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Series Preface

Applications and modelling and their learning and teaching in schools and univer-

sities have become a prominent topic in the last decades in view of the growing

worldwide relevance of the usage of mathematics in science, technology and

everyday life. However, although there is consensus that modelling should play

an important role in mathematics education, the situation in schools and universities

is less than ideal in many educational jurisdictions. Given the worldwide impending

shortage of students who are interested in mathematics and science, it is essential to

discuss possible changes of mathematics education in school and tertiary education

towards the inclusion of real-world examples and the competencies to use mathe-

matics to solve real-world problems.

This innovative book series International Perspectives on the Teaching and
Learning of Mathematical Modelling established by Springer aims at promoting

academic discussion on the teaching and learning of mathematical modelling at

various educational levels all over the world. The series will publish books from

different theoretical perspectives from around the world dealing with Teaching and

Learning of Mathematical Modelling in Schooling and at tertiary level. This series

will also enable the International Community of Teachers of Mathematical Model-
ling and Applications (ICTMA), an International Commission on Mathematical

Instruction-affiliated study group, to publish books arising from its biennial con-

ference series. ICTMA is a unique worldwide group where not only mathematics

educators dealing with education at school level are included but also applied

mathematicians interested in teaching and learning modelling at tertiary level are

represented. Three of these books published by Springer have already appeared.

The planned books will display the worldwide state of the art in this field, most

recent educational research results and new theoretical developments and will be of

interest for a wide audience. Themes dealt with in the books will be teaching and

learning of mathematical modelling in schooling and at tertiary level including the

usage of technology in modelling; psychological, social and cultural aspects of

modelling and its teaching; modelling competencies; curricular aspects; modelling

v



examples and courses; teacher education; and teacher education courses. The book

series aims to support the discussion on mathematical modelling and its teaching

internationally and will promote the teaching and learning of mathematical model-

ling and research of this field all over the world in schools and universities.

The series is supported by an editorial board of internationally well-known

scholars, who bring their long experience in the field as well as their expertise

to this series. The members of the editorial board are Maria Salett Biembengut

(Brazil), Werner Blum (Germany), Helen Doerr (USA), Peter Galbraith (Australia),

Toshikazu Ikeda (Japan), Mogens Niss (Denmark) and Jinxing Xie (China).

We hope this book series will inspire readers in the present and the future to

promote the teaching and learning of mathematical modelling all over the world.

Ballarat, Australia Gloria Ann Stillman

Hamburg, Germany Gabriele Kaiser
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Chapter 1

Cultural, Social, Cognitive and Research
Influences on Mathematical Modelling
Education

Gloria Ann Stillman, Werner Blum, and Maria Salett Biembengut

Abstract This contribution from the ICTMA community on the latest in research

and teaching ideas in the area of mathematical modelling and applications educa-

tion differs from previous volumes in that there is a much stronger emphasis on

social and cultural influences on modelling education because of the location of the

preceding conference in Brazil. However, another point of difference is the number

of chapters that are influenced by cognitive perspectives as there are strong research

teams taking this perspective internationally. This chapter situates the work in this

volume within the field which has led to much research and evaluative studies in the

last decade.

1.1 Introduction

According to Niss (2001), the majority of activity in the applications and modelling

field in mathematics education was ‘proto-research’ up until the 1990s. Even in the
decade from 1990 to 2000, he identified only 50 papers that he considered were

genuine research. However, the next decade saw more consolidation of the field as

the ICMI study was held and the post conference volume (Blum et al. 2007)
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published. Since that time there has been an increasing number of research studies

carried out and quite some diversification of the field. There has been, for example,

an increase in the studies that take a cognitive perspective. The publication of this

volume following ICTMA 16 in Brazil in 2013 is expected to not only add to this

rich research output but also possibly stimulate new lines of inquiry. We hope that it

will contribute to inspiring more research into social and cultural influences in the

future.

Niss et al. (2007) noted as one imperative of the field of modelling and appli-

cations education the articulation of its relationship to the world we live in. This is

in pursuit of the goal of “linking of the field of mathematics with some aspects of

the world, with the purpose of enhancing knowledge, but also ensuring or advanc-

ing the sustainability of health, education and environmental well-being, and the

reduction of poverty and disadvantage” (pp. 17–18). Others have attempted to look

critically at the role of applications of mathematics and mathematical modelling

itself in society. Such sentiments are in keeping with development during education

of what is called a socio-critical competency that emphasises the social/political

context of modelling (Stillman et al. 2013). It is a feature of this volume that several

authors take this emphasis in their work (e.g., Luna, Souza and Lima and Villarreal,

Esteley and Smith). Within this context this edited collection represents the current

state of thinking and research in this diverse international community distilled and

synthesised after the biennial conference. However, it is important that any

published contributions stimulated by the conference be connected to the

on-going body of research and scholarship in this field as well as previous outputs

from the community (e.g., Kaiser et al. 2011; Lesh et al. 2010; Stillman et al. 2013).

In this chapter we attempt a first pass on this task.

1.2 Innovative Practices in Modelling Education Research
and Teaching

Many issues related to the successful solution of real world tasks and problems

through mathematical modelling have been identified for some time now in the

international literature (see Blum et al. 2007; Niss 2001, for an overview). It seems

that in order to resolve these issues we need innovative methods and practices in

research into modelling education as well as innovative pedagogical practices.

Innovative research methods give us new tools to prise open old problems in

order to look at these in a new light. At the same time, innovative classroom

practices could bring more teachers into the fold who are able to realise the

espoused potential benefits of modelling for students in allowing them to utilise

mathematics as a means of “experiencing the world” (Chapman 2009).

A unique Latin American perspective to modelling is brought by the work of Ubi

D’Ambrosio. In his chapter he discusses how knowledge is generated (i.e., cogni-

tion), how it is individually and socially organised (i.e., epistemology) and how it is

2 G.A. Stillman et al.



confiscated by power structures, institutionalised and given back to the people who

generated it through filters (i.e., politics). How knowledge is built up by individuals

and within societal groups is examined. “The full cycle of knowledge includes its

generation, individually and socially, its organisation, its expropriation, institution-

alization, transmission and diffusion, through systems of education and different

forms of filters (such as examinations, degrees, certifications)” (p. 42). Mathematical

modelling is seen as a strategy for building up systems of knowledge in different

cultural environments. To this end, mathematical modelling allows humans to under-

stand, to explain and to cope with selected facts and phenomena of reality and ideally

reality as a whole. Our natural limitations as human beings restrict our access to only

selected facts and phenomena (cf Skovsmose 1994). Modelling, by its iterative

nature, “allows a better understanding of the selected facts and phenomena of reality,

which is the goal that justifies our practices as scientists” (p. 44).

The meaning assigned by students to the problem studied in mathematical

modelling activities is considered by Almeida and Silva who adopt a Peircean

semiotic (see Sebeok 1991) approach, where meaning is associated with

interpretants produced by the students during activity development. The authors

highlight the meaning attributed by students to elements of the problem when they

attempt modelling activities, through analysing their actions constituted in signs

used to suggest and represent the object being dealt with. Thus, Almeida and Silva

contend a method to understand the meaning assigned to a problem is to analyse the

interpretants of the students during the resolution of that problem as well as what is

said about the problem after the signs are generated. A case study of one student’s
actions as his group attempts to model tree pruning so as to optimise street lighting

is reported to explain this idea in detail. Analyses of the case reveal that familiarity

with the real problem for the student and an intention to make meaning from a

reference were critical. Almeida and Silva conclude that even though the problem is

defined early in the development of a modelling activity, the assignment of meaning

is consolidated throughout to the extent that the student defines, interprets and

validates a solution. Thus modellers who are successful do not lose sight of the

referents that make it meaningful for them in the real world (Nunes et al. 1993;

Stillman 2000).

The Models and Modelling Perspective (MMP) (Lesh and Doerr 2003; Lesh and

English 2005) for both teaching and researching modelling is now over 30 years

old. Brady, Lesh and Sevis describe an innovative research effort to expand the

reach of the MMP tradition, engaging questions about the interconnected models

and modelling processes of students and teachers at larger, course-length scales.

New tools (e.g., Learning Progress Maps and Concept Analysis Wheels) are

discussed as well as new directions. Learning progressions using the metaphor of

finding your way around a terrain or an evolutionary model are highlighted as

possible new research ideas. In addition, further work on the idea of teaching

problem solving and heuristics is mooted but reconceptualised within the MMP

tradition.

Niss in his contribution makes a distinction between two kinds of mathematical

modelling purposes and related modelling endeavours, descriptive modelling and

1 Cultural, Social, Cognitive and Research Influences on Mathematical. . . 3



prescriptive modelling. In descriptive modelling attempts are made to capture and

come to grips with, and perhaps eventually act in, some extra-mathematical domain

in the real world, in a field of practice or in an academic discipline. The processes of

descriptive modelling are typically represented by a modelling cycle. When the

purpose of modelling is not primarily to understand some existing part of the world,

but “to design, prescribe, organise or structure certain aspects of it” (p. 69), Niss
calls this prescriptive modelling. “In prescriptive modelling the ultimate aim is to

pave the way for taking action based on decisions resulting from a certain kind of

mathematical considerations, in other words ‘to change the world’ rather than only

‘to understand the world’” (p. 69). Whilst descriptive modelling is usually the focus

of practice, Niss notes that prescriptive modelling is hardly noticed, let alone

investigated in mathematics education. Three substantive examples of descriptive

modelling are presented and discussed with reference to the Niss (2010) modelling

cycle. This includes the clear distinction of the discussion re modelling rather than

models and the interweaving of the two types of modelling. In Blum and Niss

(1991), the authors wrote about descriptive models rather than descriptive model-
ling, and also about normative models (not prescriptive modelling). The terms

proposed in the present chapter represent a move from focusing on the product
(the model) to focusing on the modelling purposes, whilst replacing ‘normative’
with ‘prescriptive’, following Davis (1991). Niss proceeds to argue successfully re

the limitations of the usual modelling cycles with regard to adequately capturing all

processes involved in prescriptive modelling as well as potential difficulties.

Furthermore, he strongly advocates for the need for the ICTMA Community to

engage themselves and their students in prescriptive modelling.

The development of a paper and pencil test instrument to assess mathematical

modelling competency holistically in contrast to other instruments that measure

sub-competencies (e.g., Crouch and Haines 2004) is the focus of Reit and Ludwig.

The authors provide an innovative research method for determining the degree of

difficulty of holistic mathematical tasks taking a cognitive approach which takes

into account the order of thought operations and cognitive demand from the

perspective of cognitive load theory (Sweller 2010). Basing their beginning ideas

on the work of Briedenbach (1969), Reit and Ludwig use the number of simplex

structures to be processed serially and whether a simultaneous performance of

simplex structures is necessary to determine a measure of thought structure. Their

theoretical ideas were applied to three items for Year 9 students and compared to

solution rates. The empirical results were in agreement with thought structure

complexity with a more complicated thought structure resulting in a lower solution

rate and simpler thought structures having higher solution rates. Simultaneous

processing (indicated by width of thought structure being higher) was seen to be

associated with this lowering of solution rate as it was indicative of increased

cognitive demand, a similar interpretation to Stillman (2001).

Resolution of long-standing issues (see e.g., Wijaya et al. 2014) related to

problem formulation and specification and their successful mathematisation by

novice modellers are taken up by Stillman, Brown and Geiger. Their point of

departure is a theoretical construct – implemented anticipation – proposed and

4 G.A. Stillman et al.



theoretically analysed by Niss (2010), and then they make use of this construct to

investigate as well as to facilitate novice secondary school modellers’mathematical

modelling activities. In so doing, the authors propose to extend the construct to

also pertain to the affordances (Gibson 1977) of technology in Technology Rich

Teaching and Learning Environments (TRTLEs), and they put forward a set of

scaffolding questions that modellers might pose to themselves individually or in

groups so as to “facilitate productive discussion that moves novices forward from a

problem context focus to actualising model construction” (p. 102). The approach

taken is illustrated by a “paradigmatic example” of a group of students working to

determine if it is possible for a stunt car to cross a broken bridge and land on its

wheels after having performed a rotation in the air. The main innovative aspect of

this chapter is that it transforms and extends Niss’s implemented anticipation within

his cognitive model of ideal mathematisation into an operationalized scaffold so

that it can be used by novice modellers. The framework relates to foreshadowing

and feedback loops during (1) problem finding and specification, (2) mathematising

and (3) problem solving. It facilitates group members asking each other scaffolding

questions to develop a sense of direction for their modelling (Treilibs 1979). The

framework both facilitates and exposes interthinking (Mercer 2000) in group

modelling (i.e., social aspects) intended to enhance the effectiveness of discussion

leading to model construction. Another strength of this chapter is that it succeeds in

establishing connections with earlier and more general notions of anticipation

(e.g., Dewey 1916, 1917) and its relatives. The chapter serves to consolidate and

provide empirical evidence, adding to previous work (Stillman and Brown 2014),

for a theoretical construct put forward by other researchers in the field.

Vos has contributed previously (Vos 2011) to the debate on authenticity (e.g.,

see Jablonka 2007) but this chapter brings new aspects, both theoretically and

empirically. Firstly, she critiques word problems and classroom tasks which sim-

ulate or imitate real world situations before defining authenticity by considering it

as a social construct following Durkheim (1982), with authenticity being

established by a social process. For an aspect of mathematics education to be

authentic according to Vos, it needs to have: (1) an out-of-school origin and (2) a

certification of originality attested to. This aligns to some extent with a previous

notion of authenticity put forward by Niss (1992); however, Vos sees her definition

as broader with the origin being possibly mathematical and the “attesting experts”

being others than those working in the field. Vos then validates her definition by

analysing a particular experience, an excursion for secondary students. The inter-

action between definition and validation, which is offered in this chapter, represents

by itself an interesting innovation. Vos offers ideas that can contribute to the

analysis of mathematical modelling activities, contending that definitions of

authenticity that list sets of features (e.g., Palm 2008) are using “implications of

authentic aspects and not indicators or descriptors of authenticity” (p. 113). In a

later chapter, Galbraith provides a different view (see Sect. 28.5).

Taking their experience in Chinese universities as a starting point, Wu, Wang

and Duan aim at overviewing what they see as the teaching and the learning goals in

a tertiary mathematical modelling course. From their viewpoint, a mathematical
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modelling course should provide a way of teaching its own systematic thinking

pattern, not be only a collection of various methods. Thus in their chapter meta-

knowledge about the thinking underpinning mathematical modelling is advocated

as the main goal of teaching a mathematical modelling course, whilst the mathe-

matical methods and modelling cases are considered the carriers of thought trans-

mission and serve the goal of helping students understand mathematical thinking

better. Examples are used as illustrations of why the authors believe intuitive

insights into how the problem should be modelled, making connections, innovation

through critique, choice based on common sense and cultivating inductive thinking

are the essential ingredients in teaching such thinking. The chapter possesses

interesting content for teachers, curriculum designers of university modelling

courses, or learners of mathematical modelling.

1.3 Research into, or Evaluation of, Teaching Practice

As the ICTMA community is very much concerned with research into the practices

of teaching mathematical modelling and applications, contemporary themes are

usually reflected in the work that is highlighted at biennial conferences. Some of

these are on-going involving several research groups internationally such as

the theoretical and empirical work on modelling competencies whereas others

make only brief appearances in ICTMA literature. Together, however, they form

the corpus of research input that drives the modelling agenda forward. Linked to

this are evaluations of teaching sequences that usually involve teaching experi-

ments with theoretically inspired approaches or research based material design.

The chapter by Kaiser and Brand is an extension of previous work by the

ICTMA research community in the area of fostering modelling competencies.

The authors trace the beginnings of the appearance of the construct in the modelling

discussion internationally through its many and varied interpretations and how it

has been conceptualised and evaluated by various researchers. From this historical

analysis, they identify four strands of modelling competencies research and devel-

opment as shown and exemplified in Table 1.1 which is a synthesis of their text with

some additional exemplification literature. The identified strands are the outputs of

four geographically based research groups but with some cross-over (e.g., Kaiser

using the work of Haines and Crouch). The work of the groups is not discrete.

