



A�2 

�

from previous iteration becomes negligible.
4. Upon convergence, the remaining variational parameters are computed:

bV  1
P

g M̂��2
g
C 1

�20

cV  1
P

g M̂��2
g



dMb1g C dMb2g

�
C 1

�2 0

cVug  
1

M̂��2
g



dMb1g C dMb2g

�
C M̂��2

 

dB�2  
1

2

X

g

2

4 1

M̂��2
g



dMb1g C dMb2g

�
C M̂��2

 

CdMug
2

3

5C B 

c̨p1  
X

g

dMb1g C ˛1

c̨p2  
X

g

dMb2g C ˛2

c̨p0  
X

g



1 � dMb1g � dMb2g

�
C ˛0:

The VB-Proteomics Algorithm

The Proteomics Model

As pointed out in Sect. 7.4.1.3, the fully Bayesian model in Booth et al. (2011) is as
follows:

yijj
ij � Poisson.
ij/

log
ijjIi; ˇ0; ˇ1; b0i; b1i D ˇ0 C b0i C ˇ1Tj C b1iIiTj C ˇ2IiTj C logLi C logNj

Iij�1 � Bernoulli.�1/ i:i:d:
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bkij�2k � N.0; �2k / i:i:d:; k D 0; 1
ˇm � N.0; �2ˇm/; m D 0; 1; 2
��2k � Gamma.A�2k ;B�2k /; k D 0; 1
�1 � Beta.˛; ˇ/;

where yij is the spectral count of protein i, i D 1; : : : ; p, and replicate j, j D 1; : : : ; n.
Li is the length of protein i, Nj is the average count for replicate j over all proteins,
and

Tj D
�
1 if replicate j is in the treatment group
0 if replicate j is in the control group.

In fact, conjugacy in this Poisson GLMM is not sufficient for a tractable solution
to be computed by VB. Therefore, a similar Poisson–Gamma HGLM where the
parameters ˇm;m D 0; 1; 2 and the latent variables bki; k D 0; 1 are transformed is
used for the VB implementation:

yijj
ij � Poisson.
ij/

log
ijjIi; ˇ0; ˇ1; b0i; b1i D ˇ0 C b0i C ˇ1Tj C b1iIiTj C ˇ2IiTj C logLi C logNj

Iij�1 � Bernoulli.�1/ i:i:d:

bkij�ki D log.��1ki /; k D 0; 1

�kijık � IG.ık; ık/ i:i:d:; k D 0; 1
ık � Gamma.Aık ;Bık/; k D 0; 1

ˇmj�m D log.��1m /; m D 0; 1; 2
�m � IG.A�m ;B�m/; m D 0; 1; 2
�1 � Beta.˛; ˇ/:

As before classification is inferred from the posterior expectations of the latent
binary indicators Ii; i D 1; : : : ; p.

Algorithm

The set of observed data and the set of unobserved data are identified as

y D y

H D f�0; �1; �2;�0;�1; ı0; ı1; I; �1g:
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The complete likelihood is

p.y;H/ D
Y

i;j

p.yijj�0; �1; �2; �0i; �1i; Ii/ �
Y

i

p.Iij�1/ �
Y

i

p.�0ijı0/

�
Y

i

p.�1ijı1/ � p.�0/p.�1/p.�2/p.ı0/p.ı1/p.�1/;

in which the mixture density is

p.yijj�0; �1; �2; �0i; �1i; Ii/
D Poisson

�
yijI exp.log��10 C log��10i C log.LiNj//

	1�Tj

� Poisson
�
yijI exp.log��10 C log��10i C log��11 C log.LiNj//

	.1�Ii/Tj

� Poisson
�
yijI exp.log��10 C log��10i C log��11 C log��11i

C log��12 C log.LiNj//
	IiTj

:

The log densities that comprise the log complete likelihood are

log p.yijj�0; �1; �2; �0i; �1i; Ii/
D .1 � Tj/ �


yij.log��10 C log��10i / � ��10 ��10i LiNj

�

C .1 � Ii/Tj �

yij.log��10 C log��10i C log��11 /� ��10 ��10i ��11 LiNj

�

C IiTj �

yij.log��10 C log��10i C log��11 C log��11i C log��12 /

���10 ��10i ��11 ��11i ��12 LiNj
�C yij log.LiNj/ � yijŠ

log p.Iij�1/ D Ii log�1 C .1 � Ii/ log.1 � �1/
log p.�1/ D � log.Beta.˛; ˇ//C .˛ � 1/ log�1 C .ˇ � 1/ log.1 � �1/
log p.�kijık/ D ık log ık � log.�.ık//C .ık C 1/ log��1k � ık��1k ; for k D 0; 1

log p.ık/ D �Aık logBık � log.�.Aık//C .Aık � 1/ log ık � ık

Bık
; for k D 0; 1

log p.�m/ D A�m logB�m � log.�.A�m//C .A�m C 1/ log��1m � B�m�
�1
m ;

for m D 0; 1; 2:

The product density restriction

q.H/ D q�0.�0/q�1.�1/q�2.�2/q�0
.�0/q�1

.�1/qı0.ı0/qı1.ı1/qI.I/q�1.�1/
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leads to the following q-densities:

• Derivation of q�0.�0/:

q�0.�0/ / exp E��0 flog p.y;H/g

/ exp E��0

8
<

:

X

i;j

log p.yijj�0; �1; �2; �0i; �1i; Ii/C log p.�0/

9
=

;

/ exp

8
<

:

X

i;j

h
.1 � Tj/.yij log��10 � ��10 M̂��1

0i
LiNj/

C.1 � cMIi /Tj.yij log��10 � ��10 M̂��1
0i
M̂��1

1
LiNj/

CcMIiTj.yij log��10 � ��10 M̂��1
0i
M̂��1

1
M̂��1

1i
M̂��1

2
LiNj/

i

C.A�0 C 1/ log��10 �
B�0
�0

�

The kernel of an Inverse-Gamma density is identified on the right hand side.
Therefore, it can be deduced that

q�0.�0/ D IG.cA�0 ;cB�0/

with

cA�0 D
X

i;j

yij C A�0

cB�0 D
X

i;j

LiNj

h
.1 � Tj/M̂��1

0i
C .1 � cMIi /TjM̂��1

0i
M̂��1

1

CcMIiTjM̂��1
0i
M̂��1

1
M̂��1

1i
M̂��1

2

i
C B�0 :

Moreover, the posterior mean and posterior expected log of ��10 are

M̂��1
0
D

cA�0
cB�0

̂log��10 D digamma.cA�0/� log cB�0 :
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• Derivation of q�1.�1/ and q�2.�2/ is similar to that of q�0.�0/:

q.�1/ / exp E��1

8
<

:

X

i;j

log p.yijj�0; �1; �2; �0i; �1i; Ii/C log p.�1/

9
=

;

) q.�1/ D IG.cA�1 ;cB�1/

cA�1 D
X

i;j

Tjyij C A�1

cB�1 D
X

i;j

LiNjŒ.1 � cMIi /TjM̂��1
0
M̂��1

0i
C cMIiTjM̂��1

0
M̂��1

0i
M̂��1

1i
M̂��1

2
�

C B�1 ;

and

M̂��1
1
D cA�1

cB�1

̂log��11 D digamma.cA�1/� log cB�1 :

q�2.�2/ / exp E��2

8
<

:

X

i;j

log p.yijj�0; �1; �2; �0i; �1i; Ii/C log p.�2/

9
=

;

) q�2.�2/ D IG.cA�2 ;cB�2/

cA�2 D
X

i;j

cMIiTjyij C A�2

cB�2 D
X

i;j

LiNjŒcMIiTjM̂��1
0
M̂��1

0i
M̂��1

1
M̂��1

1i
�C B�2 ;

and

M̂��1
2
D cA�2

cB�2

̂log��12 D digamma.cA�2/� log cB�2 :
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• Derivation of q�0
.�0/ and q�1

.�1/ is also similar to that of q�0.�0/, with induced
factorizations:

q�0
.�0/ / exp E

��0

8
<

:

X

i;j

log p.yijj�0; �1; �2; �0i; �1i; Ii/

C
X

i

log p.�0ijı0/
)

) q�0
.�0/ D

Y

i

q�0i.�0i/and

q�0i.�0i/ / exp E
��0

8
<

:

X

j

log p.yijj�0; �1; �2; �0i; �1i; Ii/C log p.�0ijı0/
9
=

;
:

Therefore, for each i,

q�0i.�0i/ D IG.dA�0i ;dB�0i/

dA�0i D
X

j

yij CdMı0

dB�0i D
X

j

LiNjM̂��1
0
Œ.1 � Tj/C .1 � cMIi/TjM̂��1

1

C cMIiTjM̂��1
1
M̂��1

1i
M̂��1

2
�CdMı0

M̂�0i
�1 D

dA�0i
dB�0i

̂log�0i�1 D digamma.dA�0i/ � logdB�0i :

q�1
.�1/ / exp E

��1

8
<

:

X

i;j

log p.yijj�0; �1; �2; �0i; �1i; Ii/

C
X

i

log p.�1ijı1/
)

) q�1
.�1/ D

Y

i

q�1i.�1i/and

q�1i.�1i/ / exp E
��1

8
<

:

X

j

log p.yijj�0; �1; �2; �0i; �1i; Ii/C log p.�1ijı1/
9
=

;
:
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Therefore, for each i,

q�1i.�1i/ D IG.dA�1i ;dB�1i/

dA�1i D
X

j

cMIiTjyij CdMı1

dB�1i D
X

j

LiNjcMIiTjM̂��1
0
M̂��1

0i
M̂��1

1
M̂��1

2
CdMı1

M̂�1i
�1 D

dA�1i
dB�1i

̂log�1i�1 D digamma.dA�1i/� logdB�1i :

• Derivation of qı0.ı0/:

qı0.ı0/ / exp E�ı0

(
X

i

log p.�0ijı0/C log p.ı0/

)

/ exp

(
X

i

h
ı0 log ı0 � log�.ı0/C .ı0 C 1/ ̂log��10i � ı0M̂��1

0i

i

C� Aı0 logBı0 � log�.Aı0/C .Aı0 � 1/ log ı0 � ı0

Bı0

�

:

The right-hand side does not contain the kernel of any standard distribution.
Therefore, an approximation to log�.ı0/ is used.

For complex number z with large Re.z/, because �.zC 1/ D zŠ D z�.z/,

log�.z/ D log�.zC 1/� log z

D log zŠ � log z

�
�
1

2
log.2�z/C z log z� z

�

� log z

byStirling0sapproximationnŠ � p2�n

n

e

�n

� .z� 1
2
/ log z � zC 1

2
log.2�/:

Hence,

ı0 log ı0 � log�.ı0/ � 1

2
log ı0 C ı0 � 1

2
log.2�/forlargeı0 > 0:
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Substituting the above on the right-hand side of the formula for qı0.ı0/ leads
to the kernel of a Gamma density. Therefore,

qı0.ı0/ � Gamma.cAı0 ;cBı0/

cAı0 D
p

2
C Aı0

cBı0 D
1

�p �Pi
̂log��10i C

P
i M̂��1

0i
C 1

Bı0

;

and

dMı0 D cAı0cBı0 :

• Derivation of qı1.ı1/ is similar to that of qı0.ı0/, with the same approximation
employed:

qı1.ı1/ � Gamma.cAı1 ;cBı1/

cAı1 D
p

2
C Aı1

cBı1 D
1

�p �Pi
̂log��11i C

P
i M̂��1

1i
C 1

Bı1

;

and

dMı1 D cAı1cBı1 :

• Derivation of qI.I/:

qI.I/ / exp E�I

8
<

:

X

i;j

log p.yijj�0; �1; �2; �0i; �1i; Ii/C
X

i

log p.Iij�1/
9
=

;

) qI.I/ D
Y

i

qIi.Ii/and

qIi.Ii/ / exp E�I

8
<

:

X

j

log p.yijj�0; �1; �2; �0i; �1i; Ii/C log p.Iij�1/
9
=

;
:
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Therefore, for each i,

qIi.Ii/ D Bernoulli

 
exp.b�i/

exp.b�i/C 1

!

b�i D
X

j

yijTj


̂log��11i C ̂log��12

�

C LiM̂��1
0i

0

@
X

j

NjTj

1

A M̂��1
0
M̂��1

1



1 � M̂��1

1i
M̂��1

2

�

C l̂og�1 � ̂log.1 � �1/;

and

cMIi D
exp.b�i/

exp.b�i/C 1
:

• Derivation of q�1.�1/:

q�1.�1/ / exp E��1

(
X

i

log p.Iij�1/C log p.�1/

)

) q�1.�1/ D Beta.c̨�1 ;ď�1/

c̨�1 D
X

i

cMIi C ˛

ď
�1 D

X

i

.1 � cMIi/C ˇ;

and

l̂og�1 D digamma.c̨�1/ � digamma.c̨�1 C ď�1/
̂log.1 � �1/ D digamma.ď�1/� digamma.c̨�1 C ď�1 /

Updating the q-densities in an iterative scheme boils down to updating the
variational parameters in the scheme. Convergence is monitored via the scalar
quantity Cq.y/, the lower bound on the log of the marginal data density:

log p .yIq/
D EH log p.y;H/ � EH log q.H/
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D EH

8
<

:

X

i;j

log p.yijj�0; �1; �2; �0i; �1i; Ii/ �
X

i

log qIi .Ii/

9
=

;

C EH

(
X

i

log p.Iij�1/C log p.�1/ � log q�1 .�1/

)

C EH flog p.�0/C log p.�1/C log p.�2/ � log q�0.�0/

� log q�1.�1/ � log q�2.�2/g

C EH

(
X

i

log p.�0ijı0/C
X

i

log p.�1ijı1/C log p.ı0/C log p.ı1/

)

C EH

(

�
X

i

log q�0i.�0i/ �
X

i

log q�1i.�1i/ � log qı0 .ı0/ � log qı1 .ı1/

)

D
X

i;j

n
.1 � Tj/

h
yij


̂log��1

0 C ̂log��1
0i C log.LiNj/

�
� M̂��1

0
M̂��1

0i
LiNj

io

C
X

i;j

n
.1 � cMIi /Tj

h
yij


̂log��1

0 C ̂log��1
0i C ̂log��1

1 C log.LiNj/
�

�M̂��1
0
M̂��1

0i
M̂��1

1
LiNj

io

C
X

i;j

n
cMIiTj

h
yij


̂log��1

0 C ̂log��1
0i C ̂log��1

1

C ̂log��1
1i C ̂log��1

2 C log.LiNj/
�

�M̂��1
0
M̂��1

0i
M̂��1

1
M̂��1

1i
M̂��1

2
LiNj

io
C
X

i;j

˚�yijŠ
�

�
X

i



cMIi log cMIi C .1 � cMIi/ log.1 � cMIi/

�

C
h
� log.Beta.˛; ˇ//C log.Beta.c̨�1 ;ď�1//

i

C A�0 logB�0 � log�.A�0/ � cA�0 log cB�0 C log�.cA�0/C cA�0

�
0

@
X

i;j

yij

1

A ̂log��1
0 � B�0M̂��1

0

C A�1 logB�1 � log�.A�1/ � cA�1 log cB�1 C log�.cA�1/C cA�1

�
0

@
X

i;j

Tjyij

1

A ̂log��1
1 � B�1M̂��1

1
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C A�2 logB�2 � log�.A�2/ � cA�2 log cB�2 C log�.cA�2/C cA�2

�
0

@
X

i;j

cMIiTjyij

1

A ̂log��1
2 � B�2M̂��1

2

C
X

kD0;1

(
X

i

.dMık �dA�ki/ log ��1
ki �dMık

 
X

i

M̂��1
ki
� p

!

� p

2
log.2�/

�
X

i



dA�ki logdB�ki � log�.dA�ki / �dA�ki

�
)

C
X

kD0;1

(

�Aık logBık � log.�.Aık// �
dMık

Bık
CcAık log cBık C log.�.cAık //CcAık

)

:

The VB-proteomics algorithm consists of the following steps:

Step 1: Initialize cB�0 ; cB�1 ;cBı0 ;cBı1 , and dA�0i ;dA�1i ;dB�0i ;dB�1i for each i.
Step 2: Cycle through cA�2 ;cB�2 ;cB�0 ;cB�1 ;cBı0 ;cBı1 ;dA�0i ;dB�0i ;dA�1i ;dB�1i ;cMIi itera-
tively, until the increase in Cq.y/ computed at the end of each iteration is
negligible.
Step 3: Compute c̨�1 and ď�1 using converged variational parameter values.

The values of the model parameters were chosen to form non-informative priors:
The shape and scale parameters for the Inverse-Gamma priors were set to be 0.1,
the shape and scale parameters for the Gamma priors were set to be 0.1 and
100 respectively, and the parameters for the Beta prior were both 1. Because a
log-Normal distribution is approximately a Gamma distribution, the variance of
ebki ; k D 0; 1 which follows a log-Normal distribution in the Poisson GLMM
roughly equals to the variance of ��1ki ; k D 0; 1which follows a Gamma distribution

in the Poisson–Gamma HGLM. That is, .e�
2
k � 1/e�2k � 1=ık; k D 0; 1. Based on

this we determined parameter values in the Gamma.Aık ;Bık/ prior for ık; k D 0; 1.
Starting values of posterior mean of the latent indicator were cMIi D 1 for proteins

that are associated with the 20% smallest p-values from one protein at a time Score
tests and cMIi D 0 otherwise.

An approximation to the digamma function, digamma.z/ � log z � 1
2z , was used

wherever z was too small in VB implementation.
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Chapter 8
Hypothesis Testing
for High-Dimensional Data

Wei Biao Wu, Zhipeng Lou, and Yuefeng Han

Abstract We present a systematic theory for tests for means of high-dimensional
data. Our testing procedure is based on an invariance principle which provides
distributional approximations of functionals of non-Gaussian vectors by those
of Gaussian ones. Differently from the widely used Bonferroni approach, our
procedure is dependence-adjusted and has an asymptotically correct size and power.
To obtain cutoff values of our test, we propose a half-sampling method which
avoids estimating the underlying covariance matrix of the random vectors. The latter
method is shown via extensive simulations to have an excellent performance.

Keywords Gaussian approximation · Goodness-of-Fit Test · Half-sampling ·
High-dimensional data · Hypothesis testing · Large p small n · Rademacher
weighted differencing

8.1 Introduction

With the advance of modern data collection techniques, high-dimensional data
appear in various fields including physics, biology, healthcare, finance, marketing,
social network, and engineering among others. A common feature in such datasets
is that the data dimension or the number of involved parameters can be quite large.
As a fundamentally important problem in the study of such data, one would like
to perform statistical inference of those parameters such as multiple testing or
construction of confidence regions. With that one is able to provide an answer to the
question whether there is signal in the dataset, or whether the dataset consists only of
random noises. Due to the high-dimensionality, the inferential procedures developed
for low-dimensional problems may no longer be valid in the high-dimensional
setting. Different approaches should be designed to account for high-dimensionality.
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There exists a huge literature on multiple testing; see, for example, Dudiot and van
der Laan (2008), Efron (2010) and Dickhaus (2014).

We now introduce the setting of our testing problem. Assume that X1;X2; : : : ; are
independent and identically distributed (i.i.d.) p-dimensional random vectors, with
mean vector 
 D .
1; : : : ; 
p/

T D E.Xi/ and covariance matrix † D cov.Xi/ D
.�jk/j;k�p. We are testing the hypothesis of existence of a signal

H0 W 
 D 0 vs HA W 
 6D 0 (8.1)

based on the sample X1; : : : ;Xn. This formulation is actually very general and its
solution can be applied to many other problems; see Sect. 8.2. We can estimate 

by the sample mean vector O
 D NXn D n�1

Pn
iD1 Xi. The classical Hotelling’s T-

squared test has the form

T D NXn O†�1n NXn; (8.2)

where

O†n D .n � 1/�1
nX

iD1
.Xi � NXn/.Xi � NXn/

T (8.3)

is the sample covariance matrix estimate of†. If p is small and fixed, by the Central
Limit Theorem (CLT),

p
n. NXn � 
/) N.0;†/: (8.4)

By the Law of Large Numbers, if † is non-singular,

O†�1n ! †�1 almost surely. (8.5)

Clearly (8.4) and (8.5) imply that under H0, the Hotelling’s T-squared statistic
nT ) �2p (�2 distribution with degrees of freedom p). Thus we can reject H0 at
level 0 < ˛ < 1 if nT > �2p;1�˛ , the .1 � ˛/th quantile of �2p.

In the high-dimensional situation in which p can be much larger than n, the
CLT (8.4) is no longer valid; see Portnoy (1986). Furthermore, O†n is singular and
thus T is not well-defined. Also the matrix convergence (8.5) may not hold, see
Marčenko and Pastur (1967). In this chapter we shall apply a testing functional
approach that does not use O†�1n or the precision matrix †�1. A function g W Rp !
Œ0;1/ is said to be a testing functional if the following requirements are satisfied:
(1) (monotonicity) for any x D .x1; : : : ; xp/T 2 R

p and 0 < c < 1, g.cx/ 	 g.x/; (2)
(identifiability) g.x/ D 0 if and only if x D 0. We shall consider the test statistic

Tn D g.
p
n NXn/: (8.6)

Examples of g include the L2-based test with g.x/ D Pp
jD1 x2j , the L1-

based test with g.x/ D maxj�p jxjj, the weighted empirical process g.x/ D
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supu�0.
Pp

jD1 1jxjj�uh.u//, where h.�/ is a nonnegative-valued non-decreasing
function, among others. We reject H0 in (8.1) if Tn is too big.

As a theoretical foundation, we base our testing procedure on the following
invariance principle result

sup
t2R
jPŒg.pn. NXn � 
// 	 t� � PŒg.

p
n NZn/ 	 t�j ! 0; (8.7)

where Z;Z1;Z2; : : : are i.i.d. N.0;†/ random vectors and NZn D n�1
Pn

iD1 Zi DD
n�1=2Z. Interestingly, though the CLT (8.4) does not generally hold in the high-
dimensional setting, the testing functional form (8.7) may still be valid. Cher-
nozhukov et al. (2014) proved (8.7) with the L1 norm g.x/ D maxj�p jxjj, while
Xu et al. (2014) consider the L2 based test with g.x/ D Pp

jD1 x2j . In Sect. 8.5 we
shall provide a sufficient condition so that (8.7) holds for certain testing functionals.

In applying (8.7) for testing (8.1), one needs to know the distribution of
g.
p
n NZn/ DD g.Z/ so that a suitable cutoff value can be obtained. The latter problem

is highly nontrivial since the covariance matrix †, which is viewed as a nuisance
parameter here, is typically not known and the associated estimation issue can be
quite challenging. In Sect. 8.5 we shall propose a half-sampling technique which
can avoid estimating the nuisance covariance matrix†.

8.2 Applications

Our paradigm (8.1) is actually quite general and it can be applied to testing of high-
dimensional covariance matrices, testing of independence of high-dimensional data,
analysis of variances with non-normal and heteroscedastic errors.

8.2.1 Testing of Covariance Matrices

There is a huge literature on testing covariance matrices such as uncorrelatedness,
sphericity, or other patterns. For Gaussian data, tests for † D �2Ip, where Ip is
the identity matrix, can be found in Ahmad (2010), Birke and Dette (2005), Chen
et al. (2010), Fisher et al. (2010) and Ledoit and Wolf (2002). Tests for equality of
covariance matrices are studied in Bai et al. (2009) and Jiang et al. (2012), and for
sphericity is in Onatski et al. (2013). Minimax properties are considered in Cai and
Ma (2013). For other contributions, see Qu and Chen (2012), Schott (2005, 2007),
Srivastava (2005), Xiao and Wu (2013) and Zhang et al. (2013).

Assume that we have data matrix Yn D .Yi;j/1�i�n;1�j�p, where .Yi;j/
p
jD1,

i D 1; : : : ; n, are i.i.d. p-dimensional random vectors. Let

�jk D cov.Y1;j; Y1;k/; 1 	 j; k 	 p; (8.8)
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be the covariance function. Consider testing hypothesis for uncorrelatedness:

H0 W �jk D 0 for all j 6D k: (8.9)

For simplicity assume that E.Yi;j/ D 0. For a pair a D . j; k/ write Xi;a D Yi;jYi;k,
and NXa D n�1

Pn
iD1 Xi;a and the . p2 � p/-dimensional vector NX D . NXa/a2A, where

A D f. j; k/ W j 6D k; j 	 p; k 	 pg. The hypothesis H0 in (8.9) can be tested
by using the test statistics T D g.

p
n NX/. Xiao and Wu (2013) considered the L1

based test with g.x/ D maxi jxij, generalizing the result in Jiang (2004) which
concerns the special case for i.i.d. vectors with independent entries. Han and Wu
(2017) performed an L2 based test for patterns of covariances with the test statistic

T D
X

a2A
NX2a D

X

j6Dk

O�2jk: (8.10)

With slight modifications, one can also test the sphericity hypothesis

H0 W † D �2Ip for some �2 > 0; (8.11)

where Ip is the p � p identity matrix. Let A0 D f. j; k/ W j; k 	 pg with diagonal
entries added to A. For a D . j; j/ 2 A0, let Xi;a D Y2i;j � �2. If �2 is known, then H0
in (8.11) can be rejected at level ˛ 2 .0; 1/ if T D g.

p
n NX/ > t1�˛ , where t1�˛ is

the .1 � ˛/th quantile of g.Z/ and Z is a centered Gaussian vector with covariance
structure cov.Za;Zb/ D E.Xi;aXi;b/, a; b 2 A0. In the case that �2 is not known,
we shall use an estimate. For example, we can let O�2 D n�1

Pn
jD1 O�2jj , and consider

Xıi;a D Y2i;j� O�2. Let Xıi;a D Xi;a if a D . j; k/ with j 6D k. The hypothesis H0 in (8.11)

can be tested by the statistic Tı D g.
p
n NXı/.

8.2.2 Testing of Independence

Let Yi D .Yi;j/
p
jD1, i D 1; : : : ; n, be i.i.d. p-dimensional random vectors with joint

cumulative distribution function

Fj1;:::;jd .yj1 ; : : : ; yjd/ D P.Yi;j1 	 yj1 ; : : : ;Yi;jd 	 yjd /: (8.12)

Consider the problem of testing whether entries of Yi are independent. Assume that
the marginal distributions are standard uniformŒ0; 1�. For j D . j1; : : : ; jd/, write
Fj.yj/ D Fj1;:::;jd .yj1 ; : : : ; yjd /. For fixed d, the hypothesis of d-wise independence is

H0 W Fj.yj/ D yj1 : : : yjd holds for all y1; : : : ; yd 2 .0; 1/ and j 2 Ad; (8.13)
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where Ad D fj D . j1; : : : ; jd/ W j1 < � � � < jd 	 pg. Pairwise and triple-wise
independence correspond to d D 2 and d D 3, respectively. We estimate Fj.yj/ by
the empirical cdf

OFj.yj/ D 1

n

nX

iD1
1Yi;j�yj ; (8.14)

where the notation Yi;j 	 yj means Yi;jh 	 yjh for all h D 1; : : : ; d. Let ym1 ; : : : ; ymN ,
N ! 1, be a dense set of Œ0; 1�d. For example, we can choose them to be the
lattice set f1=K; : : : ; .K � 1/=Kgd with N D .K � 1/d. Let Xi, 1 	 i 	 n, be the
NpŠ=.dŠ. p � d/Š/-dimensional vector with the .`j/th component being 1Yi;j�ym` �Q

h2m`
yh, 1 	 ` 	 N, j 2 Ad. Then the L2-based test for (8.13) on the dense set

.ym`
/N`D1 has the form nj NXj22.

8.2.3 Analysis of Variance

Consider the following two-way ANOVA model

Yijk D 
C ˛i C ˇj C ıij C "ijk; i D 1; : : : ; I; j D 1; : : : ; J; k D 1; : : : ;K; (8.15)

where 
 is the grand mean, ˛i and ˇj are the main effects from the first and
the second factors, respectively, and ıij are the interaction effect. Assume that
.Yijk/i�I;j�J , k D 1; : : : ;K, are i.i.d. Consider the hypothesis of interaction:

H0 W ıij D 0 for all i D 1; : : : ; I; j D 1; : : : ; J: (8.16)

In the classical ANOVA procedure, one assumes that "ijk, i 	 I; j 	 J, are i.i.d.
N.0; �2/ and makes use of the fact that the sum of squares

SSI D
IX

iD1

JX

jD1
. NYij	 � NYi		 � NY	j	 C NY			/2 (8.17)

is distributed as �2�2.I�1/.J�1/. Here NYij	 D K�1
PK

kD1 Yijk and other sample averages
NYi		, NY	j	 and NY			 are similarly defined. The null hypothesis H0 is rejected at level
˛ 2 .0; 1/ if

SSI
.I � 1/.J � 1/ > SSEF.I�1/.J�1/;IJ.K�1/;1�˛ (8.18)
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where F.I�1/.J�1/;IJ.K�1/;1�˛ is the .1 � ˛/th quantile of the F-distribution
F.I�1/.J�1/;IJ.K�1/ and

SSE D
PI

iD1
PJ

jD1.Yijk � NYij	/2
IJ.K � 1/ (8.19)

is an estimate of �2.
The classical ANOVA procedure can be invalid when the assumption that "ijk,

i 	 I; j 	 J are i.i.d. N.0; �2/ is violated. In the latter case SSI may no longer have
a �2 distribution. However we can still approximate the distribution of SSI in terms
of (8.7). For a D .i; j/ let Xak D NYijk� NYi	k� NY	jkC NY		k. Then SSI DPa2A NX2a	, where
NXa	 D K�1

PK
kD1 Xak.

8.3 Tests Based on L1 Norms

Fan et al. (2007) considered the L1 norm based test of (8.1) with the form

Mn D max
j�p

p
nj O
j � 
jj
O�j ; where O�2j D

1

n

nX

iD1
.Xij � O
j/

2: (8.20)

Assume that the dimension p satisfies

log p D o.n1=3/ (8.21)

and the uniform bounded third moment condition

max
j�p EjXij � 
jj3 D O.1/: (8.22)

Let ˆ be the standard normal cumulative distribution function and z˛ D ˆ�1.˛/.
Then

P.Mn � z1�˛=.2p// 	 ˛ C o.1/: (8.23)

Namely, if we perform the test by rejecting H0 of (8.1) whenever Mn � z1�˛=.2p/,
the familywise type I error of the latter test is asymptotically bounded by ˛. As
a finite sample correction, the cutoff value z1�˛=.2p/ in (8.23) can be replaced by
the t-distribution quantile tn�1;1�˛=.2p/ with degree of freedom n � 1, noting that
.n � 1/1=2 O
j= O�j � tn�1 if Xij are Gaussian. Due to the Bonferroni correction, the
test by Fan et al. (2007) can be quite conservative if the dependence among entries
of Xi is strong. For example, if Xi1 D Xi2 D � � � D Xip, then instead of using the
cutoff value z1�˛=.2p/, one should use z1�˛=2, since the cutoff value z1�˛=.2p/ leads to
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the extremely conservative type I error ˛=.2p/. If entries of Xi are independent and
Xi is Gaussian, then the type I error is 1 � .1 � ˛=p/p ! 1 � e�˛ and it is slightly
conservative. For example, when ˛ D 0:05, 1 � e�˛ D 0:04877058.

Liu and Shao (2013) obtained Gumbel convergence of Mn under the following
conditions: (1) for some r > 3, the uniform bounded rth moment conditions
maxj�p EjXij � 
jjr D O.1/ holds, which is slightly stronger than (8.22) and (2)
weak dependence among entries of Xi. For † D .�jk/j;k�p, assume the correlation

matrix R D .rjk/j;k�p with rjk D �jk=.�1=2jj �
1=2
kk / has the property: for some � > 0,

max #f j 	 p W jrjkj � .log p/�1��g D O. p�/ (8.24)

holds for all � > 0. Then under (8.21), Theorem 3.1 in Liu and Shao (2013) asserts
the Gumbel convergence

Mn � 2 log pC log log p) G; (8.25)

where G follows the Gumbel distribution P.G 	 y/ D exp.�e�y=2=�1=2/. By (8.25),
one can reject H0 in (8.1) at level ˛ 2 .0; 1/ based on the L1 norm test

max
j�p

p
nj O
jj
O�j > 2 log p� log log pC g1�˛; (8.26)

where g1�˛ is chosen such that P.G 	 g1�˛/ D 1 � ˛. Clearly the latter test has an
asymptotically correct size.

Applying Theorem 2.2 in Chernozhukov et al. (2014), we can have the following
Gaussian approximation result. Assume that there exist constants c1; c2 > 0 such
that c1 	 E.Xij � 
j/

2 	 c2 holds for all j 	 p and assume that u D un;p satisfies

P

�

max
j�p jX1j � 
jj � u

�

D o.n�1/ (8.27)

Let mk D maxj�p.EjX1j � 
jjk/1=k and further assume that

n�1=8.m3=43 C m1=24 /.log. pn//7=8 C n�1=2.log. pn//3=2u! 0: (8.28)

Let Z � N.0;R/. Then we have the Gaussian approximation result: as n!1

sup
t
jP.Mn � t/ � P.jZj1 � t/j ! 0: (8.29)

Let t1�˛ be the .1�˛/th quantile of jZj1. The Gaussian approximation (8.29) leads
to L1 norm based test: H0 is rejected at level ˛ if maxj�p

p
nj O
jj= O�j � t1�˛ . In

comparison with the result in Fan et al. (2007), the latter test has an asymptotically
correct size and it is dependence adjusted. To obtain an estimate for the cutoff value
t1�˛ , Chernozhukov et al. (2014) proposed a Gaussian Multiplier Bootstrap (GMB)
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method. Given X1; : : : ;Xn, let Ot1�˛ be such that

P

 

max
j�p n�1=2j

nX

iD1
Xijeij � Ot1�˛jX1; : : : ;Xn

!

D ˛; (8.30)

where ei are i.i.d. N.0; 1/ random variables independent of .Xij/i�1;j�1. Note
that Ot1�˛ can be numerically calculated by extensive Monte Carlo simulations.
In Sect. 8.5 we shall propose a Hadamard matrix and a Rademacher weighted
approaches. The simulation study in Sect. 8.6 shows that, for finite-sample perfor-
mance, the latter approach gives a more accurate size than the method based on
Gaussian Multiplier Bootstrap (8.30).

Chen et al. (2016) generalized Fan, Hall and Yao’s L1 norm to high-dimensional
dependent vectors. Assume that .Xi/i2Z is a p-dimensional stationary process of the
form

Xt D G.Ft/ D .G1.Ft/; : : : ;Gp.Ft//
T ; (8.31)

where "t, t 2 Z, are i.i.d. random variables, Ft D .: : : ; "t�1; "t/ and G.�/ is
a measurable function such that Xt is well-defined. Assume that the long-run
covariance matrix

†1 D
1X

iD�1
cov.X0;Xi/ D .!jl/j;l�p (8.32)

exists. Let "�i ; "j; i; j 2 Z, be i.i.d. random variables. Assume that Xt has finite rth
moment, r > 2. Define the functional dependence measures (see, Wu 2005, 2011)
as

�r.m/ D max
j�p kXij � Gj.: : : ; "i�m�2; "i�m�1; "�i�m; "i�mC1; : : : ; "i/kr: (8.33)

If Xi are i.i.d., then†1 D † and �r.m/ D 0 if m � 1. We say that .Xt/ is geometric
moment contraction (GMC; see Wu and Shao 2004) if there exist � 2 .0; 1/ and
a1 > 0 such that

�r.m/ 	 a1�
m D a1e

�a2m with a2 D � log �: (8.34)

Let 
 D EXt. To test the hypothesis H0 in (8.1), Chen et al. (2016) introduced the
following dependence-adjusted versions of Fan, Hall, and Yao’s Mn. Let n D mk,
where m  n1=4 and blocks Bl D fi W m.l � 1/C 1 	 i 	 mlg. Let Ylj DP

i2Bl
Xij,

1 	 j 	 p, 1 	 l 	 k, be the block sums. Define the block-normalized sum

Mın D max
j�p

p
nj O
j � 
jj
O�ıj

; where . O�ıj /2 D
1

mk

kX

lD1
.Ylj � m O
j/

2; (8.35)
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and the interlacing normalized sum: let k� D k=2, 
�j D .mk�/�1
Pk�

lD1 Y2lj and

M�
n D max

j�p

p
n=2j
�j � 
jj
O��j

; where . O��j /2 D
1

mk�
k�

X

lD1
.Y2lj �m
�j /

2: (8.36)

By Chen et al. (2016), we have the following result: Assume exists a constant � > 0
such that the long-run variance !jj � � for j 	 p, (8.34) holds with r D 3, and

log p D o.n1=4/: (8.37)

Then (8.23) holds for both the block-normalized sum Mın and the interlacing
normalized sum M�

n . Note that, while (8.37) still allows ultra high dimensions, due
to dependence, the allowed dimension p in condition (8.37) is smaller than the one
in (8.21). Additionally, if the GMC (8.34) holds with some r > 3, (8.24) holds with
the long-run correlation matrix R D D�1=2†1D�1=2, where D D diag.†1/, and
for some 0 <  < 1=4,

log p D o.n /; (8.38)

then we have the Gumbel convergence for the interlacing normalized sum:

M�
n � 2 log pC log log p) G; (8.39)

where G is given in (8.25). Similarly as (8.26), one can perform the following test
which has an asymptotically correct size: we reject H0 in (8.1) at level ˛ 2 .0; 1/ if

max
j�p

p
n=2j
�j j
O��j

> 2 log p � log log pC g1�˛: (8.40)

8.4 Tests Based on L2 Norms

In this section we shall consider the test which is based on the L2 functional with
g.x/ DPp

jD1 x2j . Let �1 � � � � � �p � 0 be the eigenvalues of †. For Z � N.0;†/,
we have the distributional equality g.Z/ D ZTZ DD

Pp
jD1 �j�2j , where �j are i.i.d.

standard N.0; 1/ random variables. Let fk D .Pp
jD1 �kj /1=k, k > 0, and f D f2. Then

Eg.Z/ D f1 D tr.†/ and var.g.Z// D 2f 2. Xu et al. (2014) provide a sufficient
condition for the invariance principle (8.7) with the quadratic functional g. For some
0 < ı 	 1 let q D 2C ı.
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Condition 1 Let ı > 0. Assume EX1 D 0, EjX1j2q <1 and let

Kı.X/
q WD E

ˇ
ˇ
ˇ
ˇ
jX1j22 � f1

f

ˇ
ˇ
ˇ
ˇ

q

<1 (8.41)

Dı.X/
q WD E

ˇ
ˇ
ˇ
ˇ
XT
1X2
f

ˇ
ˇ
ˇ
ˇ

q

<1: (8.42)

Observe that Condition 1, (8.41) and (8.42) are Lyapunov-type conditions.
Assume that

K0.X/2

n
C Kı.X/q

nq�1
C E.XT

1 †X1/
q=2

nı=2f q
C Dı.X/q

nı
! 0 as n!1: (8.43)

Then (8.7) holds (cf Xu et al. 2014). Consequently we have

sup
t2R

jP..nj NXnj22 � f1/=f 	 t/ � P.V 	 t/j ! 0; where V D
pX

jD1

f�1�j.�
2
j � 1/: (8.44)

In the literature, researchers primarily focus on developing the central limit theorem

Rn WD nj NXnj22 � f1
f

D n NXT
n
NXn � f1
f

) N.0; 2/ (8.45)

or its modified version; see, for example, Bai and Saranadasa (1996), Chen and Qin
(2010) and Srivastava (2009). Xu et al. (2014) clarified an important issue on the
CLT of Rn. By the Lindeberg–Feller central limit theorem, V ) N.0; 2/ as p!1
holds if and only if �1=f ! 0. The distributional approximation (8.44) indicates
that, if �1=f does not go to 0, then the central limit theorem cannot hold for Rn.

Let t1�˛ be the .1 � ˛/th quantile of g.Z/ D jZj2 D ZTZ. By (8.7) we can reject
(8.1) at level ˛ 2 .0; 1/ if

nj NXnj2 > t1�˛ (8.46)

To calculate t1�˛ , one needs to know the eigenvalues �1; : : : ; �p. However, estima-
tion of those eigenvalues is a very challenging problem, in particular if one does not
impose certain structural assumptions on †. In Sect. 8.5.2 we shall propose a half-
sampling based approach which does not need estimation of the covariance matrix
†.

The L1 based tests discussed in Sect. 8.3 have a good power when the alternative
consists of few large signals. If the signals are small and have a similar magnitude,
then the L2 test is more powerful. To this end, assume that there exists a constant
c > 0 and a small ı > 0 such that cı 	 
j 	 ı=c holds for all j D 1; : : : ; p. We can
interpret ı as the departure parameter (from the null H0 with 
 D 0). For the L1-
based test to have power approaching to 1, one necessarily requires that

p
nı !1.
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Elementary calculation shows that, under the much weaker condition np1=2ı2 !1,
then the power of the L2 based test, or the probability that event (8.46) occurs going
to one. In the latter condition, larger dimension p is actually a blessing as it requires
a smaller departure ı.

8.5 Asymptotic Theory

In Sects. 8.3 and 8.4, we discussed the classical L1 and L2 functionals, respectively.
For a general testing functional, we have the following invariance principle (cf The-
orem 1), which asserts that functionals of sample means of non-Gaussian random
vectors X1;X2; : : : can be approximated by those of Gaussian vectors Z1;Z2; : : :
with same covariance structure. Assume g 2 C

3.Rp/. For x D .x1; : : : ; xp/T write
gj D gj.x/ D @g.x/=@xj. Similarly we define the partial derivatives gjk and gjkl. For
all j; k; l D 1; : : : ; p, assume that

�jkl WD sup
x2Rp

.jgjgkglj C jgjkglj C jgjlgkj C jgklgjj C jgjklj/ <1: (8.47)

For Z1 � N.0;†/ write Z1 D .Z11; : : : ;Z1p/T . Define

Kp D
pX

j;k;lD1
�jkl.EjX1jX1kX1lj C EjZ1jZ1kZ1lj/: (8.48)

For g.Z1/ DD g.
p
n NZn/, we assume that its c.d.f. F.t/ D PŒg.Z/ 	 t� is Hölder

continuous: there exists `p > 0, index ˛ > 0, such that for all  > 0, the
concentration function

sup
t2R

P.t 	 g.Z1/ 	 tC  / 	 `p ˛: (8.49)

Theorem 1 (Lou and Wu (2018)) Assume (8.47), (8.49) and Kp`
3=˛
p D o.

p
n/.

Then

sup
t2R
jPŒg.pn. NXn � 
// 	 t� � PŒg.

p
n NZn/ 	 t�j D O.`3pK˛

p n
�˛=2/! 0: (8.50)

To apply Theorem 1 for hypothesis testing, we need to know the c.d.f. F.t/ D
PŒg.Z/ 	 t�. Note that F.�/ depends on g and the covariance matrix †. Thus we
can also write F.�/ D Fg;†.�/. If † is known, the distribution of g.Z/ is completely
known and its cdf F.t/ D PŒg.Z/ 	 t� can be calculated either analytically or by
extensive Monte Carlo simulations. Let t1�˛ , 0 < ˛ < 1, be the .1 � ˛/th quantile
of g.Z/. Namely

PŒg.Z/ > t1�˛� D ˛: (8.51)



214 W. B. Wu et al.

Then the null hypothesis H0 in (8.1) is rejected at level ˛ if the test statistic Tn D
g.
p
n NXn/ > t1�˛ . This test has asymptotically correct size ˛. Additionally, the .1 �

˛/ confidence region for 
 can be constructed as

f
 2 R
p W g.pn. NXn � 
// 	 t1�˛g D f NXn C � 2 R

p W g.pn�/ 	 t1�˛g: (8.52)

If † is not known, as a straightforward way to approximate F.t/ D Fg;†.t/,
one may use an estimate Q† so that Fg;†.t/ can be approximated by Fg; Q†.t/. Here
we do not adopt this approach for the following two reasons. First, it can be quite
difficult to consistently estimate † without assuming sparseness or other structural
conditions. The latter assumptions are widely used in the literature; see, for example,
Bickel and Levina (2008a), Bickel and Levina (2008b), Cai et al. (2011) and Fan
et al. (2013). Second, it is difficult to quantify the difference Fg; Q†.�/�F.�/ based on

operator norm or other type of matrix convergence of the estimate Q†. Xu et al.
(2014) argued that, for the L2 test with g.x/ D Pp

jD1 x2j , one needs to use the

normalized consistency of Q†, instead of the widely used operator norm consistency.
We propose using half-sampling and balanced Rademacher schemes.

8.5.1 Preamble: i.i.d. Gaussian Data

In practice, however, the covariance matrix † is typical unknown. Assume at the
outset that X1; : : : ;Xn are i.i.d. N.
;†/ vectors. Assume that n D 4m, where m is a
positive integer. Then we can estimate the cumulative distribution function F.t/ D
PŒg.Z/ 	 t� by using Hadamard matrices (see, Georgiou et al. 2003; Hedayat and
Wallis 1978; Yarlagadda and Hershey 1997). We say that H is an n � n Hadamard
matrix if its first row consisting all 1s, and all its entries taking values 1 or �1 such
that

HHT D nIn; (8.53)

where In is the n � n identity matrix. Let

Yj D 1p
n

nX

iD1
HjiXi; j D 1; : : : ; n: (8.54)

By (8.53), we have
Pn

iD1Hji D 0 for 2 	 j 	 n and
Pn

iD1HjiHj0i D 0 if
j 6D j0. Since X1; : : : ;Xn are i.i.d. N.
;†/, it is clear that Y2; : : : ;Yn are also i.i.d.
N.0;†/ vectors. Hence the random variables g.Y2/; : : : ; g.Yn/ are independent and
identically distributed as g.Z/. Therefore we can construct the empirical cumulative
distribution function

OFn.t/ D 1

n � 1
nX

jD2
1g.Yj/�t; (8.55)
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which converges uniformly to F.t/ as n ! 1, and t1�˛ can be estimated by
Ot1�˛ D OF�1n .1 � ˛/, the .1 � ˛/th empirical quantile of OFn.�/. As an important
feature of the latter method, one does not need to estimate the covariance matrix †,
the nuisance parameter. In combinatorial experiment design, however, it is highly
nontrivial to construct Hadamard matrices. If n is a power of 2, then one can simply
apply Sylvester’s construction. The Hadamard conjecture states that a Hadamard
matrix of order n exists when 4jn. The latter problem is still open. For example, it is
unclear whether a Hadamard matrix exists when n D 668 (see Brent et al. 2015).

8.5.2 Rademacher Weighted Differencing

To circumvent the existence problem of Hadamard matrices in Sect. 8.5.1, we shall
construct asymptotically independent realizations by using Rademacher random
variables. Let "jk; j; k 2 Z, independent of .Xi/i�1, be i.i.d. Bernoulli random
variables with P."jk D 1/ D P."jk D �1/ D 1=2. Define the Rademacher weighted
differences

Yj D D.Aj/; where D.A/ D jAj
1=2.n � jAj/1=2

n1=2

 P
i2A Xi

jAj �
P

i2f1;:::;ng�A Xi

n � jAj

!

;

(8.56)

where the random set

Aj D f1 	 i 	 n W "ji D 1g: (8.57)

When defining Yj, we require that Aj satisfies jAjj 6D 0 and jAjj 6D n. By the
Hoeffding inequality, jAjj concentrates around n=2 in the sense that, for u � 0,
P.jjAjj � n=2j � u/ 	 2 exp.�2u2=n/. Alternatively, we consider the balanced
Rademacher weighted differencing: let Aı1;Aı2; : : : be simple random sample drawn
equally likely fromAm D fA 
 f1; : : : ; ng W jAj D mg, wherem D bn=2c. Similarly
as Yj in (8.56), we define

Yıj D D.Aıj /: (8.58)

Clearly, given Aj (resp. Aıj ), Yj (resp. Yıj ) has mean 0 and covariance matrix†. Based
on Yj in (8.56) (resp. Yıj in (8.58)), define the empirical distribution functions

OFN.t/ D 1

N

NX

jD1
1g.Yj/�t; (8.59)
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where N !1 and

OFıN.t/ D
1

N

NX

jD1
1g.Yı

j /�t: (8.60)

For sets A;B 
 f1; : : : ; ng, let Ac D f1; : : : ; ng � A, Bc D f1; : : : ; ng � B and

d.A;B/ D max
n
jjA \ Bj � n

4
j; jjAc \ Bj � n

4
j; jjA\ Bcj � n

4
j; jjAc \ Bcj � n

4
j
o
:

If A;B are chosen according to a Hadamard matrix, then d.A;B/ D 0. Assume that

d.A;B/ 	 0:1n: (8.61)

Then there exists an absolute constant c > 0 such that

cov.D.A/;D.B// D ı†; where jıj 	 c
d.A;B/

n
: (8.62)

Again by the Hoeffding inequality, if we choose A1;A2 according to (8.57), there
exists absolute constants c1; c2 > 0 such that P.d.A1;A2/ � u/ 	 c1 exp.�c2u2=n/,
indicating that (8.61) holds with probability close to 1, d.A1;A2/ D OP.n1=2/ and
hence the weak orthogonality with ı.A1;A2/ D OP.n�1=2/.

Theorem 2 (Lou and Wu (2018)) Under conditions of Theorem 1, we have
supt j OFıN.t/ � F.t/j ! 0 in probability as N !1.

8.5.3 Calculating the Power

The asymptotic power expression is

B.
/ D PŒg.Z Cpn
/ � t1�˛�: (8.63)

Given the sample X1; : : : ;Xn whose mean vector 
 may not necessarily be 0, based
on the estimated Ot1�˛ from the empirical cumulative distribution functions (8.59)
and (8.60), we can actually estimate the power function by the following:

OB.�/ D OP.g.D.Aıj /C
p
n�/ � Ot1�˛jX1; : : : ;Xn/

D 1

N

NX

jD1
1g.D.Aı

j /C
p
n�/�Ot1�˛ : (8.64)
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8.5.4 An Algorithm with General Testing Functionals

For ease of application, we shall in this section provide details of testing the
hypothesis H0 in (8.1) using the Rademacher weighting scheme described in
Sect. 8.5.2.

To construct a confidence region for 
, one can use (8.52) with t1�˛ therein
replaced by the empirical quantile Otı1�˛ .

8.6 Numerical Experiments

In this section, we shall perform a simulation study and evaluate the finite-
sample performance of our Algorithm 1 with OFıN.t/ defined in (8.60). Tests for
mean vectors and covariance matrices are considered in Sects. 8.6.1 and 8.6.2,
respectively. Section 8.6.3 contains a real data application on testing correlations
between different pathways of a pancreatic ductal adenocarcinoma dataset.

8.6.1 Test of Mean Vectors

We consider three different testing functionals: for x D .x1; : : : ; xp/> 2 R
p, let

g1.x/ D max
j�p jxjj; g2.x/ D

pX

jD1
jxjj2; g3.x/ D sup

c�0

8
<

:
c2

pX

jD1
jxjj21jxjj�c

9
=

;
:

For the L1 form g1.x/, four different testing procedures are compared: the
procedure using our Algorithm 1 with OFıN.�/ replaced by OFN.�/; cf (8.59); or by

OF�N.t/ D
1

N

NX

jD1
1
g.Y

�
j /�t; where Y�j D

1p
n

nX

iD1
"ji.Xi � NX/ (8.65)

Algorithm 1: Rademacher weighted testing procedure
1. Input X1; : : : ;Xn;
2. Compute the average NXn and the test statistic T D g.

p
n NXn/;

3. Choose a large N in (8.60) and obtain the empirical quantile Otı1�˛;
4. Reject H0 at level ˛ if T > Otı1�˛;
5. Report the p-value as OFı

N.T/.
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and "ji are i.i.d. Bernoulli(1=2) independent of .Xij/; the test of Fan et al. (2007)
(FHY, see (8.20) and (8.23)) and the Gaussian Multiplier Bootstrap method in
Chernozhukov et al. (2014) (CCK, see (8.30)).

For g2.x/, we compare the performance of our Algorithm 1 with OFıN.�/, OFN.�/ and
OF�N.�/, and also the CLT-based procedure of Chen and Qin (2010) (CQ), which is a
variant of (8.45) with the numerator n NXT

n
NXn� f1 therein replaced by n�1

P
i¤j X

>
i Xj.

The portmanteau testing functional g3.x/ is a marked weighted empirical process.
For our Algorithm 1 and the Gaussian Multiplier Bootstrap method, we calculate

the empirical cutoff values with N D 4000. For each functional, we consider two
models and use n D 40; 80 and p D 500; 1000. The empirical sizes for each case
are calculated based on 1000 simulations.

Example 1 (Factor Model) Let Zij be i.i.d. N.0; 1/ and consider

Xi D .Zi1; : : : ;Zip/> C pı.Zi0; : : : ;Zi0/
>; i D 1; : : : ; n; (8.66)

Then Xi are i.i.d. N.0;†/ with † D Ip C p2ı11>, where 1 D .1; : : : ; 1/>. Larger ı
implies stronger correlation among the entries Xi1; : : : ;Xip.

Table 8.1 reports empirical sizes for the factor model with g1.�/ at the 5%
significance level. For each choice of p, n, and ı, our Algorithm 1 with OFıN.�/ and
OFN.�/ perform reasonably well, while the empirical sizes using OF�N.�/ are generally
slightly larger than 5%. The empirical sizes using Chernozhukov et al.’s (8.30) or
Fan et al.’s (8.23) are substantially different from the nominal level 5%. For large ı,
as expected, the procedure of Fan, Hall, and Yao can be very conservative.

The empirical sizes for the factor model using g2.�/ are summarized in Table 8.2.
Our Algorithm 1 with OFıN.�/ and OFN.�/ perform quite well. The empirical sizes for
Chen and Qin’s procedure deviate significantly from 5%. This can be explained by
the fact that CLT of type (8.45) is no longer valid for model (8.66); see the discussion
following (8.45) and Theorem 2.2 in Xu et al. (2014).

When using functional g3.x/, our Algorithm 1 with OFıN.�/ and OFN.�/ perform
slightly better than OF�N.�/ and approximate the nominal 5% level well (Table 8.3).

Table 8.1 Empirical sizes for the factor model (8.66) with g1.	/
n D 40 n D 80

p ı OFı

N CCK OFN FHY OF�N OFı

N CCK OFN FHY OF�N
500 �0:05 0.053 0.028 0.052 0.028 0.059 0.053 0.037 0.052 0.031 0.055

1000 0.052 0.023 0.052 0.035 0.057 0.051 0.036 0.051 0.034 0.053

500 0:05 0.051 0.034 0.054 0.014 0.064 0.047 0.030 0.044 0.018 0.047

1000 0.057 0.035 0.058 0.011 0.063 0.053 0.044 0.055 0.015 0.056

500 0:1 0.046 0.026 0.048 0.009 0.055 0.053 0.042 0.054 0.007 0.056

1000 0.059 0.041 0.059 0.007 0.063 0.052 0.045 0.054 0.008 0.056
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Table 8.2 Empirical sizes for the factor model (8.66) using functional g2.x/

n D 40 nD 80

p ı CQ OFı

N
OFN OF�N CQ OFı

N
OFN OF�N

500 �0:05 0.078 0.055 0.061 0.066 0.063 0.048 0.047 0.048

1000 0.081 0.063 0.066 0.072 0.066 0.050 0.049 0.053

500 0:05 0.074 0.054 0.054 0.059 0.067 0.052 0.053 0.054

1000 0.075 0.054 0.052 0.056 0.076 0.058 0.057 0.059

500 0:1 0.067 0.049 0.051 0.052 0.068 0.055 0.052 0.056

1000 0.083 0.064 0.064 0.067 0.068 0.048 0.051 0.051

Table 8.3 Empirical sizes for the factor model (8.66) using functional g3.x/

n D 40 n D 80

p ı OFı

N
OFN OFN OFı

N
OFN OF�N

500 �0:05 0.061 0.059 0.066 0.049 0.048 0.049

1000 0.062 0.064 0.073 0.058 0.059 0.063

500 0:05 0.054 0.058 0.060 0.053 0.053 0.055

1000 0.053 0.054 0.057 0.059 0.059 0.060

500 0:1 0.049 0.049 0.051 0.053 0.053 0.055

1000 0.053 0.054 0.057 0.059 0.059 0.060

Example 2 (Multivariate t-Distribution) Consider the multivariate t� vector

Xi D .Xi1; : : : ;Xip/
> D Yi

p
�=Wi � t�.0;†/; i D 1; : : : ; n (8.67)

where the degrees of freedom � D 4, † D .�jk/pj;kD1, �jj D 1 for j D 1; : : : ; p and

�jk D cjj� kj�d; 1 	 j ¤ k 	 p;

and Yi � N.0;†/, Wi � �2� are independent. The above covariance structure allows
long-range dependence among Xi1; : : : ;Xip; see Veillette and Taqqu (2013).

We summarize the simulated sizes for model (8.67) in Tables 8.4, 8.5, and 8.6.
As in Example 1, similar conclusions apply here. Due to long-range dependence,
the procedure of Fan, Hall, and Yao appears conservative. The Gaussian Multiplier
Bootstrap (8.30) yields empirical sizes that are quite different from 5%. The CLT-
based procedure of Chen and Qin is severely affected by the dependence. In practice
we suggest using Algorithm 1 with OFıN.�/ which has a good size accuracy.
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Table 8.4 Empirical sizes for multivariate t-distribution using functional g1.x/

t4 n D 40 n D 80

c d OF�N CCK OFN FHY OF�N OFı

N CCK OFN FHY OF�N
0:5 1/8 0.047 0.011 0.044 0.016 0.053 0.051 0.017 0.045 0.013 0.049

0.059 0.015 0.056 0.014 0.061 0.055 0.017 0.055 0.022 0.059

0:5 1/4 0.057 0.010 0.055 0.023 0.061 0.050 0.016 0.050 0.022 0.053

0.051 0.005 0.048 0.018 0.058 0.054 0.014 0.055 0.022 0.060

0:8 1/8 0.054 0.020 0.050 0.017 0.061 0.052 0.030 0.051 0.016 0.053

0.049 0.019 0.044 0.012 0.049 0.049 0.022 0.048 0.017 0.051

0:8 1/4 0.048 0.013 0.050 0.022 0.053 0.046 0.019 0.042 0.036 0.044

0.054 0.008 0.053 0.017 0.057 0.051 0.018 0.050 0.018 0.052

For each choice of c and d, the upper line corresponding to p D 500 and the second for p D 1000

Table 8.5 Empirical sizes for multivariate t-distribution using functional g2.x/

t4 n D 40 n D 80

c d CQ OFı

N
OFN OF�N CQ OFı

N
OFN OF�N

0:5 1/8 0.074 0.053 0.053 0.056 0.076 0.060 0.052 0.058

0.073 0.055 0.050 0.054 0.077 0.062 0.061 0.064

0:5 1/4 0.067 0.052 0.044 0.051 0.073 0.055 0.054 0.057

0.072 0.057 0.054 0.060 0.070 0.056 0.055 0.060

0:8 1/8 0.074 0.059 0.062 0.066 0.070 0.047 0.051 0.052

0.064 0.052 0.053 0.057 0.075 0.052 0.054 0.055

0:8 1/4 0.081 0.063 0.058 0.063 0.080 0.055 0.056 0.061

0.067 0.052 0.051 0.059 0.068 0.053 0.052 0.056

For each choice of c and d, the upper line corresponding to p D 500 and the second for pD 1000

Table 8.6 Empirical sizes for multivariate t-distribution using functional g3.x/

t4 n D 40 n D 80

c d OFı

N
OFN OF�N OFı

N
OFN OF�N

0:5 1/8 0.053 0.050 0.056 0.055 0.051 0.054

0.050 0.049 0.056 0.059 0.055 0.060

0:5 1/4 0.052 0.048 0.053 0.056 0.056 0.060

0.056 0.048 0.060 0.055 0.056 0.061

0:8 1/8 0.059 0.059 0.066 0.049 0.049 0.052

0.048 0.048 0.054 0.051 0.051 0.058

0:8 1/4 0.067 0.063 0.069 0.053 0.056 0.061

0.049 0.048 0.052 0.048 0.048 0.051

For each choice of c and d, the upper line corresponding to p D 500 and the second for p D 1000
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8.6.2 Test of Covariance Matrices

8.6.2.1 Sizes Accuracy

We first consider testing for H0a W † D I for the following model:

Xij D "i;j"i;jC1; 1 	 i 	 n; 1 	 j 	 p; (8.68)

where "ij are i.i.d. (1) standard normal; (2) centralized Gamma(4,1); and (3) the
student t5. We then study the second test H0b W †1;2 D 0, by partitioning equally
the entire random vector Xi D .Xi1; : : : ;Xip/

T into two subvectors of p1 D p=2 and
p2 D p�p1. In the simulation, we generate samples of two subvectors independently
according to model (8.68). We shall use Algorithm 1 with L2 functional. Tables 8.7
and 8.8 report the simulated sizes based on 1000 replications with N D 1000 half-
sampling implementations, and they are reasonably closed to the nominal level 5%.

8.6.2.2 Power Curve

To access the power for testing H0 W † D Ip using the L2 test, we consider the model

Xij D "i;j"i;jC1 C ��i; 1 	 i 	 n; 1 	 j 	 p; (8.69)

where "ij and �i are i.i.d. Student t5 and � is chosen to be 0; 0:02; 0:04; : : : ; 0:7. The
power curve is shown in Fig. 8.1. As expected, the power increases with n.

Table 8.7 Simulated sizes of the L2 test for H0a

N.0; 1/ �.4; 1/ t5
p

n 64 128 64 128 64 128

20 0.045 0.054 0.046 0.047 0.053 0.048

50 0.044 0.045 0.055 0.045 0.046 0.050

100 0.050 0.054 0.047 0.053 0.051 0.049

Table 8.8 Simulated sizes of the L2 test for H0b

N.0; 1/ �.4; 1/ t5
p

n 64 128 64 128 64 128

20 0.044 0.050 0.043 0.055 0.045 0.043

50 0.045 0.043 0.049 0.044 0.053 0.045

100 0.053 0.053 0.053 0.045 0.050 0.050
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Fig. 8.1 Power curve for testing H0 W † D Ip with model (8.69), and n D 20; 50, using the L2 test

8.6.3 A Real Data Application

We now apply our testing procedures to a pancreatic ductal adenocarcinoma (PDAC)
dataset, preprocessed from NCBI’s Gene Expression Omnibus, accessible through
GEO Series accession number GSE28735 (http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE28735). The dataset consists of two classes of gene expression
levels that came from 45 pancreatic tumor patients and 45 pancreatic normal
patients. There are a total of 28,869 genes. We shall test existence of correlations
between two subvectors, which can be useful for identifying sets of genes which are
significantly correlated.

We consider genetic pathways of the PDAC dataset. Pathways are found to be
highly significantly associated with the disease even if they harbor a very small
amount of individually significant genes. According to the KEGG database, the
pathway “hsa05212” is relevant to pancreatic cancer. Among the 28,869 genes,
66 are mapped to this pathway. We are interested in testing whether the pathway
to pancreatic cancer is correlated with some common pathways, “hsa04950”
(21 genes, with name “Maturity onset diabetes of the young”), “hsa04940” (59
genes, with name “Type I diabetes mellitus”), “hsa04972” (87 genes, with name
“Pancreatic secretion”). Let Wi;Xi;Yi, and Zi be the expression levels of individual
i from the tumor group for pathways “hsa05212,” “hsa04950,” “hsa04940,” and
“hsa04972,” respectively. The null hypotheses are HT

01 W cov.Wi;Xi/ D 066�21,
HT
02 W cov.Wi;Yi/ D 066�59 and HT

03 W cov.Wi;Zi/ D 066�87. Similar null hypothesis
HN
01;H

N
01;H

N
01 can be formulated for the normal group. Our L2 test of Algorithm 1 is

compared with the Gaussian multiplier bootstrap (8.30). The results are summarized

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28735
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28735
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Table 8.9 Estimated p-values of tests for covariances between pathway “pancreatic cancer” and
other different pathways, based on N D 106 half-sampling implementations

Tumor patients Normal patients

Pathway Name CCK L2 test CCK L2 test

hsa04950 Maturity onset diabetes of the young 0:013116 0:000000 0:006618 0:000000

hsa04940 Type I diabetes mellitus 0:066270 0:000000 0:074014 0:002327

hsa04972 Pancreatic secretion 0:063291 0:000003 0:095358 0:001189

in Table 8.9. The CCK test is not able to reject the null hypothesis H03 at 5% level
since it gives a p-value of 0:063291. However using the L2 test, H03 is rejected,
suggesting that there is a substantial correlation between pathways “hsa05212” and
“hsa04972.” Similar claims can be made for other cases. The L2 test also suggests
that, at 0:1% level, for the tumor group, the hypotheses HT

02 and HT
03 are rejected,

while for the normal group, the hypotheses HN
02 and HN

03 are not rejected.
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Chapter 9
High-Dimensional Classification

Hui Zou

Abstract There are three fundamental goals in constructing a good high-
dimensional classifier: high accuracy, interpretable feature selection, and efficient
computation. In the past 15 years, several popular high-dimensional classifiers
have been developed and studied in the literature. These classifiers can be roughly
divided into two categories: sparse penalized margin-based classifiers and sparse
discriminant analysis. In this chapter we give a comprehensive review of these
popular high-dimensional classifiers.

Keywords Classifier · Bayes rule · High dimensional data · Regularization ·
Sparsity · Variable selection

9.1 Introduction

Classification is a fundamental topic in modern statistical learning and statistical
classification methods have found numerous successful applications in science and
engineering fields. Let f.Xi; yigniD1g be a random sample from some distribution
P.y;X/ where y denotes the class label and X represents the predictor vector of
dimension p. A classifier predicts the class label at X asby.X/. Under the standard
0–1 loss, the misclassification error is Pr.y ¤by.X// which is lower bounded by the
misclassification error of Bayes rule whose predicted label is argmaxc Pr.y D cjX/
where c is the possible values of y.

In the classical domain where n is much larger than p, there are several off-the-
shelf classifiers that can achieve very competitive performance in general, including
the famous support vector machines (SVM) (Vapnik 1996), AdaBoost (Freund and
Schapire 1997), MART (Friedman 2001), and random forests (Breiman 2001).
The more traditional classifiers such as linear discriminant analysis (LDA) and
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linear logistic regression often perform satisfactorily in practice, and when they
do not perform well, one can use their kernel counterparts, kernel discriminant
analysis (Mika et al. 1999), and kernel logistic regression (Zhu and Hastie 2005),
to improve the classification accuracy. In short, the practitioner can choose from
a rich collection of powerful methods for solving low or moderate dimensional
classification problems.

The focus in this chapter is on high-dimensional classification where the ambient
dimension p is comparable, or even much larger than the sample size n. High-
dimensionality brings two great challenges. First, many successful classifiers in
the traditional lower-dimension setting may not perform satisfactorily under high-
dimensions, because those classifiers are built on all predictors and hence fail to
explore the sparsity structure in the high-dimensional model. If there are many
noisy features in the data, it is not wise to use all predictors in classification.
Second, feature selection has strong scientific foundations. In many scientific
studies, the hypothesis is that only a few important predictors determine the
response value, and the goal of analysis is to identify these important variables.
Such applications naturally require sparsity in the statistical model. For example,
many have reported that kernel SVMs can provide accurate classification results
in microarray applications, but it does not tell which genes are responsible to
classification. Hence, many prefer to use more interpretable methods such as nearest
shrunken centroids that select a small subset of genes and also deliver competitive
classification performance.

The most popular classifiers with high-dimensional data include sparse penalized
svm/large margin classifiers and sparse discriminant analysis. Sparse versions of
AdaBoost/boosting and random forests are yet to be developed. In this chapter we
present the following high-dimensional classifiers:

• the lasso and elastic-net penalized SVMs;
• the lasso and elastic-net penalized logistic regression;
• the elastic-net penalized Huberized SVMs;
• concave penalized margin-based classifiers;
• independence rules: nearest shrunken centroids (NSC) and FAIR;
• linear programming discriminant (LPD);
• direct sparse discriminant analysis (DSDA);
• sparse semiparametric discriminant analysis;
• sparse additive margin-based classifiers.

Some sparse binary classifier can have a rather straightforward multiclass general-
ization, while it is much more challenging to derive the multiclass generalizations of
other sparse binary classifiers. In this chapter, we will primarily focus on methods
for high-dimensional binary classification. Some multiclass sparse classifiers will
be briefly mentioned.
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9.2 LDA, Logistic Regression, and SVMs

9.2.1 LDA

Linear discriminant analysis (LDA) is perhaps the oldest classification method in the
literature and yet is still being routinely used in modern applications (Michie et al.
1994; Hand 2006). The LDA model starts with the assumption that the conditional
distribution of the predictor vector given the class label is a multivariate normal
distribution:

Xjy D k � N.
k;†/; k D 1; : : : ;K: (9.1)

Define �k D Pr.Y D k/, the LDA Bayes rule can be written as

argmaxkŒlog�k C 
T
k †�1.X � 
k/�: (9.2)

The LDA rule replaces these unknown parameters in the Bayes rule with their
natural estimates. Let nk be the number of observations in class k. Define b�k D nk

n ,

b
k D
P

yiDk Xi

nk
, and

b† D
PK

kD1
P

yiDk.Xi �b
k/.Xi �b
k/
T

n� K
: (9.3)

For the binary case, the LDA classifies an observation to Class 2 if and only if
XTb̌C b̌0 > 0 where

b̌ D b†
�1
.b
2 �b
1/; (9.4)

b̌
0 D �

1

2
.b
1 Cb
2/Tb†�1.b
2 �b
1/C log

b�2

b�1
: (9.5)

There is also a nice geometric view of LDA, originally suggested by Fisher
(1936). Fisher considered the problem of finding an optimal linear projection of the
data in which the optimality measure is the ratio of the between-class variance to
the within-class variance on the projected data. Fisher’s solution is equivalent to the
LDA. In Fisher’s approach, the normality assumption is not needed but the equal
covariance assumption is important.

9.2.2 Logistic Regression

Here we only discuss the logistic regression model for binary classification.
The multi-class version of logistic regression is known as multinomial logistic
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regression. For notation convenience, write p.X/ D Pr.y D 1jX/, 1 � p.x/ D
Pr.y D 0jX/. The log-odds function is defined as f .X/ D log



Pr.yD1jX/
Pr.yD0jX/

�
D

log . p.X/=.1� p.X// : The linear logistic regression model assumes that f .X/ is
a linear function of X, i.e.,

f .X/ D ˇ0 C XTˇ (9.6)

which is equivalent to assuming that

p.X/ D exp.ˇ0 C XTˇ/

1C exp.ˇ0 C XTˇ/
: (9.7)

The parameters .ˇ; ˇ0/ are estimated by maximum conditional likelihood

.b̌0; b̌/ D argmaxˇ0;ˇ`.ˇ0;ˇ/: (9.8)

where

`.ˇ0;ˇ/ D
nX

iD1
yi.ˇ0 C XT

i ˇ/�
nX

iD1
log

�
1C exp.ˇ0 C XT

i ˇ/
	
: (9.9)

We classify X to class I.b̌0 C XTb̌ > 0/:
The linear logistic regression model is often fitted via an iteratively re-weighted

least squares (IRWLS) algorithm. It turns out that IRWLS can be a part of the
algorithm used for solving the sparse penalized linear logistic regression (Friedman
et al. 2010), which is discussed in Sect. 9.4.

If we use y D C1;�1 to code the class label, then it is easy to check that (9.8) is
equivalent to

argminˇ0;ˇ

nX

iD1
�.yi.ˇ0 C XT

i ˇ// (9.10)

where �.t/ D log.1 C e�t/ is called the logistic regression loss. This loss-based
formulation is useful when we try to unify logistic regression and the support vector
machine.

9.2.3 The Support Vector Machine

The support vector machine (SVM) is one of the most successful modern classifi-
cation techniques (Vapnik 1996). There are a lot of nice introductory books (e.g.,
Hastie et al. 2009) on the SVM and its kernel generalizations. Our review begins
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with a nice geometric view of the SVM: it finds the optimal separating hyperplane
when the training data can be perfectly separated by a hyperplane. A hyperplane is
defined by fX W ˇ0C XTˇ D 0g; where ˇ is a unit vector (kˇk2 D 1). We use 1;�1
to code the class labels. If the training data are linearly separable, then there exists
a hyperplane such that

yi.ˇ0 C XT
i ˇ/ > 0; 8i: (9.11)

The margin is defined as the smallest distance from the training data to the
hyperplane. The SVM uses the separating hyperplane with the largest margin. So
the SVM problem is formulated as

max
ˇ;ˇ0;kˇk2D1

C; (9.12)

subjectto yi.ˇ0 C XT
i ˇ/ � C; i D 1; : : : ; n; (9.13)

where C is the margin. See Fig. 9.1 for a graphical illustration.
Of course, the training data are rarely linearly separable. Then the general SVM

problem is defined by

max
ˇ;ˇ0;kˇk2D1

C; (9.14)

subjectto yi.ˇ0 C XT
i ˇ/ � C.1 � �i/; i D 1; : : : ; n; (9.15)

�i � 0;
X

�i 	 B; (9.16)

where �i; �i � 0 are slack variables, and B is a pre-specified positive number which
can be regarded as a tuning parameter. Notice that the use of slack variables allow

β0+XTβ = 0

1

||β||

1

||β||
1

|β||

ξ1

ξ2

β0 +XTβ = 0

1

||β||

1

||β||

Fig. 9.1 The left panel shows the geometry of the SVM for separable data; the right panel shows
the case with non-separable data. Slack variables are introduced in the right panel
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some data points are on the wrong side of the hyperplane. See Fig. 9.1 (right panel)
for a graphical illustration.

