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Abstract This paper presents and discusses two generalized forms of the Shannon
entropy, as well as a generalized information measure. These measures are applied
on a exponential-power generalization of the usual Normal distribution, emerged
from a generalized form of the Fisher’s entropy type information measure, essential
to Cryptology. Information divergences between these random variables are also
discussed. Moreover, a complexity measure, related to the generalized Shannon
entropy, is also presented, extending the known SDL complexity measure.
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1 Introduction

Since the time of Clausius, 1865, Entropy plays an important role in linking
physical experimentation and statistical analysis. It was later in 1922, when Fisher
developed in [9] the Experiment Design Theory, another link between Statistics
with Chemistry, as well as in other fields. For the principle of maximum entropy,
the normal distribution is essential and eventually it is related with the energy and
the variance involved.

The pioneering work by Shannon [28] related Entropy with Information Theory
and gave a new perspective to the study of information systems and of Cryptography,
see [1, 14] among others. Shannon entropy (or entropy) measures the average
uncertainty of a random variable (r.v.). In Information Theory, it is the minimum
number of bits required, on the average, to describe the value x of the r.v. X. In
Cryptography, entropy gives the ultimately achievable error-free compression in
terms of the average codeword length symbol per source. There are two different
roles of entropy measures: (a) positive results can be obtained in the form of security
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proofs for (unconditionally secure) cryptographic systems, and (b) lower bounds
on the required key sizes are negative results, in some scenarios, and follow from
entropy-based arguments. See also [14].

Recall that the relative entropy or discrimination or information divergence
between two r.v., say X and Y , measures the increase, or decrease, of information,
about an experiment, when the probability Pr.X/ (associated with the knowledge
of the experiment) is changed to Pr.Y/. Relative entropy is the underlying idea of
the Authentication Theory which provides a level of assurance to the receiver of a
message originating from a legitimate sender.

A central concept of Cryptography is that of information measure or information,
as cryptographic scenarios can be modelled with information-theoretic methods.
There are several kinds of information measures which all quantify the uncertainty
of an outcome of a random experiment, and, in principle, information is a measure
of the reduction of uncertainty.

Fisher’s entropy type information measure is a fundamental one, see [5]. Poincaré
and Sobolev Inequalities play an important role in the foundation of the generalized
Fisher’s entropy type information measure. Both classes of inequalities offer a
number of bounds for a number of physical applications. The Gaussian kernel or the
error function (which produce the normal distribution) usually has two parameters,
the mean and the variance. For the Gaussian kernel an extra parameter was then
introduced in [15], and therefore a generalized form of the Normal distribution was
obtained. Specifically, the generalized Gaussian is obtained as an extremal for the
Logarithm Sobolev Inequality (LSI), see [4, 30], and is referred here as the � -order
Normal Distribution, or N� . In addition, the Poincaré Inequality (PI), offers also
the “best” constant for the Gaussian measure, and therefore is of interest to see how
Poincaré and Sobolev inequalities are acting on the Normal distribution.

In this paper we introduce and discuss two generalized forms of entropy and their
behavior over the generalized Normal distribution. Moreover, the specific entropy
measures as collision and the mean-entropy are discussed. A complexity measure
for an r.v. is also evaluated and studied.

2 Information Measures and Generalizations

Let X be a multivariate r.v. with parameter vector � D .�1; �2; : : : ; �p/ 2 R
p and

p.d.f. fX D fX.xI �/, x 2 R
p. The parametric type Fisher’s Information Matrix

IF.XI �/ (also denoted as I� .X/) defined as the covariance of r� log fX.XI �/ (where
r� is the gradient with respect to the parameters �i, i D 1; 2; : : : ; p) is a parametric
type information measure, expressed also as

I� .X/ D Cov .r� log fX.XI �// D E�

�r� log fX � .r� log fX/T
�

D E�

�kr� log fXk2
�

;

where k�k is the usual L 2.Rp/ norm, while E� Œ�� denotes the expected value operator
applied to random variables, with respect to parameter � .
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Recall that the Fisher’s entropy type information measure IF.X/, or J.X/, of
an r.v. X with p.d.f. f on R

p, is defined as the covariance of r.v. r log f .X/, i.e.
J.X/ WD EŒkr log f .X/k2�, with EŒ�� now denotes the usual expected value operator
of a random variable with respect to the its p.d.f. Hence, J.X/ can be written as

J.X/ D
Z

Rp

f .x/kr log f .x/k2dx D
Z

Rp

f .x/�1krf .x/k2dx

D
Z

Rp

rf .x/ � r log f .x/dx D 4

Z

Rp

���r
p

f .x/
���

2

dx: (1)

Generally, the family of the entropy type information measures I.X/, of a
p-variate r.v. X with p.d.f. f , are defined through the score function of X, i.e.

U.X/ WD kr log f .X/k;

as

I.X/ WD I.XI g; h/ WD g .EŒh.U.X//�/ ;

where g and h being real-valued functions. For example, when g D i:d: and
h.X/ D X2 we obtain the entropy type Fisher’s information measure of X as in (1),
i.e.

IF.X/ D EŒkr log f .X/k2�: (2)

Besides IF, other entropy type information measures as the Vajda’s, Mathai’s,
and Boeke’s information measures, denoted with IV, IM, and IB, respectively, are
defined as:

IF.X/ WD I.X/; with g WD id. and h.U/ WD U2;

IV.X/ WD I.X/; with g WD id. and h.U/ WD U�; � � 1;

IM.X/ WD I.X/; with g.X/ WD X1=� and h.U/ WD U�; � � 1;

IB.X/ WD I.X/; with g.X/ WD X��1 and h.U/ WD U
�

��1 ; � 2 RC n 1:

The notion of information “distance” or divergence of a p-variate r.v. X over a
p-variate r.v. Y is given by

D.X; Y/ D D.X; YI g; h/ WD g

0

@
Z

Rp

h.fX; fY/

1

A ;

where fX and fY are the probability density functions (p.d.f) of X and Y , respectively.
Some known divergences, such as the Kullback–Leibler DKL, the Vajda’s DV, the
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Kagan DK, the Csiszar DC, the Matusita DM, as well as the Rényi’s DR divergence,
see also [8], are defined as follows:

DKL.X; Y/ WD D.X; Y/; with g WD id. and h.fX; fY/ WD fX log.fX=fY/;

DV.X; Y/ WD D.X; Y/; with g WD id. and h.fX; fY/ WD fX j1 � .fY=fX/j� ; � � 1;

DK.X; Y/ WD D.X; Y/; with g WD id. and h.fX; fY/ WD fX j1 � .fY=fX/j2 ;

DC.X; Y/ WD D.X; Y/; with g WD id. and h.fX; fY/ WD fY�.fX=fY/; � convex;

DM.X; Y/ WD D.X; Y/; with g.A/ WD p
A and h.fX; fY/ WD �p

fX � p
fY
�2

;

DR.X; Y/ WD D.X; Y/; with g.A/ WD log A
1��

and h.fX; fY/ WD f �
X f 1��

Y ; � 2 R
C

n 1:

Consider now the Vajda’s parametric type measure of information IV.XI �; ˛/,
which is in fact a generalization of IF.XI �/, defined as, [8, 33],

IV.XI �; ˛/ WD E� Œkr� log f .X/k˛�; ˛ � 1: (3)

Similarly, the Vajda’s entropy type information measure J˛.X/ generalizes Fisher’s
entropy type information J.X/, defined as

J˛.X/ WD EŒkr log f .X/k˛�; ˛ � 1; (4)

see [15]. We shall refer to J˛.X/ as the generalized Fisher’s entropy type information
measure or ˛-GFI. The second-GFI is reduced to the usual J, i.e. J2.X/ D J.X/.
Equivalently, from the definition of the ˛-GFI above we can obtain

J˛.X/ D
Z

Rp

kr log f .x/k˛f .x/dx D
Z

Rp

krf .x/k˛f 1�˛.x/dx

D ˛˛

Z

Rp

krf 1=˛.x/k˛dx: (5)

The Blachman–Stam inequality [2, 3, 31] still holds through the ˛-GFI measure
J˛ , see [15] for a complete proof. Indeed:

Theorem 1. For two given p-variate and independent random variables X and Y,
it holds

J˛

�
�1=˛X C .1 � �/1=˛Y

� � �J˛.X/ C .1 � �/J˛.Y/; � 2 .0; 1/: (6)

The equality holds when X and Y are normally distributed with the same covariance
matrix.