Kaiser and Brand divide the fours strands between two approaches (after Blomhøj

and Højgaard Jensen 2003) to supporting modelling competences, namely holistic

(requiring full scale modelling) and atomistic (concentrating on mathematisation

and analysis of models) (see Table 1.1). The four strands are not comprehensive of

research work in modelling competencies internationally (see section on compe-

tencies in Blum et al. 2007 for other work) but have been the basis of a good deal of

further study in this area.

The identification of strands facilitates the raising of pertinent questions to be

researched with respect to the nature and conceptualisation of modelling
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competency, its measurement, development and classroom approaches to support

its development. An exemplar study from the doctoral work of Brand is then

presented in an effort to provide first answers to the question: Which description

of modelling competency is more appropriate – holistic or analytic? The results of

the study suggest an analytic description of the construct. With respect to which

kind of promotion of modelling competency is more effective, the study showed

that both approaches promoted overall modelling competency with strengths and

weaknesses in both. The authors point to future directions for research on modelling

competencies. Understandably these could be within or outside the four strands

identified earlier which all take a cognitive view of modelling competencies.

Besser, Blum and Leiss report on a research study that aimed to investigate

effective practice in providing formative feedback related to improving student

achievement on mathematical modelling tasks. The study has attempted to address

this aim by providing teacher training based on enhancing teacher Pedagogical

Content Knowledge (PCK) and general pedagogical knowledge (PK) about forma-

tive assessment when dealing with modelling tasks. This is an important issue

within mathematics education in general and mathematical modelling in particular.

Preliminary results indicate that teachers trained in notions of formative assessment

Table 1.1 Perspectives on modelling competencies research

Approach Strand characteristics Measures Exemplar literature

Holistic I. Modelling competence

as one of eight

interdependent mathemat-

ical competencies

Quality of a competency

is assessed via a three

dimensional approach

(degree of coverage,

radius of action, technical

level)

Niss (2003), Blomhøj

and Højgaard Jensen

(2007), Højgaard Jensen

(2007), Niss and

Højgaard (2011)

Analytic II. Identification of

indicators of competence

– descriptors of students’
modelling behaviours in

terms of sub-competencies

related to transitions in the

modelling cycle

Multiple choice items

mapped to each

sub-competency

Haines et al. (1993),

Haines and Izard (1995),

Haines et al. (2001),

Houston and Neil (2003),

Izard et al. (2003)

III. Development of a

comprehensive concept of

modelling competencies

with sub-competencies

connected to the modelling

cycle including process-

oriented and social

sub-competencies

Levels of competency Maaß (2004, 2006,

2007), Kaiser (2007),

Henning and Keune

(2007), Blum (2011)

IV. Integration of meta-

cognition into modelling

competencies

Qualitative descriptions Stillman and Galbraith

(1998), Stillman (1998,

2002, 2004, 2011),

Galbraith et al. (2007),

Stillman et al. (2010)
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when dealing with modelling tasks specifically out-performed teachers merely

trained in general didactical ideas of modelling and problem solving in

competency-oriented mathematics on tests of PK and PCK at the end of their

training program.

A meta-analysis of the use of theory in research literature on the teaching and

learning of mathematical modelling is the focus of the chapter by Geiger and Frejd.

The literature used as a basis for the analysis is pragmatically concentrated on the

five volumes arising from the ICTMA conferences from 2001 to 2009 as well as the

14th ICMI Study volume from the conference held in 2004. Two different lenses

were chosen for guiding analysis. English’s matrix of priorities for mathematics

education research (English 2002, p. 10) was used to determine the orientation of

the field whereas the notions of local theories (Kaiser and Sriraman 2006) and

general theories (Sriraman and English 2010) were used to characterise the diver-

sity of the field. There were, however, research chapters where no theoretical

underpinnings were evident in the work. Geiger and Frejd conclude that there

was an increase over the selected time period in the use of theory to underpin

chapters. Local theories (e.g., modelling competencies) were more frequently used

than general theoretical approaches such as socio-cultural approaches. Both these

results are attributed initially by the authors to the developing maturity of our

research field. Another explanation raised is the increased number of chapters

applying theories could be a result of a general “academisation” of the field as

early career researchers (such as doctoral students) come into the field and apply

theories to a well-defined problem as this format is taken to be equivalent with

research quality in doctoral programs internationally. The field of research in the

teaching and learning of mathematical modelling is an exemplary case of a field in

mathematics education, which is developing “home grown theories”; therefore the

focus is on “particular local theories” such as the modelling cycle and modelling

competencies rather than general theories from outside the field. Geiger and Frejd

point out that several general theoretical approaches which they had identified

before beginning their analysis were not used in the selected sample, suggesting

these could be mined in the future for greater theoretical diversity and richness.

This clearly has already occurred in subsequent ICTMAs as is evident in Stillman

et al. (2013) and this current volume.

Scaffolding methods for facilitating problem solving by novices during model-

ling tasks have been suggested and used by many both in research and in teaching.

Those that are closely aligned to modelling cycles (e.g., the four step Solution Plan
for the DISUM project, Blum 2011) are cyclic in nature whereas many that are

aligned more closely with problem solving processes are linear (e.g., Greefrath and

Leuders 2013). Similar linear schemes have been widely critiqued in the past when

problem solving was receiving extensive research and classroom attention (see

T€orner et al. 2007 for an overview). Greefrath presents the results from a qualitative

pilot study where three pairs of students in Year 4 and Year 6 respectively were

introduced to the Greefrath and Leuders method using matching of given solution

steps to the scheme for an identical task whether students were in Year 4 or 6 then

the groups at each Year level were asked to solve a modelling task using the
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method. From the responses to interviews conducted after the modelling sessions,

Greefrath concluded that the students’ final solutions were able to be influenced by

providing the scaffolding method particularly the written recording of the solution;

however, actual solution routes differed markedly from each other (as has been

found previously) and from the problem solving method they were asked to follow.

Written records did not align very well with the actual problem solving processes

students engaged in. A more sustained introduction to the method is suggested if

further research into its use or another problem solving scaffold is to be contem-

plated for the future.

Quantitative reasoning with and about measurable attributes of objects and

phenomena seems to be a central element of mathematical modelling of particular

situations that afford use of measurement skills being “a central mechanism for

iterative refinement of solution processes to real-world problems” (Larson 2010,

p. 117). Little is known about the influence of what is called measurement sense

(Shaw and Puckett-Cliatt 1989) on mathematical modelling. Hagena presents first

quantitative insights from an intervention study into the interplay between mea-

surement sense and mathematical modelling conducted with German pre-service

teachers. Their mathematical modelling competencies were influenced positively

by fostering their measurement sense in a short-term intervention. Hagena’s results
confirm that measurement sense seems to influence mathematical modelling that

affords use of measurement skills.

Several different models (e.g., multidisciplinarity, Andresen and Petersen 2011,

interdisciplinarity, Wineburg and Grossman 2000, and transdisciplinarity,

Kaufman et al. 2003) have been proposed for connecting meaningfully across

discipline areas in educational settings but there seems not to be sufficient research

evidence (see English 2013) as one would expect for the broad support and claims

made by education systems that advocate them. To address this gap partially at

least, interdisciplinary project work in the Singapore context is the focus of a

chapter by Ng and Stillman which reports findings from a research study in lower

secondary schools (Years 7 and 8) which examined interconnectedness. The extent

to which participation in a project work facilitates perception of interconnections

between school disciplines, within mathematics and between school-based mathe-

matics and real-world problem solving was measured using researcher developed

scales. There was an overall increase in mean scores on the scales measuring

perception of interconnectedness of mathematics and inter-subject learning and

beliefs and efforts at making connections after project work; with a significant

impact of the project work on the first two but not beliefs and efforts at making

connections. One reason for the lack of significance for beliefs and efforts could be

prior experience of project work in primary school already shaping positive beliefs

about connections between mathematics and other subjects. Qualitative results

revealed that these seemingly positive results disguised issues with students’ ability
to make the desired interconnections in a meaningful manner. Although students

could state inter-subject connections from the project work they made little use of

these during calculations and decision-making. In keeping with previous findings

by Stillman (2000), some groups proposed their mathematical solutions without
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taking into account real-world constraints. Using mathematical concepts in real

settings also challenged some groups where again the connection was lost between

the calculations and the real context. These findings call into question the espoused

benefits of interdisciplinary initiatives without an accompanying change in teacher

practice.

The Dual Modelling Cycle Framework (DMCF) was first introduced by Saeki

andMatsuzaki (2013) in an attempt to support students who display a wide diversity

in their modelling progress on the same task. An Oil Tank Task and a Toilet Roll
Task were used to illustrate the correspondence between single, double and dual

modelling cycles. Matsuzaki and Saeki (2013) provided empirical evidence for the

existence of their dual modelling cycle through evaluation of an activity using the

two tasks with pre-service teachers. Kawakami, Saeki and Matsuzaki have a

twofold purpose for their chapter in the current volume. Firstly, it serves to show

how primary school students who could not solve an initial task independently used

models shared by the teacher and other students and refined these models whilst

being taught by a teacher using DMCF for teaching modelling. Secondly, they

wanted to make suggestions from this experience for using DMCF in teaching with

less successful students. Through examining students’ worksheets and protocols of

video/audio records of the lesson, the authors show that unsuccessful modellers

could change/modify their own models and those of their classmates to progress

their dual modelling cycle by taking advantage of different models that were shared

with the class. Thus the authors conclude that a crucial point to facilitate this

progression in the dual modelling cycle is sharing of various models used by

other students related with both the initial task and the similar one, and to ensure

there is a variety of ways to progress. The notion of double and dual modelling

cycles, and the distinction between them, is potentially fruitful in supporting the

development of modelling expertise, providing a structured approach within situ-

ations where previously known or more accessible models are relevant in

addressing a new task.

Palharini and Almedia provide the reader with an example of how mathematical

modelling can be analysed through Tall’s Theory of Three Worlds of Mathematics

(Tall 2004) namely, the conceptual-embodied world, the proceptual world and the

formal-axiomatic world. The authors view mathematical modelling tasks from a

cognitive perspective. They draw on part of a study by the first author to argue that

mathematics students preparing to teach mathematics in middle and secondary

schools engaged in mathematical modelling are likely to make the transition from

elementary to advanced mathematical thinking, as well as engage in elementary

mathematical thinking (presumably in areas of mathematics that are novel). Rep-

resentation (visualisation, switching/translating, modelling) and abstraction (gen-

eralisation and synthesis) are said to be the most important of the cognitive

processes of mathematical thinking. Modelling tasks allowed students in this

study to complete a cycle of development, from one world to another,

non-linearly, using cognitive processes related to mathematical thinking with

advanced mathematical thinking occurring when multiple processes interacted.

Based on their analysis, Palharini and Almedia assert that student engagement in
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modelling tasks promoted this development of advanced mathematical thinking.

They also consider the transitions between the mathematical worlds as sites for

refinement of thought. Thus, it is possible for educators to perceive and study

mathematical thinking processes with modelling tasks and, by being so informed,

to create learning environments that explore the emergence of such processes.

Rivera, Londo~no and Jaramillo present results from a case study conducted in a

rural education institution in Colombia, aimed at analysing a mathematical model-

ling activity undertaken in the classroom but stimulated by the events in students’
home lives. The study modelling activity involved a flood due to the overflowing of

a local river in a high school as its context. In the chapter the authors wish to clarify

an issue which has been raised theoretically and see its outworking in practice by

analyzing the way students built mathematical models based on the measurement of

area and volume resulting within this context. The issue is the timing of the

introduction of new mathematical concepts necessary for modelling to proceed, a

dilemma raised by others when researching teaching practice (e.g., Antonius

et al. 2007; Oliveira and Barbosa 2013). Hein and Biembengut (2006) claim it is

possible to teach curricular content necessary for the resolution of a modelling

situation concurrently. In this instance evidence is provided of students being able

to access mathematical content beyond that which they were taught through

information technology and then the teacher taking up the opportunity to treat

this new content in class. The use of software such as GeoGebra helped students

visualize the effects of using unfamiliar mathematical functions needed to resolve

their lack of known models. Geogebra also allowed them to visualize the effect of

different parameters in the situation being modelled and the municipality. The

authors conclude that the authenticity of the context enabled the deepening of

mathematical concepts such as area and volume and their measurement in real

situations thus not only allowing the students to associate mathematics with a

phenomenon in their natural environment but also to propose solutions to reduce

the social impact of floods on their community. The modelling activity thus

contributed to both their mathematical and citizenship education.

Modelling conducted in a cultural and contextual setting is also the focus of the

research study by Villa-Ochoa and Berrio. This chapter presents partial findings

from a qualitative case study involving students from a rural educational institution

in Colombia. The students were motivated by their teacher to make sense of

mathematics in situations beyond the classroom in their everyday experiences in

keeping with the goals and ideals imposed on Colombian Mathematics curricula by

policy writers. In this context, the role of mathematical modelling goes beyond an

emphasis on cognitive and conceptual processes of mathematics in order to link

mathematics to critical societal issues and culture. This chapter focuses on the latter

examining the project work of two pairs of Year 11 students modelling the

mathematical relationships involved in coffee farming, which is not only part of

the cultural context in which they live but also is of direct relevance to them as their

own families are involved in coffee growing. During this in-class activity students

initially did not use their knowledge of local agricultural techniques for where trees

are planted until “given permission” by the teacher to do so. It would appear that the
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didactic contract (Brousseau 1997) had to be changed so that they realized such

knowledge would be valuable (and valued by the teacher) in the classroom. As

Brown et al. (1989) point out, “many methods of didactic education assume a

separation between knowing and doing, treating knowledge as an integral, self-

sufficient substance, theoretically independent of the situation in which it is learned

and used” (p. 32), so it should be no surprise that Year 11 students act in this

manner. An alternative reading of this incident taken by the researcher is that the

authority of the mathematics in the classroom activity overrode their prior knowl-

edge from daily life and subsequently the need for sense making in the classroom

activity. The teacher thus had to intervene and re-orient the task, and in this way

students were able to recognise the associated meanings. The teacher’s intervention
in the students’ mathematical modelling process was necessary in order to recog-

nise the role of context as an establishing element of scientific knowledge at school

with neither mathematics nor non-mathematical knowledge being subordinated one

to the other. For teachers to be able to know when to do this, they must develop a

sense of reality built through mathematical modelling as discussed in earlier work

by Villa-Ochoa and L�opez (2011).
The problem of the income and expenditure of an electric power company

formed the basis for teaching material for mathematical modelling in a teaching

experiment in Japan by Yoshimura as the third of three modelling activities used

with lower secondary students (Years 7–9). This teaching experiment was fairly

teacher led in the Japanese lesson fashion but provided students with the opportu-

nity to make assumptions and validate results in mathematical modelling when

posing their own solutions to the company’s financial deficit problem. As a result, it

was confirmed that students’ modelling skills in handling uncertain numerical

values and conditions were acquired through their discussion about the correct

answers but they were not able to make assumptions appropriately from a compli-

cated real-life problem. In addition, the teaching experiment demonstrated that the

context was suitable to use in mathematical modelling teaching materials with Year

9 Japanese students. Short questionnaires were used to compare student responses

before and after the activity and across the three tasks. Students were quite positive

about the utility of mathematics in solving real problems and this increased after the

task. The power company context was of interest to most students similar to the

other contexts (pension taxes and bluefin tuna depletion). Participation in the

modelling experience had a positive effect on eroding the notion of mathematics

always involving the certainty of one answer.

1.4 Pedagogical Issues for Teaching and Learning
of Modelling

Although the pedagogy of applications and modelling shares some practices that

are part of general pedagogy, there are a range of practices that are different (Niss

et al. 2007) and these are the subject of much research and experimentation in the
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ICTMA community. Some of these studies are associated with the introduction of

modelling into new contexts but more commonly now the focus is on how to

address many long standing issues that these differences in practices bring to

light for the teaching and learning of modelling.