9.3 Lasso and Elastic-Net Penalized SVMs

9.3.1 The `1 SVM

It can be shown that the SVM defined in (9.14)–(9.16) is the solution to the
following optimization problem:

min
ˇ0;ˇ

1

n

nX

iD1


1 � yi.ˇ0 C XT

i ˇ/
�
C C �kˇk22; (9.17)

where zC indicates the positive part of a real valued number z, and � has a one-to-
one correspondence to B in (9.16). The loss function .1 � t/C is called the hinge
loss.

From (9.17) we can easily obtain the so-called kernel SVM in a reproducing
kernel Hilbert space, and it turns out the kernel SVM is also the solution to a
quadratically penalized hinge loss problem. The readers are referred to Chapter 12
of Hastie et al. (2009) for the detailed discussion. The use of the `2 penalty in the
SVM is critically important for the success of the SVM in the low-dimensional
classification problems but is also responsible for its failure in the high-dimensional
cases. The main reason is that the solution to (9.17) is dense: all b̌js are nonzero in
general. Therefore, the resulting SVM classifier uses all predictors. A simulation
study in Chapter 12 of Hastie et al. (2009) clearly shows that the classification
accuracy of the SVM will be greatly degraded if there are more and more noise
predictors included in the predictor set. With high-dimensional data it is very
common to have a lot of noise covariates that do not contribute to the classification
of the class label. Therefore, a successful high-dimensional classifier should be
able to suppress or eliminate the influence of noise variables. Many penalization
techniques have been developed for simultaneous variable selection and model
fitting in high-dimensional linear regression models, including the lasso (Tibshirani
1996), the SCAD (Fan and Li 2001), the elastic-net (Zou and Hastie 2005), among
others. These penalization techniques can be combined with the hinge loss to
generate new SVMs that are suitable for high-dimensional classification.

Zhu et al. (2003) considered the lasso penalized SVM. The idea is to replace the
`2 penalty in (9.17) with the lasso penalty. The `1 SVM is defined as follows:

min
ˇ0;ˇ

1

n

nX

iD1


1 � yi.ˇ0 C XT

i ˇ/
�
C C �kˇk1: (9.18)
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where kˇk1 D P
j jˇjj is called the lasso penalty or the `1 penalty. A fundamental

difference between the `2 penalty and the `1 penalty is that the latter is singular at
zero. Thus, the solution to (9.18) could have some exact zero b̌js. The regularization
parameter� controls the sparsity as well as the classification accuracy of the SVM. It
can be easily shown that when � is sufficiently large, the solution to (9.18) must have
b̌
j D 0 for all js. When � is relaxed to smaller values, more b̌js become nonzero,

which means more predictors enter the `1 SVM model. The `1 penalized SVM
was proposed in Bradley and Mangasarian (1998). The major contribution in Zhu
et al. (2003) is a piecewise linear path-following algorithm for computing the entire
solution paths of the `1 SVM. Wang and Shen (2006) developed a multicategory `1
support vector machine.

9.3.2 The DrSVM

Although the `1 SVM is better than the standard `2 SVM for high-dimensional
classification in general, the `1 SVM also has some serious drawbacks due to the
lasso penalty. When there are a group of highly correlated variables, the lasso tends
to randomly pick one and ignore the rest from the group. In addition, the lasso
solution suffers from high variability from collinearity. The elastic net (Zou and
Hastie 2005) offers a nice fix to the above issues by adaptively mixing the `2 penalty
and the `1 penalty. The elastic-net penalty is defined as

�2

2
kˇk22 C �1kˇk1; (9.19)

or �Œ.1 � ˛/kˇk
2
2

2
C ˛kˇk1�; 0 < ˛ < 1 (9.20)

The elastic-net penalty is able to enjoy the good properties of the `2 and the
`1 penalties. Similar to the `1 penalty, the elastic-net penalty is singular at zero,
which allows it to produce sparse solutions automatically. The `2 component of
the elastic-net penalty further regularizes the solution path to make it more stable.
Thus, the elastic-net usually outperforms the lasso in prediction. Furthermore, the `2
component encourages a grouping effect such that highly correlated variables tend
to be selected together.

Wang et al. (2008) applied the elastic-net penalty to the SVM and defined the
so-called DrSVM as follows:

min
ˇ0;ˇ

nX

iD1


1 � yi.ˇ0 C xTi ˇ/

�
C C

�2

2
kˇk22 C �1kˇk1: (9.21)

Notice that we use (9.19) for the elastic-net penalty in order to gain a nice
computational advantage, which will be explained later.
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Theorem 1 (Wang et al. 2008) Denote the solution to (9.21) as b̌. Then for any
pair .j; `/, we have

ˇ
ˇ
ˇb̌j � b̌̀

ˇ
ˇ
ˇ 	 1

�2
kxj � x`k1: (9.22)

Furthermore, if the input variable xj; x` are centered and normalized, then

ˇ
ˇ
ˇb̌j � b̌̀

ˇ
ˇ
ˇ 	
p
n

�2

q
2.1 � �j`/; (9.23)

where �j` is the sample correlation between xj and x`.

Theorem 1 gives a quantitative explanation of the grouping effect of the DrSVM.
The theorem is actually established for a whole class of elastic-net penalized
margin-based loss classifiers (Wang et al. 2008).

The DrSVM enjoys a piecewise linear solution path property, which is the
foundation of an efficient path-following algorithm for solving the DrSVM.

Theorem 2 (Wang et al. 2008) Write the solution b̌ for (9.21) as b̌�2.�1/. For

each fixed �2 � 0, b̌�2 .�1/ is a piecewise linear function of �1.
Notice that when �2 D 0, the DrSVM reduces to the `1 SVM. Thus, the above

theorem shows the `1 SVM has a piecewise linear solution path. In fact, Zhu
et al. (2003) already proved this property and derive a path-following algorithm
for computing the entire solution paths of the `1 SVM. Wang et al. (2008) further
generalize the arguments used in Zhu et al. (2003) to develop an efficient path-
following algorithm for the DrSVM. By the piecewise linear property, we only need
to compute the solutions at change points and the solution path between two change
points can be linearly extrapolated. The main idea of the algorithm follows the least
angle regression algorithm by Efron et al. (2004) for solving the lasso penalized
linear regression. The R code for fitting the DrSVM can be downloaded from

http://dept.stat.lsa.umich.edu/~jizhu/code/drsvm/

9.4 Lasso and Elastic-Net Penalized Logistic Regression

Under the linear logistic regression model, the log-likelihood function is

`.ˇ0;ˇ/ D
nX

iD1
yi.ˇ0 C XT

i ˇ/�
nX

iD1
log

�
1C exp.ˇ0 C XT

i ˇ/
	
: (9.24)
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Tibshirani (1996) mentioned the lasso penalized logistic regression:

argminˇ0;ˇ

8
<

:
�1
n
`.ˇ0;ˇ/C �

pX

jD1
jˇjj

9
=

;
: (9.25)

However, Tibshirani did not provide an efficient algorithm for fitting the lasso
penalized logistic regression model. Recently, Friedman et al. (2010) developed an
R package glmnet (available from CRAN) for solving the more general elastic-net
penalized logistic regression model:

argminˇ0;ˇ

8
<

:
�1
n
`.ˇ0;ˇ/C �

pX

jD1

�
1 � ˛
2
jˇjj2 C ˛jˇjj

�
9
=

;
: (9.26)

When ˛ D 1, glmnet solves the lasso penalized logistic regression. glmnet also
handles the elastic-net penalized multinomial regression for multiclass problems.

The algorithm used in glmnet is very simple, which is referred to FHT
algorithm in what follows. First, we follow the Newton-Raphson algorithm for
solving the ordinary logistic regression to get a quadratic approximation of the
logistic regression loss. Then, a very fast coordinate descent algorithm can be used
to find the minimizer of the approximate objective function. The final solution is
obtained by iterating between the Newton-Raphson step and a cyclic coordinate
descent loop.

Let . Q̌0; ě/ be the current solution to (9.26). Define

Qp.Xi/ D exp. Q̌0 C XT
i
ě/

1C exp. Q̌0 C XT
i
ě/

(9.27)

wi D Qp.Xi/.1 � Qp.Xi// (9.28)

zi D Q̌0 C XTěC yi � Qp.Xi/

wi
: (9.29)

Friedman et al. (2010) considered a quadratic approximation of `.ˇ0;ˇ/ and then
turned (9.26) into a penalized quadratic problem. Specifically, FHT algorithm
updates . Q̌0; ě/ by solving the following penalized weighted least squares problem:

argminˇ0;ˇ
1

2n

nX

iD1
wi.zi � ˇ0 � XT

i ˇ/2 C �
pX

jD1

�
1 � ˛
2
jˇjj2 C ˛jˇjj

�

: (9.30)

Notice that if � D 0, (9.30) reduces to the IRWLS for solving the linear logistic
regression.



234 H. Zou

FHT algorithm uses a coordinate descent algorithm to solve (9.30). Suppose that
we have the solution to (9.30) except ˇj. Then we have

ˇj D argminˇj
1

2n

nX

iD1
wi.zi � Qyi � xijˇj/

2 C �
�
1 � ˛
2
jˇjj2 C ˛jˇjj

�

: (9.31)

where Qyi D ˇ0 C P
`¤j x` Q̌`. The solution to (9.31) is given by the elastic-net

thresholding rule (Zou and Hastie 2005):

ˇj D
S.
Pn

iD1
wi
n xij.zi � Qyi/; �˛/Pn

iD1
wi
n x

2
ij C �.1� ˛/

(9.32)

where S is the so-called soft-thresholding operator: S.t; s/ D Sign.z/.jzj � s/C.
We repeatedly apply (9.32) to update the coefficient of each coordinate j D
1; 2; : : : ; p; 1; 2; : : : ; p; 1; 2; : : :, and the cycle continues until convergence. The
simplicity of (9.32) makes cyclic coordinate descent a very attractive algorithm for
solving (9.31). In fact, Friedman et al. (2010) demonstrated that cyclic coordinate
descent can be faster than the least angle regression algorithm for solving the lasso
penalized least squares.

Several implementation tricks, such as warm start, active set update, the strong
rule, are used in the glmnet package to optimize the computation speed of FHT
algorithm. The readers are referred to Friedman et al. (2010) for the details.

Algorithm 1: FHT algorithm for the elastic-net penalized logistic regression

1. Initialize .ˇ.0/0 ;ˇ
.0//.

2. for k D 0; 1; : : : ; do

(2.a) Q̌0 D ˇ
.k/
0 , ě0 D ˇ.k/

(2.b) compute Qp.Xi/;wi; zi as defined in (1.30)–(1.32)
(2.c) let .ˇ.k/0 ;ˇ

.k// be the solution to (9.30), which is solved by cyclic coordinate descent
based on (9.32).

3 repeat steps (2.a), (2.b), (2.c) till convergence.

9.5 Huberized SVMs

Wang et al. (2008) proposed a smoothed SVM for high-dimensional classification
where the hinge loss underlying the standard SVM is replaced with a Huberized
hinge loss. The motivation is to use a smoother loss function in order to achieve
gains in computational efficiency. See Fig. 9.2 for a plot of the Huberized hinge loss.
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Fig. 9.2 (a) The Huberized hinge loss function (with ı D 2). (b) The Huberized hinge loss
function (with ı D 0:01). (c) The squared hinge loss function. (d) The logistic loss function

The elastic-net penalized Huberized SVM is defined as

min
.ˇ0;ˇ/

1

n

nX

iD1
�ı.yi.ˇ0 C xᵀi ˇ//C P�1;�2.ˇ/: (9.33)

where P�1;�2 .ˇ/ is the elastic net penalty:

P�1;�2 .ˇ/ D
pX

jD1
p�1;�2 .ˇj/ D

pX

jD1

�

�1jˇjj C �2

2
ˇ2j

�

; (9.34)

Note that �.�/ in (9.33) is the Huberized hinge loss

�ı.t/ D
8
<

:

0;

.1 � t/2=2ı;
1 � t � ı=2;

t > 1
1 � ı < t 	 1
t 	 1 � ı;
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where ı > 0 is a pre-specific constant. The default choice for ı is 2 unless specified
otherwise. Displayed in Fig. 9.2(panel (a)) is the Huberized hinge loss with ı D 2.
The Huberized hinge loss is very similar to the hinge loss in shape. In fact, when
ı is small, the two loss functions are almost identical. See Fig. 9.2(panel (b)) for
a graphical illustration. Unlike the hinge loss, the Huberized hinge loss function is
differentiable everywhere and has continuous first derivative.

Wang et al. (2008) showed that for each fixed �2, the solution path as a function
of �1 is piecewise linear. This is why we use the elastic net penalty defined in (9.34)
not the one defined in (9.20). Based on the piecewise linear property, Wang et al.
(2008) developed a LARS-type path following algorithm similar to the least angle
regression for the lasso linear regression. The R code is available from

http://dept.stat.lsa.umich.edu/~jizhu/code/hhsvm/

Yang and Zou (2013) further developed a novel coordinate-majorization-descent
(CMD) algorithm for fitting the elastic-net penalized Huberized SVM. Yang and
Zou’s algorithm is implemented in the R package gcdnet which is available from
CRAN. It is worth mentioning that the FHT algorithm for the elastic-net penalized
Huberized logistic regression does not work for the Huberized SVM, because the
Huberized hinge loss does not have a second derivative.

To see the computational advantage of gcdnet over the LARS type path-
following algorithm in Wang et al. (2008), we use the prostate cancer data (Singh
et al. 2002) as a demonstration. See Fig. 9.3. The prostate data have 102 observations
and each has 6033 gene expression values. It took the LARS-type algorithm about
5 min to compute the solution paths, while the CMD used only 3.5 s to get the
identical solution paths.

In what follows we introduce the CMD algorithm. Without loss of generality
assume the input data are standardized: 1

n

Pn
iD1 xij D 0, 1

n

Pn
iD1 x2ij D 1, for j D

1; : : : ; p. The standard coordinate descent algorithm proceeds as follows. Define the
current margin ri D yi. Q̌0 C xᵀi Q̌ / and

F.ˇjj Q̌0; Q̌ / D 1

n

nX

iD1
�ı.ri C yixij.ˇj � Q̌j//C p�1;�2.ˇj/: (9.35)

For fixed �1 and �2, the standard coordinate descent algorithm (Tseng 2001)
proceeds as follows:

1. Initialization: . Q̌0; Q̌ /
2. Cyclic coordinate descent: for j D 0; 1; 2; : : : ; p: update Q̌j by minimizing the

objective function

Q̌
j D argmin

ˇj

F.ˇjj Q̌0; Q̌ /: (9.36)

3. Repeat Step 2 till convergence.
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Fig. 9.3 Solution paths and timings of the elastic-net penalized Huberized SVM on the prostate
cancer data with 102 observations and 6033 predictors. The top panel shows the solution paths
computed by the LARS-type algorithm in Wang et al. (2008); the bottom panel shows the solution
paths computed by CMD. CMD is 87 times faster
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The major difficulty in using the above coordinate descent procedure is that the
univariate minimization problem in (9.36) does not have a closed form solution,
unlike the penalized least squares. Yang and Zou (2013) show that the computational
obstacle can be resolved by a neat trick. We replace F function in (9.35) by a
quadratic upper bound defined as

Q.ˇjj Q̌0; Q̌ / D
Pn

iD1 �ı.ri/
n

C
Pn

iD1 �0ı.ri/yixij
n

.ˇj � Q̌j/

C1
ı
.ˇj � Q̌j/2 C P�1;�2 .ˇj/; (9.37)

where �
0

ı.t/ is the first derivative of �ı.t/. The function Q is a majorization function
of F. Then by the majorization-minimization principle (Hunter and Lange 2004),
we solve the minimizer of (9.37), which is easily obtained via a simple elastic-net
thresholding rule (Zou and Hastie 2005):

b̌C
j D argmin

ˇj

Q.ˇjj Q̌0; Q̌ /

D
S


2
ı
Q̌
j �

Pn
iD1 �

0

c.ri/yixij
n ; �1

�

2
ı
C �2

; (9.38)

where S.z; s/ D .jzj � s/CSign.z/. We then set Q̌j D b̌C
j as the new estimate.

The same trick is used to update intercept ˇ0. Similarly to (9.37), we consider
minimizing a quadratic approximation

Q.ˇ0j Q̌0; Q̌ / D
Pn

iD1 �c.ri/
n

C
Pn

iD1 �0c.ri/yi
n

.ˇ0 � Q̌0/C 1

ı
.ˇ0 � Q̌0/2; (9.39)

which has a minimizer

b̌C
0 D Q̌0 �

ı

2

Pn
iD1 �0c.ri/yi

n
: (9.40)

We set Q̌0 D b̌C
0 as the new estimate.

Algorithm 2 has the complete details of the CMD algorithm for solving the
elastic-net penalized Huberized SVM. The beauty of Algorithm 2 is that it is
remarkably simple and almost identical to the coordinate descent algorithm for
computing the elastic net penalized regression. Moreover, Yang and Zou (2013)
showed that the CMD algorithm can solve a whole class of elastic-net penalized
large margin classifiers. Let �.t/ be a convex, differentiable decreasing function
such that �0.0/ < 0. Then �.t/ is a classification calibrated margin-based loss
function for binary classification (Bartlett et al. 2006). The Huberized hinge loss
is a smooth margin-based loss function. Other smooth margin-based loss functions
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Algorithm 2: The CMD algorithm for solving the elastic-net penalized Huber-
ized SVM

• Initialize . Q̌0; Q̌ /.
• Iterate 2(a)–2(b) until convergence:

– 2(a) Cyclic coordinate descent: for j D 1; 2; : : : ; p,

� (2.a.1) Compute ri D yi. Q̌0 C xᵀi Q̌ /.� (2.a.2) Compute

b̌C
j D

S


2
ı
Q̌j �

Pn
iD1 �

0

c.ri/yixij
n ; �1

�

2
ı
C �2 :

� (2.a.3) Set Q̌j D b̌C
j .

– 2(b) Update the intercept term

� (2.b.1) Re-compute ri D yi. Q̌0 C xᵀi Q̌ /.� (2.b.2) Compute

b̌C
0 D Q̌0 �

Pn
iD1 �

0

c.ri/yi
2
ı
n

:

� (2.b.3) Set Q̌0 D b̌C
0 .

include the logistic regression loss and the squared hinge loss. See Fig. 9.2(panel (c)
and panel (d)).

logistic regression loss W �.t/ D log.1C e�t/ (9.41)

squared hinge loss W �.t/ D .Œ1 � t�C/2 (9.42)

Given the loss function, the elastic-net penalized � margin classifier is defined as

min
ˇ0;ˇ

1

n

nX

iD1
�
�
yi.ˇ0 C XT

i ˇ/
	C

pX

jD1
P�1;�2.jˇjj/: (9.43)

It is shown that the CMD algorithm can be used to solve (9.43) as long as �
satisfies the following quadratic majorization condition

�.tC a/ 	 �.t/C �0.t/aC M

2
a2 8t; a: (9.44)

It is easy to check that m D 1
4

for the logistic regression loss, M D 4 for the squared
hinge loss, and M D 2

ı
for the Huberized hinge loss. We can simply replace 2

ı
with

M in Algorithm 2 to solve for (9.43). See Yang and Zou (2013) for details.
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9.6 Concave Penalized Margin-Based Classifiers

In the literature concave penalty functions have also received a lot of attention as
ways to produce sparse models. The most famous examples of concave penalty
functions are the smoothly clipped absolute deviation (SCAD) penalty proposed by
Fan and Li (2001) and the minimax concave penalty (MCP) proposed by Zhang
(2010). Another popular concave penalty function is the `q penalty with 0 < q < 1.
Fan and Li (2001) argued that a good penalty function should produce a penalized
estimate that possesses the properties of sparsity, continuity, and unbiasedness. The
lasso penalty does not have the unbiasedness property because it also shrinks large
coefficients that are very likely to be significant. The original motivation for using
the concave penalty is to correct the shrinkage bias by the lasso. To this end, Fan and
Li (2001) proposed the SCAD penalty defined by Pscad

� .0/ D 0, P�.t/ is symmetric
and for t > 0

dPscad
� .t/

dt
D �I.t 	 �/C .a� � t/C

a � 1 I.t > �/; a > 2

Note that zC stands for the positive part of z. The default value for a is 3:7 (Fan
and Li 2001). Hence the SCAD behaves like the lasso for small coefficients and
like the hard thresholding for large coefficients. The MCP penalty is defined by
Pmcp
� .0/ D 0, Pmcp

� .t/ is symmetric and for t > 0. The derivative of MCP is

dPmcp
� .t/

dt
D


� � t

a

�

C
:

Figure 9.4 shows the plots of the lasso, SCAD, and MCP penalty functions.
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Fig. 9.4 Three penalty functions: lasso (� D 2), SCAD (� D 2; aD 3:7), MCP (� D 2; aD 2)
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In this section we discuss concave penalized large margin classifiers. We use
y D 1C;�1 to code the class label and consider a margin-based loss function �.�/.
A concave penalized �-classifier is defined as

.b̌0; b̌/ D argminˇ

1

n

nX

iD1
�.yi.ˇ0 C XT

i ˇ//C
pX

jD1
P�.jˇjj/; (9.45)

where P� is a concave penalty such as the SCAD or the MCP. The classifier is
Sign.b̌0CXTb̌/: Zhang et al. (2006) used the SCAD penalized SVM for microarray
classification problems and reported good performance.

The computation of a concave penalized problem is more challenging than
the lasso problem. Fan and Li (2001) proposed a local quadratic approximation
(LQA) algorithm for solving both lasso and concave penalized likelihood models.
The main idea is to approximate the penalty function by a quadratic function and
then iteratively solve the quadratic penalized likelihood model. The LQA works
reasonably well for moderate dimensions but it cannot handle high-dimensions, and
the LQA algorithm has a technical difficulty at zero: once the current estimate is
very close to zero, the LQA will truncate it to zero and remove it from the latter
iterations. Zou and Li (2008) proposed a novel local linear approximation (LLA)
algorithm to eliminate the drawbacks of LQA. The LLA algorithm is remarkably
simple. For a concave penalty function, we have

P�.jˇjj/ 	 P�.j Q̌jj/C P0�.j Q̌jj/.jˇjj � j Q̌jj/ (9.46)

This inequality suggests us to revoke the MM principle (Hunter and Lange 2004).
Hence we update the current solution by solving

argminˇ

1

n

nX

iD1
�.yi.ˇ0 C XT

i ˇ//C �
pX

jD1
fP�.j Q̌jj/C P0�.j Q̌jj/.jˇjj � j Q̌jj/g (9.47)

which is equivalent to

argminˇ

1

n

nX

iD1
�.yi.ˇ0 C XT

i ˇ//C �
pX

jD1
wjjˇjj: (9.48)

where wj D P0�.j Q̌jj/. Algorithm 3 summarizes the details of LLA algorithm. It
is important to see that the LLA algorithm turns the original concave penalization
problem into a sequence of weighted `1 penalization problems via the MM principle.
At each LLA step, the weighted `1 penalization problem has an exact sparse
presentation without using any artificial truncation and the weighted `1 penalization
problem can be solved very efficiently. These advantages make LLA the standard
algorithm for solving concave penalized problems.
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Algorithm 3: The local linear approximation (LLA) algorithm

1. Initialize b̌
.0/ D b̌initial

and compute the adaptive weight

bw.0/ D .bw
.0/
1 ; 	 	 	 ;bw.0/p /

0 D �
P

0

�.jb̌.0/1 j/; 	 	 	 ;P0

�.jb̌.0/p j/
	

0

:

2. For m D 1; 2; : : :, repeat the LLA iteration till convergence

(2.a) Obtain b̌
.m/

by solving the following optimization problem

b̌.m/ D min
ˇ

1

n

nX

iD1

�.yi.ˇ0 C XT
i ˇ//C

pX

jD1

bw.m�1/
j 	 jˇjj;

(2.b) Update the adaptive weight vector bw.m/ withbw.m/j D P
0

�.jb̌.m/j j/.

We can use Algorithm 3 to solve a class of concave penalized margin-based
classifiers. We only need to specify the algorithm used for solving step (2.a). For
example, if � is the logistic regression loss, then step (2.a) can be solved by using
glmnet or gcdnet. When � is the Huberized hinge loss or the squared hinge loss,
gcdnet can be used for step (2.a) When � is the hinge loss, then one can use the
algorithm by Zhu et al. (2003) to compute step (2.a).

There has been a lot of theoretical work on the concave penalization. A strong
theoretical result states that the concave penalized estimator is able to produce the
so-called oracle estimator. We use the logistic regression to illustrate the oracle
property of concave penalization. Our discussion here follows Fan et al. (2014).
Given Xi, yi has a Bernoulli distribution with

P.yi D 1jxi;ˇ?/ D exp.x0iˇ
?/

1C exp.x0iˇ
?/

where ˇ? is a sparse parameter vector. Let s be the number of nonzero elements of
ˇ?. Define kˇ?Akmin D min jˇjj; ˇj ¤ 0: A D f j W ˇj ¤ 0g. The oracle estimator is
defined as

b̌oracle

Logit D argminˇ `
Logit
n .ˇ/ subjectto ˇAc D 0: (9.49)

where `Logit
n .ˇ/ denotes the negative log-Bernoulli likelihood. The lasso logistic

regression estimator is

b̌lasso

Logit D arg min
ˇ

`Logit
n .ˇ/C �lassokˇk`1 (9.50)
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To present the theorem we also need the following notation. Define  .t/ D
log.1C exp.t// and

�.ˇ/ D . 0.x01ˇ/; : : : ;  0.x0nˇ//0

†.ˇ/ D diagf 00.x01ˇ/; : : : ;  00.x0nˇ/g

Q1 D max
j
�max

�
1

n
X0A diagfjx.j/jgXA

�

Q2 D
�
�
�
�
�

�
1

n
X0A†.ˇ?/XA

��1��
�
�
�
`

1

Q3 D kX0Ac†.ˇ
?/XA.X0A†.ˇ?/XA/�1k`

1

:

in which diagfjx.j/jg is a diagonal matrix with elements fjxijjgniD1.
Theorem 3 (Fan et al. 2014) Assume the restricted eigenvalue condition:

�Logit D min
u¤0WkuAck`1�3kuAk`1

u0r2`Logitn .ˇ?/u
u0u

2 .0;1/ > 0:

and kˇ?Akmin > .aC 1/�. Let � � 5s1=2

a0�Logit
�lasso, with a0 D 1 for SCAD or MCP.

Using the lasso logistic regression in (9.50) as its initial value, the LLA
algorithm for the SCAD or MCP penalized logistic regression converges to the

oracle estimator b̌
oracle

Logit in (9.49) after two iterations with a probability at least

1 � ıLogit0 � ıLogit1 � ıLogit2 , where

ı
Logit
0 D 2p exp

�

� 1

2M
n�2lasso

�

ı
Logit
1 D 2s � exp

�

� n

M
�min

�
2

Q21Q
4
2s
2
;

a21�
2

2.1C 2Q3/2
��

C 2. p � s/ � exp
�

�a
2
1n�

2

2M

�

ı
Logit
2 D 2s � exp

�

� n

MQ22
�min

�
2

Q21Q
2
2s
2
;
1

2
.kˇ?Akmin � a�/2

��

with M D maxj 1n
Pn

iD1 x2ij, the constant a1 D 1 for SCAD and a1 D 1 � a�1 for
MCP.

Fan et al. (2014) actually developed a general theory for a wide class of folded
concave penalization problems. The above theorem is just a special case of their
general theory. Their theory also suggests that zero can be a good initial value for
the LLA algorithm if the following condition holds:

�Logit > 5s
1=2
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Then they showed that the LLA algorithm with zero as its initial value converges to
the oracle estimator in (9.49) after three iterations with a high probability. Fan et al.
(2014) also provided numeric demonstrations of the 2-step LLA and 3-step LLA
estimator of the concave penalized logistic regression. Their numeric examples also
showed that the coordinate descent algorithm generally provides an inferior solution
to the LLA solution.

9.7 Sparse Discriminant Analysis

The LDA classifier is very simple and yet has many successful applications in
the classical low-dimension-larger-sample-size setting (Michie et al. 1994; Hand
2006). Because of that, many researchers have tried to extend LDA to handle high-
dimensional classification problems. An obvious difficulty in the LDA classifier is
that the usual estimator of the common within-class covariance matrix, b†, does
not have a proper inverse. Hence, many have tried to tackle this singular matrix
issue in their ways to modify LDA under high dimensionality. However, this is the
wrong approach to high-dimensional LDA for at least two reasons. First, the Bayes
rule under the LDA model is linear, which means that in principle we only need to
estimate pC1 parameters not a p�p covariance matrix. Estimating a p�p covariance
matrix is a much harder problem than estimating the linear Bayes rule. Second,
modifying the covariance matrix estimator does not directly fix the fundamental
issue that is responsible for the failure of the ordinary LDA under high-dimensions.
Consider an ideal situation in which † is the identity matrix and we are aware of this
fact. Then we do not need to estimate † at all, which means that we do not have the
difficulty of estimating a large matrix † or its inverse. Even under this ideal LDA
model, the noise accumulation in estimating the mean vectors may degrade the LDA
classifier to no better than random guessing (Fan and Fan 2008). This theoretical
result reveals the fundamental role of sparsity in high-dimensional classification and
suggests that a successful high-dimensional generalization of LDA must incorporate
sparsity.

There are many sparse LDA proposals in the literature. Two popular methods are
nearest shrunken centroids classifier (NSC) (Tibshirani et al. 2002) and features
annealed independent rule (FAIR) (Fan and Fan 2008). Both NSC and FAIR
are the independent rule methods that ignore the correlation between features.
They are straightforward, computationally efficient and can have surprisingly
good performance in applications. However, ignoring correlation leads to biased
feature selection, which in turn implies that the independent rule methods may
be theoretically sub-optimal. There are also sparse LDA methods that respect the
possible correlation structure between features. An incomplete list includes Wu et al.
(2008), Clemmensen et al. (2011), Mai et al. (2012), Witten and Tibshirani (2011),
Cai and Liu (2011), and Fan et al. (2012).
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9.7.1 Independent Rules

An independence rule tries to bypass the difficulty in estimating † and †�1 in the
LDA model by using a very simple (but biased) estimator: it only takes the diagonals
of the usual sample estimator of †. In other words, an independent rule ignores the
correlation structure between variables. If the independent rule also uses the usual
sample estimators of the mean vectors, then it classifies an observation to Class 2 if
and only if

pX

jD1

.b
2j �b
1j/T.Xj � .b
1j Cb
2j/=2/
b�jj

> 0: (9.51)

The next step in an independence rule is to incorporate sparsity in the above
classifier. Different independence rules use different feature selection methods.

Tibshirani et al. (2002) proposed the nearest shrunken centroids classifier (NSC)
which is implemented in an R package pamr. NSC handles a general multi-class
classification problem. Let

dkj D b
kj �b
j

mk.sj C s0/
; (9.52)

where

s2j D
1

n � K

X

k

X

yiDck

.Xij �b
kj/
2; (9.53)

and mk D
p
1=nk � 1=n so that mksj gives the standard error of b
kj � b
j. The

number s0 is a positive constant across all features, added to stabilize the algorithm
numerically. In theory s0 can be zero. Tibshirani et al. (2002) recommended using
s0 as the median value of sis in practice. NSC shrinks djk to d0jk by soft-thresholding

d0kj D sign.djk/.jdjk ��j/C; (9.54)

where � is a positive constant that determines the amount of shrinkage. In practice
� is chosen by cross-validation. Then the shrunken centroids are

b
0kj D b
j C mk.si C s0/d
0
jk: (9.55)

For an observation X, define the discriminant score for class ck as

ık.X/ D
pX

jD1

.Xj �b
0kj/2
.si C s0/2

� 2 logb�k: (9.56)
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Then NSC classification rule is

ı.X/ D argminkık.X/: (9.57)

Notice that in (9.54) if� is sufficiently large such that djk D 0, then variable Xj does
not contribute to the NSC classifier in (9.57). In other words, only the features with
unequal shrunken centroids are selected for classification. This treatment effectively
decreases the dimension of the final classifier.

Features annealed independent rule (FAIR) (Fan and Fan 2008) inherits the
reasoning behind NSC that only the features with distinct means should be
responsible for classification, except that it uses hard-thresholding rather than soft-
thresholding for feature selection. The main focus in Fan and Fan (2008) is on the
theoretical understanding of sparse independent rules in binary classification. For
the jth variable, FAIR computes its two-sample t-statistic

tj D b
1j � b
2j
q
s21j C s22j

; (9.58)

where s21j; s
2
2j are with-in group sample variance. The magnitudes of tj can be viewed

as the jth variable’s importance. Therefore, for a given threshold � > 0, FAIR
classifies an observation to Class 2 if and only if

pX

jD1

.b
2j �b
ij/

�

Xj � b
1j Cb
2j
2

�

b†jj

1.jtjj > �/ > 0: (9.59)

Under suitable regularity conditions, FAIR is proven to be capable of separating the
features with distinct means from those without, even when the equal-variance and
the normality assumptions are not satisfied. More explicitly, define S D f j W 
1j ¤

2jg and s is the cardinality of the set S. Fan and Fan (2008) proved the following
results.

Theorem 4 (Fan and Fan 2008) If the following conditions are satisfied:

1. there exist constants �1; �2;M1;M2, such that EjXkjjm 	 mŠMm�2
1 �1=2 and

EjX2kj � Var.Xkj/jm 	 mŠM2�2=2;
2. †k;jj are bounded away from 0;
3. there exists 0 < � < 1=3 and a sequence bn ! such that log . p � s/ D o.n�/

and log s D o.n1=2��bn/;

then for� � cn�=2, where c is a positive constant, we have

Pr

�

min
j2S jtjj � �; and max

j…S
jtjj < �

�

! 1 (9.60)
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Although the independence rules are simple to implement, they may produce
sub-optimal or even misleading results if the correlations should not be ignored. Mai
et al. (2012) carefully analyzed this issue. The Bayes rule in the context of LDA is
a linear classifier with the classification coefficient vector ˇBayes D †�1.
2 � 
1/.
Define D D f j W ˇBayes

j ¤ 0g which should be the target of variable selection. NSC
and FAIR, on the other hand, target at S D f j W 
1j ¤ 
2jg. The following theorem
given in Mai et al. (2012) shows that D and S need not be identical, and hence NSC
and FAIR may select a wrong set of variables.

Theorem 5 (Mai et al. 2012) Let

† D
�

†S;S †S;Sc

†Sc;S †Sc;Sc

�

;† D
�

†D;D †D;Dc

†Dc;D †Dc;Dc

�

:

1. If and only if †Sc;S†�1S;S.
2;S � 
1;S/ D 0, we have D � S;
2. If and only if 
2;Dc D 
1;Dc or †Dc;D†�1D;D.
2;D �
1;D/ D 0, we have S � D.

With Theorem 5, examples can be easily constructed that D and S are not
identical. Consider an LDA model with p D 25, 
1 D 0p, �ii D 1, and
�ij D 0:5; i ¤ j. If 
2 D .1T

5 ; 0
T
20/

T , then S D f1; 2; 3; 4; 5g and D D f j W j D
1; : : : ; 25g, since ˇBayes D .1:62 � 1T

5 ;�0:38 � 1T
20/

T . On the other hand, if we let

2 D .3 � 1T

5 ; 2:5 � 1T
5 /

T ; then S D f1; : : : ; 25g but D D f1; 2; 3; 4; 5g, because
ˇBayes D .1T

5 ; 0
T
20/

T . These two examples show that ignoring correlation can yield
inconsistent variable selection.

9.7.2 Linear Programming Discriminant Analysis

Cai and Liu (2011) suggested a linear programming discriminant (LPD) for deriving
a sparse LDA method. LPD begins with the observation that the Bayes rule
classification vector ˇBayes D †�1.
2 � 
1/ satisfies the linear equation †ˇ D

2 � 
1. Then LPD estimates ˇBayes by solving the following linear programming
problem:

b̌D argminˇ

pX

jD1
kˇk1; s.t. kb†ˇ � .b
2 �b
1/k1 	 �n: (9.61)

Cai and Liu (2011) showed that the misclassification error of LPD can approach
the Bayes error under the LDA model as n; p ! 1. For simplicity, Cai and Liu
(2011) assumed the equal class probability P.Y D 1/ D P.Y D 2/ D 1=2 and LPD
classifies an observation X to class 2 if

b̌T
�

X � b
2 C b
1
2

�

> 0: (9.62)
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Theorem 6 (Cai and Liu 2011) Define � D .
2 � 
1/T†�1.
2 � 
1/. Let Rn

denote the misclassification error rate of LPD conditioning on the observed data.
Suppose log p D o.n/, †jj < K; j D 1; : : : ; p and � > c1 for some positive
constants K; c1. Let �n D O.

p
� log p=n/. Then we have

1. if

kˇBayesk1
�1=2

C kˇ
Bayesk21
�2

D o

�r
n

log p

�

; (9.63)

then Rn � R.Bayes/! 0 in probability as n; p!1;
2. if

kˇBayesk1�1=2 C kˇBayesk21 D o

�r
n

log p

�

; (9.64)

then

Rn

R.Bayes/
� 1 D O

�

.kˇBayesk1�1=2 C kˇBayesk21/
r

n

log p

�

(9.65)

with probability greater than 1 �O. p�1/.

9.7.3 Direct Sparse Discriminant Analysis

Mai et al. (2012) proposed Direct Sparse Discriminant Analysis (DSDA) by

utilizing a least squares representation of LDA in the binary case. Let b̌
Bayes

be
the LDA estimator of the Bayes rule vector ˇBayes D †�1.
2 � 
1/. Suppose that
the class label is coded by two distinct numeric values and write y as the numeric
vector of the class labels. Define

.b̌ols
0 ;
b̌ols

/ D argmin.ˇ0;ˇ/

nX

iD1
.yi � ˇ0 � XT

i ˇ/
2: (9.66)

It can be shown that b̌
ols D cb̌Bayes for some positive constant c, which means that

the LDA classification direction can be exactly recovered by doing the least squares
computation.

Mai et al. (2012) showed that we can consider a penalized least squares formula-
tion to produce a properly modified sparse LDA method. DSDA is defined by

b̌DSDA D argminˇn
�1

nX

iD1
.yi � ˇ0 � XT

i ˇ/2 C P�.ˇ/; (9.67)
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where P�.�/ is a penalty function, such as LASSO and SCAD penalty. The tuning
parameter � can be chosen by cross validation. DSDA classifies X to class 2 if

XT b̌DSDA C b̌0 > 0; (9.68)

with

b̌
0 D �.b
2 Cb
1/Tb̌DSDA

=2C .b̌DSDA
/Tb†b̌

DSDAf.b
2 �b
1/Tb̌DSDAg�1 log

�
n2
n1

�

;

(9.69)

and n1 (n2) is the number of observations in class 1 (class 2).
DSDA is computationally very efficient, because we can take advantage of

the fast algorithms for computing the penalized least squares. For example, one
could use the least angle regression implemented in lars or coordinate descent
implemented in glmnet to compute DSDA with the LASSO penalty. An R package
dsda for DSDA is available from

http://stat.fsu.edu/~mai/dsda_1.11.tar.gz

Strong theoretical results have been established for DSDA (Mai et al. 2012).
Let ˇBayes D †�1.
2 � 
1/ represent the Bayes classifier coefficient vector. Write
D D f j W ˇBayes

j ¤ 0g and let s be the cardinality of D. We use C to represent the
marginal covariance matrix of the predictors and partition C as

C D
�
CDD CDDc

CDcD CDcDc

�

:

Denote ˇ� D .CDD/�1.
2D � 
1D/ and define Q̌ Bayes
by letting Q̌ Bayes

D D ˇ� and
Q̌ Bayes
Dc D 0.

Theorem 7 (Mai et al. 2012) The quantities Q̌ Bayes and ˇBayes are equivalent in the

sense that Q̌ Bayes D cˇBayes for some positive constant c and the Bayes classifier can
be written as assigning X to class 2 if

fX � .
1 C 
2/=2gT Q̌ Bayes C . Q̌ Bayes/T† Q̌ Bayesf.
2 � 
1/T Q̌ Bayesg�1 log
�2

�1
> 0:

According to the above theorem it suffices to show that DSDA can consistently
recover the support of Q̌Bayes and estimate ˇ�. Non-asymptotic analysis is given
in Mai et al. (2012). Here we only present the corresponding asymptotic results to
highlight the main points of the theory for DSDA.

Assume that �; �; ' are constants. In addition, we need the following regularity
conditions:

(1) n; p!1 and log.ps/s2=n! 0;
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(2) minj2A jˇ�j j � flog.ps/s2=ng1=2.
(3) k.CDD/�1k1 and k
2D � 
1Dk1 are bounded.

Theorem 8 (Mai et al. 2012) Let b̌
lasso

be the DSDA estimator with LASSO penalty
and bDlasso D f j W b̌lassoj ¤ 0g. If we choose the LASSO penalty parameter � D �n

such that �n � minj2D jˇ�j j and �n � flog.ps/s2=ng1=2, and further assume

� D kCDcD.CDD/�1k1 < 1; (9.70)

then with probability tending to 1, bDlasso D D and kb̌lassoD � ˇ�k1 	 4'�n.
Mai et al. (2018) developed a multiclass sparse discriminant analysis and proved

its strong theoretical and computational properties. They also provided an R package
msda for their method, which is available from CRAN.

9.8 Sparse Semiparametric Discriminant Analysis

Motivated by the Box-Cox model in regression analysis, we can consider the
following semiparametric linear discriminant analysis (SeLDA) model

�
h1.X1/; : : : ; hp.Xp/

	 j Y � N.
Y ; †/; (9.71)

where h D .h1; : : : ; hp/ is a set of strictly monotone univariate transformations. It
is important to note that the SeLDA model does not assume that these univariate
transformations are known or have any parametric forms. This is the nonparametric
component of the semiparametric model. It is clear that each transformation function
h is only unique up to location and scale shifts. Thus, for identifiability we assume
that nC � n�; 
C D 0, †jj D 1; 1 	 j 	 p. The Bayes rule of the SeLDA model is

bYBayes D Sign

 �

h.X/� 1
2
.
C C 
�/

�T

†�1.
C � 
�/C log
�C
��

!

: (9.72)

The SeLDA model was studied in Lin and Jeon (2003) under the classical low-
dimensional setting when p is fixed and n goes to infinity. Mai and Zou (2015)
established the high-dimensional estimation method and theory of SeLDA when p
is allowed to grow faster than a polynomial order of n.

Note that for any continuous univariate random variable X, we have

ˆ�1 ı F.X/ � N.0; 1/; (9.73)
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where F is the cumulative probability function (CDF) of W and ˆ is the CDF of the
standard normal distribution. Based on this fact, we have

hj D ˆ�1 ı FC;j; (9.74)

where FC;j is the conditional CDF of Xj given Y D C1. To fix idea, let us use a
simple estimator of hj that can be obtained by plugging a good estimator of FCj

into (9.74). Let QFCj be the empirical conditional CDF. Given a pair of numbers
.a; b/, define

bFa;b
Cj .x/ D

8
<

:

b if QFCj.x/ > bI
QFCj.x/ if a 	 QFCj.x/ 	 bI
a if QFCj.x/ < a:

(9.75)

Then

bhj D ˆ�1 ıbFa;b
Cj : (9.76)

With bhj, the covariance matrix † is estimated by the pooled sample covariance
matrix ofbh.Xi/. The mean vector 
�j is estimated by

b
�j D q�1
 
1

n�

n
�X

iD1
bh.Xi�j/1QF.Xi

�j/2.a;b/ (9.77)

C�.ˆ�1 ı QF�j ı QF�1Cj .b// � �.ˆ�1 ı QF�j ı QF�1Cj .a//

!

where

q D 1

n�

n
�X

iD1
1QF

Cj.Xi/2.a;b/: (9.78)

The complicated form of (9.77) is due to the Winsorization in (9.75).
After estimating the transformation functions, one can substitute hj with its

estimatorbhj and apply any good sparse LDA method to the pseudo data .Y;bh.X//.
For example, let us apply DSDA by solving for

b̌ D argminˇn
�1

nX

iD1
.yi � ˇ0 �bh.Xi/

Tˇ/2 C
pX

jD1
P�.jˇjj/ (9.79)

b̌
0 D � .b
C C b
�/

Tb̌

2
C

b̌T
b†b̌

.b
C �b
�/Tb̌
log

b�C
b��

:

Then the SeSDA classification rule is Sign


b̌
0 Cbh.X/Tb̌

�
.
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For the classical low dimensional case the penalty term in (9.79) is not needed.
Lin and Jeon (2003) proved the asymptotic consistency of the low-dimensional
SeLDA estimator when fixing a and b as constants as long as 0 < a < b < 1.
In particular, they suggested choosing a and b such that a, b, QF�. QFC.a// and
QF�. QFC.b// are all between 2:5% and 97:5%. However, it is unclear whether their
choice of Winsorization parameters .a; b/ is still valid when p is much larger than
n. In order to handle the high-dimensional SeLDA model and the SeSDA classifier,
Mai and Zou (2015) proposed using

.a; b/ D .an; bn/ D
 
1

n2C
; 1 � 1

n2C

!

(9.80)

and established valid asymptotic theory as long as log. p/� n1=3��.
We need to define some notation for presenting the asymptotic theory.

Define ˇ? D C�1.
C � 
�/. Let C be the marginal covariance matrix of
.h1.X1/; : : : ; hp.Xp//. Recall that ˇ? is equal to c†�1.
C � 
�/ D cˇBayes for
some positive constant (Mai et al. 2012). Therefore we can write the Bayes error
rate as

R D Pr.Y ¤ Sign.h.X/Tˇ� C ˇ0//

The HD-SeLDA classifier error rate is

Rn D Pr.Y ¤ Sign.bh.X/Tb̌C b̌0//:

A variable has contribution to the SeLDA model if and only if ˇBayes
j ¤ 0. We can

write A D f j W ˇBayes
j ¤ 0g D f j W ˇ?j ¤ 0g. Let s be the cardinality of A. We

partition C into four submatrices: CAA;CAcA;CAAc ;CAcAc .

Theorem 9 (Mai and Zou 2015) Suppose that we use the lasso penalty in (9.79).
Assume the irrepresentable condition � D kCAcA.CAA/

�1k1 < 1 and two regularity
conditions

(C1) n; p!1 and
s2 log.ps/

n
1
3��

! 0, for some � in .0; 1=3/;

(C2) minj2A jˇjj � max

(

sn�1=4;

s

log.ps/
s2

n
1
3��

)

for some � in .0; 1=3/:

Let bA D f j W b̌j ¤ 0g. Under conditions (C1) and (C2), if we choose � D �n

such that �n � minj2A jˇjj and �n �
s

log.ps/
s2

n
1
3��

, then Pr.bA D A/ ! 1 and

Pr


kb̌A � ˇAk1 	 4'�n

�
! 1. Moreover, Rn � R! 0 in probability.
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In practice, we can further improve the estimator ofbhj by combining the data
from both classes. The estimatorbhj in (9.76) only uses data in class C1 to estimate
bhj. In theory, the two classes are symmetric and one can also use data in class �1
to estimatebhj. Then we can consider a combined estimator from both classes. The
pooled estimator of SeLDA is presented in Mai and Zou (2015) where numeric
examples are given to show the pooled SeLDA has better classification performance.

R code for doing SeLDA is in the R package dsda which is available from

http://stat.fsu.edu/~mai/dsda_1.11.tar.gz

9.9 Sparse Penalized Additive Models for Classification

Generalized additive models (Hastie and Tibshirani 1990) are widely used in
statistics because they offer a nice way to let covariates have nonlinear contributions
to the model while enjoying the nice interpretation of a linear model. For example,
consider the generalized additive model for logistic regression. The log-odd function
is written as P.Y D 1jX/ D e f .X/

1Ce f .X/
where f .X/ D ˇ0CPp

kD1 fj.Xj/: Assuming each
univariate function fj.Xj/ is smooth, then the above additive model can be estimated
by back-fitting and the commonly used smoothing techniques such as regression
spline, local linear smoother or smoothing spline. See Hastie and Tibshirani (1990)
and Hastie et al. (2009) for the details.

Generalized additive models can be extended to the high-dimensional setting
straightforwardly, if we model each univariate function fj.Xj/ by a linear com-
bination of basis functions such as B-splines. In the additive logistic regression
model, let

fk.Xk/ D
pkX

m

ˇkmBm.Xk/

whereBk.Xj/ represents a basis function of Xj. We useC1;�1 to code each label and
adopt the margin-based logistic regression loss �.t/ D log.1C e�t/. The penalized
additive logistic regression estimator is defined as

argminˇ

1

n

nX

iD1
log.1C e�yif .Xi//C �

pX

kD1

p
pkkˇ.k/k2; � > 0; (9.81)

where kˇ.k/k2 D
qPpk

m ˇ
2
km is the group-lasso penalty (Yuan and Lin 2006). Notice

that we do not use the lasso penalty �
P

k;m jˇkmj in this case. The reason is simple.
In the generalized additive model, variable Xj is removed from the model if and only
if the univariate function fj is zero. Hence, we need to simultaneously set ˇkm D 0

for all m D 1; : : : ; pk. The lasso penalty cannot guarantee group elimination, while
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the group-lasso can. Yuan and Lin (2006) first proposed the group-lasso for doing
groupwise selection in the linear regression model. Meier et al. (2008) extended the
group-lasso idea to penalized logistic regression.

The computation of a group-lasso problem is generally more challenging than
a lasso problem. Under a strong group-wise orthonormal condition, Yuan and
Lin (2006) suggested a blockwise descent algorithm for solving the group-lasso
penalized linear regression problem. Meier et al. (2008) extended the blockwise
descent algorithm to solve the group-lasso penalized logistic regression. Meier’s
algorithm is implemented in an R package grplasso available from CRAN. Liu
et al. (2009) implemented Nesterov’s method (Nesterov 2004, 2007) for solving the
group-lasso penalized linear regression and logistic regression.

Yang and Zou (2014) proposed a very efficient unified algorithm named
groupwise-majorization-descent (GMD) for solving a whole class of group-
lasso learning problems, including the group-lasso penalized logistic regression,
Huberized SVM, and squared SVM. GMD works for general design matrices,
without requiring the group-wise orthogonal assumption. Yang and Zou (2014)
have implemented GMD in an R package gglasso available from CRAN. To
appreciate the speed advantage of gglasso over grplasso and SLEP, let us
consider fitting a group-lasso penalized logistic regression model on breast cancer
data (Graham et al. 2010) where n D 42 and p D 22;283. Each variable contributes
an additive component that is expressed by five B-spline basis functions. The group-
lasso penalty is imposed on the coefficients of five B-spline basis functions for each
variable. So the corresponding group-lasso logistic regression model has 22;283
groups and each group has five coefficients to be estimated. Displayed in Fig. 9.5 are
three solution path plots produced by grplasso, SLEP, and gglasso. It took
SLEP about 450 and grplasso about 360 s to compute the logistic regression
paths, while gglasso used only about 10 s.

Figures 9.6 and 9.7 show the solution paths computed by using gglasso of the
sparse additive Huberized SVM and the sparse additive squared SVM on the breast
cancer data (Graham et al. 2010), respectively.

In what follows we introduce the GMD algorithm for solving the group-lasso
penalized large margin classifier. For simplicity, we use X1; : : : ;Xp to denote the
generic predictors used to fit the group-lasso model and use Z1; : : : ;Zq to denote the
original variables in the data. For example, we generate x variables by using basis
functions of z1; : : : ; zq. For instance, X1 D Z1;X2 D Z21 ;X3 D Z31 , X4 D Z2;X5 D
Z22 , etc. It is important that the user has defined the x variables before fitting the
group-lasso model. Let X be the design matrix with n rows and p columns. If an
intercept is included, we let the first column of X be a vector of 1. It is also assumed
that the group membership is already defined such that .1; 2; : : : ; p/ DSK

kD1 Ik and
the cardinality of index set Ik is pk, Ik

T
Ik0 D ; for k ¤ k0; 1 	 k; k0 	 K. Group k

contains xj; j 2 Ik, for 1 	 k 	 K: If an intercept is included, then I1 D f1g. We use
ˇ.k/ to denote the segment of ˇ corresponding to group k. This notation is used for
any p-dimensional vector.
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Fig. 9.5 Fit a sparse additive logistic regression model using the group-lasso on the breast cancer
data with n D 42 patients and 22; 283 genes (groups). Each gene’s contribution is modeled by 5
B-Spline basis functions. The solution paths are computed at 100 � values on an Intel Xeon X5560
(Quad-core 2.8 GHz) processor. The vertical dotted lines indicate the selected � (log � D �3:73),
which selects eight genes. (a) SLEP—Liu et al. (2009). Breast Cancer Data (approximately 450 s).
(b) grplasso—Meier et al. (2008). Breast Cancer Data (approximately 360 s). (c) gglasso—
BMD Algorithm. Breast Cancer Data (approximately 10 s)
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Fig. 9.6 Fit a sparse additive
Huberized SVM using the
group-lasso on the breast
cancer data (Graham et al.
2010) with n D 42 patients
and 22;283 genes (groups).
Each gene’s contribution is
modeled by 5 B-Spline basis
functions. The solution paths
are computed at 100 � values
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Fig. 9.7 Fit a sparse additive
squared SVM using the
group-lasso on the breast
cancer data (Graham et al.
2010) with n D 42 patients
and 22;283 genes (groups).
Each gene’s contribution is
modeled by 5 B-Spline basis
functions. The solution paths
are computed at 100 � values

-4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5

-0
.4

-0
.2

0.
0

0.
2

0.
4

Log Lambda

C
oe

ffi
ci

en
ts

Let Y D 1;�1 denote the class label. Consider a smooth convex loss function
�.�/. The classifier is Sign.XTb̌/, where b̌ is computed via the group-lasso penalized
empirical loss formulation:

argminˇ

1

n

nX

iD1
�.yi;X

T
i ˇ/C �wk

KX

kD1
kˇ.k/k2; (9.82)

We use weights wks in order to make a more flexible group-lasso model. The default
choice for wk is

p
pk. If we do not want to penalize a group of predictors, simply
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let the corresponding weight be zero. For example, the intercept is typically not
penalized so that w1 D 0. Following the adaptive lasso idea (Zou 2006), one could
define the adaptively weighted group-lasso which often has better estimation and
variable selection performance than the un-weighted group-lasso.

Let the empirical � loss be

L.ˇ j D/ D 1

n

nX

iD1
�.yi;ˇ

Txi/:

The loss function � is said to satisfy the quadratic majorization (QM) condition, if
and only if the following two assumptions hold:

(i) L.ˇ j D/ is differentiable as a function of ˇ, i.e., rL.ˇjD/ exists everywhere.
(ii) There exists a p � p matrix H, which may only depend on the data D, such that

for all ˇ;ˇ�,

L.ˇ j D/ 	 L.ˇ� j D/C.ˇ�ˇ�/TrL.ˇ�jD/C 1
2
.ˇ�ˇ�/TH.ˇ�ˇ�/: (9.83)

It has been verified that the QM condition holds for the logistic regression loss,
squared hinge loss, and Huberized hinge loss (Yang and Zou 2014). See Table 9.1.

Once the QM condition is verified, we can derive the GMD algorithm for
computing the solution of (9.82). GMD is a cyclic groupwise updating procedure
that continues until convergence. Let ě denote the current solution of ˇ. Without

loss of generality, we derive the GMD update of ě
.k/

, the coefficients of group k.

Define H.k/ D ŒHij�; i; j 2 groupk. Write ˇ such that ˇ.k
0/ D ě.k0/

for k0 ¤ k. Given

ˇ.k
0/ D ě.k0/

for k0 ¤ k, the optimal ˇ.k/ is defined as

argminˇ.k/L.ˇ j D/C �wkkˇ.k/k2: (9.84)

Unfortunately, there is no closed form solution to (9.84) for a general loss function
with a general design matrix.

We overcome the computational obstacle by taking advantage of the QM
condition and the MM principle (Hunter and Lange 2004). From (9.83) we have

L.ˇ j D/ 	 L.ě j D/C .ˇ � ě/TrL.ějD/C 1

2
.ˇ � ě/TH.ˇ � ě/:

Table 9.1 The QM condition is verified for the logistic regression loss, squared hinge loss, and
Huberized hinge loss

Loss �rL.ˇ j D/ H

Logistic regression 1
n

Pn
iD1 yixi

1

1Cexp.yixTi ˇ/

1
4
XTX=n

Squared hinge loss 1
n

Pn
iD1 2yixi.1� yixTi ˇ/

C
4XTX=n

Huberized hinge loss 1
n

Pn
iD1 yixihsvm0.yixTi ˇ/ 2

ı
XTbX=n
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Write U.ě/ D �rL.ějD/. Using

ˇ � ěD .0; : : : ; 0
„ ƒ‚ …

k�1
;ˇ.k/ � ě.k/; 0; : : : ; 0

„ ƒ‚ …
K�k

/;

we can write

L.ˇ j D/ 	 L.ě j D/�.ˇ.k/�ě.k//TU.k/C 1
2
.ˇ.k/�ě.k//TH.k/.ˇ.k/�ě.k//: (9.85)

Let �k be the largest eigenvalue of H.k/. We set �k D .1C "�/�k, where "� D 10�6.
Then we can further relax the upper bound in (9.85) as

L.ˇ j D/ 	 L.ě j D/� .ˇ.k/� ě.k//TU.k/C 1
2
�k.ˇ

.k/� ě.k//T.ˇ.k/� ě.k//: (9.86)

It is important to note that the inequality strictly holds unless for ˇ.k/ D ě.k/. Instead
of minimizing (9.84) we solve

argmin
ˇ.k/

L.ě j D/� .ˇ.k/ � ě.k//TU.k/ C 1

2
�k.ˇ

.k/ � ě.k//T .ˇ.k/ � ě.k//C �wkkˇ.k/k2:
(9.87)

Denote by ě
.k/
.new/ the solution to (9.87). It is straightforward to see that ě

.k/
.new/

has a simple closed-from expression

ě.k/.new/ D 1

�k



U.k/ C �kě.k/

�
 

1 � �wk

kU.k/ C �kě.k/k2

!

C
: (9.88)

Algorithm 4 summarizes the details of GMD.

Algorithm 4: The GMD algorithm for a general group-lasso penalized problem

1. For k D 1; : : : ;K, compute �k, the largest eigenvalue of H.k/.
2. Initialize ě.
3. Repeat the following cyclic groupwise updates until convergence:

– for k D 1; : : : ;K, do step (3.1)–(3.3)

3.1 Compute U.ě/ D �rL.ějD/.
3.2 Compute ě

.k/
.new/ D 1

�k



U.k/ C �kě.k/

��

1� �wk

kU.k/C�kě
.k/

k2

�

C

:

3.3 Set ě
.k/ D ě.k/.new/.
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One may also consider a concave group-lasso penalized additive model.

argminˇ

1

n

nX

iD1
�.yi f .Xi//C �

KX

kD1
P�.kˇ.k/k2/; (9.89)

where P� can be the SCAD or the MCP penalty. The above problem can be solved
by combining the LLA algorithm and gglasso. Let ě be the current estimate, then
we update the estimate by solving

min
ˇ

1

n

nX

iD1
�.yif .Xi//C

KX

kD1
Qwkkˇ.k/k2

where

Qwk D P
0

�.kě.k/k2/:
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Chapter 10
Analysis of High-Dimensional
Regression Models Using Orthogonal
Greedy Algorithms

Hsiang-Ling Hsu, Ching-Kang Ing, and Tze Leung Lai

Abstract We begin by reviewing recent results of Ing and Lai (Stat Sin 21:1473–
1513, 2011) on the statistical properties of the orthogonal greedy algorithm (OGA)
in high-dimensional sparse regression models with independent observations. In
particular, when the regression coefficients are absolutely summable, the conditional
mean squared prediction error and the empirical norm of OGA derived by Ing and
Lai (Stat Sin 21:1473–1513, 2011) are introduced. We then explore the performance
of OGA under more general sparsity conditions. Finally, we obtain the convergence
rate of OGA in high-dimensional time series models, and illustrate the advantage of
our results compared to those established for Lasso by Basu and Michailidis (Ann
Stat 43:1535–1567, 2015) and Wu and Wu (Electron J Stat 10:352–379, 2016).

Keywords Conditional mean squared prediction errors · Empirical norms ·
High-dimensional models · Lasso · Orthogonal greedy algorithms · Sparsity ·
Time series

10.1 Introduction

Consider a high-dimensional linear regression model

yt D ˛ C
pX

jD1
ˇjxtj C "t D y.xt/C "t; t D 1; 2; : : : ; n (10.1.1)
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where p � n and the predictor vector, xt D .xt1; : : : ; xtp/>, is uncorrelated with
the zero-mean random disturbance "t. Since p � n, it is difficult to apply the
conventional statistical procedures, such as the maximum likelihood estimate and
the least squares estimate, to estimate the unknown regression function

y.x/ D ˛ C ˇ>x; (10.1.2)

where ˇ D .ˇ1; : : : ; ˇp/
> and x D .x1; : : : ; xp/> denotes an independent replicate

of xt. A major advance to resolve this difficulty is the lasso (least absolute shrinkage
and selection operator, Tibshirani (1996)), which is the l1-penalized least squares
method. In particular, lasso can consistently estimate (10.1.2) under a sparsity
condition and some additional regularity conditions on the regression coefficients;
see, e.g., Bickel et al. (2009). On the other hand, Fan and Li (2001) have argued that
the l1-penalty used by lasso may result in severe bias for large regression coefficients
and have proposed a SCAD (smoothly clipped absolute deviation) penalty to
address this problem. Because the associated minimization problem is non-convex
and direct computation is infeasible for large p, multi-step procedures in which
each step involves convex optimization, such as local linear and local quadratic
approximations, have been introduced. One such procedure is Zou’s (2006) adaptive
lasso, which uses lasso as an initial estimate to determine the weights for a second-
stage weighted lasso.

An alternative method for handling a large number of input variables is stepwise
least squares regression. In Sect. 10.2, we introduce recent results of Ing and Lai
(2011) on a fast stepwise regression method, called the orthogonal greedy algorithm
(OGA), that selects input variables to enter a p-dimensional linear regression model
sequentially so that the selected variable at each step minimizes the residual sum
squares. When .x>t ; "t/ are i.i.d. and the regression coefficients obey the following
sparse condition,

sup
n

pnX

jD1
jˇjj�j <1; (10.1.3)

where �2j D Var.xj/, they have derived the convergence rate of the conditional mean
squared prediction error (CMSPE),

Ef. y.x/� Oym.x//2j y1; x1; : : : ; yn; xng; (10.1.4)

of the OGA predictor Oym.x/ of y.x/ after m iterations are performed. They have
also developed a consistent model selection procedure along the OGA path that
can adjust for potential spuriousness of the greedily chosen regressors among a
large number of candidate variables. The resultant regression estimate is shown
to have the oracle property of being equivalent to least squares regression on
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an asymptotically minimal set of relevant regressors under the strong sparsity
condition, which assumes that

]. J�n /� n; (10.1.5)

where J�n D f1 	 j 	 pn W ˇj ¤ 0g denotes the set of relevant predictor variables
and ]. J/ denotes the cardinality of J. Section 10.2 also reviews Ing and Lai’s (2011)
result on the performance of OGA in situations where xt is non-random, which is
referred to as the fixed design case. Since in this case, the more commonly used
performance measure is the empirical norm,

kOym.�/� y.�/k2n D n�1
nX

tD1
.Oym.xt/� y.xt//2; (10.1.6)

where Oym.xt/ is the OGA predictor of y.xt/ after m iterations, we focus on their
upper bound established for (10.1.6) under the sparse condition (10.1.3). This upper
bound provides an analog of the oracle inequalities of Candés and Tao (2007), Bunea
et al. (2007), Bickel et al. (2009), and Candés and Plan (2009) for lasso and Dantzig
selector.

In Sect. 10.3, we introduce the results of Gao et al. (2013) and Ing and Lai (2015)
on the rate of convergence of OGA under sparse conditions stronger than (10.1.3),
but weaker than (10.1.5). We also report simulation studies of the performance of
OGA+HDAIC relative to that of lasso and Bühlmann’s (2006) PGA+AICc, where
HDAIC, defined in Sect. 10.2.1, is the abbreviation for high-dimensional Akaike’s
information criterion. Section 10.4 is concerned with the performance of OGA
under (10.1.1) with .xt; "t/ being stationary time series. We derive the convergence
rate of OGA in a general time series setting, and illustrate the advantage of our
results compared to those established for lasso by Basu and Michailidis (2015) and
Wu and Wu (2016).

10.2 Convergence Rates of OGA

10.2.1 Random Regressors

We begin this section by furnishing a formal definition of OGA. Replacing yt by
yt � Ny and xtj by xtj � Nxj, where Nxj D n�1

Pn
tD1 xtj and Ny D n�1

Pn
tD1 yt, it will be

assumed throughout the rest of the chapter that ˛ D 0;E.yt/ D 0, and E.xtj/ D 0

for all t and j. Letting OJ0 D ;, Y D .y1; : : : ; yn/0

and Xj D .x1j; : : : ; xnj/0

; 1 	 j 	 p,
OGA chooses XOj1 ;XOj2 ; : : : in the following sequential manner:

Step 1. Oj1 D arg max1�j�p jY0Xj=kXjkj and OJ1 D OJ0Sf Oj1g.
:::

Step m. Ojm D arg max1�j�p jY0.I � HOJm�1
/Xj=kXjkj and OJm D OJm�1Sf Ojmg,

where for J 
 f1; : : : ; pg, HJ is the orthogonal projection matrix on spanfXj; j 2 Jg.
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When iterations stop at step m, we predict y.x/ and y.xt/ by Oym.x/ D x
0

.OJm/ Ǒ .OJm/
and Oym.xt/ D x

0

t.
OJm/ Ǒ .OJm/, respectively, where x. J/ D .xt; i 2 J/, xt. J/ D .xti; i 2

J/ and

Ǒ . J/ D
 

nX

tD1
xt. J/x

0

t. J/

!�1 nX

tD1
xt. J/yt

is the least squares estimate of the regression coefficient vector of model J. Let
�. J/ D E

˚
z. J/z>. J/

�
and gi. J/ D E.ziz. J//, where zj D xj=�j and z. J/ D

.zj; j 2 J/. Ing and Lai (2011) assume that for some �0; �1 > 0,

E fexp.�"/g <1; j� j 	 �0; (10.2.1)

lim sup
n!1

max
1�j�pn

E
˚
exp.�1z

2
j /
�
<1; (10.2.2)

and for some ı > 0, M > 0 and all large n,

min
1�]. J/�Kn

�min.�. J// > ı; max
1�]. J/�Kn; i62J

k ��1. J/gi. J/ k1< M; (10.2.3)

whereKn is a prescribed upper bound for the number of OGA iterations and k v k1DPk
jD1 jvjj for v D .v1; : : : ; vk/>. By making use of these assumptions together with

the sparsity condition (10.1.3), Theorem 3.1 of Ing and Lai (2011) provides the
following uniform bound for the CMSPE of OGA.

Theorem 10.2.1 Suppose .xt; "t/ are i.i.d., p D pn ! 1 and log p D o.n/.
Assume (10.1.3), (10.2.1)– (10.2.3) and Kn !1 such that Kn D O..n= log pn/1=2/.
Then,

max
1�m�Kn

�
EŒf y.x/� Oym.x/g2j y1; x1; : : : ; yn; xn�

m�1 C n�1m log pn

�

D Op.1/: (10.2.4)

Some comments are in order. Note first that by Theorem 3 of Temlyakov (2000),
the squared bias in approximating y.x/ by yJm.x/ is E.y.x/ � yJm.x//

2 D O.m�1/,
where yJ.x/ is the best linear predictor of y.x/ based on fxj; j 2 Jg and Jk be the set
of predictor variables selected by the population version of OGA at the end of stage
k. Moreover, since OGA uses Oym.�/ instead of yJm.�/, it has not only larger squared
bias but also variance in the least squares estimates whose order of magnitude is
O.n�1m log pn/. Note also that m is the number of estimated regression coefficients,
O.n�1/ is the variance per coefficient, and O.log pn/ is the variance inflation factor
due to data-dependent selection of Oji from f1; : : : ; png. Combining the squared bias
with the variance suggests that O.m�1 C n�1m log pn/ is the smallest order one
can expect for En.f y.x/ � Oym.x/g2/. Equation (10.2.4) reveals that uniformly in
m D O..n= log pn/1=2/, OGA can attain this best order of m�1 C n�1m log pn for
En.f y.x/� Oym.x/g2/, where En.�/ � EŒ�j y1; x1; : : : ; yn; xn�.
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Whereas (10.2.4) suggests ceasing OGA iterations after O..n= log p/1=2/ steps,
Ing and Lai (2011) have proposed to choose along the OGA path the model that has
the smallest value of a suitably chosen model selection criterion, which is called a
“high-dimensional information criterion” (HDIC) and defined by

HDIC. J/ D n log O�2n;J C ]. J/wn log p; (10.2.5)

where for a non-empty subset J 
 f1; : : : ; pg, O�2n;J D n�1
Pn

tD1.yt � OytIJ/2 with OytIJ
denoting the fitted value of yt when Y is projected into the linear space spanned by
Xj; j 2 J ¤ ;. It is worth mentioning that different information criteria correspond
to different choices of wn. In particular, wn D log n corresponds to HDBIC; without
the log p factor, (10.2.5) reduces to the usual BIC. The case wn D c corresponds to
high-dimensional Akaike’s information criterion (HDAIC). Ing and Lai (2011) have
suggested choosing model OJOkn , where

Okn D arg min
1�k�Kn

HDIC.OJk/: (10.2.6)

Under the strong sparsity assumption that there exists 0 	 � < 1=2 such that
n� D o..n= logpn/1=2/ and

lim inf
n!1 n� min

j2J�

n

ˇ2j �
2
j > 0; (10.2.7)

Theorem 4.1 of Ing and Lai (2011) shows that if Kn=n� ! 1 and Kn D
O..n= logpn/1=2/, then

lim
n!1P. J�n 
 OJKn/ D 1: (10.2.8)

Thus, with probability approaching 1 as n!1, the OGA path includes all relevant
regressors when the number of iterations is large enough. Define the minimal
number of relevant regressors along an OGA path by

ekn D minfk W 1 	 k 	 Kn; J
�
n � OJkg .min; D Kn/: (10.2.9)

Under (10.2.7), Kn=n� ! 1 and Kn D O..n= log pn/1=2/, Theorem 4.2 of Ing and
Lai (2011) further proves that

lim
n!1P.Okn D Qkn/ D 1; (10.2.10)

provided wn in (10.2.5) satisfying

wn !1; wn log pn D o.n1�2� /: (10.2.11)
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Therefore, consistency of variable selection along OGA paths by HDIC is estab-
lished.

Although (10.2.11) shows that Qkn can be consistently estimated by Okn, OJOkn may
still contain irrelevant variables that are included along the OGA path, as shown in
Example 3 of Section 5 in Ing and Lai (2011). To exclude irrelevant variables, Ing
and Lai (2011) have defined a subset OJ�n of OJOkn by

OJ�n D f Ojl W HDIC.OJOkn � f Ojlg/ > HDIC.OJOkn/; 1 	 l 	 Okng if Okn > 1; (10.2.12)

and OJ�n D f Oj1g if Okn D 1. Theorem 4.3 of Ing and Lai (2011) establishes the
oracle property of OJ�n and shows that this simple procedure, which is denoted
by OGA+HDIC+Trim, achieves variable selection consistency in the sense that
limn!1 P.OJ�n D J�n / D 1: For strongly sparse regression models, Zhao and Yu
(2006) have shown that lasso is variable-selection consistent under a ‘strong irrep-
resentability’ condition of the design matrix and additional regularity conditions.
They have also shown that lasso can fail to distinguish irrelevant predictors that are
highly correlated with relevant predictors, and the strong irrepresentable condition
is used to rule out such cases. On the other hand, OGA+HDIC+Trim can achieve
variable selection consistency without this type of condition.