As far as the superadditivity of J˛ is concerned, the following Theorem it can be
stated, see [19] for a complete proof.
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Theorem 2. Let an orthogonal decomposition R
p D R

r ˚ R
s, p D s C t, with the

corresponding marginal densities of a p.d.f. f on R
p being f1 on R

s and f2 on R
t, i.e.

f1.x/ D
Z

Rs

f .x; y/dsy; f2.y/ D
Z

Rt

f .x; y/dtx; (7)

Then, for r.v. X, X1 and X2 following f , f1 and f2, it holds

J˛.X/ � J˛.X1/ C J˛.X2/; (8)

with the equality holding when f .x; y/ D f1.x/f2.y/ almost everywhere.

The Shannon entropy H.X/ of a continuous r.v. X with p.d.f.f is defined as, [5],

H.X/ WD EŒlog f .X/� D
Z

Rp

f .x/ log f .x/dx; (9)

(we drop the usual minus sign) and its corresponding entropy power N.X/ is
defined as

N.X/ WD �e
2
p H.X/

; (10)

with � WD .2�e/�1. The generalized entropy power N˛.X/, introduced in [15], is of
the form

N˛.X/ WD �˛e
˛
p H.X/

; (11)

with normalizing factor �˛ given by the appropriate generalization of �, namely

�˛ WD �
˛�1
˛e

�˛�1
�� ˛

2

"
	
� p

2
C 1

�

	
�
p ˛�1

˛
C 1

�

# ˛
p

; ˛ 2 R n Œ0; 1�: (12)

For the parameter case of ˛ D 2, (11) is reduced to the known entropy power N.X/,
i.e. N2.X/ D N.X/ and �2 D �.

The known information inequality J.X/N.X/ � p still holds under the general-
ized entropy type Fisher’s information, as J˛.X/N˛.X/ � p, ˛ > 1, see [15]. As a
result the Cramér–Rao inequality, J.X/ Var.X/ � p, can be extended to

h
2�e

p Var.X/
i1=2 h

�˛

p J˛.X/
i1=˛ � 1; ˛ > 1; (13)

see [15]. Under the normality parameter ˛ D 2, (13) is reduced to the usual Cramér–
Rao inequality.
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Furthermore, the classical entropy inequality

Var.X/ � pN.X/ D p
2�e e

2
p H.X/

; (14)

can be extended, adopting our extension above, to the general form

Var.X/ � p.2�e/
˛�4

˛ �2=˛
˛ N2=˛

˛ .X/; ˛ > 1: (15)

Under the “normal” parameter value ˛ D 2, the inequality (15) is reduced to the
usual entropy inequality as in (14).

Through the generalized entropy power N˛ a generalized form of the usual
Shannon entropy can be produced. Indeed, consider the Shannon entropy of which
the corresponding entropy power is N˛ (instead of the usual N), i.e.

N˛.X/ D � expf 2
p H˛.X/g; ˛ 2 R n Œ0; 1�: (16)

We shall refer to the quantity H˛ as the generalized Shannon entropy, or
˛-Shannon entropy, see for details [17]. Therefore, from (11) a linear relation
between the generalized Shannon entropy H˛.X/ and the usual Shannon entropy
H.X/ is obtained, i.e.

H˛.X/ D p
2

log �˛

�
C ˛

2
H.X/; ˛ 2 R n Œ0; 1�: (17)

Essentially, (17) represents a linear transformation of H.X/ which depends on the
parameter ˛ and the dimension p 2 N. It is also clear that the generalized Shannon
entropy with ˛ D 2 is the usual Shannon entropy, i.e. H2 D H.

3 Entropy, Information, and the Generalized Gaussian

For a p-variate random vector X the following known Proposition bounds the
Shannon entropy using only the covariance matrix of X.

Proposition 1. Let the random vector X have zero mean and covariance matrix †.
Then

H.X/ � 1
2

log f.2�e/pj det †jg ;

with equality holding if and only if X � N .0; †/.

This Proposition is crucial and denotes that the entropy for the Normal dis-
tribution is depending, eventually, only on the variance–covariance matrix, while
equality holds when X is following the (multivariate) normal distribution, a result
widely applied in engineering problems and information systems.
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A construction of an exponential-power generalization of the usual Normal
distribution can be obtained as an extremal of (an Euclidean) LSI. Following [15],
the Gross Logarithm Inequality with respect to the Gaussian weight, [13], is of
the form

Z

Rp

kgk2 log kgk2dm � 1
�

Z

Rp

krgk2dm; (18)

where kgk2 WD R
Rp kg.x/k2dx D 1 is the norm in L 2.Rp; dm/ with dm WD

expf��jxj2gdx. Inequality (18) is equivalent to the (Euclidean) LSI,

Z

Rp

kuk2 log kuk2dx � p
2

log

8
<

:
2

�pe

Z

Rp

kruk2dx

9
=

;
; (19)

for any function u 2 W 1;2.Rp/ with kuk2 D 1, see [15] for details. This inequality
is optimal, in the sense that

2
�pe D inf

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

Z

Rp

kruk2dx

exp

0

@ 2
n

Z

Rp

kuk2 log kuk2dx

1

A

W u 2 W 1;2.Rp/; kuk2 D 1

9
>>>>>>=

>>>>>>;

;

see [34]. Extremals for (19) are precisely the Gaussians

u.x/ D .�
=2/�p=4 exp

�
�
ˇ̌
ˇx � �




ˇ̌
ˇ
2
�

;

with 
 > 0 and � 2 R
p, see [3, 4] for details.

Now, consider the extension of Del Pino and Dolbeault in [6] for the LSI as
in (19). For any u 2 W 1;2.Rp/ with kuk� D 1, the � -LSI holds, i.e.

Z

Rp

kuk� log kukdx � p
�2 log

8
<

:
K�

Z

Rp

kruk� dx

9
=

;
; (20)

with the optimal constant K� being equal to

K� D �

p .
��1

e /��1���=2

"
	. p

2
C 1/

	.p ��1

�
C 1/

#�=p

; (21)

where 	.�/ is the usual gamma function.
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Inequality (20) is optimal and the equality holds when u.x/ WD fX.x/, x 2 Rp

where X is an r.v. following the multivariate distribution with p.d.f. fX defined as

fX.x/ D fX.xI �; †; �/ WD Cp
� .†/ exp

n
� ��1

�
Q� .x/

�
2.��1/

o
; x 2 Rp; (22)

with normalizing factor

Cp
� .†/ WD

.
��1

�
/

p ��1
�

�p=2
pj det †j

"
	. p

2
C 1/

	.p ��1

�
C 1/

#

D max fX; (23)

and p-quadratic form Q� .x/ WD .x � �/†�1.x � �/T, x 2 Rp where � WD .�; †/ 2
Rp�.p�p/. The function �.�/ D fX� .x/1=� with † D .
2=˛/2.��1/=�Ip corresponds to
the extremal function for the LSI due to [6]. The essential result is that the defined
p.d.f fX works as an extremal function to a generalized form of the Logarithmic
Sobolev Inequality.