As mathematical modelling is being introduced as a new product into the

complex system of mathematics education in many countries (e.g., USA, see

National Governors Association Center for Best Practices and Council of Chief

State School Officers 2010), Pollak reminds us it is important to view this educa-

tional change within the total system as it has to fit with the existing parts and

interfaces in this system. As one example, he considers the effect of mathematical

modelling on the transition from secondary to tertiary education and whether the

purpose is to teach modelling as a vehicle to teach mathematics or as content in its

own right (Galbraith 2007b; Julie 2002). If mathematical modelling is of greater

importance to the planners at either level of education than at the other, stresses may

result. As a second example, he examines changes in teacher education necessitated

by the introduction of mathematical modelling at the secondary level. Ideally, one

might wish to prepare teachers to teach mathematical modelling by concentrating

purely on modelling without the distraction of new mathematical ideas, but this

cannot always be done as Rivera et al. have already shown. Finally, the effect of

mathematical modelling on the relationship between mathematics education and

mathematics itself is discussed. In response to Pollak’s plenary address at ICTMA

16 in Brazil, Borromeo Ferri reflects at the meta-level on the basis of a “mathe-

matical modelling map” which she created as a simple instrument opening a segue

between applied and pure mathematics as well as between theoretical aspects and

empirical results concerning teaching and learning of mathematical modelling. She

discusses three key questions stemming from Pollak’s lecture, such as “Why should

modelling be taught and learnt?” and interprets the answers as moves within

that map.

On the surface the issue that Araújo and Campos appear to approach in their

chapter is that of the relationship between modelling and views of mathematics and

how the diverse forms of this relationship impinge on the often, vexed relationship

between mathematics education and mathematics. Pollak in his chapter has already

suggested that the main purpose of teaching modelling might be as a vehicle for the

teaching of mathematical content, as mathematical content in its own right or a

mixture of the two. The authors appear to subscribe to the notion of modelling as

content in its own right to progress real world problem solving that is of a socio-

critical nature. Thus, the issue runs much deeper on closer examination to funda-
mental ways in which actors in classrooms operate when a new approach disrupts
the didactic contract (Brousseau 1997). This was the first time the tertiary student

group had modelled so coming to a shared understanding of the nature of mathe-

matical modelling in a socio-political perspective (Kaiser and Sriraman 2006) with

their teachers was understandably fraught with perturbations. A break down in

meaning occurred; not because the students did not identify a real world societal

problem with political implications, but rather because the data that they assembled

right from the beginning needed no further mathematisation to describe the
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situation or answer the question posed. Araújo and Campos use Barbosa’s notion
(2007) of negotiation spaces to describe the verbal interactions between student and
teacher as the teacher uses the student’s voicing of her dilemma with respect to

mathematising the situation so as to produce a project proposal within the “rules of

the game” (Bourdieu 1977) of what the teacher sees constitutes a modelling project

in the context.

The issue of moving from isolated modelling activities to a coherent program
involving sequences of modelling tasks, which is more likely to result in increased

uptake in classrooms, is indeed an important one. In introducing the challenges

involved in such a progression, Ärlebäck and Doerr reference two studies at

university level and Galbraith and Clatworthy’s 1990 study centred around the

use of a sequence of modelling tasks in a 2 year course at senior secondary school

level. The background discussion concerning models, modelling, and model devel-

opment sequences provides an excellent synopsis of important ideas from the field.

Following reference to the familiar model eliciting activities, the authors proceed to

outline the nature and purpose of model exploration activities and model applica-

tion activities from a Variation Theory perspective (Runesson 2005). There are

strong links with Valsiner’s Zone of Promoted Action (ZPA), and other aspects of

his Zone Theory (Valsiner 1997) which Galbraith (2007b) has applied previously to

“construction and analysis of teaching to achieve modelling goals” (p. 58), partic-

ularly with respect to the activities provided for student learning. Thus support for

the approach Ärlebäck and Doerr are proposing is strengthened as theoretical

underpinnings come from multiple sources. Tentative design principles for model

exploration and model application activities within a model development sequence

are enunciated, illustrated by learning excerpts and examples. This application of

variation theory could be seen as providing a rather prescriptive taskmaster. The

level of teacher design and control also appears heavy in the examples of contrast

variation, variation of fusion, variation of separation and variation of generalisa-

tion. With respect to the authors’ suggestion that “Multiple aspects of complex

objects of learning need to be experienced simultaneously at the same time in order

for the learner to fuse them together into a coherent whole” (p. 209), if the ‘frames

of reference’ of different students are moving at different speeds regarding under-

standing, as has been found previously (e.g., Stillman 2010), ‘simultaneous’ may

not have a viable meaning across a whole class. To sum up, Ärlebäck and Doerr

have produced a stimulating piece of writing that suggests new directions and in

doing so stimulates several questions to consider in furthering this initiative.

The issue of “how to promote creative and flexible use of mathematical and
scientific ideas within an interdisciplinary context where students solve substantive,
authentic problems that address multiple core learning” (English 2013, p. 494) has
been brought to the fore previously in ICTMA literature as too has the solution of

using modelling as the teaching approach to address this issue. Barboza, Bassani,

Lewandoski and Abitante explore this issue in the Brazilian context by addressing

the possibility of interdisciplinary integration through mathematical modelling of

optical phenomena using a series of physical experiments they designed and

presented to in-service and pre-service teachers in workshops. According to these
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authors, their program of interdisciplinary activities contributed to the learning of

both the mathematical and physical concepts involved through the manipulation of

the well designed experiments targeting particular optical concepts related to mirror

manipulation. The program also stimulated the interest of participants. These

claims are in keeping with research findings of others such as Michelsen and

Sriraman (2009). Michelsen and Sriraman (2009) found that upper secondary

Danish students’ interest in mathematics and science was able to be improved

through interdisciplinary modelling activities.

Bossio, Londo~no and Jaramillo present results from another Colombian case

study analysing a mathematical modelling activity undertaken in the classroom but

stimulated by the events in students’ home lives. The authors’ purpose was to

address the issue of how social and cultural factors engage students in using school
mathematics. The participants were a group of ninth-grade high school students

whose life situations were used to generate linear models. The chapter illustrates

how prior knowledge of real life situations of the learner becomes a resource for

modelling activity in the mathematics classroom (see also Galbraith, Sect. 28.4).

The authors select one student and show how this student’s prior experiential

knowledge is used as she models in the classroom developing a formal linear

model first graphically then algebraically. They chose the situation in the context

of pre-paid energy consumption as an exemplar from practice in the Colombian

context to argue the case for mathematical modelling examples arising naturally in

the classroom as students activate prior knowledge from their everyday experiences

(cf. Stillman 2000). The authors conclude that in social and cultural contexts of

rural communities, teachers do not need to invent modelling activities for the

classroom as situations already exist where students can develop a process of

mathematical modelling in the classroom, due to the richness of the meanings

and relations constructed in their life experience, and their particular economic

and social conditions. In addition, these classroom activities meet social objectives

as well as the mathematical formation purposes of the curriculum as intended by the

national statutory education authority.

Frejd raises the issue of whether, and how, modelling should be taught in schools
so as to be a link to workplace mathematics, as advocated by many such as Li

(2013) seeing that school mathematics and workplace mathematics are fundamen-

tally different in purpose (Kaiser et al. 2013). This chapter examines how nine

professional mathematical modellers learnt mathematical modelling and their opin-

ions on mathematical modelling in upper secondary and general education. Frejd

finds Salling Olesen’s model (2008) for the analysis of workplace learning a useful

means to analyse the responses of his interviewees. The participants mainly learnt

mathematical modelling during their doctoral studies and through their occupation,

by working with what they saw as ‘real modelling’. In their opinion mathematical

modelling should be a part of mathematics education in upper secondary school; in

particular, modelling should be emphasized more as part of general education to

develop students’ critical views on howmodels are used in society. In addition, they

suggested approaches to teach modelling and suitable modelling problems to work

with from their own workplaces that were not idealised or reduced.
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The chapter by Galbraith addresses issues of fundamental importance to the

development of mathematical modelling, as a field, and for modelling as an

important element within curriculum. The main issue is the extent to which students
leaving school are able to apply their knowledge proficiently to problems located in
personal, work or civic contexts or to other knowledge areas whilst in school falls
well short of what was hoped for. An important aspect of this chapter is that it uses a

distinction between “modelling as content” (“mathematics for the sake of model-

ling”) and “modelling as a vehicle” (“modelling for the sake of mathematics”) (see

also Julie 2002) to point out what the author calls the epistemic fallacy between the

nature of modelling for real world problem solving (ontology) and the curricular

interpretations and approaches (epistemology) that are often encountered in which

the ontology is distorted, if not replaced with something else. This can be seen as

the source of much criticism of applications and modelling in mathematics educa-

tion. Galbraith sees “privileging of perceived conservative classroom conceptions”

(p. 344) as a source of some of these criticisms taking as an example the notion of

“authenticity” and its ramifications in applications and modelling. He reminds the

reader he has previously argued that the term has been used too broadly (Galbraith

2013) then discusses an example involving population prediction from the

Australian media that has some doubtful in-built assumptions. Once the situation

is modelled mathematically and this is discovered he then raises the question of

what would be authentic actions that would flow given the intention of the espoused

curriculum is to develop modelling as real world problem solving. For the model-

ling as content teacher, the modelling would continue with questions being posed

from the implications of what has been discovered whereas the modelling as vehicle

teacher would be pressed to simply move on by other imperatives such as time and

need for curriculum coverage. This leads to Valsiner’s Zone Theory (1997) being

applied as a framework for theorising and structuring teaching and learning within

the content/vehicle metaphor. What is provided within the Zone of Free Movement

(ZFM) impacts the Zone of Promoted Action (ZPA) that is oriented to defining and

promoting valued new skills. Within a content approach, teachers ensure the ZFM

provides the requirements and support for the development of modelling as real

world problem solving but within a modelling as vehicle approach the competing

other imperatives of the curriculum are allowed to restrict the ZFM below the

threshold that would allow the ZPA to support the development of modelling as

curricular content in its own right. Galbraith suggests that for change in this situation

to be effected, curriculum documents need explicit mandated objectives that require

students to formulate and solve their own problems located in their world as was

shown in more localised modelling curricula (Stillman and Galbraith 2011).

Ikeda and Stephens take up the issue of how to think about models and modelling
considering the diversity of interpretations that have mushroomed over the years.

They attempt to re-construct what is meant by a model and the process of its

construction which is generally assumed to be built by translating a real world

problem into a mathematical representation. Through this process they hope to

elicit new perspectives on modelling. There are two ways learners can set up

models according to Ikeda and Stephens: (1) as hypothetical working spaces, and
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(2) as physical/mental entities for comparing and contrasting. These means of

construction then morph into “roles in the context of the learner”. By reflecting

on the teaching of modelling from these two roles the authors draw attention to four

different perspectives of modelling: (a) where modelling is interpreted as interac-

tive translations among plural worlds (the real world, a representational world able

to be manipulated, a geometric world subject to drawing and measuring, and a

symbolic and algebraic world) not between two fixed worlds (presumably the real

world and the mathematical world); (b) where models have the potential to incor-

porate scenarios beyond the initial problem situation; (c) where the mathematical

world is used as a source of mental entities for comparing and contrasting;

(d) where modelling competency means knowing how to balance between these

different roles. Perspectives (a) and (d) are concerned with Role 1 and (b), (c) and

(d) are concerned with Role 2.

Lamb and Visnovska address two pedagogical issues in their chapter reporting a

project which aims at enhancing the teaching practices of teachers who teach at

lower secondary level (Years 8–10) in Australia. The focus is set as the teaching of

statistical literacy in the framework of “numeracy” in relation to real-life-problems.

The issues in focus are sense-making in real-life problems and the provision of
quality professional development to foster quality in teaching practices. The

researchers note the themes of statistical literacy and modelling appeared to reso-

nate with the teachers as being broadly connected since context was considered

necessary to give meaning to statistics and to engage in decision making associated

with data. The teachers worked in groups on a real-world problem with data

provided and the sense of direction (Treilibs 1979) already posed in order to

experience how students might develop key mathematical ideas in this phase of a

lesson. The working-sessions of the teachers were orchestrated by the researchers

who deliberately chose the order of presentation of solutions to the whole group to

expose those that had taken a purely mathematically directed approach focusing on

aspects of correctly displaying the mathematical object (a histogram) rather than a

modelling approach involving sense making, to “press” these “problem solvers” to

see the inadequacy in their approach and their lack of sense making. The

researchers saw the order in which responses were presented as playing a pivotal

role in the quality of the discussion that arose. These discussions highlighted the

differences between doing mathematics for its own sake and using mathematical

models to respond to, and interpret, contextualized situations that they see as an

essential part of statistical literacy pedagogy.

Aspects of Cognitive Load Theory (CLT) (Sweller 2010), a psychological

theory about the consequences of human memory structure for teaching, are

discussed by Perrenet and Zwaneveld from the perspective of what it might

contribute to mathematical modelling education particularly in secondary school.

The authors characterise the teaching and doing of mathematical modelling in

secondary education as a complex task involving a heavy cognitive load for both

teachers and students. Perrenet and Zwaneveld suggest that some of the directives

of CLT could prove useful in modelling education in reducing this issue of
extraneous cognitive load, particularly the notion of redundancy if viewed in a
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new light. As the authors state, CTL’s criticism of constructivism is countered by an

argument from Problem Based Learning, and applied to mathematical modelling

education, this argument stresses the importance of structured support in using the

mathematical modelling cycle (see Bruder and Prescott 2013 for a discussion of

research evidence). The chapter contributes to the existing discussion on how

theories from cognitive psychology can assist researchers in mathematics educa-

tion, in better understanding students’ work in solving modelling problems, and in

better teaching modelling and applications.

Rosa and Orey highlight the importance of using the social-critical dimension of

mathematical modelling to solve problem situations that afflict contemporary

society. They raise two issues: (1) the role of schools in promoting students’
social-critical efficacy and (2) how current teaching practices in mathematics
impact students’ social-critical efficacy. The idea of social-critical efficacy is

novel encompassing students’ critical analysis of the role of mathematics in the

power structures of society informed by their critical reflection on their prior

experiences related to social elements underpinning life in a globalised world.

Research related to mathematical modelling with a social-critical dimension has

redefined its objectives, and is developing a sense of its own form and the potential

of research methods to legitimate its pedagogical action. The chapter deals with

philosophical and epistemological issues supporting the inclusion of a social-

critical component in the teaching of mathematical modelling. These span a

re-articulation of critical mathematics education with its mathematics for action

proposed by Skovsmose (1994), the inclusion of learner goals as proposed by

Mellin-Olsen (1987) and Freire’s recommendation of teaching based on a dialog-

ical model rather than a banking model (Freire 2000). Three models of teaching for

developing the critical consciousness of students are proposed. The authors extoll

the importance of a learning environment that helps students develop their social-

critical efficacy supported by the use of a socio-critical mathematical modelling

cycle that allows them to construct solutions to problems that are of interest to them

and their community but where the solution is of social significance to society more

generally. An alternative approach to developing modelling integrated to critical

aspects of reality, that is, by reflective mathematical modelling, is proposed by

Scheller and colleagues (see Scheller et al., this volume).

Deciding to use a modelling approach to teaching in an effort to engage students
in learning mathematics because it is said to be more interesting and motivating for
students does not mean that the students will agree with your new approach. Ustra

and Ustra present results of a qualitative evaluation conducted in Fundamentals of

Calculus classes in four service courses from a federal university in Brazil. The

objectives were to analyze the main difficulties the students had regarding mathe-

matical modelling, especially with functions and the relationship of these difficul-

ties with the different fields of study. The analysis of the results identified some

teaching difficulties were related to contextualization in mathematical modelling,

as well as the teaching of mathematical concepts for different courses. Students

failed to appreciate the connection of modelling examples to their courses when

they were first introduced and had even greater difficulty as examples with con-

nection to future occupations were used. Ustra and Ustra’s evaluation of their new
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approach in these courses identified three categories of contextualisation of teach-

ing examples that they saw as being able to both facilitate and impede the students’
modelling. These were recognition of relevance to the area of training and the

students’ everyday world, translation of the situation through modelling (i.e., being

able to handle the mathematics to do this) and personal factors associated with the

student. It would seem imperative that these be considered if modelling is to

“effectively promote views of mathematics that extend beyond transmissive tech-

niques” as desired by many of these students and “to advance its role as a tool for

structuring other areas of knowledge” (Niss et al. 2007, p. 20).