10.2.2 The Fixed Design Case

As mentioned previously, the empirical norm defined in (10.1.6) is the more
commonly used performance measure in fixed designs. When "t in (10.1.1) are
assumed to be either zero or nonrandom, upper bounds for (10.1.6) have been
discussed in the approximation theory literature; see, e.g., Tropp (2004) and
Donoho et al. (2006). When the "t in (10.1.1) are zero-mean random variables,
an upper bound for (10.1.6) should involve the variance besides the bias of the
regression estimate. Since the regression function in (10.1.1) has infinitely many
representations when p > n, Ing and Lai (2011) have introduced the sets

B D fb W Xb D . y.x1/; : : : ; y.xn//>g; (10.2.13)

where X D .X1; : : : ;Xp/ is n � p, and BJ;i D f�J;i W X>J Xi D X>J XJ�J;ig, where
J � f1; : : : ; pg and 1 	 i 	 p with i … J, and defined

rp D arg min
0<r<1=2

f1C .log
p
1=.1� 2r/= log p/g=r; Qrp D 1=.1� 2rp/: (10.2.14)

With these notations, Ing and Lai (2011) have provided the following upper bound
for (10.1.6).
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Theorem 10.2.2 Suppose "t are i.i.d. normal random variables with E."t/ D 0

and E."2t / D �2. Assume that xtj are nonrandom constants, normalized so that
n�1

Pn
tD1 x2tj D 1, and satisfying

max
1�]. J/�bn= log pc;i…J

inf
�J;i2BJ;i

k�J;ik1 < M for some M > 0: (10.2.15)

Let 0 < � < 1, C >
p
2.1CM/, s > f1C .2 log p/�1 log Qrpg=rp, where rp and Qrp

are defined by (10.2.14), and

!m;n D . inf
b2B kbk1/max

�
infb2B kbk1
1C m�2

;
2C�

1 � � .
log p

n
/1=2

�

: (10.2.16)

Then for all p � 3, n � log p, and 1 	 m 	 bn= log pc,

kOym.�/� y.�/k2n 	 !m;n C s�2m.log p/=n (10.2.17)

with probability at least

1 � p exp

�

� C2 log p

2.1CM/2

�

� Qr1=2p p�.srp�1/

1 � Qr1=2p p�.srp�1/
:

Some comments on Theorem 10.2.2 are as follows. The upper bound (10.2.17)
for the prediction risk of OGA is a sum of a variance term, s�2m.log p/=n,
and a squared bias term, !m;n. The variance term is the usual least squares risk
m�2=n multiplied by a risk inflation factor s log p; see Foster and George (1994)
for a detailed discussion of the idea of risk inflation. The squared bias term is
the maximum of .infb2B kbk1/2=.1 C m�2/, which is the approximation error of
the noiseless OGA, and 2C�.1 � �/�1 infb2B kbk1.n�1 log p/1=2, which can be
viewed as the error caused by the discrepancy between the noiseless OGA and
the sample OGA. The k�J;ik1 in (10.2.15) is closely related to the cumulative
coherence function introduced by Tropp (2004). Since Theorem 10.2.2 does not
put any restriction on M and infb2B kbk1, the theorem can be applied to any design
matrix although a large value of M or infb2B kbk1 will result in a large bound on
the right-hand side of (10.2.17). Note that the population analog of k�J;ik1 for
random regressors is k��1. J/gi. J/k1, which appears in the second part of (10.2.3).
In addition, although (10.2.3) makes an assumption on �min.�. J//, it does not
make assumptions on �max.�. J//. This is similar to the restricted eigenvalue (RE)
assumption introduced by Bickel et al. (2009) but differs from the sparse Riesz
condition introduced by Zhang and Huang (2008).
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10.3 The Performance OGA Under General Sparse
Conditions

10.3.1 Rates of Convergence

In this section, we first investigate the performance of OGA under the following
sparse condition,

sup
n�1

pnX

jD1
jˇj�jj1=� <1 for some � � 1; (10.3.1)

which we call the algebraic decay case. Obviously, (10.3.1) includes (10.1.3) as
a special case. The parameter � in (10.3.1) can be viewed as an index to describe
the degree of sparseness in the underlying high-dimensional regression model. The
larger the � is, the sparser the model is. In fact, an assumption similar to (10.3.1)
has also been made by Bickel and Levian (2008) and Cai et al. (2010) in the
context of estimating high-dimensional covariance matrices. We start by defining
the population version of the weak orthogonal greedy algorithm (WOGA). Let
0 < � 	 1, J�;0 D ; and u0 D y.x/:

Step 1: Let j�;m be any integer j 2 f1; : : : ; pg such that jE.u0zj/j �
� max1�i�p jE.u0zi/j. Define J�;1 D J�;0

Sf j�;1g and u1 D y.x/ � yJ�;1 .x/, where
yJ.x/ is defined after Theorem 10.2.1.
:::

Step m: Let j�;m be any integer j 2 f1; : : : ; pg satisfying jE.um�1zj/j �
� max1�i�p jE.um�1zi/j. Define J�;m D J�;m�1

Sf j�;mg and um D y.x/� yJ�;m.x/.
Gao et al. (2013) have established a rate of convergence of E.u2m/.

Lemma 10.3.1 Assume (10.3.1) and

�min.�/ WD �min.E.zz>// � �1 > 0; (10.3.2)

where z D .z1; : : : ; zp/>. Then, there exists C1 > 0 such that

E. y.x/ � yJ�;m.x//
2 	 C1m

�2�C1:

By making use of Lemma 10.3.1, Ing and Lai (2015) have provided the following
extension of Theorem 10.2.1.

Theorem 10.3.2 Suppose .xt; "t/ are i.i.d., p D pn ! 1 and log p D o.n/.
Assume (10.2.1)–(10.2.3), (10.3.1), (10.3.2) and Kn ! 1 such that Kn D
O..n= logpn/1=2/. Then

max
1�m�Kn

�
EŒf y.x/� Oym.x/g2j y1; x1; : : : ; yn; xn�

m�2�C1 C n�1m log pn

�

D Op.1/: (10.3.3)
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In view of (10.3.3), to strike a suitable balance between squared bias and variance,
one should choose m  .n= logpn/1=2� , which yields a rate of convergence,
.n�1 log pn/1�.2�/

�1
. Indeed, recent papers by Raskutti et al. (2011) and Wang et al.

(2014) have shown that under certain regularity conditions, .n�1 log pn/1�.2�/
�1

is
also the minimax optimal rate for fixed and random designs, respectively. Moreover,
Negahban et al. (2012) have shown that this rate is achievable by the lasso estimate
when xt are non-random.

Ing and Lai (2015) have also considered a coefficient condition sparser
than (10.3.1):

X

j2J
jˇj�jj 	 M1 max

j2J jˇj�jj for any J � f1; : : : ; pg; (10.3.4)

where M1 > 1. It is easy to see that (10.3.4) is fulfilled by any exponential decay
function defined on the set of positive integers. We therefore call it the exponential
decay case. Based on an argument similar to that used to prove Lemma 10.3.1 and
Theorem 10.3.2, Ing and Lai (2015) have obtained the next theorem.

Theorem 10.3.3 Suppose .xt; "t/ are i.i.d., p D pn ! 1 and log p D o.n/.
Assume (10.2.1)–(10.2.3), (10.3.4), (10.3.2) and Kn ! 1 such that Kn D
O..n= logpn/1=2/. Then, there exist C2;C3 > 0 such that

E. y.x/� yJ�;m.x//
2 	 C2exp.�C3m/; (10.3.5)

and

max
1�m�Kn

�
EŒf y.x/� Oym.x/g2j y1; x1; : : : ; yn; xn�

exp.�C3m/C n�1m log pn

�

D Op.1/: (10.3.6)

In view of (10.3.6), it can be shown that the optimal convergence rate of OGA
under (10.3.4) is n�1 log n log pn, which is achieved by taking m � S log n for some
S large enough. This rate is faster than the one obtained in Theorem 3.1 because a
sparser condition on the regression coefficients is imposed.

10.3.2 Comparative Studies

In this section, we report simulation studies of the performance of OGA+HDAIC
relative to that of lasso and Bühlmann’s (2006) PGA+AICc. These studies consider
the regression model

yt D
pX

jD1
ˇjxtj C "t; t D 1; : : : ; n; (10.3.7)
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where p � n, "t are i.i.d. N.0; �2/ and are independent of the xtj, and xtj are
generated in the following way:

xtj D dtj C �wt; (10.3.8)

in which � � 0 and .dt1; : : : ; dtp;wt/
>; 1 	 t 	 n; are i.i.d. normal with mean

.0; : : : ; 0/> and covariance matrix I. Since under (10.3.8), �min.�/ D 1=.1C�2/ >
0 and for any J � f1; : : : ; pg and 1 	 i 	 p with i … J, k��1. J/gi. J/k1 	
1, (10.2.3) are satisfied; moreover, Corr.xtj; xtk/ D �2=.1 C �2/ increases as j�j
does.

Example 1 (The Algebraic Decay Case) Consider (10.3.7) with ˇj D s � j�a,
p D 2000 and n D 400. In addition, assume that � D 0 and 2, �2 D 0:01; 0:1

and 1, s D 1; 2 and 5, and a D 1:5 and 2. In light of Theorem 10.3.2 which
requires the number Kn of iterations to satisfy Kn D O..n= logpn/1=2/, we choose
Kn D b5.n= logpn/1=2c. We have also allowed D in Kn D bD.n= logpn/1=2c to
vary between 3 and 10, and the results are similar to those for D D 5. Table 10.1
summarizes the mean squared prediction errors (MSPE) of the OGA+HDAIC, lasso
and PGA+AICc based 1000 simulation replications, where the MSPE is defined by

MSPE D 1

1000

1000X

lD1

0

@
pX

jD1
ˇjx

.l/
nC1;j � Oy.l/nC1

1

A

2

; (10.3.9)

in which x.l/nC1;1; : : : ; x
.l/
nC1;p are the regressors associated with y.l/nC1, the new outcome

in the lth simulation run, and Oy.l/nC1 denotes the predictor of y.l/nC1. Here and in
the sequel, we choose c D 2:01 for HDAIC. We have allowed c in HDAIC to
vary among 2.01, 2.51, 3.01, 3.51, and 4.01, but the results are quite similar for
the different choices of c. To implement lasso, we use the Glmnet package in R
(Friedman et al. 2010) that conducts fivefold cross-validation to select the optimal
penalty r. In addition, the step size � of PGA is chosen to be � D 0:1 and the number
of PGA iterations is set to 1000.

First note that all MSPEs increase as �2 and s increase or as a decreases. The
MSPEs of lasso are about two times those of OGA+HDAIC in the case of a D 1:5,
and about three times those of OGA+HDAIC in the case of a D 2. This observation
applies to all �2 D 0:01; 0:1 and 1, s D 1; 2 and 5 and � D 0 and 2. The MSPEs of
PGA+AICc are smaller than those of lasso but larger than those of OGA+HDAIC.

Example 2 (The Exponential Decay Case) Consider (10.3.7) with ˇj D s �
exp.�ja/, p D 2000 and n D 400. In addition, assume the same values for �,
�2, s, and a as those used in Example 1. Like the algebraic decay case, the MSPEs
of OGA+HDAIC in the current example are also smaller than those of lasso and
PGA+AICc. In particular, for both � D 0 and 2, the MSPEs of lasso are about 5–
10 times those of OGA+HDAIC when �2 D 0:01 and 0.1, and about 1.1–6 times
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Table 10.1 MSPEs of
OGA+HDAIC, lasso and
PGA+AICc in the
algebraic-decay case

� �2 a s OGA+HDAIC Lasso PGA+AICc

0 0:01 1:5 1 0:250 0:468 0:304

2 0:640 1:141 0:850

5 2:291 5:001 3:639

2 1 0:021 0:065 0:037

2 0:041 0:122 0:070

5 0:102 0:616 0:184

0:1 1:5 1 0:563 1:143 0:670

2 1:369 2:690 1:654

5 4:671 8:378 5:916

2 1 0:068 0:234 0:141

2 0:133 0:427 0:249

5 0:309 0:956 0:550

1 1:5 1 1:334 2:863 1:865

2 3:007 6:579 3:794

5 10:234 19:940 12:171

2 1 0:235 0:820 0:737

2 0:448 1:544 1:140

5 1:056 3:393 1:935

2 0:01 1:5 1 0:254 0:478 0:313

2 0:630 1:122 0:831

5 2:282 5:059 3:656

2 1 0:021 0:064 0:036

2 0:040 0:121 0:068

5 0:100 0:613 0:184

0:1 1:5 1 0:565 1:150 0:666

2 1:405 2:706 1:673

5 4:689 8:465 6:063

2 1 0:068 0:225 0:148

2 0:128 0:417 0:240

5 0:323 1:006 0:571

1 1:5 1 1:292 2:816 1:856

2 3:202 6:693 4:080

5 10:180 20:260 12:313

2 1 0:236 0:845 0:815

2 0:440 1:527 1:077

5 1:036 3:416 2:110

those of the latter when �2 D 1. On the other hand, unlike the algebraic decay case,
the MSPEs of PGA+AICc are larger than those of lasso in the exponential decay
case. The difference between these two methods is particularly notable as �2 D 1

(Table 10.2).
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Table 10.2 MSPEs of
OGA+HDAIC, lasso and
PGA+AICc in the
exponential-decay case

� �2 a s OGA+HDAIC Lasso PGA+AICc

0 0:01 1:5 1 0:0005 0:0046 0:0068

2 0:0008 0:0063 0:0061

5 0:0008 0:0074 0:0071

2 1 0:0003 0:0034 0:0058

2 0:0007 0:0038 0:0056

5 0:0009 0:0048 0:0061

0:1 1:5 1 0:0046 0:0312 0:0599

2 0:0080 0:0418 0:0588

5 0:0090 0:0577 0:0690

2 1 0:0033 0:0218 0:0539

2 0:0041 0:0286 0:0558

5 0:0061 0:0366 0:0596

1 1:5 1 0:0526 0:1381 0:5587

2 0:0585 0:2596 0:5419

5 0:0624 0:4090 0:5692

2 1 0:0367 0:0458 0:5633

2 0:0434 0:1613 0:5304

5 0:0915 0:2593 0:5812

2 0:01 1:5 1 0:0007 0:0049 0:0063

2 0:0008 0:0061 0:0064

5 0:0008 0:0073 0:0067

2 1 0:0004 0:0034 0:0058

2 0:0006 0:0039 0:0058

5 0:0008 0:0046 0:0062

0:1 1:5 1 0:0043 0:0351 0:0564

2 0:0084 0:0411 0:0608

5 0:0084 0:0565 0:0700

2 1 0:0035 0:0216 0:0554

2 0:0037 0:0261 0:0516

5 0:0055 0:0359 0:0536

1 1:5 1 0:0564 0:1362 0:5729

2 0:0596 0:2854 0:5531

5 0:0651 0:4156 0:5979

2 1 0:0406 0:0456 0:5415

2 0:0522 0:1551 0:5077

5 0:0991 0:2623 0:5844

10.4 The Performance of OGA in High-Dimensional Time
Series Models

In this section, we develop an upper bound for the empirical norm kOym.�/ � y.�/k2n
of OGA under (10.1.1) with .xt; "t/ being dependent series. Specifically, we assume
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that .xt; "t/ are stationary time series, and 0 <  < min1�i�p �i 	 max1�i�p �i <
N <1. Moreover,

(A1) max1�j�p Ejn�1=2Pn
tD1 ztj"tjq D O.1/ for some q � 2.

(A2) max1�i;j�p Ejn�1=2Pn
tD1.ztiztj � �ij/j2q1 D O.1/, where q1 > q and �ij D

E.zizj/.

(A3) p D pn !1 and p2=qn =n D o.1/.

The following examples show that (A1) and (A2) are fulfilled by a broad class of
time series models.

Example 3 Let f"tg be a sequence of martingale differences with respect to an
increasing sequence of �-fields fFtg such that supt sup�1<t<1 EŒj"tjqjFt�1� <
D < 1 a.s. for some q � 2. Assume also that fztg is Ft�1-measurable and obeys
max1�t�n;1�j�p Ejztjjq D O.1/. Then (A1) holds true. To see this, by Lemma 2 of
Wei (1987),

Ejn�1=2
nX

tD1
ztj"tjq 	 DqEjn�1

nX

tD1
z2tjjq=2;

where Dq is a positive constant dependent only on D and q. Moreover, by the
convexity of jxjq=2, it holds that for all 1 	 j 	 p,

max
1�j�p Ejn

�1
nX

tD1
z2tjjq=2 	 max

1�j�p n
�1

nX

tD1
Ejztjjq 	 max

1�t�n;1�j�p Ejztjj
q D O.1/:

As a result, (A1) follows.

Example 4 Let f"tg and fztg be independent time series. Assume fztg satisfies the
same assumptions as in Example 3, and "t D P1

iD0 ajıt�j, where
P1

jD0 a2j < 1,
fıt;Ftg is a martingale difference sequence obeying E.ı2t / D �2ı <1 for all t, and
sup�1<t<1 EŒjıtjqjFt�1� < H < 1 a.s. for some q � 2. In addition, assume that
the spectral density, f".�/, of f"tg follows

sup
������

f".�/ <1:

Let �".k/ D E."t"tCk/. By Wei (1987, Lemma 2) and the convexity of jxjq=2, there
exist positive constants Hq and H

0

q dependent only on H and q such that

Ejn�1=2

nX

tD1

ztj"tjq 	 HqEjn�1
X

1�k;l�n

�".k � l/zkjzljjq=2

	 H0

q. sup
������

f".�//
q=2Ejn�1

nX

tD1

z2t jq=2 	 H0

q. sup
������

fı.�//
q=2 max

1�t�n;1�j�p
Ejztjjq;

and hence (A1) follows.
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Example 5 Assume fztjg has a linear representation,

ztj D
1X

lD�1
a. j/l ˛

. j/
t�l; (10.4.1)

where f˛. j/t ;Ftg is a martingale difference sequence, EŒ.˛. j/t /
2� D !j, and

!j
P1

lD�1 .a
. j/
l /

2 D 1 for all t and 1 	 j 	 p. Also assume that

sup�1<t<1 EŒj˛. j/t j4q1 jFt�1� < Lj < 1 a.s. for some q1 > q � 2, max1�j�p Lj D
O.1/, and max1�j�p

P1
kD�1 �2j .k/ D O.1/, where �j.k/ D E.ztjztCk;j/. By the First

Moment Bound Theorem of Findley and Wei (1993) and an argument similar to
that used in Lemma 2 of Ing and Wei (2003), it can be shown that (A2) is fulfilled
by (10.4.1). It is worth mentioning that (10.4.1) includes not only short-memory
autoregressive moving average (ARMA) models, but also some long-memory
processes; see Findley and Wei (1993) for more details.

We first analyze the “noiseless” OGA that replaces yt in OGA by its mean y.xt/.
Let � D .y.x1/; : : : ; y.xn//>, U.0/ D �, Qj1 D arg max1�j�p j.U.0//>Xjj= kXjk and
U.1/ D .I �HfQj1g/�. Proceeding inductively yields

Qjm D arg max
1�j�p j.U

.m�1//>Xjj=kXjk; U.m/ D .I�HfQj1;:::;Qjmg/�:

When the procedure stops after m iterations, the noiseless OGA determines an index
set QJm D fQj1; : : : ; Qjmg and approximates � by HQJm�. A generalization of noiseless

OGA takes 0 < � 	 1 and replaces Qji by Qji;� , where Qji;� is any 1 	 l 	 p satisfying

j.U.i�1//>Xlj=kXlk � � max
1�j�p j.U

.i�1//>Xjj=kXjk: (10.4.2)

The next lemma gives a rate of convergence of n�1kU.m/k2.
Lemma 10.4.1 Assume (10.1.3) and (A2). Then, there exists a sequence of positive
random variables fGng satisfying Gn D Op.1/ such that for any m � 1,

n�1k.I �HQJm;� /�k2 	
Gn

1Cm�2
; (10.4.3)

where QJm;� D fQj1;� ; : : : ; Qjm;�g.
Proof Define O�jj D n�1

Pn
tD1 z2tj and �J;i D .Xi/

>.I � HJ/�=.n1=2kXik/ for J �
f1; : : : ; pg and i 2 f1; : : : ; pg. Then for m � 1,

n�1k.I �H
QJm;� /�k2

	 n�1k.I �H
QJm�1;�

/� �
�>.I �H

QJm�1;�
/X

Qjm;�

kX
Qjm;� k2

X
Qjm;� k2

	 n�1k.I �H
QJm�1;�

/�k2 � �2
QJm�1;� ;Qjm;�

	 n�1k.I �H
QJm�1;�

/�k2 � �2 max
1�j�p

�2
QJm�1;� ;j

;

(10.4.4)
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in which HQJ0;� D 0. Moreover, we have

n�1k.I �HQJm�1;�
/�k2 D

pX

jD1
ˇj�j O�1=2jj �QJm�1;� ;j

	 .max
1�j�p j�QJm�1;� ;j

j/
pX

jD1
jˇj�j O�1=2jj j:

(10.4.5)

Let Gn D .Pp
jD1 jˇj�j O�1=2jj j/2. It follows from (10.4.4) and (10.4.5) that

n�1k.I �HQJm;� /�k2 	 n�1k.I �HQJm�1;�
/�k2f1� �2n�1k.I �HQJm�1;�

/�k2=Gng:
(10.4.6)

Since n�1k.I � HQJ0;� /�k2 D n�1k�k2 	 Gn, (10.4.6) and Lemma 10.3.1 of
Temlyakov (2000) yield (10.4.3). It remains to show that Gn D Op.1/, which
follows immediately from

E.Gn/ 	
8
<

:

pX

jD1
jˇj�jjE1=2. O�jj/

9
=

;

2

	 max
1�j�p E. O�jj/

0

@
pX

jD1
jˇj�jj

1

A

2

D O.1/

noting that the first relationship is ensured by Minkowski’s inequality, whereas the
last one is guaranteed by (A2) and (10.1.3). �

Define the sample counterpart O
J;i of �J;i, where O
J;i D .Xi/
>.I �

HJ/Y=.n1=2kXik/. Lemma 10.4.2 provides a uniform bound for the difference
between O
J;i and �J;i over 1 	 i 	 p and J 
 f1; : : : ; pg with i … J and
]. J/ 	 Kn D O.n1=2=p1=q/.

Lemma 10.4.2 Assume (A1)–A(3) and (1.7). Suppose Kn D O.n1=2=p1=qn /. Then

max
. J;i/W]. J/�Kn;i…J

j O
J;i � �J;ij D Op

 
p1=qn

n1=2

!

D op.1/: (10.4.7)

Proof Note first that for any J � f1; : : : ; png, 1 	 i 	 pn and i … J,

j O
J;i � �J;ij D
 

n�1
nX

tD1
z2ti

!�1=2
n�1.Z0

i.I �HJ/"/;

where Zi D .z1i; : : : ; zni/> and " D ."1; : : : ; "n/
>. The desired result (10.4.7)

follows immediately from

max
1�i�pn

 

n�1
nX

tD1
z2ti

!�1
D Op.1/; (10.4.8)

max
1�i�p n

�1jZ0

i"j D Op

 
p1=qn

n1=2

!

; (10.4.9)
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and

max
. J;i/W]. J/�Kn;i…J

n�1jZ0

iHJ"j D Op

 
p1=qn

n1=2

!

: (10.4.10)

By (A2), it can be shown that max1�i�pn jn�1
Pn

tD1.z2ti � 1/j D O.p1=2q1n =n1=2/ D
op.1/, which leads to (10.4.8). Similarly, (10.4.9) is ensured by (A1). To
show (10.4.10), we have

max
. J;i/W]. J/�Kn;i…J

n�1jZ0

iHJ"j

	 max
1�]. J/�Kn;i…J

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

 

n�1
nX

tD1
z?tiWJzt. J/

!>
O��1. J/

 

n�1
nX

tD1
"tzt. J/

!ˇˇ
ˇ
ˇ
ˇ
ˇ

C max
1�]. J/�Kn;i…J

ˇ
ˇ
ˇ
ˇ
ˇ
g>i . J/��1. J/

 

n�1
nX

tD1
"tzt. J/

!ˇ
ˇ
ˇ
ˇ
ˇ
WD Q1;n C Q2;n;

(10.4.11)

where z?tiWJ D zti � g>i . J/�
�1. J/zt. J/, zt. J/ denotes a subvector of zt D

.zt1; : : : ; ztp/>, with J being the corresponding subset of indices, and O�. J/ D
n�1

Pn
tD1 zt. J/z

0

t. J/. By (10.2.3) and (10.4.9), it holds that

Q2;n 	 max
1�i�pn

ˇ
ˇ
ˇ
ˇ
ˇ
n�1

nX

tD1
"txti

ˇ
ˇ
ˇ
ˇ
ˇ

max
1�]. J/�Kn�1;i…J

k��1. J/gi. J/k1 D Op

 
p1=qn

n1=2

!

:

(10.4.12)

Moreover, since max1�]. J/�Kn;i…J kn�1
Pn

tD1 "tzt. J/k 	 K1=2n max1�i�pn
jn�1Pn

tD1 "tztij and

max
1�]. J/�Kn;i…J

�
�
�
�
�
n�1

nX

tD1
z?tiIJzt. J/

�
�
�
�
�

	 K1=2n max
1�i;j�pn

ˇ
ˇ
ˇ
ˇ
ˇ
n�1

nX

tD1
ztiztj � �ij

ˇ
ˇ
ˇ
ˇ
ˇ
.1C max

1�]. J/�Kn;i…J
k��1. J/gi. J/k1/;

it follows from (10.2.3) that for all large n,

Q1;n 	. max
1�]. J/�Kn

k O��1. J/k/Kn.1CM/

�
 

max
1�i;j�pn

jn�1
nX

tD1
ztiztj � �ijj

! 

max
1�i�pn

jn�1
nX

tD1
"tztij

!

:

(10.4.13)
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By (A2),

max
1�i;j�pn

jn�1
nX

tD1
ztiztj � �ijj D Op

 
p1=q1n

n1=2

!

D op

 
p1=qn

n1=2

!

; (10.4.14)

which, together with (10.2.3), yields

max
1�]. J/�Kn

k O��1. J/� ��1. J/k

	 ı�1
�

max
1�]. J/�Kn

k O��1. J/� ��1. J/k C ı�1
�

max
1�]. J/�Kn

k O�. J/� �. J/k

	 ı�1
�

max
1�]. J/�Kn

k O��1. J/� ��1. J/k C ı�1
�

Kn max
1�i;j�pn

jn�1
nX

tD1
ztiztj � �ijj

D op

�

max
1�]. J/�Kn

k O��1. J/� ��1. J/k
�

C op.1/;

and hence

max
1�]. J/�Kn

k O��1. J/k 	 max
1�]. J/�Kn

k O��1. J/� ��1. J/k C ı�1 D Op.1/: (10.4.15)

In view of (10.4.9), (10.4.13)–(10.4.15), and the restriction on Kn, one obtains
Q1;n D op.p

1=q
n =n1=2/. Combining this with (10.4.11) and (10.4.12) gives (10.4.10).

Thus the proof is complete. �
The main result of this section is given as follows.

Theorem 10.4.3 Assume (10.1.3), (10.2.3), and (A1)–(A3). Suppose Kn D
O.n1=2=p1=qn /. Then

max
1�m�Kn

kOym.�/� y.�/k2n
m�1 C mp

2=q
n
n

D Op.1/: (10.4.16)

Proof By Lemma 10.4.2, for arbitrarily small � > 0, there exists a positive number
S� such that P.Ac

Kn
/ < �, where

Am D
�

max
. J;i/W]. J/�m�1;i…J

j O
J;i � �J;ij 	 S�p1=qn =n1=2
�

:
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Let 0 < � < 1 and Q� D 2=.1� �/. Define

Bm D
�

min
0�i�m�1 max

1�j�pn
j�OJi;jj > Q�S�p1=qn =n1=2

�

:

Then on the set Am
T

Bm, we have for all 1 	 q 	 m,

j�OJq�1;Ojq j � �j O
OJq�1;Ojq � �OJq�1;Ojq j C j O
OJq�1;Ojq j
� � max

. J;i/W]. J/�m�1;i2=J
j O
J;i � �J;ij C j O
OJq�1;Ojq j

� �S�p1=qn =n1=2 C max
1�j�pn

j O
OJq�1;j
j

� �2S�p1=qn =n1=2 C max
1�j�pn

j�OJq�1;j
j � � max

1�j�pn
j�OJq�1;j

j;

implying that on the set Am
T

Bm, OJq; 1 	 q 	 m obeys (10.4.2). Therefore, it
follows from Lemma 10.4.1 that

n�1k.I �HOJm/�k2IAm
T

Bm 	
Gn

1C m�2
; (10.4.17)

where Gn is defined in the proof of Lemma 10.4.1. Moreover, for 0 	 i 	 m � 1,
k.I �HOJm/�k2 	 k.I �HOJi/�k2, and hence

n�1k.I �HOJm/�k2 	 min
0�i�m�1 n

�1
pnX

jD1
ˇjX>j .I �HOJi/�

	
�

min
0�i�m�1 max

1�j�pn
j�OJi;jj

�

G1=2n 	 Q�S�p1=qn G1=2n =n1=2 on Bc
m:

(10.4.18)

Since Am decreases as m increases and m 	 Kn D O.n1=2=p1=qn /, it follows
from (10.4.17) and (10.4.18) that there exists a positive constant C� such that

max
1�m�Kn

mn�1k.I �HOJm/�k2 	 C�.Gn C G1=2n / on AKn : (10.4.19)

By noticing that Gn D Op.1/ and the probability � of Ac
kn

can be arbitrarily
small, (10.4.19) further yields

max
1�m�Kn

mn�1k.I �HOJm/�k2 D Op.1/: (10.4.20)



10 Analysis of High-Dimensional Regression Models Using Orthogonal. . . 281

Utilizing (10.4.9) and (10.4.15), one obtains

max
1�m�Kn

">HOJm"

mp2=qn =n
	 max

1�]. J/�Kn

k O��1. J/k max
1�j�pn

.n�1=2
nX

tD1
ztj"t/

2p�2=qn D Op.1/:

(10.4.21)

Now the desired conclusion (10.4.16) follows from (10.4.20), (10.4.21) and kOym.�/�
y.�/k2n D n�1.k.I �HOJm/�k2 C ">HOJm"/. �

Some comments on Theorem 10.4.3 are in order.

1. Instead of the sub-exponential and sub-Gaussian conditions described in (10.2.1)
and (10.2.2), we assume (A1) and (A2), which substantially broaden the appli-
cability of Theorem 10.4.3. Moreover, Examples 3–5 reveal that (A1) and (A2)
hold not only for high-dimensional regression models with time series errors in
which fxtg and f"tg are independent, but also for high-dimensional autoregressive
exogenous (ARX) models in which "t and xj; j > t, are correlated.

2. It is clear from (10.4.21) that the variance inflation factor p2=qn in the
denominator of (10.4.16) is contributed by the order of magnitude of
max1�j�pn.n�1=2

Pn
tD1 ztj"t/2, and is derived under condition (A1) that

max1�j�pn Ejn�1=2
Pn

tD1 ztj"tjq D O.1/. Let Zi be independent random variables
following EjZijq D 1 for all i, Ing and Lai (2016) have recently constructed an
example showing that for any small & > 0, P.p�1=qn max1�i�pn jZij < &/ D o.1/,

and hence the divergence rate of max1�i�pn Z2i cannot be slower than p2=qn .

Their example suggests that the variance inflation factor p2=qn seems difficult to
improve. By (10.4.16), OGA’s empirical norm has the optimal rate p1=qn =n1=2,
which is achieved by choosing m  n1=2=p1=qn .

We close this section by mentioning some recent developments of lasso in high-
dimensional time series models. Basu and Michailidis (2015) have derived an upper
bound for the empirical norm of the lasso estimate under (10.1.1) with fxtg and
f"tg being independent and stationary Gaussian processes. They show that when
r � c.log pn=n/1=2 for some c > 0,

n�1
nX

tD1
.Oylasso.r/.xt/� y.xt//2 D Op.k log pn=n/; (10.4.22)

provided (10.3.2) holds true and the regression coefficients are k-sparse, namely
]. J�n / D k, with k satisfying

kf max
]. J/Dk

�max.�. J//g2 � n= log pn: (10.4.23)

Let fang and fbng be sequences of positive numbers. We say an � bn if there
exists positive constant M such that an 	 Mbn. The bound on the right-hand side
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of (10.4.22) seems satisfactory because it is the same as the one obtained in the
fixed design model with i.i.d. Gaussian error; see (2.20). However, while (10.3.2)
is not an uncommon assumption for time series models, it may seem restrictive
compared to (10.2.3) or the restricted eigenvalue assumption. Assumption (10.4.23)
may also lead to a stringent limitation on k. For example, (10.4.23) becomes
k � .n= log pn/1=3 in the case of 0 < E.ztiztj/ D � < 1 for all 1 	 i ¤ j 	 pn, which
is a benchmark case in high-dimensional data analysis; see also Sect. 10.3.2. In
addition, non-Gaussian time series or ARX models are precluded by the assumption
that fxtg and f"tg are independent Gaussian processes. Alternatively, Wu and Wu
(2016) have considered lasso estimation with a fixed design matrix. They assume
that an RE condition is satisfied and f"tg is a stationary time series having a finite
q-th moment. When the model is k-sparse, they derive a sharp upper bound for the
empirical norm of lasso. However, it seems difficult to extend their results to high-
dimensional ARX models.
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Chapter 11
Semi-supervised Smoothing for Large
Data Problems

Mark Vere Culp, Kenneth Joseph Ryan, and George Michailidis

Abstract This book chapter is a description of some recent developments in
non-parametric semi-supervised regression and is intended for someone with a
background in statistics, computer science, or data sciences who is familiar with
local kernel smoothing (Hastie et al., The elements of statistical learning (data
mining, inference and prediction), chapter 6. Springer, Berlin, 2009). In many
applications, response data often require substantially more effort to obtain than
feature data. Semi-supervised learning approaches are designed to explicitly train
a classifier or regressor using all the available responses and the full feature data.
This presentation is focused on local kernel regression methods in semi-supervised
learning and provides a good starting point for understanding semi-supervised
methods in general.

Keywords Computational statistics · Machine learning · Non-parametric
regression

11.1 Introduction

This book chapter is a description of recent developments in non-parametric semi-
supervised regression and is intended for someone with a background in statistics,
computer science, or data sciences who is familiar with local kernel smoothing
(Hastie et al. 2009, Chapter 6). In many applications, response data often require
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substantially more effort to obtain than feature data. For example, in some non-
clinical pharmaceutical applications, the feature data are often measurements on
compounds while the response is a hard to determine attribute such as whether
or not the drug will have a particular side-effect (Lundblad 2004). The response
information is expensive to obtain, and thus a semi-supervised approach that uses
all the available data may be preferred. Other applications are in text analysis
(McCallum et al. 2000), spam in email detection problems (Koprinska et al. 2007),
chemogenomics (Bredel and Jacoby 2004), and proteomics (Yamanishi et al. 2004).

A common theme in these big data applications is that large feature data sets are
available with only some observed responses. Handling such data mart problems has
been of recent interest in machine learning, and semi-supervised learning addresses
this specific class of problems. This book chapter provides a starting point for
grasping some of the popular semi-supervised approaches designed to address these
challenging and practical problems.

Semi-supervised learning approaches are designed to explicitly train a classifier
or regressor using all the available responses and the full feature data (Chapelle
et al. 2006; Zhu 2008; Abney 2008). This chapter is organized as follows. First,
supervised kernel regression is extended into semi-supervised learning. Then some
properties of this estimator are provided. Several, other well-known semi-supervised
approaches can be viewed as generalizations of semi-supervised kernel regression.
This chapter closes with a brief summary of these types of interesting extensions.

11.2 Semi-supervised Local Kernel Regression

In semi-supervised learning, one starts with both partially observed responses and
a complete feature data set. Formally, assume that .yi; ri; xi/ are instances from
the joint distribution of random variables Y; R, and random vector X. The ri
denote the indicator of response availability. The responses are assumed to be
Missing Completely at Random (MCAR). The MCAR assumption means that
R ?? Y j X and that RjX is Bernoulli distributed with success probability p.X/ D p.
This assumption underpins nearly every semi-supervised approach (Lafferty and
Wasserman 2007).

To begin, assume that n observations .yi; ri; xi/ are obtained. In supervised
learning, all training is done with responses riyi and data rixi. This is commonly
referred to as the labeled data which is indexed by set L D fijri D 1g. The
focus of this work is to obtain a prediction for the point x0. In machine learning,
a distinction is made between prediction of an arbitrary x0 versus the so-called
transductive prediction problem of predicting .1�ri/xi. Observations corresponding
to the transductive prediction problem are referred to as unlabeled with index set
U D fijri D 0g. The latent response vector for the unlabeled data is denoted by
YU and is unavailable for training. For finite samples with sets L and U fixed and



11 Semi-supervised Smoothing for Large Data Problems 287

for simplicity, we assume that the first m observations are labeled and the remaining
n �m are unlabeled; the data are then partitioned as:

Y .YU/ D
�
YL

YU

�

X D
�
XL

XU

�

; (11.1)

where YU is arbitrary in RjUj.

11.2.1 Supervised Kernel Regression

The local kernel smoother operates on a kernel matrix involving distances between
observations xi; xj, e.g. Dij D jjxTi � xTj jj2 (Euclidean) or Dij D jjxTi � xTj jj11
(Manhattan). Using the distance function, the local kernel function is denoted as:
Kh.xi; x0/ D K.Di0=h/ with xTi ; x

T
0 2 Rp, e.g., the Gaussian kernel is most common

with Kh.xi; x0/ D exp
��jjxTi � xT0 jj22=.2h/

	
. The generic notation using an arbitrary

response y of length k and data X of dimensions k � p for prediction of observation
x0 is given by

bmy.x0/ D
Pk

iD1 Kh.xi; x0/yi
Pk

iD1 Kh.xi; x0/
: (11.2)

In supervised local kernel regression this estimator is the local average

bmYL.x0/ D
P

i2L Kh.xi; x0/yiP
i2L Kh.xi; x0/

D
Pn

iD1 Kh.xi; x0/riyiPn
iD1 Kh.xi; x0/ri

: (11.3)

The parameter h is to be estimated by cross-validation using the labeled data. The
supervised local kernel estimator has a long history in statistics and is fairly deeply
understood (Hastie et al. 2009, Chapter 6). The purpose of this book chapter is to
articulate how this local smoothing concept is used in the semi-supervised setting.

Predictions (11.3) applied to xi with i 2 L [U are of particular note. The kernel
Gram matrix Wij D K

�
Dij=h

	
partitions

W D
�
WLL WLU

WUL WUU

�

; (11.4)

where WLL corresponds to the similarities between labeled observations, WUL D
WT

LU corresponds to similarities between labeled and unlabeled observations, and
WUU corresponds to similarities between unlabeled observations. In vector form the
predictions from local kernel smoother (11.3) applied to observations in L [ U are
given by

em D
�
emL

emU

�

D
�
D�1LLWLLYL

D�1ULWULYL

�

D
�
TLLYL

TULYL

�

; (11.5)
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where DAB is the diagonal row sum matrix of the WAB partition of W for index sets
A; B. The matrices TLL;TUL are right stochastic kernel matrices (i.e., TLL1 D 1 and
.TLL/ij � 0).

The inverse of matrix DUL is necessary to obtain unique predictions (11.5). This
inverse is non-unique whenever unlabeled cases have zero weight to all labeled
cases. In a sense, the assumption of the supervised kernel estimator is that each
unlabeled case has a non-zero adjacency to a labeled case. This is a very strong
assumption and as we will see the semi-supervised estimators use the unlabeled
connectivity in WUU to generalize this restriction. The supervised prediction border
for the two moons data set is provided in Fig. 11.1.

Supervised
Semi−supervised

Fig. 11.1 The two moons cluster example. The supervised local kernel smoother (gray) classifies
in the logical way when only using the labeled observations (red for class one, and blue for
class two). The unlabeled data presents two structured moons. The semi-supervised local kernel
estimator passes between these moons. Although this example justifies the use of semi-supervised
estimation, it may be misleading in the sense that real data do not often conform to perfect
classification. The preponderance of empirical evidence along with much practical experience
suggests that semi-supervised local kernel regression will typically outperform supervised local
kernel when the labeled data are small relative to the size of the unlabeled data. It is not fully
understood why these estimators work so well in practice given that this type of perfect clustering
does not usually occur
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Example 1 Suppose there are six observations with four observed responses.
In this case, L D f1; 2; 3; 4g and U D f5; 6g. Also, suppose the observed
responses and feature data are

YL D

0

B
B
@

1

1

�1
�1

1

C
C
A and X D

0

B
B
B
B
B
B
B
@

0:2

0:9

1:8

4:3

6:1

7:8

1

C
C
C
C
C
C
C
A

:

A Gaussian kernel is used with h D 0:9. To aid in presentation the output of
the kernel function was rounded to one decimal point. The weight matrix is
given by

W D

0

B
B
B
B
B
B
B
@

1:0 0:8 0:2 0:0 0:0 0:0

0:8 1:0 0:6 0:0 0:0 0:0

0:2 0:6 1:0 0:0 0:0 0:0

0:0 0:0 0:0 1:0 0:2 0:0

0:0 0:0 0:0 0:2 1:0 0:2

0:0 0:0 0:0 0:0 0:2 1:0

1

C
C
C
C
C
C
C
A

:

From this,

WLL D

0

B
B
B
@

1:0 0:8 0:2 0:0

0:8 1:0 0:6 0:0

0:2 0:6 1:0 0:0

0:0 0:0 0:0 1:0

1

C
C
C
A
; WLU D WT

UL D

0

B
B
B
@

0:0 0:0

0:0 0:0

0:0 0:0

0:2 0:0

1

C
C
C
A
; and WUU D

 
1:0 0:2

0:2 1:0

!

:

The labeled 4 � 4 diagonal row-sum matrices are given by

DLL D

0

B
B
@

2:0 0:0 0:0 0:0

0:0 2:4 0:0 0:0

0:0 0:0 1:8 0:0

0:0 0:0 0:0 1:0

1

C
C
A ; DLU D

0

B
B
@

0:0 0:0 0:0 0:0

0:0 0:0 0:0 0:0

0:0 0:0 0:0 0:0

0:0 0:0 0:0 0:2

1

C
C
A ;

and the corresponding unlabeled 2 � 2 matrices are

DUL D
�
0:2 0:0

0:0 0:0

�

; and DUU D
�
1:2 0:0

0:0 1:2

�

:

(continued)
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Example 1 (continued)
The supervised estimator will not be unique in this case since .DUL/1;1 D
0:0. A generalized inverse D�UL with 0.0 for this case is used. This yields
supervised stochastic matrices

TLL D

0

B
B
@

0:50 0:40 0:10 0:00

0:33 0:42 0:25 0:00

0:11 0:33 0:56 0:00

0:00 0:00 0:00 1:00

1

C
C
A ; and TUL D

�
0:0 0:0 0:0 1:0

0:0 0:0 0:0 0:0

�

:

The transductive predictions (11.5) for the supervised estimator is then

em D
�
TLLYL

TULYL

�

D

0

B
B
B
B
B
B
B
@

0:80

0:50

�0:11
�1:00
�1:00
0:00

1

C
C
C
C
C
C
C
A

:

The supervised prediction for observation 6 is em6 D 0:0. This observation is
close in proximity to unlabeled observation 5 which is strongly classified as
em5 D �1:0. It seems reasonable that observation 6 should also be classified
as �1:0. This is the issue that the semi-supervised estimator will address by
using the unlabeled data in training. This example will be revisited with the
semi-supervised estimator introduced next.

11.2.2 Semi-supervised Kernel Regression with a Latent
Response

In semi-supervised kernel regression, the approach treats the problem as “super-
vised” with a latent response variable YU 2 RjUj. In other words, estimator
bmY.YU/.x0/ is a function of YU . The estimation problem then boils down to two
parts: (1) employ supervised kernel regression with YU fixed to get the estimator
bmY.YU/.x0/ and (2) determine the estimate bYU . The final semi-supervised kernel
estimator is then bmY.bYU/.x0/.

The semi-supervised local kernel estimator for any unlabeled latent response
YU 2 RjUj is

bmY.YU/.x0/ D
P

i2L[U Kh.xi; x0/Yi .YU/
P

i2L[U Kh.xi; x0/
: (11.6)
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The estimator bmY.YU/.x0/ is designed to be exactly the supervised kernel regression
estimator if YU were known during training.

Now, define bm .YU/ D
�
bmY.YU/.xi/

	
i2L[U , which is the estimator applied to the

observed labeled and unlabeled feature data. From this, define Sij D Kh.xi;xj/P
`2L[U Kh.xi;x`/

.
The matrix

S D
�
SLL SLU
SUL SUU

�

is a right stochastic kernel smoother matrix. From this, for any YU, the estimator
applied to the observed feature data is written as:

bm .YU/ D SY .YU/ D
�
SLLYL C SLUYU

SULYL C SUUYU

�

D
�
bmL .YU/

bmU .YU/

�

: (11.7)

This estimator is well-defined for any YU 2 RjUj.
The issue of choosing an optimal YU is of interest. For this, consider the

unlabeled fitted residual vector as a function of the unlabeled response YU :

b�U .YU/ D YU � bmU .YU/ :

Since we do not know YU, it seems reasonable to choose bYU as the minimizer of
unlabeled residual squared error, i.e., choosebYU such that

RSSU .YU/ Db�U


bYU

�T
b�U



bYU

�
D
X

j2U
b� 2
j .YU/ D 0:

The solution is to force each unlabeled fitted residual to zero or equivalently solve

bYU D bmU .YU/ D SULYL C SUUbYU

D .I � SUU/
�1 SULYL: (11.8)

This estimator bYU is unique as long as all the eigenvalues of SUU, which are real,
are strictly less than one (Culp and Ryan 2013). Using this predicted latent response,
the estimator is

bmY.bYU/ .x0/ D
P

i2L[U Kh.xi; x0/Yi



bYU

�

P
i2L[U Kh.xi; x0/

; (11.9)

and restricted to the L [U cases we get the following fitted response vector:

bm


bYU

�
D
�
SLLYL C SLU .I � SUU/

�1 SULYL

.I � SUU/
�1 SULYL

�

: (11.10)
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The matrix .I � SUU/
�1 SUL is the product of the jUj�jUj right stochastic matrix

P D .I � SUU/
�1 .DUU CDUL/

�1DUL and the jUj � jLj supervised prediction
matrix TUL D D�1ULWUL (generalizes naturally for cases when D�1UL is not unique),
that is,

bmU



bYU

�
D .I � SUU/

�1 SULYL

D .I � SUU/
�1 .DUU C DUL/

�1DULTULYL

D PemU :

Each unlabeled semi-supervised estimate is a probability weighted linear com-
bination of the local supervised kernel smoother applied to observations in U.
The semi-supervised prediction border for the two moons data set is provided in
Fig. 11.1.

Example 1 (continued) The smoother is

S D

0

B
B
B
B
B
B
B
@

0:50 0:40 0:10 0:00 0:00 0:00

0:33 0:42 0:25 0:00 0:00 0:00

0:11 0:33 0:56 0:00 0:00 0:00

0:00 0:00 0:00 0:83 0:17 0:00

0:00 0:00 0:00 0:14 0:71 0:14

0:00 0:00 0:00 0:00 0:17 0:83

1

C
C
C
C
C
C
C
A

:

From this, bYU D .I � SUU/
�1 SULYL D �1 and the semi-supervised kernel

smoother is

bm


bYU

�
D
 
SLLYL C SLUbYU

bYU

!

D

0

B
B
B
B
B
B
B
@

0:80

0:50

�0:11
�1:00
�1:00
�1:00

1

C
C
C
C
C
C
C
A

:

Notice that bm


bYU

�

5
D bm



bYU

�

6
D �1:0. The semi-supervised estimator

exploits the proximity of the unlabeled feature data to classify more distant
unlabeled observations.
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11.2.3 Adaptive Semi-supervised Kernel Regression

A semi-supervised estimator exploits the structures within the unlabeled feature data
to improve performance. Such structures are rendered unusable if large amounts of
error are added to the feature data, and the semi-supervised estimator will perform
poorly. The supervised estimator will also perform poorly, but may arguably have an
advantage in these circumstances. It is reasonable to adapt between the purely semi-
supervised estimator (11.9) and the purely supervised estimator (11.3) to optimize
the bias/variance trade-off on prediction performance.

One way to compromise between these two estimators is to consider the function
bm .0/ given in Display (11.6) with latent response estimate bYU D 0. Employing
the zero vector for the latent response has a nice connection to the supervised
estimator. To see this, notice that for prediction x0 the semi-supervised estimator
is decomposed as:

bmY.YU/.x0/ D p.x0/bmYL.x0/C .1 � p.x0//bmYU .x0/; (11.11)

with p.x0/ D
P

i2L Kh.xi;x0/P
i2L[U Kh.xi;x0/

. Plugging bYU D 0 results in a shrunken version

of supervised estimation with jbmY.0/.x0/j D jp.x0/bmYL.x0/j 	 jbmYL.x0/j. In
practice, these estimators are usually somewhat close (e.g., they have the same sign
in classification with a ˙1 response). To force the semi-supervised estimator to
be adaptive we consider a set of shrinking responses indexed by a parameter � ,
where � D 0 results in pure semi-supervised and � D 1 results in approximate
supervised. The new estimator bmY.bYU� /

.x0/ with updated unlabeled response

bYU� D 1
1C�



I � 1

1C� SUU

��1
SULYL (11.12)

adapts between the supervised and semi-supervised extremes. Consider the two
moons data example in Fig. 11.2. As � is increased the classification border
approaches the supervised classification border. In practice this type of adaptive
estimator has some advantages over the extreme versions. It allows for using the
unlabeled data structure, but also allows for it to adjust to noise. To make this
point more clear, consider the simulation study presented in Fig. 11.3. Here each
observation from the two moons data was generated with noise x?i � N.xi; �2/. The
truth was taken as the constant labeling over the moon, and the unlabeled error was
plotted as function of � . The optimal technique with minimum unlabeled error is
purely semi-supervised for small � , purely supervised for large � , and an adaptive
solution for intermediate � .
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Fig. 11.2 The “two moons” data with regularized classification boundary curves. Rainbow
spectrum: ordered by � 2 .0;1/
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Fig. 11.3 Noise degradation study for the “two moons” data. Black: � D 0 (harmonic extreme).
Gray: � D1 (supervised extreme). Rainbow spectrum: ordered by � 2 .0;1/
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11.2.4 Computational Issues for Large Data

Several of the practical applications discussed above typically occur with small
labeled but large unlabeled sets. In such a case the semi-supervised estimator
bmY.bYU� /

.x0/ requires tuning parameters .h; �/. Use .Oh; O�/ to get unlabeled response

bYU� in (11.12). Then one can predict any x0 directly using the adaptive semi-
supervised estimator bmY.bYU� /

.x0/. If the unlabeled data is particularly large, one

could obtain a representative set eU � U and use data .YL;XL;XeU/ to estimate .h; �/
by cross-validation to obtainbYeU

O�
. Then predictionbm

Y

�
bYeU

O�

�.x0/ can be applied with

x0 from the entire unlabeled data or a new observation, and this prediction problem
is embarrassingly parallel.

Much work in semi-supervised learning has been concerned with the construc-
tion of these local kernel estimators for cases where both jL[Uj and p are large. The
main idea is to induce sparsity into the local kernel metric. Often W is treated as an
n�n adjacency matrix for a graph. As such, each observation is a node on the graph,
and weighted edges are defined by non-zero off-diagonal elements in W. Much
work is on computing k-NN or � thresholds for the elements in the graph. Graph
construction often has a substantial effect on the performance of kernel based semi-
supervised learning methods (Jebara et al. 2009). Computing the graph quickly for
large data sets often involves anchor point methods (Liu et al. 2010). Conceptually,
one needs a representative sample of points to construct the central nodes of the
graph and then proceed to construct the graph much quicker. This usually leads to
fast algorithms for constructing W. This problem of graph construction from feature
data is sometimes referred to as the learning the graph problem. Earlier work in
the area incorporated estimating the parameter h as part of the learning the graph
problem; however, currently it is accepted that estimating this parameter by cross-
validation is the more sound approach.

11.3 Optimization Frameworks for Semi-supervised
Learning

The semi-supervised local kernel smoother presented above provides a good starting
point for understanding how unlabeled data are used in semi-supervised learning.
This approach is now used to motivate the general classes of techniques found
in the semi-supervised literature. Most semi-supervised approaches are based on
optimization frameworks which use the unlabeled data in either the loss function or
penalty or both. The W matrix is often regarded as an n � n adjacency matrix for
a graph with n nodes as discussed previously. Now, the graph is not fixed, and new
nodes unavailable during training can be predicted by nearly all techniques. Next
key literature based approaches are presented with their main ideas derived from the
supervised local kernel technique.
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It is well known that the supervised Nadaraya Watson kernel estimator solves
optimization problem:

minf .x0/2R
X

i2L
Kh.xi; x0/ .YLi � f .x0//

2 :

Instead of focusing on prediction, consider training only the labeled function and
treating WLL as a graph. The discrete combinatorial Laplacian operator for this
graph is given by e�LL D DLL �WLL. It turns out that the estimator for the labeled
function vector emL is the solution to the optimization problem

minfL .YL � fL/
T WLL .YL � fL/C fTLe�LLfL: (11.13)

One can solve this to see that the optimal solution is indeed emL. This optimization
problem provides no explanation for how to predict the unlabeled observations, but
it does provide the starting point for how one can view several semi-supervised
approaches in the literature.

The first class of techniques are based on the labeled loss criterion. The main idea
is to penalize the unlabeled prediction vector against some penalty matrix defined on
the full graph. Usually the penalty matrix is a variation of the discrete combinatorial
Laplacian matrix � D D �W where D is the row sum matrix of W. It is natural to
generalize the penalty in optimization problem (11.13) to fT�f . Belkin et al. (2004)
proposed optimization problem

minf .YL � fL/
T .YL � fL/C fT�f ;

which is an example of this type of generalization.1 In semi-supervised learning, the
labeled loss optimization framework is

minfL.YL; fL/C �1fT�f C �2fT f ; (11.14)

where L.�; �/ is a loss function and both �1 � 0 and �2 � 0. Several semi-
supervised graph-based learning techniques are based off of this general criterion
including manifold regularization where the problem is adapted to Hilbert space
optimization (Belkin et al. 2006), energy diffusion with the normalized Laplacian
(Zhou et al. 2004), and a deformed Laplacian approach (Gong et al. 2015). The
energy optimization viewpoint for semi-supervised learning is discussed extensively
in Abney (2008). Also, several of these authors make connections to graph-cutting
routines (Wang et al. 2013) and harmonic functions (Zhu 2008). The harmonic

1Note, one could weight the loss function as
�
YL � f L

	T
WLL

�
YL � fL

	
, however, to our knowl-

edge this specific loss function in the context of semi-supervised learning with a labeled loss
approach has not been studied.
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property produces a general averaging estimator over the graph, where any function
f is harmonic whenever it satisfies

bf D
 
bfL
bfU

!

D
 

bfL
.I � SUU/

�1 SULbfL

!

(11.15)

for semi-supervised learning. Notice the similarity with the unlabeled estima-
tor (11.10). Culp and Ryan (2013) showed that all solutions to labeled loss with
�2 D 0 are harmonic (11.15) for any loss function, that is, bf L is the solution
to minfLL.YL; fL/ C � fTL�?

LL fL where �?
LL D �LL � �LU .�UU/

�1 �UL. This
establishes that the loss function directly determines the estimate for the few labeled
observations and results in the harmonic estimator for the unlabeled data.

Joint training provides another class of semi-supervised approaches. In this case,
similar to the semi-supervised local kernel estimator (11.9), a latent response is
required. The joint training optimization functional

minf ;YUL.Y .YU/ ; f /C �1J1. f/C �2J2.YU/; (11.16)

yields both an unlabeled response estimate and function, simultaneously. The
connection to semi-supervised kernel regression (11.3) is demonstrated by the
natural generalization of (11.13), i.e.,

minf ;YU .Y .YU/ � f /T W .Y .YU/� f /C fT�f C �YT
UYU ; (11.17)

which results in

bmY.eYU� /
.x0/ D

P
i2L[U Kh.xi; x0/Yi

�
eYU�

	

P
i2L[U Kh.xi; x0/

where

eYU� D ..�S/UU C �I/�1 .�S/UL YL:

This estimator has several properties similar to the local semi-supervised kernel
smoother (11.9) and was studied in Culp and Ryan (2013). Other versions of the
joint optimization problem are also of note, including the S3VM which uses hinge
loss (Chapelle et al. 2008) and  -learning approaches (Wang and Shen 2007).
The joint optimization problem is a worthwhile framework and has been of recent
interest in the literature.

Self-training provides another class of techniques to fit semi-supervised estima-
tors (Zhu 2008). The main idea is to treat the latent response YU as if it were known
and then iteratively update. For example, a kernel smoother is extended to semi-

supervised learning in the following way: setbfU D 0 and iteratebf D SY


bfU
�

.

The convergent solution to this problem results into bf D bmU



bYU

�
, i.e., the

solution is exactly the semi-supervised kernel smoother (11.9). This algorithm is a
simplification of common self-training algorithms including: Yarowski’s algorithm
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(Abney 2004) and fitting the fits (Culp and Michailidis 2008). The pure generality of
the approach is of particular note, because one can extend any supervised technique
using self-training. Unfortunately, not much is currently known about the general
behavior of self-training algorithms when using generic supervised functions.

There are many other techniques in the literature motivated from different
perspectives including energy optimization and physics (Zhu 2008), learner agree-
ment approaches (Blum and Mitchell 1998; Shilang 2013), and generalized EM
approaches (Zhu 2008; Chapelle et al. 2006). The goal of this chapter was to
demonstrate key semi-supervised research areas in terms of extending local kernel
smoothing into semi-supervised learning.

Acknowledgements NSF CAREER/DMS-1255045 grant supported the work of Mark Vere Culp.
The opinions and views expressed in this chapter are those of the authors and do not reflect the
opinions or views at the NSF.
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Chapter 12
Inverse Modeling: A Strategy to Cope
with Non-linearity

Qian Lin, Yang Li, and Jun S. Liu

Abstract In the big data era, discovering and modeling potentially non-linear
relationships between predictors and responses might be one of the toughest
challenges in modern data analysis. Most forward regression modeling procedures
are seriously compromised due to the curse of dimension. In this chapter, we show
that the inverse modeling idea, originated from the Sliced Inverse Regression (SIR),
can help us detect nonlinear relations effectively, and survey a few recent advances,
both algorithmically and theoretically, in which the inverse modeling idea leads to
unforeseeable benefits in nonlinear variable selection and nonparametric screening.

Keywords Correlation pursuit · Multiple index models · Nonparametric
screening · Sliced inverse regression · Sufficient dimension reduction ·
Sub-Gaussian

12.1 Introduction

Studying relationships among random variables is one of the main focuses in
statistics. In the past century and perhaps until nowadays, linear regression/OLS
has been playing the dominant role in real-world data analysis. Characteristics of
modern data, however, challenge this prevailing framework in at least two aspects:
(1) the linear system could be under-determined and over-fitting, i.e., ‘large p,
small n’; and (2) the linear assumption might be inappropriate and under-fitting, i.e.,
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nonlinearity. Significant progresses have been made for the high dimensional linear
regression in the last two decades. By assuming that only a very few among many
candidate predictors are related to the response in a regression (i.e., the sparsity
assumption), researchers have proposed the LASSO (Tibshirani 1996) and Danztig
Selector (Candes and Tao 2007) to effectively select important predictors. Successes
of LASSO and its follow-up work provide us with certain confidence that linear
regression in high dimension is no longer a formidable task. However, detecting
nonlinear relationships in high-dimension is still a challenge.

Forward regressions, in which people interpret the response as certain function
(parametric or non-parametric) of the predictors with some random perturbations,
have been widely adopted by almost all data scientists. To be precise, let Y be
the response and X 2 R

p be the predictor vector. Forward regressions construct
models for the conditional density p.YjX/. In contrast, inverse modeling studies the
distribution of predictors conditional on a particular value of the response variable,
i.e., focusing on the density function p.Xj Y/. Although it is a little counter-intuitive,
this formulation is natural from a Bayesian point of view. A celebrated nontrivial
application of the inverse modeling idea dates back to Li (1991), where Li proposed
the sliced inverse regression (SIR) for dimension reductions. SIR inspired the so-
called Sufficient Dimension Reduction (SDR) formulation, which postulates the
existence of the central subspace—the minimal subspace S such that Y ?? XjPSX
and enables people to find such a space, at least approximately, in real data. In
the last two decades, the SDR has gained successes in various scientific fields,
but the inverse modeling idea of SIR is somehow overlooked. Modeling from an
inverse perspective has not been explicitly stated until recently, where Cook (2007)
proposed the principal fitted components (PFC). Inverse modeling not only clarifies
various SDR algorithms, but also brings us the desired theoretical treatment of
SIR/SDR in high dimension. In fact, since its birth, SIR has been advocated as a
nonlinear alternative to the multiple linear regression (Chen and Li 1998). However,
the lack of the thorough theoretical treatment prevents SIR to be a nonlinear
counterpart of the multiple linear regression in high dimensional settings. Some
recent theoretical advances for SIR/SDR will be briefly reviewed in Sects. 12.2
and 12.4.

In high-dimensional settings, it is scientifically desirable to look for a small
number of predictors that can explain the response. Furthermore, when there is
nonlinearity, the forward regression is seriously compromised due to the compu-
tational cost and the limited sample size. Thus, variable selection becomes an even
more indispensable step in data analysis. Motivated by the multiple linear regression
and the profile correlation viewpoint of SIR, Zhong et al. (2012) proposed the
correlation pursuit algorithm (COP) selecting the important variables. It is clear
that the COP, which selects variables from a forward modeling perspective, could
be easily extending to other SDR algorithms (see, e.g., Yu et al. 2016). However,
modeling from an inverse perspective can bring us more interesting phenomena.
Jiang et al. (2014) proposed the SIR for variable selection via Inverse modeling
(SIRI) based on the inverse modeling (see, e.g., (12.22) below). It is seen that not
only can COP be viewed as an approximation of SIRI (see discussions around
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Eq. (12.24)) when conditions required by SDR modeling hold, but also can SIRI
be effective in discovering interactions when those conditions are violated.

Last but not least, inverse modeling provides a natural framework for developing
nonparametric dependency tests. Since the introduction of the sure independence
screening concept by Fan and Lv (2008), looking for effective screening statistics
becomes a popular strategy for data analysts. Though screening statistics based
on the parametric model have been employed in various applications, a crucial
drawback of these methods is that parametric modeling assumptions are often
violated in real data and difficult to check. Looking for nonparametric dependency
screening statistics is of particular interest from practical consideration. Inverse
modeling, especially, the estimation conditioning on discretized response variable
values, aka slicing, provides us a large class of nonparametric statistics, which are
both theoretically solid and practically effective (see Cui et al. 2014; Jiang et al.
2014; Li et al. 2012; Zhu et al. 2011). In the following sections, we will give a more
detailed review of the developments and impacts of the inverse modeling idea.

12.2 SDR and Inverse Modeling

12.2.1 From SIR to PFC

When people try to visualize the data with moderate dimensions (e.g., 	10), a low
dimensional projection (e.g., 	2) of predictors X is often desirable, and it would be
even better if the projection can explain most of the variation in the response. Li
(1991) considered the following model1

Y D f .ˇ1X; : : : ;ˇ

dX; �/; where X � N.0; Ip/; � � N.0; 1/ (12.1)

and introduced the sliced inverse regression algorithm to estimate the space S D
spanfˇ1,. . . ,ˇdg. We briefly review the SIR procedure here and give an intuitive
explanation on why it works.

Suppose we have n.D Hc/ observations .xi; yi/; i D 1; : : : ; n from the
model (12.1). We sort the yi and divide the data along its order statistics y.i/ into
H equal-sized bins. Let x.i/ be the concomitant of y.i/, xh;i D x..h�1/cCi/ and let
Nxh D 1

c

P
i xh;i. SIR proceeds by estimating varŒE.X j Y/� by

ƒH;c D 1

H

X

h

Nxh Nxh (12.2)

1To avoid unnecessary technical assumptions, we state the results in this chapter under a stronger
condition than their original form in literature.
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and the space S by bS spanned by the first d eigenvector of ƒH;c. Under mild
conditions (e.g., rank.var.EŒXj Y�// D d) the SIR estimatebS and ƒH;c were shown
to be consistent (Duan and Li 1991; Hsing and Carroll 1992; Zhu et al. 2006). We
provide an intuitive explanation here and revisit it later with a more clear vision from
the inverse modeling perspective. Suppose we have the following decomposition

X D ZCW; where Z D PSX and W D PS?X: (12.3)

We introduce the notations zh;i, Nzh;wh;i, and Nwh similarly as xh;i, Nxh. Then, we have

ƒH;c D 1

H

X

h

NzhNzh C
1

H

X

h

Nwh Nwh

C 1
H

X

h

Nzh Nwh C
1

H

X

h

Nzh Nwh

Note that X � N.0; Ip/ and W ?? Y, it is easily seen that var. Nwh/ D 1
cvar.W/. As

long as 1
H

P
h NzhNzh is a consistent estimate of var.EŒXj Y�/, the cross term is bounded

by
q

1
cvar.W/, i.e., if the sample size c in each slice ! 1, the SIR algorithm

averages out the noise orthogonal to S and hence leads to a consistent estimate of S.
SIR, due to its simplicity and computational efficiency, is one of the most popular

supervised dimension reduction tools. One of the drawbacks of SIR is that it needs
the non-degeneracy of var.EŒXj Y�/, i.e., rank .var.EŒXj Y�// D d. Clearly, many
functions such as symmetric ones do not satisfy this requirement. When function f
does not satisfy this condition, several alternative algorithms have been proposed
to rescue (Cook and Weisberg 1991). These alternative algorithms, however, all
implicitly imposed some other assumptions on the function f .

The SIR approach of Li (1991) brought us two key innovative ideas. The first one
is the reduction modeling, i.e., to model y with respect to a low dimension projection
of X, which motivated the development of Sufficient Dimension Reduction (SDR)
first proposed by Dennis Cook (Adragni and Cook 2009). The Sufficient Dimension
Reduction appears to be a more general framework than Eq. (12.1) and aims at
estimating the minimal subspace S0 such that

Y ?? XjPS0X:

In the past two decades, SDR-based algorithms have gained acceptance and from
both practitioners and theoreticians. Although the SDR framework brings us a
conceptually clear way to treat dimension reduction with a potentially non-linear
functional relationship, it is almost equivalent to the model (12.1) when the response
is univariate variable. That is, from the forward regression perspective, SDR is a
restatement of model (12.1). The second key idea of SIR is inverse modeling, which
has not been fully taken advantage of until recently.

The inverse modeling view of SDR was first explicitly stated in Cook (2007),
where he proposed the Principal Fitted Components (PFC). More precisely, he first
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proposed the following multivariate inverse regression model:

XY D 
C ��Y C �"; (12.4)

where 
 2 R
p, � 2 R

p�d, d < p, �� D Id , � � 0 and d is assumed known.
Moreover, �Y , the vector value function of Y, is assumed to have a positive definite
covariance matrix. Let S be the column space of � , it is easy to see that Y ?? XjPSX
from the model (12.4). It is clear that the advantage from the inverse modeling
is that instead of assuming obscure conditions on the link function f , we can put
some more interpretable conditions on the “central curve” �Y . With the explicit
model (12.4), Cook (2007) proposed the MLE approach to estimate space S, which
is not achievable from the forward modeling view without making a parametric
assumption on the link function f .

12.2.2 Revisit SDR from an Inverse Modeling Perspective

Due to the rapid technological advances in recent years, it is becoming a common
problem for in regression analyses that the sample size is much smaller than the
dimension of the data. Although much progress has been made on linear regression
in high dimensions, our understanding of behaviors of SIR and SDR in high
dimensions is still limited. For instance, it is unclear when the SIR procedure
breaks down and if there is any efficient variant of SIR for high dimensional data.
Understanding limitations of these SDR/SIR algorithms in high dimension could be
the first step towards finding the efficient high dimensional variants.

A few words on the principal component analysis (PCA) are helpful for us to
explain what we are pursuing. Following the celebrated work of Johnstone and Lu
(2004), where they proved that PCA works if and only if � D lim p

n D 0, we
expect that a similar structural assumption in high dimensional data is necessary for
SDR procedures. By introducing the spiked model with some sparsity constraints
on the first several eigenvectors, various sparse PCA algorithms have been proposed
(Zou et al. 2006; Johnstone and Lu 2004). Moreover, significant achievements have
been made with the sparse PCA procedure. Several research groups (Birnbaum
et al. 2013; Cai et al. 2013; Vu and Lei 2012) have established the minimax rate
of the sparse PCA problem. Recently, by assuming the hardness of the implied
clique problem, Berthet and Rigollet (2013) showed that there is a trade-off between
statistical and computational efficiency, which raises the computational complexity
issue in the statistical world.

The successes of the PCA and its variants in high dimensional data analyses
raise two natural questions for SIR and SDR algorithms: Can we get similar
understandings of the SDR algorithms? Is the computational cost an issue for
SDR in high dimensional settings? These questions seem formidable at the first
glance due to the unknown nonlinear link function f . In fact, the minimax rate of
the linear regression in high dimensions has only been derived recently (Raskutti
et al. 2011). The unknown nonlinear function in index models further increases the
difficulty for obtaining the minimax rate for SDR algorithms. A major difficulty
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is that we do not have explicit and interpretable conditions on the link function f
such that var.EŒXj f .X; �/�/ is non-degenerate. To prove that the SIR estimate of S
is consistent, Hsing and Carroll (1992) proposed a rather intricate condition on the
central curves m.Y/ D EŒXj Y�, as follows:

Definition 1 (Condition A) For B > 0 and n � 1, let …n.B/ be the collection of
all the n-point partitions �B 	 y1 	 � � � 	 yn 	 B of Œ�B;B�. First, assume that the
central curve m.y/ satisfies the following smooth condition

lim
n!1 sup

y2…n.B/
n�1=.2C�/

nX

iD2
km. yi/�m. yi�1/k2 D 0;8B > 0: (12.5)

Second, assume that for B0 > 0, there exists a non-decreasing function em.y/ on
.B0;1/, such that

em2C�. y/P.j Yj > y/! 0 as y!1 (12.6)

km. y/�m. y0/k2 	 jem. y/�em. y0/j for y; y0 2 .�1;�B0/[ .B0;1/ (12.7)

Condition A has now been well accepted in the SDR community (Li et al. 2007;
Zhu et al. 2006). However, it is unclear how to specify the proper class of function
f so that the determination of the minimax rate of estimating the central space is
possible.

Surprisingly, this difficulty can be overcome from the inverse modeling perspec-
tive and Condition A can be replaced by a weaker and more intuitive condition.
Recall that in our intuitive explanation about why SIR works (see the discussions
around (12.3)), noises orthogonal to the central space are averaged out and the signal
along the central space is preserved. The inverse modeling, in a sense, is one more
step further than the decomposition (12.3):

X D PSXC PS?X D EŒXj Y�C .PSX � EŒXj Y�/C PS?X

WD m. Y/C Z. Y/CW. Y/
(12.8)

where m.Y/ is the central curve, Z.Y/ is the noise lies in the central space, and
W.Y/ is the noise that lies in the space orthogonal to the central space. Recall the
SIR estimator of var.EŒXj Y�/ in (12.2). If Z.Y/ and W.Y/ are nearly independent
of Y, then one has var. Nwh/ D 1

cvar.W/ and var.Nzh/ D 1
cvar.Z/. By Cauchy’s

inequality, the cross terms can be controlled by the principal terms, so we may focus
on the other principal term, 1

H

P
h Nmh Nm

h. In other words, the SIR estimator (12.2)
of var.EŒXj Y�/ is consistent if and only if

1

H

X

h

Nmh Nm
h ! var.m. Y// (12.9)

1

c
var.W/! 0 and

1

c
var.Z/! 0: (12.10)
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Formula (12.9) is guaranteed by the so-called sliced stable condition introduced in
Lin et al. (2018):

Definition 2 (Sliced Stable Condition) For 0 < a1 < 1 < a2, let AH denote all
partitions f�1 D a1 	 a2 	 � � � 	 aHC1 D C1g of R, such that

a1

H
	 P.ah 	 Y 	 ahC1/ 	 a2

H
:

A pair . f ; "/ of a k-variate function f and a random variable " is sliced stable if there
exist positive constants a1 < 1 < a2 and M > 0 such that for any H 2 N; H > M,
and all partitions in AH, there exist two constants 0 	 � < 1 and C > 0 that only
depend on a1; a2 and M such that for any vector 	 , one has

HX

hD1
�varŒm. Y/jah < Y 	 ahC1�� 	 CH��varŒm. Y/��: (12.11)

where Y D f .X; "/;X 2 N.0; Ik/ and m.Y/ D EŒXj Y�.
The sliced stability is almost a necessary condition for (12.9) to hold and can be
derived from Condition A (Neykov et al. 2016). Note that the second part of (12.10)
holds almost automatically since var.Z.Y// is bounded. The interesting part is the
first term in (12.10). Remember that we have assumed that X is standard Gaussian,
hence the W is Gaussian and 1

cvar.W/ D O. pc /. Note that if lim p
n D 0, then one may

choose H D log n
p such that lim p

c D 0 (Recall that we have n D Hc). Intuitively,
we get the following result (see Lin et al. 2018 for details):

Theorem 1 The ratio � D lim p
n plays the phase transition parameter of the SIR

procedure. i.e., the SIR estimate (12.2) of var.EŒXj Y�/ is consistent if and only if
� D 0.
Inspired by the developments of sparse PCA following the work of Johnstone and Lu
(2004), Theorem 1 sheds light on the optimality problem of estimating the central
space with sparsity constraints. One of our recent results established the optimal
sample size for the support recovering problem of the single index model, which
provides us a positive evidence regarding the minimax rate problem (see Neykov
et al. 2016 and Sect. 12.4 below for details). From the inverse perspective, it would
be easy to see that � D lim p

n is the phase transition parameter of the SAVE and
PHD procedure. We also speculate that it could be the phase transition parameter of
PFC. These problems will be addressed in our future research.