We shall write X� � N p
� .�; †/ where N p

� .�; †/ is an exponential-power
generalization of the usual p-variate Normal distribution N p.�; †/ with location
parameter vector � 2 R1�p and positive definite scale matrix † 2 Rp�p, involving
a new shape parameter � 2 R n Œ0; 1�. These distributions shall be referred to as
the � -order Normal distributions. It can be easily seen that the parameter vector
� is, indeed, the mean vector of the N p

� distribution, i.e. � D EŒX� � for all
parameters � 2 R n Œ0; 1�, see [20]. Notice also that for � D 2 the second-ordered
Normal N p

2 .�; †/ is reduced to the usual multivariate Normal N p.�; †/, i.e.
N p

2 .�; †/ D N p.�; †/. One of the merits of the � -order Normal distribution
defined above belongs to the symmetric Kotz type distributions family, [21], as
N p

� .�; †/ D Km;r;s.�; †/ with m WD 1, r WD .� � 1/=� and s WD �=.2� � 2/.
It is worth noting that the introduced univariate � -order Normal N� .�; 
2/ WD

N 1
� .�; 
2/ coincides with the existent generalized normal distribution introduced

in [23], with density function

f .x/ D f .xI �; a; b/ WD b

2a	.1=b/
exp

n
� ˇ̌ x��

a

ˇ̌bo
; x 2 R;

where a D 
Œ�=.� � 1/�.��1/=� and b D �=.� � 1/, while the multivariate
case of the � -order Normal N p

� .�; †/ coincides with the existent multivariate
power exponential distribution PE p.�; †0; b/, as introduced in [10], where †0 D
22.��1/=� † and b WD 1

2
�=.� � 1/. See also [11, 22]. These existent generalizations

are technically obtained (involving an extra power parameter b) and there are not
resulting from a strong mathematical background, as the Logarithmic Sobolev
Inequalities offer. Moreover, they cannot provide application to the generalized
Fisher Information or entropy power, etc. as their form does not really contribute
to technical proofs we have already provided, see [15, 18, 20].
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Denote with E� the area of the p-ellipsoid Q� .x/ � 1, x 2 R
p. The family of

N p
� .�; †/, i.e. the family of the elliptically contoured � -order Normals, provides

a smooth bridging between the multivariate (and elliptically countered) Uniform,
Normal and Laplace r.v. U, Z and L, i.e. between U � U p.�; †/, Z � N p.�; †/

and Laplace L � L p.�; †/ r.v. as well as the multivariate degenerate Dirac
distributed r.v. D � Dp.�/ (with pole at the point �), with density functions

fU.x/ D fU.xI �; †/ WD
8
<

:

	. p
2

C 1/

�p=2
pjdet †j ; x 2 E� ;

0; x … E� ;

(24)

fZ.x/ D fZ.xI �; †/ WD 1

.2�/p=2
pjdet †j exp

˚� 1
2
Q� .x/

	
; x 2 Rp; (25)

fL.x/ D fL.xI �; †/ WD 	. p
2

C 1/

pŠ�p=2
pjdet †j exp

n
�
p

Q� .x/
o

; x 2 Rp; (26)

fD.x/ D fD.xI �/ WD
� C1; x D �;

0; x 2 Rp n �;
(27)

respectively, see [20]. That is, the N p
� family of distributions generalizes not only

the usual Normal but also two other significant distributions, as the Uniform and
Laplace ones. The above discussion is summarized in the following Theorem, [20].

Theorem 3. The elliptically contoured p-variate � -order Normal distribution
N p

� .�; †/ for order values of � D 0; 1; 2; ˙1 coincides with

N p
� .�; †/ D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

Dp.�/; for � D 0 and p D 1; 2;

0; for � D 0 and p � 3;

U p.�; †/; for � D 1;

N p.�; †/; for � D 2;

L p.�; †/; for � D ˙1:

(28)

Remark 1. Considering the above Theorem, the definition values of the shape
parameter � of N p

� distributions can be extended to include the limiting extra values
of � D 0; 1; ˙1, respectively, i.e. � can now be considered as a real number outside
the open interval .0; 1/. Particularly, when X� � N p

� .�; †/, � 2 Rn.0; 1/[f˙1g,
the r.v. X0, X1 � U p.�; †/ and X˙1 � L p.�; †/ can be defined as

X0 WD lim
�!0�

X� ; X1 WD lim
�!1C

X� ; X˙1 WD lim
�!˙1X� : (29)

Eventually, the Uniform, Normal, Laplace and also the degenerate distribution N p
0

(like the Dirac one for dimensions p D 1; 2) can be considered as members of the
“extended” N p

� , � 2 Rn.0; 1/[f˙1g, family of generalized Normal distributions.
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Notice also that N 1
1 .�; 
/ coincides with the known (continuous) Uniform

distribution U .��
; �C
/. Specifically, for every Uniform distribution expressed
with the usual notation U .a; b/, it holds that U .a; b/ D N 1

1 . aCb
2

; b�a
2

/ D
U 1.�; 
/. Also N2.�; 
2/ D N .�; 
2/, N˙1.�; 
2/ D L .�; 
/ and finally
N0.�; 
/ D D.�/. Therefore the following holds.

Corollary 1. For order values � D 0; 1; 2; ˙1, the univariate � -ordered Normal
distributions N 1

� .�; 
2/ coincides with the usual (univariate) degenerate Dirac
D.�/, Uniform U .� � 
; � C 
/, Normal N .�; 
2/, and Laplace L .�; 
/

distributions, respectively.

Recall now the cumulative distribution function (c.d.f.) ˆZ.z/ of the standardized
normally distributed Z � N .0; 1/, i.e.

ˆZ.z/ D 1
2

C 1
2

erf. z
2
/; z 2 R; (30)

with erf.�/ being the usual error function. For the c.d.f. of the N� family of
distributions the generalized error function Erf�=.��1/.�/ or the upper (or comple-
mentary) incomplete gamma function 	.�; �/ is involved, [12]. Indeed, the following
holds, [19].

Theorem 4. Let X be a � -order normally distributed r.v., i.e. X � N� .�; 
2/ with
p.d.f. f� . If FX is the c.d.f. of X and ˆZ the c.d.f. of the standardized Z D 1



.X ��/ �

N� .0; 1/, then

FX.x/ D ˆZ.
x��



/ D 1

2
C

p
�

2	.
��1

�
/	.

�

��1
/

Erf �
��1

n
.

��1

�
/

��1
�

x � �



o
(31)

D 1 � 1

2	.
��1

�
/
	



��1

�
;

��1

�



x � �




�
�

��1

�
; x 2 R: (32)

3.1 Shannon Entropy and Generalization

Applying the Shannon entropy on a � -order normally distributed random variable
we state and prove the following.

Theorem 5. The Shannon entropy of a random variable X � N p
� .�; †/, with p.d.f.

fX, is of the form

H.X/ D p ��1

�
� log Cp

� .†/ D p ��1

�
� log max fX: (33)
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Proof. From (22) and the definition (9) we obtain that the Shannon entropy of X is

H.X/ D � log Cp
� .†/ C Cp

� .†/
��1

�

Z

Rp

Q� .x/
�

2.��1/ exp
n
� ��1

�
Q� .x/

�
2.��1/

o
dx:

Applying the linear transformation z WD .x � �/T†�1=2 with dx D d.x � �/ Dpjdet †jdz, the H.X� / above is reduced to

H.X/ D � log Cp
� .†/ C Cp

� .Ip/
��1

�

Z

Rp

kzk �
��1 exp

n
� ��1

�
kzk �

��1

o
dz;

where Ip denotes the p � p identity matrix. Switching to hyperspherical coordinates,
we get

H.X/ D � log Cp
� .†/ C Cp

� .Ip/
��1

�
!p�1

Z

R
C

�
�

��1 exp
n
� ��1

�
�

�
��1

o
�p�1d�;

where !p�1 WD 2�p=2=	
� p

2

�
is the volume of the .p � 1/-sphere. Applying the

variable change du WD d.
��1

�
��=.��1// D �1=.��1/d� we obtain successively

H.X/ D � log Cp
� .†/ C Cp

� .Ip/!p�1

Z

R
C

ue�u�
.p�1/.��1/�1

��1 du

D log Cp
� .†/ � Cp

� .Ip/!p�1

Z

R
C

ue�u


�

�
��1

� .p�1/.��1/�1
�

du

D � log Cp
� .†/ C Cp

� .Ip/!p�1.
�

��1
/

p ��1
� �1

Z

R
C

up ��1
� e�udu

D � log Cp
� .†/ C p ��1

�
	.p ��1

�
/Cp

� .Ip/!p�1:

Finally, by substitution of the volume !p�1 and the normalizing factor Cp
� .†/ and

Cp
� .Ip/, as in (23), relation (33) is obtained. ut

We state and prove the following Theorem which provides the results for the
Shannon entropy of the elliptically contoured family of the N� distributions.