In an endeavour to address the issue of being able to provide sufficient variation
(Marton and Tsui 2004) in real world problem solving in engineering so that
students develop problem solving skills and are capable of handling unknown
problems in future occupations, Wedelin and Adawi enunciate a set of seven design

principles for small problems that capture the essential characteristics of larger and

more complex real world problems. The potential strength of this chapter lies in the

design of these “small realistic problems” and when, and how, such problems can

be used to support the development of students’ abilities to solve more complex,

realistic problems. The authors emphasize that real problems require “learning and

searching for existing theory” and caution against over burdening students with new

theory to resolve problems. A set of examples that support the principles that are put

forward are given. All problems position students in an exploratory mode where

they are trained in metacognitive aspects. Students develop a case library of

problems over the course as they develop in three dimensions of learning.

1.5 Influences of Technologies

The early embracing of computer technology within the ICTMA community (Berry

et al. 1986; Moscardini et al. 1984; Prior and Moscardini 1984) and the professional

modelling community generally (Aslaken and Santosa 2013) certainly led to the

solution of many real world problems that had proved difficult to resolve with the

conventional mathematical tools of the time. However within little more than a

decade technology was being seen as more than just a means of carrying out

repeated operations, calculations and graphing quickly, rather by drawing on

cognitive development and sociocultural theory it was being suggested (e.g.,

Goos 1998) that computers were cognitive tools for socially supported learning

where collaborative peer interaction would allow students to perform beyond the

limits of their existing capabilities. This had obvious implications for pedagogical

modelling in schooling, for example, as technology use would transform the tasks

offered to students and mathematics lessons would need to be reoriented (Henn

1998) as what students were capable of doing in such environments would be

transformed. Tikhomirov (1981, p. 271) had insightfully claimed earlier that tech-

nologies such as computers could lead to “a transformation of human activity” and

this would lead to new forms of activity emerging. Both Brown and Soares take up

this transformative role of technology in their chapters.
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Many affordances (Gibson 1977) useful in facilitating the solution of real world

tasks are available in Technology-Rich Teaching and Learning Environments

(TRTLE’s) where both teacher and students have access to a wide range of electronic
technologies. Of particular use for modelling are those allowing visual image gener-

ation by technology (Pead et al. 2007). Whilst the TRTLE provides additional

opportunities and approaches to engaging with the real world, thus potentially

transforming human mathematical modelling activity (cf Tikhomirov 1981), but

additional complexities also exist (Galbraith et al. 2007). One of the transformational

powers of the technology is to produce technology-generated images to clarify and

refine students’ mental models of the situation; however, Brown asks: Is this power

being realised? Using a grounded theory approach, Brown’s study (see also Brown

2015) showed that students often did not take up the opportunities, such as the

usefulness of the data plot on a technological device, to inform their choice of

function model or to compare models with data or each other, even though they

had the technological and mathematical knowledge to do so. Brown suggests that

teachers and students must realise “the cognitive role of visualisation” (p. 440) in

modelling, in particular how this supports their mathematisation (cf. Rivera et al.),

which in turn should be supported by an anticipation of the role digital technology

can play in a modelling context. After all, affordances of TRTLE’s must first be

perceived in order to be enacted. Unless this happens the transformational power of

technologies in modelling will remain unlocked.

Rodrı́guez and Quiroz use a rich technological environment to support engineer-

ing students in the development of modelling competencies where the mathematical

focus is DEs in a tertiary physics context. Electronic technologies in the form of

calculators, sensors, physical materials, simulation and graphing software play an

important role in the teaching and learning process presented. In this chapter, a

complex cycle developed by the first author in her doctoral study (Rodrı́guez 2010)

for the kind of physics-technical examples that the authors use forms the basis for

analysis of competencies and choice of supporting technologies. These technologies

allow the students working in teams to interact with the phenomena being studied and

promote several competencies. Competencies are identified by what is required to

successfully transition between stages in this modelling cycle. These all appear to be

modelling competencies not technological nor social ones. As competencies are the

focus of many studies (see Kaiser and Brand, Chap. 10) and are of particular interest

to the modelling community this work supports other findings in this area.

Soares deals with the ways in which we can describe and understand students’
work on interpreting, validating and varying already existing models in relation to

mathematical modelling. This is an issue which, although relevant and significant,

has not attracted as much attention in literature as have other aspects of applications

and modelling. Soares uses the term model analysis to indicate what happens when
students undertake investigation of models, especially in relation to coming to grips

with old and new mathematical concepts with which they are not necessarily very

familiar. She uses the software, Modellus, in the design of a teaching approach that

involves model analysis. The chapter makes reference to, and use of, a classical

two-population ODE model of the transmission of malaria, which was used as an

exemplar for university students majoring in biology but taking a course in applied
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mathematics. The chapter focuses on the role of the software in making the model

solutions accessible to students. In attempting to place her analysis in terms of the

aspects of the modelling cycle that may or may not be manifest with regard to

model analysis, she came to the conclusion that her students did not complete the

entire cycle but rather were developing a rudimentary cycle (Niss this volume,

Chap. 5) focusing on the transition from a model situation to a mathematical model

and its interpretation. She attributed this reduction of the modelling cycle to their

use of Modellus to access the solutions of a mathematical model produced by others

even though they did not know the necessary mathematics to produce the model and

solve it analytically themselves. The software allowed them to experiment with

effects of parameters on the phenomenon being modelled in a similar manner to

how Rivera et al.’s high school students used GeoGebra with unfamiliar functions

to model a flood situation. The offerings and constraints of the software influenced

the students’ reasoning and interactions with it in both these situations. These

affordances of the technological environments are dependent on the particular

technology used (Galbraith et al. 2007) and so lead to a reorganisation of the

processes involved. In the case of Modellus, the biology students were able to

focus completely on the behaviour of the solutions and not be distracted by doing

calculations correctly or choosing correct procedures as they would have done with

a by-hand analytical treatment. Soares sees this shift in focus to reasoning about the

model rather than regulating mathematizing to produce the model as characteristic

of a reorganisation of thinking with respect to technology use that was

foreshadowed by Tikhomirov (1981), Goos (1998) and others. She argues that

this reorganization of the analysis of the model results in a hybrid approach
which is not purely modelling and not purely applications. Even though there is

some convergence between model analysis and applications there is enough point

of difference to support this claim as pre-existing models not within the scope of the

models students already know are analysed using software to discuss new concepts.

The modelling activity is thus changed by the presence of the software.

Souza Júnior et al. report the development of Learning Objects as mathematical

models. Learning Objects have a clearly defined educational purpose, an element

encouraging student reflection and the application must be transferable across

contexts. The practice of developing Learning Objects is outlined where the role

of mathematical modelling is implicit and the real world is thus able to be brought

into the classroom through simulations. The designers of the Learning Objects form

a multidisciplinary team including pre-service secondary mathematics teachers,

computer programing students and academics from mathematics, teacher education

and computer science. It seems, although not explicitly stated, that the authors are

arguing that the benefits are twofold – for school students and for these pre-service

teachers. The main argument of the chapter is that the process is a social production

that empowers pre-service teachers to be supported to produce these materials and it

is the mathematical model involved that links the disciplines: education, mathematics

and computing. “The Learning Object becomes a means of expression, an act of

mathematical modelling on the computer itself” (p. 469). This point is exemplified by

the Learning Object associated with the predator–prey population dynamics models

of fish populations in the Adriatic Sea during and after World War I.
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1.6 Assessment in Schools and Universities

Although assessment of modelling in schools and universities continues to be a

major issue (Galbraith 2007a), it does not seem to be a popular topic of research

(Frejd 2013) within ICTMA literature in recent times. Using ideas and notions from

ethnomethodology and the sociological study of work in science, the actual scripts

of examinees were analysed by Julie to tease out the examinees’ ways of working
with a modelling and applications-like problem in a high-stakes school-leaving

examination in South Africa. Such examinations are time-restricted and “definitely

not suitable for assessing open modelling” (Antonius 2007) so research in such

situations is rare in a research community focussing on quality practices in model-

ling education. In the South African context the examination items of interest take

the form of guided applications to financial contexts supported by a formula sheet

of common financial models. These are the applications found most difficult by

candidates on these national examinations. To apply the models only the calcula-

tion parts of modelling are really in focus. Julie’s analysis was anchored around the
various agencies exerted by elements present in the context of high-stakes school-

leaving examinations as represented in the lived work students engaged in as they

produced answer responses to applications-like items. Three ways of working that

characterised the candidates’ ways of working are focused on: Translation to
familiar symbolism, Anticipation of adjustments to be made and U-turning. The
chapter demonstrates how the prevailing contexts of writing high-stakes examina-

tions exercised agency for these ways of working.

Blum and Leiß (2007) have indicated that there are reciprocal processes between

the real situation and the situation model in modelling and that these processes are

important in understanding a modelling task. Matsuzaki and Kaneko surmise there

might be the possibility that a modeller imagines situations frommodelling tasks, and

that these situations might be able to be changed. Firstly, a situation model could be

formulated from the initial imagined situation, and formulation of a situation model

occur. Secondly, a situation model could be reformulated from the initial situation

model as modelling is proceeding. In previous studies Matsuzaki (2004) adopted

drawing pictures as a method for gaining insight into these experiences in setting up

the problem from the task situation in the real world. Matsuzaki and Kaneko have

designed a pre-test and a post-test that can be used in the primary school setting with a

modelling activity to see if the student (a) formulates an initial situation model and/or

(b) reformulates the situation model during modelling.

1.7 Applicability at Different Levels of Schooling,
Vocational Education, and in Tertiary Education

In all books in the ICTMA series there are several examples of demonstrations

through documented implementations of the applicability at different levels of

education of modelling and applications of mathematics. This book is no exception
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but some of the examples bring points of difference from what has been demon-

strated before. There are new contexts such as Youth and Adult Education and

different emphases, for example, development of a socio-critical perspective in

pre-service teacher education where the pre-service teachers take up social con-

cerns through modelling activity.

In the tertiary education space, several examples are presented. According to

Campos, Lombardo, Jacobini and Wodewotzki, blending statistics education, crit-

ical education (Giroux 1988), critical mathematics education (Skovmose 1994) and

mathematical modelling allows the possibility of pedagogical projects that value

interdisciplinarity and active participation of students in knowledge construction at

the first year university level. They present what they call Critical Statistics

Education which highlights the valuing of socio-political interfaces within under-

graduate teaching. From this perspective it is essential that societal or environmen-

tal problems dealt with relate to “fundamental social conflicts” and students own

these problems. Modelling is the tool that allows students to transform their reality

whilst their lecturers promote the socio-political role played by statistics in society.

In short, modelling is the link between espoused theory and its realisation in

practice. In this chapter, a scenario is presented that occurred in the statistics

discipline of an economics sciences course. By adopting critical education practices

the class discusses and mathematises global warming, its causes and consequences

for society.

Elaborating a modelling approach to the integration of physics and mathematics

instruction in a first-year engineering course in a Mexican university is the focus of

the chapter by Dominguez, Garza and Zavala. The authors’ intention is to close a

gap in science and mathematics; therefore they take certain situations that give rise

to interesting activities in the mathematics/physics interface. The purpose is to

improve students’ abilities to make connections between these disciplines, to

increase student motivation and to develop competencies including social compe-

tencies such as working collaboratively. In this context, models serve as conceptual

resources to develop understanding of a variety of phenomena. The key to success

is problem design that facilitates the application of the main pedagogical approach,

Modelling Instruction (see Hestenes 2010 for an overview). The authors analyse a

project undertaken by students in small groups to illustrate how modelling is

applied in this context. Future developments mooted by the authors include use

of more realistic situations for the problems and the gathering of evidence for

claims that critical thinking, problem solving and argumentation competencies are

facilitated by this application of modelling in a tertiary setting.

The chapter by Rodrı́guez presents an experience of an educational practice in

the same Mexican university involving a different way to teach a Differential

Equations course for future engineers based on a teaching proposal developed

through mathematical modelling. Rodrı́guez acknowledges that the purpose of

teaching mathematics is to prepare critical citizens but takes a realistic or applied

perspective (Kaiser and Sriraman 2006) to the use of mathematical modelling in

teaching. This proposal emphasizes that mathematics is a human activity (Jacobs

1994) that answers several problems of a different nature, and throughout this
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problem solving activity it is likely that the emergence of mathematical concepts,

notions and procedures occurs. The application of DEs as a tool to model phenom-

ena (physical, biological, or chemical) is considered as important as learning

techniques to solve DEs. Technology also plays an important integrative role

highlighting the range of possible multiple representations of the same mathemat-

ical object (the DE). The modelling activities design pays particular attention to the

pseudo-concrete and physical domains and to moving between key stages of the

specialised modelling schema of Rodrı́guez (2010).

Duan, Wang and Wu claim that the teaching of mathematical modelling at

tertiary level would be more stimulating if combined with student-involved

research. Based on the Innovation Practice and Internship Base for Mathematical

Modelling at the National University for Defence Technology in China, a student

innovation training system from the lowest level to senior undergraduates has been

built to cultivate modelling competency in students to solve practical problems

under supervision. In addition to generic mathematical modelling ability and

modelling associated with a particular profession, students are expected to develop

an open and cooperative consciousness. An example of mathematical positioning

with the Global Navigation Satellite System (GNSS) is introduced to show the

whole process in detail: stimulation of a focusing interest (e.g., by considering

implications for reliability of satellite signals in today’s world communications and

the problem of multipath signals from the same source), mathematizing, and

solution through modelling of the situation. The focus is on one of the mathematical

issues that arise in increasing the processing speed, accuracy and reliability of

GNSS – the multipath case. This case is used to demonstrate how students are

encouraged to explore solutions, select a method and implement this method, and

develop active and critical thinking.

As the last tertiary example, Villareal, Esteley and Smith demonstrate how it is

possible for teacher educators to engage pre-service teachers in active modelling

projects in a context (Argentina) where such engagement is rare in schools and in

universities. What attracted these educators to mathematical modelling was its open

and interdisciplinary nature and the opportunity for reflection on mathematics and

the social role of mathematics and mathematical modelling. They were thus drawn

to the socio-critical modelling perspective (Kaiser and Sriraman 2006; Rosa and

Orey, this volume) and this is the point of departure of their work from that of others

(e.g., Caron and Bélair 2007; Widjaja 2013) as they focus on developing this

perspective in their pre-service teachers. The pre-service teachers in this study

developed 12 modelling projects but only those that explored socio-economic and

ecological conscience themes focused on authentic social concerns. Differences in

how pre-service teachers approached social issues and the modelling of these were

attributed to the link they were able to establish with their own socio-environmental

contexts and their understanding of what it meant to model from a socio-critical

perspective. Their difficulties were related to theme selection and concerns about

the sophistication of the mathematics they would use to model. In the process of

modelling they came to realise that mathematical modelling gave them a new way

of doing mathematics and perceiving its implications for society and the possibility
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to reflect at a meta-level on their modelling activity and project these forward onto

possible opportunities for them to use modelling in their future classrooms.

Luna, Souza and Lima show the applicability of mathematical modelling in a

primary school (Years 1–5) in Brazil. Their aim is to analyse, using Bernstein’s
theory (1990), the kinds of text that are produced in a mathematical modelling

activity at this level of education. The participants were the teacher and her Year

4 students (9–10 years old). The authors take a socio-critical perspective (Kaiser

and Sriraman 2006) to the teaching of modelling expecting students to begin

identifying the presence of mathematics in society and to reflect critically about

its presence from the beginning of primary school. The topic of the activity is thus

Virtual Water, all the water used in the production of foods from cultivation to

manufacture. According to Bernstein’s theory, the principles governing the peda-

gogical practice of a given context allow the production of different texts for the

instruction of school mathematics. The authors view text as being verbal, written or

gestural. What is of interest to them are power and control relations governing

communication practices within social relations during modelling activity. As a

result of a weakening of these relations during modelling, students have the

opportunity of preparing legitimate texts of the instructional discourse by proposing

mathematical procedures and concepts and developing their own answers to the

problems posed. English (2013) has reported a similar finding previously.