Though it seems quite obvious that the ratio � should have played the role of
the phase transition parameter for SIR and other SDR algorithms, such a detailed
understanding is not achievable from the forward regression perspective. Neverthe-
less, after determining the phase transition parameter, determining the optimal rate
of estimating central subspace in high dimension with sparsity constraints is no
longer formidable.
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12.3 Variable Selection

12.3.1 Beyond Sufficient Dimension Reduction: The Necessity
of Variable Selection

The aforementioned SIR and related methods were developed for dimension
reduction via the identification of the SDR space of X. However, the estimation
of SDR directions does not automatically lead to variable selection. As pointed
out by Theorem 1, in high-dimensional scenarios with limn!1 p=n ! 0, the SIR
estimator of var .E ŒX j Y�/ is inconsistent. Therefore, a direct application of SIR
on high-dimensional data can result in a very poor estimation accuracy of SDR
directions. To overcome the curse of dimensionality, various methods have been
developed to simultaneously perform dimension reduction and variable selection
for model in (12.1). For example, Li et al. (2005) designed a backward subset
selection method, and Li (2007) developed the sparse SIR (SSIR) algorithm to
obtain shrinkage estimates of the SDR directions with sparsity under the L1 norm.

Motivated by the connection between SIR and multiple linear regression (MLR),
Zhong et al. (2012) proposed a forward stepwise variable selection procedure
called correlation pursuit (COP) for index models. The aforementioned methods
including the original SIR method consider only the information from the first
conditional moment, E .X j Y/, and will miss important variables with interactions
or other second-order effects. In order to overcome this difficulty, Jiang et al.
(2014) proposed the SIRI method that also utilizes the second conditional moment
var .X j Y/ for selecting variables with higher-order effects. In this section, we
review the variable selection methods inspired by SDR algorithms. We first review
SIR as transformation-projection pursuit problem, and then review the COP and
SIRI methods inspired by this perspective.

12.3.2 SIR as a Transformation-Projection Pursuit Problem

Without loss of generality, we assume that X is standardized so that E .X/ D 0 and
var .X/ D Ip. In multiple linear regression (MLR), the R-squared can be expressed
as

R2 D max
�2Rp


Corr

�
Y; �TX

	�2
;

while in SIR, we can define the profile correlation between Y and �TX as

P .�/ D max
T

�
Corr.T . Y/ ; �TX/

	
; (12.12)
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where the maximization is taken over any transformation T .�/. Using P .�/ as the
projection function, we may look for the first profile direction �1 that maximizes
P .�/. Then we can find the second profile direction �2, which maximizes (12.12)
and is orthogonal to �1. This process can be continued until all profile directions are
found. The following theorem connects var .E .X j Y//, and thus SIR, with MLR.

Theorem 2 Let �1; : : : ; �p be the principal directions between Y ad X, and let �k D
P .�k/ denote the profile correlation of �k. Then, �k is the kth largest eigenvalue of
var .E .X j Y//, for k D 1; : : : ; p.

Given independent observations f.yi; xi/gniD1, SIR first divides the range of the
f yigniD1 into H disjoint intervals, denoted as S1; : : : ; SH, and computes for h D
1; : : : ; n, xh D n�1h

P
yi2Sh xi, where nh is the number of yi’s in Sh. Then SIR

estimates var .E .X j Y// by

OM D n�1
HX

hD1
nh .xh � Nx/ .xh � Nx/T (12.13)

and var .X/ by the sample covariance matrix O†. Finally, SIR uses the first K

eigenvectors of O†�1 OM, denoted as O�1; : : : ; O�K to estimate �1; : : : ; �K . The first K

eigenvalues of O†�1 OM, denoted as O�1; : : : ; O�K , are used to estimate the first K profile
correlations.

12.3.3 COP: Correlation Pursuit

SIR needs to estimate the eigenvalues and eigenvectors of p�p covariance matrices
† and M. In high-dimensional scenarios, there are usually a large number of
irrelevant variables and the sample size n is relatively small, namely p� n. Under
this setting, O† and OM are usually very unstable, which leads to very inaccurate
estimates of principal directions O�1, : : : , O�K and profile correlations O�1; : : : ; O�K .

Zhong et al. (2012) proposed the correlation pursuit (COP), a stepwise procedure
for simultaneous dimension reduction and variable selection under the SDR model.
Instead of including all covariates, COP starts with a small set of randomly selected
predictors and iterates between an addition step, which selects and adds a predictor
to the collection, and a deletion step, which selects and deletes a predictor from the
collection. The procedure terminates when no new addition or deletion occurs. The
addition and deletion steps are briefly described as follows.

Addition Step Let C denote the set of the indices of the selected predictors.
Applying SIR to the data involving only the predictors in XC , we obtain the
estimated squared profile correlations O�C1 ; O�C2 ; : : : ; O�CK . Superscript C indicates that
the estimated squared profile correlations depend on the current subset of selected
predictors. Let Xt be an arbitrary predictor outside C and C Ct D C [ftg. Applying
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SIR to the data involving the predictors in C C t, we obtain the estimated squared
profile correlations O�CCt

1 ; O�CCt
2 ; : : : ; O�CCt

K . Because C 
 C C t, it is easy to see
that O�C1 	 O�CCt

1 . The difference O�CCt
1 � O�C1 reflects the amount of improvement

in the first profile correlation due to the incorporation of Xt. COP standardizes this
difference and uses the resulting test statistic

COPCCt
i D

n

O�CCt

i � O�Ci
�

1 � O�CCt
i

;

to assess the significance of adding Xt to C in improving the ith profile correlation,
for 2 	 i 	 K. The overall contribution of adding Xt to the improvement in all the
K profile correlations can be assessed by combining the statistics COPCCt

i into one
single test statistic,

COPCCt
1WK D

KX

iD1
COPCCt

i :

COP further defines that

COP
C

1WK D max
t2C c

�
COPCCt

1WK
	
:

Let XNt be a predictor that attains COP
C

1WK , i.e. COPCCNt
1WK D COP

C

1WK , and let ce be

a prespecified threshold. Then COP adds Nt into C if COP
C

1WK > ce, otherwise no
variable will be added.

Deletion Step Let Xt be an arbitrary predictor in C and define C � t D C n ftg.
Let O�C�t1 ; : : : ; O�C�tK be the estimated squared profile correlations based on the data
involving the predictors in C � t only. The effect of deleting Xt from C on the ith
squared profile correlation can be measured by

COPC�t
i D

n

O�Ci � O�C�ti

�

1 � O�Ci
; (12.14)

for 1 	 i 	 K. The overall effect of deleting Xt is measured by

COPC�t
1WK D

KX

iD1
COPC�t

i ; (12.15)

and the least effect from deleting one predictor from C is then defined to be

COPC
1WK D min

t2A COPC�t
1WK : (12.16)
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Let Xt be a predictor that achieves COPC
1WK , and let cd be a pre-specified threshold

for deletion. If COPC
1WK < cd, we delete Xt from C .

Algorithm 1: Summary of the COP algorithm
1. Initialization: Set the number of principal directions K and randomly select KC1 variables

as the initial collection of selected variables C .
2. Addition/deletion: Iterate until no more addition or deletion of predictors can be per-

formed:

a. Addition:

i. Find Nt such that COPCCNt
1WK D COP

C
1WK and

ii. If COP
C
1WK > ce, add Nt to C

b. Deletion:

i. Find t such that COP
C�t
1WK D COPC

1WK and
ii. If COPC

1WK < cd , delete t from C

The following theorem in Zhong et al. (2012) guarantees that under certain
regularity conditions, by appropriately choosing thresholds ce and cd, the COP
procedure is consistent in variable selection. That is, it will keep adding predictors
until all the stepwise detectable predictors have been included, and keep removing
predictors until all the redundant variables have been excluded.

Theorem 3 Let C be the set of currently selected predictors and let A be the set
of true predictors. Let # be a positive constant determined by technical conditions
in Zhong et al. (2012) and C be any positive constant. Then we have

Pr

�

min
C WC c\A¤;

max
t2C c\A

�
COPCCt

1WK
	 � #n1��0

�

! 1; (12.17)

and

Pr

�

max
C WC c\A¤;

max
t2C c

�
COPCCt

1WK
	
< Cn%

�

! 1; (12.18)

for any constants �0 > 0, %0 > 0, % > 0 such that 2%0 C 2�0 < 1 and % > 1
2
C %0.

Because maxt2C c

�
COPCCt

1WK
	 � maxt2C c\A

�
COPCCt

1WK
	
, from (12.17) we have

Pr

�

min
C WC c\A¤;



COP

C

1WK
�
� #n1��0

�

! 1: (12.19)
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Consider one set of selected predictors QC � T , then

COPC
1WK 	 min

t2 QC�T



COP QC�t1WK

�
	 max

C WC c\AD;max
t2C c

 
KX

kD1
COPCCt

k

!

: (12.20)

Therefore from (12.18) we have

Pr
n
COP

QC
1WK < Cn%

o
! 1: (12.21)

One possible choice of the thresholds is �2e D #n1��0 and �2d D #n1��0=2.
From (12.19), asymptotically, the COP algorithm will not stop selecting variables
until all the true predictors have been included. Moreover, once all the true
predictors have been included, according to (12.21), all the redundant variables will
be removed from the selected variables.

12.3.4 From COP to SIRI

The original SIR method and COP only consider the information from the first
conditional moment, E .X j Y/, and may miss important predictors linked to the
response through quadratic functions or interactions. Recently, Jiang et al. (2014)
proposed a stepwise variable selection method for general index models based on
likelihood ratio test based procedure, named SIRI. SIRI starts with the inverse
conditional Gaussian model with equal covariance matrices, whose likelihood ratio
test statistic is asymptotically identical to COP, and then extends the first model to
allow conditional covariance matrices vary with Y, which leads to a test statistic
that can detect interactions and other second-order terms from information in
var .X j Y/.

Let f.xi; yi/gniD1 denote n independent observations. SIRI first divides the range
of f yigniD1 into H disjoint slices, denoted as S1; : : : ; SH. Let A denote the set of
truly relevant predictors. The first model SIRI utilizes, as shown below, is the
one employed in Szretter and Yohai (2009) to show that the maximum likelihood
estimate of the subspace VK in (12.22) coincides with the subspace spanned by SDR
directions estimated from the SIR algorithm:

XA j Y 2 Sh � N .�h;†/ ;

XA c j XA ;Y 2 Sh � N
�
aC BTXA ;†0

	
;

h D 1; : : : ;H; (12.22)

where
h 2 
CV
K belongs to a K-dimensional affine space, VK is a K-dimensional

space (K < p) and 
 2 R
p. It was assumed in (12.22) that the conditional

distribution of relevant predictors follows the multivariate normal model and has
a common covariance matrix in different slices.
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The likelihood ratio test procedure based on (12.22) is as follows. Given the
current set of selected predictors indexed by C and another predictor indexed by
j 62 C , SIRI tests the following hypotheses:

H0 W A D C v:s: H1 W A D C [ f jg : (12.23)

Let LjjC denote the likelihood-ratio test statistic. SIRI uses ODjjC D 2
n log

�
LjjC

	
as

the test statistic for the hypothesis above. It was shown in Jiang et al. (2014) that

ODjjC D
KX

kD1
log

 

1C
O�dC1k � O�dk
1 � O�dC1k

!

; (12.24)

where O�dk and O�dC1k are estimates of the kth profile-R2 based on xC and xC[f jg
respectively. Under the null hypothesis,

O�dC1
k �O�dk
1�O�dC1

k

! 0 as n!1, so

n ODjjC D n
KX

kD1

O�dC1k � O�dk
1 � O�dC1k

C op .1/ ; (12.25)

and this expression coincides with COP statistics,

COPdC1
1WK D

KX

kD1
COPdC1

k ; where COPdC1
k D

n

 O�dC1k � O�dk

�

1� O�dC1k

: (12.26)

The test statistic in (12.24) based on likelihood in (12.22) captures differences
in the mean vectors in different slices (i.e., conditional on different y’s). However,
it is possible that for a subset A1 � A that means E

�
XA1 j XA nA1

;Y 2 Sh
	

are
the same for h D 1; : : : ;H. In such cases neither SIR nor COP can identify A1

as part of A . The second model of SIRI was designed to address this problem. It
utilizes the second conditional moment var .X j Y/ to select variables with different
(conditional) variances across slices. In particular, SIRI augments model (12.22) to
a more general form,

XA j Y 2 Sh � N .�h;†h/ ;

XA c j XA ;Y 2 Sh � N
�
aC BTXA ;†0

	
;

h D 1; : : : ;H; (12.27)

which differs from model (12.22) in its allowing for slice-dependent covariance
matrices for relevant predictors. Testing the same hypothesis as in (12.23), SIRI’s
log-likelihood ratio test statistic under the augmented model takes a simpler form
than that based on (12.22):

OD�jjC D log O�2jjC �
HX

hD1

nh
n

log
h
O�.h/jjC

i2
; (12.28)
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where
h
O�.h/jjC

i2
is the estimated residual variance by regressing Xj on XC in slice

Sh, and O�2jjC is the estimated residual variance by regressing Xj on XC using all
observations.

SIRI starts with C D ; and uses a similar addition/deletion procedure as COP for
variable selection. In ultra-high dimensional scenario, SIRI uses OD�jjC as a measure
to carry out the sure independence screening to reduce the dimensionality from
ultra-high to moderately high. In particular, SIRI ranks predictors according ton OD�jjC ; 1 	 j 	 p

o
, then SIRI’s sure independence screening procedure, named as

SIS*, reduces the number of predictors from p to o .n/.

Algorithm 2: Summary of the SIRI algorithm

1. Initialization: Let C D ;; rank predictors according to
n OD�

jj;; 1 � j � p
o

and select a

subset of predictors, denoted as S . (this step is called SIS*). The proper size of the S
depends on a few constants in technical conditions of Jiang et al. (2014).

2. Detecting variables with mean effects: Select predictors from set S nC by using the
addition and deletion steps based on ODjjC in (12.24) and add the selected predictors into
C .

a. Addition: Find ja such that ODjajC D maxj2C c ODjjC . Let C D C C f jag if ODjajC > va.
b. Deletion: Find jd such that ODjdjCnf jdg

D minj2C ODjjCnf jg. Let C D C � f jdg if
ODjdjCnf jdg

< vd .

3. Detecting variables with second-order effects: Select predictors from set S nC by using
the addition and deletion steps based on OD�

jjC in (12.28) and add the selected predictors into
C .

a. Addition: Find ja such that OD�

jajC D maxj2C c OD�

jjC . Let C D C C f jag if OD�

jajC > va.

b. Deletion: Find jd such that OD�

jdjCnf jdg

D minj2C OD�

jjCnf jg. Let C D C � f jdg if

OD�

jdjCnf jdg

< vd .

4. Iterative sure independence screening: Conditioning on the current selection C , rank the

remaining predictors based
n OD�

jjC ; j 62 C
o
, update set S using SIS�, and iterate steps 2–4

until no more predictors are selected.

Theorems 1 and 2 in Jiang et al. (2014) establish the variable selection consis-
tency of SIRI under certain technical conditions. It showed that by appropriately
choosing thresholds, the SIRI procedure will keep adding predictors until all the
stepwise detectable predictors have been included, and keep removing predictors
until all the redundant variables have been excluded. Theorem 3 of Jiang et al.
(2014) established the independence screening consistency of SIS* under certain
technical conditions.
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12.3.5 Simulation Study for Variable Selection and SDR
Estimation

We simulated a few testing examples to compare the performance of original SIR,
COP and SIRI methods for variable selection and SDR direction estimation. We
considered four simulation settings, indexed as Examples 1–4 and listed below:

Example 1 W Y D X1 C X2 C X3 C X4 C X5 C ��; p D 20;
Example 2 W Y D X1 C X2 C X3 C X4 C X5 C ��; p D 200;
Example 3 W Y D X1 C X1 � .X2 C X3/C ��; p D 200;
Example 4 W Y D X1X

2
2 C ��; p D 200;

where � D 0:2 and " is independent of X and follows N .0; 1/. In each example,
we simulated the predictors X from multivariate Gaussian with correlation 0:5ji�jj.
Examples 1 and 2 have the same functional relationship between Y and X but
different sample different dimensionality (i.e., p D 20 versus p D 200), and
have only one SDR X1 C � � � C X5. We used them to test the methods with
both low- and high-dimensional design matrix. Example 3 has two SDRs, X1 and
X2 C X3, and Example 4 also has two SDRs, X1 and X2. In Example 3, X1, X2
and X3 are true predictors but X2 and X3 have only second-order (no first-order)
effects. In Example 4, X1 and X2 are true predictors but X2 has only second-order
(variance/covariance) but no first-order (mean) effects in different slices.

For each simulation setting, we generated one dataset with n D 250. For all the
three methods, we equally partitioned f yigniD1 into H D 5 slices. We let COP and
SIRI automatically estimate the number of SDRs by cross-validation, but input the
true number of SDR for SIR on the four examples. We use COP and SIRI to conduct
variable selection, and then run original SIR on the selected variables to estimate the
SDR directions. We respectively name them as COP-SIR and SIRI-SIR method.

We first compare the variable selection performance of COP and SIRI on the four
examples. As shown in Table 12.1, we observe that COP worked well to select the
true predictors for Examples 1 and 2. However, for Examples 3 and 4, as discussed
previously, COP was unable to select the predictors without first-order effect. SIRI
correctly selected the true predictors for the four examples.

Table 12.1 Variable selection results for COP and SIRI on Examples 1–4

Example Truth COP SIRI

1 X1;X2;X3;X4;X5 X1;X2;X3;X4;X5 X1;X2;X3;X4;X5
2 X1;X2;X3;X4;X5 X1;X2;X3;X4;X5 X1;X2;X3;X4;X5
3 X1;X2;X3 X1 X1;X2;X3
4 X1;X2 X1 X1;X2
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We then compared the SDR estimation of original SIR, COP-SIR and SIRI-SIR
on Examples 1 and 2. Examples 1 and 2 have only one SDR direction, so it is
feasible to plot unitary SDR direction estimations. The estimated SDR directions
of Examples 1 and 2 by the three methods are shown in Figs. 12.1 and 12.2. It is
observed that, for Example 1, since the data is in low to moderate dimension relative
to the sample size, the SDR directions estimated by SIR, COP-SIR and SIRI-SIR
are all very close to the truth. SIR-estimated SDR direction has small loadings on
redundant predictors X6; : : : ;X20, and COP-SIR and SIRI-SIR have exactly zero
loadings on them because of the employment of the variable selection procedures.
However, as shown in Fig. 12.2 for Example 2, the estimated SDR direction from
the original SIR method is almost random due to the high dimension of the data. On
the other hand, COP and SIRI procedures, which first selected the true predictors,
and then conducted SIR to estimate the SDR direction only on those selected true
predictors, obtained almost perfect answers.

In summary, we demonstrated in these simulations that: (a) for datasets with
a large number of predictors, it is essential to first conduct a variable selection
procedure, such as COP and SIRI, before estimating the SDR direction since
otherwise the curse of dimension can completely overwhelm the SDR direction
estimation; and (b) both COP and SIRI can select true predictors with first-order
effects, while SIRI can also detect predictors with only second-order effects.
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Fig. 12.1 SDR direction estimations for Example 1
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Fig. 12.2 SDR direction estimations for Example 2

12.4 Nonparametric Dependence Screening

When the dimension p is much larger than the sample size n, screening out irrelevant
predictors is often crucial for data analysis. Fan and Lv (2008) performed the sure
independence screening (SIS) on high-dimensional linear models and proved that,
under mild conditions, SIS keeps important features with high probability2 and
reduces the dimension p significantly so that more delicate analyses are possible.
Since SIS requires the model to be linear and the error distribution to be normal,
which is restrictive for some applications, researchers start to search for other
screening statistics for general distributions and nonlinear models. Some early
methods (Fan et al. 2009, 2010) were designed for parametric models, which can
be difficult to justify in practice. Nonparametric screening statistics are therefore of
particular interest in recent years (Zhu et al. 2011; Li et al. 2012; Cui et al. 2014;
Fan et al. 2011), some of which will be reviewed in this section.

One of the key ingredients in SIR might stem from a seemingly trivial observa-
tion from the total variance decomposition var.X/ D var.EŒXj Y�/ C EŒvar.Xj Y/�:
In model (12.1), it is clear that, if X ?? Y, then all the ˇ0i s should be 0, i.e.,
var.EŒXj Y�/ D 0. The coverage condition then guarantees that X 6?? Y implies

2In the below, we will call this property the SIS property.
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var.EŒXj Y�/ 6D 0. This motivates us to propose the estimate

dVCE.X.i/j Y/ D 1

H

X

h

x2h: (12.29)

of var.EŒX.i/j Y�/ as a screening statistic for model (12.1). The numerical per-
formance of this statistic was reported in Lin et al. (2018), in which a two-step
algorithm DT-SIR was proposed. A somewhat surprising result is that the statistic
dVCE is optimal in terms of sample sizes for single index models (Neykov et al.

2016). More precisely, let us focus on the following class of single index models

Y D f .ˇX; "/; X � N.0; Ip/; " � N.0; 1/ (12.30)

where we further assume that ˇi 2 f˙ 1p
s
; 0g. Based on the observation that

var.EŒX.i/j Y�/ / 1

s
if ˇi ¤ 0;

Neykov et al. (2016) showed that the statistic dVCE.X.i/j Y/ achieves the optimal
rate:

Theorem 4 Let � D n
s log.p/ , there exist two positive constants C > c, such that

i) if � > C, the thresholding algorithm based on the statistics dVCE recovers the
support of ˇ with probability 1 as n!1,

ii) if � < c, any algorithm will fail to recover the support of ˇ with probability at
least 1

2
as n!1.

The following simulation study as shown in Fig. 12.3 provides empirical supports
to the theorem.3 The data were generated from the following models (12.31) with
ˇi 2 f˙ 1p

s
g for 1 	 i 	 s and ˇi D 0 for sC 1 	 i 	 p. We chose the slice number

H D 10. In general, it should not be expected that the phase transition described in
Theorem 4 occurs at the same place for these four models.

Y D ˇXC sinˇXC N.0; 1/;

Y D 2 atan.ˇX/C N.0; 1/;

Y D .ˇX/3 C N.0; 1/;

Y D sinh.ˇX/C N.0; 1/:

(12.31)

Figure 12.3 presents plots for different p values in the regime s D pp. The X
axis represents the rescaled sample size n

s log.p�s/ and the Y axis shows the estimated

3The examples and figures are borrowed from Neykov et al. (2016).
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Fig. 12.3 The efficiency curve

probability of successful signed support recovery. We refer to these curves as
efficiency curves (EC). It is clear that when � > 25 the dVCE separated signals
and noises with probability approaching 1 as n grows larger.

Since var.EŒX.k/j y�/ D 0 does not imply that X.k/ ?? y beyond the single
index models (12.30), the statistics dVCE is not a satisfactory nonparametric
screening statistics for higher-order effects. However, the idea of constructing a
screening statistics (dependence test) based on the sliced samples is worth further
investigation. We refer to quantities defined based on the information of the order
statistics of yi as sliced statistics. It is clear that the screening statistic used in
SIRI is a sliced statistic. We will briefly review two other existing sliced statistics
and propose a new family of sliced statistics. We believe that these examples have
demonstrated the potential of the sliced inverse modeling idea.

To reiterate, we let Y be the response, let X be a p-dimension vector with X.k/
being its k-th coordinate, and let X be a univariate random variable. To the best of
our knowledge, the first statistics sharing the same feature as dVCE is proposed in
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Zhu et al. (2011), where they observed that the estimate

b!k D 1

n

nX

jD1

 
1

n

nX

iD1
xi.k/1yi<yj

!2

(12.32)

of !k D EŒ�k.Y/2� could be a candidate of screening statistics where �k is its k-th
component of the vector �.t/ D E


XEŒ1y<tjX�

� D cov.X; 1.y < t//. Under mild
conditions and the sub-exponential tail assumption on X, they proved that b!k has
the SIS properties. It is clear that b!k takes advantage of the order information of yi
which is similar to the dVCE, thus it belongs to the sliced statistics. It is believed that
x.k/ ?? y if and only if !k D 0.

If Y is a categorical random variable such that P.Y D yr/ D pr, r D 1; : : : ; k, we
denote F.xj Y/ D P.X 	 xj Y/ , Fr.x/ D P.X 	 xj Y D yr/ and F.x/ D P.X 	 x/.
Cui et al. (2014) introduced the following quantity

MV.Xj Y/ WD EXŒvarY.F.Xj Y//� D
X

i

pi

Z

.Fr.x/ � F.x//2dF.x/: (12.33)

and observed that X ?? Y if and only if MV.Xj Y/ D 0: Then they introduced the
following estimate of MV.xj y/

dMV.xj y/ D 1

n

kX

rD1

nX

jD1
OprŒbFr.xj/�bF.xj/� (12.34)

where Opr D 1
n

Pn
jD1 1yjDyr ,bF.x/ D 1

n

Pn
jD1 1xj�x andbFr.x/ D 1

n

Pn
jD1 1xj�x;yjDyr=Opr.

Under mild conditions, they proved that the statistics dMV possesses the SIS
property.
b!k in (12.32) works for both discrete and continuous random variables, however,

it requires the sub-exponential tail condition on X. On the other hand, the statistic
dMV.Xj Y/ does not require the tail condition on X, but, theoretically, it can
only handle the discrete random variables. Besides these deficiencies, one of
the drawbacks of these statistics is that they are not computationally efficient.
Thus a computationally efficient statistic can handle both continuous and discrete
random variables would be of great interest for screening. Recall that dVCE is
computationally efficient and can handle both continuous and discrete random
variables. However, it requires the sub-Gaussian assumption on the X and is not a
sufficient dependence screening statistic. This motivates us to propose the following
family of statistics.

Note that X ?? Y if and only if var.EŒexp.itX/j Y�/ D 0 for any t 2 R. For
any positive weight function �.t/, we define the Variance of Weighted Conditional
Characteristic (VWCC) as:

VWCC� D
Z

R

var.EŒexpitX j Y�/�.t/dt: (12.35)
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It is easy to see that VWCC� D 0 if and only if X ?? Y. Thus, an estimate of VWCC�
can be a candidate for nonparametric independence screening. The integral defined
in (12.35) is conceptually clear but is hard to estimate. We resort to a numerical
alternative. First, to avoid tedious analysis arguments, we choose a function �.t/ that
is positive on a compact interval I and equals 0 outside I. Without loss of generality,
we may fix J D Œ�1; 1�. Second, we use the following numerical approximation to
the integral in (12.35):

VN.z/ D 1

N

X

j

var


EŒexpitjX

ˇ
ˇ
ˇY�
�
�.tj/ (12.36)

where tj D �1C 2j
N for j D 0; : : : ;N. We then let

bVH;c.z/ D 1

N

X

j

varH;c


EŒexpitjX

ˇ
ˇ
ˇ Y�

�
�.tj/: (12.37)

as an estimate of the approximation formula (12.36). It is well known that, under
mild conditions, the approximate error of the numerical approximation (12.36) is of
order O. 1N /. One of the main contributions in Lin et al. (2016) is to prove the SIS

properties of OVH;c.z/.

Remark 1 Different choice of �will give us different screening statistics. If we relax
the positivity requirement on �.t/, we obtain more computational efficient screening
statistics. For instance, by letting �.t/ D ıt0 , we have

VCCt0 D var
�
EŒexpit0X j Y�	 : (12.38)

By letting �.t/ D 1
t2
ı0 (as a generalized function), we see that VCE is a special case

of the VWCC.

To conclude this section, we summarize these screening statistics in Table 12.2.
The third column records the model assumptions for each screening statistic: Linear
model (LM), Single index model (SIM), and Nonparametric model (NP). The fourth
column records if the screening statistics is sufficient for dependence screening. The
fifth column records the tail assumptions and (**) stands for very weak assumption
on moments.

12.5 Conclusion

In the big data era, modeling nonlinear relationships is a notoriously difficult
problem. In this chapter, we summarized some recent developments inspired by the
seminal work of Li (1991), the Sliced Inverse Regression (SIR), including its high
dimensional properties, some variable selection algorithms and a general class of
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Table 12.2 Table of some screening statistics

Names Statistics Models Dependence Tails

SIS cov.Y;X/ LM N Gaussian

E� EY Œ
�
E

XE


1Y<y

ˇ
ˇX
��	2

� NP N Sub-Gaussian

SIRI log var.X/
var.Xj Y/ NP N Sub-Gaussian

VCE var.EŒX
ˇ
ˇ
ˇ Y�/ SIM N Sub-Gaussian

MV.x/ EX

h
varY



F.X

ˇ
ˇ
ˇ Y/

�i
NP Y **

VCCt0 var


EŒexpit0X

ˇ
ˇ
ˇ Y�

�
NP N **

VWCC�
R
R

var


EŒexpitX

ˇ
ˇ
ˇ Y�

�
�.t/dt NP Y **

nonparametric screening statistics. Most of these developments benefited from the
inverse modeling idea. It is interesting to see that although the Sufficient Dimension
Reduction, which inherits from and emphasizes on the dimension reduction aspects
of SIR, has gained lots of successes, the power of the inverse modeling idea has not
been fully recognized. From what we reviewed here, we believe that the inverse
modeling can bring us interesting methodologies in the big data era, as well as
synergies between Bayesian and frequentist thinking.
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Chapter 13
Sufficient Dimension Reduction
for Tensor Data

Yiwen Liu, Xin Xing, and Wenxuan Zhong

Abstract With the rapid development of science and technology, a large volume of
array data has been collected in areas such as genomics, finance, image processing,
and Internet search. How to extract useful information from massive data becomes
the key issue nowadays. In spite of the urgent need for statistical tools to deal with
such data, there are limited methods that can fully address the high-dimensional
problem. In this chapter, we review the general setting of sufficient dimension reduc-
tion framework and its generalization to tensor data. Tensor is a multi-way array, and
its usage is becoming more and more important with the advancement of social and
behavioral science, chemistry, and imaging technology. The vector-based statistical
methods can be applied to tensor data by vectorizing a tensor into a vector. However,
vectorized tensor usually has a large dimension which may largely exceed the num-
ber of samples. To preserve the tensor structure and reduce the dimensionality simul-
taneously, we revisit the tensor sufficient dimension reduction model and apply it to
colorimetric sensor arrays. Tensor sufficient dimension reduction method is simple
but powerful and exhibits a competent empirical performance in real data analysis.

Keywords Sufficient dimension reduction · Tensor analysis · Iterative
estimation · Colorimetric sensor arrays

13.1 Curse of Dimensionality

With the rapid development of science and technology, more and more massive data
sets are routinely generated. For the first time, we have enough data to exploit the
structural relationship of a large number of variables and to produce predictions
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and uncover patterns and anomalies. Regression analysis is probably the most
popular statistical tool for data exploration and is commonly used to explore the
relationship between a response Y and p predictors .X1; : : : ;Xp/. Various regression
models and estimation methods have been developed in the literature, ranging
from classic linear regression to nonparametric regression. In general, regression
can be considered as an inference about the conditional distribution of Y given
X, often with the mean response E.YjX/ of particular interest. When E.YjX/ is a
linear combination of X, the corresponding regression model is referred to as the
linear model. On the other hand, if there does not exist information to suggest a
particular relationship between Y and X, the nonparametric model can be employed.
In both linear models and nonparametric models, when the number of predictors is
extremely large relative to the sample size, the model may suffer from the curse
of dimensionality, which refers to various difficulties a large number of predictors
(or dimensions) can cause to function approximation, model fitting, information
extraction as well as computation. Therefore, it is necessary to reduce the number
of predictors or the dimensions to ensure the success of regression analysis. As a
matter of fact, dimension reduction is indeed achievable in many applications where
the response Y only depends on a subset of all the present predictors or their lower
dimensional projections. It is clearly critical in regression to identify these predictors
and their lower dimensional projections.

Dimension reduction in regression analysis has been comprehensively studied
under two general frameworks: variable selection and low dimensional projection.
Variable selection for linear regression models has been studied over decades, where
the original motivation is to find the best predictive subset of variables to improve
the prediction accuracy of a model. The early proposals on this direction include
forward selection, backward elimination and bidirectional elimination (Akaike
1987; Efroymson 1960; Miller 2002). Although the aforementioned methods are
very intuitive, their theoretical properties are difficult to study and establish, simply
because we have no unified likelihood function to discuss their statistical properties.
There are several studies for linear models in the early literature on stepwise
regression (Bendel and Afifi 1977; Wilkinson 1979). However, these proposals have
not been developed to their fruition. The first theoretical result along this direction
was established in Zhong et al. (2012), where the variable selection consistency
was established for both fixed p and growing p under the sufficient dimension
reduction regression model that will be introduced later. Compared to the subset
selection approach, the shrinkage based methods attract much attention for their
theoretical advantages. The basic idea of the shrinkage approach is to introduce
small estimation biases to have lower prediction error. Various methods have been
proposed along the shrinkage direction, nonnegative garrotte (Breiman 1995; Yuan
and Lin 2007), LASSO (Tibshirani 1996), SCAD (Fan and Li 2001; Fan et al. 2004),
elastic net (Zou and Hastie 2005; Zou and Zhang 2009), adaptive LASSO (Zhang
and Lu 2007; Zou 2006) etc. Their theoretical properties have been extensively
studied not only for fixed p but also for varying p that grows with n.

Another line of dimension reduction aims at finding low dimensional projec-
tions of the predictors meanwhile preserving full regression information. Popular
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approaches proposed along this line of thinking include principal component
regression, partial least square, projection pursuit (Friedman and Tukey 1974;
Huber 1985; Kruskal 1969), and sufficient dimension reduction, where different
approaches focus on the reduction of different sources of variations. In this chapter,
we will focus on the sufficient dimension reduction approach. The rest of the chapter
is organized as follows. In Sect. 13.2, we briefly summarize the sufficient dimension
reduction method. The generalization of the sufficient dimension reduction method
to tensor data (Zhong et al. 2015) is reviewed in Sect. 13.3, where a formal
presentation of the tensor sufficient dimension reduction framework is illustrated
in Sect. 13.3.1. A detailed discussion of the estimation and algorithm is provided in
Sect. 13.3.2. The performance of tensor sufficient dimension reduction is evaluated
in Sect. 13.4. Section 13.5 illustrates the advantages and limitations of the tensor
sufficient dimension reduction method using some examples. Some discussions will
conclude this chapter in Sect. 13.6.

13.2 Sufficient Dimension Reduction

Let Y 2 R be the response variable and X D .x1; : : : ; xp/> 2 R
p be the predictors

with E.X/ D 0 and cov.X/ D †X . Throughout this chapter, we considered the
sufficient dimension reduction model as introduced in Li (1991) and advocated in
Bura and Cook (2001), Chen and Li (1998), Cook et al. (2004), Zhong et al. (2012),
Zhu et al. (2006),

Y D f .ˇ>1 X; ˇ>2 X; : : : ; ˇ>K X; �/; (13.1)

where f .�/ is an unspecified link function on R
KC1, ˇ1; : : : ; ˇK are p-dimensional

vectors, and � is the random error independent of X. When model (13.1) holds, p-
dimensional variable X is projected onto a K-dimensional subspace S spanned by
ˇ1; : : : ; ˇK , which captures all the information in Y, i.e.

Y ˆXjPSX: (13.2)

where P.	/ is a projection operator in the standard inner product, S is the subspace of
predictor space, and ‘ ˆ ’ means “independent of”. Cook and Weisberg (2009) for-
mulated the framework of sufficient dimension reduction (SDR) as in model (13.2).
The SDR model assumes that Y and X are mutually independent condition on PSX,
which means that the high dimensional predictors can be projected onto a lower
dimensional subspace without loss of information.

It has been shown in Zeng and Zhu (2010) that (13.2) is equivalent to (13.1).
Thus ˇ1; : : : ; ˇK are referred to as the SDR directions and the space spanned by
these directions as a SDR subspace. The SDR implies that all the information X
contains about Y is contained in the K projections ˇ>1 X; : : : ; ˇ>K X. However, the
basis ˇ D .ˇ1; : : : ; ˇK/ of SDR space is not unique. Cook and Weisberg (2009) thus
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introduced the concept of central subspace, which is defined as the intersection of
all possible SDR subspaces and is an SDR subspace itself. Under certain conditions,
the central subspace is well defined and unique.

Many efforts have been made for estimating the basis of SDR space. Among
various methods, one particular family of methods exploits inverse regression. The
intuition of inverse regression is to exchange the role of Y and X so that each column
of X can be regressed against Y, through which the inverse regression bypasses
the high-dimensional problem introduced by large p, and becomes a one-dimension
to one-dimension regression problem. Based on the idea of inverse regression, Li
(1991) proposed sliced inverse regression (SIR), which became the forerunner of
this family of methods. As showed in Li (1991), the centered inverse regression
curve E.Xj Y/ � E.X/ is contained in a K-dimensional subspace determined by
ˇ1; : : : ; ˇK , assuming the linearity condition. Chen and Li (1998) also illustrated
that the solution ˇ1; : : : ; ˇK to this dimension reduction problem is equivalent to
solve the eigenvalue decomposition problem,

†XjYui D �i†Xui;

uTi †Xui D 1; i D 1; : : : ; p;
�1 � �2 � � � � � �p; (13.3)

where †XjY D covŒE.Xj Y/�. Intuitively, we may see that †�1X †XjY is degenerate
in directions orthogonal to ˇks for k D 1; : : : ;K. Therefore, ˇks could be the
eigenvectors associated with K largest eigenvalues of †�1X †XjY , and estimating the
eigenvectors of †�1X †XjY could lead us to find u1; : : : ; up, so-called SIR directions.

In the context of projection pursuit, the SIR directions uis also solve the
maximization problem (Chen and Li 1998, Theorem 3.1),

cov.�Ti X; �
T
j X/ D 0; for i ¤ j;

P2.�i/ D max
�;T

Corr2.T. Y/; �TX/; (13.4)

where T.Y/ represents all the transformations of Y and Corr.�; �/ calculates the
correlation coefficient between two vectors. Intuitively, �1 (or u1) derived in
problem (13.4) (or (13.3)) is a direction in R

p along which the transformed Y
and �T1X have the largest correlation coefficient. �2 (or u2), orthogonal to �1, is
a direction that produces the second largest correlation coefficient between T.Y/
and �T2X. Under the assumption of model (13.1) or (13.2), the procedure can be
continued until all K directions are found that are orthogonal to each other and have
nonzero P2.�/, resulting in �1; : : : ; �K that span the K-dimensional subspace S. �k’s
are referred to as principal directions.

The procedure above is described in a projection pursuit manner, which builds
a connection with SIR such that the SIR directions defined in Eq. (13.3) are the
solution for maximization problem (13.4), and the maximum values P2.�i/; i D
1; : : : ;K equal to the eigenvalues defined in Eq. (13.3). Thus the space spanned by
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principal directions can be identified by obtaining the eigenvectors of †�1X †XjY .
The proof was given in Chen and Li (1998) (Appendix A). Basically, observe that
the maximization problem (13.4) is a double maximization problem, Chen and Li
(1998) derived the following equation by switching the maximizing order,

P2.�/ D �0covŒE.Xj Y/��
�0†X�

� �0†XjY�
�0†X�

: (13.5)

Therefore, the principal directions �1; : : : ; �K are the solutions of the eigenvalue
decomposition of †�1X †XjY , with �1; : : : ; �K as the first K eigenvectors, and the
corresponding eigenvalues as the squared profile correlations, i.e. �i D P2.�i/ for
i D 1; : : : ;K.

Regarding the implementation of SIR, Li (1991) formed the weighted sample
covariance matrix estimation of †XjY with the idea of slicing. Basically, the range
of Y is divided into H slices. Observe .x>i ; yi/jniD1, the probability that yi falls into
slice Sh is ph for h D 1; : : : ;H. Within each slice, mean of xi; i D 1; : : : ; n is
calculated and denoted as Nxh; h D 1; : : : ;H. Thus †XjY is estimated by

O†XjY D
HX

hD1
Oph.Nxh � Nx/.Nxh � Nx/>; (13.6)

where Nxh D .nOph/�1Pn
iD1 xiI.yi 2 Sh/, and Nx is the sample mean. The covariance

matrix is estimated by sample covariance matrix

O†X D 1

n � 1
nX

iD1
.xi � Nx/.xi � Nx/>: (13.7)

The first K eigenvalues of O†�1X O†XjY are used to estimate the first K squared profile
correlations, and the K eigenvectors are used to estimate the first K principal
directions O�1; : : : ; O�K .

To determine the dimensionality K, statistical tests are also available. For
example, given that X is normally distributed, Li (1991) developed a test statistic

Oƒ D n
pX

jDKC1
O�j; (13.8)

which has an asymptotic �2-distribution with degree of freedom .p�K/.H�K�1/,
where O�KC1; O�KC2 : : : ; O�p are the smallest p � K eigenvalues of O†�1X O†XjY (see Li
1991, Theorem 5.1). Thus if the test statistic Oƒ is larger than �2˛Œ.p�K/.H�K�1/�
given a certain significance level ˛, there must exist .KC1/th component. The result
provides a simple but effective way to help determine the number of components in
the model.
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13.3 Tensor Sufficient Dimension Reduction

A tensor is a multidimensional array. More precisely, an mth-order tensor is an
element of the tensor product of m vector spaces, each of which has its own
coordinate system termed as mode. For example, a first-order tensor is a vector
with one mode, and a second-order tensor is a matrix with two modes (row and
column). Tensor data has been extensively used in social and behavioral sciences
studies. With the rapid development of science and technology in the past decades,
it is now becoming more and more popular in numerous other scientific disciplines,
including life science, econometrics, chemical engineering as well as imaging and
signal processing (Kroonenberg 2008; Smilde et al. 2005).

Existing methods for the aforementioned applications largely ignore the tensor
structures by simply vectorizing each tensor observation into a vector, and offering
solutions using the vector-based statistical methods. These solutions, however, are
far from satisfactory. First, the simple vectorization destroys the original design
information and leads to interpretation difficulties. Second, the simple vectorization
significantly aggregates the dimensionality of the parameter space. For example,
assume there are p � q parameters for a vectorized X, where X 2 R

p�q, the number
of parameters can be pC q if X D ˛ ı ˇ, where ˛ 2 R

p, ˇ 2 R
q, and ı denotes the

outer product of vectors. Thus the simple vectorization renders many vector-based
approaches infeasible if the sample size is smaller than p�q observations. Moreover,
even if we have a fairly large sample size, both the computational efficiency and the
estimation accuracy of the classical vector-based analysis will be compromised by
simple vectorization approach.

In this section, we review a significant different procedure named tensor suffi-
cient dimension reduction (TSDR) (Zhong et al. 2015), which generalizes the classic
SDR approach to tensor predictors. The model used by the TSDR assumes that the
response depends on a few linear combinations of some tensors through an unknown
link function. A sequential-iterative dimension reduction approach is proposed to
estimate the TSDR model. Consequently, the TSDR procedure can be automated
to not only estimate the dimension reduction subspace but also keep the tensor
structure. The advantages of this new model are its ability to reduce the number
of parameters by assuming tensor structure on the regression parameters, to recover
a subspace that includes all important regression information of the predictors, and
to increase the model flexibility by assuming an unknown dependency between the
response and a projection of the predictors onto the subspace.

13.3.1 Tensor Sufficient Dimension Reduction Model

We first review some basic notations for the simplicity of our description. In the
rest of the chapter, we assume X 2 R

p1�p2�			�pm to be an mth-order tensor and
vec.X/ to be the vectorized X. Let �j D ˇ

.1/
j ˝ ˇ.2/j ˝ � � � ˝ ˇ.m/j be the Kronecker
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product of vectors ˇ.1/j ; : : : ; ˇ
.m/
j where ˇ.i/j 2 R

pi . Then, given the tensor predictor
X 2 R

p1�:::;pm and the response Y 2 R, the TSDR model is of the form

Y D f .�>1 vec.X/; : : : ; �>D vec.X/; "/; (13.9)

where f .�/ is an unknown function, �j for j D 1; : : : ;D are regression indexes, and
" is a random error that is independent of vec.X/.

Clearly, TSDR model aims at finding f�1; : : : ; �Dg such that:

Y ? vec.X/j.�>1 vec.X/; : : : ; �>D vec.X//: (13.10)

Let S be the linear space spanned by f�1; : : : ; �Dg, i.e., for any � 2 S we have
� D PD

jD1 cj�j. S is referred to as the TSDR subspace. It is worth noting that not
all the elements in S can be written in the form of a Kronecker product of vectors.
For example, ˇ.1/1 ˝ ˇ.2/1 C ˇ.1/2 ˝ ˇ.2/2 2 S but cannot be expressed in a Kronecker

product of any vectors in S1 and S2, unless ˇ.1/1 / ˇ.1/2 or ˇ.2/1 / ˇ.2/2 .
We want to emphasize that model (13.9) is substantially different from

model (13.1), although they look similar in expression. The TSDR model can
naturally alleviate the curse of dimensionality without increasing the estimation
bias. For example, assuming d D 1, the index ˇ1 in model (13.1) with vec.X/ has
p1p2 parameters, while �1 in model (13.9) has only p1 C p2 parameters. It is also
important to know that model (13.9) is significantly different from the dimension
folding model (Li et al. 2010), which assumes

Y ? vec.X/jPS1 ˝ PS2 ˝ � � � ˝ PSmvec.X/; (13.11)

where Si is the di dimensional SDR space of R
pi and PSi for i D 1; : : : ;m are

projection operator from R
pi to Si in a standard inner product. Let S1 ˝ � � � ˝ Sm

be the space that spanned by fv1 ˝ � � � ˝ vm j 8vj 2 Sjg. Then S1 ˝ � � � ˝ Sm is
referred to as the dimension folding subspace in Li et al. (2010) and central tensor
subspace in Ding and Cook (2015). It is easy to see that S in model (13.9) is in
general much smaller than S1˝ � � �˝Sm, i.e., S � S1˝ � � �˝ Sm. For example, for
model Y D f .�>1 vec.X/; �>2 vec.X/; "/, where �1 D ˇ.1/1 ˝ˇ.2/1 and �2 D ˇ.1/2 ˝ˇ.2/2 ,
S is the space spanned by �1 and �2, while the central dimension folding subspace
is spanned by .ˇ.1/1 ˝ ˇ.2/1 ; ˇ.1/1 ˝ ˇ.2/2 ; ˇ.1/2 ˝ ˇ.2/1 ; ˇ.1/2 ˝ ˇ.2/2 /.

13.3.2 Estimate a Single Direction

A sequential-iterative algorithm can be used to estimate �j, 1 	 j 	 D while leaving
f .�/ unspecified. Let R be the set of all rank one tensors in R

p1 ˝ � � � ˝ R
pm (X 2

Rp1�p2�			�pn is rank one if it can be written as the outer product of n vectors). Let
P2.�/ D maxT Corr2.T.Y/; �>vec.X//, and it is also equivalent to

P2.�/ D �>covŒE.vec.X/j Y/��
�>cov.vec.X//�

: (13.12)
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When vec.X/ is a vector, we may naturally attempt the optimization of (13.12) using
the matrix spectral decomposition in a projection pursuit manner. However, unlike
its matrix sibling, spectral decomposition, such as the PARAFAC (Harshman and
Lundy 1984) or Tucker model (Tucker 1951, 1966), cannot provide the maximizer
of P2.�/ for higher order tensor. Beyond this, the definition and algorithm of
the tensor spectral decomposition are far from mature and have many intrinsic
problems. For example, the orthogonality on each mode is not assumed and the
decomposition on the same mode is not unique using different algorithms (Kolda
and Bader 2009; Smilde et al. 2005). Here, we are aiming to estimate a series of �is
which maximize (13.12). An algorithm is introduced in Zhong et al. (2015) to find
�is iteratively.

We assume m D 2 and briefly summarize the algorithm in this section. Recall
that vec.X/ is the vectorization of X, where X 2 R

p2�p1 , and for any � 2 R, we have

�>vec.X/ D .ˇ
.2/
1

>
Xˇ.1/1 /, where ˇ. j/1 2 R

pj for j D 1 and 2. Maximizing (13.12)
is equivalent to maximizing

P2.ˇ.1/1 ; ˇ
.2/
1 / D

covŒE.ˇ.2/1
>
Xˇ.1/1 j Y/�

cov.ˇ.2/1
>
Xˇ.1/1 /

(13.13)

with respect to ˇ.1/1 and ˇ.2/1 . This sequential-iterative algorithm is summarized as
follows.

Algorithm 1: A sequential-iterative algorithm for TSDR
Observing f.Xi; yi/giD1;:::;n, where Xi 2 R

p1�p2 and yi 2 R

1. Estimate cov.X>ˇ
.2/
1 /, cov.Xˇ.1/1 /, covŒE.X>ˇ

.2/
1 jY/� and covŒE.Xˇ.1/1 jY/� by their sample

version.
2. For given ˇ.2/1 and ˇ.1/1 , maximize P21.�/ and P22.�/ respectively, where

P21.�/ D �>covŒE.X>ˇ
.2/
1 jY/��

�>cov.X>ˇ
.2/
1 /�

; P22.�/ D �>covŒE.Xˇ.1/1 jY/��
�>cov.Xˇ.1/1 /�

: (13.14)

3. Repeat Step 2 until convergence.

Notice that P22.�/ is a quadratic form on the vector space R
p2 . Thus, if ˇ.1/1 is

given, ˇ.2/1 can be obtained by SIR, and vice versa. Thus �1 can be obtained by
iteratively maximizing P21.�/ and P22.�/, respectively. Notice that P2j .�/ for j D 1; 2

are bounded above by one, and the iterative maximization approach ensures the non-
decreasing of P2.�/ in each iteration. Thus the convergence of iteration is guaranteed.
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More generally, given Bk D .�1; : : : ; �k/, we can estimate �kC1 in a sequential
way. Let SBk be the space that is spanned by Bk, and Rk be the set of all
decomposable tensors of Rp2 ˝ R

p1 that are orthogonal to SBk . We have

�kC1 D argmax�2Rk

�>covŒE.vec.X.k//j Y/��
�>cov.vec.X.k///�

; (13.15)

where vec.X.k// is the projection of vec.X/ in the complementary space of SBk , i.e.,
vec.X.k// D .I � Pk/vec.X/, and

Pk D †
1
2

vec.X/Bk.B
>
k †vec.X/Bk/

�1B>k †
1
2

vec.X/

is the projection matrix from R
p2 ˝ R

p1 onto SBk with respect to †vec.X/ �
cov.vec.X//. Clearly, �kC1 can be estimated in the same fashion as �1.

13.4 Simulation Studies

Comprehensive empirical studies were carried out to evaluate the performance of
TSDR. In this section, we report two simulation studies. To assess the accuracy of
the estimated subspace, we used the following distance

d D 1 �M.S; OS/; (13.16)

where M.�/ is the similarity score between the subspaces S and OS, and

M.S; OS/ D
v
u
u
t1

r

rX

iD1
�i. OPTP0PT

0
OP/; (13.17)

where P0 and OP are the projection matrices corresponding to S and OS, respectively,
and �i.�/ is the ith eigenvalue of a matrix.

Simulation Study 1 Let X 2 R
p1�p2 be a second-order tensor and Y 2 R be the

response variable. In this study, we assume the following TSDR model,

Y D �T1 vec.X/

2C


3C �T2 vec.X/

�2 C �; (13.18)

where �1 D ˇ1˝˛1, �2 D ˇ2˝˛2 with ˛1; ˛2 2 R
p1 and ˇ1; ˇ2 2 R

p2 , and � is the
stochastic error with mean 0 and variance 0.5.
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We generated n pairs of observations fxi; yigniD1 from this model, where xi 2
R

p1�p2 and yi 2 R. Let n D 200; 400; 600; 800, p1 D p2 D 5; 8 and

ˇ1 D .1; 0; 1; 0; 0/; ˛1 D .1; 1; 0; 0; 0/
ˇ2 D .0; 1; 0; 0; 1/; ˛2 D .0; 0; 0; 1; 1/

when p1 D p2 D 5,

ˇ1 D .1; 1; 1; 1; 0; 0; 0; 0/; ˛1 D .1; 1; 0; 1; 1; 0; 0; 0/
ˇ2 D .0; 0; 0; 0; 1; 1; 1; 1/; ˛2 D .0; 0; 0; 0; 0; 0; 1; 1/

when p1 D p2 D 8. For each combination of n and p, we generated 200 datasets and
applied SIR, folded-SIR and TSDR to those datasets. For SIR, the central subspace
is spanned by ˇ1 ˝ ˛1 and ˇ2 ˝ ˛2. For folded-SIR, the central left-folding and
right-folding subspace is spanned by .˛1; ˛2/ and .ˇ1; ˇ2/, respectively. Thus, we
use folded-SIR(1,2) and folded-SIR(2,1) in this simulation study to find a subspace
of two dimensions.

Figure 13.1 displays means and standard deviations of distances evaluated by
criterion (13.16) using the above-mentioned methods. In all scenarios, TSDR out-
performs other methods. Both TSDR and Folded-SIR(2,1) have improvements over
SIR, especially in the cases where the sample sizes are small and the dimensions are
relatively large. This is due to the fact that the subspaces estimated by TSDR and
Folded-SIR contain fewer parameters than the central subspace estimated by SIR.
When sample size gets larger, the performance of SIR is substantially improved.

Simulation Study 2 Let X 2 R
p1�p2 be a second-order tensor and Y 2 R be the

response variable. In this study, we assume the following TSDR model,

Y D �T1 vec.X/


1C �T1 vec.X/C �T2 vec.X/

�
C �; (13.19)

Fig. 13.1 Left panel: the boxplots of the distance (13.16) of SIR(2), Folded-SIR(1,2), Folded-
SIR(2,1) and TSDR(2) when p D .5; 5/ and n D 200; 400; 600; 800 under model (13.18).
Right panel: the boxplots of the distance (13.16) of SIR(2), Folded-SIR(1,2), Folded-SIR(2,1) and
TSDR(2) when pD .8; 8/ and n D 200; 400; 600; 800 under model (13.18)
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Fig. 13.2 Left panel: the boxplots of the distance (13.16) of SIR(2), Folded-SIR(1,2), Folded-
SIR(2,1), and TSDR(2) when p D .5; 5/ and n D 200; 400; 600; 800 under model (13.19).
Right panel: the boxplots of the distance (13.16) of SIR(2), Folded-SIR(1,2), Folded-SIR(2,1),
and TSDR(2) when p D .8; 8/ and n D 200; 400; 600; 800 under model (13.19)

where �1 D ˇ1˝˛1, �2 D ˇ2˝˛2 with ˛1; ˛2 2 R
p1 and ˇ1; ˇ2 2 R

p2 , and � is the
stochastic error with mean 0 and variance 0.5. We generated n pairs of observations
fxi; yigniD1 from this model. The parameters n; p; ˛1; ˛2; ˇ1, and ˇ2 were defined the
same as in simulation study 1. For each combination of n and p, we simulated 200
datasets and applied SIR, folded-SIR and TSDR to those datasets.

Figure 13.2 displays means and standard deviations of distances evaluated by
criterion (13.16) using the above-mentioned methods. In Fig. 13.2, we also observe
improvements by TSDR. Left panel of Fig. 13.2 shows that in the scenarios of low
sample sizes (n D 200; 400), both folded-SIR(2,1) and TSDR perform better than
SIR. In high-dimensional scenarios where p D .8; 8/ (right panel of Fig. 13.2), the
same pattern appears when sample size gets larger, for the same reason explained
in study 1. While in this scenario when n D 200 under model (13.19), the
signal-to-noise ratio is very small such that all three methods fail to identify their
corresponding dimension reduction subspaces. As n gets larger, TSDR outperforms
other methods.

13.5 Example

Colorimetric sensor array (CSA), a.k.a. the “optical electronic nose,” uses a number
of chemical dyes to turn smell into digital signals. The CSA is simply a digitally-
imaged, two-dimensional extension of litmus paper (Rakow and Suslick 2000).
Thirty-six chemo-responsive dyes are assigned to 36 spots scattered as a 6� 6 array
on a chip. For any smell generated from fungus, a CSA response is generated by
digital subtraction of the color of 36 pre-print chemo-responsive dyes before and
after exposure: red value after exposure minus red value before, green minus green,
blue minus blue (Zhong and Suslick 2014). The resulting “color difference map”
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Fig. 13.3 Plotted here is the projection of 140 third-order tensor data points on the first two
dimension reduction directions obtained by TSDR

is a 36 � 3 matrix, where each row represents the color change of a dye, and each
column represents one of the three spectrum coordinates (red, green, and blue) of a
color cube. When repeated CSA measurements were taken over time, the data can
be cast as third-order tensor data (dyes� color spectrum � time points).

We use a dataset with the color difference maps of CSA measurements of 140
fungi coming from 12 fungal species. The dataset includes color difference maps
over 17 time points with 30 min time intervals after the CSA was exposed to each
fungus. That is, for each fungus, we have a 36 � 3 � 17 tensor. We aim to classify
these 140 fungi into 12 species based on the CSA data. We applied our TSDR to the
data.

Plotted in Fig. 13.3 is the projection of the 140 tensor data points onto the
first and second directions obtained using the sequential-iterative algorithm. We
observe that most of the fungi are well separated. The exceptions are the data of
Kluyveromyces lactis and Candida parapsilosis, which cannot be clearly separated
using two directions. It is worth noting that existing vector-based discriminant
analysis is inapplicable for this data because of the “small n, large p” problem. That
is, the data has 36 dyes � 3 colors �17 time pointsD 1836 parameters whereas the
sample size is only 140. In contrast, TSDR only needs to estimate .36C3C17/�d
parameters where d 	 5 is enough for many practical examples.

13.6 Discussion

The TSDR model provides an effective and flexible framework for dimension
reduction in regression with tensor predictors. It can effectively address the curse
of dimensionality in regression and maintain the data structure and the model



13 Sufficient Dimension Reduction for Tensor Data 337

interpretability. It does not impose any assumption on the relationship between
the response variable and the predictors, and the TSDR model includes fully non-
parametric models as special cases. Because the aforementioned sequential-iterative
algorithm requires the least amount of prior information of the model, it becomes
an indispensable member of the repository of dimension reduction tools in broad
applications, such as in chemical sensing and in brain image analysis.

However, because TSDR is a generalization of SIR, it inherits all the limitations
that SIR has. For example, TSDR imposes various assumptions on the distribution
of the predictors, of which the linearity assumption is the most fundamental and
crucial. However, violation of the assumptions can be remedied using some data
reweighting schemes.

Like all the iterative estimation approaches, the sequential-iterative algorithm
procedure may also encounter issues typical to all the other iterative estimation
approaches. One major limitation of the iterative estimation approach is that the
estimate may practically be attracted to a local optimal estimate and fail to reach the
global optimal. To solve this issue, we advocate trying multiple starting points for
iteration and choosing the best estimate. This approach is currently under intensive
investigation and will be reported in the future publication.
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Chapter 14
Compressive Sensing and Sparse Coding

Kevin Chen and H. T. Kung

Abstract Compressive sensing is a technique to acquire signals at rates propor-
tional to the amount of information in the signal, and it does so by exploiting the
sparsity of signals. This section discusses the fundamentals of compressive sensing,
and how it is related to sparse coding.

Keywords Compressive sensing · Sparse coding

Compressive sensing is a way to sample signals at rates proportional to the amount
of information in the signal by exploiting the sparsity of signals. The measurements
y 2 R

m of a signal x 2 R
n are obtained through linear projection ˆ:

y D ˆx (14.1)

whereˆ 2 R
m�n (with m� n) is called the sensing matrix or measurement matrix.

The signal x is then recovered by finding a sparse solution to 14.1.

14.1 Leveraging the Sparsity Assumption for Signal
Recovery

Normally, it would be impossible to recover x from this underdetermined linear
system, because given y and ˆ there are infinite solutions to x. The first insight
is to reduce the solution space by leveraging the signals’ sparsity. With the sparse
assumptions, it becomes possible to have a unique solution even when the system
is underdetermined. For example, suppose kxk0 is very small, then the idea is to
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Fig. 14.1 Illustration of why
`1 minimization finds sparse
solutions. (Left) When we
expand the `1 ball, it tends to
intersect with the solution
space on sparse solutions.
(Right) In contrast, the `2 ball
does not favor sparse
solutions at all

reconstruct the signal with1:

Ox 2 arg min
x
kxk0subjecttoy D ˆx (14.2)

A potential issue is that (14.2) is a combinatorial optimization problem, and cannot
be solved efficiently in practice. This leads us to the second insight of compressive
sensing.

14.2 From Combinatorial to Convex Optimization

The most straightforward way to represent the sparsity of a vector is the `0 norm,
which simply counts the number of non-zero elements. However, introducing `0
norm in the objective function leads to combinatorial optimization problems. One
of the surprising key results in compressive sensing is that minimizing the `1 norm
can lead to the same solution. This makes the signal recovery problem a convex
problem, which is a lot easier to solve. Specifically, instead of solving (14.2), one
solves the following:

Ox 2 arg min
x
kxk1subjecttoy D ˆx (14.3)

The main intuition of why minimizing `1 norm would result in sparse solutions
is illustrated in Fig. 14.1. Namely, the `1 ball has pointy ends that tend to intersect
with solution planes on the points with more zero-coefficients.

14.3 Dealing with Noisy Measurements

Up to now we have assumed that the signal is measured perfectly (that is, y D ˆx).
In practice, we expect certain noise � in the measurements:

y D ˆxC � (14.4)

1The details about when this would work is presented in later sections.
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which leads to the noisy signal recovery problem:

Ox 2 arg min
x
kxk1subjecttok y D ˆxk22 	 � (14.5)

where � � k�k22 is an estimation of the noise level. Surprisingly, compressive
sensing also has strong guarantees under the presence of noise.

14.4 Other Common Forms and Variations

We have introduced the canonical forms for cleaner presentation. However, note that
there are variations that are essentially equivalent:

Ox 2 arg min
x

s.x/subjecttok y �ˆxk22 	 � (14.6)

Ox 2 arg min
x
k y �ˆxk22 C �s.x/

Ox 2 arg min
x
k y �ˆxk22subjectto�s.x/ 	 k

Depending on the situation, one might prefer one form to the others based on which
parameter is easier to estimate.

14.5 The Theory Behind

This section presents three key results in compressive sensing without going into
the details.

14.5.1 The Restricted Isometry Property

A matrixˆ satisfies the Restricted Isometry Property (RIP) with parameter k if there
exist ık 2 .0; 1/ such that

.1 � ık/kxk22 	 kˆxk22 	 .1 � ık/kxk22 (14.7)

holds for all x 2 R
n with kxk0 	 k. The intuition is that the projection by ˆ roughly

preserves the distance between sparse vectors, so that these sparse vectors are still
separable after the projection.
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14.5.2 Guaranteed Signal Recovery

Assume that y D ˆx with ˆ that satisfies RIP(3k) with ı3k < 1. Candes and Tao
(2005) showed that the solution found with

Ox 2 arg min
x
kxk1subjecttoy D ˆx (14.8)

will satisfy

kOx � xk2 	 C � kx � Ak.x/k1
k

(14.9)

where Ak.x/ represents the best k-term approximation in terms of `1 norm, and C is
a constant that only depends on ı3k. This is a very strong result, as it shows that if a
signal x can be approximated with k terms (i.e., that x is sparse), then the recovered
signal would be close to x. More strikingly, the recovery is exact if kxk0 	 k.

14.5.3 Random Matrix is Good Enough

If we generate a random matrixˆ of size m�n with entries drawn from the Gaussian
distribution,2 then there exist constants C1;C2 > 0 depending only on ı such that
the RIP holds for ˆ with the prescribed ı and any

k 	 C1m

log.n=k/
(14.10)

with probability greater than 1 � 2�C2n. This is to say that if we want to apply
compressive sensing on signals that are expected to be k sparse, then randomly
generating sensing matrix with

m � k log.n=k/

C1
(14.11)

would give us good recovery result using compressive sensing! Note that the
required number of measurements (m) mostly depends on k, and scales logarith-
mically with the signal dimension (n).

2In fact, any distribution satisfying a specific concentration inequality would do (Baraniuk et al.
2008).
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14.6 Compressive Sensing in Practice

14.6.1 Solving the Compressive Sensing Problem

With the `1 regularization (s.�/ WD k � k1), the problem in (14.13) becomes a convex
optimization problem known as the LASSO (Tibshirani 1996). There are many
efficient solvers for the LASSO, including least-angle regression (LARS) (Efron
et al. 2004), feature-sign search (Lee et al. 2006), FISTA (Beck and Teboulle 2009),
and alternating direction method of multipliers (ADMM) (Boyd et al. 2011). Candes
and Tao (2006) and Donoho (2006) first derived the signal recovery guarantees and
showed that minimizing `1 is the same as minimizing `0 under RIP assumptions.

The optimization problem in (14.13) is combinatorial with the `0 regularization
(s.�/ WD k � k0), but we can use greedy algorithms such as orthogonal matching
pursuit (OMP) (Pati et al. 1993), CoSamp (Needell and Tropp 2009), and iterative
hard thresholding (IHT) (Blumensath and Davies 2009), etc. Some methods have
stronger guarantees on signal recovery rate, but in practice the performance of these
solvers is often much better than the lower bounds given by theoretical analysis.

14.6.2 Sparsifying Basis

It has been shown that for a randomized sensing matrix ˆ, we can select an
orthonormal basis ‰, and ˆ‰ would also satisfy RIP with high probability. This
means compressive sensing works for any x that can be written as x D ‰z for some
sparse z. For example, many time series signals are sparse in the frequency domain,
and one could use discrete cosine transform (DCT) basis as the sparsifying basis.

Empirically, we often find that compressive sensing also works under a more
general setting: Compressive sensing is applicable to signal x which can be
represented as Dz, where D is an overcomplete dictionary learned from data.3 The
orthonormal basis ‰ mentioned above can be considered as a special case of the
dictionary D.

For signals that are sparse with respect to a basis D, the compressive sensing
reconstruction solves:

Oz 2 arg min
z
k y �ˆDzk22 C �s.z/ (14.12)

While the matrix ˆD may not satisfy the properties of the sensing matrix
normally assumed in conventional CS literature, this formulation still works as
long as ˆD is sufficiently incoherent (atoms are sufficiently dis-similar). By
being overcomplete and data-dependent, the use of dictionary learned from sparse

3More information about dictionary training can be found in Sect. 14.7.
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coding can improve reconstruction substantially, and thus allow an extended set of
compressive sensing applications.

14.6.3 Sensing Matrix

Many natural time series are sparse in frequency domain, and can be effectively
compressed by a random subsampling matrixˆS. The reason is thatˆS is incoherent
with the Fourier basis. The work by Candès et al. (2006) shows that signal is
recoverable when ‰ is identity and ˆ is a randomly subsampled Fourier matrix.
Moreover, if the dictionary atoms are sufficiently incoherent in the low frequencies,
then a uniform subsampling matrix can be used for high resolution recovery. Using
these subsampling matrices as the sensing matrix is desirable because it is easy to
implement on a sensor.

For radar signal acquisition, a sensing matrix corresponding to random con-
volution is more suitable since the way radar signals bounce back is naturally
convolutional (see Fig. 14.2). The random convolution sensing matrix can be imple-
mented by randomly subsampling the received signal in time domain. This allows
us to recover high resolution signals from low number of measurements (Romberg
2009).

If the basis D is known ahead of time, then using PCA on D to form the sensing
matrix ˆ is provably optimal for reconstruction. More specifically, signal recovery
with the projection y D VTx where V contains the m largest eigenvectors of DTD
requires least number of measurement (Gkioulekas and Zickler 2011).

Transmitted Waveform (v) Received Waveform (y) 

Targets (x)

Fig. 14.2 Illustration of radar signal acquisition. The received waveform y is a convolution
between the transmitted waveform v and the targets x. We can therefore write y D Vx where
each row in V contains a shifted v
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14.7 Sparse Coding Overview

In sparse coding, a signal x is transformed into a sparse representation z by solving
a linear system with a sparsity-inducing regularizer s.�/

z 2 arg min
z
kx �Dzk22 C �s.z/ (14.13)

where D is a given dictionary (or basis). The first term requires that z captures the
information about x (since x � Dz), and the second term encourages z to have small
number of nonzeros.

A dictionary D can be learned from a set of samples X D fxig by solving

fD;Zg 2 arg min
D;Z

X

i

˚kxi � Dzik22 C �s.zi/
�

(14.14)

where the second term regularizes z on its `0 or `1-norm (that is, s.�/ WD k � k0 or
s.�/ WD k � k1.) with certain parameter � > 0. This is often referred to as dictionary
learning, and each column in D is called an atom. It is hard to solve (14.14)
directly, so in practice people often use alternating methods (e.g., Mairal et al. 2009):
solve Z while holding D fixed, and then solve D while holding Z fixed. Note that
both subproblems can be solved efficiently: the former is exactly the same as the
compressive sensing problem mentioned in Sect. 14.6.1, and can be solved with the
same tools; the latter problem

fDg 2 arg min
D

X

i

˚kxi � Dzik22
�

(14.15)

is a standard least squares problem.
The sparse representation of signals has been shown to be useful for classification

tasks in various models, and is therefore often referred to as feature vectors (e.g.,
in spatial pyramid matching (Yang et al. 2009), hierarchical sparse coding (Lin and
Kung 2014), and single layer networks (Coates et al. 2011)).

There are many reasons to use sparse coding for feature extraction (Fig. 14.3). To
better understand what it does, we can look at the data model corresponding to the
optimization problem in (14.13). When s.�/ WD k � k0, it solves a subspace clustering
problem, which is like a generalization of gain shape (spherical) k-means. When
s.�/ WD k � k1, there is a Bayesian interpretation: Suppose the data x and latent
variable z are modeled by Gaussian and Laplace distribution, respectively:

x � N .Dz; �/ D 1p
2��

exp

�

�kx � Dzk22
2�2

�

(14.16)

z � L.z; ˇ/ D 1

2ˇ
exp

�

�jzj
ˇ

�

(14.17)
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Fig. 14.3 Dictionary atoms learned from patches of natural images. As pointed out by Olshausen
and Field, these patterns resemble the receptive fields found in primary visual cortex (Olshausen
and Field 1997)

Then the MAP estimation is the solution from sparse coding:

z� D arg max
z

p.zjx/ D arg min
z
f� log p.zjx/g (14.18)

D arg min
z

�
1

2�2
� kx � Dzk22 C

1

ˇ
� jzj � log.2

p
2��ˇ/

�

(14.19)

D arg min
z
kx � Dzk22 C

2�2

ˇ
jzj (14.20)

Note that while this simple model may be applicable to many natural signals such
as images, it is not a universal principle for finding feature representations (this is
unlike PCA, which can serve as a general principle for dimensionality reduction).
Sparse coding should only be applied when the data actually has sparse structures.

14.7.1 Compressive Sensing and Sparse Coding

In sparse coding, one is interested in finding a sparse representation z that parsi-
moniously describes a given data x. It is often viewed as an unsupervised learning
method that extracts or finds structures in data. In contrast, compressive sensing
assumes such structures in the data, and exploits them to narrow down the solution
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Fig. 14.4 Using compressive sensing to speed up sparse coding pipeline. Note that both
approaches generate the same feature representation, but the one with compression does so with
much lower cost due to reduced input dimension

space in the signal recovery process. While sparse coding and compressive sensing
are designed for very different applications, they are clearly deeply connected
through the sparse assumption about data. Here we explore some interesting
interactions when we apply both in signal processing.

14.7.1.1 Compressed Domain Feature Extraction

In standard feature extraction, the feature representation is extracted from input x
using (14.13). However, we can compress x first to reduce computation cost. Assum-
ing that x is sparse and ˆD is sufficiently incoherent, the feature representation z
extracted from x or y D ˆx would be the same (Fig. 14.4). This is particularly
useful if the signal was obtained through compressive sensing in the first place.