Theorem 6. The Shannon entropy for the multivariate and elliptically countered
Uniform, Normal, and Laplace distributed X (for � D 1; 2; ˙1, respectively), with
p.d.f. fX, as well as for the degenerate N0 distribution, is given by
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H.X/ D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂
ˆ̂̂
ˆ̂:

� log max fX D log
�p=2

pj det †j
	
� p

2
C 1

� ; for X � U p.�; †/;

p
2

� log max fX D log
p

.2�e/pj det †j; for X � N p.�; †/;

p � log max fX D log
pŠe�p=2

pj det †j
	
� p

2
C 1

� ; for X � L p.�; †/;

C1; for X � N p
0 .�; †/:

(34)

Proof. Applying Theorem 3 into (33) we obtain the first three branches of (34) for
� D 1 (in limit), � D 2 (normality), and � D ˙1 (in limit), respectively. Consider
now the limiting case of � D 0. We can write (33) in the form

H.X/ D log

�
�p=2

pj det †j
	. p

2
C 1/

� 	.pg C 1/

. g
e /pg

�
;

where g WD ��1

�
. We then have,

lim
�!0�

H.X/ D log

�
�p=2

pj det †j
	. p

2
C 1/

lim
kDpŒg�!1

pkkŠ

. k
e /k

�
; (35)

and using the Stirling’s asymptotic formula kŠ � p
2�k. k

e /k as k ! 1, (35) finally
implies

lim
�!0�

H.X/ D log

�p
2�j det †j �p=2

	. p
2

C 1/
lim

k!1pk
p

k

�
D C1;

which proves the Theorem. ut
Example 1. For the univariate case p D 1, we are reduced to

H.X/ D

8
ˆ̂ˆ̂<

ˆ̂ˆ̂:

� log max fX D log 2
; for X � N1.�; 
/ D U .� � 
; � C 
/;

1
2

� log max fX D log
p

2�e
; for X � N2.�; 
2/ D N .�; 
2/;

1 � log max fX D 1 C log 2
; for X � N
˙1

.�; 
/ D L .�; 
/;

C1; for X � N0.�; 
/ D D.�/:

Figure 1 below illustrates the univariate case of Theorem 5. The Shannon
entropy H.X� /, of an r.v. X� � N� .�; 
2/ is presented as a bivariate function of

 2 .0; 3� and � 2 Œ�10; 0/ [ Œ1; 10�, which forms the appeared surface (for
arbitrary � 2 R). The Shannon entropy values of Uniform (� D 1) and Normal
(� D 2) distributions are denoted (as curves), recall Example 1. Moreover, the
entropy values of the r.v. X˙10 � N˙10.�; 
2/, which approximates the Shannon
entropy of Laplace distributed r.v. X˙1 � L .�; 
/, as well as the entropy of the r.v.
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Fig. 1 Graph of all H.X� /, X� � N� .�; 
2/ across the 
.> 0/-semi-axis and �-axis

X�0:01 � N�0:01.�; 
2/ which approaches the degenerated Dirac r.v. X0 � D.�/,
are also depicted. One can also notice the logarithmic increase of H.X� / as 


increases (for every fixed � value), which holds due to the form of (33).
Due to the above proved Theorems, for the generalized Shannon entropy we

obtain the following results.

Proposition 2. The ˛-Shannon entropy H˛ of the multivariate X � N� .�; †/ is
given by

H˛.X/ D 2��˛

2�
p C p

2
log

8
<

:
2�. ˛�1

˛
/˛�1.

�

��1
/
˛

��1
�

"
	.p ��1

�
C 1/

	.p ˛�1
˛

C 1/

# ˛
p

j det †j ˛
2p

9
=

;
:

(36)

Moreover, in case of ˛ D � , we have

H� .X/ D p
2

log
n
2�ej det †j �

2p

o
: (37)

Proof. Substituting (12) and (33) into (16) we obtain

H˛.X/ D p
2

log
n
2�

2�˛
2 e

2��˛
� . ˛�1

˛
/˛�1

o
C

D ˛
2

log

�
�p=2.

�

��1
/

p ��1
�

	.p ��1

�
C 1/

	.p ˛�1
˛

C 1/

p
j det †j

�
;

and after some algebra we derive (36).
In case of ˛ D � we have H� .X/ D p

2
logf2�ej det †j�=.2p/g, i.e. (37) holds. ut



506 T.L. Toulias and C.P. Kitsos

Proposition 3. For a random variable X following the multivariate Uniform,
Normal, and Laplace distributions (� D 1; 2; ˙1, respectively), it is

H˛.X/ D
8
<

:

2�˛
2

p C h.†/; for X � U p.�; †/;

p C ˛
2

log
˚
.2=e/p=2	. p

2
C 1/

	C h.†/; for X � N p.�; †/;

p C p
2

log pŠ C h.†/; for X � L p.�; †/;
(38)

where

h.†/ WD ˛
2

log
n
.2�/p=˛. ˛�1

˛
/p ˛�1

˛ Œ	.p ˛�1
˛

C 1/��1
p

j det †j
o

; (39)

while for the limiting degenerate case of X � N p
0 .�; †/ we obtain

H˛.X/ D
�

.sgn ˛/.C1/; for ˛ ¤ 0;

p log
p

2�e; for ˛ D 0:
(40)

Proof. Recall (29) and let X� WD X. The ˛-Shannon entropy of r.v. X� , with
� D 1; ˙1, can be considered as

H˛.X1/ WD lim
�!1C

H˛.X� /; and H˛.X˙1/ WD lim
�!˙1H˛.X� /:

Hence, for order values � D 1 (in limit), � D 2 and � D ˙1 (in limit), we
derive (38).

Consider now the limiting case of � D 0. We can write (36) in the form

H˛.X� / D p
2
.2 � ˛ C �g/ C p

2
log

8
<

:
2�. g�1

g /˛�1g�g˛

"
	.pg C 1/

pj det †j
	.p ˛�1

˛
C 1/

# ˛
p

9
=

;

D log

8
<

:
.2�/p=2. ˛�1

˛
/p ˛�1

2

"
	.pg C 1/

. g
e /pg	.p ˛�1

˛
C 1/

# ˛
2

j det †j˛
9
=

;
;

where g WD ��1

�
. We then have,

H˛.X0/ WD lim
�!0�

H˛.X� / D log

8
<

:
.2�/p=2. ˛�1

˛ /p ˛�1
2

"

lim
kWDpŒg�!1

pkkŠ

. k
e /k

# ˛
2

j det †j˛
9
=

;
:

Using the Stirling’s asymptotic formula (similar as in Theorem 6), the above relation
for ˛ ¤ 0 implies
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H˛.X0/ D log

(

.2�/p=2. ˛�1
˛

/p ˛�1
2 j det †j˛

�
lim

k!1 pk
p

k

 ˛
2

)

D .sgn ˛/.C1/;

where sgn ˛ is the sign of parameter ˛, and hence the first branch of (40) holds. For
the limiting case of � D ˛ D 0, (37) implies the second branch of (40). ut

Notice that despite the rather complicated form of the H˛.X/ when ˛ ¤ � in
Proposition 2, the � -Shannon entropy of a � -order normally distributed X� has a
very compact expression, see (37), while in (36) varies both the shape parameter �

(to decide the distributions “fat tails” or not) and the parameter ˛ (of the Shannon
entropy) vary.

Recall now the known relation of the Shannon entropy of a normally distributed
random variable Z � N .�; †/, i.e. H.Z/ D 1

2
logf.2�e/pj det †jg. Therefore,

H� .X� /, where X� � N� .�; †/ generalizes H.Z/, or equivalently H2.X2/, pre-
serving the simple formulation for every � , as parameter � affects only the scale
matrix †.

Another interesting fact about H� .X� / is that, H0.X0/ D p
2

logf2�eg or H0.X0/ D
� p

4
log �, recall Corollary (40) and (25). According to (40) the Shannon entropy

diverges to C1 for the degenerated distribution N0. However, the 0-Shannon en-
tropy H0 (in limit), for an r.v. following N0, converges to log

p
2�e D � 1

2
log � �

1:4189, which is the same value as the Shannon entropy of the standardized nor-
mally distributed Z � N .0; 1/. Thus, the generalized Shannon entropy, introduced
already, can “handle” the degenerated N0 distribution in a more “coherent” way
than the usual Shannon entropy (i.e., not diverging to infinity).