Contextualised texts were produced by both students and the teacher when a student
raised a query about the meaning of a mathematical concept (cubic metre) and both

students and teacher discussed this within a familiar context (the capacity of a

swimming pool). The students also produced critical mathematical text
characterised by criticism of the presence of mathematics in a given text used in

society (product labelling) and interdisciplinary texts as they made their own

relations between the instructional discourse of school mathematics and other

instructional discourses of schooling (e.g., science) prompted by engagement in

the modelling activity. The authors suggest that the specific production of these

texts could be a result of the pedagogical practices used during modelling in the

primary school setting.

Silva, Santana and Carneiro present a case study in Youth and Adult Education,

an area where there is not much previous research in ICTMA or elsewhere. The

authors describe the implementation of a modelling activity illustrated by tran-

scripts of student interaction at selected critical incidents in a lesson sequence. They

attempt to capture critical pedagogical practices as a teacher works using a

multidisciplinary approach to improve students’ learning. The aim is to show

possible contributions of a mathematical modelling environment for using mathe-

matics to understanding situations studied in other disciplines; whilst taking

account of students’ prior knowledge and everyday experiences. Students were

clearly interested and engaged by the can recycling context for the task but they had

difficulties with formulation and mathematizing exhibiting the previously reported

over reliance on linear models (De Bock et al. 2007). The authors illustrate how the

teacher acted as a mediator between the real situation and the mathematical objects

used in representations of essential features of the situation in mathematising to

facilitate students refining these mathematisations.
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A modelling challenge program for junior high school and high school students

in Japan is the topic of the chapter by Yanagimoto, Kawasaki and Yoshimura. In the

first year of the program, two tasks with scientific and social content were prepared.

The first task was concerned with the phenomenon of a cart with a sail rolling down

a slope, and the other with the income and expenditure of an electric power

company (see Yoshimura this volume). The authors prepared two different types

of tasks as they wanted to see whether there was a preference for one type of context

over the other. However, as only eight students participated in the event, the sample

size was too small to be able to do this. The project, as an attempt to foster

modelling in mathematics classrooms in Japan, is highly relevant and it joins

a number of such projects within the ICTMA community (e.g., examples in Kaiser

et al. 2011; Stillman and Brown 2014).

Finally, Orey and Rosa provide an interesting insight into the mathematics of an

architectural feature. The issue being investigated through ethnomodelling (Rosa

and Orey 2013) was how the architects / builders managed to capture the shape of a

hanging chain in the wall of a brick building. From the outset it was presumed that

this was done by the builders hanging a chain between the support posts and using it

as a template. This seems to be confirmed by the mathematics. It is unlikely that any

other practical method would have been used by the builders so quadratic or

exponential shapes are unlikely. Consequently the purpose for doing the mathe-

matics is to understand how the builders may have managed to obtain such a feature

in their wall. Thus by looking at various models students have the opportunity to

explore the relationship between mathematical ideas developed in the daily practice

of community members, in this case builders, and formal mathematical objects as

advocated by D’Ambrosio (1990/1998), amongst others.

1.8 Conclusion

The ICTMA community operates from diverse research paradigms and theoretical

underpinnings in its work. However, what all members of this community of

researchers share is a genuine desire “to establish a learning culture of mathemat-

ical modelling” (Stillman et al. 2013, p. 22). In this volume, in particular the

influences of cultural, social, and cognitive perspectives on the shaping of the

work in the community become visible. This is meant to stimulate further research

in the area of learning and teaching mathematical modelling at all educational

levels. That builds on existing foundations or takes the field in new directions. In

particular, diversification in theoretical approaches utilized and the pursuit of

deeper insights into significant challenges in the teaching, learning and assessing

of mathematical modelling and applications should lead to further advancement of

our field.
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Chapter 2

Mathematical Modelling as a Strategy
for Building-Up Systems of Knowledge
in Different Cultural Environments

Ubiratan D’Ambrosio

Abstract Knowledge is a cumulative succession of strategies developed by

humans living in different natural and cultural environments in response to the

pulsions of survival and transcendence. The objective of knowledge is to under-

stand, to explain and to cope with selected facts and phenomena of reality, ideally

reality as a whole. Mathematical modelling is such a strategy that deals with facts

and phenomena. In this chapter, how knowledge is generated (cognition), how it is

individually and socially organised (epistemology) and how it is expropriated by

power structure, institutionalised and given back to the people who generated it

through filters (politics) is discussed. These steps are treated in an integrated and

holistic way.

2.1 Introduction

In the text, I use, many times, the terms artifacts and mentifacts. These words,

together with sociofacts, were introduced by biologist Julian Huxley (1887–1975)

as the bases for a theory of culture (Huxley 1955). These terms have also been used

in cultural semiotics. Whereas artifacts are the elements of the material culture, the

mentifacts can be understood as the elements of the mental culture. Mentifacts

include the symbols and codes of a culture, the signifier and the artifacts are related

to the users of signs, the signified. Mental culture can, therefore, be regarded as a set

of symbols and codes. This is studied by several authors and I mention Umberto

Eco as a good reference. Particularly relevant are folkloristic studies in which

models, that is, artifacts, come from mentifacts (Hale 2013).

I base my arguments in a behavioural hierarchy that leads to individual behav-

iour, which includes learning, the acquisition of knowledge and strategies for

action, and to social behaviour, which results from the encounter of an individual
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and another individual. These behaviours, individual and social, generate the

context of cultural behaviour, including the processes of cultural transmission and

mutual exposure of diverse cultures, are objects of study of the dynamics of cultural

encounters. The transfer of knowledge, particularly of technology, is a crucial issue

in the analysis of the process of development, fundamental to understanding the

process of globalisation.

Preliminarily, I am interested in understanding the process of learning, acquisi-

tion of knowledge and strategies for action, that constitute a hierarchy of

behaviours.

2.2 The Generation of Knowledge

Initially, it is the individual behaviour, which implicitly includes the processes of

learning and, in particular, of the acquisition of language. Following this, we have

social behaviour that develops and evolves within the so-called educational

process.

Therefore, social behavior becomes more complex and generates a cultural

phenomenon. It is vital to understand how arts and techniques, which incorporate

artifacts to reality, develop into ideas, such as religion, values, philosophies,

ideologies and sciences, as mentifacts, which are also incorporated to reality in a

broad sense, that is artifacts +mentifacts + natural facts and phenomena. Once

incorporated to reality, artifacts and mentifacts change it. Thus I conceptualize

technology as the synthesis of artifacts (instruments) and mentifacts. That is,

technology represents a merger of doing with the knowledge, contributing to the

ways that man deals with reality and copes with situations and problems. Not only

material instruments, such as tools and practices are responsible for action, but also

the substratum of mentifacts, mainly religion and ideology. A very pertinent

example is the agricultural use of transgenic. In history, the emergence of the

gothic is an example. Instruments, both material and intellectual, such as counting,

are responsible for ad hoc solutions.

We may understand the construction of knowledge as a three-step process:

1. How are ad hoc practices and solution of problems developed into methods?

2. How are methods developed into theories?

3. How are theories developed into scientific invention?

While methods are essentially a rational and coordinated use of techniques,

theories are impregnated modes of explanation and understanding, based on myths,

on spirituality and even religions, on science and mathematics and in ideology,

which are all mentifacts.

Let’s examine in more detail each step and the dynamics of their evolution. We

discuss the learning process as something that creates a context which is the

interaction of a genetic program and the environment. This is the subject of an

important line of research, usually identified as ‘nature versus nurture’.

36 U. D’Ambrosio



Since the early philosophers this discussion is central. The psychologists have

joined the philosophers over the relative importance of the environment, that is,

upbringing, experience, and learning (‘nurture’), and heredity, that is, genetic

inheritance (‘nature’), in determining the make-up of human personality and of

intelligence as an organism, as related to behaviour and knowledge. The implica-

tions of these discussions for eugenics are obvious, in which differences in the

capacities of individuals (and hence their behaviour) can be attributed to inherited

differences in their genetic make-up.

Moving into these discussions leads to the theme religion versus science. Recent

research leads to what has been called the epic of creation versus the epic of

evolution. This is an area that gains in importance.1

I will try to avoid going into this discussion by just assuming life as an

observable fact and recognizing that body and mind follow parallel and

interconnected paths in this process of interaction of the genetic program with the

environment. In the process, reality is recognized and analysed, thus originating

intentional actions, concepts of meaning, which are response to will and need.

Space, time, causality, imitation, the ludic and other categories play important roles

in the process of interaction of the genetic program with the environment.

This is well illustrated by child behaviour. The concept of reality changes step by

step, and the child, initially reacting only to instincts of survival (breathing,

eating� need) incorporate decision-making (� will) and go from individual behav-

iour to social behaviour. The action of a child which initially results purely from

their perception of situations and objects in their self-centred universe, changes

upon reflection on the consequences of the action. Thus proceeds a modification of

the action, considering all the information resulting from the complex of the senses,

the emotions and memory combined. This action changes reality by adding facts,

both artifacts and mentifacts (i.e., objects, things, ideas, and values), to that reality.

Such change of reality by the action of the individual immediately provokes new

thinking, new behaviour, interaction with new information already stored and

newly acquired information. As a result, new action is initiated, with immediate

effect in reality and, as a consequence, the addition of new facts. It is the individual

as a maker of the reality by the addition of facts produced by the individual.

Man assumes the role of a creator, generating knowledge (mentifacts) and its

thingification (in the sense of becoming an artifact). I use the term thingification to

emphasize the material aspect of the action. Many authors, for example Marx, have

used the word as well as reification. Both knowledge and their thingification are in

the form of arts, sounds, objects, things in general, ideas, images, fantasy, concepts,

theories, values and interpretations, in order to cope with, to understand, and to

explain reality. They are added to the existing reality, enlarging and remaking it, to

best fit the individual needs and will. These remarks are appropriate to discuss

knowledge of different cultural systems, as it occurred in the conquests after

1 See, for example, ZYGON: Journal of Religion & Science, Volume 44 Number 1, March 2009,

which is entirely devoted to the theme.
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Columbus and the emergence of other knowledge systems as a result of the

dynamics of cultural encounters (D’Ambrosio 1992). The knowledge cycle intro-

duced in this chapter, served as the basis for elaborating Figs. 2.1, 2.2, and 2.3 used

here.

to cope with,
to explain,
to understand

INDIVIDUAL
generates
individual
knowledge

informs

REALITY:
natural, facts and phenomena, 
environmental, socio-cultural, 
emotional

Fig. 2.1 The cycle of individual generated knowledge (After D’Ambrosio 2009, p. 90)

to cope with,
to explain,
to understand

INDIVIDUAL
and the GROUP:

SOCIETY, PEOPLE

generate 
social

knowledge

informs

REALITY:
natural, facts and phenomena, 
environmental, socio-cultural, 
emotional

Fig. 2.2 The cycle of social knowledge
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The individual is not alone. Gregariousness is a characteristic of animal species.

How do the individual and the other interact? Communication plays a fundamental

role in the interaction.

Particularly important is the emergence of language. When did utterance of

humans become a word (Kenneally 2007)? Language is greatly advantageous in

conveying to others individual will and needs. I will simply admit that through

communication, even before the emergence of language, individuals interacted

with others to produce knowledge and to making their behaviours compatible.

Similarly with ‘nature versus nurture’, there is a controversy about the ‘individ-
ual versus social’ in building up knowledge. The main question is how social

structures impact the cognitive structures of the individual and how structures of

REALITY
(≈ natural + socio-cultural + environmental

+ emotional)

... to explain,
understand,
deal with... informs

which generate
knowledge ...

This knowledge,
through codes,
symbols and

communication

is organized as FIELDS OF
KNOWLEDGE.

to serve
POWER.

an INDIVIDUAL,
the people
SOCIETY

... mystified knowledge,
through “filtering

systems”.

... it is given back
to the people as...

Then it is expropriated
by POWER systems

and ...

... institutionalized as
sectors and disciplines

and ...

Fig. 2.3 The full cycle of knowledge
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individual consciousness and cognition can and do impact the structures of society.

Essentially, the question becomes: how do individuals and society interact in

cognitive actions, as well as in socio-political actions? How do ideologies, for

example, languages, arts, religions, styles of knowing, become established, and

how are social actions coordinated, for example as political movements? (See Wu

2007)

Thus, through encounters and interaction of individuals, there is mutual expo-

sure and exchange of ad hoc practices and solutions of problems organized by each

individual as knowledge. These are in general different practices and solutions.

Through neurophysiological processes, as yet not well understood, which certainly

include language and mimicry, the ad hoc practices and solutions for common

problems, organized as individual knowledge, are shared and transformed, and

result in socially organized knowledge. Thus, the cycle of knowledge is represented

as in Fig. 2.2.

These two figures for the cycle of knowledge are understood as: (1) the cycle in

which REALITY informs the INDIVIDUAL, who processes the information and

exerts an ACTION (bodily and mental� individual knowledge) which affects and

modifies REALITY, which, once modified, informs (now incorporating newer

elements) the INDIVIDUAL, who realizes a different ACTION (bodily and

mental�modified individual knowledge), which again modifies REALITY, and

so on; (2) the cycle in which REALITY informs the GROUP (individual, society,

people), who processes the information and exerts an ACTION (bodily and

mental� social knowledge) which affects and modifies REALITY, which, once

modified, informs (now incorporating newer elements) the GROUP, who realizes a

different ACTION, which again modifies REALITY, and so on. Hence, we may

consider the individual cycle of knowledge, which is active as far as there is life:

. . . ! reality ! individual=group ! action ! reality ! . . .

This cycle synthesizes life as a dynamic process, to which every animal is

subjected. Action manifests in several ways. Action may be the result of instinct

and leads to the satisfaction of the pulsion of survival, meaning the permanent drive

towards the survival of the individual and of the species, in other words nourish-

ment and mating, which are subordinated to physiology, sociobiology and ecology,

as a common characteristic of all living species. I will clarify the use of the word

pulsion, rarely used in English. It is widely recognized that the English translation

of the texts of Sigmund Freud is problematic, particularly the concept of trieb,
which has been translated as “drive” and “instinct”. Both are not faithful to the

concept. Instead the French, Spanish and Portuguese translations use the word

“pulsion”. This word, which in the English language is used in different contexts,

rarely in psychoanalysis, represents very well my understanding of survival.

In the human species, survival is a pulsion, which is loaded with emotions and

intensions. Like every animal species, humans satisfy the pulsion of survival

developing strategies to work with the most immediate environment, which sup-

plies air, water, food, and with the other of the same species, necessary for
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procreation. This means, everything that is necessary for the survival of the

individuals and of the species. These strategies are modes of behaviour and

individual and collective knowledge, which include communication. Through

interaction, there is an action of learning how to cope with the pulsion of survival.

This gives origin to a form of communication between individuals which results in

sharing strategies for individual survival. There is a form of learning, which

involves mimicry and other sophisticated forms of interaction. Recent work in

primatology shows some rudimentary form of instruction in chimpanzees.

Humans differ from other animal species. The species homo subordinates the

strategies developed by other animal species for survival, a drive towards satisfying

needs, which is usually called instinct, to will. In other words, the homo species go

beyond survival and the continuation of species. Will leads to choices, preferences

and desires, thus to emotions. As a consequence, another pulsion, which I call the

pulsion of transcendence, is intrinsic to the homo species. The pulsion of transcen-

dence is responsible for the needs of explaining, of understanding and of creating

or, in other words, for transcending our own existence and projecting ourselves into

the past and into the future. This is responsible for the development of instruments

and techniques, for codes and a sophisticated communication system which has a

cognitive dimension and developed into language. The use of instruments and

techniques, of codes and communication, is organized as labor and power. For a

more detailed discussion see D’Ambrosio (2012).

In satisfying the pulsion of transcendence, the species homo develops the

perception of past, present and future, and their linkage, and the explanations of

facts and phenomena encountered in their natural and imaginary environment.

These are incorporated to the memory, individual and collective, and organized

as arts and techniques, which evolve as representations of the real (models), as

elaborations about these representations which result in organised systems of

explanations of the origins and the creation of myths and mysteries (mentifacts).

Some of the representations materialize as objects, concrete representations and

sophisticated instruments (artifacts).

All this behaviour encounters support in the memory, where myths, mysteries,

history and the traditions are organised, generally as religions and value systems.