14.7.1.2 Compressed Domain Classification

In compressive sensing, ˆ is a distance preserving projection such that

.1 � ı/kxi � xjk < kˆ.xi/�ˆ.xj/k < .1C ı/kxi � xjk

for a small constant ı. This means distance-based classification methods such
as KNN can work directly on compressed measurement, and enjoys graceful
degradation as the number of measurement decreases. Another example is signal
detection using likelihood ratio tests. If the tests are based on radial distributions
such as Gaussian, then the likelihood ratio test can be easily modified to work with
ˆ.x/ instead, since the distance kx � 
k is preserved.
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14.8 Compressive Sensing Extensions

14.8.1 Reconstruction with Additional Information

In sparse coding, one often has stronger assumptions than just the sparsity. Similarly,
we can also use additional information to improve reconstruction for compressive
sensing. Sparse coding can be used jointly with these other constraints:

z 2 arg min
z
k y �ˆDzk22 C g.z/C �s.z/ (14.21)

where g.�/ incorporates the additional information.
A notable example is super-resolution signal recovery. In this setting, we have

g.z/ D kx� � Dzk22 where x� is estimated based on self-similarities in the image
(epitomic matching). Epitomic matching searches for similar example patches from
the input image itself, based on the fact that patches often tend to recur within
the image across different scales (Mairal et al. 2009; Glasner et al. 2009). In this
approach one estimates z and x� alternatingly to improve the reconstruction quality
over iterations.

14.8.2 Compressive Sensing with Distorted Measurements

In compressive sensing, measurements are assumed to be the linear projection of
signals. However, in practice non-linearity could easily arise from the physical
devices that perform the measuring. For example, amplifiers and ADCs only have a
small region of operation where the gain is constant (Fig. 14.5). As the input power
exceeds the linear region, the gain gradually decreases and the relation between
input and output is no longer linear. One would need to either have better hardware
to handle large linear regions or model the nonlinearity for signal reconstruction.

Fig. 14.5 Illustration of
amplifier nonlinearity.
Amplifiers have a region of
operation where the gain is
constant. As the input power
exceeds the linear region, the
gain gradually decreases and
the relation between input
and output is no longer linear

Input
Power

Output 
Power  Ideal 

Actual 

non-linear region linear 
region 
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Assuming that the measuring process is distorted by some nonlinear function F,
and we obtain y D F.ˆx/ instead of y D ˆx in the standard compressive sensing
setting. In nonlinear compressive sensing, we need to solve the nonlinear system
with sparse regularization:

Oz D arg min
z
k y � F.ˆDz/k22 C �s.z/ (14.22)

For differentiable F, this formulation can be solved with proximal methods (e.g.,
FISTA). It has been shown that modeling the non-linearity directly could lead to
significant power savings (Comiter et al. 2017).

Another example is the non-linearity due to quantization. It has been shown that
even under the most extreme case of binary quantization, we could still recover
the signal4 using a modified compressive sensing (Jacques et al. 2013). Similar to
nonlinear compressive sensing, one can modify the objective function in single-bit
compressive sensing:

Oz D arg min
z
ksign. y/� sign.ˆDz/k1 C �s.z/ (14.23)

which can then be solved with a variety of dedicated solvers, including binary
iterative hard-thresholding (Jacques et al. 2013), adaptive outlier pursuit (Yan et al.
2012), and even convex programming (Plan and Vershynin 2013).
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Chapter 15
Bridging Density Functional Theory
and Big Data Analytics
with Applications

Chien-Chang Chen, Hung-Hui Juan, Meng-Yuan Tsai,
and Henry Horng-Shing Lu

Abstract The framework of the density functional theory (DFT) reveals both
strong suitability and compatibility for investigating large-scale systems in the Big
Data regime. By technically mapping the data space into physically meaningful
bases, the chapter provides a simple procedure to formulate global Lagrangian
and Hamiltonian density functionals to circumvent the emerging challenges on
large-scale data analyses. Then, the informative features of mixed datasets and
the corresponding clustering morphologies can be visually elucidated by means of
the evaluations of global density functionals. Simulation results of data clustering
illustrated that the proposed methodology provides an alternative route for analyzing
the data characteristics with abundant physical insights. For the comprehensive
demonstration in a high dimensional problem without prior ground truth, the
developed density functionals were also applied on the post-process of magnetic
resonance imaging (MRI) and better tumor recognitions can be achieved on the T1
post-contrast and T2 modes. It is appealing that the post-processing MRI using the
proposed DFT-based algorithm would benefit the scientists in the judgment of clin-
ical pathology. Eventually, successful high dimensional data analyses revealed that
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the proposed DFT-based algorithm has the potential to be used as a framework for
investigations of large-scale complex systems and applications of high dimensional
biomedical image processing.

Keywords Density functional theory (DFT) · Big data · High dimensional data
analysis · Image analysis

15.1 Introduction

Since the mid-twentieth century, scientists have been recognizing the fact that the
exploitation of N-particle Schrödinger wave function would eventually suffer a
provocative problem in the judgment of legitimate significance while N is larger
than 103 orders which is even an over-optimistic value on some occasions (Kohn
1999). In spite of the rapid progress of computer science nowadays, validity of
contemporary physical theories, from the Heitler-London treatment of chemical
bonding to the Hartree-Fock approximation, and the associated computational
complexities are still going through a terrible ordeal while dealing with enormous
electron interaction within diverse materials or large-scale physical systems.

To escape from these muddles, the density functional theory (DFT), founded
on the Hohenberg–Kohn theorem and Kohn–Sham theorem (Hohenberg and Kohn
1964; Kohn and Sham 1965), provides an elegant framework to handle those
aggravating situations and has been employed in many interdisciplinary applica-
tions, such as quantum chemistry, solid state theory, material science, bioscience,
molecular dynamics, and so forth (Lebègue et al. 2013; Grimme et al. 2007;
Riley et al. 2010; Neese 2009; Cramer and Truhlar 2009; Wu 2006). Physical
configuration and characteristics within a system of interest can be sufficiently
elucidated using a three-dimensional electronic probability density function (PDF)
(Cramer and Truhlar 2009; Wu 2006; Daw and Baskes 1983) rather than processing
3N-dimensional many-particle wave functions. Once a PDF of an investigating
system is given, demanding characteristics, including cluster distribution, intensity,
similarity, affinity, morphology, clustering tendency, spatial configuration, and so
forth, can be further analyzed with the convenience of immensely computational
complexity reduction. Thus, the mathematical framework of DFT in these aspects
reveals highly beneficial suitability and compatibility for investigating large-scale
systems such as the applications in the Big Data regime. To be specific, the
data configuration as well as the derived dimension-reduced data PDF might be
analogically treated as in a many-particle scheme embedded in the Hilbert space.
Transforming the implicit or explicit data features to useful knowledge would be
obviously essential in the big data system.

Additionally, due to multifarious data expansions inevitably and rapidly arise
from user generated contents and log-data formed in Internet surfing, community
of networks (Newman and Girvan 2004; Girvan and Newman 2002; Clauset et al.
2004; Sporns 2011; Esquivel and Rosvall 2011), investigations on pathology and
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DNA sequence (Jacobs 2009; Rozas et al. 2003), bioscience (Girvan and Newman
2002; Bullmore and Bassett 2011; Lichtman et al. 2008; Hampel et al. 2011;
Kobiler et al. 2010), cloud and heterogeneous computing (Schadt et al. 2011),
explosive growth of global financial information (McAfee and Brynjolfsson 2012;
Chen et al. 2012; Tóth et al. 2011), and so forth, relevant problems implicated
in the Big Data regime are confronting with technical challenges on demands
of data recognition, reconstruction, connection and correlation, and visualization
in the considerations of commercial strategy and scientific investigations in this
era. For instance, the methodologies on pattern recognition of neural networks
in human brains especially attract wide attentions due to the desires of seeking
correspondences among brain functionalities with physiological and psychological
modulations, pathological diagnoses, perceptional characteristics, and so forth. A
wiring diagram in a brain delineated by a comprehensive map of neural circuitry,
i.e., the connectome, is then pursued in order to thoroughly understand the basic
elements within a brain. A well-investigated morphology of cerebral neurons can
benefit clinical diagnoses to detect regions of neural mis-wiring connection that
may result in Alzheimer’s and Parkinson’s diseases (Bas et al. 2012).

However, the progress on pattern recognition of biomedical applications stag-
gered (Bas et al. 2012; Hsu and Lu 2013; Kreshuk et al. 2011; Bas and Erdogmus
2010; Livet et al. 2007). The reason can be attributed to the scarcity of robust
and reliable automatic artifices for segmentation, thus immense and tedious man-
ual interventions became inevitable when dealing with humongous and intricate
biomedical imagery. To circumvent these deficiencies, state-of-the-art techniques
based on machine learning in probabilistic perspectives have brought in fruitful
achievements (Hsu and Lu 2013; Kreshuk et al. 2011; Shao et al. 2012; Wu et al.
2011; Gala et al. 2014; Chothani et al. 2011; Türetken et al. 2011). By combining
graphic theory with geometric features (Bas et al. 2012; Bas and Erdogmus 2010;
Vasilkoski and Stepanyants 2009; Wang et al. 2011; Türetken et al. 2013; Gala et al.
2014; Chothani et al. 2011; Türetken et al. 2011; Zhang et al. 2010; Peng et al.
2011; Rodriguez et al. 2009) and/or topological priors (Hsu and Lu 2013; Shao
et al. 2012; Wu et al. 2011; Rodriguez et al. 2009), morphologies of human physical
structures could be delineated thoroughly and visually. However, several technical
limitations still obstruct on the way to mapping. Machine learning-based algorithms
inseparably rely on certain requirements of training sets (Gala et al. 2014) and
seeding voxels (Hsu and Lu 2013; Shao et al. 2012; Wu et al. 2011; Rodriguez et al.
2009), specific regular curve or shape (Bas et al. 2012; Bas and Erdogmus 2010;
Wang et al. 2011; Türetken et al. 2013, 2011; Zhang et al. 2010; Peng et al. 2011;
Rodriguez et al. 2009), designated size (Zhang et al. 2010), and so forth. Once these
prerequisites eventually become indispensable, user-supervised interventions and
complex filtering/classifying mechanisms might make the algorithms more unstable
for irregular or unanticipated circumstances.

Therefore, to convey the advantages and the bonanza from the DFT to the
applications of Big Data analytics, an intuitive and fully energy-based methodology
for unsupervised automated pattern recognitions, embedded in the framework of
DFT in physical perspectives, is introduced in the chapter. Evolution of mixed data
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migration under diverse circumstances was first visually studied. The proposed
methodologies provided abundant physical insights when analyzing the charac-
teristics of mixed data groups. Furthermore, as tentative demonstrations, typical
clustering problem on the dataset of Fisher’s iris was then studied. Meanwhile,
the large-scale MRI morphology and the corresponding tumor detections were also
visually exhibited by means of a derived dimension-reduced pixel intensity function
based on the proposed DFT-based algorithm.

15.2 Structure of Data Functionals Defined in the DFT
Perspectives

Purpose of the investigation is intended to create a connection between the Big Data
analysis and the mathematical framework of the DFT. That is, we are extending a
well-developed technique in pure physics to interdisciplinary scientific researches
and engineering applications. First of all, each specific feature of data points should
be smoothly mapped to a corresponding physical basis, i.e., the oriented Riemannian
manifold. However, the intrinsic properties of the original data configuration would
result in difficulties on the basis transformation mathematically. For instance,
labeled or non-numerical features could not construct the corresponding Euclidean
distances, so that the existence of Cauchy sequences cannot be definitely guaranteed
as well as a complete metric space. To conquer the predicament, those features can
be technically transferred to a high dimensional pseudo-numerical or a spatial eigen-
space artificially, in which each norm of pseudo-vectors would be finite to meet the
formal definition of the Hilbert space. Many contemporary technical articles have
verified the feasibility mathematically (Levin et al. 2008; Wu et al. 2012).

Under the framework of DFT, the information of specific data features, such as
adjacent matrix in social networks, density of a statistical distribution, proliferation
rate of animal populations, or color intensity in an image set, can be extracted from
the studied objectives and directly mapped into a high-dimensional energy-space (k-
space) in physical views to form a hyper-Fermi surface composed of vectors kF and
provides a significant enclosure of the dataset. Finding an enclosed hyper-surface
of a dataset is the first step for the studies on data clustering and threshold of data
mixtures. For further comprehension, properties of N data features confined to a D-
dimensional volume V with specific boundary conditions (Lebowitz and Lieb 1969)
were analyzed in the high-dimensional Hilbert space. The D-dimensional volume

of k-space per allowed k value, for instance, has generally the value of .2�/D
QD

i Li
under

the Born-von Karman boundary condition, and then the quantity of allowed data

features N becomes
R kF
0 d�.k1;k2;:::;kD/fFD.k1;k2;:::;kD/

.2�/D=
QD

i Li
� �.kF/V

.2�/D
, where the volume V is

the multiplication of characteristic length Li spanned in the D-dimensional space
and fFD is the Fermi-Dirac distribution. Once the hyper-volume �.kF/ and the
dimensionality D are clarified, the average density of data feature, i.e., n D N

V ,
could be estimated as expected in viewpoints of solid state theory. However, we
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typically need a definitely localized data feature PDF for data analysis rather than
their average density, due to the reason that the latter provides less information about
localized variations. In several applications, such as the community of networks,
Internet and website searching, image processing with large sizes, object tracking
of video stream, and so forth, the localized features are necessary to illustrate the
morphological varieties in detail (Newman and Girvan 2004; Girvan and Newman
2002; Clauset et al. 2004; Hampel et al. 2011; McAfee and Brynjolfsson 2012; Kalal
et al. 2012; Casagrande et al. 2012).

Thus, to extend the feasibility of DFT into the interdisciplinary applications, a
localized functional N0 within a D-dimensional localized infinitesimal element dDr0
was constructed as:

N0Œnlocal� D
Z

nlocalŒkF�d
Dr0 D vD � nlocalŒkF�; (15.1)

where physically

nlocalŒkF� D 1

.2�/D

Z kF

0

dk � ˛DkD�1 D ˛DkDF
D.2�/D

: (15.2)

The parameters, vD and ˛D, are D-dimensional hyper-volume and dimension-
dependent integral constant, respectively. In the following formula derivation, the
˛D can be directly merged into the scaling factor as indicated in Eq. (15.11), thus
it can be safely assigned as 1 for convenience. In order to construct the data PDF
that can be used to specify the local variations in a system of interest, the local
density approximation (LDA) (Wu 2006) was adopted to study the corresponding
circumstances. Thus, the functional relation between the data PDF I and the hyper
Fermi level kF can be obtained using Eqs. (15.1) and (15.2):

IŒkF� D nlocalŒkF� D N

vD
D kDF

D.2�/D
or kFŒI� D 2�ŒD � I� 1D : (15.3)

Furthermore, by means of the LDA and Eq. (15.3), the D-dimensional kinetic energy
density functional (KEDF) can be derived as:

tsŒI� D vD

N.2�/D

Z kF

0

dk � ˛DkD�1 � k
2

2
D 2�2

DC 2 � D
.DC2/

D � I 2D (15.4)

It should be noted that the KEDF tsŒI� D ı.kinetic energy//=ıI and is directly
proportional to I

2
D as indicated in Eq. (15.4).

In general, the ground-state energy of an electron-gas system with an external
potential functional VŒne� and under the atomic units (a.u.) is (Hohenberg and Kohn
1964; Kohn and Sham 1965):

EŒne� D VŒne�C EHŒne�.r1; r2/C GŒne�; (15.5)
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where r1 and r2, ne, EHŒne�, and GŒne� are three-dimensional position vectors of
electrons, the electronic PDF, the Hartree energy functional, and the universal
functional, respectively. The GŒne� includes TsŒne� and ExcŒne�, where the former
is the global kinetic energy functional of non-interacting electrons and the latter
the exchange-correlation (xc) energy functional. Based on the Hohenberg–Kohn
theorem, it can safely deduce that once the data configuration can be guaranteed to
be entirely embedded in oriented Riemannian manifold, the data feature functional
in energy perspectives could be likewise elaborated while all of the corresponding
functionals mentioned in Eq. (15.5) are clearly specified. Under the circumstances,
the data weighting (or the data significance) might be characterized by the kinetic
energy functional, and the external potential could denote external influences from
the outside environment. Morphology of the data similarity can be mathematically
clarified by means of the form of Hartree potential functional. Then, eventually, the
data exchangeability might be symbolized by the xc energy functional. Therefore,
the localized data feature energy functional in a D-dimensional space could be
expressed by linking up I.r0/ and ne.r/:

EŒI� D VŒI�.r0/C EHŒI�.r0/C GŒI�.r0/: (15.6)

Detailed transform relation is shown in Fig. 15.1. Theoretically, the developed
methodology can be mathematically extended to arbitrary high-dimensions in the
Hilbert space (Finken et al. 2001). Since each data feature can carry log2D

2 bits of
information in a two-group communication (Wang et al. 2005), the high dimensional
data with huge sizes ideally provides the convenience of information storage.
Additionally, since the input data PDF I.r0/ is a nonnegative function, the considered
system can be released from the N-representation problem. Meanwhile, from the

Fig. 15.1 Transform relation of energy functionals between the DFT scheme and the data space.
The Hohenberg–Kohn theorem can safely guarantee that once the data configuration can be entirely
embedded in the oriented Riemannian manifold, the data feature functional in energy perspectives
could be likewise elaborated while all of the corresponding functionals mentioned in Eq. (15.5) are
clearly specified
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constrained search algorithm (Levy 1982, 2010), issues of the v-representation of a
system can also be avoided for the Hohenberg–Kohn theorem (Capelle 2006). Thus,
the developed methodology can escape from these non-uniqueness problems.

Furthermore, the Hartree energy with a coulomb form was then adopted in the
following tentative investigation to illustrate the data morphology and similarity
assessed using the Euclidean distance so that the pure relationship and regularization
between any two data features can be definitely clarified. The coulomb form
indicates that physical particles must obey the Stokes’ theorem and the Gauss’
theorem. Thus, in the first stage, the form of coulomb interaction was introduced
in the methodology due to its pure and simple physical meanings. However, it does
not mean that the methodology is limited to using the coulomb form in the DFT-
based algorithm. The selection of a potential form relies on the configuration of
the investigating system. To describe the physical phenomena between pair-data-
features, the coulomb form might be a good candidate. Meanwhile, for simplicity,
the external potential VŒI�.r0/ was set only to be as a uniform background and all
other external influences were also ignored. Additionally, as usual the xc energy
functional is physically decomposed as the exchange energy derived from the Pauli
principle and the correlation energy attributed to the particle correlations. In general,
the exchange energy is simply an explicit functional of Kohn–Sham orbitals and can
be derived directly using the anti-symmetrized product. On the other hand, there
are several approaches to deal with the correlation energy, such as the additional
energy lowering for avoiding the mutual interaction between electrons, mean-field
approximation without considering the quantum fluctuations, the method of xc hole,
and so forth (Capelle 2006). Therefore, according to their physical properties, the
xc energy can amend the energy fluctuation while the data points are interchanged
among data groups for further problems from social networks or animal populations
clustering. In our tentative case, the data interchanges between data groups were
temporarily forbidden so that the ExcŒI� was only used to tackle the issue of self-
interacting in terms of the Hartree energy and the rest long-range part was safely
ignored (Capelle 2006) as the conception of range-separated hybrids (Baer et al.
2010) in the methodology derivation so far.

Thus, the rest localized kinetic energy functional in GŒI� can be simply estimated
using LDA (Wu 2006; Zupan et al. 1997a,b) and Eq. (15.4):

TsŒI� D
Z

dDr0tsŒI�I.r0/: (15.7)

Then, the localized Hamiltonian functional can be summarized as:

HŒI� D V C
Z

I.r0/dDr0
(
1

2

Z
I.r00/
jr0 � r00jd

Dr00 C tsŒI�

)

� V C
Z

I.r0/dDr0
n
uŒI�.r00/C tsŒI�

o
; (15.8)



358 C.-C. Chen et al.

where uŒI� is the potential energy density functional (PEDF) in the Hartree’s from.
According to the Jacob’s ladder of DFT, the accuracy of Eq. (15.8) will be limited
due to the fact that the formulations are constrained to the Hartree scheme and the
employment of LDA (Ullrich 2012). However, the errors produced from the trick of
dealing with the xc energy in the chapter could be vastly restrained because of the
myriad of data dimensionality and sizes (Voorhis and Scuseria 1998; Langreth and
Perdew 1977).

In order to seek the data morphology and global distribution in the development
stage, the method of Lagrange multipliers with a constrained condition of constantR
I.r0/dDr0 was utilized to elaborate the stationary information. The constrained

condition indicated the fraction of data features change smoothly and slowly
in the considered localized region (Wu 2006; Zupan et al. 1997a,b). Thus, by
taking a variational calculation on the localized auxiliary function, AŒI� D HŒI� �

.r0; r00/

R
I.r0/dDr0, with a Lagrangian multiplier 
, the D-dimensional global

Hamiltonian density distribution, or the Hamiltonian density functional (HDF), can
be expressed as:


ŒI�.r00/ D ıHŒI�

ıI.r0/
D uŒI�C tsŒI�C ıV

ıI.r0/
; (15.9)

where the first and second terms correspond to the PEDF and the KEDF, respec-
tively. Since the external potential was treated as a uniform background, the last term
can be eliminated. It is noted that Eq. (15.9) also yields a D-dimensional Thomas-
Fermi equation and has a similar form as the chemical potential as expected. The
advantage of employing the HDF here is to provide a theoretical foundation for
the data clustering/segmentation that can be easily and physically elaborated by
finding the iso-surfaces of minimum energy. Additionally, once the data space can be
mapped into a configuration space of smooth functions and then being constructed
to an oriented Riemannian manifold using the mentioned contemporary techniques,
boundaries of data groups, according to the Noether’s theorem, can also be explicitly
defined using ıLŒI�

ıI.r0/
D 0. Symbol L here is the corresponding Lagrangian that can

be definitely determined from the Hamiltonian with Legendre transform (Salasnich
and Toigo 2008). Then the corresponding Lagrangian density functional (LDF) can
be expressed as:

lŒI�.r00/ D ıLŒI�

ıI.r0/
D �uŒI�C tsŒI� � ıV

ıI.r0/
; (15.10)

Thus, the localized data feature PDFs that satisfy those boundary conditions will
construct a subspace of on-shell solutions. Meanwhile, locations of the cusps
of HDF and LDF morphologies as well as the amount of data groups can be
theoretically determined by adopting the Kato’s theorem (March 1986), that is,
finding the global maximums of gradient of HDF. Therefore, the enclosure of
a data group from a mixed dataset can be uniquely determined by removing
the background potential in Eqs. (15.9) and (15.10) and combining the sequence
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of theorems mentioned above. It should be emphasized that based on machine
learning-based algorithms, there are several well-defined supervised clustering or
classification methods, such as k-means algorithm (Wu et al. 2012), support vector
machine (SVM) (Türetken et al. 2011), and so forth, can be also adopted to achieve
similar tasks. The advantage of the proposed DFT-based algorithm is introducing an
unsupervised learning method to the problems of interest.

However, the incomparable effect of uniform coordinate scaling between PEDF
and KEDF (Levy and Perdew 1985) will result in an incorrect HDF of an
arbitrary dimensional system. A solution is to transfer the functional spaces
into a normal coordinates using an adaptive scaling factor � . By employing the
Hellmann-Feynman theorem to minimize the average global Lagrangian of the high-
dimensional system, the non-trivial solution was given as:

� D 1

2

R
uŒI�.�r0/ � I.�r0/dr0

R
tsŒI�.�r0/ � I.�r0/dr0 D

1

2

huŒI�.�r0/i
htsŒI�.�r0/i : (15.11)

Consequently, the adaptive scaling factor is simply the ratio of expected values
between the global high-dimensional PEDF and KEDF. Eventually, the scaled
HDF and LDF can be, respectively, likewise read as �2tsŒI�.�r0/ C �uŒI�.�r0/ and
�2tsŒI�.�r0/� �uŒI�.�r0/.

15.3 Determinations of Number of Data Groups and the
Corresponding Data Boundaries

For realistic clustering problems without any prior information, the number of data
groups and the corresponding data boundaries are actually unknown. Trial-and-error
methods can be used for typical clustering methods, for instance, the Gaussian
mixture model (GMM) or k-means clustering, but they are time-consuming with
low efficiency. In the proposed DFT-based algorithm, the mentioned problems can
be simply resolved by directly adopting the Kato’s theorem to sequentially search
the stable points of averaged global high-dimensional PEDF huŒI�.�r0/i and KEDF
htsŒI�.�r0/i as listed in Eq. (15.11) from single data group to infinite amount of
groups.

A two-dimensional GMM was first employed to generate true data PDFs for the
system of interest. The KEDF can be specifically estimated from Eq. (15.4), and
the value was given as tsŒI� D 2�2I for the two-dimensional case. The background
potential was kept as a constant so that it can be removed from the estimations.
To embody the presented methodology, two identical data groups with huge data
size were constructed using the GMM technique. Data groups totally contained
2�105 indistinguishable data points with explicit spatial features in two-dimensional
coordinates. In order to strongly blend the techniques provided by the DFT
with the field of statistical learning, the expectation-maximization (EM) technique
(Dempster et al. 1977) was employed in the assessment of the data distribution,
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and then the estimated normalized PDFs became the input data in the following
analysis. It should be emphasized that for the problem of extreme high dimensional
PDF estimation, the Bayesian Sequential Partitioning (BSP) method can provide an
elegant solution rather than the conventional machine learning methods (Lu et al.
2013). In Fig. 15.2a, each true data group had the same standard deviation � and
their peak-to-peak distance (PtPD) was set to be 10� to precisely describe the group
independence. Monte Carlo method with importance sampling was also technically
introduced to reduce the computational complexity of the integral in PEDF, where
the computational complexity had an order of O.N/ (Foulkes et al. 2001; Needs
et al. 2010).

To validate the theory, several different data mixtures were studied as shown
in Fig. 15.2. In Fig. 15.2a, two independent data groups were modeled using the
GMM method. It is obvious that htsŒI�.�r0/i and huŒI�.�r0/i had obvious gradient
changes at the group index with a value of 2 as well as the averaged HDF hHDFi
estimated using Eqs. (15.9) and (15.11). Thus, it indicates that there are two groups
in the studying system. Each group index was estimated by averaging 30 times of
trial simulations of corresponding htsŒI�.�r0/i, huŒI�.�r0/i, and hHDFi, respectively.
Small fluctuations occurred after group index of 2 exhibited the energy gradually
became more stable (with small noises) as the core spirit of the Kato’s theorem.
Of course, an obvious gradient change would emerge again once the group index
approached the total number of data points. When the data groups were physically
approaching each other accordingly, the corresponding group indexes still exhibited
correct estimations as expected and as shown in Fig. 15.2b–d, respectively. The
fluctuations behind the group indexes, however, were gradually and sequentially
enlarged as also obviously shown from Fig. 15.2c, d. To simply identify the group
index in Fig. 15.2d, the averaged curves were colored in black and depicted in each
corresponding spectra, respectively. These phenomena exhibited in the group index
estimations can be attributed to the reinforced strong similarity between pair-data
points with shorter distances. Figure 15.2e shows the morphology of 3 data group
mixture with different PDF relative intensities. The stable points on the group index
with a value of 3 validated again the feasibility of the DFT-based algorithm in
searching the group numbers. The quantum clustering can provide the number of
groups as well, but it needs a further searching algorithm to identify the demanding
factor (Horn and Gottlieb 2001).

The obtained group numbers were then used to find the corresponding data
boundaries of each case. By recalling the Noether’s theorem, the optimized data
boundary can be defined by searching the locations with the features of ıLŒI�

ıI.r0/
D

0. In the practical programming processes, the mathematical approach can be
simply realized and should be equivalent to searching the iso-surface of minimum
energy that only contains one data group. Figure 15.3 shows the searching results
of each mentioned case. The arrows in Fig. 15.3a indicate the modeled outmost
enclosure of each group, i.e., the boundary of each iso-surface of minimum
energy. Then each recognized data group was respectively colored in red and blue.
Additionally, because the modeled boundaries were definitely defined by estimating
the corresponding iso-surface families, the data points that exactly enclosed in the
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Fig. 15.2 The clustering results based on the Kato’s theorem by means of searching the stable
points
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Fig. 15.3 Clustering results of each mentioned case by searching the corresponding iso-surfaces
of minimum energy. The arrows in Fig. 15.3a indicate the modeled outmost enclosure of each
group, i.e., the boundaries of the iso-surface of minimum energy

surface can be guaranteed to belong to the owning groups. Thus, the DFT-based
algorithm provides a hard-clustering strategy. Even in the morphology shown in
Fig. 15.3c, e wherein the different group boundaries exactly contact with each other,
the adscriptions of data points can be uniquely determined. The morphology of
Fig. 15.3d, however, could not show distinguishable boundaries due to its severe
overlapping.
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15.4 Physical Phenomena of the Mixed Data Groups

15.4.1 Physical Structure of the DFT-Based Algorithm

For the purpose of visualized demonstrations, the original data space would
be projected to high-dimensional physical spaces. Figure 15.4 exhibits a three-
dimensional morphology of a single dataset (see Fig. 15.4b) in energy space in
detail. Relationships between the principal axes and energy level of PDF are
illustrated in Fig. 15.4a, c in specific directions. The KEDF and the PEDF (also
called the Hartree potential density functional) were estimated as well as the LDF.
It is noted that there was an obvious minimum LDF set (the white circle region)
surrounding the main part of LDF as shown in Fig. 15.4d. Comparing Fig. 15.4a
and c to d, the minimum LDF set just met the data boundary (see the edge of KEDF
depicted by red line) and therefore obeyed the boundary features indicated by the
Noether’s theorem as expected. The cross symbol depicted on the peak of LDF as
shown in Fig. 15.4d was estimated by associating the GMM method with the k-
means, where a prior number of data group is used for a further check.

In Fig. 15.4h, as the case shown in Fig. 15.2a, the PtPD was set to be 10� . The
morphological illustrations of LDF visually revealed two distinct trenches at C and
C’ which were entirely surrounding each corresponding LDF peak associated with
D and D’, respectively. Since the steeper distribution of KEDF was proportional
to the data PDF, it can represent the data intensity with weighting information as
mentioned above. Then the wider shape of PEDF depicted there existed a significant
data similarity due to the employed form of long-range coulomb potential by
estimating the Euclidean distance of pair-data. Thus, the formation of trenches can
be attributed to that the internal intensity information inhibited the external data
similarity which was carried by the PEDF. In other words, these two data groups
were independent. This inference can be evidenced by comparing the cross sections
of principal axis 1 and 2 of Fig. 15.4e and g respectively. Apparently, the KEDF at
the common boundary between those two groups were almost vanished, whereas
that in PEDF had significant values due to data similarity caused by the coulomb
form. Meanwhile, it can be found that the original point of LDF, O, was a local
maxima in AA’ direction but a local minima in BB’ direction. In other words, the
O point was also a saddle point and can represent an energy barrier between the data
groups. Therefore, in the AA’ direction, if these two data groups would like to move
towards each other, they should first conquer the obstacle of energy barrier at the
O point.

In a nutshell, the morphology of LDF trenches qualitatively revealed the oriented
tendency of data similarity and simultaneously indicated the enclosures of each
corresponding data groups. The LDF barrier between those groups carried different
information regarding the data affinity. Physically, the configuration of the LDF
barrier definitely revealed the strength of data affinity and the corresponding local-
ized values can be quantitatively estimated by calculating the difference between
the local minimum (about �0:10 a.u./PDF) and the local maximum (about �0:08
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Fig. 15.4 LDF morphologies of single and two-component datasets. Two distinct trenches at C
and C’ in (h) were entirely surrounding each corresponding LDF peak associated with D and D’,
respectively. The original point of LDF, O, was a saddle point and can represent an energy barrier
between the data groups
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a.u./PDF) in the AA’ direction. In this case, the estimated barrier was 0.02 a.u./PDF
and was almost purely contributed by PEDF. Once the LDF barriers were overcome,
the data affinity raised then the circumstances of data mixture emerged as well.
Mathematically, the localized values of LDF trench and barrier can be, respectively,
determined by estimating the gradient and the Laplacian of LDF in practice.

Evolution of data migration is demonstrated in Fig. 15.5. In Fig. 15.5a, the groups
were just under the contact mode with 6� PtPD. The LDF barrier, as mentioned
in Fig. 15.4f, disappeared due to the trenches merged with each other as shown in
the O point of insertion. While PtPD approached to 3:5� , as shown in Fig. 15.5b,
the mode of weak data overlap occurred. Visually, the original merged trench was
split by the approaching groups into two ripples (E and E’) to indicate the residual
information of data similarity that stood aside the groups as shown in insertion.
Eventually, while the PtPD approached to 2� and even 1� , the groups would
suffer severe overlapping and even mixture situations, respectively, as shown in
Fig. 15.5c. Significant level decrease of LDF ripples under this mode generally
revealed that the enclosures and the main bodies of these groups are gradually
becoming indistinguishable. Fortunately, those demanding information for pattern
recognition under these circumstances still can be extracted from the morphologies
of LDF ripples, i.e., the residual information of data similarity (see E and E’). In
Fig. 15.5c, two symmetrical LDF ripples (see also E and E’) beside the dataset
showed there used to be two groups even though the groups were severely mixed
with each other.

15.4.2 Typical Problem of the Data Clustering:
The Fisher’s Iris

To further illustrate the advantages using DFT-based algorithm, Fig. 15.6 also shows
the clustering results of a typical problem, the Fisher’s iris, which was extracted
from the UC Irvine Machine Learning Repository (UC Irvine Machine Learning
Repository Database 1988). In this dataset, there are three data groups (Iris setosa,
Iris versicolour, and Iris virginica) with four outward appearance features (the
length and the width of sepal and petal, respectively), and each feature had 50
observed values. In this case, the Kato’s theorem was first used to estimate the
group number, and then the values of group number were set to be as start points
for searching each local enclosure of groups sequentially. The boundary conditions
were then numerically provided by searching the iso-surfaces of minimum energy
based on the Noether’s theorem for the practically programming. Obviously, the
group number and the data boundaries can be well evaluated and the clustering
accuracy was limited by the hard-clustering method.



366 C.-C. Chen et al.

Fig. 15.5 Evolution of data migration. (a) The two groups were just under the contact mode with
6� PtPD. The LDF barrier disappeared due to the trenches merge with each other in the O. (b)
The mode of weak data mixture with PtPD approaching to 3:5� . The original merged trench was
divided into two ripples (E and E0) to indicate the residual information of data similarity. (c) The
mixture mode with PtPD approaching to 1� . The demanding information for data clustering under
these circumstance still can be extracted from the morphologies of LDF ripples, i.e., the residual
information of data similarity (see E and E0), as well
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Fig. 15.5 (continued)

15.4.3 Tentative Experiments on Dataset of MRI with Brain
Tumors

Unsupervised learning for brain tumor segmentation of MRI relies on the strategies
of feature selection and is also an important topic both in the fields of computer
vision application and especially the recognition of pathological morphologies.
Several state-of-the-art methods have provided alternative ways for separating
different tumor tissues (Gordillo et al. 2013), and most of them are based on
statistical classifications: probabilistic geometric model (Moon et al. 2002), outlier
detection (Prastawa et al. 2004), Knowledge-Based Techniques (Clark et al. 1998),
SVM (Zhang et al. 2004), and so forth. In the investigation, a physical-based
classification was achieved using the developed DFT-based algorithm. A pixel
classification technique was then proposed by taking the boundary conditions
according to the Noether’s theorem.

Locations of each pixel of the MRI are a set of prior information and thus can
be used to construct a pixel intensity PDF. Thus the corresponding normalized
data PDF was modified as I.r0/ D PW�H

nD1 Mn � ı.r0 � r0n/, where W and H are,
respectively, width and height of MRI images, r0n is the position of the n-th pixel,
and Mn is the corresponding normalized local intensity. Eventually, the PEDF can
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Fig. 15.6 Clustering results of the Fisher’s iris, extracted from the UC Irvine Machine Learning
Repository (UC Irvine Machine Learning Repository Database 1988). In this dataset, there are
three data groups (Iris setosa, Iris versicolour, and Iris virginica) with four outward appearance
features (the length and the width of sepal and petal, respectively), and each feature has 50 observed
values

be simplified as:

uŒI�.r0n/ D
Z

I.r00/
jjr00 � r0njj

dDr00 Š
W�HX

nD1

Mn

jjr00 � r0njj
; (15.12)
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or in matrix form:

W�HX

nD1

Mn

jjr00 � r0njj
D
�

1

jjr00 � r01jj
1

jjr00 � r02jj
: : :

1

jjr00 � r0N jj
�

2

6
6
6
4

M1

M2

:::

MN

3

7
7
7
5
�DM: (15.13)

The factor N D W � H is the total number of pixels of the studied MRI image.
Therefore, the problem was simplified to estimate the distance matrix D since it
contained the information of similarity in terms of 1

jjr00�r0

njj 8n. It is also noted that
the distance matrix should be artificially defined as follows to avoid the issue of
singularity (Capelle 2006):

Dij D
(

1
jjri�rjjj 8i ¤ j

0 8i D j
: (15.14)

Thus, by combining from Eqs. (15.9) to (15.14), the weighting of pixel intensities
and the similarity among the pixels within the MRI sets can be clearly delineated by
the LDF morphologies in an energy representation. Figure 15.7 sequentially shows
sets of MRI image using T1 pre-contrast, T1 post-contrast, and T2 processes, and
their corresponding treatments using DFT-based algorithm, respectively. The MRI
datasets were extracted from Moon et al. (2002). For pure demonstrations of the
subsets defined only by the developed methodology, all of the post-processing MRI
datasets were not treated using any contemporary technique of segmentation or
pattern screening. The data boundary defined purely by the Noether’s theorem can
reflect the steep boundaries at the interfaces between normal and abnormal tissues.
All of the marked errors from the bone and parts of undesired tissues defined by
the subsets were left in all of DFT-treated results of the post-processing MRI. It
is obviously that the DFT treatments on the cases using T1 post-contrast and T2
processes revealed better outcomes of recognitions of brain tumors than that using
T1 pre-contrast. The result of tumor recognition in the T1 pre-contrast image can
be attributed to that the interface changes between normal tissues and the tumor
in this case were smoother than that in the others studied case. It is appealing that
the post-processing MRI using the proposed DFT-based algorithm associated with
other methods of pattern recognition or clustering could benefit the scientists in
the judgment of clinical pathology and/or the applications of high dimensional
biomedical image processing.
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Fig. 15.7 The set of MRI (a)
T1 pre-contrast, (b) T1
post-contrast, and (c) T2, and
their corresponding
treatments using DFT-based
algorithm, respectively. The
DFT treatments on the cases
of T1 post-contrast and T2
revealed better morphologies
of recognitions of brain
tumors than that on the T1
pre-contrast. This
circumstance can be
attributed to the interface
changes between normal
tissue and tumor in the case
of T1 pre-contrast were
smoother than others in the
studied case

15.5 Conclusion

The mathematical framework of the density functional theory potentially provides
an elegant configuration for analyzing the high-dimensional dataset, the Big Data.
Once the dataset can be technically mapped into the oriented Riemannian manifold,
the transformations in energy representations from the pure physics to the data space
can be derived. Then the goal has been achieved in the chapter in a high-dimensional
data perspective. In the presented methodology, scaling effects have been considered
so that the high-dimensional data LDF and EDF can be rebuilt in a corresponding
high-dimensional uniformed coordinates. LDF can be realized as a data distribution
subtracts its local mean, so that the localized features can be significantly reinforced.
Physical phenomena of data migration and the information of data similarity were
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visually clarified by employing LDF trenches and ripples. The LDF barriers were
also used to indicate the threshold of data mixtures and the strength of data affinity.
Meanwhile, the presented clustering methods using LDF provide routes of group
segmentation. The group number can be estimated by the HDF curve.

For a comprehensive demonstration, the proposed DFT-based algorithm consti-
tutes a potential methodology for automatically pattern recognition of the biomed-
ical imageries. By simultaneously considering the weighting of intensities and the
similarity among the pixels in an energy representation, the imaging topologies can
be visually illustrated in LDF morphologies. Hopefully, the presented DFT-based
algorithm can be likewise implemented in the major topics in science, such as the
connectomics, DIADEM (digital reconstruction of axial and dendritic morphology)
challenges, and so forth.
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Chapter 16
Q3-D3-LSA: D3.js and Generalized
Vector Space Models for Statistical
Computing

Lukas Borke and Wolfgang K. Härdle

Abstract QuantNet is an integrated web-based environment consisting of different
types of statistics-related documents and program codes. Its goal is creating
reproducibility and offering a platform for sharing validated knowledge native
to the social web. To increase the information retrieval (IR) efficiency there is
a need for incorporating semantic information. Three text mining models will
be examined: vector space model (VSM), generalized VSM (GVSM), and latent
semantic analysis (LSA). The LSA has been successfully used for IR purposes as
a technique for capturing semantic relations between terms and inserting them into
the similarity measure between documents. Our results show that different model
configurations allow adapted similarity-based document clustering and knowledge
discovery. In particular, different LSA configurations together with hierarchical
clustering reveal good results underM3 evaluation. QuantNet and the corresponding
Data-Driven Documents (D3) based visualization can be found and applied under
http://quantlet.de. The driving technology behind it is Q3-D3-LSA, which is the
combination of “GitHub API based QuantNet Mining infrastructure in R”, LSA
and D3 implementation.
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16.1 Introduction: From Data to Information

The “QuantNet” concept is the effort to collect, interlink, retrieve, and visualize
all the information in the scientific community with the particular emphasis on
statistics. The richness and diversity of various and heterogeneous data types,
descriptions and data sets submitted by numerous authors require an appropriate
text mining model to be established and tuned. The big collection of data has now
to be distilled to human-readable and applicable information and at the same time a
modern and robust visualization framework is crucial.

QuantNet was originally designed as a platform to freely exchange empirical
as well as quantitative-theoretical methods, called Quantlets. It supported the
deployment of computer codes (R, Matlab, SAS, and Python), thus helping to
establish collaborative reproducible research (CRR) in the field of applied statistics
and econometrics at the Collaborative Research Center 649 (http://sfb649.wiwi.
hu-berlin.de/), operated at the Humboldt University of Berlin. The former PHP-
based QuantNet provided users a series of basic functions including registration,
Quantlet uploading, searching, demonstrating, and downloading. Heterogeneous
resources submitted by diverse contributors were stored on a proprietary Linux
server having its own Oracle database. Hence, this IT-infrastructure was quite
restrictive, maintenance-intensive, and also relatively susceptible to errors due to
strict data type requirements, complexity and constraints of the Oracle database.

With the time, some problems and drawbacks became increasingly apparent:

1. lack of version control (VC) and source code management (SCM)
2. lack of distinct abilities of collaboration and project management between teams

and heterogeneous groups of people
3. high personal maintenance costs of the infrastructure
4. database-restrictions and inflexibility of data handling
5. lack of a clear abstraction barrier between the data storage and the text mining

(TM) and visualization layer of the system architecture

The points 1, 2, and 3 could be easily solved by the immanent features of the
“GitHub’s philosophy.” As Marcio von Muhlen (Product Manager at Dropbox)
eloquently expresses (http://marciovm.com/i-want-a-github-of-science/):

GitHub is a social network of code, the first platform for sharing validated knowledge native
to the social web. Open Science efforts like arXiv and PLoS ONE should follow GitHub’s
lead and embrace the social web.

Point 4 could be tackled by using the YAML standard (http://yaml.org/) for
meta information of the resources, thus replacing the necessity of a database
system. More about this human-readable data serialization language can be found
on https://github.com/yaml/yaml-spec. Point 5 could be realized via the GitHub
API (Cosentino et al. 2016). After the challenge of the abstraction barrier was
solved, it was a straightforward procedure to connect the newly created Quantlet
organization (https://github.com/Quantlet) on GitHub with the rest of the existing
system architecture, comprising the TM and D3.js visualization layer.

http://sfb649.wiwi.hu-berlin.de/
http://sfb649.wiwi.hu-berlin.de/
http://marciovm.com/i-want-a-github-of-science/
http://yaml.org/
https://github.com/yaml/yaml-spec
https://github.com/Quantlet
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QuantNet (http://quantlet.de) is now an online GitHub based organization with
diverse repositories of scientific information consisting of statistics related docu-
ments and program codes. The advantages of QuantNet are:

• Full integration with GitHub
• Proprietary GitHub-R-API implementation developed from the core R package

github (Scheidegger 2016) available as GitHub repository “R Bindings for the
Github v3 API” (https://github.com/cscheid/rgithub) from Carlos Scheidegger,
professor in the Department of Computer Science at the University of Arizona

• TM Pipeline providing IR, document clustering and D3 visualizations realized
via QuantMining, a “GitHub API based QuantNet Mining infrastructure in R”

• Tuned and integrated search engine within the main D3 Visu based on validated
meta information in Quantlets

• Ease of discovery and use of your technology and research results, everything in
a single GitHub Markdown page

• Standardized audit and validation of your technology by means of the Style
Guide (https://github.com/Quantlet/Styleguide-and-FAQ) and Yamldebugger
(https://github.com/Quantlet/yamldebugger) (Borke 2017b)

16.1.1 Transparency, Collaboration, and Reproducibility

QuantNet: Open Access Code-Sharing Platform

• Quantlets: R, Matlab, SAS, and Python programs, various authors and topics
• QuantNetXploRer: Q3-D3-LSA driven and GitHub based search engine
• Knowledge discovery of brand-new research topics but also of dormant and

archived research materials as required by good scientific practice

The Q3-D3-LSA Technology Comprises the Following Main Components

• Q3 (Quantlets, QuantNet, QuantMining): Scientific data pool and data mining
infrastructure for CRR

• D3 (Data-Driven Documents): Knowledge discovery via information visual-
ization by use of the D3 JavaScript library combining powerful visualization
components and a data-driven approach

http://quantlet.de
https://github.com/cscheid/rgithub
https://github.com/Quantlet/Styleguide-and-FAQ
https://github.com/Quantlet/yamldebugger
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• LSA (Latent Semantic Analysis): Semantic embedding for higher clustering
performance and automatic document classification by topic labeling

16.2 Related Work

Feinerer and Wild (2007) applied LSA based algorithms in a fully automated
way on transcripts of interviews. The machine results were compared against
marketing expert judgments with the outcome that the proposed algorithms provided
perfect reliability with appropriate validity in automated coding and textual analysis.
Feinerer and Wild (2007) could guarantee reliability on a very high level, while at
the same time avoiding the main disadvantages of qualitative methods performed by
humans like their inherent subjectivity and their high costs.

Linstead et al. (2008) pointed out that while there has been progress in developing
sourcecode-specific search engines in recent years (e.g., Koders, Krugle, and
Google’s CodeSearch), these systems continue to focus strictly on text information
retrieval, and do not appear to leverage the copious relations that can be extracted
and analyzed from code. By combining software textual content with structural
information captured by their CodeRank approach, they were able to significantly
improve software retrieval performance. Developing and applying probabilistic
models to automatically discover the topics embedded in the code and extracting
topic-word and author-topic distributions, the authors provided a statistical and
information-theoretic basis for quantifying and analyzing developer similarity and
competence, topic scattering, and document tangling, with direct applications to
software engineering.

Encouraged by the presented studies, we propose in this paper to use the latent
semantic analysis (LSA) (Deerwester et al. 1990) as a technique capturing semantic
relations between terms and inserting them into the similarity measure between
documents. In this approach, the documents are implicitly mapped into a “semantic
space,” where documents that do not share any terms can still be close to each
other if their terms are semantically related. The semantic similarity between two
terms is inferred by an analysis of their co-occurrence patterns: terms that co-occur
often in the same documents are considered as related. This statistical co-occurrence
information is extracted by means of a singular value decomposition (SVD) of the
“term by document” matrix in the way described in Sect. 16.4.

16.3 Q3-D3 Genesis

D3 (https://d3js.org/) is a rather new and not traditional visualization framework
introduced by Bostock et al. (2011). D3.js (or D3 for Data-Driven Documents)
is a JavaScript library for producing dynamic, interactive data visualizations in
web browsers. It makes use of the widely implemented SVG, HTML5, and CSS

https://d3js.org/


16 Q3-D3-LSA: D3.js and Generalized Vector Space Models for Statistical. . . 381

standards. Instead of establishing a novel graphical grammar, D3 solves a different,
smaller problem: efficient manipulation of documents based on data. The software
design is heavily influenced by prior visualization systems, including Protovis.

The D3 gallery (available at http://bl.ocks.org/mbostock) demonstrates diverse
capabilities and performance of the D3 technology, providing a huge collection of
D3 visualization examples. Moreover, various applications and frameworks for data
visualization have been built using D3, combining its methods with other modern
technologies. Examples of these include, among many others, a data visualization
library Plotly (see https://plot.ly) and a Force-directed Network Visualization
developed by Jim Vallandingham (see https://flowingdata.com/2012/08/02/how-to-
make-an-interactive-network-visualization/).

Impressed by the performance and universal applicability of the D3 framework,
we decided to build the new QuantNet visualization upon the D3 architecture. The
first steps are summarized in chapter “I. Genesis (Nov 2013–Aug 2014).” Basically,
all main data objects from QuantNet could be exported to and visualized in the D3
framework templates, amongst them the whole “QuantNet universe” and “galaxies”
representing individual subsets like books and projects. Further, co-occurrence
information about authors and keywords as well as further details like creation
times, etc., could be exploited. Not only all source code files from Q3-D3 Genesis
are available for free use and reproducibility but also live examples on GitHub pages
(Borke and Bykovskaya 2017b).

QuantNet contains also all Quantlets (which serve as supplementary examples
and exercises) from the following books: MVA (Härdle and Simar 2015), SFE
(Franke et al. 2015), SFS (Borak et al. 2013), XFG (Härdle et al. 2008). These
book abbreviations are used in some figures in this section and in Sect. 16.5.

One of the most popular D3 layouts is the “Force-Directed Graph,” which was
extensively deployed in the “Genesis” chapter and which is a fundamental part
of the final QuantNet visualization (https://bl.ocks.org/mbostock/4062045). The
layout is based on special graph-drawing methods called force-directed techniques.
These techniques represent a graph as a system of physical objects with diverse
physical forces (e.g., electric) pulling and pushing the objects apart. The optimal
visualization layout implies that all these forces are in equilibrium, see for more
details Michailidis (2008) (Figs. 16.1, 16.2, 16.3, 16.4, 16.5, 16.6, and 16.7).

Subsequently, other D3 layouts were examined, which is documented in the
chapters from “II. Shakespeare works” to “VI. QuantNet 2.0 @ GitHub.” Fig-
ure 16.27 shows two visualization examples based on two different D3 layouts:
Circle Packing and Expandable Tree. They are realized via the following D3 classes:
d3.layout.pack and d3.layout.tree.

Chapter “II. Shakespeare works” served as a simple and impressive example.
Further, diverse subsets of QuantNet documents and code files in different stages of
development were visualized in five D3 layouts, which are mainly designed for the
graphical representation of hierarchically structured data. Specially for this purpose,
a dendrogram parser was constructed. Starting with the “document term matrix” of
the Quantlets, the R code generated the tree structure and cluster labels based on the
dendrogram which was created by the R function hclust. Finally, the recursively

http://bl.ocks.org/mbostock
https://plot.ly
https://flowingdata.com/2012/08/02/how-to-make-an-interactive-network-visualization/
https://flowingdata.com/2012/08/02/how-to-make-an-interactive-network-visualization/
https://bl.ocks.org/mbostock/4062045
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Fig. 16.1 Q3-D3
Genesis—Chapters
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Fig. 16.2 The entire
QNet-Universe

Fig. 16.3 Galaxy MVA with
clusters



384 L. Borke and W. K. Härdle

Fig. 16.4 The entire
QNet-Universe with clusters

structured tree list within R was transformed to a JSON (http://json.org) file, which
is subsequently required by the D3 designs.

Finally, we see four different examples of the QuantNet Visu from quantlet.de,
see Figs. 16.8, 16.9, 16.10, and 16.11. The TM pipeline retrieves the meta informa-
tion of Quantlets via the GitHub-R-API, then the LSA model is applied, clusters
and labels are generated, and the processed data is transferred via JSON into the
D3 Visu application. In the following section the vector space representations (with
LSA as a special case of them) will be described in more detail (Fig. 16.12).

16.4 Vector Space Representations

16.4.1 Text to Vector

The vector space model (VSM) representation for a document d has been introduced
by Salton et al. (1975). Given a document, it is possible to associate with it a bag
of terms (or bag of words) by simply considering the number of occurrences of
all terms contained. Typically words are “stemmed,” meaning that the inflection
information contained in the last few letters is removed.

A bag of words has its natural representation as a vector in the following way. The
number of dimensions is the same as the number of different terms in the corpus,
each entry of the vector is indexed by a specific term, and the components of the
vector are formed by integer numbers representing the frequency of the term in
the given document. Typically such a vector is then mapped/transformed into some

http://json.org
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Fig. 16.5 Adjacency matrix of XFG

other space, where the word frequency information is merged/rescaled considering
other information like word importance, relevance and semantic, assigning to
uninformative words lower or no weight.

Suppose we have a set of documents Q and a set of terms T. Define tf .d; t/
as the absolute frequency of term t 2 T in d 2 Q and idf .t/ D log.jQj=nt/
as the inverse document frequency, with nt D jfd 2 Qjt 2 dgj. Let w.d/ D
fw.d; t1/; : : : ;w.d; tm/g>, d 2 Q, be the weighting vector of the given document.
Each w.d; ti/ is calculated by a weighting scheme, see next Sect. 16.4.2. Then
D D Œw.d1/; : : : ;w.dn/� is the “term by document” matrix, or in abbreviated form
TDM.

In this way a document is represented by a (column) vector w.d/, in which
each entry reflects the relevance/importance of a particular word stem used in the
document. Typically d can have tens of thousands of entries, often more than the
number of documents. Furthermore, for a particular document the representation is
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Fig. 16.6 Authors: co-occurrence

typically extremely sparse, having only relatively few non-zero entries, more details
in Sect. 16.6.2.

16.4.2 Weighting Scheme, Similarity, Distance

A widely used weighting scheme in IR and TM is the tf -idf , short for term
frequency–inverse document frequency. The concept of idf was introduced as
“term specificity” by Jones (1972). Although it has worked well as a heuristic, its
theoretical foundations have been troublesome for at least three decades afterward,
with many researchers trying to find information theoretic justifications for it.
Robertson (2004) (who worked from 1998 to 2013 in the Cambridge laboratory of
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Fig. 16.7 Keywords: co-occurrence

Microsoft Research and contributed to the Microsoft search engine Bing) concludes
32 years later in the same journal “Journal of Documentation”:

However, there is a relatively simple explanation and justification of IDF in the relevance
weighting theory of 1976. This extends to a justification of TF*IDF in the Okapi BM25
model of 1994. IDF is simply neither a pure heuristic, nor the theoretical mystery many
have made it out to be. We have a pretty good idea why it works as well as it does.

The (normalized) tf -idf weighting scheme is defined as

w.d; t/ D tf .d; t/idf .t/
qPm

jD1 tf .d; tj/2idf .tj/2
;m D jTj: (16.1)

Hence, the similarity of two documents d1 and d2 (or the similarity of a document
and a query vector q) can be computed based on the inner product of the vectors.
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Fig. 16.8 Orbit clustering of QuantNet, grouped by books and projects

Clusters:

(352)SEF
(288)MVA
(211)STF
(172)SFS
(150)SMS
(78)
(77)MSR
(73)SPM
(64)XFG
(49)BCS
(34)MSE
(27)COP
(26)new book
(20)DSFM
(15)IBT
(15)MMSTAT
(12)SFB 649 DP 2012-066
(10)MTS
(10)CRIX
(9)TEDAS
(5)TERES
(4)SPA
(4)TXT
(3)PEC

(3)LQR
(2)SFB 649 DP 2012-030
(2)ARR
(2)FASTEC
(2)SIM
(1)FSS

Fig. 16.9 Force-Directed Graph of QuantNet, linked by “see also” connections
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Fig. 16.10 Orbit clustering of QuantNet, subset grouped by Springer books. Quantlets containing
the search query “black scholes” are highlighted in red

The (normalized tf -idf ) similarity S of two documents d1 and d2 is given by

S.d1; d2/ D
mX

kD1
w.d1; tk/ � w.d2; tk/ D w.d1/

>w.d2/: (16.2)

A frequently used distance measure is the Euclidean distance:

dist2.d1; d2/ D
v
u
u
t

mX

kD1
fw.d1; tk/� w.d2; tk/g2: (16.3)

It holds the general relationship:

cos� D x>y
jxj � jyj D 1 �

1

2
dist2

�
x

jxj ;
y

jyj
�

; (16.4)

with � as the angle between x and y. Substituting x
jxj by w.d1/ and y

jyj by w.d2/,
we have an easily computable transformation between the tf -idf similarity and
the Euclidean distance. In particular when dealing with big data this fact can
be exploited, since many standard clustering methods expect a distance matrix
in advance. Usually, it is more efficient to first calculate the similarity matrix,
exploiting the strong sparsity in text documents, and then apply the transformation
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GoogleCorrelatedWords_and_FR
Mcomparison

Cluster Name: correl, visual,
paramet, variabl, interact
Elements in Cluster: 30

Size of Metainfo in Byte: 1592

Software: r
Software: 

Book/Project: Frühsignale für
Änderungen von

Konjunkturindikatoren durch
Analysen von Big Data

RR

Fig. 16.11 Orbit clustering of QuantNet, LSA model, k-means, 40 clusters. Quantlets containing
the search query “big data” are highlighted in red

Fig. 16.12 Heatmap of Ts in three Shakespeare’s tragedies
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Fig. 16.13 Wordcloud of all words (tf � 5) in three Shakespeare’s tragedies in corpus Q

in Formula (16.4) to obtain the distance matrix. Figure 16.13 displays a word cloud
of the 3 Shakespeare tragedies (Hamlet, Romeo and Juliet, Julius Caesar) that
constituted the corpus Q. For clarity only word with term frequency > D 5 are
shown.

16.4.3 Shakespeare’s Tragedies

The basic concepts of the introduced vector space representations will be illustrated
by the example of Shakespeare’s works, available under http://shakespeare.mit.
edu. Let Q D fd1; d2; d3g be the document corpus containing the following
Shakespeare’s tragedies: d1 = “Hamlet” (total word number: 16,769); d2 = “Julius
Caesar” (total word number: 11,003); d3 = “Romeo and Juliet” (total word number:
14,237). After some text preprocessing as in Sect. 16.6.1, the TDM is a 5521 � 3

http://shakespeare.mit.edu
http://shakespeare.mit.edu
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Fig. 16.14 Radar chart: weightings of terms in Ts of tragedies in corpus Q

matrix. Consider the special vocabulary Ts, selected amongst 100 most frequent
words:

Ts D fart; bear; call; day; dead; dear; death; die; eye; fair; father; fear;

friend; god; good; heart; heaven; king; ladi; lie; like; live; love;

make;man;mean;men;must; night; queen; think; timeg
D ft1; : : : ; t32g

Figure 16.14 shows the weighting vectors w.d/ of the tragedies in Q (Hamlet,
Julius Caesar, Romeo and Juliet) wrt. to the special vocabulary Ts in a radar chart.
The highest term weightings w.d; t/ are distributed as follows: w.d1; t18/, t18 OD
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“king”; w.d1; t30/, t30 OD “queen”; w.d2; t15/, t15 OD “good”; w.d2; t27/, t27 OD “men”;
w.d3; t19/, t19 OD “ladi”; w.d3; t23/, t23 OD “love.” The heatmap in Fig. 16.12 displays
the same information in another representation.
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MS and MD for all 5521 terms:
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Finally, we present the similarity matrices MS and distance matrices MD for the
selected tragedies in Q. On the one hand, wrt. to the special vocabulary Ts, on the
other hand, wrt. to the full vocabulary containing 5521 terms. Every entry in MS and
MD corresponds to the value calculated by Formula (16.2) and (16.3), respectively,
for any given document pair di; dj 2 Q. The weighting scheme was calculated via
the normalized tf weight. In the case of a few documents in the corpus the document
frequency idf is inappropriate as many frequent terms have a high probability to be
present in all documents, in this case only three. Therefore, the idf weighting share
would make many terms vanish, which would considerably decrease the overall
similarity between two documents which is calculated by the scalar product of their
term weights.

16.4.4 Generalized VSM (GVSM)

One of the problems with basic VSM representations as presented in Sect. 16.4.1
is that they treat terms as uncorrelated, assigning them into orthogonal directions in
the feature space. A classical example is synonymous words which contain the same
information, but are assigned distinct components (Srivastava and Sahami 2009).
As a consequence, only documents that share many terms (which serve as vector
components) can be clustered into common topics and clusters. But in reality words
are correlated, and sometimes even synonymous, so that documents with very few
common terms can potentially be on closely related topics. Such similarities cannot
be detected by the basic vector space model (BVSM) (Salton et al. 1975). This raises
the question of how to incorporate information about semantics into the feature map,
so as to link documents that share “related” terms?
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So far, we have identified the following drawbacks of the classical tf -idf
approach and of the BVSM in general: (1) uncorrelated/orthogonal terms in the
feature space, (2) documents must have common terms to be similar, (3) sparsity of
document vectors and similarity matrices.

Over the time many solutions were proposed by various researchers, first of
them Wong et al. (1985) and Deerwester et al. (1990). We will treat them later
in this section. Other noteworthy books giving a general survey of the big topic
“Text mining and different models” are Berry (2003) and Srivastava and Sahami
(2009). The most popular solutions are: (1) using statistical information about term–
term correlations (GVSM in Sect. 16.4.4.2); (2) incorporating information about
semantics (semantic smoothing, LSA in Sect. 16.4.4.3).

More generally, we can consider transformations of the document vectors by
some mapping P. The simplest case involves linear transformations, where P is any
appropriately shaped matrix. In this case the generalized similarity S has the form:

SP .d1; d2/ D .Pd1/> .Pd2/ D d>1 P>Pd2; d1; d2 2 Q: (16.5)

Every P defines another generalized vector space model (GVSM), resulting in
the similarity matrix:

M.P/
S D D>

�
P>P

	
D;

with D being the “term by document” matrix as defined in Sect. 16.4.1.

16.4.4.1 Basic VSM (BVSM)

The BVSM was introduced by Salton et al. (1975) and uses the vector representation
with no further mapping, the VSM shows P D I in this case. Even in this simple
case the “matrix nature” of VSM allows different embeddings of tf -idf weightings
into the matrix representations.

• P D Im and w.d/ D ftf .d; t1/; : : : ; tf .d; tm/g> lead to the classical tf -similarity
Mtf

S D D>D
• diagonal P.i; i/idf D idf .ti/ and w.d/ D ftf .d; t1/; : : : ; tf .d; tm/g> lead to the

classical tf -idf -similarity Mtfidf
S D D>.Pidf />Pidf D

• starting with w.d/ D ftf .d; t1/idf .t1/; : : : ; tf .d; tm/idf .tm/g> and P D Im results
in the classical tf -idf -similarity Mtfidf

S D D>ImD D D>D as well

16.4.4.2 GVSM: Term–Term Correlations

An early attempt to overcome the limitations of the BVSM was proposed by Wong
et al. (1985) under the name of generalized VSM, or GVSM. A document is
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characterized by its relation to other documents in the corpus as measured by the
BVSM. The mapping P and the resulting model specifications are as follows:

• P D D> is the linear mapping

• S .d1; d2/ D
�
D>d1

	> �
D>d2

	 D d>1 DD>d2 is the document similarity
• MTT

S D D>
�
DD>

	
D is the similarity matrix

DD> is called a “term by term” matrix, having a nonzero ij entry if and only if
there is a document containing both the i-th and the j-th term. Thus, terms become
semantically related if they co-occur often in the same documents. The documents
are mapped into a feature space indexed by the documents in the corpus, as each
document is represented by its relation to the other documents in the corpus. If the
BVSM represents a document as bag of words, the GSVM represents a document
as a vector of its similarities relative to the different documents in the corpus. If
there are less documents than terms, then we additionally achieve a dimensionality
reduction effect. In order to avoid misleading we will refer to this model as the
GVSM(TT) for the rest of our article, hence distinguishing it from other possible
GVSM representations which are induced by another mapping P.

16.4.4.3 GVSM: Latent Semantic Analysis (LSA)

Latent semantic analysis (LSA) is a technique to incorporate semantic information
in the measure of similarity between two documents (Deerwester et al. 1990). LSA
measures semantic information through co-occurrence analysis in the corpus. The
document feature vectors are projected into the subspace spanned by the first k
singular vectors of the feature space. The projection is performed by computing
the singular value decomposition (SVD) of the matrix D D U†V>. Hence, the
dimension of the feature space is reduced to k and we can control this dimension by
varying k. This is achieved by constructing a modified (or truncated) matrix Dk from
the k-largest singular values �i, i D 1; 2; 3; : : : ; k, and their corresponding vectors:
Dk D Uk†kV>k . Based on the SVD factors, the resulting model specifications are as
follows:

• P D U>k WD IkU> is the projection operator onto the first k dimensions, Ik is a
m �m identity matrix having ones only in the first k diagonal entries, k < m

• MLSA
S D D>

�
UIkU>

	
D is the similarity matrix

• Dk D UPD D Uk†kV>k D U†kV> is the truncated TDM which is re-embedded
into the original feature space, PD D †kV> is the corresponding counterpart in
the semantic space

• Derr D D � Dk D U .† �†k/V> is the approximation error of the SVD
truncation

The k dimensions can be interpreted as the main semantic components/concepts
and UkU>k D UIkU> as their correlation. Some authors refer to UIkU> as a
“semantic kernel” or “latent semantic kernel.” It can be shown that MLSA

S D
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VƒkV>. Starting with VƒV> D V†>†V> D V†>U>U†V> D D>D and
diagonal ƒii D �i D �2i with eigenvalues of D>D, the truncated diagonal ƒk

consists of the first k eigenvalues and zero-values else. It should be noted that
D>D is the BVSM similarity matrix. For more technical and scientific proofs
and interpretations of this paragraph, we recommend the following publications:
Cristianini et al. (2002), Berry (2003) and Srivastava and Sahami (2009). The
visualization of the “LSA anatomy” in Sect. 16.6.4 may also be helpful.

16.4.4.4 Closer Look at the LSA Implementation

Several classes of adjustment parameters can be functionally differentiated in
the LSA process. Every class introduces new parameter settings that drive the
effectiveness of the algorithm. The following classes have been identified so far
by Wild and Stahl (2007):

1. Textbase compilation and selection
2. Preprocessing: stemming, stopword filtering, special vocabulary, etc.
3. Weighting schemes: local weights (none (i.e., tf ), binary tf , log tf , etc.); global

weights (normalization, idf , entropy, etc.)
4. Dimensionality: singular values k (coverage of total weight = 0.3, 0.4, 0.5, etc.)
5. Similarity measurement: cosine, best hit, mean of best, pearson, spearman, etc.

The latent semantic space can be either created directly by using the documents,
in our case Quantlets, letting the matrix D be the weighting vectors of the
Quantlets or it can be first trained by domain-specific and generic background
documents. Generic texts add thereby a reasonably heterogeneous amount of
general vocabulary, whereas the domain-specific texts provide the professional
vocabulary. The Quantlets would be then folded into the semantic space which was
created in the previous SVD process. By doing so, one gains in general a higher
retrieval performance as the vocabulary set is bigger and more semantic structure is
embedded.

Bradford (2009) presented an overview of 30 sets of studies in which the
LSA performance in text processing tasks could be compared directly to human
performance on the same tasks. In half of the studies, performance of LSA was
equal to or better than that of humans.

Miller et al. (2009) proposed a family of LSA-based search algorithms which is
designed to take advantage of the semantic properties of well-styled hyperlinked
texts such as wikis. Performance was measured by having human judges rating
the relevance of the top four search results returned by the system. When given
single-term queries, the highest-performing search algorithm performed as well as
the proprietary PageRank-based Google search engine. The comparison with respect
to Google is especially promising, given that the presented system operated on less
than 1% of the original corpus text, whereas Google uses not only the entire corpus
text but also meta data internal and external to the corpus.
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Fernández-Luna et al. (2011) proposed a recommender agent based on LSA
formalism to assist the users that search alone to find and join to groups with similar
information needs. With this mechanism, a user can easily change her solo search
intent to explicit collaborative search.

A comparison of three WordNet related methods for taxonomic-based sentence
semantic relatedness was examined in Mohamed and Oussalah (2014). Using a
human annotated benchmark data set, all three approaches achieved a high positive
correlation, reaching up to r D 0:88 with comparison to human ratings. In parallel,
two other baseline methods (LSA as part of it) evaluated on the same benchmark
data set. LSA showed comparable correlation as the more sophisticated WordNet
based methods, (https://wordnet.princeton.edu).

16.4.4.5 GVSM Applicability for Big Data

Having n documents with a vocabulary of m terms and LSA truncation to k
dimensions, there are the following memory space requirements for the TDM
representations:m�n matrix cells in BVSM .O.mn//; n2 matrix cells in GVSM(TT)�
O.n2/

	
; k� .kCmC n/matrix cells in LSA(k) .O.kn//. In the context of big data

the n will usually dominate the other quantities m and k, furthermore k is fixed, see
for comparison Table 16.1. Clearly, the TDM D in the BVSM is the first step for
all three models. Hence, the basic calculation and storage demand is dictated by D.
Concerning the memory demands, the GVSM(TT)-TDM would be maximal. For a
fixed k the memory demand for a TDM in LSA would be less than in BVSM: O.kn/
versus O.mn/. The calculation of the GVSM(TT)-TDM would involve a matrix
multiplication D>D, see Sect. 16.4.4.2, implying n2�m multiplications. Concerning
the LSA, which is performed by SVD, the situation is more complex.

There are numerous theoretical approaches and software implementations with
respect to the SVD topic. Several state-of-the-art algorithms including the Lanczos-
based truncated SVD and the corresponding implementations are outlined in
Korobeynikov (2010) and Golyandina and Korobeynikov (2014). The R package
svd (Korobeynikov et al. 2016) provides “Interfaces to Various State-of-Art SVD
and Eigensolvers” (https://github.com/asl/svd). This package is basically an R
interface to the software package PROPACK containing a set of functions for
computing the singular value decomposition of large and sparse or structured

Table 16.1 Benchmark for TDM matrix creation in BVSM (package tm) and LSA(k)
(propack.svd from package svd), k = 100, elapsed time in seconds

Time in seconds for BVSM LSA(k) BVSM + LSA(k) Size of TDM (BVSM)

10.570 Org’s 39 149 188 14238 � 10570
16.803 Org’s 51 264 315 16029 � 16803
30.437 Org’s 69 637 706 18501 � 30437
45.669 Org’s 93 990 1083 20368 � 45669
97.444 Org’s 159 2673 2832 23667 � 97444

https://wordnet.princeton.edu
https://github.com/asl/svd
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matrices, which are written in Fortran and C (http://sun.stanford.edu/%7Ermunk/
PROPACK/). Although the R package lsa (Wild 2015), which performs a full SVD,
is sufficient for the QuantNet data, Lukas Borke has run some benchmarks applying
the function propack.svd from the R package svd to examine its performance.
The main advantages are the time saving partial SVD calculation (depending on k)
and the fast C optimized implementation. For this purpose he has extracted several
data sets from GitHub by means of the “GitHub Mining Infrastructure in R” (see
Sect. 16.8.1). The collected data are meta information describing samples of GitHub
organizations.

As can be inferred from Table 16.1, the time complexity both for BVSM and LSA
TDM matrix creation is feasible. 10,570 data sets from GitHub organizations require
less than 1 min for BVSM and two and a half minutes for LSA. Increasing the
number of data up to roughly 100,000 samples leads to less than 3 min calculation
time for BVSM and 45 min for LSA. In simpler terms, one can create a TDM
for 100,000 documents both in BVSM and LSA in less than 1 h on a single CPU
core without any parallelization expense. A smaller data set like 10,000 documents
can be handled on a usual PC with 8 GByte RAM. For larger data sets a Linux
server (Research Data Center) with an available memory of 256 GiB was used.
Since this benchmark was focused on the time complexity, no deeper analysis was
undertaken concerning the memory demand. At any time point of the benchmark
process the available RAM of 256 GiB was far away from being exhausted. Some
of the above listed data sets are available for visual data mining under http://bitquery.
de/dp (Borke and Bykovskaya 2017a).

Concluding we can say that a Linux server with 256 GiB RAM has sufficient
performance reserves for BVSM and LSA processing of big data, having 100,000
documents and an hour processing time as a “lower boundary.” As software one
needs only an R installation and some freely available R packages (tm, svd as
the most crucial ones). All tests were conducted on a single core, hence there is
additional potential to speed up the calculation time. In Theußl et al. (2012) a tm
plug-in called tm.plugin.dc is presented implementing a distributed corpus class
which can take advantage of the Hadoop MapReduce library for large-scale text
mining tasks. With a quadratic space complexity (memory demand) of O.n2/ and
a cubic time complexity of n2 � m multiplications, the GVSM(TT) model is the
worst choice among the considered TM models, unless some optimization (like
parallelization, exploiting theoretical properties like sparsity, etc.) is done.