We can mention also that (36) expresses the generalized ˛-Shannon entropy of
the multivariate Uniform, Normal, and Laplace distributions relative to each other.
For example (recall Corollary 3), the difference of these entropies between Uniform
and Laplace is independent of the same scale matrix †, i.e. H˛.X˙1/ � H˛.X1/ D
p
2
.˛ C log pŠ/, while for the usual Shannon entropy, H.X˙1/ � H.X1/ D p C

p
2

log pŠ, i.e. their Shannon entropies differ by a dimension-depending constant. The
difference ratio is then

H˛.X˙1/ � H˛.X1/

H.X˙1/ � H.X1/
D log.pŠe˛/

log.pŠe2/
:

3.2 Generalized Entropy Power

So far we have developed a generalized form for the Shannon entropy. We shall
now discuss and provide general results about the generalized entropy power. The
typical cases are presented in (46). Notice that, as N˛ and H˛ are related, some of
the proofs are consequences of this relation, see Proposition 4. The following holds
for different ˛ and � parameters.
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Proposition 4. The generalized entropy power N˛.X/ of the multivariate X� �
N p

� .�; †/ is given, for all defined parameters ˛; � 2 R n Œ0; 1�, by

N˛.X� / D �
˛�1
e˛

�˛�1
.

e�

��1
/
˛

��1
�

"
	.p ��1

�
C 1/

	
�
p ˛�1

˛
C 1

�

#˛=p

j det †j ˛
2p : (41)

Moreover, in case of ˛ D � 2 R n Œ0; 1�,

N� .X� / D j det †j �
2p : (42)

Proof. Substituting (33) into (11), we obtain (41) and (42). ut
Corollary 2. For the usual entropy power of the � -order normally distributed r.v.
X� � N p

� .�; †/, we have that

N.X� / D 1
2e .

e�

��1
/
2

��1
�

"
	.p ��1

�
C 1/

	
� p

2
C 1

�

#2=p

j det †j1=p; � 2 R n Œ0; 1�: (43)

For the multivariate Uniform, Normal, and Laplace distributions (� D 1; 2; ˙1,
respectively), as well as for the degenerate case of � D 0, it is

N.X/ D

8
ˆ̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂
ˆ̂:

j det †j1=p

2e	
� p

2
C 1

�2=p
; for X � U p.�; †/;

p
pj det †j; for X � N p.�; †/;

2
2�p

p e

"
.p � 1/Š

pj det †j
	.p=2/

#2=p

; for X � L p.�; †/;

C1; for X � N p
0 .�; †/:

(44)

Proof. For the normality parameter ˛ D 2, (43) is obtained from (41).
Recall (29) and let X� WD X. The usual entropy power of r.v. X� , with

� D 1; ˙1, can be considered as

N.X1/ WD lim
�!1C

N.X� / and N.X˙1/ WD lim
�!˙1N.X� /:

Hence, for order values � D 1 (in limit), � D 2 and � D ˙1 (in limit), we derive
the first three branches of (44).

Consider now the limiting case of � D 0. We can write (43) in the form

N.X� / D j det †j1=p

2e	
� p

2
C 1

�2=p
. e

g /2g	.pg C 1/2=p;
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where g WD ��1

�
. We then have

N.X0/ WD lim
�!0�

N.X� / D j det †j1=p

2e	
� p

2
C 1

�2=p
lim

kWDpŒg�!1 . ep
k /2k=p.kŠ/2=p:

Using the Stirling’s asymptotic formula (similar as in Theorem 6), the above relation
implies

N.X0/ D .2�j det †j/1=p

2e	
� p

2
C 1

�2=p
lim

k!1 p2k=pk1=p D C1;

and hence the last branch of (44) holds. ut
Example 2. For the univariate p D 1, (43) implies

N.X� / D 2
�e .

e�

��1
/
2

��1
� 	.

��1

�
C 1/2
2; (45)

and thus we derive from (44) that

N.X/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

b�a
�e ; for X � U .a; b/;


2; for X � N .�; 
2/;

2e

�

; for X � L .�; 
/;

C1; for X � D.�/:

(46)

Corollary 3. For the generalized entropy power of the multivariate Uniform,
Normal, and Laplace distributions (� D 1; 2; ˙1, respectively), it is

N˛.X/ D

8
ˆ̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

�
˛�1
e˛

�˛�1 j det †j ˛
2p

	
�
p ˛�1

˛
C 1

�˛=p
; for X � U p.�; †/;

�
˛�1
e˛

�˛�1
.2e/˛=2

"
	. p

2
C 1/

	
�
p ˛�1

˛
C 1

�

#˛=p

j det †j ˛
2p ; for X � N p.�; †/;

e
�

˛�1
˛

�˛�1

"
pŠ

	
�
p ˛�1

˛
C 1

�

#˛=p

j det †j ˛
2p ; for X � L p.�; †/;

(47)
while for the degenerate case of X � N p

0 .�; †/ we have

N˛.X/ D
(

C1; for ˛ > 1;

0; for ˛ < 0:
(48)
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Proof. Recall (29) and let X� � N� .�; †/. The generalized entropy power of r.v.
X� , with � D 1; ˙1, can be considered as

N˛.X1/ WD lim
�!1C

N˛.X� /; and N˛.X˙1/ WD lim
�!˙1N˛.X� /;

and hence, for order values � D 1 (in limit), � D 2 and � D ˙1 (in limit), we
derive (47).

Consider now the limiting case of � D 0. We can write (41) in the form

N˛.X� / D �
˛�1
e˛

�˛�1
. e

g /g˛

"
	.pg C 1/

	
�
p ˛�1

˛
C 1

�

#˛=p

j det †j ˛
2p ;

where g WD ��1

�
. We then have

N˛.X0/ WD lim
�!0�

N˛.X� / D
�

˛�1
e˛

�˛�1 j det †j ˛
2p

	
�
p ˛�1

˛
C 1

�˛=p
lim

kWDpŒg�!1 . ep
k /˛k=p.kŠ/˛=p:

Using the Stirling’s asymptotic formula, the above relation implies

N˛.X0/ D
�

˛�1
e˛

�˛�1 j det †j ˛
2p

	
�
p ˛�1

˛
C 1

�˛=p
lim

k!1 .2�p2k/˛k=.2p/ D
� C1; for ˛ > 1;

0; for ˛ < 0;

and hence (48) holds. ut
For the special cases ˛ D 0; 1; ˙1 of the parameter ˛ 2 R n Œ0; 1� of the

generalized entropy power, the following holds.

Proposition 5. The generalized entropy power N˛.X/, for the limiting values ˛ D
0; 1; ˙1, of the multivariate r.v. X� � N p

� .�; †/, for all shape parameter values
� 2 R n Œ0; 1�, is given by

N0.X� / D p; (49)

N1.X� / D .
e�

��1
/

��1
� 	.p ��1

�
C 1/

1
p j det †j 1

2p ; (50)

NC1.X� / D
(

C1; for j det †j > S2
� ;

0; for j det †j < S2
� ;

(51)

N�1.X� / D
(

C1; for j det †j < S2
� ;

0; for j det †j > S2
� ;

(52)
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where

S� WD
eppŠ.

��1

e�
/

p ��1
�

	.p ��1

�
C 1/

: (53)

Proof. For the limiting value ˛ D 0, we can consider

N0.X� / WD lim
˛!0�

N˛.X� /;

which can be written, through (41), into the form

N0.X� / D lim
ˇ!C1.