Explanations of the origins and the creation and of myths and mysteries generate

curiosity and will to know the future, and give rise to divination organised and

theorised as divinatory arts.

Probably the most basic of all systems of knowledge, present in every culture,

are the divinatory arts. The human species, different from any other animal species,

developed the concepts of past, present and future, and how they are enchained.

Nothing is more characteristic of the human species than the desire to know the

future. Thus, divinatory arts, such as astrology, the oracles, logic, the I Ching,

numerology and the sciences, in general, through which we may know what will

happen, are exemplary systems of knowledge. All these divinatory arts are all based

on observing, comparing, classifying, ordering, measuring, quantifying, inferring,

which are the quintessence of mathematical ideas.
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The cycle of knowledge leads to the explanation of individual behaviour, social

behaviour and cultural behaviour as the result of the incessant change of reality, as

expressed in the cycle . . .!reality!individual/group!action!reality!. . ..
Systems of knowledge reveal not only their convenience to explain reality, facts

and phenomena, but also they are important strategies to cope with daily situations

and problems not only for the individual, but for society and the people in general.

Societies are organised subjected to different forms of power structure. The

power structures recognise the advantage of mastering these strategies for their

benefit, hence they proceed in expropriating and controlling these strategies, and

consequently the system of knowledge in which they are based. Thus, the knowl-

edge shared by the group is detained and controlled by the power structure and is

institutionalized as clergy, as norms and laws, as disciplines, as academies, indeed

in many ways, which are controlled by classes subordinated to the power structure.

They are given back to the people as mystified systems of knowledge, subjected by

filters. The mystification and filters guarantee that the systems of knowledge and the

strategies associated with them do not challenge the power structure.

The full cycle of knowledge includes its generation, individually and socially, its

organisation, its expropriation, institutionalization, transmission and diffusion,

through systems of education and different forms of filters (such as examinations,

degrees, certifications). Thus we are led to the full cycle of knowledge, as in

Fig. 2.3.

These steps shown in Figs. 2.1, 2.2, and 2.3 are commonly treated as disciplines,

respectively cognition, epistemology and politics. A serious limitation to under-

standing knowledge, as an intrinsic characteristic of the human species in response

to the pulsions of survival and transcendence, is to treat it in separate steps, through

the academic disciplines just mentioned.

2.3 How About Modelling?

Consider again the cycle . . .!reality!individual/group!action!reality!. . .. In it,

selected facts and phenomena of reality inform individuals and groups. Obviously, no

one has full access, awareness and knowledge of reality; no one is omniscient. Our

natural limitations give us access to selected facts and phenomena. The reason and the

form of selection are extremely complex. They go from an uneven capability of

individuals and groups to receive information, in some cases related to sensorial

qualities or deficiencies, in other cases to the interest in the information received. The

interest may be because of needs, or preference or merely by chance. Anyway, the

information received is processed, in a way not yet well understood. The individual or

group exerts an action of generating artifacts and mentifacts from the selected part of

reality. They are incorporated into reality as representations, which inform the individ-

uals or groups and the cycle goes on. The main question is then, how individuals and

groups deal with the representations of selected facts and phenomena.
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In a representation, reality is restricted to selected facts and phenomena and the

result is a sort of “isolated individualized reality”. To deal with the “isolated

individualized reality”, individuals attribute codes or parameters to the selected

facts and phenomena. These parameters may be of a mathematical nature, such as

mathematical forms and mathematical symbols. The isolated individualized reality,

with the mathematical symbols attributed to the selected facts and phenomena, is a

mathematical model of it. As an example, consider a pariko, typical of an Amazo-

nian culture (Fig. 2.4). This artifact is a model of a complex social reality. It serves

as a form of identity of its owner: indicates age, affiliation, origin and many other

components of social life. However, it is impossible to attribute to this model

parameters of a mathematical nature. Other examples may be drawn from

urbanization.

Through models, humans try to give explanations of myths and mysteries, and

these explanations are organized as arts, techniques, theories, as strategies to

explain and deal with facts and phenomena. These strategies, have been historically

organized, in different groups, in different spatial and temporal contexts, which are

the support of cultures, as systems of knowledge.

The result is a sort of “isolated individualised reality”, restricted to the repre-

sentation of selected facts and phenomena. The “isolated individualised reality”,

dealt with the resource of parameters, is a model. Individuals are informed and

elaborate on the model analysing the parameters associated with it.

Intellectual resources allow the individual to deal with the model and the

parameters created by the individual are representations of facts and phenomena

of the reality in the broad sense. The most common intellectual resources are based

on observing, comparing, classifying, ordering, measuring, quantifying, and

Fig. 2.4 Amazonian pariko
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inferring. As mentioned earlier, these intellectual resources are the basic pillars on

which mathematics is based.

These parameters may be in terms of formal mathematics. I call mathematical
modelling the process of dealing with a model in which the parameters associated

with it, which is the objective of coping with and explaining selected facts and

phenomena of reality, are in terms of formal mathematics.

The practice of mathematical modelling is an iterative method starting with

reality, with which we started by selecting parameters, constructing a model,

proceeding to its mathematical analysis, verifying results through control proce-

dures and reformulating the model, repeating the analyses and control until we

reach a satisfactory perception of the selected facts and phenomena. This is

illustrated by the diagram in Fig. 2.5.

In each step, the practitioner reformulates the choice of parameters and resumes

the process, which eventually allows a better understanding of the selected facts and

phenomena of reality, which is the goal that justifies our practices as scientists.
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Chapter 3

The Meaning of the Problem
in a Mathematical Modelling Activity

Lourdes Maria Werle de Almeida and Karina Alessandra Pessoa da Silva

Abstract In this chapter we present a reflection on the assignment of meaning

associated with the problem identified and solved in a mathematical modelling

activity. Initially, we present our understanding of the notions of problem and

mathematical modelling. To treat the meaning issue about the problem in modelling

activities we have based our approach in Peircean Semiotics where the meaning is

associated with the generation of interpretants during the development of activities.

To illustrate our understanding, we describe briefly, the case of a modelling activity

developed by students in a mathematics degree course, presenting the generation of

interpretants by one student and indications of meaning assignment for the prob-

lems revealed by him.

3.1 Introduction

Discussions about the meaning associated with meaningful activities have been

recurrent in literature (see, e.g., Hoffmann 2004; Steinbring 2002). In general,

arguments about what is meant by meaning or about how its assignment can be

inferred, are rare in research or experience with mathematical modelling reports

although not non-existent (see, e.g., Ärlebäck and Frejd 2013; Stillman 2011).

Beyond the wariness about what is meaning, different aspects involved in a

modelling activity development need to be considered. Thus, one can ask: the

meaning would be about what? The meaning could be about the content, which

appears in the activity, about the problem, about the relationship established with
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reality through the problem, amongst other factors. In this chapter, particularly, we

present considerations about the meaning assigned by students to a problem which

has been studied in a mathematical modelling activity. There are many different

views taken on the objectives and the traditions of the introduction of problems in

mathematical classes (see, e.g., Borasi 1986; Erickson 1999; Poggioli 2001;

Zawojewski and Lesh 2003) and we will present some considerations about the

use of problems.

With regard to mathematical modelling activities, we argue the development of

an activity is guided by the search for a solution to a problem. We therefore believe

that the problem is also an object of study in modelling activities and highlight the

meaning assignment to this object as an important issue for research into mathe-

matical modelling education.

In this chapter, we base our considerations about meaning on the semiotics of

Charles Sanders Peirce (1839–1914), the Peircean Semiotic, analysing the genera-

tion of interpretant signs of students when they are solving a problem while

developing mathematical modelling activities. (For English readers consult Peirce

1992, 1998.) To support our argument, we treat the involvement of one student

studying for a mathematics degree course and his interpretants during the develop-

ment of a modelling activity about tree pruning.

3.2 Problems, Mathematical Modelling and Meaning

For many centuries, there has been a focus on understanding what could turn into a

problem. In addition, in this context, Euclides (between centuries III and IV B.C.)

referred to a problem as like something which is a part of an observation imbued

with some knowledge, and exploring something yet unknown, treating of a problem

as an axiomatic construction. Yet, the mathematician-logician-philosopher, Charles

Sanders Peirce, considered that the problem-situation is the base for a question. It

would become problematic in its own subjection to a question. George P�olya
(1887–1985), author of the book How to solve it (Polya 1971), claims a problem

only exists as a problem when there is a difficulty which the problem solver wishes

to overcome. There is the imperative to want to resolve something with which we

have difficulty. Poggioli (2001), on the other hand, argues that a problem is a

situation which the subject wishes to do something about, but does not know the

necessary actions to materialize this goal and needs to develop the means to this

materialization. Zawojewski and Lesh (2003) argue that, in general, for it to be a

problem there is not a readily accessible procedure that guarantees or completely

determines a solution, but the individual must make a solution as well as they can

do it. Considering these interpretations, the term problem is understood in this

chapter to be like a situation, which the individual does not have a scheme a priori

for its resolution and there is not specific procedures previously known or solutions

yet indicated. It is with this understanding we explore the problem in mathematical

modelling activities.
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In general, the term mathematical modelling refers to the search for a

mathematical representation for an object or non-mathematical phenomenon. The

modelling process creates a complex structural relationship between two entities of

different epistemological nature: the situation that is to be modelled and the

mathematical system. So, with a mathematical modelling activity we approach,

through mathematics, a problem-situation not essentially mathematical (Almeida

2010). A mathematical modelling activity can be described in terms of an initial

situation (problematic), of a final desired situation (which represents a solution to

the initial situation) and of a set of procedures and concepts which are necessary for

one to go from the initial situation to the final one. Literature usually refers to this

initial problematic situation as the problem-situation; and, in general, a mathemat-

ical representation or mathematical model is associated with the final desired

situation. Lesh and Doerr (2003) refer to mathematical models as being conceptual

systems that are expressed using external notation systems and that are used to

describe or explain the behaviors of other systems. So, in a mathematical activity

the individuals do not have a scheme a priori that indicates specific procedures but

are operating on their own interpretations and have to decide what the problem is. In

this sense, the most of their time and their effort tends to be on trying to establish the

meaning assignment of the situation, of the problem.

Some examples of research which refers to meaning assignment to procedures of

the students in mathematical activities are Blomhøj and Kjeldsen (2011) and

Ärlebäck and Frejd (2013). In our research, considering the definition of ‘problem’
corresponds to the initial stage of a modelling activity development, we sought to

understand the meaning assignment by the students for the problem when they try

out modelling activities. Therefore, in modelling activities, it is more than defining

a problem; it is necessary to solve the problem. In this process, different represen-

tations are used constituting signs that point, indicate or represent mathematical

objects.

For it to be possible to understand a meaning assignment for a problem and for a

mathematical object, it is necessary to analyse the signs that the students use to

suggest, indicate or represent the object that they are dealing with. To treat issues

related to meaning assignment in mathematical modelling activities we base our

approach on that developed by Charles Sanders Peirce who organized a general

analytic-philosophical doctrine – Peircean Semiotics. The sign, according to Peirce
(1972), has the function of representing an object to someone (an interpreter),
creating in someone’s mind another sign, the interpretant. This new sign is a

rational process that is created in the interpreters’ mind (i.e., in the mind of a

human being). Thus, the interpretant is another sign that can indicate the meaning of

the first. Therefore, the meaning of a sign can be evidenced in another sign: the

interpretant. In this way, a method to understand the meaning assignment for the

problem is to analyse the interpretants of the students during the resolution of a

problem as well, that is, what is said about this problem after the signs were

generated. Taking into consideration aspects of Peirce’s theory of meaning and

interpretants we addressed the meaning assignment for the problem in mathemat-

ical modelling activities.
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3.3 Design of the Study

In order to achieve our aim of understanding meaning assignment for the problem

in mathematical modelling activities we present a case study where we analyse the

interpretants of one interpreter (student) when he developed modelling activities.

The interpreter, who is the subject of our research, is a student of the 4th year of a

mathematics degree course of a Brazilian University involved with modelling

activities in a Mathematical Modelling subject.

Students were engaged in some modelling activities during 1 year (2011). The

activity that we refer to in this chapter is the concluding activity of the subject and

was developed by a group of students at the end of the second half of this year. The

development of the activity lasted for 05 h (classes). Although the activity has been

developed by a group of students, we analyse the interpretants (signs) of one student

(interpreter) of this group to show the utility of the semiotic lens to act as a window

on meaning assignment. This student participated in all classes as well as in a semi-

structured interview. We analysed the written report, video and audio collected

during the development of the activity. The activity that the students engaged in is

about the tree pruning and streetlights in Londrina city and was developed by a

group of six students. We present interpretants of one of these students, named here

as Carlo, a pseudonym.

3.4 The Meaning of the Problem and the Generation
of Interpretants in Mathematical Modelling Activities

For the development of the activity students had to define a problem to study in

groups in their mathematical modelling classes. One student (Carlo) suggested:

“The street from my house is kind of dark – it is not very bright; the neighbors and I

think there are problems with the size of the trees and their pruning; could we study

something about it?” From this idea, the students collected data from websites and

had access to the Manual of Public Lighting of Companhia Paranaense de Energia

(Copel 2011). Amongst the information provided in the Manual of Copel, students

found a reference to tree pruning presented by an image as shown in Fig. 3.1.

To perform the pruning of the tree, one takes into account its size, the height of

the lamp post next to it (h), the distance (D) the tree is away from the lamp post and

the type of lamp used. Using this information, the students were interested initially

in studying the problem of street lighting on the street where they live. The student,

who suggested the theme for the activity, lived on the street Sierra Parecis. Later,

they also collected data at the street Bento Munhoz of Rocha Neto, next to the place

where people walk at the lakeside. Considering the data collected at the two streets,

the students posed the problem: What is the pruning point of trees for these streets

according to the type of lamppost?
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This problem is a sign, an interpretant of the student, and indicates that, in a

certain way, the meaning for the problem is associated with the fact that the issue

that the modelling activity intended to study – the pruning point of trees – is exactly

a problem on the street in which the student lives (Sierra Parecis). Moreover, the

choice of the street Bento Munhoz of Rocha Neto also indicates that there was a

certain meaning in the problem that the activity proposed to study as indicated in

the response of Carlo in an interview:

Carlo: The Street BentoMunhoz of Rocha Neto is next to a place of people walking

at the lakeside so it must be very well lit!

In this case, the student’s assertion reveals a social concern. Then the meaning to

the problem can arise also from that concern. To solve the proposed problem, the

group of students had to ‘produce’ the necessary data. The existence of different

types of streetlights in the two streets required them to perform measurements in

places with regard to the height of the lampposts, lamp height and types of trees.

A mathematical approach to the problem was permeated by the generation of

interpretants in order to obtain a solution. The meaning assignment to the problem

was revealed during the construction of mathematical models associated with the

solution. The relationship between the problem and mathematical objects is shown

in the setting out of the development activity. Students organized this into three

steps: the position of the lamp on the lamp post, the radius of lighting curve and the

lighting, as shown in Fig. 3.2.

To determine the position of the lamppost they used similarity of triangles. This

denotes mathematical knowledge that assists in decision-making for developments

in solving a problem:

D: distance from the pole to lowest branch of the tree
h: the position that the lamp is mounted
H: height of the pruning

H = −0.26 D + h (the function that indicates the height of pruning)    

Fig. 3.1 Figure representing the height of tree pruning (Handbook of Public Lighting – Copel

2011, p. 23)

3 The Meaning of the Problem in a Mathematical Modelling Activity 49



Carlo: For the deduction of our model, we went to the field, we took

measurements. Then we needed the height of the lamp, and then we

used similarity of triangles to try to find the height of the lamp. We took

the height of [stops] is [stops]. We actually calculated the height of the

lamppost. Then it was easier for us to measure the height of a person to see

that he/she was away from the edge of the light and we used the similarity

of triangles to find the height of the lamppost.

It thus appears that the interpretants can be linked to students’ procedures. The
procedures used by the students to find a solution also indicate meaning assignment

to the problem. The interpretants indicate what the student needs to do and how to

do it to find a solution to the problem. Awareness of the consequences of the use of

signs to represent the object is a condition to “determine what a concept means”

(Peirce 1989, p. IX). While acknowledging that the mathematical object was

something ‘simple’ for the education level, the meaning assignment to this object

may be a result of the relationship between the mathematical object and the reality

around them.