16.5 Methods

16.5.1 Cluster Analysis

If the data can validly be summarized by a small number of groups of objects, then
the group labels may provide a very concise description of patterns of similarities
and differences in the data. The need to summarize data sets in this way is

http://sun.stanford.edu/%7Ermunk/PROPACK/
http://sun.stanford.edu/%7Ermunk/PROPACK/
http://bitquery.de/dp
http://bitquery.de/dp
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increasingly important because of the growing volumes of data now available
in many areas of science, and the exploration process of such data sets using
cluster analysis and other multivariate analysis techniques is now often called data
mining. In the twenty-first century, data mining has become of particular interest
for investigating material on the World Wide Web, where the aim is to gather and
analyze useful information or knowledge from web page contents (Everitt et al.
2011).

Our objectives are to determine topic labels and assign them to (text) documents.
A confident and reliable automatic process would completely bypass the expense of
having humans, whose task is to provide labels. But the process known as document
clustering is less than perfect. The labels and their assignment may vary depending
on humans or different objective processes that incorporate external information
such as stock price change. Document clustering assigns each of the documents in
a collection to one or more smaller groups called clusters (Weiss et al. 2010).

The result of clustering is typically a partition (also called clustering) C ,
a set of clusters C. Each cluster/group consists of a number of documents d.
Objects - in our case documents - of a cluster should be similar within the same
group and dissimilar to documents of other groups. The code for the reproducibility
of the clustering in Fig. 16.15 is available as interactive in http://quantlet.de/

16.5.1.1 Partitional Clustering

k-Means is a classical clustering method that has been adapted to documents. It is
very widely used for document clustering and is relatively efficient. The k-means
algorithm aims to partition n observations/objects into k clusters in which each
observation is assigned to the cluster with the nearest mean, serving as a prototype
of the cluster. k-Means typically converges to its minimum after relatively few
iterations.

k-Medoids clustering is related to the k-means. It is also referred to as partitioning
around medoids or PAM. Both variants attempt to minimize the distance between
points labeled to be in a cluster and a point designated as the center/medoid of that
cluster. In contrast to the k-means, k-medoids chooses datapoints as centers and
works with an arbitrary matrix of distances. Concerning their R implementations
kmeans and pam, the function pam is more robust because it minimizes a sum
of unsquared dissimilarities. Moreover, pam does not need initial guesses for the
cluster centers, contrary to kmeans (Kaufman and Rousseeuw 2008).

In Fig. 16.16 kmeans produced eight clusters with the following topic assign-
ments: (1) “distribut copula normal gumbel pdf”; (2) “call option blackschol put
price”; (3) “return timeseri dax stock financi”; (4) “portfolio var pareto return risk”;
(5) “interestr filter likelihood cir term”; (6) “visual dsfm requir kernel test”; (7)
“regress nonparametr linear logit lasso”; (8) “cluster analysi pca principalcompon
dendrogram.” The cluster topics were created based on the most frequent terms of
cluster centroids. A multidimensional scaling (MDS) output of the pam function
with cluster labeling can be reproduced by YAMLcentroids.

http://quantlet.de/
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Fig. 16.15 k-Means clustering and metric MDS for MVA quantlets via Plotly

Fig. 16.16 LSA:50 geometry of Quantlets via MDS (left) and t-SNE (right), clustered by k-means
with generated topics
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16.5.1.2 Hierarchical Clustering

Hierarchical clustering algorithms got their name since they form a sequence of
groupings or clusters that can be represented in a hierarchy of nested clusters
(Steinbach et al. 2000). This hierarchy can be obtained either in a top-down or
bottom-up fashion. Top-down means that we start with one cluster that contains
all documents. This cluster is stepwise refined by splitting it iteratively into sub-
clusters. One speaks in this case also of the so-called “divisive” algorithm. The
bottom-up or “agglomerative” procedures start by considering every document as
an individual cluster. Then the most similar clusters are iteratively merged, until all
documents are contained in one single cluster. In practice the divisive procedure
is almost of no importance due to its generally bad results. Therefore, only the
agglomerative variants are outlined in the following. Typical agglomeration methods
are “ward.D”, “ward.D2”, “single”, “complete” and “average”. This family of
agglomeration methods will be abbreviated as HC in the following, all of them are
available by means of the R function hclust.

Hierarchical (agglomerative) clustering is a popular alternative to k-means
clustering of documents. As explained above, the method produces clusters, but
they are organized in a hierarchy comparable with a table of contents for a book. The
binary tree produced by HC is a map of many potential groupings of clusters. One
can process this map to get an appropriate number of clusters. That is more difficult
with k-means, where the procedure usually must be restarted when we specify a new
value of k.

Hierarchical classifications produced by either the agglomerative or divisive
route may be represented by a two-dimensional diagram known as a dendrogram,
which illustrates the fusions or divisions made at each stage of the analysis. Two
examples of such a dendrogram are given in Figs. 16.17 and 16.29.

16.5.2 Cluster Validation Measures

Internal validation measures take only the data set and the clustering partition as
input and use intrinsic information in the data to assess the quality of the clustering.
For internal validation, we decided for measures that reflect the compactness,
connectedness and separation of the cluster partitions. Connectedness relates to
what extent observations are placed in the same cluster as their nearest neighbors
in the data space, and is measured by the connectivity method as suggested by
Handl et al. (2005). Compactness assesses cluster homogeneity, usually by looking
at the intra-cluster variance, while separation quantifies the degree of separation
between clusters, usually by measuring the distance between cluster centroids. Since
compactness and separation demonstrate opposing trends (compactness increases
with the number of clusters but separation decreases), popular methods combine
the two measures into a single score. The Dunn Index (Dunn 1974) and Silhouette
Width (Rousseeuw 1987) are both examples of non-linear combinations of the
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Fig. 16.17 Combined representation of Shakespeare’s works: their similarity matrix via heat map,
histogram of the matrix values and dendrograms of the row and column values (created via
heatmap.2 function from the R package gplots)

compactness and separation. Together with the connectivity method they constitute
the three internal measures available in the R package clValid (Brock et al. 2008).
The details of each measure are given below, and for a good overview of internal
measures in general, see Handl et al. (2005).

16.5.2.1 Connectivity

The connectivity indicates the degree of connectedness of the clusters, as deter-
mined by the k-nearest neighbors. Let N denote the total number of observations
(documents) in a data set. Define nni. j/ as the jth nearest neighbor of observation
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i, and let xi;nni. j/ be zero if i and j are in the same cluster and 1=j otherwise. Then,
for a particular clustering partition C D fC1; : : : ;CKg of the N observations into K
disjoint clusters, the connectivity is defined as

Conn.C / D
NX

iD1

LX

jD1
xi;nni. j/ ; (16.6)

where L is a parameter giving the number of nearest neighbors to use. The
connectivity has a value between zero and1 and should be minimized.

16.5.2.2 Silhouette

The Silhouette of a datum is a measure of how closely it is matched to data within
its cluster and how loosely it is matched to data of the neighboring cluster, i.e. the
cluster whose average distance from the datum is lowest. A Silhouette close to 1
implies the datum is in an appropriate cluster, while a Silhouette close to �1 implies
the datum is in the wrong cluster. For observation i, it is defined as

S.i/ D bi � ai
max.bi; ai/

; (16.7)

where ai is the average distance between i and all other observations in the same
cluster, and bi is the average distance between i and the observations in the “nearest
neighbouring cluster,” i.e.

bi D min
Ck2CnC.i/

X

j2Ck

dist.i; j/

n.Ck/
; (16.8)

where C.i/ is the cluster containing observation i, dist.i; j/ is the distance
(e.g., Euclidean, Manhattan) between observations i and j, and n.C/ is the
cardinality of cluster C. The Silhouette Width is the average of each observation’s
Silhouette value:

Silh.C / D 1

N

NX

iD1
S.i/ : (16.9)

The Silhouette Width thus lies in the interval Œ�1; 1�, and should be maximized. For
more information, see the help page for the silhouette function in the package
cluster (Maechler et al. 2016).
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16.5.2.3 Dunn Index

The Dunn Index is the ratio of the smallest distance between observations not in the
same cluster to the largest intra-cluster distance. It is computed as

Dunn.C / D
min

Ck;Cl2C ;Ck¤Cl

�

min
i2Ck; j2Cl

dist.i; j/

�

max
Cm2C

diam.Cm/
; (16.10)

where diam.Cm/ is the maximum distance between observations in cluster Cm. The
Dunn Index has a value between zero and1, and should be maximized.

16.5.3 Visual Cluster Validation

As long as the data set remains limited and the topic number is of modest size,
cluster validation can be easily conducted using visual inspection of the generated
topics and the resulting cluster content, comparing them with prior domain specific
knowledge. Figure 16.18 demonstrates that through the example of the Quantlets
belonging to the book SFE : “Statistics of Financial Markets” (Franke et al. 2015).
Incorporating the domain knowledge of the SFE book, the dominating first 8
clusters/topics (corresponding to 96% of the data set) deal with “stochastic process
simulation”, “returns”, “dax”, “financial stocks”, “call option prices”, “assets”,
“black scholes”, “normal distribution density”, “probability”, “parameter com-

Fig. 16.18 SFE Quantlets clustered by k-means into 12 clusters, the tooltip on the right shows
their topics
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putation”, “simulation”, “correlation”, “model estimation”, “finance”, “options”,
“implied volatility”. The cluster topics are displayed in the cluster legend on the
right in Fig. 16.18. The remaining four topics (corresponding to 4% of the data
set) also show good concordance with the appropriate cluster content like “kernel
density estimation”, “nonparametric regression”, “risk”, etc. Since the automatically
generated topic labels consist of stemmed words, the above listed “human readable
versions” were syntactically improved for illustration purpose by the authors, see
also Sect. 16.8.2.

16.6 Results

As data set for the following examination and analysis the whole QuantNet data
base was taken. At the time of the big data analysis the documents structure was as
follows: 1170 Gestalten (from 1826 individual Quantlets). That means that the meta
information was extracted from Quantlets, in the case that several Quantlet versions
in different programming languages were available, their meta information was
merged to a single and unique representation, called “Gestalt.” SFEGBMProcess
is such an example, see Fig. 16.30.

• Q D fd1; : : : ; dng : set of documents (Quantlets/Gestalten)
• T D ft1; : : : ; tmg : dictionary (set of all terms)
• tf .d; t/ : absolute frequency of term t 2 T in d 2 Q
• D D Œw.d1/; : : : ;w.dn/� : “term by document” matrix TDM

Throughout the whole Sect. 16.6 we will use the definitions and notations from
Sects. 16.4 and 16.5. The first step is to transform the text documents into the
quantities listed above. This will be demonstrated in Sect. 16.6.1.

16.6.1 Text Preprocessing Results

For the basic text preprocessing and calculation of the TDM the R package tm
(Feinerer and Hornik 2015) was applied, see Listing 16.1. It provides a framework
for text mining applications within R (Feinerer et al. 2008). According to Table 16.2
we selected the preprocessing configuration “discarding tf 	 2”, resulting in a TDM
with 1039 � 1170 entries.
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Listing 16.1 Text preprocessing via R package tm

# p r e p r o c e s s i n g t e x t wi th t h i s f u n c t i o n
c l e a n C o r p u s = f u n c t i o n ( c o r p u s ) {

c o r p u s . tmp <� tm_map ( corpus , r e m o v e P u n c t u a t i o n )
c o r p u s . tmp <� tm_map ( c o r p u s . tmp , s t r i p W h i t e s p a c e )
c o r p u s . tmp <� tm_map ( c o r p u s . tmp , removeNumbers )
c o r p u s . tmp <� tm_map ( c o r p u s . tmp , c o n t e n t _ t r a n s f o r m e r ( t o l o w e r ) )
c o r p u s . tmp <� tm_map ( c o r p u s . tmp , stemDocument )
c o r p u s . tmp <� tm_map ( c o r p u s . tmp , removeWords , s topwords ( " e n g l i s h " ) )
c o r p u s . tmp <� tm_map ( c o r p u s . tmp , removeWords , qn_s topwords )
r e t u r n ( c o r p u s . tmp )

}

doc_corpus <� VCorpus ( Di rSource ( d i r . name , encod ing = "UTF�8") ,
r e a d e r C o n t r o l = l i s t ( l a n g u a g e = " en " ) )

c o r p u s . c l e a n e d <� c l e a n C o r p u s ( doc_corpus )

# TDM wi th a l l t e r m s
tdm_c leaned <� TermDocumentMatrix ( c o r p u s . c l e a n e d )

# tr immed TDM, d i s c a r d i n g t f <= 2
t d m _ c l e a n e d _ t f 2 <� TermDocumentMatrix ( c o r p u s . c l eaned ,

l i s t ( bounds = l i s t ( g l o b a l = c ( 3 , I n f ) ) ) )

Table 16.2 Total number of
documents in QuantNet: 1170
Gestalten/1826 Quantlets;
term sparsity: 98–99%

Terms Non-/sparse entries

All terms (after preprocessing) 2223 17;878=2;583;032

Discarding tf = 1 1416 17;071=1;639;649

Discarding tf � 2 1039 16;317=1;199;313

Discarding tf � 3 846 15;738=974;082

Table 16.3 Model performance regarding the sparsity of the “term by document” matrix TDM
and the similarity matrix MS in the appropriate models (weighting scheme: tf-idf normalized)

BVSM GVSM(TT) LSA:300 LSA:171(50%) LSA:50

TDM 0:99 0:65 0:51 0:51 0:47

MS 0:65 0:07 0:35 0:36 0:35

16.6.2 Sparsity Results

The BVSM, GVSM(TT), and three LSA configurations with the dimension param-
eter k equal to 300, 171 (50% of the weight of all singular values) and 50 were
considered, see Table 16.3. Sparsity and density are terms used to describe the
percentage of cells in a database table (or a matrix) that are not populated and
populated, respectively. The sum of the sparsity and density should equal 100%.
Sparsity is the ratio of the number of zero entries to the total number of entries of
a matrix. In general, the lower the sparsity, the better, see also “drawbacks of the
BVSM” in Sect. 16.4.4.
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Fig. 16.19 BVSM

Heat maps with dendrograms of the similarity matrices in the appropriate model
configurations are displayed in Figs. 16.19, 16.20, 16.21, 16.22, and 16.23. They
allow an extensive visual interpretation and characterization of the inherent cluster
structure of the included text documents. The method heatmap.2 from the R
package gplots was used for creating the heat maps (Warnes et al. 2016). This
method simultaneously performs reordering of the matrix rows and/or columns
according to the row and/or column means within the restrictions imposed by
the dendrogram. Hence, an easier identification of “similarity clusters” within the
matrix is provided. The color map on the left displays the meaning of the color keys:
yellow values show the similarity values close to 1, red values those close to zero,
see also Formula (16.2).

Two interesting effects can be stated. (1) GVSM(TT) and LSA similarity
matrices pronounce a higher concentration of “similarity clusters” around the
diagonal than those in the BVSM, thereby indicating subsets of documents allowing
good clusterization into one particular group. (2) LSA allows an adjusted sparsity
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Fig. 16.20 GVSM(TT)

reduction and similarity enhancement, respectively, by varying the k parameter.
We can see the apparent relationship that lower k values imply clearer “similarity
clusters” within the matrix, compare Figs. 16.21, 16.22, and 16.23.

We can conclude that the more sophisticated models GVSM(TT) and LSA
clearly outperform the BVSM, concerning both the TDM and similarity matrices.
Given the pure numbers in Table 16.3, we observe that the LSA configurations
reduce the TDM sparsity to the greatest extent. In the case of similarity matrices
GVSM(TT) achieves the greatest sparsity reduction.

16.6.3 Three Models, Three Methods, Three Measures

For evaluation and benchmark purpose we have introduced the so-called M3 eval-
uation. All TM models, clustering methods and validation measures as presented
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Fig. 16.21 LSA:300

in the previous sections are combined in a 3 � 3 � 3 benchmark setup, hence the
name M3 evaluation. Every M stands for one of the dimensions: models, methods,
and measures.

• 3 models: BVSM, GVSM(TT), and LSA
• 3 clustering methods: k-means, k-medoids, HC
• 3 cluster validation measures: connectivity, Silhouette width, Dunn index

More precisely, the current experimental design should be named as M3
3;3;3;250

(250 as the maximal cluster size to be evaluated). Later we will explain how it can
be extended to M3

d1;d2;d3;max, with di encompassing more settings in the appropriate
dimension.

Concerning the LSA, two configurations were taken: k equal to 171 (50% of
the weight of all singular values) and 50. There is another implicit dimension in
the experimental design, namely the number of possible clusters, let’s call it i,
which is captured on the x-axis in the plot matrix in Fig. 16.24. We have decided
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to run the validation for the first 2; : : : ; 250 i-values. Since our TDM has 1170
documents/columns, we regard the choice of 250 as the maximal cluster size as
appropriate. On the one hand, 250 is more than enough for the practical needs. On
the other hand, in the case of 250 clusters amongst 1170 objects one would obtain
around 5 objects in one cluster at average. This is quite close to the extreme case,
one object in one cluster, what is trivial and honored by the most validation measures
with the “highest score.” All things considered, our choice of the maximal cluster
size was a good compromise between the practical needs, the theoretical limits and
computational expense.

Listing 16.2 demonstrates the main idea of the M3 experimental design. For any
given TDM the main function clValid is executed. Afterwards, the evaluation
results for all considered TM models are aggregated with respect to any considered
validation measure and clustering method, in our example, Silhouette and HC.
Apparently, the experimental design can be extended in any dimension: more TM
models, more clustering methods, more validation measures and, if necessary, more
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cluster sizes. The increasing calculation time of the overall experiment should
be considered. A contemporary Intel Core i5 CPU needed one night to finish all
calculations.

For any given M3-combination (fixed measure, method and model) the shape of
the function graph in the appropriate M3 plot matrix cell (a particular row, column
and color) can exhibit an individual behavior, see Fig. 16.24. Characteristic for
validation measures in our setup is the monotonous growth. In some cases there
are some fluctuations and oscillations for lower i values. After an initial period of
some i’s all function graphs start to consolidate their growth trend. Remarkable is
the unstable and noisy behavior of the k-means method, in particular in the BVSM.
Another interesting observation is the combination Silhouette and LSA50. First the
graph has a strong oscillation with a decreasing trend, then a relatively steep ascent
and finally, after around a quarter of the interval length of i-values, the graph shows
a stable sideways movement.
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Fig. 16.24 M3 plot matrix. Rows: connectivity, Silhouette, Dunn. Columns: HC, k-medoids, k-
means. Colors: BVSM, GVSM(TT), LSA, LSA50

Listing 16.2 Cluster validation via R package clValid

# l o a d t h e R package
l i b r a r y ( c l V a l i d )
# t r a n s p o s e t h e TDM i n t h e LSA model
A = t ( m_lsa_mat )
# run t h e main e v a l u a t i o n f u n c t i o n
i n t e r n <� c l V a l i d (A, 2 : 2 5 0 , c lM ethods=c ( " h i e r a r c h i c a l " , " kmeans " , " pam " ) ,

v a l i d a t i o n =" i n t e r n a l " )
# b a s i c i n s p e c t i o n methods
summary ( i n t e r n )
p l o t ( i n t e r n )
m_lsa = measu re s ( i n t e r n )

# a g g r e g a t e e v a l u a t i o n r e s u l t s f o r 4 d i f f e r e n t TM models ; S i l h o u e t t e / HC
x _ l = 250
p l o t ( 2 : x_l , m_b [ 3 , , 1 ] , pch =15 , y l im=c ( 0 . 0 1 , 0 . 7 ) , c o l =" b l u e " ,

x l a b =" number o f c l u s t e r s / hc " , y l a b =" S i l h o u e t t e c r i t e r i o n " )
l i n e s ( 2 : x_l , m_t t [ 3 , , 1 ] , t y p e = " p " , pch =15 , c o l =" r e d " )
l i n e s ( 2 : x_l , m_lsa [ 3 , , 1 ] , t y p e = " p " , pch =15 , c o l =" g r e e n " )
l i n e s ( 2 : x_l , m_lsa50 [ 3 , , 1 ] , t y p e = " p " , pch =15 , c o l =" magenta " )
l e g e n d ( " t o p r i g h t " , c o l = c ( " b l u e " , " r e d " , " g r e e n " , " magenta " ) , pch =15 ,

l e g e n d = c ( "BVSM" , "GVSM(TT ) " , " LSA" , "LSA50 " ) , l t y =3)

The results of our M3 evaluation are summarized in Table 16.4. The most
important observations and conclusions are:

• HC better or comparable to other methods under all measures and in all models
• LSA50 superior with respect to the connectivity and Silhouette measures
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Table 16.4 M3 evaluation
results

Measure Model Method

Connectivity LSA50 HC

Silhouette LSA50 HC

Dunn BVSM/LSA HC

• BVSM/LSA slightly better than LSA50 with respect to the Dunn measure, but
still comparable (small range of values in all models)

• Conclusion: LSA/LSA50 and HC is the optimal model/method combination
under M3 evaluation

16.6.4 LSA Anatomy

Since the SVD truncation as performed in Sect. 16.4.4.3 results in the following
decomposition:

D D Dk C Derr (16.11)

and

Dk D Uk†kV
>
k ; (16.12)

the question arises how these six matrices, namely D;Dk;Derr;Uk; †k and V>k , look
like?

All results, in particular all plots and figures, concerning the LSA anatomy can be
examined and reproduced by the corresponding Quantlets, available under https://
github.com/Quantlet/Q3D3LSA. The reader can also “just browse” through the
GitHub repository and study the plots in a higher resolution, in particular the high
dimensional matrix representations. The most important incorporated R packages
are lsa (Wild 2015), gplots (Warnes et al. 2016), and ggplot2 (Wickham 2009). In
the beginning of every Quantlet the LSA space is created from the term document
matrix TDM of the Quantlets, which was created as described in Sect. 16.6.1.

16.7 Application

The current implementation of the self-developed visualization framework for
knowledge discovery in QuantNet is displayed in Fig. 16.25. The so-called D3 Visu
application is available as web page at http://quantlet.de. Driven by the Q3-D3-LSA
technology, which is the combination of our research findings, the integrated search
engine facilitates easier discovery of shared validated knowledge and collaborative

https://github.com/Quantlet/Q3D3LSA
https://github.com/Quantlet/Q3D3LSA
http://quantlet.de
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Fig. 16.25 Front end view: all Quantlets in QuantNetXploRer, search term “big data”

reproducible research (CRR). While the D3 based application provides an interac-
tive front end of IR, document clustering and visualization elements, one can rely
on the robust data storage infrastructure of GitHub in the background, comprising
the distinct abilities of version control (VC) and source code management (SCM).
A start page screenshot of the Quantlet GitHub organization is given in Fig. 16.31.

The GitHub platform, having more than 14 million users and more than 35
million repositories, is currently the largest host of source code in the world.
It provides access control, task management, and collaboration features for all
project types. Thanks to the Style Guide (https://github.com/Quantlet/Styleguide-
and-FAQ), Yamldebugger R package (https://github.com/Quantlet/yamldebugger)
and introductory Quantlets https://github.com/Quantlet/yamldebugger_intro, the
Quantlet members have all necessary tools for a fast, transparent and iterative code
development and documentation process. Once a member or outside collaborator
has contributed valid Quantlets, the TM pipeline retrieves the meta information of
Quantlets via the GitHub-R-API and distills them to human-readable and applicable
information by means of the Q3-D3-LSA technology.

Quantlets, which have been processed in that manner, are finally extracted into
the D3 Visu application layer, called QuantNetXploRer. Figure 16.25 demonstrates
a typical application. The hits of the entered search query, in this case “big data”,
are displayed both in textual form and in graphical form. Quantlets (represented
by nodes) containing the expression “big data” are highlighted in red color. The
application screen is divided into the central main visualization (“orbit clustering”
scheme), and auxiliary components like buttons, tool tips, and legends. The upper

https://github.com/Quantlet/Styleguide-and-FAQ
https://github.com/Quantlet/Styleguide-and-FAQ
https://github.com/Quantlet/yamldebugger
https://github.com/Quantlet/yamldebugger_intro
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control panel allows the choice of different clustering schemes, D3 layouts, color
palettes and allows the configuration of the dynamic and draggable legends. Two
legends allow to filter the nodes by programming languages or books and projects.
Other two legends display the cluster topics or GitHub repositories of the visualized
Quantlets. All relevant auxiliary components are draggable, can be deactivated and
are responsive, what means that the action performed in one element is reflected
in all other visualization components. For instance, if the user filters the nodes by
the programming language R, the contents of the main D3 Visu, the cluster topics
legend and the GitHub repositories legend are updated. The statistic of the remaining
language combinations in the programming languages legend is recalculated, too.
All updates of the main D3 Visu are realized via dynamic transition effects.

The Q3-D3-LSA engine of the QuantNetXploRer has many other characteristics
and features which are best explored by “learning by doing”:

Build Quantlets better, together, now (QuantNet @ GitHub).

16.8 Outlook

The benchmarks in Sect. 16.6 have shown that different GVSM configurations
allow adapted similarity based document clustering. Concerning sparsity and higher
concentration of “similarity clusters” (as shown in Sect. 16.6.2) both the GVSM(TT)
and LSA configurations clearly outperform the classical BVSM. Incorporating
term–term correlations and semantics, GVSM(TT) and LSA provide considerable
sparsity reduction, thereby achieving higher clustering performance. The main
advantage of LSA is the flexible dimension reduction property which is controlled
by the truncation parameter k within the SVD process. Additionally, the M3 evalua-
tion identifies the LSA/LSA50 and HC as the optimal model/method combination.
The benefits of the dimension reduction effect with smaller k values can also be
observed in the M3 plot matrix (see Fig. 16.24).

First benchmark results in Sect. 16.4.4.5 show that the LSA model seems to be
applicable for big data and has a modest time complexity. Thus, samples of 100,000
GitHub organizations could be processed within an hour. Potential bottlenecks are
the GitHub API extraction process or the calculation of big distance matrices for
some clustering methods. Both issues could be tackled by massive parallelization
and are beyond the actual subject “TM models.”

16.8.1 GitHub Mining Infrastructure in R

Our TM pipeline together with the GitHub-R-API implementation relies on several
sophisticated R packages like tm, lsa, svd, cluster, yaml, jsonlite and some more.
An essential element is the R package github (Scheidegger 2016) “R Bindings
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Listing 16.3 GitHub API method Get contents returns the contents of a file or directory in any
repository on GitHub which is publicly available

g e t . r e p o s i t o r y . p a t h <� f u n c t i o n ( owner , repo , pa th ,
. . . , c t x = g e t . g i t h u b . c o n t e x t ( ) )

# Browser a s f u n c t i o n f o r
# h t t p s : / / g i t h u b . com / thomas�h a s l w a n t e r / s t a t s i n t r o _ p y t h o n
QBrows e r_2Di r_Offs e t = f u n c t i o n ( g h _ u s e r = " thomas�h a s l w a n t e r " ,

reponame = " s t a t s i n t r o _ p y t h o n " ,
p a t h _ o f f s e t = " ISP / C o d e _ Q u a n t l e t s " , showSummary = TRUE)

### S t a r t
r e p _ c = g e t . r e p o s i t o r y . p a t h ( gh_us e r , reponame , p a t h _ o f f s e t , c t x = c t x )

for the Github v3 API”. Taken as a whole, we have a powerful “GitHub Mining
infrastructure in R” which allows to incorporate any GitHub organization with
its content for further analysis and possible data mining thanks to the official
GitHub API v3 (https://developer.github.com/v3/). Currently, there are more than
one million organizations on GitHub, among them Google, Facebook, Twitter,
Yahoo, CRAN, RStudio, D3, Plotly, and many more. Borke and Bykovskaya
(2017a) show how the “GitHub Mining Infrastructure in R” can be applied to mine
some popular GitHub organizations containing several ten thousand repositories.

Listing 16.3 shows how the content of any publicly available repository on
GitHub can be retrieved within R. The first parameter owner can be substituted
by any organization or user name. Basically, the operating and mining scope of
QuantNet can be extended to any subset of GitHub. One challenge is to implement
the appropriate parsers for the specific repository structures and contents of new
organizations. The other is to adjust and calibrate the TM models to the new
kind of information. Actually, QuantNet has already several parsers implemented.
In addition to the Quantlet organization, the repository “Introduction to Statistics
with Python” (Haslwanter 2016) (https://github.com/thomas-haslwanter/statsintro_
python) is also incorporated via the Q3-D3-LSA engine.

16.8.2 Future Developments

In the near future, we are going to publish three R packages under the overall
heading “GitHub API based QuantNet Mining infrastructure in R” (Q3). At
this stage it seems reasonable to organize this R infrastructure in the following
packages:

• rgithubQ (Scheidegger and Borke 2017): an extension of the R package github,
first of all, enabling file operations like Create a file, Update a file and providing
a series of low level API helping functions (see also https://github.com/cscheid/
rgithub/blob/master/todo.org).

https://developer.github.com/v3/
https://github.com/thomas-haslwanter/statsintro_python
https://github.com/thomas-haslwanter/statsintro_python
https://github.com/cscheid/rgithub/blob/master/todo.org
https://github.com/cscheid/rgithub/blob/master/todo.org
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• TManalyzerQ (Borke 2017a): comprising the parser layer, TM models layer,
clustering layer, and D3 export layer. This is the main component of the Q3-D3-
LSA engine.

• mdGeneratorQ (Borke and Bykovskaya 2017c): GitHub Markdown generator, a
special parser runs through the QuantNet repository structure, extracts resources
like meta information, source code, pictures, etc., reformats, integrates, and
exports them via the GitHub API into a single Markdown file for every Quantlet,
see, e.g., Fig. 16.30.

The prototypes of the aforementioned three packages are already in operational
and working state and are continuously tested and improved. The TManalyzerQ
and mdGeneratorQ prototypes operate independently from each other. Both
components require the rgithubQ functionality. The final design and structure of
the Q3 packages is subject of current research and will be presented in Borke and
Härdle (2017).

Furthermore, more TM models, clustering methods and validation measures
could be considered and studied for performance validation: from M3 to
M3

d1;d2;d3;max, see Sect. 16.6.3 and (Borke 2017). Optimization of the automatically
generated cluster labels for easier human readability and implementation of new
“upgrades” into the D3 Visu could contribute to a better usability of the Q3-D3-LSA
technology.

Acknowledgements Financial support from the Deutsche Forschungsgemeinschaft via CRC
“Economic Risk” and IRTG 1792 “High Dimensional Non Stationary Time Series,” Humboldt-
Universität zu Berlin, is gratefully acknowledged.

Appendix

See Figs. 16.26, 16.27, 16.28, 16.29, 16.30, and 16.31.
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Fig. 16.26 Wordcloud of the QuantNet terms
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Fig. 16.27 Two visualization examples from Q3-D3 Genesis Chapters II–VI
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Fig. 16.28 Quantlets clustered by k-means into 16 clusters, the tooltip on the right shows their
topics

Fig. 16.29 Dendrogram created by HC (ward-method) in LSA model, cut in 6 clusters and 30
subclusters, 137 Gestalten, subset from the books SFE, SFS, and the project IBT
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Fig. 16.30 Gestalt “SFEGBMProcess” simulating the geometric Brownian motion comprises
three Quantlets in three programming languages: R, Matlab, and SAS
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Fig. 16.31 Back end view: Quantlet organization on GitHub
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Chapter 17
A Tutorial on Libra: R Package
for the Linearized Bregman
Algorithm in High-Dimensional Statistics

Jiechao Xiong, Feng Ruan, and Yuan Yao

Abstract The R package, Libra, stands for the LInearized BRegman Algorithm
in high-dimensional statistics. The Linearized Bregman Algorithm is a simple
iterative procedure which generates sparse regularization paths of model estimation.
This algorithm was firstly proposed in applied mathematics for image restoration,
and is particularly suitable for parallel implementation in large-scale problems.
The limit of such an algorithm is a sparsity-restricted gradient descent flow, called
the Inverse Scale Space, evolving along a parsimonious path of sparse models
from the null model to overfitting ones. In sparse linear regression, the dynamics
with early stopping regularization can provably meet the unbiased oracle estimator
under nearly the same condition as LASSO, while the latter is biased. Despite
its successful applications, proving the consistency of such dynamical algorithms
remains largely open except for some recent progress on linear regression. In
this tutorial, algorithmic implementations in the package are discussed for sev-
eral widely used sparse models in statistics, including linear regression, logistic
regression, and several graphical models (Gaussian, Ising, and Potts). Besides
the simulation examples, various applications are demonstrated, with real-world
datasets such as diabetes, publications of COPSS award winners, as well as social
networks of two Chinese classic novels, Journey to the West and Dream of the Red
Chamber.
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Keywords Linearized Bregman iteration · LASSO · Variable selection ·
Regularization path

17.1 Introduction to Libra

The free R package, Libra, is named as an acronym of the LInearized BRegman
Algorithm (also known as Linearized Bregman Iteration in literature). It can be
downloaded at

https://cran.r-project.org/web/packages/Libra/index.html

A parsimonious model selection with sparse parameter estimation has been a
central topic in high-dimensional statistics in the past two decades. For example,
the following models are included in the package:

• sparse linear regression,
• sparse logistic regression (binomial, multinomial),
• sparse graphical models (Gaussian, Ising, Potts).

A widespread traditional approach is based on penalized M-estimators, i.e.

min
�

L.�/C �P.�/; L.�/ WD 1

n

nX

iD1
l..xi; yi/; �/; (17.1)

where l..xi; yi/; �/ measures the loss of � at sample .xi; yi/ and P.�/ is a sparsity-
enforced penalty function on � such as the l1-penalty in LASSO (Tibshirani 1996)
and the nonconvex SCAD (Fan and Li 2001), etc. However, there are several known
shortcomings of this approach: a convex penalty function will introduce bias to
the estimators, while a nonconvex penalty, which may reduce the bias, yet suffers
the computational hurdle to locate the global optimizer. Moreover, in practice a
regularization path is desired which needs to search many optimizers �� over a grid
of regularization parameters f�j � 0 W j 2 Ng.

In contrast, the Linearized Bregman (Iteration) Algorithm implemented in
Libra is based on the following iterative dynamics:

�kC1 C 1

�
� kC1 � �k � 1

�
� k D �˛kr�L.� k/; (17.2a)

�k 2 @P.� k/; (17.2b)

with parameters ˛k; � > 0, and initial choice �0 D �0 D 0. The second constraint
requires that �k must be a subgradient of the penalty function P at � k. The iteration
above can be restated in the following equivalent form with the aid of proximal map,

zkC1 D zk � ˛tr�L.� k/; (17.3a)

� kC1 D � � proxP.z
kC1/; (17.3b)

https://cran.r-project.org/web/packages/Libra/index.html
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where the proximal map associated with the penalty function P is given by

proxP.z/ D arg min
u

�
1

2
ku � zk2 C P.u/

�

:

The Linearized Bregman Iteration (17.2) generates a parsimonious path of
sparse estimators, � t, starting from a null model and evolving into dense models
with different levels of sparsity until reaching overfitting ones. Therefore the
dynamics can be viewed as regularization paths. Such an iterative algorithm was
first introduced in Yin et al. (2008) (Section 5.3, Equations (5.19) and (5.20))
as a scalable algorithm for large-scale problems of image restoration with TV-
regularization and compressed sensing, etc. As � !1 and ˛t ! 0, the iteration has
a limit dynamics, known as Inverse Scale Space (ISS) (Burger et al. 2005) describing
its evolution direction from the null model to full ones,

d�.t/

dt
D �r�L.�.t//; (17.4a)

�.t/ 2 @P.�.t//: (17.4b)

The computation of such ISS dynamics is discussed in Burger et al. (2013). With
the aid of ISS dynamics, recently Osher et al. (2016) establish the model selection
consistency for early stopping regularization in both ISS and Linearized Bregman
Iterations for the basic linear regression models. In particular, under nearly the
same conditions as LASSO, ISS finds the oracle estimator which is bias-free while
the LASSO is biased. However, it remains largely open to explore the statistical
consistency for general loss and penalty functions, despite successful applications
of (17.2) in a variety of fields such as image processing and statistical modeling
that will be illustrated below. One purpose of writing this tutorial is the hope that
more statisticians will benefit from the usage of this simple algorithm with the aid of
this R package, Libra, and eventually reach a deep understanding of its statistical
nature.

In the sequel we shall consider two types of parameters, .�0; �/, where �0 denotes
the unpenalized parameters (usually intercept in the model) and � represents all the
penalized sparse parameters. Correspondingly, L.�0; �/ denotes the Loss function.
In most cases, L.�0; �/ is the same as the negative log-likelihood function of the
model.

Two types of sparsity-enforcement penalty functions will be studied here:

• LASSO (l1) penalty for entry-wise sparsity:

P.�/ D k�k1 WD
X

j

j�jjI
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• Group LASSO (l1-l2) penalty for group-wise sparsity:

P.�/ D k�k1;2 D
X

g

k�gk2 WD
X

g

sX

jWgjDg

�2j ;

where we use G D fgj W gj is the group of �j; j D 1; 2; : : : ; pg to denote a disjoint
partition of the index set f1; 2; : : : ; pg—that is, each group gj is a subset of the index
set. When G is degenerate, i.e., gj D j; j D 1; 2; : : : ; p, the Group Lasso penalty is
the same as the LASSO penalty. The proximal map for Group LASSO penalty is
given by

proxk�k1;2.z/j WD

8
<̂

:̂

 

1 � 1qP
iWgiDgj

z2i

!

zj; kzgjk2 � 1;
0; otherwise;

(17.5)

which is also called the Shrinkage operator in literature.
When entry-wise sparsity is enforced, the parameters to be estimated in the

models are encouraged to be “sparse” and treated independently. On the other
hand, when group-wise sparsity is enforced, it not only encourages the estimated
parameters to be sparse, but also expects variables within the same group to be either
selected or not selected simultaneously. Hence, the group-wise sparsity requires
prior knowledge of the group information of the correlated variables.

Once the parameters .�0; �/, the loss function and group vectors are specified,
the Linearized Bregman Iteration algorithm in (17.2) or (17.3) can be adapted to
the new setting with partial sparsity-enforcement on � , as shown in Algorithm 1.
The iterative dynamics compute a regularization path for the parameters at different
levels of sparsity—starting from the null model with .�0; 0/, the solution evolves
along a path of sparse models into the dense ones minimizing the loss.

Algorithm 1: Linearized Bregman Algorithm
1 Input: Loss function L.�0; �/, group vector G , damping factor �, step size ˛.
2 Initialize: k D 0; tk D 0; � k D 0; zk D 0; � k0 D arg min�0 L.�0; 0/.
3 for k D 1; : : : ;K do

• zkC1 D zk � ˛r�L.� k0 ; � k/.
• � kC1 D � 	 Shrinkage.zkC1; G /.
• �

kC1
0 D � k0 � �˛r�0L.� k0 ; � k/.

• tkC1 D .kC 1/˛.

end for
4 Output: Solution path ftk; � k0 ; � kgkD0;1;:::;K .

where � D Shrinkage.z; G / is defined as: �j D max

 

0; 1� 1qP
iWgiDgj

z2i

!

zj.



17 A Tutorial on Libra 429

In the following Sects. 17.2–17.4, we shall specialize such a general algorithm
in linear regression, logistic regression, and graphical models, respectively. Sec-
tion 17.5 includes a discussion on some universal parameter choices. Application
examples will be demonstrated along with code snippets.

17.2 Linear Model

In this section, we are going to show how the Linearized Bregman (LB) algorithm
and the Inverse Scale Space (ISS) fit sparse linear regression model. Suppose we
have some covariates xi 2 R

p for i D 1; 2; : : : ; n. The responses yi with respect to
xi, where i D 1; 2; : : : ; n, are assumed to follow the linear model below:

yi D �0 C xTi � C �; � � N .0; �2/:

Here, we allow the dimensionality of the covariates p to be either smaller or greater
than the sample size n. Note that, in the latter case, we need to make additional
sparsity assumptions on � in order to make the model identifiable (and also, make
recovery of � possible). Both the Linearized Bregman Algorithm and ISS compute
their own “regularization paths” for the (sparse) linear model. The statistical
properties for the two regularization paths for linear models are established in Osher
et al. (2016) where the authors show that under some natural conditions, some
points on the paths determined by a data-dependent early-stopping rule can be
nearly unbiased and exactly recover the support of signal � . Note that the latter
exact recovery of signal support can have a significant meaning in the regime where
p � n, in which case, an exact variable selection work is done simultaneously
with the model fitting process. In addition, the computational cost for regularization
path generated by LB algorithm is relatively cheap in linear regression model case,
compared to many other existing methods. We refer the readers to Osher et al.
(2016) for more details. Own to both statistical and computational advantages over
other methods, the Linearized Bregman Algorithm is strongly recommended for
practitioners, especially for those who are dealing with computationally heavy tasks.

Here, we give a more detailed illustration on how the Linearized Bregman
Algorithm computes the solution path for the linear model. We use negative log-
likelihood as our loss function,

L.�0; �/ D 1

2n

nX

iD1
. yi � �0 � xTi �/

2:
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To compute the regularization path, we need to compute the gradient of loss with
respect to its parameters �0 and � , as is shown in Algorithm 1,

r�0L.�0; �/ D
1

n

nX

iD1
�. yi � �0 � xTi �/;

r�L.�0; �/ D 1

n

nX

iD1
�xi. yi � �0 � xTi �/:

In the linear model, each iteration of the Linearized Bregman Algorithm requires
O.np/ FLOPs in general (and the cost can be cheaper if additional sparsity
structure on parameters is known), and the overall time complexity for the entire
regularization path is O.npk/, where k is the number of iterations. The number of
iterations in the Linearized Bregman Algorithm is dependent on the underlying step-
size ˛, which can be understood as the counterpart of the learning rate which appears
in the standard gradient descent algorithms. In general, choosing the parameter ˛
needs a trade off between statistical and computational concerns here. For example,
with a large learning rate ˛, the Linearized Bregman Algorithm can generate a
“coarse” regularization path in only a few iterations. But such a “coarse” solution
path might be highly biased since it cannot approximate well the continuous solution
path of ISS; hence with only a few points on the path, users may not be able to
recover the true support of the unknown signal � from these coarse estimates. On
the other hand, a “denser” solution path generated by low learning rate ˛ provides
more information about the true signal � , yet it might lose some computational
efficiency of the algorithm itself.

In addition to the parameter ˛, another parameter � is needed in the algorithm.
As � ! 1 and ˛ ! 0, the Linearized Bregman Algorithm (17.2) will converge
to its limit ISS (17.4). Therefore, with a higher value of �, the Linearized Bregman
Algorithm will have a stronger effect on “debiasing” the path, and hence will give a
better estimate of the underlying signal at a cost of possible high variance. Moreover,
the parameters ˛ and � need to satisfy

˛�kSnk 	 2; Sn D 1

n

nX

iD1
xix

T
i ; (17.6)

otherwise the Linearized Bregman iterations might oscillate and suffer numerical
convergence issues (Osher et al. 2016). Therefore in practice, one typically first
chooses � which might be large enough, then follows a large enough ˛ according
to (17.6). In this sense, � is the essential free parameter.

Knowing how the Linearized Bregman Algorithm works in the linear model, we
are ready to introduce the command in Libra which can be used to generate the
path,

lb.X;y;kappa;alpha;tlist;familyD "gaussian";group;index/



17 A Tutorial on Libra 431

In using the command above, the user must give inputs for the design matrix
X 2 R

n�p, the response vector y 2 R
n, and the parameter kappa. Notably, the

parameter alpha is not required to be given in the use of this command, and in
the case when it’s missing, an internal value for alpha satisfying (17.6) would
be used. This internally-generated alpha would guarantee the convergence of the
algorithm. The tlist is a group of parameters t that determine the output of the
above command. When the tlist is given, only points at the pre-decided set of
tlist on the regularization path will be returned. When it is missing, then a data
dependent tlist will be calculated. See Sect. 17.5 for more details on the tlist.
Finally, when group sparsity is considered, the user needs to input an additional
argument index to the algorithm so that it knows the group information on the
covariates.

As the limit of Linearized Bregman iterations when � !1; ˛ ! 0, the Inverse
Scale Space for linear model with l1-penalty is also available in our Libra package:

iss.X;y;intercept D TRUE;normalize D TRUE/:

As is suggested by the previous discussion on the effect of � on the regularization
path, the ISS has the strongest power of “debiasing” the path; once the model
selection consistency is reached, it can return the “oracle” unbiased estimator!
Yet one disadvantage of ISS solution path is its relative computational inefficiency
compared to the Linearized Bregman Algorithm.

17.2.1 Example: Simulation Data

Here is the example in Osher et al. (2016). A comparison of regularization paths
generated by LASSO, ISS, and the Linearized Bregman iterations is shown in
Fig. 17.1.

library(MASS)
library(lars)
library(Libra)
n = 80;p = 100;k = 30;sigma = 1
Sigma = 1/(3*p)*matrix(rep(1,p^2),p,p)
diag(Sigma) = 1
A = mvrnorm(n, rep(0, p), Sigma)
u_ref = rep(0,p)
supp_ref = 1:k
u_ref[supp_ref] = rnorm(k)
u_ref[supp_ref] = u_ref[supp_ref]+sign(u_ref[supp_ref])
b = as.vector(A%*%u_ref + sigma*rnorm(n))
lasso = lars(A,b,normalize=FALSE,intercept=FALSE,max.steps=100)
par(mfrow=c(3,2))
matplot(n/lasso$lambda, lasso$beta[1:100,], xlab = bquote(n/

lambda),
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ylab = "Coefficients", xlim=c(0,3),ylim=c(range(lasso$beta)),
type=’l’, main="Lasso")

object = iss(A,b,intercept=FALSE,normalize=FALSE)
plot(object,xlim=c(0,3),main=bquote("ISS"))
kappa_list = c(4,16,64,256)
alpha_list = 1/10/kappa_list
for (i in 1:4){

object <- lb(A,b,kappa_list[i],alpha_list[i],family="gaussian",
group=FALSE,

trate=20,intercept=FALSE,normalize=FALSE)
plot(object,xlim=c(0,3),main=bquote(paste("LB ",kappa,"=",.(

kappa_list[i]))))
}
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Fig. 17.1 Regularization paths of LASSO, ISS, and LB with different choices of � (� D
22; 24; 26; 28, and ˛� = 1/10). As � grows, the paths of Linearized Bregman iterations approach
that of ISS. The x-axis is t
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17.2.2 Example: Diabetes Data

A diabetes dataset is used as an example in Efron et al. (2004) to illustrate the
lars algorithm. The dataset contains 442 samples (diabetes patients) with 10
baseline variables. Here, we show the solution paths of both the Linearized Bregman
Algorithm and ISS on the data, assuming a sparse linear regression model between
the baseline variables and the response. The LASSO regularization path is computed
by R-package lars. Figure 17.2 shows the comparison of different paths. It can
be seen that the LASSO path is continuous, while the ISS path is piece-wise
constant exhibiting the strong “debiasing” effect. The paths generated by discrete
Linearized Bregman iterations somehow lie between them. It is easy to see the
sudden “shocks” in the figure when the variables are picked up in the regularization
path of the ISS or in the paths of Linearized Bregman iterations with large �. These
“shocks” correspond to the stronger debiasing effect of the Linearized Bregman
Algorithm and ISS compared to LASSO. Hence our algorithm can fit the signals
more “aggressively” compared to the LASSO when we use strong regularization.
Although the curve shapes of these paths are different, it is noticeable that the order
of those paths entering into nonzero regimes bears great similarity, which implies
that the model selection effects of these algorithms are similar on this dataset.

library(lars)
library(Libra)
data(diabetes)
attach(diabetes)

lasso <- lars(x,y)
par(mfrow=c(2,2))
plot(lasso)

issobject <- iss(x,y)
plot(issobject,xtype="norm") #plot.lb
title("ISS",line = 2.5)

kappa <- c(100,500)
for (i in 1:2){

object <- lb(x,y,kappa[i],family="gaussian",trate=1000)
plot(object,xtype="norm")
title(paste("LBI:kappa =",kappa[i]),line = 2.5)

}
detach(lasso)
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Fig. 17.2 Regularization paths of LASSO, ISS, and Linearized Bregman Iterations on diabetes
data. The piecewise constant regularization path of ISS exhibits strong debiasing effect. The
ordering of how the variables enter in nonzero regimes is similar across different paths. The x-
axis is k�k1

17.3 Logistic Model

17.3.1 Binomial Logistic Model

One of the mostly widely used model in binary classification is the binomial logistic
model, see Hastie et al. (2009). Given i.i.d data .xi; yi/ 2 R

p � f˙1g, the standard
binomial logistic model assumes the following predictive relationship between the
covariates xi 2 R

p and their response yi 2 f˙1g for i D 1; 2; : : : ; n:

P. yi D 1jxi/
P. yi D �1jxi/ D exp.�0 C xTi �/;
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where, in the above equation, � 2 R
p represents the regression coefficients and

�0 2 R represents the intercept in the regression model. Here, we allow the
dimensionality p to be greater than or equal to the sample size n. As is discussed
in the linear regression case, when p > n, additional sparsity assumptions on the
regression coefficient � should be enforced to make the logistic model identifiable
from the data (and also, recovery of the parameters � possible). The goal of this
section is to show how the Linearized Bregman Algorithm fits the sparse binomial
logistic regression model in high dimensions. An early version of the Linearized
Bregman iterations was implemented in Shi et al. (2013), which differs from
Algorithm 1 mainly in its zero initialization. In contrast to Algorithm 1 where
we exploit an optimal choice of �0, Shi et al. (2013) initialize �0 D 0. See more
discussions on initializations in Sect. 17.5.

As is discussed similarly in the linear regression case, a regularization path is
returned by the Linearized Bregman Algorithm, where practitioners can find differ-
ent estimates of the same parameters under different levels of sparsity assumptions
on the true parameter � . To give a more detailed illustration on how the Linearized
Bregman Algorithm computes the regularization path, we first introduce the loss
function of the algorithm, which is given by the negative log-likelihood of the
binomial model:

L.�0; �/ D 1

n

nX

iD1
log.1C exp.�yi.�0 C xTi �///:

To compute the regularization path, the Linearized Bregman Algorithm 1 needs to
evaluate the derivatives of the loss function with respect to � and �0 for each of the
iteration point in the path,

r�0L.�0; �/ D
1

n

nX

iD1

�yi
1C exp. yi.�0 C xTi �//

;

r�L.�0; �/ D 1

n

nX

iD1

�yixi
1C exp. yi.�0 C xTi �//

:

In binomial logistic model, each iteration of the Linearized Bregman Algorithm
requires O.np/ FLOPS in general, and the overall time complexity for the entire
solution path is O.npk/, where k is the number of iterations.

Here, we give the command in Libra that can be used to generate the path for
the logistic model,

lb.X;y;kappa;alpha;tlist;familyD “binomial";group;index/:

As shown in the above command, the user is required to provide data X, y, as well
as the parameters alpha, kappa, and tlist. The effects of these parameters
on the resulting regularization paths for binomial logistic model parallel that of the
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linear model. Hence, we refer the reader to Sect. 17.2 for a detailed explanation on
how the parameters affect the regularization paths. Finally, similarly to the case of
linear regression, if one needs to enforce a particular group sparsity structure on the
output parameters � , he/she has to input the index argument so that the algorithm
can know the group information assumption on the covariates.

17.3.1.1 Example: Publications of COPSS Award Winners

The following example explores a statistician publication dataset provided by
Professor Jiashun Jin at Carnegie Mellon University (Ji and Jin 2016). The dataset
consists of 3248 papers by 3607 authors between 2003 and the first quarter of
2012 from the following four journals: the Annals of Statistics, Journal of the
American Statistical Association, Biometrika and Journal of the Royal Statistical
Society Series B. Here we extract a subset of 382 papers co-authored by 35 COPSS
award winners. Peter Gavin Hall (20 November 1951–9 January 2016) is known
as one of the most productive statisticians in history and contributed 82 papers in
this dataset. Can we predict the probability of his collaborations with other COPSS
award winners? A logistic regression model will be used for this exploration. For a
better visualization, we only choose nine other COPSS winners who have no less
than 10 papers in this dataset. The following codes compute regularization paths
of the Linearized Bregman iterations for logistic regression model to predict the
probability of Peter Hall’s collaborations with them. From the regularization paths
shown in Fig. 17.3, it can be seen that the probability of collaborations between
Peter Hall and other COPSS winners are all reduced below the average indicated by
the negative coefficients, which suggests that these COPSS winners usually work
independently even occasionally coauthor some papers. The three paths which level
off as iterations go correspond to Jianqing Fan, Tony Cai, and Raymond J Carroll,
who are the only collaborators of Peter Hall in this dataset.

library(Libra)
data<-read.table("copss.txt")
s0<-colSums(data)
data1<-data[,s0>=10] # choose the authors whose publications

are of no less than 10

y<-as.vector(2*as.matrix(data1[,5])-1); # Peter.Hall as response
X<-as.matrix(2*as.matrix(data1[,-5])-1); # Other COPSS winners as

predictors
path <- lb(X,y,kappa = 1,family="binomial",trate=100,normalize =

FALSE)

plot(path,xtype="norm",omit.zeros=FALSE)
title(main=paste("Logistic: ",attributes(data1)$names[5],"~."),

line=3)
legend("bottomleft", legend=attributes(data1)$names[-5], col=c

(1:6,1:3),lty=c(1:5,1:4))
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Fig. 17.3 Regularization path of logistic regression by LB on COPSS data. The x-axis is
normalized k�k1 . As all the coefficients on the paths appear to be negative, it suggests that the
probability of these COPSS award winners collaborating with Peter Hall is below the average in
contrast to his fruitful publications. The three paths which level off as k�k1 grows correspond to
Jianqing Fan, Tony Cai, and Raymond J. Carroll, who are the only collaborators of Peter Hall in
this dataset

17.3.1.2 Example: Journey to the West

Journey to the West is one of the Four Great Classical Novels of Chinese novel.
The literature describes an adventure story about Tangseng who travelled to the
“West Regions” for Sacred Texts. The novel contains more than a hundred chapters
and involves more than a thousand of characters. One interesting study on the novel
would be to understand the social relationships between the main characters, i.e., to
understand how those with different personalities and power can come along with
each other.

Here, we give a simple example showing how the Linearized Bregman
Algorithm can be used to analyze the relationship between one main character,
MonkeyKing .Sunwukong/, to the other main characters. We collect some data
that documents the appearance/disappearance of the top 10 main characters under
the pre-specified 408 different scenes in the novel. To analyze the relationship
between MonkeyKing to the other nine main characters, we build up a logistic
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regression model, where the response Y corresponds to the indicator of the
appearance of the MonkeyKing in these scenes and the other covariates X
correspond to the indicators of the appearance of the other nine characters in
the scenes. The data is collected via crowdsourcing at Peking University, and can
be downloaded at the following course website

https://github.com/yuany-pku/journey-to-the-west.

Below we analyze the result of the logistic regression model fitted by the
Linearized Bregman Algorithm. Notice that, Tangseng, Pig .Zhubajie/, and
FriarSand .Shaseng/ are the first three main characters that are picked up
in the regularization path. In addition, the coefficients of their corresponding
covariates are all positive, meaning that they probably show up the same time as the
MonkeyKing in the story. A combination of the above two phenomena is explained
by the fact that in the novel they together with MonkeyKing .Sunwukong/ form
the fellowship of the journey to the west. On the other hand, Yuhuangdadi,
Guanyinpusa, and Muzha are less involved with the MonkeyKing, as they
didn’t show up in the paths until very late stages, with estimated coefficients being
negative, indicating that they just appeared occasionally with the MonkeyKing
when he got troubles (Fig. 17.4).

library(Libra)
data(west10)
y<-2*west10[,1]-1;
X<-as.matrix(2*west10[,2:10]-1);

path <- lb(X,y,kappa = 1,family="binomial",trate=100,normalize =
FALSE)

plot(path,xtype="norm",omit.zeros=FALSE)
title(main=paste("Logistic",attributes(west10)$names[1],"~."),

line=3)
legend("bottomleft", legend=attributes(west10)$names[-1], col=c

(1:6,1:3),lty=c(1:5,1:4))

17.3.2 Multinomial Logistic Model

Multinomial logistic regression is a method which generalizes the binary logistic
model to multi-class classification problems, where the response y has K.� 2/ dif-
ferent outcomes (Hastie et al. 2009). The model assumes the following relationship
between the response y 2 f1; 2; : : : ;Kg and its covariate x 2 R

p:

P. y D kjx/ D exp.�k0 C xT�k/
PK

kD1 exp.�k0 C xT�k/

As discussed in the previous sections, often additional sparsity assumptions on
the coefficients �k for k D 1; 2; : : : ;K are added by researchers to make the model

https://github.com/yuany-pku/journey-to-the-west
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Fig. 17.4 Regularization path of lb on west10 data using family D "binomial". The
fellowship of the journey to the west is formed by Sunwukong (MonkeyKing) and his three
peers: Tangseng, Zhubajie, and Shaseng, corresponding to the first three paths

more identifiable/more interpretable in high dimensions. Usually, researchers can
have different prior beliefs on the underlying sparsity structure of the models, and
these different types of sparsity structures correspond to different types of sparse
multinomial logistic regression model. In our package, we consider three major
variants of the original multinomial logistic model, i.e., the entry-wise sparse, the
column-wise sparse, and the block-wise sparse multinomial logistic model. The
entry-wise sparse model corresponds to adding an LASSO (l1) penalty on all the
parameters �k for k D 1; 2; : : : ;K. The column-wise sparsity corresponds to adding
a more complicated group LASSO penalty on each column group of parameters �k,
Pp

jD1
qPK

kD1 �2kj. Since each column of � corresponds to a feature xi for some
1 	 i 	 p, getting column-wise sparse estimates will select the same set of
features for different response classes simultaneously. Finally, as a generalization
of the previous group sparse model, the block-wise sparse model assumes an
additional group structure on the coefficients � , and penalizes our model through the

following block-wise penalty
P

g

qPK
kD1

P
jWgjDg �

2
kj. Similar to the column-wise

sparse model, the block-wise sparse model does feature selection for all response
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classes at the same time, yet it may select a group of features together instead of
singletons and hence relies more on the feature correlation group structure.

Now we are ready to give the R command in Libra to generate regularization
paths for multinomial logistic regression.

lb.X;y;kappa;alpha;tlist;familyD“multinomial";group;index/

We note here for the reader that the parameters alpha, kappa, and tlist
function the same as they do in the linear regression model. We do not introduce
these parameters here but refer the reader to Sect. 17.2 for a detailed explanation.
Now, we are going to illustrate how the three different types of sparsity structures on
parameters are implemented in R. To get an entry-wise sparse multinomial logistic
regression, one simply sets group D FALSE, and the function lb will return the
solution path for this model. On the other hand, to fit a column-wise/block-wise
sparse model, one needs to set group D TRUE and provide the additional prior
group information when possible.

Finally, we discuss some details of the algorithmic implementation in solving the
sparse multinomial logistic model. Similarly to before, the negative log-likelihood
of the multinomial model is used as the loss function:

L.�0; �/ D 1

n

nX

iD1
log

 
KX

kD1
exp.�k0 C xTi �k/

!

� �yi0 � xTi �yi

One can compute the derivatives of the above loss function with respect to its
parameters:

r�j0L.�0; �/ D
1

n

nX

iD1

exp.�j0 C xTi �j/
PK

kD1 exp.�k0 C xTi �k/
� 1. yi D j/;

r�jL.�0; �/ D
1

n

nX

iD1

exp.�j0 C xTi �j/xi
PK

kD1 exp.�k0 C xTi �k/
� xi1. yi D j/:

Therefore, the computational complexity for each iteration of the Linearized
Bregman Algorithm is of O.npK/ FLOPs.

17.4 Graphical Model

Undirected graphical models, also known as Markov random fields, have many
applications in different fields including statistical physics (Ising 1925), nature
language processing (Manning and Schütze 1999), image analysis (Hassner and
Sklansky 1980), etc. A Markov random field models the joint probability distri-
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bution of set random variables fXvg, where the subscript v belongs to some set
V , by some undirected graph G D .V;E/, where E 2 f0; 1gV�V denotes the
edges among V that determine the (conditional) independence between subsets
of random variables of fXvgv2V . In this section, we introduce three types of
undirected graphical models implemented in Libra: Gaussian Graphical Models,
Ising Models, and Potts Models.

17.4.1 Gaussian Graphical Model

The Gaussian graphical model assumes the data x 2 R
p follow a joint normal

distribution N .
;��1/, where� is a sparse p-by-p inverse covariance (precision)
matrix which encodes the conditional independence relations between variables, i.e.
fxi ? xj W xf�i;�jgg , �ij D 0. Note that �0 here is the diagonal of � which is not
penalized and the sparse parameter � contains the off-diagonal elements.

Graphical LASSO (Friedman et al. 2008) exploits the maximum likelihood
estimate with l1 regularization on � . However the gradient of Gaussian likelihood
with respect to � involves matrix inverse and is thus not good for implementing the
Linearized Bregman Algorithm. To avoid this issue, here we exploit the composite
conditional likelihood as the loss function.

It is easy to calculate the distribution of xj conditional on x�j is also a normal
distribution:

xjjx�j �N

0

@
j �
X

k¤j

�jk

�jj
.xk � 
k/;

1

�jj

1

A

For simplicity assume that the data is centralized, then the composite conditional
likelihood becomes

L.�/ D
pX

j

1

n

nX

iD1

�jj

2

0

@xi;j C
X

k¤j

�jk

�jj
xi;k

1

A

2

� 1
2

log.�jj/:

or equivalently,

L.�/ D
X

j

1

2�jj
�T	j S�	j �

1

2
log.�jj/

where S D 1
n

Pn
iD1 xixTi is the covariance matrix of data. Such a loss function is

convex.
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The corresponding gradient is defined by

r�jjL.�/ D
1

�jj
Sj	�	j � 1

2�2
jj

�T	j S�	j �
1

2�jj

r�jkL.�/ D
1

�jj
Sk	�	j C 1

�kk
Sj	�	k;

and the computation of gradient is O.min.p3; np2//.
The Libra command to estimate the Gaussian Graphical Model is

ggm.X;kappa;alpha;S;tlist;ntD 100;trate D 100/

where X is the data matrix. If X is missing, the covariance matrix S should be
provided. Moreover nt is the number of models on solution path which decides
the length of tlist and trate WD tmax=tmin as the scale span of t. Their choices
are further discussed in Sect. 17.5.

17.4.1.1 Example: Journey to the West

Here we demonstrate the application of function ggm to the same dataset west10
which was introduced before. We choose a particular model at sparsity level 51%
and plot it in Fig. 17.5 against the outcome of Graphical LASSO implemented by R
package huge (Zhao and Liu 2012). It can be seen that the resulting graphs bear a
globally similar sparsity pattern with several distinct edges.

library(Libra)
library(igraph)
library(huge)
library(clime)
data(west10)

X <- as.matrix(2*west10-1);
obj = ggm(X,1,alpha = 0.01,nt=1000,trate=100)
g<-graph.adjacency(obj$path[,,720],mode="undirected",weighted=

TRUE,diag=FALSE)
E(g)[E(g)$weight<0]$color<-"red"
E(g)[E(g)$weight>0]$color<-"green"
V(g)$name<-attributes(west10)$names
plot(g,vertex.shape="rectangle",vertex.size=35,vertex.label=V(g)

$name,
edge.width=2*abs(E(g)$weight),main="GGM (LB): sparsity=0.51")

obj2<- huge(as.matrix(west10), method = "glasso")
obj2.select = huge.select(obj2,criterion = "ebic")
g2<-graph.adjacency(as.matrix(obj2.select$opt.icov),mode="plus",

weighted=TRUE,diag=FALSE)
E(g2)[E(g2)$weight<0]$color<-"red"
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E(g2)[E(g2)$weight>0]$color<-"green"
V(g2)$name<-attributes(west10)$names
plot(g2,vertex.shape="rectangle",vertex.size=35,edge.width=2*abs(

E(g2)$weight),vertex.label=V(g2)$name,main="Graphical LASSO:
sparsity=0.51")

obj3<- clime(as.matrix(west10),linsolver = "simplex")
g3<-graph.adjacency(as.matrix(obj3$Omegalist[[70]]),mode="plus",

weighted=TRUE,diag=FALSE)
E(g3)[E(g3)$weight<0]$color<-"red"
E(g3)[E(g3)$weight>0]$color<-"green"
V(g3)$name<-attributes(west10)$names
plot(g3,vertex.shape="rectangle",vertex.size=35,edge.width=2*abs(

E(g3)$weight),vertex.label=V(g3)$name,main="CLIME: sparsity
=0.51")

GGM (LB): sparsity=0.51
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Zhubajie
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Bailongma
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Nezha
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Graphical LASSO: sparsity=0.51

Sunwukong
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Fig. 17.5 A comparison of sparse Gaussian Graphical models returned by LB for composite
conditional likelihood (upper), Graphical LASSO (left) and CLIME (right). Green for the positive
coefficients and Red for the negative in the inverse covariance matrix �. The width of edge
represents the magnitude of coefficients
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17.4.2 Ising Model

One important graphical model for binary random variables (i.e., Xv 2 f0; 1g for
any v 2 V) is the Ising model, which specifies the underlying distribution on fXvg
by the following Boltzmann distribution:

P.x/ D 1

Z.�0; �/
exp

�

xT�0 C 1

2
xT�x

�

;

In the above equation, �0 2 R
jVj and � 2 R

jVj�jVj are the parameters of the Ising
model and Z is the normalizing function. (Z is also called the partition function in
the literature.) Notably, the nonzero entries of jVj by jVj symmetric matrix � 2
R
jVj�jVj correspond to the edge-set E, which determines the dependence structure

(conditional independence) between fXvg. Therefore, given the data fxigniD1, where
xi 2 f0; 1gjVj, the objective of learning here is to determine the support of � (i.e.,
the graph structure) and estimate the strength of � simultaneously (strength of the
dependency relationship).

To solve this model, Ravikumar et al. (2010), Xue et al. (2012) etc. suggest using
logistic regression by observing that the conditional distribution of Xv given all the
other variables X�v satisfies the following logistic distribution,

P.Xv D 1jX�v/
P.Xv D 0jX�v/ D exp.�v0 C �v;�vX�v/ v 2 V:

To fully utilize all the information from the data while preserving the symmetry of
the parameters, we use the following composite conditional likelihood (Xue et al.
2012) as our loss function in Libra,

L.�0; �/ D
jVjX

vD1

1

n

nX

iD1
log.1C exp.�v0 C �v;�vxi;�v//� xiv.�v0 C �v;�vxi;�v/:

The gradient of the above loss is shown below

r�v0L.�0; �/ D
1

n

nX

iD1

1

1C exp.��v0 � �v;�vxi;�v/ � xiv

r�v1v2L.�0; �/ D
1

n

nX

iD1

xiv2
1C exp.��v10 � �v1;�v1xi;�v1 /

C xiv1
1C exp.��v20 � �v2;�v2xi;�v2 /

� 2xiv1xiv2 :
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When fitting the Ising model, each iteration of the Linearized Bregman Algorithm
requires O.njVj2/ FLOPS in general, and the overall time complexity for the entire
solution path is O.njVj2k/, where k is the number of iterations.

The command in Libra that can be used to generate the path for the Ising model
is

ising.X;kappa;alpha;tlist;responses D c.0;1/;nt D 100;trate D 100/

The arguments kappa, alpha, and tilst have similar functions to the cor-
responding arguments in the linear, binomial logistic and multinomial logistic
model. Hence, we refer the reader to Sect. 17.2 for detailed explanations of these
arguments. There are several arguments specific to the Ising model, e.g. nt is the
number of models on the solution path which decides the length of tlist and
trate D tmax=tmin is the scale span of t. See Sect. 17.5 for more details on these
two arguments. The choice of the argument responses can be either c.0;1/ or
c.�1;1/. The choice c.�1;1/ corresponds to the following model formulation,
where we instead assume our data x coming from f�1; 1g and our distribution on
data x having the following specification:

P.x/ D 1

Z
exp

�
1

2
xThC 1

4
xTJx

�

;

where h 2 R
jVj and J 2 R

jVj�jVj . Since such model formulations appear quite
often in some scientific fields including computational physics, for convenience,
we include Linearized Bregman Algorithm solvers for this type of model in our
package. For clarity, we also give the one-to-one correspondence between the two
model formulations:

x�1=1 D 2x0=1 � 1;
J D �=2;
h D �0 C J1:

17.4.2.1 Example: Simulation Data

In this section, we give some simulation results that illustrate the performance of
the Linearized Bregman Algorithm in solving the Ising model. In our simulation
setting, we choose our sample size n to be 5000 and choose our underlying graph
G to be the standard 10-by-10 grid (see Fig. 17.6). We set the intercept coefficients
h to be 0 for all nodes. Each entry in the interaction matrix Jjk is set to be 2=2:3
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whenever j and k are neighbors on the 10-by-10 grid or set to 0 otherwise. The code
to reproduce this simulation is shown below.

library(Libra)
data(isingdata)
obj = ising(isingdata$X,10,alpha=0.1,trate=30)

TPrate <- rep(0,100)
FPrate <- rep(0,100)
for (i in 1:100){

TPrate[i] = sum((obj$path[,,i]!=0)&(isingdata$J!=0))
FPrate[i] = sum((obj$path[,,i]!=0)&(isingdata$J==0))

}
TPrate <- TPrate/sum(isingdata$J!=0)
FPrate <- FPrate/sum(isingdata$J==0)
tmin <- log(obj$t[min(which(TPrate==1))])
tmax <- log(obj$t[max(which(FPrate==0))])

coord = matrix(c(rep(1:10,each=10),rep(1:10,10)),ncol=2)
g<-graph.adjacency(as.matrix(isingdata$J),mode="plus",weighted=

TRUE,diag=FALSE)
png(file="Grid_true.png", bg="transparent")
plot(g,vertex.shape="circle",vertex.size=10,edge.width=2*abs(E(g)

$weight),layout=coord)
dev.off()
png(file="Ising_TPFP.png", bg="transparent")
plot(log(obj$t),TPrate,col=’red’,type=’l’,lty=1,xlab=expression(

log(t)),ylab=’TPrate & FPrate’)
lines(log(obj$t),FPrate,col=’blue’,type=’l’,lty=2)
abline(v = c(tmin,tmax),lty=3)
axis(1,at = c(tmin,tmax),labels = c(expression(t[1]),expression(t

[2])))
legend(x = 3, y = 0.58, lty=1:2,col=c(’red’,’blue’), legend=c(’

TPrate’,’FPrate’))
dev.off()

Figure 17.6 shows the True-Positive-Rate curve and False-Positive-Rate curve
along the model path computed by ising. There is a segment in the LB path which
gives the same sparsity pattern as the ground truth.

17.4.2.2 Example: Journey to the West

In this section, we revisit our example of Sect. 17.3.1.2. In Sect. 17.3.1.2, we analyze
the social relationship between the main character MonkeyKing and the other nine
characters for the classic novel Journey to the West via a single logistic regression.
However, such an analysis doesn’t take into account the pairwise relationships
between the other top nine main characters, and hence without using the joint
information among the other nine characters, our estimate of social networking
structure may be statistically inefficient. In this section, we are going to jointly
estimate the social networking among all ten main characters simultaneously
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Fig. 17.6 Left: True Grid. Right: TPrate and FPrate vs. log.t/. The path between t1 and t2 gives
the correct sparsity pattern of models

by applying techniques from graphical models. Note that, this can result in a
statistically more efficient estimate of the social networking, compared to the result
coming from multiple times of single logistic regressions.