ˇ

e /
ˇ

1�ˇ

"
	.p ��1

�
C 1/

	.pˇ C 1/

# 1
p.1�ˇ/

j det †j 1
2p.1�ˇ/ ;

where ˇ WD ˛�1
˛

, or

N0.X� / D lim
kWDpŒˇ�!1. k

pe /
k

p�k

"
	.p ��1

�
C 1/

kŠ

# 1
p�k

j det †j 1
2.p�k/ :

Applying the Stirling’s asymptotic formula for kŠ, the above relation implies

N0.X� / D lim
k!1

"
	.p ��1

�
C 1/

pj det †j
pk

p
2�k

# 1
p�k

D lim
k!1 p

k
k�p k

1
2.k�p/ D p � 1 D p;

and therefore, (49) holds due to the fact that

lim
k!1k

1
2.k�p/ D exp

�
1
2

lim
k!1

log k

k � p

�
D e0 D 1: (54)

For the limiting value ˛ D 1, we can consider

N1.X� / WD lim
˛!1C

N˛.X� /;

and thus (50) hold, through (41).
For the limiting value ˛ D ˙1, we can consider

N˙1.X� / WD lim
˛!˙1N˛.X� / D lim

˛!˙1

"
A.†/

	.p ˛�1
˛

C 1/

#˛=p

; (55)
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where

A.†/ WD e�p.
e�

��1
/

p ��1
� 	.p ��1

�
C 1/

p
j det †j; (56)

due to (41) and the fact that lim˛!˙1Œ.˛ � 1/=˛�˛�1 D e�1. Moreover, 	.p ˛�1
˛C 1/ ! pŠ as ˛ ! ˙1, and thus, from (55) we obtain (51) and (52). ut

Corollary 2 presents the usual entropy power N.X/ D N˛D2.X/ when X follows
a Uniform, Normal, Laplace, or a degenerated (N0) random variable. The following
Proposition investigates the limiting cases of N˛D0;1;˙1.X/, as it provides results
for applications working with “extreme-tailed” distributions. Notice the essential
use of the quantity S2, as in (65), for the determinant of the distributions’ scale
matrix †, that alters the behavior of the extreme case of N˙1.

Proposition 6. For the multivariate Uniform, Normal, and Laplace distributions,
i.e. N�D1;2;˙1, as well as for the degenerate N�D0, the “limiting values” of the
generalized entropy power N˛D0;1;˙1, are given by

N0.X/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

p; for X � U p.�; †/;

p; for X � N p.�; †/;

p; for X � L p.�; †/;

1; for X � N p
0 .�; †/;

(57)

N1.X/ D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

j det †j 1
2p ; for X � U p.�; †/;

p
2e	. p

2
C 1/1=pj det †j 1

2p ; for X � N p.�; †/;

e.pŠ/1=pj det †j 1
2p ; for X � L p.�; †/;

C1; for X � N p
0 .�; †/;

(58)

NC1.X/ D
(

C1; for j det †j > .eppŠ/2;

0; for j det †j < .eppŠ/2;
and X � U p.�; †/; (59)

N�1.X/ D
(

C1; for j det †j < .eppŠ/2;

0; for j det †j > .eppŠ/2;
and X � U p.�; †/; (60)

NC1.X/ D
(

C1; for j det †j > S2
2;

0; for j det †j < S2
2;

and X � N p.�; †/; (61)

N�1.X/ D
(

C1; for j det †j < S2
2;

0; for j det †j > S2;
and X � N p.�; †/; (62)
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NC1.X/ D
(

C1; for j det †j > 1;

0; for j det †j < 1;
and X � L p.�; †/; (63)

N�1.X/ D
(

C1; for j det †j < 1;

0; for j det †j > 1;
and X � L p.�; †/; (64)

where

S2 WD eppŠ

.2e/p=2	. p
2

C 1/
: (65)

Proof. For the limiting value ˛ D 1, the first three branches of (58) holds,
through (47). Moreover, for the degenerate case of N�D0, we consider N1.X0/ WD
lim�!0� N1.X� /, with X� � N� .�; †/, i.e.

N1.X0/ D lim
g!C1. e

g /g	.pg C 1/
1
p j det †j 1

2p ;

where g WD ��1

�
. Then,

N1.X0/ D lim
kWDpŒg�!1. ep

k /k=p.kŠ/
1
p j det †j 1

2p :

Applying the Stirling’s asymptotic formula of kŠ, the above relation implies

N1.X0/ D lim
k!1pk=p.2�kj det †j/ 1

2p D C1;

and thus (58) holds.
For the limiting value ˛ D ˙1 and X � N1.�; †/ D U p.�; †/, we consider

N˙1.X/ WD lim˛!˙1 N˛.X/, i.e.

N˙1.X/ D lim
˛!˙1

" pj det †j
ep	.p ˛�1

˛
C 1/

#˛=p

; (66)

from (47). Moreover, 	.p ˛�1
˛

C 1/ ! pŠ as ˛ ! ˙1, and thus, from (66), we
obtain (59) and (60)

For the limiting value ˛ D ˙1 and X � N2.�; †/ D N p.�; †/, relations (61)
and (62) hold due to (51) and (52), where S2 as in (53) with � D 2.

For the limiting value ˛ D ˙1 and X � N˙1.�; †/ D L p.�; †/,
relations (63) and (64) hold due to (42) with � ! ˙1.

For the limiting value ˛ D 0 and X � N1.�; †/ D U p.�; †/ we consider
N0.X/ WD lim˛!0� N˛.X/ which can be written, through the first branch of (47),
into the form
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N0.X/ D lim
ˇ!C1

.
ˇ

e /
ˇ

1�ˇ

	.pˇ C 1/
1

p.1�ˇ/

j det †j 1
2p.1�ˇ/ ;

where ˇ WD ˛�1
˛

, or

N0.X/ D lim
kWDpŒˇ�!1. k

pe /
k

p�k .kŠ/
1

k�p j det †j 1
2.p�k/ :

Applying the Stirling’s asymptotic formula for kŠ, the above relation implies

N0.X/ D lim
k!1

 pj det †j
pk

p
2�k

! 1
p�k

D lim
k!1 p

k
k�p k

1
2.k�p/ D p � 1 D p;

and therefore the first branch of (57) holds due to (54).
For the limiting value ˛ D 0 and X � N2.�; †/ D N p.�; †/, the second

branch of (57) holds due to (49).
For the limiting value ˛ D 0 and X � N˙1.�; †/ D L p.�; †/ we consider

N0.X/ WD lim˛!0� N˛.X/ which can be written, through the last branch of (47),
into the form

N0.X/ D lim
ˇ!C1 .

ˇ

e /
ˇ

1�ˇ

�
pŠ

	.pˇ C 1/

� 1
p.1�ˇ/

j det †j 1
2p.1�ˇ/ ;

or

N0.X/ D lim
kWDpŒˇ�!1. k

pe /
k

p�k . pŠ

kŠ
/

1
p�k j det †j 1

2.p�k/ :

Applying, again, the Stirling’s asymptotic formula for kŠ, the above relation implies

N0.X/ D lim
k!1

 
pŠ
pj det †j
pk

p
2�k

! 1
p�k

D lim
k!1 p

k
k�p k

1
2.k�p/ D p � 1 D p;

and therefore the third branch of (57) holds due to (54).
For the limiting value ˛ D 0 and X � N0.�; †/, the last branch of (57) holds

due to (42) with � ! 0�. ut
Recall Proposition 5 where � 2 R n Œ0; 1�. For the limiting extra values of

� D 1 (Uniform case), � D ˙1 (Laplace case), and � D 0 (degenerate case),
the results (50)–(52) still hold in limit, see (58) and from (59) to (64). Therefore, the
relations (50)–(52) hold for all shape parameters � taking values over its “extended”
domain, i.e. � 2 R n .0; 1/ [ f˙1g. However, from (49) and (57), it holds that
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Fig. 2 Graphs of N˛.X� / along ˛, for various � values, where X� � N� .0; 1/

Fig. 3 Graphs of N˛.X� / along ˛, for various � values, where X� � N� .0; 0:8/ (left-side) and
X� � N� .0; 1:5/ (right-side)

N0.X� / D
(

p; for � 2 R n Œ0; 1/ [ f˙1g;
1; for � D 0:

(67)

while for the univariate case, the generalized entropy power N0, as in (67), is always
unity for all the members of the “extended” � -order Normal distribution’s family,
i.e. N0.X� / D 1 with � 2 R n .0; 1/ [ f˙1g.