Interpreting the results beyond the reconsidering of the mathematics in a

problem-situation is an aspect that also configures the assignment of meaning to

the problem. This is what we can infer from examining Carlo’s answer

(interpretant) when asked about the use of the graphic resource for representing

the problem in Fig. 3.2.

Carlo: Because I [stops] In fact in the following, in the plan it was easy to view;

only we found that the tree is not a linear thing, especially the crown of

her! The crown of it had a very similar behavior to that of a sphere. So

what happens? If I traced the ray of light considering a branch like this

[gesturing], I might have a branch, vertically [stops] or I could have a

Step 1   Position of the lamp Step 3   Lighting curve

Step 2   Ray of light   It was
16 metres using a
measuring tape.   

y = 0.375 x +6
for the lamp posts of the street Sierra Parecis
y = 0.54375 x + 8.7 
for the lamp posts of the street Bento Munhoz da Rocha

Equation of a line

(
x

y
mx0)xmyy ==0

Projection on the
Cartesian Plane

Fig. 3.2 Signs (interpretants) generated by the students in the activity
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branch horizontally, as I will consider the line for pruning now by looking

for one branch and not to another? So, we found that the model in the

plane would not be an interesting condition so we had to go to 3D. And

then we believed the graphic display gives an abstraction much better of

the situation for you to understand and speak [stops] the point of the cone,

the ray and of the light. We took into consideration and doubted [stops]

will be a cone, will be a sphere but the graphic I think it helps you, allows

you to view to see how this is happening the behavior of these different

representations. In other words, the intersection of the cone with the

sphere, of course had a little more work, but we do not focus on this

question of deduction of the equation of the sphere, the equation of the

cone but this was not our object of study.

By mentioning the importance of refining the problem situation to try to repre-

sent it mathematically through a three-dimensional graph, the argument brought to

the fore by Carlo was that “models provide only approximations of the real

behavior” (D’Ambrosio 2009, p. 91). What is evident is that the intention of the

students was to make an approximation to reality. Although they acknowledged that

the model obtained was ‘simple’ from the mathematical point of view regarding the

level of education at which they were at, they proposed a more ‘sophisticated’
approach to the situation by means of computer resources, but showing a represen-

tation only. In this sense, the meaning consists of what Peirce (2005) designates as

“an idea of the feeling or predominantly an idea of acting and being acted” (p. 194).

Observing the models obtained from the height of the tree pruning for the two

streets as shown in Fig. 3.2, the students realized that there were differences between

the coefficients of each of the linear functions. From this observation, they reflected

on why Copel uses a ‘standard equation’ (H¼�0.26 D+h) for tree pruning.

Carlo: Then yeah, we found two equations, but how [were] they related with

Copel’s? So what is the ideal pruning? We plotted the equations into the

graph [presenting graphs in the Cartesian plane see Fig. 3.3], [then] started

to notice that whenever these red here [pointing to the graphical

representation of f1(x) and f2(x)] are the ones Copel can translate but are

the same equation to Copel, the same angular coefficient and this is the

h [stops] of Munhoz of Rocha, which is well lit there and the g is the Sierra
Parecis.

Thus, in general, meaning assignment seems to be revealed through the famil-

iarity that the student has been building over the issue, indicating that interpretants

correspond with the interpretive effect that the sign produces in the mind. Taking

into account the statement of Peirce (2005) that the “meaning is the declared

interpretant of a sign” (p. 222), we can infer that generation of signs by the student

can support his answer that in two different streets the height for tree pruning is

different. On the other hand, the equation found for pruning height on the street

Sierra Parecis where the student lives, indicating that tree pruning is necessary on

this street is also an interpretant that reveals the meaning assignment to the

problem.
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3.5 Discussion and Implications for Teaching, Learning
and Research

The data analysed in this chapter comes from an activity at the end of the year of a

Mathematical Modelling subject. Thus the student whose interpretants we analysed,

was not a ‘newcomer’ to mathematical modelling. However for this activity,

particularly, the group of students had a need to collect data by going to the streets

to take measurements of trees and poles and in this sense, the activity is a challenge

even for students who have had previous experience with mathematical modelling.

Thus the student rather than using a fixed interpretation or procedure to process

data or to solve the problem, essentially operated on his own interpretation and

decisions and so the discussion and the communication with other members of the

group were important. What we can infer in this case is that the student’s use of

procedures to define and to solve the problem also may be an effect of the modelling

activities the student has experienced already.

If, on the one hand, the meaning of the definition of the problem ‘What is the

point of pruning trees for these streets according to the type of lamppost?’ can be

associated with a particular situation experienced by the student (Carlo who lives in

Sierra Parecis Street); on the other hand, the interpretants’ generation reveals that

the meaning of the solution would be accompanied by the experience the student

has had. This is what the statement of the student in the interview indicated: “we

found the model in the plane would not be an interesting condition, so we had to go

to 3D.” This result is similar to a finding by Ärlebäck and Frejd (2013) in which the

authors observed that the ‘signifiers’ of the students were, to some extent, associ-

ated with lack of modelling experiences of the students.

Fig. 3.3 Graphical representation of the lines indicated by Copel’s pruning
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According to Steinbring (2002, p. 113) “Mathematical concepts and

mathematical knowledge are not a priori given in the external reality, neither as

concrete, material objects, nor as independently existing (platonic) ideas”. They are

mental objects (Changeux and Connes 1992) or social facts (Searle 1997) or

cultural objects (Hersh 1997). So the meaning of these theoretical, social or cultural

objects has to be generated by the individual in interaction with experience and

abstract reference contexts. Mathematical modelling activities have potential to

establish these interactions, or at least provide students with indications of how

these interactions can be. Furthermore, the activity described in this chapter indi-

cates that it requires the student to combine several tools (procedures, principles,

use of concepts) to obtain a large and complex tool that allows them to point out a

solution.

When we study mathematical modelling using a semiotic perspective we can

infer that the interpretants that Carlo generated reveal what he knows about tree

pruning, streetlights and until now about similarity of triangles and projection of

three-dimensional figures. In this sense, our argumentation about meaning assign-

ment is aligned to Hoffmann (2004) when he notes that the interpretant might be a

spontaneous reaction within a person’s mind but it also can be any arbitrarily

created meaning within a certain group of persons or the shared standard reaction

to a certain sign within a group which may be defined in a general way by certain

societal or cultural characteristics.

Blomhøj and Kjeldsen (2011), in addressing the reflections on skills in mathe-

matical modelling by students involved in a project, note the meaning corresponds

to internal reflections of students. These authors propose that “they need to be

exposed to didactical situations that challenge them to reflect upon and critique the

modelling process and the function of models in different contexts” (p. 386).

In our research, when we proposed the concluding activity of the subject in

classes, students were faced with a challenging situation that made them reflect on

their procedures as related to defining a problem and with respect to the tools used

for its resolution. In this case, Carlo used computer software to improve the

solution. Although he has used computer software, the interpretants do not clarify

whether he accepted the solution proposed by the software or if he engaged in some

reflection on its use. In this regard, a survey focused on assigning meaning and

reflection to the object with the aid of computers is a future research area to be

developed. Stillman (2011), in this context, argues that in modelling, reflection can

make sense only when related to mathematical content and the processing decisions

by means of which the content is evoked and implemented. The author defends the

use of metacognition to attain crucial importance to promote reflection when

students are engaging in mathematical modelling.

We hope that reflection on the analysis of interpretants in a mathematical

modelling activity can also reach other researchers who, like us, seek to understand

the meaning assignment of students involved in modelling activities. A semiotic

approach to mathematical modelling activities in the classroom can guide the

teacher’s work aimed at assigning meaning to their students as well as being a

better basis for teachers’ decision making and interventions.
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Chapter 4

Extending the Reach of the Models
and Modelling Perspective: A Course-Sized
Research Site

Corey Brady, Richard Lesh, and Serife Sevis

Abstract For over 30 years, researchers have engaged in inquiry within the

Models and Modelling Perspective (MMP), taking as a fundamental principle that

learners’ ideas develop in coherent conceptual systems called models. Under

appropriate conditions, such as in Model Eliciting Activities (MEAs), this research

has shown how learners’ models can grow through rapid cycles of development

toward solutions involving creative mathematics. These externalized models, and

other thought-revealing artifacts, can become rich objects for reflection by learners,

for formative assessment by teachers, and for analysis of idea-development by

researchers. This chapter describes a new research effort to expand the reach of this

MMP tradition, engaging questions about the interconnected models and modelling

processes of students and teachers at larger, course-length scales.
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4.1 Introduction

In this chapter we discuss ongoing work that is intended to carry forward the agenda

of the Models and Modelling Perspective (MMP). We are in the process of

assembling and testing a web-based research repository, dedicated to the creation

and refinement of a suite of research tools to study the interacting and continually

evolving modelling processes of students and teachers, in the context of a course-

sized collection of curricular materials dealing with Quantification and Data

Modelling. Our motivation and rationale for building this site resonates strongly

with currents in the international research community, as seen at ICTMA 16. The

site builds on the foundation of MMP research, which in turn was shaped by the

perspectives of the American Pragmatists, as well as both cognitive and sociocul-

tural constructivist perspectives. With it, we hope to support the kinds of extended

inquiry and collaboration needed to broaden the reach of the MMP community.

We begin our account by reviewing the framing research questions of the MMP

tradition. We then describe how these questions connect with claims about the nature

of knowledge, and we show how MMP researchers have developed research tools to

produce data and evidence to answer these questions. Next, we focus in on our

ongoing research, describing the assumptions and conjectures that underlie our

development of a course-sized research site to carry forward these lines of inquiry.

As with prior MMP research, we show how our work will create and assemble new

research tools to generate evidence for the new kinds of question we are asking. In

particular, we suggest how it will support investigations into the various relations and

interactions between pairs of constructs not always recognized as interdependent,

such as: (a) student development and teacher development; (b) conceptual knowledge

and procedural knowledge, facts, and skills; and (c) learning and assessment (both

formative and summative).

4.2 Research Questions Addressed by the MMP

As a program of research, the MMP was developed explicitly to investigate the

following kinds of questions about learning:

• How can we characterize realistic problem-solving situations where solutions

demand elementary-but-powerful mathematical constructs and conceptual

systems?

• What kinds of “mathematical thinking” are emphasized in such situations?

• What does it mean to “understand” the most important of these ideas and

abilities?

• How do such competencies develop, and what can be done to facilitate their

development?
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• How can we document and assess the most important (deeper, higher-order,

more powerful) conceptual achievements that are needed for full participation as

citizens in increasingly complex societies and professions? and

• How can we identify students who have exceptional potential that is not ade-

quately measured by standardized tests?

These questions are tightly connected with the portrayal of knowing and learning

that has been developed through MMP research. Here, the MMP builds on per-

spectives originating with Piaget and Vygotsky as well as with the American

Pragmatists (c.f., English et al. 2008; Lesh and Doerr 2003). In particular,

Mousoulides et al. (2008) summarized key elements of the MMP debt to Dewey,

Mead, James and Peirce:

• Conceptual systems are human constructs, and thus also are fundamentally

social in nature (Dewey and Mead).

• The “worlds of experience” that humans strive to understand and explain are

rarely static. They are most often products of human creativity, continually

changing in response to the evolving needs of humans who create and

re-create them (James).

• Meaning, in this setting, tends to be distributed across a variety of representa-

tional media (ranging from spoken language to written language, to diagrams

and graphs, to concrete models, to experience-based metaphors). Each of these

representational forms foregrounds some facets of experience and backgrounds

others (Peirce).

• Knowledge is organized around concrete experiences at least as much as around

abstractions. The ways of thinking needed to make sense of realistically complex

situations nearly always must integrate ideas from more than a single discipline,

textbook topic area, or theory (Dewey).

• In a world filled with technological tools for expressing and communicating

ideas, it is naı̈ve to suppose that all “thinking” goes on inside the minds of

isolated individuals (Dewey).

4.3 Claims About the Nature of Knowing and Learning

MMP research, rooted in these perspectives and pursuing questions such as the ones

listed above, has illuminated the nature of knowing and learning in authentic

problem-solving settings. A key feature of such settings is that they challenge

learners to engage in original mathematical work (i.e., to produce mathematics

that is new to them), rather than merely applying mathematics learned from an

authoritative source. There are many dimensions to the image of knowledge that

has emerged from this research; in this section we indicate three such dimensions

that have been influential in guiding inquiry into both teacher and student knowl-

edge. Then, in the following section we describe how the MMP develops and
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refines research tools to operationalize these dimensions of knowledge, permitting

them to be externally expressed in thought-revealing artifacts created by the

learners themselves.

Dimension 1 Practical knowledge is understood as an interpretation system for

making sense of phenomena. In particular, this means that in realistic problem

settings, experts distinguish themselves from non-experts not only by what they do
but also by what they see in such situations. Moreover, learners’ concrete past

experiences and accumulated models also serve as lenses through which they can

view and interpret new situations. Adopting this view also suggests that many

aspects of learner’s knowledge will be tacit and instinctive. Learners may be able

to use these knowledge resources to guide actions before they can subject them to

analysis as hierarchical, logical structures of rules and procedures. That said,

interpretation systems have the property that they are both structures for action

and structures that can be reflected upon. That is, knowledge as models and

interpretation systems can serve as (a) windows or lenses which one can look
through to view the world, or (b) objects in themselves which one can look at
and analyze.

Dimension 2 Knowledge is constituted as much by connections forged by the

learner among big ideas of the domain and between these ideas and prototype

situations, as by an ‘intrinsic’ understanding of the big ideas themselves. Adopting

this view also suggests that many aspects of knowledge may be highly situated,

multiply-determined, and bound up with particular concrete experiences. The

process of learning may therefore be expected to be multi-dimensional and

non-linear, in spite of attempts to rationalize the teaching of material in the form

of logical, linear sequences. Thus, in articulating learning goals, a distinction must

be made between (a) lists of names of topics that should be emphasized in teaching,

(b) operational definitions of what it means for students to have learned these big

ideas, and (c) over-time accounts of students’ growing appreciation of the signif-

icance and interrelatedness of these big ideas (see Learning Progress Maps, below).

Dimension 3 As discussed above, important kinds of knowledge are characterized

by the ability to see situations in a certain way, or by having the skill or competency

to act in a certain manner. Mastery of this kind of knowledge involves knowing

when and where to apply it, as one conceptual tool among a repertoire. Adopting

this perspective leads to the practical construct of problem-solving personae:
stances or roles adopted by problem-solving individuals and groups, in response

to the situation at hand. Expertise in this dimension involves recognizing that no

single behavior, technique, or heuristic is valuable independent of context. More-

over, research into these personae increasingly suggests that while they may have a

logical or technical core, they also involve “soft” aspects of knowledge, including

attitudes, feelings, and beliefs (both about oneself and the domain).
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4.4 Research Tools and the Data Generated by Inquiry
Within the MMP

For each facet of what it means to know and understand, MMP researchers seek

means to operationalize that dimension of knowing. Their history of success in

doing this has supported the conviction that to conceptualize something is to be able

to externalize it in thought-revealing artifacts, given an appropriate research setting

to do so. Thus, for each dimension of knowledge we seek to study, MMP

researchers produce and refine tools to facilitate the generation of a relevant type

of research data and evidence. In this section we illustrate this with reference to the

three facets of knowing discussed above.

Dimension 1: Knowledge as Interpretation Systems Increasing awareness of the

complexity and diversity of learners’ emerging knowledge in this dimension has

been a principal driver of the genre of research activities known as Model-Eliciting

Activities (MEAs). Research has shown that learners can externalize their local,

situated systems of sense-making (which the MMP calls their models) given

compelling problem settings and the means to represent these systems. Each

element of the design of MEAs—both the activities themselves and their imple-

mentation in classroom settings—is driven by the goal of optimizing the processes

of idea development and improving our view into the models and modelling

processes of learners as they emerge in time.