We first consider using an Ising model to model the interaction relationships
between the top ten main characters in the novel Journey to the West. Figure 17.7
shows an Ising model estimate at sparsity level of 51%. The Ising model was fit with
the command ising. Comparing it with the Gaussian graphical model in Fig. 17.5,
note that the color of these two types of graphs is almost opposite. This is because
there is a negative sign on the exponential term in Gaussian likelihood function,
which means a negative interaction coefficient actually increases the probability of
co-presence in Gaussian graphical models. Up to the sign difference, the sparsity
patterns in all these models are qualitatively similar.

library(Libra)
library(igraph)
data(west10)
X <- as.matrix(2*west10-1);
obj = ising(X,10,0.1,nt=1000,trate=100)

g<-graph.adjacency(obj$path[,,770],mode="undirected",weighted=
TRUE)

E(g)[E(g)$weight<0]$color<-"red"
E(g)[E(g)$weight>0]$color<-"green"
V(g)$name<-attributes(west10)$names
plot(g,vertex.shape="rectangle",vertex.size=35,vertex.label=V(g)

$name,edge.width=2*abs(E(g)$weight),main="Ising Model (LB):
sparsity=0.51")
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Ising Model (LB): sparsity=0.51
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Fig. 17.7 An Ising model of sparsity level 51% on LB path. Green edges are used for positive
coefficients which increases the probability of co-appearance, while red edges are for negative
which decreases this probability. The width of edge represents the magnitude of coefficients.
Despite that the signs of coefficients are almost opposite compared with Gaussian graphical
models, the sparsity patterns in these models are qualitatively similar

17.4.2.3 Example: Dream of the Red Chamber

Dream of the Red Chamber, often regarded as the pinnacle of Chinese fiction, is
another one of the Four Great Classical Novels of Chinese Literature, composed
by Cao, Xueqin for the first 80 chapters and Gao, E for the remaining 40 chapters.
With a precise and detailed observation of the life and social structures typical of
eighteenth-century society in Qing Dynasty, the novel describes a tragic romance
between Jia, Baoyu and Lin, Daiyu among other conflicts. Our interest is
to study the social network of interactions among the main characters. Our dataset
records 375 characters who appear (“1”) or do not show up (“0”) in 475 events
extracted from the 120 chapters. The data is collected via crowdsourcing at Peking
University, and can be downloaded at the following course website:

https://github.com/yuany-pku/dream-of-the-red-chamber.

The following R codes give a simple example showing how the Linearized
Bregman Algorithm can be used to build up sparse Ising models from the data,
focusing on the most frequently appeared 18 characters. To compare the structural
difference of the first 80 chapters by Cao, Xueqin and the latter 40 chapters

https://github.com/yuany-pku/dream-of-the-red-chamber
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by Gao, E, we run ising on two subsets of data to extract two Ising models
shown in Fig. 17.8. The links shed light on conditional independence relations
among characters learned from data. It is clear that in the first part of the novel,
Jia, Baoyu has a strong connection with Lin, Daiyu and is conditionally
independent to another main character Xue, Baochai as Cao, Xueqin depicts;
while in the second part Jia, Baoyu connects to Xue, Baochai directly
and becomes conditional independent to Lin, Daiyu as Gao, E implies. Such
a transition is consistent with the split of the novel.

library(Libra)
library(igraph)

load("dream.RData")
# Choose the first 80 chapters authored by Cao, Xueqin
data<-dream[dream[,1]>0,]
dim(data)
s0<-colSums(data)
# restrict to the most important characters
data1<-data[,s0>=30]
#Eng_names <- c(’Jia, Zheng’,’Jia, Zhen’,’Jia, Lian’,’Jia, Baoyu

’,’Jia, Tanchun’,’Jia, Rong’,’Lady Dowager’,’Shi, Xiangyun’,’
Lady Wang’,’Wang, Xifeng’,’Aunt Xue’,’Xue, Baochai’,’Lin,
Daiyu’,’Lady Xing’,’Madam You’,’Li, Wan’,’Xiren’,’Ping\’er’)

p = dim(data1)[2];
X<-as.matrix(2*as.matrix(data1[,2:p])-1);

Fig. 17.8 Left: an Ising model for the first 80 chapters by Cao, Xueqin. Right: an Ising model for
the remaining chapters by Gao, E. Sparsity levels are all chosen as 20% on LB path. Green edges
are used for positive coefficients which increases the probability of co-appearance, while red edges
are for negative which decreases this probability. The width of edge represents the magnitude of
coefficients. Comparing the two models, one can see that Jia, Baoyu has a strong link with
Lin, Daiyu in the first part, and changes the link to Xue, Baochai who becomes his wife in
the second part of the novel
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obj = ising(X,10,0.1,nt=1000,trate=100)
sparsity=NULL
for (i in 1:1000) {sparsity[i]<-(sum(abs(obj$path[,,i])>1e-10))/(

p^2-p) }

# Choose sparsity=20% at point 373
g<-graph.adjacency(obj$path[,,373],mode="undirected",weighted=

TRUE)
E(g)[E(g)$weight<0]$color<-"red"
E(g)[E(g)$weight>0]$color<-"green"
V(g)$name<-attributes(data1)$names[2:p]
plot(g,vertex.shape="rectangle",vertex.size=25,vertex.label=V(g)

$name,edge.width=2*abs(E(g)$weight),vertex.label.family=’
STKaiti’,main="Ising Model (LB): sparsity=20%")

# Choose the later 40 chapters authored by Gao, E
data<-dream[dream[,1]<1,]
data2<-data[,s0>=30]
X<-as.matrix(2*as.matrix(data2[,2:p])-1);
obj = ising(X,10,0.1,nt=1000,trate=100)
sparsity=NULL
for (i in 1:1000) {sparsity[i]<-(sum(abs(obj$path[,,i])>1e-10))/(

p^2-p) }

# Choose sparsity=20% at point 344.
g<-graph.adjacency(obj$path[,,344],mode="undirected",weighted=

TRUE)
E(g)[E(g)$weight<0]$color<-"red"
E(g)[E(g)$weight>0]$color<-"green"
V(g)$name<-attributes(data2)$names[2:p]
plot(g,vertex.shape="rectangle",vertex.size=25,vertex.label=V(g)

$name,edge.width=2*abs(E(g)$weight),vertex.label.family=’
STKaiti’,main="Ising Model (LB): sparsity=20%")

17.4.3 Potts Model

Potts Model can be regarded as a multinomial generalization of the Ising model.
Each variable xj can be a multi-class variable. For simplicity we assume x 2
f1; 2; : : : ;Kgp, actually the class number and class name can be arbitrary. Then the
model x is assumed to satisfy the distribution:

P.x/ D 1

Z
exp

0

B
B
@

X

jD1;:::;p
sD1;:::;K

�js;01.xj D s/C 1

2

X

jD1;:::;pIsD1;:::;K
kD1;:::;pItD1;:::;K

�js;kt1.xj D s/1.xk D t/

1

C
C
A

where Z is the normalization factor. The vector of intercept coefficients �0 is of
length pK and the vector of interaction coefficients � is a pk-by-pk symmetric matrix
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with zero diagonal block. So the distribution of xj conditional on the rest variables
x�j satisfies

P.xj D sjx�j/ D
exp.�js;0 CPkD1;:::;pItD1;:::;K �js;kt1.xk D t//

P
sD1;:::;K exp.�js;0 CPkD1;:::;pItD1;:::;K �js;kt1.xk D t//

which is actually a multinomial logistic distribution.
So the loss function is defined as the composite conditional likelihood:

L.�0; �/ D
pX

jD1

1

n

nX

iD1
log

0

B
B
@

X

sD1;:::;K
exp

0

B
B
@�js;0 C

X

kD1;:::;p
tD1;:::;K

�js;kt1.xi;k D t/

1

C
C
A

1

C
C
AC � � �

� � � � �jxi;j;0 �
X

kD1;:::;p
tD1;:::;K

�jxi;j;kt1.xi;k D t/

The corresponding gradient is

r�js;0L.�0; �/ D
1

n

nX

iD1

exp

�

�js;0 CPkD1;:::;p
tD1;:::;K

�js;kt1.xi;k D t/

�

P
sD1;:::;K exp

�

�js;0 CPkD1;:::;p
tD1;:::;K

�js;kt1.xi;k D t/

�

�1.xij D s/

r�js;ktL.�0; �/ D
1

n

nX

iD1

1.xi;k D t/ exp

�

�js;0 CPkD1;:::;p
tD1;:::;K

�js;kt1.xi;k D t/

�

P
sD1;:::;K exp

�

�js;0 CPkD1;:::;p
tD1;:::;K

�js;kt1.xi;k D t/

�

�1.xij D s; xik D t/

C
1.xi;j D s/ exp

�

�kt;0 CP jD1;:::;p
sD1;:::;K

�kt;js1.xi;j D s/

�

P
tD1;:::;K exp

�

�kt;0 CP jD1;:::;p
sD1;:::;K

�kt;js1.xi;j D s/

�

�1.xik D t; xij D s/

and the computation cost of gradient tanks O.np2K2/ computations(or O.np2/ if
using sparse encoding to represent x).
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The function to estimate the Potts model in Libra is

potts.X;kappa;alpha;tlist;nt D 100;trate D 100;group D FALSE/

The data matrix X is expected to be of size n-by-p, and each column is a class vector
(the number of class for each variable can be different). If group D TRUE, then
the group penalty is used;

X

kD1;:::;p
kD1;:::;p

v
u
u
t

X

sD1;:::;K
tD1;:::;K

�2js;kt:

17.5 Discussion

In this section, we include some comments on the choice of some universal
parameters that are used throughout the Libra package.

• Initialization of intercept parameter �0 : The initialization of �0 in the Linearized
Bregman Algorithm is �00 D arg min�0 L.�0; 0/, not �0 D 0. The reason for this
is to avoid picking up the variables whose effects are very close to the intercept
term. If �0 D 0 at first, then the gradient of those spurious variables close to
the intercept may become very large due to the influence of intercept, such that
they are much easier to be picked out. This issue is highlighted when the Ising
model suffers from imbalanced sampling such as in low-temperature effects. For
example, when 1 or �1 dominates a sample, the corresponding variable is very
close to the intercept term by exhibiting nearly a constant in sample and thus
becomes a spurious variable being selected early. In this case, initialization using
arg min�0 L.�0; 0/ can avoid this issue.

• Initialization of t: Because the initial value of �0 is a minimal point, the gradient
of the loss is always zero unless a new variable is added in. So in the package,
the iteration actually begins from the first entry time

t0 D infft W �j.t/ ¤ 0; forsome jg

and z.t0/ can be calculated easily because r�L.�00 ; 0/ is constant.
• Parameter tlist: Instead of returning all the results of iteration steps, we need

to return the results at a pre-decided set of t, tlist, along the path. However the
Linearized Bregman Iterations only compute the value at a regular grid of time
t0 C k˛; k D 0; 1; : : : , which may not consist a particular t in tlist. To solve
this issue, for a point t in tlist but not on the computed time grid, a linear
interpolation of zk.� k0 / and zkC1.� kC10 / is used to compute z.t/ or �0.t/, �.t/ is
further obtained by using Shrinkage on z.t/. Finally if tlist is not specified
by the user, a geometric sequence from t0 to t0 � trate (trate D tmax=tmin)
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with length nt (number of models on path to show) is used as the default choice
tlist.
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Chapter 18
Functional Data Analysis for Big Data:
A Case Study on California Temperature
Trends

Pantelis Zenon Hadjipantelis and Hans-Georg Müller

Abstract In recent years, detailed historical records, remote sensing, genomics and
medical imaging applications as well as the rise of the Internet-of-Things present
novel data streams. Many of these data are instances where functions are more
suitable data atoms than traditional multivariate vectors. Applied functional data
analysis (FDA) presents a potentially fruitful but largely unexplored alternative
analytics framework that can be incorporated directly into a general Big Data
analytics suite. As an example, we present a modeling approach for the dynamics
of a functional data set of climatic data. By decomposing functions via a functional
principal component analysis and functional variance process analysis, a robust and
informative characterization of the data can be derived; this provides insights into
the relationship between the different modes of variation, their inherent variance
process as well as their dependencies over time. The model is applied to historical
data from the Global Historical Climatology Network in California, USA. The
analysis reveals that climatic time-dependent information is jointly carried by the
original processes as well as their noise/variance decomposition.

Keywords Functional principal components · Functional variance process ·
Temperature curves

18.1 Introduction

Functional Data Analysis (FDA) is the statistical framework for the analysis of
function-valued data. Under this framework each sample instance is considered to
be an individual realization of an (often smooth) underlying stochastic process (Rao
1965). Common examples are curves (one-dimensional functions) or images (two-
dimensional functions).
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A typical real-life dataset is a set of growth curves; a size/development-related
process Y is measured in a sample of N individuals along a time domain T (Müller
et al. 2009). The observed process Y is therefore a height process of which a sample
of individual growth trajectories yi.t/, i D 1; : : : ; n, are observed for n individuals.
Another example is auction data (Liu and Müller 2009); the bid amounts from N
individuals from the time an auction starts until it ends. In this case the observed
process Y is a price process. The continuum over which a process is observed is
not exclusively time; for example, spatial coordinates (Delicado et al. 2010) or mass
(Harezlak et al. 2008) and mass-charge spectra (Knight et al. 2004) are measured
over various continua that occur in FDA applications. The fact that one has repeated
observations from the process at hand distinguishes FDA from standard time-series
analysis techniques for which certain stationarity assumptions are made. Similarly
the continuum needs not be one-dimensional; in shape analysis (Dryden 2005) and
medical imaging (Dryden et al. 2009; Jiang et al. 2009) functional data are often
two- (Kenobi et al. 2010; Sangalli et al. 2013) or even three-dimensional (Kurtek
et al. 2010; Pigoli and Sangalli 2012).

As expressed by Valderrama: “[extensions towards] FDA have been done [in]
two main ways: by extending multivariate techniques from vectors to curves and by
descending from stochastic processes to [the] real world” (Valderrama 2007). FDA
has been developed under diverse frameworks: e.g., Dirichlet (Petrone et al. 2009),
Gaussian (Hall et al. 2008) or Poisson (Illian et al. 2006) data. Furthermore the
data themselves can be represented using splines (Ramsay and Silverman 2005),
wavelets (Guo 2002) or principal components as a basis; any basis (e.g., Fourier
Ramsay and Silverman (2005) or Legendre Grabe et al. (2007) polynomials) could
be used depending on the suitability of the basis in question to represent the data.

A major distinction from multivariate data is the smoothness and differentiability
of functional data. If the functional nature of a functional dataset is ignored, results
typically are sub-optimal as valuable information related to the functional nature of
the dataset is not properly utilized.

This latter point emphasizes the connection of FDA with big data. Big data
are assumed to be primarily characterized in terms of volume, variety, velocity
(Gartner 2011) and complexity. This can be true for multivariate and functional
data alike; what is specific for functional data is that they are infinite-dimensional
objects and therefore even highly complex multivariate analysis techniques cannot
account for the complexity reflected in a stochastic process. In addition traditional
multivariate techniques will suffer as the number of components gets bigger.
Their direct applicability diminishes due to increased computational demands as
well as theoretical shortcomings as the dimensions increase. Standard principal
component analysis (PCA) does not account for smoothness or continuity. One
can consider penalization/sparsity-inducing (Tibshirani 1996; Bühlmann and Van
De Geer 2011) or re-sampling techniques (Breiman 1996; Efron and Tibshirani
1994) to intelligently reduce the number of variables required to work with and
then potentially post-process the data in a heuristic way to enforce certain modeling
assumptions [e.g., the non-negativeness of the generated factors in the case of non-
negative matrix factorization (Lee and Seung 2001)].
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These are valid approaches that are however inapplicable when the data have a
smooth functional structure and are in this sense infinite dimensional. For example
differentiation and convolution operations are natural steps when working with
functions. They allow practitioners to quantify changes in the underlying dynamics
of time evolving patterns (e.g., Ramsay et al. 1996; Wang et al. 2008) or to apply
appropriate transformations (e.g., Hadjipantelis et al. 2015). Finally, it should be
noted that FDA can tackle cases where the data are recorded over an irregular or
even sparse design of points where measurements are taken, while multivariate
techniques assume that the dimensions of all data vectors are the same.

18.2 Basic Statistics for Functional Data

When working with functional data the unit of observation is a smooth function Y.t/,
t 2 T. For simplicity we assume that T 
 R. One then observes a sample of size N
realizations of Y; we will use Yij to describe the observed value of i-th realization
at the j-th time-point. Importantly, we need to also assume that Y 2 L2.T/. For the
smooth random processes Y we define the mean function:


Y .t/ D EŒY.t/� (18.1)

and the symmetric positive definite auto-covariance function:

CYY.s; t/ DCovŒY.s/;Y.t/� (18.2)

DEŒ. Y.t/ � 
Y.t//. Y.s/ � 
Y.s//�: (18.3)

Noting that the auto-covariance function CYY .s; t/ is by definition symmetric and
positive semi-definite, its spectral decomposition is given by Mercer’s theorem
(Mercer 1909):

CYY .s; t/ D
1X

kD1
�k�k.s/�k.t/; (18.4)

where �1 � �2 � � � � � 0 are the ordered eigenvalues of the Hilbert–Schmidt
operator with kernel CYY with

P1
kD1 �k < 1. The �k are the orthonormal

eigenfunctions of this operator. The Karhunen–Loève expansion of the observations
Y (Hall et al. 2006) is given as:

Yi.t/ D 
Y .t/C
1X

kD1
�ik�k.t/; (18.5)

where the �ik are the zero-mean functional principal component scores with variance
equal to the corresponding eigenvalues �k and the eigenfunction �k act as the
orthonormal basis for the space spanned by the process Y.
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Assuming a second process X similar to Y, in a similar manner we define the
kernel CYX of the cross-covariance operator CYX as:

CYX.s; t/ D Ef.Yi.s/ � 
Y.s// .Xi.t/ � 
X.t//g (18.6)

which has the following functional singular decomposition (Yang et al. 2011):

CYX.s; t/ D
1X

pD1
�p�Y;p.s/�X;p.t/; (18.7)

where now the �p denote the singular values associated with the decomposition
of the covariance between the processes Y and X (Yang et al. 2011) and �Y;p are
the “left” and �X;p the “right” eigenfunctions. Notably the cross-covariance surface,
while adjoint, is not symmetric and not self-adjoint.

In real-life applications statistical analysts are increasingly presented with mas-
sive datasets stemming from continuous multi-channel recordings: from anatomical
brain regions (Worsley et al. 2002) to climatic variables across different geographic
regions (Zhang et al. 2011) and multiple sensors tracking humans or animals (Coffey
et al. 2011). The functional data analysis framework is essential to analyze such data.

18.3 Dimension Reduction for Functional Data

As stated by Delicado (2007), functional data can be viewed as augmenting multi-
variate techniques to a functional domain. One is therefore presented with infinite
dimensional objects that require extension of traditional inferential procedures.
Additionally, an infinite dimensional object cannot be fully represented when using
a finite amount of memory.

Aside the obvious size-constraints, it is possible that we are encoding redundant,
unrelated or even misleading information in a high-dimensional dataset. It is
therefore to a modeler’s benefit to extract features or modes of variation that
are informative representations. In that regard, even higher dimensional datasets
might have an adequate, in terms of variation explained, representation in two
or three dimensions enabling their visualization. Classical methods to obtain
such representations are PCA and Multi-Dimensional Scaling (MDS). Ideally, the
reduced dimension representation of the dataset is useful as a surrogate dataset for
the original high-dimensional data analyzed, both for dimension reduction and to
filter unstructured information out of the original dataset.

Dimension reduction is based on the notion that we can produce a compact
low-dimensional encoding of a given high-dimensional dataset. The currently main
methodology to achieve this is Functional Principal Components Analysis (FPCA)
(Hall et al. 2006; Kleffe 1973).
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FPCA is an inherently linear and unsupervised method for dimension reduction
(Ghodsi 2006) that has been implemented for diverse applications of FDA. Linear
refers to the fact that the resulting representation is linear in the random functions
that are represented. In the case of FPCA the original zero-mean process Y is
approximated by forming projections of the form:

��;n D
Z T

0

��.t/. Y.t/ � 
y.t//dt (18.8)

where Ef Y.t/g D 0, �� is the �-th eigenfunction and �� is the corresponding FPC
score; Var.��/ D �� as in Eq. (18.5). Alternative non-linear (but still unsupervised)
dimension reduction algorithms include kernel PCA (Schölkopf et al. 1998), locally
linear embedding (LLE) (Roweis and Saul 2000), and semi-definite embedding
(SDE) (Weinberger et al. 2004); the latter can also be casted as kernel PCA
(Ghodsi 2006). Chen and Müller demonstrate that some functional data can be
successfully represented as non-linear manifolds (Chen and Müller 2012a) using
Isomap (Tenenbaum et al. 2000). Fisher’s Linear Discriminant analysis is a typical
example of an alternative supervised linear dimensionality reduction algorithm
(Barber 2012) that also has been successfully applied to functional data (James and
Hastie 2001).

As a final note, a problem that is common to FPCA applications is the
selection of the number of components to retain. This is still an open problem
that is effectively a model selection problem (Hoyle 2008; Minka 2001). One
can formulate the selection problem as an optimization problem of an equivalent
information criterion; for example, Yao et al. (2005) propose pseudo-AIC and BIC
criteria for the determination of the relevant k; other heuristic methods (e.g., the
broken stick model) (Cangelosi and Goriely 2007) are popular. A final important
note on dimension reduction is that, as Ma and Zhu emphasize: “because dimension
reduction is generally viewed as a problem of estimating a space, inference is
strikingly left out of the main-stream research” (Ma and Zhu 2013). Sliced inverse
regression can be a fruitful alternative approach (Li 1991) for dimension reduction.
Ferré and Yao (2003) have formulated a relevant application framework for applying
sliced inverse regression to functional data; Jiang et al. (2014) have moved this
framework even further with results on irregularly sampled data.

18.4 Functional Principal Component Analysis

Tucker (1958) introduced the idea of a function as the fundamental unit of statistical
analysis in the context of Factor Analysis (FA). Nevertheless it was the later work
of Castro et al. (1986) that popularized the concept of dimensionality reduction
via covariance function eigendecomposition for functional data as in Eq. (18.4).
Returning to the original notion of a stochastic process Y, the “best” K-dimensional



462 P. Z. Hadjipantelis and H.-G. Müller

linear approximation in the sense of minimizing the variance of the residuals is:

Yi.t/ D 
.t/C
KX

kD1
�i;k�k.t/; (18.9)

where the �i;k are the k-th principal component scores and �k (k � 1) are the
eigenfunctions that form a basis of orthonormal functions. In this functional setting
the usual mean squared error optimality condition found in standard multivariate
PCA minimizing

PK
iD1 jj yi� Oyjj2 can now be restated as the integrated square errorR

Œ y.t/� Oy.t/�2dt. The fraction of the sample variance explained is maximized along
the modes of variation represented by the eigenfunctions �k.

Empirically finding the eigenfunctions �k requires first the estimation of the
sample auto-covariance function OCY.s; t/; see Eq. (18.3):

OCYY .s; t/ D 1

N

NX

iD1
. Yi.s/ � O
Y.s//. Yi.t/ � O
Y .t//; (18.10)

where O
Y .t/ D 1
N

PN
iD1 Yi.t/. Then the subsequent eigendecomposition of OCYY .s; t/

for the zero-meaned sample Y is approximated by the first K components as:

OCYY .s; t/ D
KX

�D1
O�� O��.s/ O��.t/: (18.11)

This is in direct analogy with the principal axis theorem (Jolliffe 2005) for
multivariate data where the sample covariance matrix OCYY is decomposed as
OCYY D Ô Oƒ Ô T , where Ô is the orthogonal matrix composed of the eigenvectors
for the multivariate sample Y and Oƒ is the diagonal matrix composed of estimated
eigenvalues. Ultimately, because of the optimality of the FPCs in terms of variance
explained, these new axes explain the maximum amount of variance in the original
sample. The estimated eigenfunctions O�k are restricted to be orthonormal. The
corresponding mode of variation has the form 
.t/C ��k.t/ for � 2 R. For a more
detailed introduction to FPCA, Horváth and Kokoszka provide an excellent resource
(Horváth and Kokoszka 2012).

FPCA serves not only as a convenient method for dimensionality reduction but
also provides a way to build characterizations of the sample trajectories around an
overall mean trend function (Yao et al. 2005). An additional geometric perspective
is that the eigenfunctions represent a rotation of the original functional data
that diagonalizes the covariance matrix of the data. The resulting scores �k are
uncorrelated (Barber 2012), as in the case of multivariate PCA. Table 18.1 lists
the analogies between standard multivariate and functional PCA.

Common assumptions are that the mean curve and the first few eigenfunctions
are smooth and that the eigenvalues �k tend to zero rapidly; the faster this
convergence happens the smoother are the trajectories. The smoothness of the
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Table 18.1 The analogies between multivariate PCA and functional PCA

Concept MVPCA FPCA

Data Y 2 Rp Y.t/ 2 L2.T/

Dimension p <1 1
Mean 
Y D E.Y/ 
Y.t/ D E.Y.t//

Inner product hx,yi P
xjyj

R
x.t/y.t/dt

Covariance †Y;Y. j; l/ (matrix) CY;Y.s; t/ (kernel)

Eigenvalues �1 � �2 � 	 	 	 � �p � 0 �1 � �2 � 	 	 	 � 0
Eigen-vectors/functions �1 ? �2 ? 	 	 	 ? �p �1.t/ ? �2.t/ ? : : :
Principal Component Scores �k DP

.yj � 
y/�k � D R
.Y.t/� 
Y .t/�.t/dt

underlying trajectories is critical so that the discrete sample data can be considered
functional (Horváth and Kokoszka 2012), even when there is usually additive
measurement noise. As seen in Chen and Müller (2012b) for the case of two-
dimensional functional data, the discretization and the subsequent interpolation can
have significant implications.

FPCA can be implemented in many different ways. A number of regularized
or smoothed functional PCA approaches have been developed over the years.
Smoothness is imposed in two main ways. The first approach is by penalizing
the roughness of the candidate eigenfunctions �k directly, where their roughness
is measured by the integrated squared second derivative over the interval of interest
(Ramsay 2002) or by approximating �k with a family of smooth functions [e.g.,
B-splines (James et al. 2000) or Fourier polynomials (Graves et al. 2009)]. The
second approach is by smoothing the data or their equivalent representation (their
autocovariance) directly and then projecting the dataset to a lower dimensional
domain where smoothness is ensured. The actual smoothing in these cases can
be done using usual smoothing procedures (e.g., Yao et al. 2005). The basic
qualitative difference between these two smoothing approaches is that in the first
case smoothing occurs directly on the FPCA eigen decomposition step, while in the
second case we smooth the raw data or their higher order moments. Both approaches
have been used extensively in the literature.

18.4.1 Smoothing and Interpolation

Common design assumptions in FDA are that the sample consists either of
sparse (and possible irregularly sampled) observations (Yao et al. 2005) or of
densely/perfectly observed discretized instances of smooth varying functions (Aston
et al. 2010). Situations in between these two have also been considered. In all cases,
we assume there is an underlying smooth generating process such that the observed
data result from possibly noisy measurements of this process. Due to the assumed
smoothness of the underlying process the following smoothing techniques can be
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employed: localized kernel smoothing (Chiou et al. 2003), smoothing splines (Guo
2002), or wavelet smoothing (Antoniadis et al. 1994).

A local smoother based on kernel weights is analogous to the windowing
of a digital signal to conduct short-time analysis. It corresponds roughly to the
windowing idea in Digital Signal Processing that the signal/sample within that
window is stationary and the model’s inferred parameters are reasonable estimates
for the overall behavior within the window. In this setting, a smoothing kernel
is a non-negative, symmetric, continuous (on its support), real-valued integrable
function K satisfying:

R C1
�1 K.t/dt D 1. The bandwidth (or tuning parameter)

b plays a key role in kernel smoothing; it can be viewed as analogous to the
characteristic length scale of a Gaussian process (Rasmussen 2004).

A basic kernel smoother is the Nadaraya–Watson estimator which is effectively
a weighted mean O
NW, where the weights are determined by the kernel function K
and bandwidth b used. For data .ti; yi/; i D 1; : : : ; s, generated by yi D m.ti/ C
�i, assuming a smooth function m, the Nadaraya–Watson estimator is given by

O
NW.t/ D
Ps

iD1 K.
t�ti
b /yi.t/

Ps
jD1 K


 t�tj
b

� (Davison 2003); alternative kernel smoothers have been

proposed (Gasser and Müller 1984). A closely related method is weighted least
squares smoothing where one fits local linear lines to the data within the windows
Œt � b; t C b� and produces smooth curves. Using the notation SL for the smoother,
evaluating the non-parametric regression function at point t and considering a
sample .ti; yi/; i D 1; : : : ; s, as inputs, the smoother SL takes the form:

SLftI b; .ti; yi/iD1;:::;sg (18.12)

D argmin
˛0

(

min
˛1

 
sX

iD1
K

 t � ti

b

�
Œ yi � f˛0 C ˛1.t � ti/g�2

!)

:

Kernels commonly used include the uniform (or rectangular) kernel function:
K.x/ D 0:5Ijxj�1 and the Epanechnikov kernel function: K.x/ D 3

4
.1 � x2/Ijxj�1,

where Ijxj�1 is an indicator function; the Gaussian kernel function: K.x/ D 1p
2�
e� x2

2

and the triangular kernel function: K.x/ D .1 � jxj/Ijxj�1; see Izenman (2008).
The bandwidth b is commonly estimated using cross-validation (Izenman 2008)
or generalized cross-validation (Silverman 1985). The uniform, Epanechnikov, and
the triangular kernels have a finite support which ensures that the size of the linear
system solved by Eq. (18.12) always remains finite. Qualitatively, smaller values of
b are associated with large variability while larger values of b are associated with
larger bias that results from broader smoothing windows.

It is important to note that by employing a locally weighted least squares
smoother we can adjust for irregular sampling and/or data to some extent. While
ideally all curves are sampled over the same dense grid of points, in practice this
is often not the case. Smoothing can be used to transform the original irregularly
spaced observations to smooth curves that can then be sampled on a regular output
grid. The number of grid points for the output grid is usually determined empirically;
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in practice L is set equal to the expected number of readings per case for the sample
at hand.

For example, when weekly measurements of a reasonably smooth varying
process are available, 53 equidistant points are an obvious choice for the output grid;
thus ensuring that there are smooth values on weekly support points. As Levitin et al.
mention: “this [the choice] is largely a matter of experience, experimenter intuition
and trial-and-error” (Levitin et al. 2007). The choice of L strongly relates to the
binning of the data and has a bearing on the computational load. When analyzing
datasets with few missing values (i.e., not significantly sparse datasets) often the use
of the Epanechnikov kernel function is a good choice. As an alternative to the finite
support kernels, the Gaussian kernel, which enjoys an infinite support, can always
“interpolate over holes” in situations with extremely sparse designs. One must
be careful though to avoid situations where the dimensions of the actual systems
solved [Eq. (18.12)] become prohibitively large; explicit solutions are available
(Fan and Gijbels 1996). Implementation-wise, based on simulations we recommend
truncating a Gaussian kernel window at three bandwidth lengths from each side to
ensure a reasonable maximal length-scale.

As an alternative to kernel smoothing, smoothing splines are a popular choice
(Eubank 1999). For FDA applications Guo presented a test-case where the smooth-
ing framework employed a generalization of smoothing splines (Guo 2002). For
standard spline smoothing, the number of knots, the number of basis functions,
and the order of the spline employed affect the final result. A third alternative is
based on the notion of multi-resolution signal decomposition as implemented by
wavelets (Mallat 1989). Wavelet approximations have been widely employed; for
example, the popularly used JPEG standard is based on wavelets.Wavelet estimators
use projections onto subspaces of L2Œ0; 1� to represent successive approximations. In
contrast to a standard orthogonal basis that is localized only in a single domain (e.g.
Fourier polynomials are localized in frequency), wavelets can be localized both in
time and frequency. Wavelets allow for fast implementations based on the Discrete
Wavelet Transformation (DWT) and can be used to smooth original noisy functional
data (Morris and Carroll 2006). Under this paradigm, smoothing is achieved by
thresholding; certain wavelet coefficients are “thresholded” in order to exclude parts
considered to be noise. Often however, the smoothed curves resulting from wavelets
are not as smooth as desired.

All techniques require a tuning parameter which in the case of wavelets is the
original mother wavelet and the threshold used, in the case of spline smoothing, the
type of splines and the penalty parameter used, and in the case of kernel smoothing
the choice of kernel type and bandwidth.

Kernel, splines or wavelets estimators are linear in the data y:

ysmooth D Hy; (18.13)

where H is a projection or hat matrix. On a conceptual level one might argue
that smoothing leads to dimension enhancement as it generates readings across
a whole continuum that was previously unpopulated as this is obvious in the
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case of irregularly sampled data. Numerically, both spline and wavelet smoothing
have been reported to be more computationally efficient than kernel smoothing
(Wink and Roerdink 2004; Bruns 2004; Theis 2005) in its naive form. Binning
and computational parallelizing overcome this issue and offer significant speed-
ups compared to naive kernel smoothing, while providing a straightforward
implementation that is easily adaptable to specific restrictions and modifications
one may wish to adopt. An additional advantage of this approach is that it is easily
amenable to mathematical analysis.

18.4.2 Sample Size Considerations

When working with a large sample of dense functional data, sample size considera-
tions come into play not only because the number of design points may increase. To
address the computational challenges we propose two basic remedies, binning and
the use of the Gram matrix.

Binning of data is a basic data pre-processing procedure. For the analysis of
large data, binning has significant utilities; it has an important place in neuroscience
applications (Cunningham et al. 2009).

When sampling a signal, the notion of the Nyquist–Shannon sampling theorem
is relevant when choosing the sampling frequency, as this corresponds to the bin
width. There are a number of heuristics available to choose the number of bins,
e.g., Sturges (1926), Scott (1979) and Freedman and Diaconis (1981) as well
information-theoretic approaches (e.g., Kohavi and Sahami 1996); in any case using
some prior knowledge as well as visualizing the data is essential. The number of
bins must be large enough to allow the process dynamics to be expressed without
aliasing. This is clearly a common problem in situations where densely sampled
signals are presented. When implementing FDA, one may face situations with
“small n, large p,” sometimes abbreviated as “n� p”.

For small n, large p, the eigendecompositions become non-trivial in terms of
space as well computations required. A common computational trick that supports
binning is to recognize that for the zero-meaned sample matrix Y0 the covariance
matrix is:

C D 1

n � 1Y
T
0 Y0; (18.14)

with corresponding Gram matrix:

G D 1

n � 1Y0Y
T
0 (18.15)

where C and G share the same singular values. Additionally and equally importantly
the eigencomponents of the covariance matrix C are related to the eigencomponents
of the Gram matrix G. The proof is straightforward: it entails expressing Y0 as USVT
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and expressing the eigen decomposition of C as 1
n�1VS

2VT and G as 1
n�1US

2UT

(Good 1969). Using this property, if either n � p or n � p, one can compute
the principal modes of variation of the original sample stored in the matrix Y0 by
considering only min.n; p/�min.n; p/ matrices.

Clearly there are situations where the number of observed functions n is large. In
these situations the most common solutions fall under the category of randomized
algorithms (Papadimitriou 2003). The basic idea is that one uses a random projection
matrix � to multiply the original large sample A to get the matrix B D A�.
Subsequently one computes the matrix Q that defines an orthonormal basis for the
range of B. A caveat is that, as B is an approximation to the range of A and thus
projecting A by using QTQ, we will get A � QTQA (Witten and Candès 2015);
this is natural as given that Q is approximately orthonormal then QTQ � I. There is
extensive work on how to sample these random projections. Randomized algorithms
have been shown to be promising for very large datasets (Mahoney 2011). For
example, even in cases where less than a hundredth of the original dataset can be
stored in the computer’s RAM, efficient algorithms have been derived to obtain
nearly optimal decompositions (Halko et al. 2011). Another option is simply to
work with a random subsample of size n� < n, for a suitably small n� at the cost of
increased variability.

18.5 Functional Variance Process

When analyzing functional data, there is sometimes valuable information in small
oscillations that can be captured by the functional variance process (Müller et al.
2006) (FVP). FVP is a non-parametric tool to analyze stochastic time-trends in the
noise variance of functional data. In contrast to parametric techniques that impose
particular assumptions regarding the form of potential heteroskedastic trends, non-
parametric variance function estimation techniques allow for data-driven detection
of locally varying patterns of variations that may contain relevant information to
quantify the variation observed in the data.

More formally, we assume that Y1; : : : ;Yn denote n continuous smooth random
functions defined over a real interval Œ0;T�. Here, we also assume that these
functions are observed at a grid of dense time-points tj D j�1

m�1T, j D 1; : : : ;m,
with measurements:

Yij D Yi.tj/C Rij; i D 1; : : : ; n; j D 1; : : : ;m; (18.16)

and Ri;j is additive noise such that EfRi;jRi0kg D 0 for all i ¤ i0, EfRg D 0 and
EfR2g <1.

Importantly, the noise process R is assumed to generate the squared errors R2i;j
which themselves are assumed to be the product of two non-negative components
V.ti;j/ and Wi;j such that R2i;j D expŒV.ti;j/� expŒWi;j�; V.ti;j/ and Wi;j representing the
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underlying smooth functional variance process and a noise component, respectively.
To draw conclusions about the underlying variance process of the original data Y we
then focus on the examination of its two components V.ti;j/ and Wi;j.

The initial step is to work on the log-domain to transform the multiplicative
relation between V and W to an additive relation. This leads to the transformed
errors:

Zi;j D log.Ri;j/
2 D V.ti;j/CWi;j: (18.17)

We assume that:

EfZi;jg D EfV.ti;j/g D 
V .ti;j/; (18.18)

Cov.Zi;j;Zi;j0/ D Cov.V.ti;j/;V.ti;j0//: (18.19)

Furthermore we assume that the V.ti;j/ are derived from a smooth variance process
V.ti;j/ with mean:

EfV.t/g D 
V.t/; (18.20)

and smooth symmetric auto-covariance:

CVV.s; t/ D
1X

kD1
�k k.s/ k.t/ (18.21)

where in analogy with Eq. (18.3), the �k are the non-negative ordered eigenvalues
�1 � �2 � : : : 0 and  k are the corresponding orthonormal eigenfunctions of V
describing its principal modes of variation. The Wi;j are assumed to be independent
with EfWi;jg D 0 and Var.Wi;j/ D �2W . The functional data can then be decomposed
into two processes Y and V with Karhunen–Loève representations :

Y.t/ D
Y .t/C
1X

kD1
�k�k.t/ .Eq: (18.5)/and (18.22)

V.t/ D
V .t/C
1X

kD1
�k k.t/: (18.23)

Operationally, after we compute the FPCA of the original data Yi;j yielding fits
QYi;j D Oyi.ti;j/ for the underlying smooth processes, we use the logarithms of the
squared differences between Yi and QYi as our new sample to conduct a second
FPCA step. In the notation of Eq. (18.16), the total decomposition of the observed
measurements then becomes:

Yi;j D Yi.tj/C sign.Ri;j/fexpŒVi.ti;j/CWi;j�g 12 : (18.24)
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18.6 Functional Data Analysis for Temperature Trends

In this section we illustrate the insights one can obtain by using functional data
analysis techniques on historical temperature data. We begin by showing the
findings obtained by a basic FPCA approach, followed by the insights gained from
the inspection of the functional cross-covariance operator and finally from the
subsequent FVPA (Functional Variance Process Analysis) of our data. In related
work, Horváth and Kokoszka present a detailed introductory application on the
subject of detecting changes in the mean function (Horváth and Kokoszka 2012)
for temperature data.

Our illustration data are daily temperature time-series for two cities in Northern
California, Redwood City (37ı280N, 122ı140W) and Davis (38ı330N, 121ı440W—
Station IDs: USC00047339 and USC00042294 for Redwood City and Davis respec-
tively), downloaded from the Global Historical Climatology Network(GHCN)
(Menne et al. 2012). While the two cities are relatively close (�150 km) and of
similar elevation (�15m), Davis is landlocked while Redwood City is adjacent to
the south San Francisco Bay; as large bodies of water are known to act as natural
“heat reservoirs” we expect that the two cities have different temperature patterns.
For both locations we were able to obtain daily temperature data for approximately
a whole century (86 and 108 years of observations for Redwood City and Davis,
respectively). This allows us to look at changes across time. We focus our attention
to two variables of interest, the daily maximum temperature and the daily minimum
temperature.

In addition to the difference between coastal and continental weather patterns,
we are interested to see if there are long-term trends such as a warming effect. Both
stations are in urban or peri-urban locations. Therefore, an urban warming effect
may be present. Our basic unit of analysis is the daily trajectory of the temperature
extrema records across the span of a whole year; we make no assumptions of
seasonality or stationarity.

The original data are obviously non-smooth (Fig. 18.1) in their raw form;
nevertheless, it is reasonable to assume that there is an underlying smoothly
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Fig. 18.1 The raw and smoothed temperature curves for the daily minimum in Redwood City in
1933, 1934 and 1964
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varying process that encapsulates the dynamics behind the temperature extrema
recorded. The deviations from a smooth function can be viewed as aberrations or
as measurement errors. We will study the decomposition of the temperature signals
into a functional process that reflects the long-term trends and a variance process
that reflects the aberration patterns.

For the regular FDA part, the smoothing procedures can be either directly applied
to densely sampled data for each subject (here: actual temperature profiles) or the
pooled data before obtaining the mean and covariance functions. Here we choose
to smooth the data directly for computational reasons. First, smoothing the raw data
allows us to massively parallelize the smoothing procedure. When dealing with big
data it is paramount to avoid moving data around for efficient computation. One
should aim to move the computation close to the data rather than the other way
around. If someone chooses to smooth the covariance, then one would deal with
one (potentially massive) object that would need to be segmented, distributed across
nodes, processed and then recombined. We avoid this by employing the fact that data
might be already split and thus we “bring the computation” to the data.

Second, all smoothing procedures experience edge effects which is a problem
that needs to be addressed. The remedy is often to avoid smoothing near the edges
(e.g., Hadjipantelis et al. 2012), to truncate the smoothed curves (e.g., Petersen and
Müller 2016), to enforce knot locations for splines (e.g., Ramsay and Silverman
2005), or to rebalance the weights intelligently (e.g., Hall and Müller 2003). We
minimize edge effects during smoothing as well as parallelize our smoothing
procedure by combining adjacent years. In Fig. 18.2, we show the basic idea where
one segments data into two main data segments (Chunks A and B). After segmenting
the data into chunks, the chunks can be processed independently. Importantly, a
small part of the data will be duplicated (shown in a dark gray) in both chunks. This
duplication serves to avoid edge effects. When smoothing the data we smooth only
half of the duplicated part present in each chunk (shown in gray and black dotted
lines for chunks A and B respectively). Then we avoid duplicating calculations and
distribute the computation among all available resources. As a final comment we
note that the actual duplicate chunk is relatively small in comparison with the overall
space requirements; it needs to be only of size 2bq, b being the bandwidth used and
q being the number of segments used.

Analyzing the data and looking at the respective means, it is evident that the
temperature curves of Davis exhibit more extreme weather patterns in the course
of a typical year (Fig. 18.3). During winter-time the daily extrema in Davis appear
marginally lower than in Redwood City (Fig. 18.3, both plots), signifying that Davis
is colder than Redwood city. During summer Davis experiences significantly higher
daily maximum temperatures (Fig. 18.3, RHS). These patterns strongly suggest that
the yearly variation of average temperatures is higher in Davis than in Redwood
City.

To quantify the differences further, we also quantify the daily spread, which
corresponds to the daily maximum minus the daily minimum. As can be seen in
Fig. 18.4 which shows the means as well as the covariance of the daily spreads in
each region, the temperature spread in Davis is higher than in Redwood City for
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CHUNK A
CHUNK B 

ENTIRE DATASET

Fig. 18.2 Example where the original dataset to be smoothed is segmented into two chunks A and
B. The two chunks overlap (dark gray box) so information is shared and smoothing edge effects
are alleviated near the segmentation limits. The smoothing output grid-points (shown in widely
and densely dotted lines for chunks A and B, respectively) do not overlap so one does not duplicate
any calculations

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

5

10

15

20

25

30

35

40

D
eg

re
es

 C
el

si
us

Mean Daily Minimum

Davis
Redwood City

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

5

10

15

20

25

30

35

40

D
eg

re
es

 C
el

si
us

Mean Daily Maximum

Davis
Redwood City

Fig. 18.3 Smoothed estimates for the mean daily temperature extrema recorded in Davis from
1908 to 2015 and in Redwood City from 1930 to 2015 using an Epanechnikov kernel and
bandwidth of 49 days

approximately 10 months (Fig. 18.4, LHS). In addition it is evident that the variance
of the spread across the year is of higher amplitude in Davis compared to Redwood
City. Davis in late autumn (mid-October to late-November) appears to have very
strong intra-day temperature changes indicating that the temperature patterns in
Davis exhibit more variation that those in Redwood City, the latter being possibly
modulated by the coastal location of Redwood City.

An issue of interest is the covariance/correlation of the annual temperature
curves between the two locations and the detection of the periods where synergy is
strongest. The cross-covariance estimator [Eq. (18.6)] is of interest here. Figure 18.5
shows the cross-covariance surfaces between the three temperature related measure-
ments we examined. First of all it is notable that the surfaces are not symmetric
across their diagonal; this is expected.

The off-diagonal elements appear to be routinely of lower absolute magnitude
hinting at to little covariance between the temperatures in Davis and Redwood City
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Fig. 18.4 Smoothed estimates for the mean daily temperature spread recorded in Davis from 1908
to 2015 and in Redwood City from 1930 to 2015 (LHS plot) using an Epanechnikov kernel and
bandwidth of 49 days. The auto-covariance surface of the daily temperatures in Davis (central plot)
and in Redwood City (RHS plot)

during different seasons. The daily minima cross-covariance seems significantly
flatter and does not exhibit significant troughs (or bumps) compared to the daily
maxima and daily spreads of temperatures. This suggests that the daily minima
covary more homogeneously across the two regions as well as across time; a trend
that is in line with the lower spread in the mean daily minima curves (Fig. 18.3,
LHS). Focusing on the ridges of the surfaces it is telling that the time periods
where the covariance of the two functional datasets is highest differ between the
type of measurement examined. In particular, while the minima covary most during
January, suggesting that cool or warm winters are cool or warm for both places,
the maxima do not covary at the same time. Spring daily maximum temperatures
appear to covary the most while, based on the behavior of the daily spreads, daily
spreads appear covary the most in late autumn or early winter. This can also be seen
by visually inspecting the cross correlation matrices (Fig. 18.6).

A question of interest is whether the data reflect climate change. It is generally
accepted (Hansen et al. 2010) that the world as a whole is getting warmer. We
note that in our analysis we do not incorporate any soil moisture, solar radiance
or ocean-wind information which limits the interpretability of our data analysis as
these factors are generally thought to be important confounders of the Northern
California temperature dynamics.

We begin by examining the first estimated eigenfunction �1 (Fig. 18.7). Larger
absolute values are associated with higher variation in the direction of the first
eigenfunction, as the sign of the eigenfunction is arbitrary. The peaks of the various
components are located at different times between different locations suggesting
that the periods of maximum variation do not fully coincide.

Examining the second principal mode of variation �2 (Fig. 18.8) it appears
that it encapsulates additional strongly expressed shapes in each of the respective
underlying temperature processes. Something that is noteworthy is that neither of
the eigenfunctions is periodic, thus reflecting the non-monotonicity of the original
sample series (Fig. 18.1). We also note that one can assess the fraction of variance
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Fig. 18.5 Smoothed estimates for the cross-covariance surfaces between Davis and in Redwood
City from 1930 to 2015 for daily temperature minima (LHS), maxima (central plot) and spread
(RHS)

explained by each component using its respective eigenvalue ratio [Eq. (18.4)].
Using �1 and �2 we can obtain the FPC scores �1 and �2 by �j D

R
.y �


/.t/�j.t/dt; j D 1; 2. A question of interest is whether there are trends in �1 and �2
over calendar years. Overall climate trends could be reflected in trends in some of
the FPC scores. We therefore regress the scores �j against calendar time t (measured
t in years) for j D f1; 2g, applying either linear or non-parametric regression.

Fitting simple linear regressions, we obtain the fits in Fig. 18.9 and the t-values
of Table 18.2. While the maxima estimates are relatively flat (Fig. 18.2, middle plot)
the minima process has a clear upward pattern along time. This pattern suggests
that nights are becoming warmer. In the temperature spread process the estimated
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Fig. 18.6 Smoothed estimates for the cross-correlation surfaces between Davis and in Redwood
City from 1930 to 2015 for daily temperature minima (LHS), maxima (central plot) and spread
(RHS)

Ǒ
1 show a clear decreasing trend. This shows that the daily spread is getting smaller

in amplitude because the daily minima get closer to the daily maxima.
For the non-parametric regression approach we used a local linear smoother with

Gaussian kernel to compute smooth estimates for the time-trends in this data; the
bandwidth used was equal to 12 years. Figure 18.10 shows that the trends are indeed
roughly linear in the case of temperature minima and temperature spread and have
increasing and decreasing tendancies respectively, across the twentieth century. On
the contrary, temperature maxima are out of sync between the two locations.

In a similar manner we examined the estimated slopes for the second mode
of variation. While visually some slopes (Fig. 18.11, LHS) appear significant at
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Explained for each component is shown in the legend

-0.1

-0.05

0

0.05

0.1

φ2 Minima

Davis 16%

Redwood City 17%

-0.1

-0.05

0

0.05

0.1

φ2 Maxima

Davis 28%

Redwood City 18%

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

-0.1

-0.05

0

0.05

0.1

φ2 Spread

Davis 19%

Redwood City 16%

Fig. 18.8 The second estimated eigenfunction for the daily temperature minima (LHS), maxima
(central plot) and spread (RHS) as a function of the day of the year. The Fraction-of-Variance-
Explained for each component is shown in the legend

Table 18.2 The t-values and p-values for the slopes of the fitted simple linear regressions,
assuming normality for the first principal component scores �1

t-Values (p-values) Minima Maxima Spread

Davis 10.480 (<1e�9) �0.090 (0.928) �7.311 (<1e�9)

Redwood City 5.471 (<1e�5) 0.395 (0.694) �4.414 (<1e�4)

first glance, after correcting for multiple comparisons their effects are statistically
insignificant.

Based on these findings we conclude that there are suggestions of warming effect
in our current dataset. As mentioned before, several extrema influencing phenomena
(e.g., urban microclimate, soil moisture, etc.) have not been actively accounted
for; a full climate change assessment would definitely need to account for such
confounders; for example, it is known that the increasing irrigation in California
mitigates nightly cooling.

As a final step of this analysis we study patterns of the random noise in the
data; for example, to assess potential issues of heteroskedasticity; to see whether the
behavior of temperature patterns over shorter time spans has become more erratic
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Fig. 18.9 The estimates for the first principal scores (O�1) for daily temperature minima (LHS),
maxima (central plot) and spread (RHS), plotted against calendar year, and overlaid with least
squares fit of simple linear regression
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Fig. 18.10 The estimates for the first principal scores (O�1) for daily temperature minima (LHS),
maxima (central plot) and spread (RHS), plotted against calendar year, and overlaid with non-
parametric fit of local linear kernel regression
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Fig. 18.11 The estimates second principal scores (O�2) for the daily temperature minima (LHS),
maxima (central plot) and spread (RHS)

in recent times. We represent each temperature series with two trajectories; one for
the actual smooth temperature extrema process and a second one for the realization
of the smooth variance process that reflects patterns in the deviations from smooth
temperature curves. We examine the same three processes as previously: tempera-
ture daily minimum, maximum, and spread (Table 18.3).
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Table 18.3 The t-values and p-values for the slopes of the fitted simple linear regressions,
assuming normality for the second principal component scores �2

t-Values (p-values) Minima Maxima Spread

Davis �1.642 (0.104) �0.168 (0.867) 1.904 (0.060)

Redwood City 1.463 (0.148) �0.318 (0.751) 1.019 (0.312)
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Fig. 18.12 The estimated mean functions for the functional variance processes V in Eq. (18.20)
for the daily temperature minima (LHS) and maxima (RHS). The smoothing bandwidth for the
Epanechnikov kernel used was 63 days

Looking first at the respective mean processes we notice that they appear very
similar between the two different locations (Fig. 18.12). This suggests that the noise
variance patterns are not location-specific between the two locations. This appears
in line with findings about the correlation of temperature anomalies for neighboring
stations (Hansen and Lebedeff 1987); as Hansen et al. note: “[correlation] typically
remains above 50% to distances of about 1200 miles at most latitudes” (Hansen
et al. 2010).

In Davis the overall mean variance is typically slightly higher than in Redwood
City, again hinting towards the tampering effect of the nearby sea mass in Redwood
City. The minima variation trend appears more variable during the winter. Similarly
the variance in the maxima seems to be highest in late spring with a small maximum
in early autumn.

Examining the principal modes of variation (Figs. 18.13 and 18.14) the Fraction-
of-Variance-Explained (FVE) from the first estimated eigenfunction is comparable
to the FVE of the second estimated eigenfunction in the case of daily minimum
and daily maximum variation. This strongly suggests that two or more strong
independent sources of variance are in place. In addition, particularly in the variance
processes of the daily temperature maximum and temperature spread, there are
clearly defined peaks of variation as reflected in the first eigenfunction. The
peaks are partially aligned in the daily temperature spread. The second estimated
eigenfunction for all three variances processes shows strong seasonal patterns.



478 P. Z. Hadjipantelis and H.-G. Müller

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12
φ1 Minima

Davis 33%

Redwood City 41%
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12
φ1 Maxima

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12
φ1 Spread

Redwood City 32%
Davis 34%

Redwood City 38%
Davis 49%

Fig. 18.13 The first estimated eigenfunction for the variance process of daily temperature minima
(LHS) and maxima (RHS) as a function of the day of the year. The Fraction-of-Variance-Explained
from each component in its respective process is shown in the legend
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Fig. 18.14 The second estimated eigenfunction for the variance process of daily temperature
minima (LHS), maxima (RHS) as a function of the day of the year. The Fraction-of-Variance-
Explained from each component in its respective process is shown in the legend

In terms of time-trends, perhaps counter-intuitively the variance processes appear
to have clear downward trends (Fig. 18.15, Table 18.4 for the linear regression and
Fig. 18.16 for the non-parametric smoothed trends). This means that local variation
from the smooth process if at all, declined over the years. Confounders of such
trends can be urbanization, increased CO2 in the air or increased irrigation, all
or some of which might conspire to force temperatures closer to their overall
smooth trend. Analyzing the second estimated eigenfunction similarly revealed no
graphically obvious or statistically significant time trends (analysis not shown).

Overall the FVPA shows that indeed there is a clear presence of structured noise
in the data. In this section we showed how functional data analysis can be used on
a (potentially) massive dataset to gain insights about a system that exhibits complex
time dynamics.
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Fig. 18.15 The estimates for the first principal scores (O�1) for the variance process of daily
temperature minima (LHS), maxima (central plot) and spread (RHS), plotted against calendar year,
and overlaid with least squares fit of simple linear regression

Table 18.4 The t-values and p-values for the slopes of the fitted simple linear regressions,
assuming normality for the second principal component scores �1 of the functional variance process

t-Values (p-values) Minima Maxima Spread

Davis �4.216 (<1e�4) 0.552 (0.582) �9.263 (<1e�9)

Redwood City �6.991 (<1e�7) 0.918 (0.362) �3.888 (<1e�3)
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Fig. 18.16 The estimates for the first principal scores (O�1) for the variance process of daily
temperature minima (LHS), maxima (central plot) and spread (RHS), plotted against calendar year,
and overlaid with non-parametric fit of local linear kernel regression

18.7 Conclusions

While in this work we focused on temperature data, it should be noted that functional
data analysis applications are routinely used in areas like genomics and medical
imaging where massive datasets are typically encountered; compare (Chen et al.
2015). As the presence of sensors in mobile as well as wearable devices becomes
more commonplace, even larger data collections of function-valued characteristics
are poised to become part of standard analytics tasks. Meaningful and principled
techniques from functional data analysis will therefore play an increasing role.
Research of speeding up common FDA computations is still needed. With fast
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algorithms in place that will include proper parallelization, FDA offers an important
analysis framework for big-data analysts.
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Chapter 19
Bayesian Spatiotemporal Modeling
for Detecting Neuronal Activation via
Functional Magnetic Resonance Imaging

Martin Bezener, Lynn E. Eberly, John Hughes, Galin Jones,
and Donald R. Musgrove

Abstract We consider recent developments in Bayesian spatiotemporal models for
detecting neuronal activation in fMRI experiment. A Bayesian approach typically
results in complicated posterior distributions that can be of enormous dimension
for a whole-brain analysis, thus posing a formidable computational challenge.
Recently developed Bayesian approaches to detecting local activation have proved
computationally efficient while requiring few modeling compromises. We review
two such methods and implement them on a data set from the Human Connectome
Project in order to show that, contrary to popular opinion, careful implementation
of Markov chain Monte Carlo methods can be used to obtain reliable results in a
matter of minutes.
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19.1 Introduction

Functional neuroimaging experiments often aim to either uncover localized regions
where the brain activates during a task or describe the networks required for a
particular brain function. Our focus is on functional magnetic resonance imaging
(fMRI) techniques to study localized neuronal activation in response to a task.
Neuronal activation occurs in milliseconds and is not observed directly in fMRI
experiments. However, activation of neurons leads to an increase in metabolic
activity, resulting in an increase of oxygenated blood flow to the activated regions
of the brain. The magnetic properties of oxygen can then be exploited to measure
the so-called blood oxygen level dependent (BOLD) signal contrast.

The BOLD signal response is not observed at the neuronal level. Instead the
image space is partitioned into voxels in a rectangular three-dimensional lattice. The
partition size is often between 200,000 and 500,000 voxels. The BOLD response
is typically observed for each voxel at each of several hundred time points 2–3 s
apart. The nature of the BOLD response is somewhat complicated. The BOLD
response increases above baseline roughly 2 s after the onset of neuronal activation,
peaks 5–8 s after activation, and falls below baseline for 10 or so seconds (see, e.g.,
Aguirre et al. 1997). While this describes the general shape of the hemodynamic
response function (HRF), it is well known that the specific hemodynamic response
can depend on the location of the voxel and the nature of the task (Aguirre et al.
1998). There is also a complicated spatial dependence; activation tends to occur
in groups of voxels, but activation is not limited to spatially contiguous voxels
since long-range spatial associations are common. Thus, even for a single subject,
there can be an enormous amount of data that exhibits complicated spatiotemporal
dependence.

fMRI analyses begin by preprocessing the data to adjust for motion,
physiologically-based noise (e.g., cardiac and respiratory sources), and scanner
drift. Preprocessing can also include segmentation, spatial co-registration,
normalization, and spatial smoothing. Preprocessing is not our focus, but the
reader can find much more about these topics in Friston et al. (2007), Huettel et al.
(2009), Kaushik et al. (2013), Lazar (2008), Lindquist (2008), Mikl et al. (2008),
and Triantafyllou et al. (2006) among many others.

Once preprocessing is complete, statistical modeling continues to play a crucial
role in the analysis. There can be several goals in an fMRI experiment, including
characterization of the HRF, estimation of the magnitude and volume of neuronal
activation, and assessment of functional connectivity. Our focus is on detecting
neuronal activation, but it has been argued that HRF estimation and activation
detection are inextricable (cf. Makni et al. 2008).

Classical approaches to detecting activation are based on voxel-wise univariate
statistics, often using a linear model for each voxel, which are displayed in
a statistical parametric map (SPM). Of course, SPMs do not account for the
inherent spatial correlation among voxels, and there is a problem of multiplicity
in conducting inference. These issues are typically addressed through the use of
Gaussian random field theory (Friston et al. 1994, 1995, 2007; Worsley et al.
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1992). SPMs are conceptually simple and computationally efficient. Hence, they
see widespread use in the neuroimaging community. However, these methods do
not result in a full statistical model, and the required assumptions have often been
criticized as unrealistic (see, e.g., Holmes et al. 1996).

There has been a recent explosion in the development of Bayesian models for
neuroimaging applications (see Bowman 2014; Friston et al. 2007; Lazar 2008;
Zhang et al. 2015, for comprehensive reviews). The most common approach to
constructing Bayesian models for detecting local activation begins with a general
linear model. For voxel v D 1; : : : ;N and time t D 1; : : : ;T, let Yv;t be the value of
the BOLD signal, and assume

Yv;t D zTt av C xv;tˇv C �v;t (19.1)

where zTt av is the baseline drift, which is modeled as a linear combination of basis
functions, and �v;t is the measurement error. The part of the linear model of primary
interest is xv;tˇv . Here xv;t is a fixed and known transformed input stimulus (see
Hensen and Friston 2007, for a thorough introduction to this topic), and ˇv is the
activation amplitude. When ˇv is nonzero the voxel is “active,” and hence our goal
is to find the voxels for which this occurs. Accounting for the spatiotemporal nature
of the response can be accomplished by making distributional assumptions on the
�v;t and using appropriate prior distributions on the parameters.

A Bayesian approach typically results in complicated posterior distributions that
can be of enormous dimension for a whole-brain analysis, thus posing a formidable
computational challenge. One common approach to addressing the computational
difficulties is to make modeling compromises, such as accounting for spatial
dependence while ignoring temporal dependence (Genovese 2000; Smith et al.
2003; Smith and Fahrmeir 2007). Even so, the required computation is typically
still too intensive for the methods to become widely adopted.

Recently developed Bayesian approaches to detecting local activation have
proved computationally efficient while requiring few modeling compromises.
In Sect. 19.2 we discuss two novel Bayesian areal models. In Sects. 19.2.1.3
and 19.2.2.5 we implement Markov chain Monte Carlo (MCMC) algorithms which,
although the posteriors are high dimensional, illustrate that MCMC methods can be
implemented so that reliable results are obtained in a matter of minutes. In the rest
of this section we describe the data which is analyzed in Sects. 19.2.1.3, 19.2.2.5,
and 19.2.3.

19.1.1 Emotion Processing Data

The data was collected as part of the Human Connectome Project (Essen et al. 2013),
and aims to evaluate emotional processing. The experiment was a modified version
of the design proposed by Hariri et al. (2002), which we now summarize.

The subject laid in a scanner and completed one of two tasks arranged in a block
design. In the first task, two faces were displayed in the top half of a screen. One of
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Fig. 19.1 Hemodynamic response functions corresponding to the modified Hariri task

the faces had a fearful expression, and the other had an angry expression. A third
face was displayed in the bottom half of the screen. The third face had either a
fearful expression or an angry expression. The subject chose which of the two faces
in the top half of the screen matched the expression of the third face in the bottom
half of the screen. Each set of faces was displayed for 2 s, after which there was a
1-s pause.

A second task was functionally identical to the first task, except that geometric
shapes were used instead of faces, and the subject had to choose which of the two
shapes in the top half of the screen matched the shape in the bottom of the screen.
This task was used as a control. Each of the face and shape blocks was 18 s long,
with an 8 s pause between successive task blocks. Each pair of blocks was replicated
three times. The goal here is to detect which regions of the brain are involved in
distinguishing emotional facial expressions.

A total of 176 scans were collected on a 3 T scanner on over 500 subjects. We
will consider the data from one randomly selected subject to illustrate our methods.
Before data collection, the image space was partitioned into a 91 � 109 � 91
rectangular lattice comprising voxels of size 2 mm3. After standard preprocessing
and masking, a total of 225,297 voxels remained to be analyzed. Spatial smoothing
was applied at 5 mm in each direction. Each of the two task stimulus functions was
convolved with a gamma probability density function to produce the hemodynamic
response functions shown in Fig. 19.1.

19.2 Variable Selection in Bayesian Spatiotemporal Models

Detecting activation using (19.1) is equivalent to selecting the voxels with nonzero
ˇv , and hence is a variable selection problem. Bezener et al. (2015), Lee et al.
(2014), Musgrove et al. (2015), Smith and Fahrmeir (2007), and Smith et al. (2003)
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built on the approach of George and McCulloch (1993, 1997) to variable selection.
However, Smith and Fahrmeir (2007) and Smith et al. (2003) ignored temporal
correlation, although they did incorporate spatial dependence in their models. Lee
et al. (2014) extended the approach of Smith and Fahrmeir (2007) and Smith
et al. (2003) to include both spatial and temporal dependence. All three of these
papers rely on using a binary spatial Ising prior to model the spatial dependence.
While appealing from a modeling perspective, the Ising prior results in substantial
computational challenges that can be avoided with the approaches described below.
Both approaches are based on partitioning the image into three-dimensional parcels
and using a sparse spatial generalized linear mixed model (SGLMM). While there
are many commonalities between the two models, there are substantial differences
between the models and the required computation.

19.2.1 Bezener et al.’s (2015) Areal Model

Let Yv D .Yv;1; : : : ;Yv;Tv /T be the time series of BOLD signal image intensities for
voxel v D 1; : : : ;N. Suppose there are p experimental tasks or stimuli, and let Xv
be a known Tv �p design matrix and ˇv be a p�1 vector. Ifƒv is a Tv �Tv positive
definite matrix, assume

Yv D Xvˇv C �v �v � NTv .0; �
2
vƒv/ : (19.2)

The regression coefficients correspond to activation amplitudes, and detecting
neuronal activation is equivalent to detecting the nonzero ˇv;j. We will address this
through the introduction of latent variables. Let �v;j be binary random variables such
that ˇv;j ¤ 0 if �v;j D 1, and ˇv;j D 0 if �v;j D 0. Let �v D .�v;1; �v;2; : : : ; �v;p/,
so that ˇv.�v/ is the vector of nonzero coefficients from ˇv , and Xv.�v/ is the
corresponding design matrix. Model (19.2) can be expressed as

Yv D Xv.�v/ˇv.�v/C "v : (19.3)

Consider the covariance matrix �2vƒv from (19.2). We assume that the �2v are a priori
independent and that each is given the standard invariant prior. That is,

�.�2v / /
1

�2v
:

Note that temporal dependence can be modeled through the structure chosen for
ƒv . In addition to the nature of the hemodynamic response, other cyclical neuronal
events and the nature of the measurement process indicate that temporal autocor-
relation can be substantial in fMRI experiments. Moreover, autoregressive (such as
AR(p) for p D 1 or p D 2) and autoregressive moving average (ARMA) structures
are sensible starting points, and are common in neuroimaging applications (see, e.g.,
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Lee et al. 2014; Lindquist 2008; Xia et al. 2009; Locascio et al. 1997; Monti 2011).
We assume an AR(1) structure forƒv and will use an empirical Bayes approach for
the prior on ƒv by estimating it with maximum likelihood to obtain Oƒv in a pre-
processing step. A major advantage to this approach is that it avoids a prohibitively
expensive matrix inversion in the MCMC algorithm. In addition, it has been demon-
strated to result in reasonable inferences (Lee et al. 2014; Bezener et al. 2015).

We will use an instance of Zellner’s g-prior (Zellner 1996) for the prior on
ˇv.�v/. Let

Ǒ
v.�v/ D ŒXT

v .�v/
Oƒ�1v Xv.�v/�

�1XT
v .�v/

Oƒ�1v Yv;

and assume the ˇv.�v/ are conditionally independent and that

ˇv.�v/ j Yv; �2v ; �v � N f Ǒv.�v/; Tv�2v ŒXT
v .�v/

Oƒ�1v Xv.�v/�
�1g :

This is a data-dependent prior since both Oƒv and Ǒv.�v/ depend on Yv . Zellner’s
g-prior depends on a parameter denoted g, and we set g D Tv , yielding a unit
information prior. The major advantage to this prior is that it results in simpler
computation, but similar inferences, than alternative priors (Lee 2010).

Finally, we need priors for the �v;j. We choose to work with the prior probabilities
of activation �.�v;j D 1/ since this has been shown to produce activation maps
with better edge-preservation properties and classification accuracies (Smith and
Fahrmeir 2007). We will assume that the spatial dependence is governed by an
underlying areal model (Cressie 1993; Haran 2011; Banerjee et al. 2003), and
parcellate the image into G non-overlapping regions, or parcels. To ensure efficient
computation, we recommend using no more than G D 500 parcels.

Let �. j/ D .�1;j; �2;j; : : : ; �N;j/ be the vector of indicators for all voxels for task
j, and let Rg denote the collection of all voxels in parcel g. Let the spatial random
effects be denoted S. j/ D .S1;j; S2;j; : : : ; SG;j/. Given that voxel v 2 Rg, we assume
that the �v;j are independent and

�v;j j Sg;j ind� Bern

�
1

1C e�Sg;j

�

: (19.4)

Let ci and ck denote the centroid coordinates of parcel i, k, let jj � jj denote Euclidean
distance, and let rj > 0. Then the matrix �j with .i; k/th element given by

�j.i; k/ D exp

�

�jjci � ckjj
rj

�

(19.5)

is a valid correlation matrix. Next assume that

S. j/ j ı2j ; rj ind� NG.0; ı
2
j �j/;
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where ı2j is a smoothing parameter that controls the spatial continuity of the spatial
random effects and hence the �v;j.

Finally, Bezener et al. (2015) assume that the ı2j and rj are a priori independent
and have priors

�.ı2j / /
1

ı2j

and rj � �2.

19.2.1.1 Posterior Distribution and MCMC Algorithm

The posterior distribution is thus given by

qfˇ.�/; �; S; ı2; r; �2 j yg / pf y j ˇ.�/; �; S; ı2; r; �2g�fˇ.�/; �; S; ı2; r; �2g
(19.6)

/ pf y j ˇ.�/; �; �2g�fˇ.�/ j �; �2g�.�2/
� �.� j S/�.S j ı2; r/�.ı2/�.r/:

The dimension of the posterior in (19.6) is 2p.N C 1/ C N C pG, which can be
up to several millions of variables. Our main goals are to determine which tasks
and stimuli result in voxel activation as well as to determine the amount of spatial
dependence in the images. Thus, it is sufficient to work with the marginal posterior

q.�; S; r j y/ D
Z

qfˇ.�/; �; S; ı2; r; �2 j yg dˇ.�/ d�2 dı2 ; (19.7)

which is derived explicitly by Bezener et al. (2015).
The posterior in (19.7) is still analytically intractable, and so MCMC methods are

required to sample from it. Bezener et al. (2015) develop a component-wise MCMC
approach based on the posterior full conditional densities. That is,

q.� j S; r; y/ / �.� j S/
NY

vD1
.1C Tv/

�qv=2K.�v/�Tv=2

q.S j �; r; y/ / �.� j S/�.S j r/
q.r j S; �; y/ / �.S j r/�.r/ :

Schematically, one update of the MCMC algorithm looks like

.S; �; r/! .S0; �; r/! .S0; � 0; r/! .S0; � 0; r0/;
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where each update is a Metropolis–Hastings step based on the relevant conditional
density (for full details, see Bezener et al. 2015).

19.2.1.2 Starting Values

Selection of starting values for the MCMC simulation is an especially critical issue
with a high-dimensional posterior density. We suggest two strategies for choosing
the MCMC starting values. The first method is straightforward:

1. Set each �.0/v;j D 0.

2. Initialize each spatial random effect as S.0/g;j � N.0; 2/, where 2 is small (e.g.,
2 D 0:001).

3. Set each spatial correlation parameter to its prior mean: r.0/j D EŒ�.rj/�.

An alternative and more efficient way to choose starting values is to first perform a
preliminary frequentist analysis (e.g., using SPM) and choose the starting values as
follows:

1. Set each �.0/v;j D O� freq
v;j .

2. Initialize each spatial random effect as S.0/g;j by first computing

O�g;j D 1

ng

X

v2Rg

O� freq
v;j

where ng is the number of voxels in the gth parcel and then solving (19.4) to get

S.0/g;j D log

� O�g;j

1 � O�g;j

�

:

3. Use a variogram with the S.0/g;j from the previous step to determine r.0/j .

19.2.1.3 Emotion Processing Data

We will consider implementation of the method in Sect. 19.2.1 in the emotion
processing data described in Sect. 19.1.1. The image was parcellated into 300
regions of approximately equal size. For the MCMC simulation we used the starting
values based on a frequentist analysis as described in Sect. 19.2.1.2. The tuning
parameters of the MCMC algorithm were chosen so that the acceptance rates for the
Metropolis–Hastings steps were approximately 50%. We used standard diagnostic
measures to assess convergence. For example, we checked trace plots of the spatial
dependence parameters and a subset of 30 randomly selected spatial random effects
under both tasks. All diagnostics indicated the Markov chain mixes well.
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Table 19.1 Timing for
MCMC samples

MCMC iterations Time (min)

20k 40

100k 187

200k 372

Table 19.2 The number and percentage of active voxels as well as the estimated spatial correlation
parameter is reported

Face task

20k 100k 200k

Iterations No burn-in Burn-in No burn-in Burn-in No burn-in Burn-in

Active (%) 6254 (2.77) 6255 (2.77) 6255 (2.77) 6255 (2.77) 6254 (2.77) 6254 (2.77)

Orface (MCSE) 25.08 (0.09) 25.09 (0.12) 24.97 (0.04) 24.92 (0.06) 24.93 (0.03) 24.93 (0.04)

Table 19.3 The number and percentage of active voxels as well as the estimated spatial correlation
parameter is reported

Shape task

20k 100k 200k

Iterations No burn-in Burn-in No burn-in Burn-in No burn-in Burn-in

Active (%) 4197 (1.86) 4197 (1.86) 4200 (1.86) 4199 (1.86) 4200 (1.86) 4200 (1.86)

Orshape (MCSE) 22.99 (0.08) 22.92 (0.11) 22.94 (0.04) 22.94 (0.05) 22.93 (0.03) 22.93 (0.04)

We then implemented the MCMC simulation for each of 20,000, 100,000,
and 200,000 iterations; Table 19.1 shows the time required for each of these
implementations. We estimated the spatial dependence parameters and posterior
probabilities of activation using all of the MCMC samples and after discarding the
first 50% as burn-in. The batch means method was used to calculate Monte Carlo
standard errors for the estimated quantities.