Figure 2 presents the generalized entropy power N˛.X� / as a function of its
parameter ˛ 2 R n Œ0; 1� for various X� � N� .0; 1/ random variables, with the
special cases of Uniform (� D 1), Normal (� D 2), and Laplace (� D ˙1) r.v.
being denoted. Figure 3 depicts the cases of X� � N� .0; 
2/ with 
 < 1 (left
sub-Figure) and 
 > 1 (right sub-Figure).
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3.3 Rényi Entropy

We discuss now the Rényi entropy, another significant entropy measure which also
generalizes Shannon entropy, and can be best introduced through the concept of
generalized random variables. These variables extend the usual notion of a random
experiment that cannot always be observed. See for details the Rényi’s original work
in [25] and [26].

See [5]. For a p-variate continuous random variable, with p.d.f. fX , the Rényi
entropy R˛.X/ is defined, through the ˛-norm k � k˛ on L ˛.Rp/, by

R˛.X/ WD � ˛
˛�1

log kfXk˛ D 1
1�˛

log
Z

Rp

jfX.x/j˛dx; (68)

with ˛ 2 R�C n 1, i.e. 0 < ˛ ¤ 1. For the limiting case of ˛ D 1 the Rényi entropy
converges to the usual Shannon entropy H.X/ as in (9). Notice that we use the minus
sign for R˛ to be in accordance with the definition of (9), where we reject the usual
minus sign of the Shannon entropy definition.

Considering now an r.v. from the N p
� family of the generalized Normal

distributions, the following Theorem provides a general result to calculate the Rényi
entropy for different ˛ and � parameters.

Theorem 7. For the elliptically contoured � -order normally distributed r.v. X� �
N p

� .�; †/, with p.d.f. fX� , the Rényi R˛ entropy of X� is given by

R˛.X� / D p ��1

�.˛�1/
log ˛ � log Cp

� .†/ D p ��1

�.˛�1/
log ˛ � log max fX� ; (69)

for all the defined parameters ˛ 2 R�C n f1g and � 2 R n Œ0; 1�.

Proof. Consider the p.d.f. fX� as in (22). From the definition (68) it is

R˛.X� / D ˛
1�˛ log Cp

� .†/ C 1
1�˛ log

Z

Rp

exp

�
� ˛.��1/

�

h
.x � �/†�1.x � �/T

i �
2.��1/

�
dx:

Applying the linear transformation z D .x � �/†�1=2 with dx D d.x � �/ Dpjdet †jdz, the R˛ above is reduced to

R˛.X� / D ˛
1�˛

log Cp
� .†/ C 1

1�˛
log

Z

Rp

exp
n
� ˛.��1/

�
kzk �

��1

o
dz:

Switching to hyperspherical coordinates, we get

R˛.X� / D ˛
1�˛

log
n
Cp

� .†/!
1=˛
p�1

o
C 1

1�˛
log

Z

R
C

exp
n
� ˛.��1/

�
�

�
��1

o
�p�1d�;
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where !p�1 D 2�p=2=	
� p

2

�
is the volume of the .p � 1/-sphere. Assuming du WD

d.
��1

�
��=.��1// D �1=.��1/d� we obtain successively

R˛.X� / D ˛
1�˛

log M.†/ C 1
1�˛

log
Z

R
C

e�˛u�
.p�1/.��1/�1

��1 du

D ˛
˛�1

log M.†/ C 1
1�˛

log
Z

R
C

e�˛u


�

�
��1

� .p�1/.��1/�1
�

du

D ˛
1�˛

log M.†/ C 1
1�˛

log.
�

��1
/

p ��1
� �1 C 1

1�˛
log

Z

R
C

e�˛uup ��1
� �1du

D ˛
1�˛

log M.†/ C 1
1�˛

log.
�

��1
/

p ��1
� �1 � p ��1

�
� log ˛

1�˛
C 1

1�˛
log 	.p ��1

�
/;

where M.†/ WD Cp
� .†/!

1=˛
p�1. Finally, by substitution of the volume !p�1 we obtain,

through the normalizing factor Cp
� .†/ as in (23),

R˛.X� / D � ˛
˛�1

log Cp
� .†/ C 1

˛�1
log Cp

� .†/ C p ��1

�
� log ˛

˛�1
;

and thus (69) holds true. ut
For the limiting parameter values ˛ D 0; 1; C1 we obtain a number of results

for other well-known measures of entropy, applicable to Cryptography, as the
Hartley entropy, the Shannon entropy, and min-entropy, respectively, while for
˛ D 2 the collision entropy is obtained. Therefore, from Theorem 7, we have the
following.

Corollary 4. For the special cases of ˛ D 0; 1; 2; C1, the Rényi entropy of the
elliptically contoured r.v. X� � N� .�; †/ is reduced to

R˛.X� / D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

C1; for ˛ D 0; .Hartley entropy/

p ��1

�
� log max fX� ; for ˛ D 1; .Shannon entropy/

p ��1

�
log 2 � log max fX� ; for ˛ D 2; .collision entropy/

� log max fX� ; for ˛ D C1; .min-entropy/
(70)

where max fX� D Cp
� .†/.

The Rényi entropy R˛.X� /, as in (69), is a decreasing function of parameter ˛ 2
R�C n f1g, and hence

RC1.X� / < R2.X� / < R1.X� / < R0.X� /; � 2 R n Œ0; 1�;

while

min
0<˛¤1

fR˛.X� /g D RC1.X� / D � log max fX� D � log Cp
� .†/:
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Corollary 5. The Rényi entropy R˛ of the multivariate and elliptically contoured
Uniform random variable X � U .�; †/ is ˛-invariant, as R˛.X/ equals to the
logarithm of the volume !.E� / of the .p � 1/-ellipsoid E� W Q� .x/ D 1, x 2 R

p, in
which the p.d.f. of the elliptically contoured Uniform r.v. X is actually defined, i.e.

R˛.X/ D log !.E� / D log
�p=2j det †j�1=2

	. p
2

C 1/
; ˛ 2 R�C n f1g; (71)

while for the univariate case of X � U .a; b/ it is reduced to

R˛.X/ D log.b � a/; ˛ 2 R�C n f1g:

Proof. Recall (29) and let X� � N� .�; †/. Then, the Rényi entropy of the
uniformly r.v. X can be considered as R˛.X/ WD lim�!1C

R˛.X� / and therefore,
from (69), we obtain (71). ut

Notice, from the above Corollary 5, that the Hartley, Shannon, collision, and
min-entropy of a multivariate uniformly distributed r.v. coincide with log !.E� /.

Corollary 6. For the multivariate Laplace random variable X � L .�; †/, the
Rényi entropy is given by

R˛.X/ D p log ˛

˛�1
C L.S/; (72)

and the Hartley, Shannon, collision, and the min-entropy are then given by

R˛.X/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

C1; for ˛ D 0; .Hartley entropy/

p C L.†/; for ˛ D 1; .Shannon entropy/

p log 2 C L.†/; for ˛ D 2; .collision entropy/

L.†/; for ˛ D C1; .min-entropy/

(73)

where L.†/ WD logfpŠ�p=2j det †j1=2	. p
2

C 1/�1g.

Proof. Recall (29) and let X� � N� .�; †/. Then, the Rényi entropy of the Laplace
r.v. X can be considered as R˛.X/ WD lim�!˙1 R˛.X� / and therefore, from (69),
we obtain (72), while through (70), relation (73) is finally derived. ut

Relations (71) and (72) below provide a general compact form of Rényi entropy
R˛ (for the Uniform and Laplace r.v.) and can be compared with the ˛-Shannon
entropy H˛ (for the such r.v.), as in (38).
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3.4 Generalized Fisher’s Entropy Type Information

As far as the generalized Fisher’s entropy type information measure J˛.X� / is
concerned, for the multivariate and spherically contoured r.v. X� � N p

� .�; 
2Ip/, it
holds, [18],

J˛.X� / D .
�

��1
/

˛
�

	



˛Cp.��1/

�

�


˛	



p ��1

�

� : (74)

More general, the following holds [19].

Theorem 8. The generalized Fisher’s entropy type information J˛ of a � -order
normally distributed r.v. X� � N p

� .�; †/, where † is a definite positive real matrix
consisted of orthogonal vectors (matrix columns) with the same norm, is given by

J˛.X� / D
.

�

��1
/

˛
� 	



˛Cp.��1/

�

�

j det †j ˛
2p 	.p ��1

�
/

: (75)

Therefore, for the spherically contoured case, (74) holds indeed, through
Theorem 8.