The results of our implementation are reported in Tables 19.2 and 19.3. The
estimation is remarkably stable. Not only were the same number of voxels active,
the same voxels were active. Burn-in seemed to have little impact except to increase
the Monte Carlo standard errors on the estimates. This analysis indicates that we
could easily use only 20,000 iterations to obtain stable results which requires only
40 min of sampling time.

19.2.2 Musgrove et al.’s (2015) Areal Model

This approach makes use of a parcellation technique that divides the image into
many non-overlapping parcels. Within each parcel, a spatial Bayesian variable
selection method is applied that also accounts for voxel-level temporal correlation.
A sparse SGLMM prior is used to model the spatial dependence among the
activation indicators. Since the parcels are treated as independent the required
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computation can be done in parallel. Thus parcellation and the sparse SGLMM
together permit efficient sampling even though the model is fully Bayesian.

19.2.2.1 Partitioning the Image

There are two natural parcellation techniques: parcellation based on an anatomical
atlas (Tzourio-Mazoyer et al. 2002) and uniform parcellation. In the analysis of the
emotion processing data in Sect. 19.2.2.5 we will use the uniform parcellation. See
Musgrove et al. (2015) for more information on the anatomical parcellation.

The uniform approach is used primarily in the interest of computational effi-
ciency. First, the image is divided into H cubes, each of which has n0 voxels on a
side. For example, n0 D 9 results in parcels of size 729 voxels. Since the brain
is not rectangular, many of the parcels will include fewer than n30 voxels. The
sparse SGLMM performs best with a minimum of 500 voxels per parcel. Thus, an
algorithm is implemented that iteratively identifies parcels with less than 500 voxels,
combines them with adjacent parcels, and creates new parcels with a minimum of
500 voxels while ensuring that the underlying graph is connected. The final dataset
for analysis comprises G parcels, with the gth parcel having ng voxels.

19.2.2.2 Spatial Bayesian Variable Selection with Temporal Correlation

Recall the notation of Sect. 19.2.1. The approach here is also based on a Bayesian
variable selection scheme (George and McCulloch 1997) for the regression coeffi-
cients of the voxel-level regression of

Yv D Xv.�v/ˇv.�v/C Rv�v C "v; "v � N .0; �2v I/; (19.8)

where Rv is a voxel-level lagged prediction matrix that is introduced to model
temporal correlation. Each of ˇv , �v, �v , and �2v is unknown. Variable selection
is carried out in part by placing a spike-and-slab mixture prior on the regression
coefficients ˇv such that each ˇv;j, j D 1; : : : ; p, is drawn from a diffuse normal
distribution (the slab) or a point mass at zero (the spike). This structure reflects the
prior belief that a coefficient is nonzero or zero, respectively. To facilitate MCMC
sampling, latent indicator variables �v D .�v;1; : : : ; �v;p/ are used such that the
mixture prior for each ˇvj has the form

�.ˇv;j j �v;j/ D �v;jN
�
0; 2j

	C .1 � �v;j/I0; (19.9)

where 2j is an unknown stimulus-level variance and I0 denotes a point mass at
zero. This prior specification makes the natural assumption that the regression
coefficients are a priori independent conditional on the indicator variables (George
and McCulloch 1997). Spatial dependence between voxels is modeled by placing a
spatial prior on the indicator variables.



19 Bayesian Spatiotemporal Modeling for Detecting Neuronal Activation via. . . 495

To account for the serial correlation present in the univariate voxel time series, an
AR model of order r is easily implemented and computationally efficient. Similar
to Penny et al. (2003), the matrix of lagged prediction errors, denoted Rv , is
included in the regression model. The AR coefficients �v;r D .�v;1; : : : ; �v;r/

0 are
assumed a priori independent and normally distributed with mean zero and known
variance, which is typically taken to be “large.” To complete the voxel-level prior
specification, the error variance and stimulus-level variance are assumed a priori
independent with default priors �

�
�2v
	 / 1=�2v and �

�
2j
	 / 1=2j , respectively. In

this way, regression coefficients across voxels share a prior variance, resulting in
additional smoothing beyond that induced by the spatial prior.

19.2.2.3 Sparse SGLMM Prior

The spatial prior is used to model the voxel- and task-specific binary indicator
variables �vj. The chosen spatial prior is the sparse areal generalized linear mixed
model (Hughes and Haran 2013) and is used to account for spatial dependence for
each of �j D .�1;j; : : : ; �ng;j/

0, j D 1; : : : ; p. Specifically, the �j are conditionally
independent Bernoulli random variables with a probit link function such that

�v;j j �v;j ind� Bernfˆ.av;j C �v;j/g
�v;j D m0vıj C �v;j
�v;j � N .0; 1/ ;

(19.10)

where ˆ.�/ denotes the cumulative distribution function of a standard normal
random variable, mv is a vector of synthetic spatial predictors, ıj D .ı1;j; : : : ; ıq;j/

is a vector of spatial random effects, av;j is an offset that controls the prior
probability of activation, and �v;j is an auxiliary variable that is introduced to
facilitate Gibbs sampling (Holmes and Held 2006). Voxels are located at the vertices
of an underlying undirected graph, the structure of which reflects spatial adjacency
among voxels. For a partition of G parcels, with each parcel indexed by g, the graph
is represented using its parcel-level adjacency matrix A, which is ng�ng with entries
given by diag.A/ D 0 and .A/u;v D I.u � v/. In the context of a two-dimensional
analysis, a voxel neighborhood might comprise the four nearest voxels. With three-
dimensional fMRI data, a neighborhood contains the 26 nearest voxels.

The prior for the spatial random effects is

�.ıj j �j/�.�j/ D N ˚
ıj j 0; .�jM0QM/�1

� � Gamma ��j j a� ; b�
	
; (19.11)

where �j is a smoothing parameter; M is an ng � q matrix, the columns of which
are the q principal eigenvectors of A; and Q D D � A is the graph Laplacian,
where D is the diagonal degree matrix. Note that m0v is the vth row of M. The
columns of M are multiresolutional spatial basis vectors that are well suited for
spatial smoothing and capture both the small-scale and large-scale spatial variation
typically exhibited by fMRI data (Woolrich et al. 2004). Sparsity is introduced by
selecting the columns of M corresponding to eigenvalues greater than 0.05. This
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choice permits appropriate spatial smoothing while reducing the dimensionality
considerably (typically, q < ng=2). The choice of prior on the smoothing parameter
�j follows Kelsall and Wakefield (1999) by using a� D 1=2 and b� D 2000, which
does not lead to artifactual spatial structure in the posterior.

19.2.2.4 Posterior Computation and Inference

Denote the voxel-level parameters as �v D .ˇ0v; � 0v; �0v; �2v ; /0, and the parcel-level
parameters as ‚g D .ı0; �0; .2/0/0. Within the gth parcel (having ng voxels), the
prior distribution is

�.�v;‚g/ D
ngY

vD1
�.�v/�.�

2
v /�.ˇv j �v/

pY

jD1
�.�j j ıj/�.ıj j �j/�.�j/�.2j /;

which implies that the between-voxel and between-task parameters are conditionally
independent a priori. The posterior distribution is obtained in the usual way by
combining priors and the likelihood.

To obtain updates for each �v;j, a voxel-level likelihood is used where ˇv;j has
been integrated out analytically. For Wv;t;. j/ D Yv;t �Pp

l¤j Xt;lˇv;l, let W�v;t;. j/ D
Wv;t;. j/�Pr

kD1 �v;kWv;t�k;. j/, and let X�t;j D Xt;j�Pr
kD1 �v;kXt�k;j. Then, conditional

on �v;j, the likelihood can be written as a mixture with two components:

L1 D �1j exp

(

� 1

2�2v

TX

tD1



W�v;t;. j/ � X�t;jˇv;j

�2 � 1

22j
ˇ2v;j

)

and

L0 D exp

(

� 1

2�2v

TX

tD1
W�2v;t;. j/

)

;

where L1 is the voxel-level likelihood when �v;j D 1, and L0 is the likelihood when
�v;j D 0. Integrating ˇv;j out of L1, it is straightforward to show that

L1 D �1j ���1v;j exp

8
<

:
� 1

2�2v

TX

tD1
W�2v;t;. j/ C

1

2��2v;j

 
1

�2v

TX

tD1
W�v;t;. j/X�t;j

!29=

;
;

where ��2v;j D ��2v
PT

tD1 X�2t;j C �2j . The posterior probability that �v;j D 1 is

q
�
�v;j D 1 j Yv; �

	 D .1C P/�1, where

P D L0
L1

q
�
�v;j D 0 j �j

	

q
�
�v;j D 1 j �j

	 :

Conditional on �v;j D 0, set ˇv;j D 0. Otherwise, ˇv;j is updated from its full
conditional distribution. Writing W�v;t;. j/ D X�t;jˇv;j C "v;t, and using the fact that
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the error term is normally distributed, each ˇv;j has a normal prior distribution.
Conditional on �v;j D 1, the posterior distribution of ˇv;j is N . Ǒv;j; O2v;j/, where

Ǒ
v;j D O2v;j

TX

tD1
W�v;t;. j/X�t;j and O2v;j D

 
TX

tD1
X�2t;j C �2v =2j

!�1
:

Posterior sampling of each of �j D .�1;j; : : : ; �ng;j/
0, ıj, and �j uses probit

regression with auxiliary variables, conditional on �v;j only (Holmes and Held
2006). The full conditional distributions are given in Musgrove et al. (2015).

19.2.2.5 Emotion Processing Data

We consider implementation of the method in Sect. 19.2.2 in the emotion processing
data described in Sect. 19.1.1. The image was parcellated into 321 regions ranging
in size from 500 to 1000 voxels. The spatial dimension reduction offered by the
sparse SGLMM resulted in an average reduction of 72%, i.e., for a parcel with ng D
1000 voxels, there were 280 spatial random effects. At the voxel level, we used an
autoregression model of order 2. Thus, for two covariates there were approximately
two million parameters to be estimated.

We implemented the MCMC simulation for each of 20,000, 100,000, and
200,000 iterations. Estimation was done both using 50% burn-in and no burn-
in. Starting values of all parameters were taken to be the maximum likelihood
estimates. Since the parcellation method results in assumed independent parcels,
the parcels are analyzed separately and in parallel to speed computation. Thus, the
computational speed is limited by the number of parcels and the availability of a
computing cluster.

The results are reported in Table 19.4. The estimation is remarkably stable and
the use of burn-in seemed to have little impact except to increase the Monte Carlo
standard errors on the estimates. This analysis indicates that we could easily use
only 20,000 iterations to obtain stable results, which required 217 s of sampling
time for the largest parcel.

Table 19.4 Max MCSE is the maximum Monte Carlo standard error of all activation probabilities

MCMC iterations

20k 100k 200k

No burn-in Burn-in No burn-in Burn-in No burn-in Burn-in

Max MCSE 0.042 0.050 0.028 0.033 0.022 0.028

Active voxels (%) 9053 (4.02) 9031 (4.01) 9001 (4.00) 9007 (4.00) 8943 (3.7) 8933 (3.97)

Max run time 217 1195 2195

Max run time is the time in seconds required to analyze the largest parcel (parcel 168 with 997
voxels)



498 M. Bezener et al.

19.2.3 Activation Maps for Emotion Processing Data

In this section we used 100,000 MCMC samples to implement both methods on
the emotion processing data with the goal of producing activation maps. Activation
regions were found by overlaying the parcellation of Tzourio-Mazoyer et al. (2002)
to the activation results. The parcellation included 116 regions. Regional activation
occurred if at least ten voxels within a region were estimated to be significantly
active.

Results of the face task for both procedures are displayed in Fig. 19.2. Six slices
were chosen to illustrate the results for the two approaches. Slices 20, 30, and 35
show activation in the occipital and temporal lobes, with significant activation in
the left calcarine and right lingual regions. The method of Sect. 19.2.2 found more
extensive activation in the frontal lobe. Slice 40 shows activation in the right angular
and the right frontal lobe, with the method of Sect. 19.2.2 detecting more extensive

Slice 20 Slice 30

Slice 35 Slice 40

Slice 45 Slice 50

Fig. 19.2 Results are presented for the emotion-faces task. For each of the displayed slice pairs,
the left slice (red blobs) displays the results for the model of Sect. 19.2.1, and the right slice (white
blobs) displays the results for the model of Sect. 19.2.2
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activation in the right frontal lobe. Slice 45 shows activation in the right angular
and the left precuneus, with the method of Sect. 19.2.2 detecting more extensive
activation in the left precuneus. Finally, slice 50 shows activation in the parietal
lobes. The method of Sect. 19.2.1 found no activation in the right parietal lobe while
the method of Sect. 19.2.2 found a small amount of activation.

19.3 Discussion

We considered two Bayesian areal models (and the associated MCMC algorithms)
for detecting activation in fMRI experiments. Contrary to popular opinion we have
demonstrated that both approaches are computationally efficient and produce stable
results in a matter of minutes, rather than hours or days. Both methods are based
on parcellations. In Sect. 19.2.1 the parcellations are not assumed independent,
while in Sect. 19.2.2 they are. The advantage of assuming independence is that the
computation may then be parallelized. The disadvantage is that it is a somewhat
awkward assumption that seems to have little relevance to the underlying science.
On the other hand, the computation required in Sect. 19.2.1 is not parallelizeable
and hence takes longer. In the emotion processing data example we see that both
approaches yield similar results, although the approach of Sect. 19.2.2 yields more
active voxels than does the approach of Sect. 19.2.1.
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Chapter 20
Construction of Tight
Frames on Graphs and Application
to Denoising

Franziska Göbel, Gilles Blanchard, and Ulrike von Luxburg

Abstract Given a neighborhood graph representation of a finite set of points
xi 2 R

d; i D 1; : : : ; n; we construct a frame (redundant dictionary) for the space of
real-valued functions defined on the graph. This frame is adapted to the underlying
geometrical structure of the xi, has finitely many elements, and these elements are
localized in frequency as well as in space. This construction follows the ideas of
Hammond et al. (Appl Comput Harmon Anal 30:129–150, 2011), with the key
point that we construct a tight (or Parseval) frame. This means we have a very
simple, explicit reconstruction formula for every function f defined on the graph
from the coefficients given by its scalar product with the frame elements. We use
this representation in the setting of denoising where we are given noisy observations
of a function f defined on the graph. By applying a thresholding method to the
coefficients in the reconstruction formula, we define an estimate of f whose risk
satisfies a tight oracle inequality.

Keywords Neighborhood graph · Tight frame · Dictionary learning ·
Denoising · Thresholding · Oracle inequality

20.1 Introduction

20.1.1 Motivation

When dealing with high-dimensional data, a general principle is that the curse of
dimensionality can be efficiently fought if one assumes the data points to lie on a
structure of smaller intrinsic dimensionality, typically a manifold. Some well-known
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methods to discover such a lower dimensional structure include Isomap (Tenenbaum
et al. 2000), LLE (Roweis and Saul 2000), and Laplacian Eigenmaps (Belkin and
Niyogi 2003).

In this work, our main interest is not in visualizing or representing by an explicit
mapping the underlying structure of the observed data points; rather, we want
to represent or estimate efficiently a real-valued function on these points. More
specifically, we focus on the following denoising problem: assuming we observe
a noisy version of the function f , yi D f .xi/ C "i at points .x1; : : : ; xn/, we would
like to recover the values of f at these points. An important step for solving this
problem is to find a dictionary of functions to represent the signal f , which is adapted
to the structure of the data. Ideally, we would like this dictionary to exhibit the
features of a wavelet basis. In traditional signal processing on a flat space, with
data points on a regular grid, orthogonal wavelet bases offer a very powerful tool
to sparsely represent signals with inhomogeneous regularity (such as a signal that is
very smooth everywhere except at a few singular points where it is discontinuous).
Such bases are in particular well suited to the denoising task. Can this be generalized
to irregularly scattered data on a manifold?

We present such a method to construct a so-called Parseval frame of functions
exhibiting wavelet-like properties while adapting to the intrinsic geometry of the
data. Furthermore, we use this dictionary for the denoising task using a simple
coefficient thresholding method.

This work is organized as follows. In the coming section, we discuss the
relationship to previous work on which the present chapter is built, as well as
pointing out our new contributions. In Sect. 20.2, we recall important notions of
frame theory as well as of neighborhood graphs needed for our construction.
The construction of the frame and its properties is presented in Sect. 20.3. In
Sect. 20.4, we develop a coefficient thresholding strategy for the denoising problem.
In Sect. 20.5, we present numerical results and method comparison on testbed data.

20.1.2 Relation to Previous Work

Regression methods that adapt to an underlying lower dimension of the data have
been considered by Bickel and Li (2007), Kpotufe and Dasgupta (2012) and Kpotufe
(2011) using local polynomial estimates, random projection trees, and nearest-
neighbors, respectively. However, these methods are not constructed to adapt to an
inhomogeneous regularity of the target function: in these three cases, the smoothing
scale (determined by the smoothing kernel bandwidth, the tree partition’s average
data diameter, or the number of neighbors, respectively) is fixed globally. In the
experimental Sect. 20.5, for data lying on a smooth manifold but a target function
exhibiting a sharp discontinuity, we demonstrate the advantage of our method over
kernel smoothing.
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Based on the motivations similar to ours, a method for constructing a wavelet-
like basis on scattered data was proposed by Gavish et al. (2010). It is based on a
hierarchical tree partition of the data, on which a Haar-like basis of 0–1 functions
is constructed. However, the performance of that method is then adapted to the
geometry of the tree, in the sense that the distance of two points is measured through
tree path distance. This can strongly distort the original distance: two close points
in original distance can find themselves in very separated subtrees.

The construction proposed here, based on a transform of the spectral decompo-
sition of the graph Laplacian, follows closely the ideas of Hammond et al. (2011).
Two important contributions brought forth in the present work are that we construct
a Parseval (or tight) frame, rather than a general frame; and we consider an explicit
thresholding method for the denoising problem. The former point is crucial to obtain
sharp bounds for the thresholding method, and also eliminates the computational
problem of signal reconstruction from the frame coefficients, since Parseval frames
enjoy a reconstruction formula similar to that of an orthonormal basis. The choice
of multiscale bandpass filter functions leading to the tight frame is inspired by the
recent work of Coulhon et al. (2012), where the spectral decomposition principle is
also studied, albeit in the setting of a quite general metric space.

20.2 Notation and Basics

20.2.1 Setting

We consider a sample of n points xi 2 R
d. These points are assumed to belong

to an unknown low-dimensional submanifold M 
 R
d. We denote the design by

D D fx1; : : : ; xng 
M . Furthermore, we observe on these points the (noisy) value
of a function f W D ! R. Since D is finite, we can represent the function f as
vector f D . f .x1/; : : : ; f .xn//t 2 R

n. The space of all (square-integrable) functions f
defined on D is denoted L2.D/ and endowed with the usual Euclidean inner product.

We denote by yi D f .xi/ C �i the noisy observation of f at xi, where �i are
independent identically distributed centered random variables. The problem we
consider in this work is that of denoising, that is, try to recover the underlying value
of the function f at the points xi.

While the existence of a low-dimensional supporting manifold M for the design
points motivates the construction of the proposed method, we underline (again) that
M is not known to the user and the method only uses the knowledge of the design
points. In such a setting, a key idea to recover implicitly some information on the
geometry of M is to construct a neighborhood graph based on the design points
(see Sect. 20.2.3 for details).
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20.2.2 Frames

For the construction in Sect. 20.3, we rely on the notion of a vector frame, for which
we recall here some important properties (see, e.g., Casazza et al. 2013; Han 2007;
Christensen 2008). A frame is an overcomplete dictionary with particular properties
allowing it to act almost as basis.

Definition 1 Let H be a Hilbert space. Then a countable set fzigi2I 
 H is a
frame with frame bounds A and B for H if there exists constants 0 < A 	 B <1
such that

8z 2H W A kzk2 	
X

i2I
jhz; ziij2 	 B kzk2 : (20.1)

A frame is called tight if A D B, in particular the frame is called Parseval if A D
B D 1.

In the remainder of this work we consider the case of a Euclidean space
H D R

n, and assume that fzigi2I is a frame with a finite number of elements.
Two important operators associated to the frame are the analysis operator

T W Rn ! R
I ; Tz WD .hz; zii/i2I (20.2)

(sequence of frame coefficients), and its adjoint the synthesis operator:

T� W RI ! R
n; T�a D T�.ai/ti2I D

X

i2I
aizi: (20.3)

Further, the frame operator is defined as S D T�T:

S W Rn ! R
n; Sz D T�Tz D

X

i2I
hz; zii zi; (20.4)

and finally the Gramian operator as U D TT�,

U W RI ! R
I; Ua D TT�a D

(*
X

i2I
aizi; zk

+)

k2I
: (20.5)

In matrix form, the columns of T� are the vectors zi; i 2 I, T is its transpose and
Uij D

˝
zi; zj

˛
.

The definition of a frame implies that S is invertible, and it is possible to
reconstruct any z from its frame coefficients by z DPi2I hz; zii z�i D

P
i2I
˝
z; z�i

˛
zi,

where z�i WD S�1zi; i 2 I is called the canonical dual frame of .zi/i2I .
We recall some properties of finite Parseval frames over Euclidean spaces (see,

e.g., Han 2007, chapter 3).
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Theorem 1 (Properties of Parseval frames) Let H be a Hilbert space with
dimH D n <1. The following statements are equivalent:

1. fzig1�i�k 
H is a Parseval frame.
2. 8y 2H W y DPk

iD1 h y; zii zi.
3. The frame operator S is the identity on Rn.
4. The Gramian operator U is an orthogonal projector of rank n in Rk.

Furthermore if fzig1::k 
H is a Parseval frame, then

• kzik 	 1 for i 2 f1; : : : ; kgI
• dimH D n DPk

iD1 kzik2 I
• the canonical dual frame is the frame itself.

For the present work, the two most important points of this theory are the following:
first, the reconstruction formula (point two above), where we see that a Parseval
frame acts similarly to an orthonormal basis; secondly, if we construct a vector
v D T�a DPi aizi from an arbitrary vector of coefficients .ai/, then

�
�
�
�
�

X

i

aizi

�
�
�
�
�

2

D hT�a;T�ai D ha;Uai D kUak2 	 kak2 ; (20.6)

which follows from property 4 above.

20.2.3 Neighborhood Graphs

In order to exploit the structure and geometry of the unknown submanifold M
on which the sample D is supposed to lie, a powerful idea is to use a graph-
based representation of the data D through a neighborhood graph. The points in
D correspond to the vertices of the graph, and two vertices of the graph are joined
by an edge when the two corresponding points are neighbors (in some appropriate
sense) in R

n. The underlying idea is that the local geometry of Rn is reflected in the
local connectivity of the graph, while the long-range geometry of the graph reflects
the geometrical properties of the manifold M , rather than those of Rn.

Formally, a finite graph G D .V;E/ is given by a finite set of vertices V and a set
of edges E 
 V � V . The jVj � jVj adjacency matrix A of the graph is defined by
Ai;j D 1 if .vi; vj/ 2 E and Ai;j D 0 otherwise. An undirected graph is such that its
adjacency matrix is symmetric.

The graph is called weighted if every edge e 2 E has a positive weight w.e/ 2
RC. In this case the notion of adjacency matrix is extended to Ai;j D w..vi; vj//
if .vi; vj/ 2 E and Ai;j D 0 otherwise. The degree of a vertex vi in a (possibly

weighted) graph is defined as di D d.i/ DPjVjjD1 Ai;j.
As announced, we focus on geometric graphs, which (can) approximate the

structure of the unknown M . Each point xi is represented by a vertex, say vi. An
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edge between two vertices represents a small distance, or a high similarity, of the
two associated points. The weight of an edge can quantify the similarity more finely.

We use the Euclidean distance d.xi; xj/ D
�
�xi � xj

�
� : We recall three usual ways

to construct the edges of a neighborhood graph:

• (undirected) k-nearest-neighbor graph: an undirected edge connects the two
vertices vi and vj iff xi belongs to the k nearest neighbors of xj, or xj belongs
to the k nearest neighbors of xi (“the k-NN-graph”).

• �-graph: an undirected edge connects two vertices vi and vj iff d.xi; xj/ 	 �.
• complete weighted neighborhood graph: for each pair of vertices there exists an

undirected edge with a weight depending on the distance/similarity of the two
vertices.

A k-NN graph or an �-graph can be made weighted by additionally assigning
weights to the edges depending on d.xi; xj/, for instance by choosing Gaussian
weights w.f i; jg/ D exp.�d2.xi; xj/=2�2/.

20.2.4 Spectral Graph Theory

If one considers real-valued functions f W M ! R defined on a submanifold
M 
 R

d, it is known that under some regularity assumptions on the submanifold
M , the eigenfunctions of the Laplace-Beltrami-operator give a basis of the space
of squared-integrable functions on M . Since M is unknown in our setting, the
principle of the Laplacian Eigenmaps method (Belkin and Niyogi 2003) is to use a
discrete analogon, namely the graph Laplace operator L on a neighborhood graph.

Given a finite weighted undirected graph with adjacency matrix A (n � n) and
vertex degrees .di/i, as introduced in the previous section, we will either use the
unnormalized graph Laplace operator Lu or the normalized (symmetric) graph
Laplace operator Lnorm defined by

Lu D D � A (20.7)

Lnorm D In � D�1=2AD�1=2;

where D D diag .d1; : : : ; dn/ is a diagonal matrix with entries di on the diagonal.
By construction Lu and Lnorm are symmetric matrices. The positive semidefiniteness
follows from

f tLuf D 0:5
X

.i;j/

Ai;j. fi � fj/
2 and f tLnormf D 0:5

X

.i;j/

Ai;j
� fip

di
� fj
p
dj

	2
;

respectively. The spectral theorem for matrices indicates that the normalized
eigenvectors˚i of the graph Laplace operator L (Lu resp. Lnorm) form an orthonormal
basis of R

n and all eigenvalues are nonnegative. Furthermore the number of
components of the graph is given by the number of eigenvalues equal to 0.
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20.3 Construction and Properties

20.3.1 Construction of a Tight Graph Frame

As discussed earlier, the principle of Laplacian Eigenmaps is to use the basis
.˚i/1�i�n to represent and process the data. An important advantage of this basis
as compared with the natural basis of Rd is that it will be adapted to the geometry
of the underlying submanifold M supporting the data distribution. For instance, in
the denoising problem, a reasonable estimator of f could be a truncated expansion
of the noisy vector of observations Y in the basis .˚i/1�i�n.

On the other hand, a disadvantage of this basis is that it is not spatially localized.
To get an intuitive view, consider the simple case of the interval Œ0; 1�with uniformly
distributed data. In the population view, the eigenbasis of the Laplacian is the
Fourier basis. While a truncated expansion in this basis is well-adapted to represent
functions that are uniformly regular, it is not well-suited for functions exhibiting
locally varying regularity (as an extreme example, a signal that is very smooth
everywhere except at a few singular points where it is discontinuous). By contrast,
wavelet bases, because they are localized both in space and frequency, allow for an
efficient (i.e., sparse) representation of signals with locally varying regularity.

If we now think of data supported on a one-dimensional submanifold (curve) of
R

d, we can expect that the Laplacian eigenmaps method will discover a warped
Fourier basis following the curve; and, for a more general submanifold M ,
“harmonics” on M .

In order to go from this basis to a spatially localized dictionary, following ideas
of Coulhon et al. (2012) and Hammond et al. (2011), we use the principle of the
Littlewood-Paley decomposition.

Let G be an undirected geometric neighborhood graph with adjacency matrix
A constructed from D, and L be an associated symmetric graph Laplace operator
with increasing eigenvalues 0 D �1 	 �2 	 � � � 	 �n and normalized eigenvectors
˚i 2 R

n; i D 1 : : : n.
We first define a set of vectors using a decomposition of unity and a splitting

operation and we will show that this vector set is a Parseval frame.

Definition 2 Let f�kgk2N be a sequence of functions �k W RC ! Œ0; 1� satisfying

(DoU)
P

j�0 �j.x/ D 1 for all x � 0;
(FD) #f�k W �k.�i/ ¤ 0g <1 for i D 1; : : : ; n.

Then we define the set of column vectors f�kl 2 R
n; 0 	 k 	 Q; 1 	 j 	 ng by

�kl D
nX

iD1

p
�k.�i/˚i.xl/˚i: (20.8)

with Q WD maxfk W 9i 2 f1; : : : ; ngwith �k.�i/ > 0g.
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Theorem 2 f�klgk;l is a Parseval frame forH D R
n, that is for all x 2 R

n:

X

k;l

jhx; �klij2 D kxk2 : (20.9)

Proof If we can show that
P

.k;l/ �kl�
t
kl D In, we get immediately

y D Iny D
0

@
X

.k;l/

�kl�
t
kl

1

A y D
X

.k;l/

h y; �kli�kl; (20.10)

for y 2 R
n. According to Theorem 1 this equation is equivalent to the condi-

tion (20.1) with A D B D 1. So we are done. It remains to show
P

k;l �kl�
t
kl D In.

We have (since we sum over a finite number of elements)

X

.k;l/

�kl�
t
kl D

X

k;l;i;j

p
�k.�i/

q
�k.�j/˚i.xl/˚j.xl/˚i˚

t
j

D
nX

iD1

QX

kD0
�k.�i/ ˚i˚

t
i

D
nX

iD1
˚i˚

t
i D In: (20.11)

For the second equality, we have used that
P

l˚i.xl/˚j.xl/ D
˝
˚i; ˚j

˛ D 1f i D jg,
since f˚igi is an orthonormal basis (onb). For the third equality, we used (DoU), and
for the last again the onb property. ut

We now choose a special sequence of functions satisfying the decomposition
of unity (DoU) condition while also ensuring (a) a spectral localization property for
the frame elements and (b) a multiscale decomposition interpretation of the resulting
decomposition. This construction follows Coulhon et al. (2012), and is known in the
context of functional analysis as a smooth Littlewood-Paley decomposition.

Definition 3 (Multiscale Bandpass Filter) Let g 2 C1.RC/, supp g 
 Œ0; 1�,
0 	 g 	 1, g.u/ D 1 for u 2 Œ0; 1=b� (for some constant b > 1).
For k 2 N D f0; 1; : : :g the functions �k W RC ! Œ0; 1� are defined by

�k.x/ WD
(
g.x/ if k D 0
g.b�kx/ � g.b�kC1x/ if k > 0

(20.12)

The sequence f�kgk�0 is called multiscale bandpass filter.

This definition leads to the following properties: �k.x/ D �1.b�kx/ for k � 1

(multiscale decomposition), �k 2 C1.RC/, 0 	 �k 	 1, supp �0 
 Œ0; 1�,
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supp �k 
 Œbk�2; bk� for k � 1 (spectral localization property). Moreover, one can
check readily

X

j�0
�j.x/ D 1; (20.13)

i.e., the (DoU) condition holds. In practice, we use a dyadic bandpass filter, that
is, b D 2. The functions �0; : : : ; �5 with b D 2 are displayed in Fig. 20.1b. By
construction, the parameter k in �kl is naturally a spectral scale parameter, while l is
a spatial localization parameter: the frame element �kl is localized around the point
xl, as we discuss next.

20.3.2 Spatial Localization

By construction, the elements of the frame are band-limited, i.e. localized in
the spectral scale, in the sense that for a fixed k, the frame elements �kl (l D
1; : : : ; n) are linear combinations of the eigenvectors of the graph Laplacian (“graph
harmonics”) corresponding to eigenvalues in the range Œbk�2; bk� only.

From our initial motivations, it is desirable that in contrast with the eigen-
functions of the Laplace operator, the frame elements �kl are spatially localized
functions. In the classical Littlewood-Paley construction for the usual Laplacian
on the interval Œ0; 1�, this is a well-known fact: the use of linear combination of
trigonometric functions �kl.y/ WD sin.kl/ sin.ky/ via smooth multiscale bandpass
filters weights as described in Definition 3 gives rise to strongly localized functions
(as illustrated in Fig. 20.1).

Regarding the corresponding discrete construction based on the graph Laplacian,
this localization property is certainly observed in practice (as illustrated in Figs. 20.2
and 20.3, see Sect. 20.5 for the setup of the numerical experiments).

Concerning the theoretical perspective, we first review briefly the existing results
of Hammond et al. (2011), denote d the shortest path distance in the graph.
Theorem 5.5 of Hammond et al. (2011) gives the following localization result for
graph frames:

�kl.x/

k�klk2
	 Cb�k ; (20.14)

for all x with d.x; xl/ � K, under the assumption that the scaling function �1 is K-
times differentiable with vanishing first .K�1/ derivatives in 0, non-vanishingK-th
derivative, and the scale parameter k is big enough. This says that �kl is “localized”
around the point xl. Unfortunately, this result is not informative in our framework for
two reasons: first, we chose a function �1 (see (20.12)) vanishing in a neighborhood
of zero, so that all derivatives vanish in the origin, contradicting one of the above
assumptions. Secondly, and independently of this first issue, the condition “k is big
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Fig. 20.1 Littlewood-Paley on L2.0; 1/: (a) eigenfunctions; (b) multiscale bandpass filter; (c)
frame elements

enough,” and the factor C depend on the size n of the graph and of the largest
eigenvalue of the Laplacian. As a consequence it is unclear if this bound covers
any interesting part of the spectrum (for k too large, the spectral support Œbk�2; bk�
does not contain any eigenvalues, so that �kl is trivial). Finally, for fixed k the bound
also does not give information on the behavior of �kl.x/ when the path distance of x
to xl becomes very large.
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Fig. 20.2 Swiss roll data: top: eigenvectors ˚j for j D 10; 30; 50; 100; bottom: frame elements �kl

for l fixed and k D 0; 2; 5; 7 (construction from actual swiss roll data, then “unrolled” for clearer
graphical representation)



514 F. Göbel et al.

-1 -0.5 0 0.5 1

-1

-1
1

-0.5

0

0.5

0.5

k=1 , l=1 

0

1

-0.5
-1 -0.5 0 0.5 1

-1

-1
1

-0.5

0

0.5

0.5

k=5 , l=1 

0

1

-0.5
-1 -0.5 0 0.5 1

-1

-1
1

-0.5

0

0.5

0.5

k=7 , l=1 

0

1

-0.5

Fig. 20.3 Sphere data: frame elements �kl for l fixed and k D 1; 5; 7 (color encodes the value of
the function)

On the other hand, the form of the scaling function �1 used in the present work
is based on Coulhon et al. (2012) where a theory of multiscale frame analysis is
developed on very general metric spaces under certain geometrical assumptions.
In a nutshell, it is proved there that using this construction, the obtained frame
functions �kl.x/ are upper bounded by O..d.x; xl/=bk/��/ for � arbitrary large. We
observe that this type of localization estimate is sharper than (20.14) for fixed x
and growing k, as well as for fixed scale k and varying x. We conjecture that these
theoretical results apply meaningfully in the discrete setting considered here, under
the assumption that x1; : : : ; xn are iid from a sufficiently regular distribution P0 on
a regular manifold M , but it is out of the intended scope of the present chapter
to establish this formally. In particular “meaningfully” means that the constants
involved in the bounds should be independent of the graph size (otherwise the
bounds could potentially be devoid of interest for any particular graph, as pointed
out above), a question that we are currently investigating.

20.4 Denoising

We consider the regression model for fixed design points D D fxi; i D 1 : : : ng and
observations yi D f .xi/C �i (�i are independent and identically distributed random
variables with E .�i/ D 0 and Var ."/i D �2). The aim of denoising is to recover
the function f W D ! R at the design points themselves. We will use the proposed
Parseval frame in order to define an estimatebf of the function f . In what follows,
since the D is fixed, we identify f with the vector . f .x1/; : : : ; f .xn// and denote
y D .y1; : : : ; yn/.

Given the frame F associated to the data points D with a multiscale bandpass
filter as from Definitions 2 and 3, we denote the frame coefficients akl D h�kl; f i
for f and bkl D h�kl; yi for y. Due to the linearity of the inner product we get
akl D bkl � h�kl; �i : We estimate the unknown coefficients akl by adjusting the
known coefficients bkl by soft-thresholding:

Ss .z; c/ D sgn.z/ .jzj � c/C: (20.15)
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In order to take into account that the frame elements �kl are not normalized, and
generally have different norms, we use element-adapted thresholds of the form
ckl D � k�klk t which depend on the variance of h�; �kli and some global parameter
t. Equivalently, this corresponds to first normalizing the observed coefficients bkl
by dividing by their variance, then applying a global threshold to the normalized
coefficients, and finally inverting the normalization.

The estimator of f is then the plug-in estimator

bfSs D
X

k;l

Ss .bkl; ckl/�kl D T�Ss.b; c/; (20.16)

where Ss.b; c/ denotes the vector of thresholded coefficients, and T� is the synthesis
operator of the frame as introduced in Sect. 20.2.2.

To measure the performance of this estimator, we use the risk measure

Risk.bf ; f / D E�

��
�
�bf � f

�
�
�
2
�

; (20.17)

that is, the expected quadratic norm at the sampled points (where kfk2 DPn
iD1 f .xi/2 is the Euclidean vector norm of f on the observation points), for the

performance analysis of an estimatorbf 2 R
n.

For bounding the risk of the thresholding estimator bfSs , rather than assuming
some specific regularity properties on the function f , it is useful to compare the
performance ofbfSs to that of a group of reference estimators. This is called the oracle
approach (Candès 2006; Donoho and Johnstone 1994): can the proposed estimator
have a performance (almost) as good as the best estimator (for this specific f ) in a
reference family (that is to say, as good as if an oracle would have given us advance
knowledge of which reference estimator is the best for this function f ). We review
here briefly some important results.

A suitable class of simple reference estimators consists of “keep or kill” (or
diagonal projection) estimators, that keep without changes the observed coefficients
bk;l for .k; l/ in some subset I, and put to zero the coefficients for indices outside of
I:

bfI WD
X

.k;l/2I
bkl�kl D T�baIkl; (20.18)

where baIkl D bkl1f.k; l/ 2 Ig. Now using the frame reconstruction formula
and (20.6), we obtain

E�

��
�
�bfI � f

�
�
�
2
�

D E�

�
�T�.a �baI/��2

�

	 E�

�
�a �baI��2

�
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D
X

.k;l/

�
a2kl1f.k; l/ 62 Ig

C�2 k klk2 1f.k; l/ 2 Ig	 : (20.19)

Therefore, the optimal (oracle) choice of the index set I� obtained by minimizing
the above upper bound is given by

.k; l/ 2 I� , h f ; �kli2 � �2 k�klk2 (keep)

.k; l/ … I� , h f ; �kli2 	 �2 k�klk2 (kill) : (20.20)

One deduces from this that

inf
I
E�

��
�
�bfI � f

�
�
�
2
�

	
X

.k;l/2N
min



h f ; �kli2 ; �2 k�klk2

�
DW OB. f / : (20.21)

The relation of soft thresholding estimators to the collection of keep-or-kill
estimators on a Parseval frame is captured by the following oracle-type inequality
(see Candès 2006, Section 9)1:

Theorem 3 Let f�klgk;l be a Parseval frame and consider the denoising observation
model with Gaussian noise. LetbfSs D

P
k;l Ss .h y; �kli ; tkl/ �kl be the soft-threshold

frame estimator from (20.16). Then with tkl D � k�klk
p
2 log.n/ the following

inequality holds:

E�

��
�
�bfSs � f

�
�
�
2
�

	 .2 log.n/C 1/ ��2 C OB. f /
	
: (20.22)

To interpret this result, observe that if we renormalize the squared norm by 1
n , so

that it represents averaged squared error per point, we expect (depending on the
regularity of f ) the order of magnitude of n�1OB. f / to be typically a polynomial
rate O.n��/ for some � < 1. Then the term �2=n is negligible in comparison, and
the oracle inequality states that the performance ofbfSs is only worse by a logarithmic
factor than the performance obtained with the optimal, f -dependent choice of I in a
keep-or-kill estimator.

For this tight oracle inequality to hold, it is particularly important that a Parseval
frame is used. While thresholding strategies can also be applied to the coefficients
of a frame that is not Parseval, the reconstruction step is less straightforward (the
canonical dual frame must be computed for reconstruction from the thresholded
coefficients, see Sect. 20.2.2); furthermore, an additional factor B=A comes into
the bound (A 	 1 	 B being the frame bounds from definition (20.1)) (see, for
instance, Haltmeier and Munk 2014, Prop. 3.10). Therefore, the performance of
simple thresholding estimates deteriorates when used with a non-Parseval frame.

1Candès (2006) only hints at the proof; we provide a proof in the appendix for completeness.
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20.5 Numerical Experiments

We investigate the performance of the proposed method for denoising on two testbed
datasets where the ground truth is known and the design points are drawn randomly
iid from a distribution on a manifold. More precisely, we will consider one example
where the design points D are drawn uniformly (n D 500) on the unit square, which
is then rolled up into a “swiss roll” shape in 3D. We consider a very simple target
function represented (on the original unit square) as a piecewise constant function
(with values 5 and �3) on two triangles, displaying a sharp discontinuity along
one diagonal of the square and very smooth regularity elsewhere. This function
is observed with an additional Gaussian noise of variance �2 D 1. In the second
example the design points D are drawn uniformly (n D 500) on the unit sphere in
R
3. The target function remains a piecewise constant function, defined on the two

parts of the sphere when intersecting it with a chosen plane. Again, this function is
observed with an additional Gaussian noise of variance �2 D 1. For the swiss roll
example as well as for the sphere example, one sample consisting of design points
and noisy function values is displayed in Fig. 20.4.
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Fig. 20.4 Left: noisy function on swiss roll data (top) and sphere data (bottom), graph repre-
sentation. Right: MSE for two representative settings (weighted "-Graph and k-NN-Graph) as a
function of threshold level. Red is thresholding in the original Laplacian Eigenmaps ONB, blue is
thresholding of frame coefficients
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In each example, we consider the different types of neighborhood graphs
described in Sect. 20.2.3. Following usual heuristics, for the construction of the k-
NN graph we take k D 7 � log n; for the "-graph, we take for " the average distance
to the k D 7th nearest neighbor, and for weighted graphs we take Gaussian weights,
where the bandwidth � is calibrated so that points at the distance " defined above
are given weight 0:5.

After constructing the (weighted or unweighted) graph Laplacian, we com-
pute explicitly its eigendecomposition. For the construction of the frame via the
multiscale bandpass filter, we use a C 3 piecewise polynomial plateau function g
satisfying the support constraints of Definition 3 for b D 2 (i.e., constant equal to 1
for x 	 0:5, and zero for x � 1). While this function is not C1, it has the advantage
of fast computation.

We compare the denoising performance of the following competitors: Parseval
frame with soft thresholding, soft thresholding applied to the Laplacian Eigenmaps
orthonormal basis, and truncated expansion in the Laplacian Eigenmaps basis
(only the k coefficients corresponding to the first eigenvalues are kept, without
thresholding). The latter method is in the spirit of Belkin and Niyogi (2002). It
is well-known (from the regular grid case) that the “universal” theoretical threshold
�
p

log n is often too conservative in practice. For a fair comparison, we therefore
compute the mean squared error (MSE) of both thresholding methods for varying
threshold t (still modulated by k�klk for the Parseval frame). Comparison of the
MSE for one sample across the t-range for two particular settings is plotted in
Fig. 20.4. For all studied settings (different graph and graph Laplacian types), for
the same threshold level t we observed that the frame-based method systematically
shows a noticeable improvement.

In Table 20.1 we report the minimum MSEs and their standard error (averaged
over m D 50 samples of design points and independent noise) for different
methods over the possible range of the parameter (threshold level t, resp. number
of coefficients for truncated expansion), both for the swissroll and for the sphere
example. We observe an improvement of 20–25% across the different settings (the
best overall results being obtained with weighted graphs and the unnormalized
Laplacian). We also compared to the more traditional methods of kernel smooth-
ing (Nadaraya-Watson estimator) and kernel ridge regression, using a Gaussian
kernel (also with optimal choices of bandwidth and regularization parameter), and
observed a comparable performance improvement. While it is not realistic to assume
that the optimal parameter choice is known in practice, it is fair to compare all
methods under their respective optimal parameter settings, as parameter selection
methods will induce a comparable performance hit with respect to the best setting.

20.6 Outlook

Following the recently introduced idea of generalizing the Littlewood-Paley spectral
decomposition, we constructed explicitly a Parseval frame of functions on a neigh-
borhood graph formed on the data points. We established that a thresholding strategy
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Table 20.1 MSE performance under optimal parameter choice

Graph L FrTh LETh LETr

Example 1: sphere, jump function,�2 D 1; n D 500;m D 50

kNN U 0.510 (0.050) 0.693 (0.061) 0.905 (0.108)

kNN N 0.538 (0.046) 0.712 (0.055) 0.931 (0.094)

WkNN U 0.521 (0.049) 0.652 (0.050) 0.800 (0.097)

WkNN N 0.530 (0.049) 0.674 (0.057) 0.749 (0.091)

CGK U 0.520 (0.055) 0.638 (0.065) 0.821 (0.107)

CGK N 0.530 (0.052) 0.670 (0.050) 0.725 (0.081)

�G U 0.505 (0.058) 0.650 (0.068) 0.865 (0.115)

�G N 0.557 (0.052) 0.710 (0.059) 0.902 (0.106)

W�G U 0.482 (0.055) 0.622 (0.064) 0.787 (0.111)

W�G N 0.530 (0.049) 0.674 (0.057) 0.749 (0.091)

Smoothing Kernel Regression: min. MSE = 0.612 (0.066)

Kernel Ridge Regression: min. MSE = 0.594 (0.051)

Example 2: swiss roll, jump function,�2 D 1; nD 500;m D 50

kNN U 0.462 (0.043) 0.647 (0.039) 0.876 (0.079)

kNN N 0.494 (0.043) 0.676 (0.043) 0.902 (0.071)

WkNN U 0.443 (0.045) 0.600 (0.050) 0.790 (0.102)

WkNN N 0.500 (0.043) 0.659 (0.045) 0.775 (0.079)

CGK U 0.491 (0.053) 0.625 (0.057) 0.844 (0.096)

CGK N 0.520 (0.047) 0.648 (0.049) 0.713 (0.079)

�G U 0.459 (0.049) 0.610 (0.053) 0.872 (0.095)

�G N 0.532 (0.045) 0.681 (0.050) 0.884 (0.089)

W�G U 0.441 (0.049) 0.574 (0.049) 0.793 (0.113)

W�G N 0.503 (0.045) 0.643 (0.051) 0.744 (0.089)

Smoothing Kernel Regression: min. MSE = 0.589 (0.082)

Kernel Ridge Regression: min. MSE = 0.779 (0.052)

FrTh: Frame Thresholding; LETh/LETr: Laplacian Eigenmaps Thresholding/Truncated expansion.
Prefix W indicates edge weighting in the graph. CGK is the complete graph with Gaussian weights.
U/N is un/normalized graph Laplacian. Standard error in brackets. Top: Sphere example. Bottom:
Swiss roll example

on the frame coefficients has superior performance for the denoising problem
as compared to usual, spectral or non-spectral, approaches. Future developments
include extension of this methodology to the semisupervised learning setting, and a
stronger theoretical basis for spatial localization.
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Appendix

Proof of Theorem 3

Theorem 3 states a oracle-type inequality which captures the relation of soft
thresholding estimators OfSs D

P
k;l Ss .h y; �kli ; tkl/ �kl defined in (20.16) to the

collection of keep-or-kill estimators on a Parseval frame. This result is known in the
literature (see Candès 2006, Section 9), but we provide a short self-contained proof
for completeness, modulo a technical result from Donoho and Johnstone (1994) for
soft thresholding of a single one-dimensional Gaussian variable, which is basic for
the Proof of Theorem 3.

Lemma 1 For 0 	 ı 	 1=2, t Dp2 log.ı�1/ and X � N .
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: (20.23)

The proof of this lemma can be found in appendix 1 of Donoho and Johnstone
(1994). Now we are able to prove Theorem 3.

Proof First note that for y D x;  > 0, we have

Ss. y; u/ D Ss


x;

u



�
: (20.24)

Secondly we remark that
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: (20.25)

Considering now the risk of the soft thresholding estimator OfSs we get
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by using inequality (20.6). By applying (20.24) and then (20.23) with t D p2 log.n/
it follows that

E
��
�
�OfSs � f

�
�
�
2
�

	
X

k;l

�2 k�klk2 E
 �

Ss

� h y; �kli
� k�klk ;

p
2 log.n/

�

� akl
� k�klk

�2
!

	
X

k;l

�2 k�klk2 .2 log.n/C 1/
�

exp

�

�2 log.n/

2

�

Cmin

�

1;
a2kl

�2 k�klk2
��

D
X

k;l

.2 log.n/C 1/
�
1

n
�2 k�klk2 Cmin



�2 k�klk2 ; a2kl

��

D .2 log.n/C 1/
 
1

n

X

k;l

�2 k�klk2 C
X

k;l

min


�2 k�klk2 ; a2kl

�
!

: (20.27)

Recalling the Parseval frame property
P

k;l k�klk2 D n, we finally obtain
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where we recognize the upper bound
P

k;l min
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Chapter 21
Beta-Boosted Ensemble for Big Credit
Scoring Data

Maciej Zięba and Wolfgang Karl Härdle

Abstract In this work we present the novel ensemble model for credit scoring
problem. The main idea of the approach is to incorporate separate beta binomial
distributions for each of the classes to generate balanced datasets that are further
used to construct base learners that constitute the final ensemble model. The
sampling procedure is performed on two separate ranking lists, each for one class,
where the ranking is based on probability of observing positive class. The two
strategies are considered in the studies: one assumes mining easy examples and
the second one force good classification of hard cases. The proposed solutions are
tested on two big datasets from credit scoring domain.

Keywords Credit scoring · Ensemble model · Beta distribution · Beta boost ·
Big data

21.1 Introduction

The problem of constructing the decision model to distinguish good and bad con-
sumers can be defined as dichotomous classification task, where the positive class
(usually less numerous) represents “bad” applicants and the negative class stays
behind “good” cases. Usually, instead of obtaining the binary classification result
we aim at estimating the probability of credit repayment for each of the consumers.
Basing on the probabilities the financial institution is capable to define the various
profiles of the consumers. The common procedure for that kind of applications is
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to separate from training some group of labeled consumers and sort them according
to the predictive probability using the trained model. The sorted group with the
given labels is further used to distinguish the profiles. As a consequence, the higher
patience is given to construct the models that are characterized by good sorting
capabilities than to the typical classifiers used for binary classification. Instead of
maximizing the accuracy of prediction the community working on the credit scoring
models aims at achieving the highest value of AUC (area under ROC curve) criterion
that stays behind sorting capabilities of the models.

Various machine learning algorithms were applied to solve credit scoring and
fraud detection problems, such as: neural networks (Lee et al. 2002; Oreski et al.
2012; Zhao et al. 2015), Gaussian Processes (Huang 2011), various extensions of
SVMs (Support Vector Machines) (Bellotti and Crook 2009; Chen et al. 2010, 2011;
Härdle et al. 2009, 2012; Harris 2015; Zhou et al. 2009) or comprehensible models
based on neural structures (Tomczak and Zięba 2015) or SVMs (Martens et al.
2007).

Ensemble methods have also gained particular attention in the field of credit
scoring. The general idea of this type of models is based on constructing many
component models (so-called base learners) that are joined together as one complex
classifier. Usually, the base model is so-called weak learner that is characterized
by poor individual performance, but strong learners are also used for particular
ensemble models. In work Nanni and Lumini (2009) authors present very beneficial
comparison of the standard ensemble procedures in application to credit scoring
tasks. Some more up-to-date analysis of this kind of models for this particular
application were presented in Abellán and Mantas (2014) and Zhu et al. (2016).
The most recent models make use of various types of base learners (Koutanaei
et al. 2015), joined two strategies of diversification on features and data levels
(Marqués et al. 2012), switching class labels (Zięba and Świątek 2012), boosting
neural networks (Tsai and Wu 2008) or using ensemble of cost-sensitive SVMs
trained with active learning strategy (Zięba and Tomczak 2015). Most recent studies
show the great benefit of using Extreme Boosted Trees (Zięba et al. 2016).

In this work we aim at constructing novel boosting approach that works
independently on selected base model and performs well on big credit scoring
datasets. The key idea of this approach is to apply sampling strategy to sample
examples for each of the boosting iterations to construct the base learners. We make
use of particular Beta Binomial distributions that are applied to the sorted training
data according to the prediction probabilities returned by current ensemble model. In
this work we distinguish two sampling strategies: the first strategy aims at sampling
with the higher probability the examples that are already well located in the ranking.
The other strategy is an example of so-called hard examplesmining where the higher
probabilities are given to the examples badly predicted and badly located in the
ranking. Our approach was tested on the two benchmark datasets using two base
models: Logistic Regression and Decision Tree classifier. The results show that the
first strategy works fine with the stable models like Logistic Regression, while the
second strategy improves the quality of weak learners like Decision Trees.
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The chapter is organized as follows. In Sect. 21.2 we present BetaBoost algo-
rithm. In Sect. 21.3 we introduce some experimental studies investigating the
performance of the approach. The chapter is summarized with some conclusions
in Sect. 21.4.

21.2 Method Description

The main idea of the proposed approach is to create the ensemble model that makes
use of re-sampling diversification technique to increase its sorting capabilities. To
achieve the goal, each of the base learners is trained using re-sampled training data.
The re-sampling procedure makes use of two particular beta binomial distributions
(one for each class) that are used to generate indexes of examples that are going to
be taken in the next boosting iteration. The crucial step in the training procedure
is sorting the training data according to predictive capabilities of the so far created
ensemble model. As a consequence, the examples with higher probability value have
higher indexes and are going to be selected more often in training iterations. For the
sampling procedure we propose to use Beta Binomial distribution which is going to
be characterized in the next subsection.

21.2.1 Beta Binomial Distribution

The beta binomial distribution is selected because it is capable to assign high
probabilities to particular regions of the sorted data according to predictive prob-
ability values of the training examples. Practically, it means that we are capable
to concentrate our model either on learning from difficult-to-distinguish credit
consumers or put the higher impact on learning from the easy-to-classify client
applicants.

The flexibility of beta binomial distribution is controlled by three parameters:

• Shape parameters a and b that are characteristic for beta distribution (a; b > 0).
• Parameter N that represents the number of trials characteristic for binomial

distribution (N 2 N0).

The probability function for beta binomial distribution (BBin.a; b;N/) can be
presented in the following form:

p.kI a; b;N/ D
 
N

k

!
B.kC a;N � kC b/

B.a; b/
; (21.1)

where B.a; b/ is the beta function.
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The presented distribution has the important property for the particular values
of shape parameters a and b. In this application we are concentrating on particular
families of beta binomial distributions:

• The subset of distributions, where a 	 1, b � 1 and a ¤ b. If k1 > k2, then
p.k1I a; b;N/ < p.k2I a; b;N/.

• The subset of distributions, where a � 1, b 	 1 and a ¤ b. If k1 > k2, then
p.k1I a; b;N/ > p.k2I a; b;N/.
The selection of the particular distributions is indicated by the strategies that

are going to be applied to train the ensemble model. For the first strategy we aim
at putting the higher impact on selecting better located examples in the ranking
so for the ranking list for negative examples (sorted according to probability
of observing positive class) we apply the family of distributions that satisfies
p.k1I a; b;N/ < p.k2I a; b;N/, while for the ranking list for positive cases we use
family of distribution that satisfies p.k1I a; b;N/ > p.k2I a; b;N/. As a consequence
it is more probable to select the examples properly located on the both of the lists.

For the second strategy we make use of the first family of distributions for
positive ranking list and the second family for negative sorted samples. Contrary
to previous strategy we aim at mining rather hard positive and negative examples
and omitting well-classified examples.

In the next section we present, how the beta binomial sampling is used in
constructing the boosted model.

21.2.2 Beta-Boosted Ensemble Model

In this work we aim at constructing the ensemble classifier for binary classification
y 2 f0; 1g, composed of T base models:

pT. yjx/ D
TX

tD0
ptp. yjx; t/y

n
1� p. yjx; t/

o.1�y/
; (21.2)

where x is the vector of input features, p.yjx; t/ represents the t-th base learner, and
pt is the prior distribution over base learners.

For further work we assume that base learners are characterized by uniform
distribution, so we can present the ensemble model given by Eq. (21.2) in the
following form:

pT. y D 1jx/ D 1

T C 1
TX

tD0
p. y D 1jx; t/: (21.3)



21 Beta-Boosted Ensemble for Big Credit Scoring Data 527

We are interested in obtaining probability value for a given positive class therefore
we will further operate on probability for this class, p.y D 1jx/.

For the given predictor p.y D 1jx/ and the set of examples XN D fxngNnD1 we can
define the rank function h.x;XN ; p/:

h.x;XN ; p/ D
NX

nD1
I
n
p. y D 1jx/ > p. y D 1jxn/

o
(21.4)

The procedure for creating the ensemble classifier can be described by Algo-
rithm 1. To create the classifier we make use of training data DN D f.xn; yn/gNnD1,
that contains N training examples: N1 positive and N0 negative instances. We aim at
constructing the ensemble model given by Eq. (21.3).

To initialize the training procedure we distinguish positive and negative examples
denoting them by XN1 and XN2 , respectively. We also initialize the ensemble
structure by training the first base learner p.yjx; 0/ using initial training set DN D
f.xn; yn/gNnD1. In the next step we perform constructing the committee of T base
classifiers in the training loop. Before creating the base learner we perform beta
binomial sampling using separate distributions for each of the classes to obtain N=2
samples for each class. We use distributions for each of the classes, BBin0.a; b;N/
to sample negatives and BBin1.a; b;N/ to sample positives. We recommend to use
particular families of distributions that were characterized in Sect. 21.2.1.

The procedure of sampling the data makes use of the currently created ensemble
model pt�1.y D 1jx/ to determine the ranking position of the example x in the
given set XN using ranking function h.x;XN; p/ given by Eq. (21.4). The sampling
procedure is performed independently for each of the classes and is described by
Algorithm 2. First, we sample the integer k from BBin.a; b;N � 1/ distribution.
Second, we identify the sample that has ranking value equal to the sampled k value

Algorithm 1: BetaBoost

Input: Training data: DN D f.xn; yn/gNnD1

Output: Ensemble model: pT .y D 1jx/ (see Eq. (21.3))
Parameters : BBin0.	/ parameters for negative class: a0, b0,

BBin1.	/ parameters for positive class: a1, b1,
number of base learners: T C 1.

1 Set XN1 D fxn W yn D 1g and XN0 D fxn W yn D 0g;
2 Train weak learner p.yjx; 0/ with data DN ;
3 for t 1 to T do
4 Create ensemble predictor pt�1.y D 1jx/ D 1

tC1

Pt
jD0 p.y D 1jx; j/;

5 Generate QX.1/N=2 with sample.XN1 ; pt�1; a1; b1;N=2/ (see Algorithm 2);

6 Generate QX.0/N=2 with sample.XN0 ; pt�1; a0; b0;N=2/ (see Algorithm 2);

7 Create new training data QDN D . QX.1/N=2; 1/[ . QX.1/N=2; 0/;

8 Train weak learner p.yjx; k/ with data QDN ;
9 end
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Algorithm 2: Sampling procedure: sample.XN; p; a; b;Nout/

Input: Predictor p.y D 1jx/, the set of examples XN D fxngNnD1, number of output samples
Nout.

Output: Set of data samples QXNout D fxngNout
nD1

Parameters : BBin.	/ parameters: a, b.
1 QX0  ;;
2 for n 1 to Nout do
3 Sample k � BBin.a; b;N � 1/;
4 QXn  QXn�1 [ fx 2 XN W h.x;XN ; p/ D kg, h.x;XN ; p/ is given by Eq. (21.4);
5 end

and include it into the set of output samples QXn. The sampling procedure is repeated
Nout times to obtain the output set of examples, QXNout . The procedure is equivalent
to sorting the given data according to the given predictions and then sampling their
position with beta binomial distribution.

The sampling procedure is performed separately for the sets of positive and
negative examples XN1 , XN0 and, as a consequence, the new sets QX.1/N=2 and QX.0/N=2
are created and each of them contains N=2 sampled examples. The two sets are then
labeled and concatenated to the new training data QDN that is further used to train the
k-th base learner p.yjx; k/. The procedure is repeated T times to obtain ensemble
model composed of T C 1 base learners.

21.2.3 Toy Example

Consider the toy example in which we have set of 15 examples, 5 from positive class
and 10 from negative class. Assume that we have the committee of the models that
sorted the training examples according to the predictive probability p.y D 1jx/ (see
Fig. 21.1a). Further, we assign individual ranking position for each of the considered
classes (see Fig. 21.1b). Next, we assume individual Beta binomial distribution for
each of the classes:

• BBin0.0:8; 2; 9/ for negative examples.
• BBin1.2; 0:8; 4/ for positive examples.

The selected distributions are consistent with the first strategy described in
Sect. 21.2.1, where we aim at mining easy examples from both classes. The selection
of the a and b is crucial for the training procedure. If the both values are close
to 0 the distribution approaches uniform distribution, while for large a and small
b examples with high positions are going to be selected multiple times. To select
proper parameters for the distributions model selection procedure should be applied
(Fig. 21.2).
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p0(y=1|x)0 1

(a)

p0(y=1|x)0 1

0 1 2 0 3 4 5 1 6 7 8 2 9 3 4(b)

Fig. 21.1 The set of data examples sorted according to p0.y D 1jx/. Red circles represent negative
examples, and green circles stand behind positive cases. (a) Sorted data points according to the
predictive distribution. (b) Sorted data points with individual rankings for each class
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Fig. 21.2 Sampling distribution for examples presented in Fig. 21.1—BBin0.0:8; 2; 9/ for nega-
tive and BBin1.2; 0:8; 4/ for positive examples

If we assume equal prior probabilities for selecting examples from minority and
majority class, the sampling distribution for the next boosting iteration is presented
in Fig. 21.1.

If we perform sampling with replacement from the given distribution we can
obtain the set of examples that should be taken into next boosting iteration that is
presented in Fig. 21.3a. After learning the second base learner p.y D 1jx; 1/ and
adding it to the ensemble model p1.y D 1jx/ D p.yD1jx;0/Cp.yD1jx;1/

2
we obtain the

better sorting of the data (see Fig. 21.3b).
If we consider the AUC criterion (area under ROC curve) that represents the

quality of the sorting capabilities for the binary classification models it increases
from 0:76 to 0:92.

The idea that stays behind the proposed procedure is a proper selection of the
sampling distributions the satisfy the conditions that are described in Sect. 21.2.1.
In this variant we take the distribution for sampling positive examples that satisfies:
a1 � 1, b1 	 1 and for sampling negative instances we use the distribution with
parameters: a0 	 1, b0 � 1. Practically it means that we aim at putting the higher
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p0(y=1|x)0 1
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0 1 2 03 45 16 7 8 29 3 4
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Fig. 21.3 The illustrative example presenting the capabilities of the joined ensemble model, after
training the second base learner on the sampled data. (a) The data sampled from distribution
presented in Fig. 21.2 (grey circle stays behind unselected sample). (b) The new order based on
the classification of the ensemble model p1.y D 1jx/ D p.yD1jx;0/Cp.yD1jx;1/

2

impact on the examples that are characterized by higher predictive probabilities
(for positive examples) or lower probability values (for negative examples). Our
philosophy for this particular case is to put the higher impact on distinguishing the
examples located away from each other in the global ranking determined by the
predictions comparing to examples located in the weighted middle of the ranking
list. As a consequence, we are sacrificing some portion of difficult to distinguish
examples by putting them to unsure region, but we avoid observing them in low or
high ranking positions. So the model has some capability to prevent overfitting that
can be caused by discursive (or even noise) examples in training data. We also aim
at dealing with imbalanced data phenomenon by sampling equal number of positive
and negative examples.

Quite opposite strategy is observed for the following sampling distribution:

• BBin0.2; 0:8; 9/ for negative examples.
• BBin1.0:8; 2; 4/ for positive examples.

In this case, the sampling distribution for the next boosting iteration is presented
in Fig. 21.4. Following this strategy we aim at correct classification of the improp-
erly ranked examples, assuming that they are rather hard examples that we manage
to classify by the ensemble model.

The two presented strategies aim at different cases. In the first case we trust
our base model, but we do not trust our data assuming that there are some portion
of the examples that are impossible to be distinguished. Therefore, we are leaving
some portion of examples in controversial area on the ranking, cleaning low and
high ranking regions with improperly located samples. For the second strategy,
we use rather untrusted weak learner as a base model, but we aim at creating the
complex model that will properly classify hard instances if their impact is going to
be decreased.
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Fig. 21.4 Sampling distribution for examples presented in Fig. 21.1—BBin0.2; 0:8; 9/ for nega-
tive and BBin1.0:8; 2; 4/ for positive examples

21.2.4 Relation to Existing Solutions

The presented work is inspired by existing RankBoost (Freund et al. 2003) (for
which the equivalence to well-known AdaBoost was described in Rudin and
Schapire 2009) method and couple of other approaches. In contrast to the RankBoost
we define two separate ranking functions for positive and negative examples. First
of all, the Rankboost approach is very sensitive to the noisy examples located in
training data. BetaBoost model presented in this chapter deals well with insecure and
noisy data because the distribution is not updated in iterations and does not depend
on global ranking. Moreover, it is also more beneficial to use more flexible sampling
distribution that is characterized by two parameters (a and b) contrary to the specific
exponential-based distribution used in typical boosting approaches. The proposed
solution is also inheriting self-paced philosophy (Kumar et al. 2010) if the strategy
with the increasing probabilities for positive and with decreasing probabilities for
negative examples is applied.

As the procedure is independent on global ranking it is crucial to apply proper
model selection procedure that will fit proper sampling curves for each of the
classes.

21.3 Experiments

We are going to evaluate our approach on two large datasets from credit scoring
domain that are available in Kaggle repository:

• Give me Some Credit (Give Me Some Credit 2011).
• Lending Club Loan Data (Lending Club 2016).
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Give me Some Credit (GMSC) dataset is composed of 150;000 examples, 10;026
positive and 139;974 negative elements. Each of the credit consumers is represented
by the vector of 10 numeric features. Each of the attributes was normalized before
using it for training.

Lending Club Loan Data (LCLD) dataset is composed of 887;379 examples,
67;429 positive and 819;955 negative cases. Each of the examples was described
by 12 features, where 6 of them were numeric, and the remaining 6 were nominal.
On the preprocessing stage we have normalized the numeric features and binarized
nominal attributes.

We divide each of the initial datasets to: training set (80% examples) and test
set (20% examples). From training set we separate 10% instances for validation to
monitor the training progress and select the best set of base learners.

For the evaluation we use AUC (area under ROC curve) criterion, which is often
for evaluating credit scoring models and measures well the sorting capabilities
of learners. For each of the scenarios we apply model selection of the sampling
parameters (a1, b1, a0, b0) from the set of candidates and select the parameters with
the highest AUC obtained on the validation set.

We consider the two scenarios that were described in this work. In the first of the
scenarios we aim at putting higher weights to the “secure” examples, assuming that
controversial examples are hard to classify.

Therefore we propose to use Logistic Regression as a stable base learner:

p. y D 1jx; k/ D �.wT
k x/ D

1

1 � exp f�wT
k xg

(21.5)

At first we analyze the training capabilities of the BetaBoost model trained using
the following beta parameters: a0 D 0:8, b0 D 2, a1 D 2, and b1 D 0:8. We
compare the proposed approach with the so-called Balanced Bagging that performs
sampling with replacement from uniform distribution to obtain N=2 samples from
each class. The results of the comparison are presented in Figs. 21.5 and 21.6.

It can be observed that Logistic Regression is a very stable model characterized
by small variance of the performance. Practically, it means that small changes in data
caused by uniform sampling do not affect the overall performance of the model. If
we apply sampling for the procedure characteristic for BetaBoost model, we would
obtain the improvement of AUC measure as it is observed in Figs. 21.5 and 21.6. As
a consequence of increasing probabilities for positive examples (a1 > 1 and b1 < 1)
and decreasing probabilities for negative cases (a0 < 1 and b0 > 1) we aim at
good quality prediction of the positive examples that are located on higher ranking
positions and negative examples that are located on low positions. To obtain the goal
we sacrifice the “difficult” examples that are suspected to be “noisy” instances, that
are located in the discussion area. As a consequence, the improvement of AUC is
observed for both of the considered datasets.
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Fig. 21.5 A comparison analysis of BetaBoost (a0 D 0:8, b0 D 2, a1 D 2 and b1 D 0:8) and
Balanced Bagging for the growing number of base learners on GMSC dataset. We consider Logistic
Regression as base learner. AUC is taken as quality criterion. (a) Training set. (b) Validation set

As a second base model we propose to use Decision Trees. Due to the fact
that this model is recognized as so-called weak learner, we propose the following
sampling parameters to train the BetaBoost models:

• a0 D 1:5, b0 D 0:8, a1 D 0:8 and b1 D 1:5 for GMSC dataset,
• a0 D 1:2, b0 D 0:8, a1 D 0:8 and b1 D 1:2 for LCLD dataset.

The results are presented in Figs. 21.6 and 21.7. We can see that sampling
with replacement using the second strategy (a0 � 1, b0 	 1 and a1 	 1,
b1 � 1) makes significant improvement of AUC criterion comparing to BetaBoost
strategy, that also uses decision tree as a base learner. We also consider in the
analysis the AdaBoost classifier that learns the component base model using the
similar strategy that increases the impact of “hard examples,” decreasing the
significance of well-predicted instances. The AdaBoost model needs more iterations
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Fig. 21.6 A comparison analysis of BetaBoost (a0 D 0:8, b0 D 2, a1 D 2 and b1 D 0:8) and
Balanced Bagging for the growing number of base learners on LCLD dataset. We consider Logistic
Regression as base learner. AUC is taken as quality criterion. (a) Training set. (b) Validation set

to achieve acceptable AUC level because both datasets are spoiled by imbalanced
data phenomenon. The performance of AdaBoost is similar to BetaBoost on GMSC
dataset, but on LCLD dataset it gives significantly worse results. We also present the
results on validation data to show that overfitting problem is not observed for the
considered models (Fig. 21.8).

We presented the final results obtained by the considered models in Fig. 21.9
(GMSC dataset) and Fig. 21.10 LCLD dataset. The considered models are as
follows:

• BetaBoostL. BetaBoost with Logistic Regression as base learner trained with the
first strategy (a0 	 1, b0 � 1 and a1 � 1, b1 	 1).

• BalBagL. Balanced Bagging with Logistic Regression as a base learner.
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Fig. 21.7 A comparison analysis of BetaBoost (a0 D 1:5, b0 D 0:8, a1 D 0:8 and b1 D 1:5) and
Balanced Bagging for the growing number of base learners on GMSC dataset. We consider Logistic
Regression as base learner. AUC is taken as quality criterion. (a) Training set. (b) Validation set

• BetaBoostDT. BetaBoost with a decision tree as a base learner trained with the
second strategy (a0 � 1, b0 	 1 and a1 	 1, b1 � 1).

• BalBagDT. Balanced Bagging with a decision tree as a base learner.
• AdaBoost. AdaBoost classifier with a decision tree as a base learner.

It can be observed that the BetaBoost with decision tree as a base learner train
with the second strategy performed better than the reference approaches considered
in the experiments. On (GMSC dataset) we observed only slight increase in quality
of BetaBoost comparing to Balanced Bagging from 0:8652 to 0:8673. However,
we operate on big data, so the slight improvements in quality criterion may have
great impact on financial benefit. The improvement observed on the LCLD dataset
is indisputable.
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Fig. 21.8 A comparison analysis of BetaBoost (a0 D 1:2, b0 D 0:8, a1 D 0:8, and b1 D 1:2),
Balanced Bagging and AdaBoost for the growing number of base learners on LCLD dataset. We
consider Decision Tree as base learner. AUC is taken as quality criterion. (a) Training set. (b)
Validation set

Fig. 21.9 Final results for considered models—GMSC dataset (test data)
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Fig. 21.10 Final results for considered models—LCLD dataset (test data)

21.4 Conclusion and Future Work

In this work we propose alternative ensemble based strategy that makes use of beta
binomial sampling to create the base models. Two strategies can be distinguished
while taking the sampling distribution. In the first strategy we aim at putting higher
impact on “easy examples,” we bestow trust on the base model and do not trust in
data quality. In the second strategy we take rather weak and unstable base model
and we put the higher impact on training “hard examples.”

Contrary to existing approaches like AdaBoost, we update the sampling distribu-
tion basing only on individual ranking for each of the classes. As a consequence,
the impact of noisy examples in training data is not high.

The crucial step for the proposed BetaBoost model is to find proper parameters
for sampling distributions. It can be performed by grid search, but this approach is
ineffective for large data sets. In the future works we plan to propose the smart model
selection approach to solve that issue. Additionally, we are going to perform more
formal discussion of the properties of the proposed model. Moreover, the weighted
variant of ensemble model is going to be proposed.
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