Corollary 7. The generalized Fisher’s information J˛ of a spherically contoured
r.v. X� � N p

� .�; 
2Ip/, with ˛=� 2 N�, is reduced to

J˛.X� / D 
�˛.� � 1/�˛�

˛=�Y

kD1

f˛ � p C .p � k/�g; ˛; � > 1:

Proof. From (74) and the gamma function additive identity, i.e. 	.x C 1/ D x	.x/,
x 2 R�C, relation (7) holds

3.5 Kullback–Leibler Divergence

As far as the information “discrimination” or “distance” is concerned between
two N� r.v., the Kullback–Leibler (K–L) measure of information divergence (also
known as relative entropy) is evaluated. Recall the K–L divergence DKL.X; Y/

defined in Sect. 1. Specifically, for two multivariate � -order normally distributed
r.v. with the same mean and shape, i.e. Xi 2 N� .�i; 
2

i Ip/, i D 1; 2, with �1 D �2,
the K–L divergence of X1 over X2 is given by, [16],

DKL.X1; X2/ D p log 
2


1
� p.

��1

�
/
h
1 � . 
1


2
/

�
��1

i
; (76)
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while for �1 ¤ �2 and � D 2,

DKL.X1; X2/ D p
2

h

log 
2

2


2
1

�
� 1 C 
2

1


2
2

C k�1��0k2

p
2
2

i
:

Moreover, from (76), the K–L divergence between two uniformly distributed r.v.
U1; U2 2 U p.�; 
2

i Ip/, i D 1; 2, is given by,

DKL.U1; U2/ D lim
�!1C

DKL.X1; X2/ D
(

p log 
2


1
; 
1 > 
2;

C1; 
1 < 
2;

while the K–L divergence between two Laplace distributed r.v. L1; L2 2
L p.�; 
2

i Ip/, i D 1; 2, is given by

DKL.L1; L2/ D lim
�!C˙1DKL.X1; X2/ D p



log 
2


1
� 1 C 
1


2

�
:

We have already discussed all the well-known entropy type measures and new
generalized results have been obtained. We now approach the notion of complexity
from a new generalized point of view, as discussed below.

4 Complexity and the Generalized Gaussian

The entropy of a continuous system is defined over a random variable X as the
expected value of the information content, say I.X/, of X, i.e. H.X/ WD EŒI.X/�. For
the usual Shannon entropy (or differential entropy) case, the information content
I.X/ D log fX is adopted, where fX is the p.d.f. of the r.v. X.

In principle, the entropy can be considered as a measure of the “disorder” of
a system. However in applied sciences, the normalized Shannon entropy H� D
H= max H is usually considered as a measure of “disorder” because H� is indepen-
dent of all various states that the system can adopt, [24]. Respectively, the quantity
˝ D 1�H� is considered as a measure of “order”. For the estimation of “disorder,”
information measures play a fundamental role on describing the inner-state or the
complexity of a system, see [27] among others. We believe that concepts are useful
in Cryptography.

A quantitative measure of complexity with the simplest possible expression is
considered to be the “order–disorder” product K!;h given by

K!;h D ˝!H�h D H�h.1 � H�/! D ˝!.1 � ˝/h; !; h 2 RC: (77)

This is usually called as simple complexity with “order” power ! and “disorder”
power h.
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The above measure K!;h, !; h � 1, satisfies the three basic rules of complexity
measures. Specifically, we distinguish the following cases:

Rule 1. Vanishing “order” power, ! D 0. Then K!;h D .H�/h, i.e. K0;h is an
increasing function of the system’s “disorder” H.

Rule 2. Non-vanishing “order” and “disorder” powers, !; h > 0. Then for
“absolute-ordered” or “absolute-disordered” systems the complexity vanishes.
Moreover, it adopts a maximum value (with respect to H�) for an intermediate
state H� D h=.! C h/ or  D !=.! C h/, with maxH�fK!;hg D hh!!.! C
h/!Ch. In other words the “absolute-complexity” systems are such that their
“order” and “disorder” are “balanced,” hence H� D h=.! C h/.

Rule 3. Vanishing “disorder” power, h D 0. Then K!;h D ˝! , i.e. K!;0 is an
increasing function of the system’s “order” ˝.

The Shiner–Davison–Landsberg (SDL) measure of complexity KSDL is an
important measure in bio-sciences that satisfies the second rule as it is defined
by, [29],

KSDL D 4K1;1 D 4H�.1 � H�/ D 4˝.1 � ˝/: (78)

It is important to mention that all the systems with the same degree of “disorder”
have the same degree of SDL complexity. Moreover, SDL complexity vanishes
for all systems in an equilibrium state and therefore it cannot distinguish between
systems with major structural and organizing differences, see also [7, 27].

Now, consider the evaluation of the SDL complexity in a system where its various
states are described by a wide range of distributions, such as the univariate � -ordered
Normal distributions. In such a case we may consider the normalized Shannon
entropy H�.X� / WD H.X� /=H.Z/ where X� � N� .�; 
2/ as in (22), and we let
Z � N .�; 
2

Z/ with 
2
Z D Var Z. That is, we adopt for the maximum entropy,

with respect to X� � N� , the Shannon entropy of a normally distributed Z with
its variance 
2

Z being equal to the variance of X� . This is due to the fact that the
Normal distribution (included also into the N� .�; 
2/ family for � D 2) provides
the maximum entropy of every distribution (here N� ) for equally given variances,
i.e. 
2

Z D Var Z D Var X� . Hence, max� fH.X� /g D H.X2/ D H.Z/.
The use of the above normalized Shannon entropy defines a complexity measure

that “characterizes” the family of the � -ordered Normal distributions as it is
obtained in the following Theorem, [17].

Theorem 9. The SDL complexity of a random variable X� � N� .�; 
2/ is given by

KSDL.X� / D 8
log

n
2
.

�e
��1

/
��1

� 	.
��1

�
C 1/

o

log2

�
2�e
2.

�

��1
/
2

��1
�

	.3
��1

� /

	.
��1

� /

� log

(
�
2

e
2��

� .
�

��1
/2

	.3
��1

�
/

	3.
��1

�
/

)

;
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Fig. 4 Graphs of the SDL complexity KSDL.X� / along � , with X� � N� .�; 
2/, for various 
2

values. (a) corresponds to 
 � 1 while (b) to 
2 < 1 values

which vanishes (giving the “absolute-order” or “absolute-disorder” state of a
system) for: (a) the normally distributed r.v. X2, and (b) for scale parameters


 D 1
2
.

��1

�e /
��1

� Œ	.
��1

�
C 1/��1:

Figure 4 illustrates the behavior of the SDL complexity KSDL.X� / with X� �
N� .�; 
2/ for various scale parameters 
2. Notice that, for 
2 > 1, depicted in
sub-figure (a), the negative-ordered Normals close to 0, i.e. close to the degenerate
Dirac distribution (recall Theorem 3), provide the “absolute-complexity” state, i.e.
KSDL.X� / D 1, of a system, in which their different states described from the � -
ordered Normal distributions. The sub-figure (a) is obtained for 
2 � 1, while (b)
for 
2 < 1. Notice, in sub-figure (b), that among all the positive-ordered random
variables X� � N��0.�; 
2/ with 
2 < 1, the uniformly distributed ones � D 1

provide the maximum (but not the absolute) 2-SDL complexity measure.

5 Discussion

In this paper we have provided a concise presentation of a class of generalized
Fisher’s entropy type information measures, as well as entropy measures, that extend
the usual Shannon entropy, such as the ˛-Shannon entropy and the Rényi entropy.
A number of results were stated and proved, and the well-known results were just
special cases. These extensions were based on an extra parameter. In the generalized
Normal distribution the extra shape parameter � adjusts fat, or not, tails, while
the extra parameter ˛ of the generalized Fisher’s entropy type information, or of
the generalized entropy, adjusts “optimistic” information measures to better levels.
Under this line of thought we approached other entropy type measures as special
cases. We believe that these generalizations need further investigation using real
data in Cryptography and in other fields. Therefore, these measures were applied on
� -order normally distributed random variables (an exponential-power generalization
of the usual Normal distribution) and discussed. A study on a certain form of
complexity is also discussed for such random variables.
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