Dimension 2: Making Connections Here we investigate students’ work in

constructing connections among the big ideas of a domain, as well as teachers’ sense
of inherent connections, and teachers’ sense of the connections that their students are
actually making. Researching this dimension of knowledge implies additional design

criteria for MEAs (in particular, that these occasions for authentic mathematical

production are also sufficiently open to permit different learners to incorporate different

combinations of big ideas in productive ways). In addition, a focus on connections has

also provoked the development of a series of specific research tools. Learning Progress

Maps support learners and teachers in recognizing and reporting connections that are

made between ideas at different stages in model development. Concept Analysis

Wheels support and document emergent thinking about the organization of the disci-

pline as a whole and the relations among its structures.

Dimension 3: Building and Using Problem-Solving Personae To study the broad

spectrum of problem-solving behaviors and their deployment as situations shift

over time, MMP researchers have developed a family of Reflection Tools (RTs).

For instance, RTs have been created to study shifting roles in group interactions;

changes in the affective dimension of “flow” (Csikszentmihalyi 1997) in the course

of problem-solving; shifts in groups’ self-assessment of their progress; and so forth.

For each behavior or experiential aspect, a separate research tool is developed to

support learners in the generation of thought-revealing artifacts focused on that

aspect. The wide range of these tools reflects the complexity of problem-solving

personae that have emerged in the context of MEAs.
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4.5 Extending the Questions; Expanding the Toolkit

Building on the successes of prior MMP research, we aim to study new levels and

dimensions of the models and modelling processes of students and teachers. For

example,

• How can learners’ models best be extended and expanded in classroom settings

where multiple problem solving teams have worked in parallel?

• How can learners connect their models and a domain’s big ideas with procedural
skills and with a familiarity and facility with tools of the domain?

• How do knowledge and models develop and mature at larger time scales?

While it has been possible to pursue many of the research questions discussed

earlier in this chapter through studies involving a single MEA or a sequence of

several of them, questions like the ones above require new design structures that can

be deployed over a course-sized experience. In particular, these questions require

attention to students’ and teachers’ ways of unpacking the models created in MEAs,

incorporating them into normal classroom discourse; integrating them into shared

canonical ways of thinking and generating mathematical interpretations; and

linking these models and big ideas with a host of techniques, tools, and procedural

skills. These activities have not yet been a focus of the majority of MMP research.

Studying models and modelling at these scales also demands the development of a

series of new research tools. These will be based on our existing assumptions and

conjectures but also designed to produce evidence that will test and revise or refine

those assumptions and conjectures and support iterative cycles of development—

that is, modelling at the researcher level.

4.6 Some Assumptions and Conjectures

In this section, we outline some of the assumptions and conjectures that form a basis

for our initial development of a course-sized research site. We focus on a subset that

are most relevant to currents in the international research discourse. In particular,

we describe our relations to research on (a) learning progressions, and (b) explicitly

teaching problem solving and heuristics.

4.6.1 Learning Progressions

Inquiring into the organization of knowledge and learning experiences as they

unfold in time, many researchers in the international community have engaged

the notion of a learning progression. In many manifestations of this approach, the

objective is to identify a trajectory among the big ideas of a discipline. This may be

grounded in mathematical structure, historical development, and/or studies of
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connections among ideas that are resonant with conceptions that have been

identified in learners before instruction has occurred. These documented connec-

tions are then used to rationalize a fixed, linear order in which the big ideas are

presented.

Our conjecture is that while this notion may be relevant for the study of teaching
or instructional planning, it does not adequately address the question of possible

productive connections among ideas from the viewpoint of the learner. For exam-

ple, in prior work with MEAs in the context of courses focused on data modelling,

we have found that the big ideas of a course can be productively connected in a

variety of possible ways, and that connections develop in multiple dimensions

simultaneously. Moreover, the earliest emergence of big ideas often occurs in

modelling solutions, where learners formulate embryonic concepts and procedures

by assembling ideas from a variety of textbook topic areas. Thus, facilitating model

development may demand a responsive instructional approach, which unpacks

these partially-formed insights and ideas, sorting them out and supporting more

explicit connections among knowledge elements. In particular, this leads us to the

conjecture that there may not be a single, a priori way to establish these connections

for all learners independent of their idiosyncratic and situated modelling work.

Our approach on this matter is critical to designing our course-sized research

site, affecting the very metaphors we have for learning at larger time scales. In

particular, we associate the learning-progression perspective with a ballistic model

of learning, in which a teach-first, apply-later philosophy is applied to propel

classroom learners through course materials, at least in its initial exposure to the

big ideas of the curriculum. In contrast, we explore the viability of alternatives to a

ballistic model, which we unpack below.

4.6.1.1 Alternative Model #1: Learning as Finding One’s
Way Around in a Terrain

Instead of envisioning concept development using a ballistic metaphor, where a

single point moves along a path in space, we find it useful to substitute a metaphor

where the discipline is conceptualized as a multi-dimensional terrain, and where big

ideas are conceived as something akin to mountains in a topographic view (see also,

Zawojewski et al. 2013). Within this metaphor, we have found that development

often proceeds in ways that resemble the formation and passage of interacting

weather systems over the region. This metaphor honors the value and specificity

of each manner of moving through the domain while also recognizing that different

routes and systems are possible, each with its own characteristic strengths and

weaknesses. Facilitating classroom inquiry in which different students or groups are

exploring different regions in the disciplinary topography, however, requires the

support of new instructional principles as well as additional tools and structures. If

successful, the classroom group’s exploration of a course’s terrain would yield a

range of possible “views” of the topographically high points (the big ideas),

constructing powerful personal models that illustrate connections among them
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and make use of different forms of procedural and conceptual knowledge. Learning

Progress Maps (prototypes shown in Fig. 4.1) are intended to support this instruc-

tional work and to study the utility of the terrain metaphor.

4.6.1.2 Alternative Model #2: An Evolutionary Model

for the Development of Ideas

Prior MMP research also suggests another alternative to the ballistic model: one

rooted in evolutionary theory. This metaphor highlights the importance of

the diversity of ideas within problem-solving groups; of conditions for these diverse

ideas to be placed in communication with each other; of an immanent mechanism

for the selection of some ideas over others to be pursued; and of a means for the

survival and accumulation of changes in ideas over iterative cycles. These four

factors—diversity, communication, selection, and accumulation—are critical ele-

ments of nearly all evolutionary processes that involve living organisms in complex

ecosystems. Hence in this view, the classroom is seen as an ecology in which a

diversity of ideas evolves, by analogy with the diversity of species in a natural

ecosystem. The classroom group is analogous to a team of naturalists, understand-

ing each of these idea-species both in terms of their history and in terms of the

relations with the conceptual environment. Like the terrain metaphor, this evolu-

tionary metaphor honors the organic and nonlinear development of knowledge that

the MMP has illuminated.

4.6.2 Teaching Problem Solving and Heuristics

Another current in international research involves revived interest in the explicit

teaching of problem-solving strategies. Some attempts to teach heuristics or

metacognitive strategies are rooted in work by P�olya (1945) and Schoenfeld

(1985, 1987), among others. This approach holds that context-free instruction in

heuristics may make the actual practices of problem solving more generally learn-

able. However, doing so by “cleaning up” descriptive accounts of real process and

Fig. 4.1 The ideas of a course conceived as a terrain (a) (b) (c.f., Zawojewski et al. 2013, p. 492).
Mapping progress (c) (c.f., Zawojewski et al. 2013, p. 498)
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presenting them as prescriptive guides to follow, can be based on a conception of

problem solving that sees the situated “messiness” of actual problems as incidental.

Moreover, these problem-solving approaches based on P�olya’s and Schoenfeld’s
work hold that instruction in abstract concepts should precede “application” of

these concepts to solve particular problems. In contrast, MMP researchers view

messiness and intuition as intrinsic elements of the modelling process. Problem-

solving individuals and groups appropriate the ideas they are working with and

make them effective tools for problem solving in idiosyncratic ways, relying on

dimensions of knowledge and understanding that emerge along with their solutions
(because of their problem-solving activity). This view is far from a situation in

which students are taught to recognize mathematical structures in the “givens” of a

problem and apply corresponding techniques.

How, then, does the MMP tradition answer the question of how to guide

problem-solving practice as it unfolds? At their simplest, models can be seen as

representations that capture what the modeller sees as the essence of the situation

they are attempting to conceptualize. They can employ a variety of media (like

stories, drawings, etc). As with other human attempts at representation, their

development tends to involve an iterative series of drafts—some building on prior

drafts, others exploring new directions, techniques, or emphases. Even though no

single draft may be the “best” in all dimensions, it is still possible to compare drafts

against one another, identify their strengths and weaknesses, and isolate the best

parts of different drafts, with reference to a given representational purpose.
Thus, an answer to the question of guidance comes with the “Self-Evaluation

Principle” of MEAs. Critical to the specification of MEAs is the purpose for which
the model will be used by a client. Given such a description, learners themselves

can identify the degree to which their current models are useful or powerful tools

for those specific purposes. Thus usefulness and power, with reference to the

specifications of the problem, enable learners themselves to assess and regulate

their work, rather than appealing to the authority of the teacher or to guidelines in a

decontextualized model of problem-solving behavior.

We should note in passing that we believe that the kind of situated knowing

described above is also a feature of effective decision making in teaching practice.

This has strong implications for our models of professional development. A view

like ours, which emphasizes contextual understanding, will favor models of teacher

professional development organized as in situ reflections on practice. A core

element in the design of our course-sized research site must therefore be to offer

the means for teachers to engage in “inline” modelling of their own students’
learning processes and to become “connoisseurs of student work,” sharing these

emerging skills and sensitivities with colleagues in a low-overhead manner and

with an eye to their usefulness and power in actual teaching settings.
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4.7 Implications for Design

In recent years, MMP research has helped to lay the foundation for the inquiry we

are currently undertaking. For instance, various efforts to assemble MEAs into

larger, coherent instructional unities have led to the emergence of Model Develop-

ment Sequences (MDSs), which support instruction that makes the most of MEAs

in practical classroom contexts. In particular, a given MDS may include the

following, in addition to one or more MEAs:

• Reflection Tool Activities, in which student groups turn their attention to

describing individual and group level processes, functions, roles, conceptions,

and beliefs. These include Ways of Thinking Sheets, various surveys and

questionnaires, Concept Maps, Observation Sheets, Self-Reflection Guides,

and Quality Assurance Guides for the products created in MEA activities.

• Product Classification Activities, in which students categorize the kinds of

thinking involved in their solutions to MEAs.

• Model Extension Activities, often involving dynamic mathematics software, in

which the class extends and formalizes promising elements of mathematical

thinking that have appeared in student solutions.

• Model Adaptation Activities, where students generalize models, transferring them

to related but different problems from those they originally were created to solve.

These MDS elements are designed to be highly modular, in order to accommo-

date (as well as to reveal) the needs and intentions of teachers that engage with

them. One example of how these components might be laid out across multiple days

in an instructional unit is shown in Fig. 4.2 (in this example, a 4-day sequence).

Importantly, each of the elements of the MDS acts as a research tool as well as an

instructional component. At the research level, the data produced by these elements

will serve to illuminate processes of learning and idea development that are critical

to answering our research questions. Similarly, many of the other research tools

described above (including Learning Progress Maps and Concept Analysis Wheels)

will generate new research data when developed iteratively by students and

teachers as the course unfolds.

Model-Eliciting
Activity
(42 min)

Homework
MEA Follow-Up

Personal MEA Report
(20 min)

Poster Preparation (10 min)

Poster Presentations (10 min)

MEA Quiz (5 min)
Homework Quiz (5 min)

Reflection-Thinking about
Thinking (20 min)

MEA Warm-Up (5 min)

Unit Test
(20 min)

Teacher-Guided
Model Exploration
Activity (22 min)

Teacher-Guided
Model Exploration
Activity (22 min)

Teacher-Guided
Model Exploration
Activity (22 min)

Homework-focusing on
Visualization, Extensions,

Connections, Abstraction, &
Generalization (35 min)

Homework-focusing on
Visualization, Extensions,

Connections, Abstraction, &
Generalization (35 min)

Homework-focusing on
Visualization, Extensions,

Connections, Abstraction, &
Generalization (30 min)

Reflection Debriefing (5 min)

Fig. 4.2 A 4-day segment from a model development sequence
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4.8 Conclusion: Contributions of a Course-Sized
Research Site

In building our research site, we aim to illuminate new dimensions of knowing and

learning, and we have already established initial versions of many of the research

tools that will support this work. As suggested in the discussion of the design of

MDS units, we are undertaking this work with a commitment to flexibility-in-use

that we describe as designing for scale. Our course materials are presented in

modularized and easily modifiable, reconfigurable, and extendable components.

Thus, teachers and researchers will be able to engage with these materials in a

variety of ways, each embodying a unique (teacher or researcher level) model of

knowledge development. The data and evidence produced by this diversity of

models will help support choices amongst them, to refine our own assumptions

and conjectures, and to iteratively shape our own understandings so that more

useful and powerful conceptions survive and accumulate. From our description, it

should be clear that we are conceiving this work as a modelling process for

ourselves. We aim for our course-sized research site to provide value also to the

broader teacher and researcher community,

• by facilitating the development, sharing, and testing of new Research Tools for

different facets of research into dimensions of learning as they emerge;

• by offering a shared setting for the refinement of the design principles for

research tools to produce evidence about learning at scales higher than the MEA;

• by fostering the accumulation of knowledge in teacher and researcher commu-

nities, exposing our process and inviting broad participation in constructing the

site; and

• by encouraging the formation of collaborative communities of teachers and

researchers, allowing participants to identify possible collaborators through

shared interests in research tools and facets of problems of research or

instruction.

This expansion of the MMP perspective builds on a long history of research

success, whilst opening the way to have a new level of practical impact on

classroom instruction.

References

Csikszentmihalyi, M. (1997). Finding flow: The psychology of engagement with everyday life.
New York: Basic Books.

English, L. D., Lesh, R., & Fennewald, T. (2008). Methodologies for investigating relationships
between concept development and the development of problem solving abilities. Paper

presented at ICME-11, Monterrey. Retrieved April 20, 2012, from http://tsg.icme11.org/tsg/

show/20

4 Extending the Reach of the Models and Modelling Perspective: A Course-Sized. . . 65

http://tsg.icme11.org/tsg/show/20
http://tsg.icme11.org/tsg/show/20


Lesh, R., & Doerr, H. (2003). In what ways does a models and modeling perspective move beyond

constructivism? In R. Lesh & H. Doerr (Eds.), Beyond constructivism: A models and modeling
perspective (pp. 519–556). Mahwah: Erlbaum.

Mousoulides, N., Sriraman, B., & Lesh, R. (2008). The philosophy and practicality of modeling

involving complex systems. The Philosophy of Mathematics Education Journal, 23, 134–157.
P�olya, G. (1945). How to solve it. Princeton: Princeton University Press.

Schoenfeld, A. H. (1985). Mathematical problem solving. New York: Academic.

Schoenfeld, A. H. (1987). What’s all this fuss about metacognition? In A. Schoenfeld (Ed.),

Cognitive science and mathematics education (pp. 189–215). Hillsdale: Erlbaum.

Zawojewski, J. S., Magiera, M., & Lesh, R. (2013). A proposal for a problem-driven mathematics

curriculum framework. The Mathematics Enthusiast, 10(1&2), 469–506.

66 C. Brady et al.



Chapter 5

Prescriptive Modelling – Challenges
and Opportunities

Mogens Niss

Abstract This chapter deals with a distinction between two kinds of mathematical

modelling purposes and related modelling endeavours, descriptive modelling and

prescriptive modelling. Whilst descriptive modelling is usually the focus of atten-

tion of practice, research and development in mathematics education, prescriptive

modelling – in which the aim is to design, organise or structure certain aspects of

extra-mathematical domains – is hardly noticed, let alone investigated in mathe-

matics education. After having presented three concrete examples of prescriptive

modelling, this chapter makes a plea for paying attention to its cultivation and

investigation in mathematics education contexts. It does so by analysing prescrip-

tive modelling in relation to the so-called modelling cycle and finishes by outlining

challenges and opportunities for such an endeavour.

5.1 Introduction

Classically, the purpose of mathematical modelling is to capture, represent, under-

stand, or analyse existing extra-mathematical phenomena, situations or domains,

usually as a means of answering practical, intellectual or scientific questions – and

solving related problems – pertaining to the domain under consideration. A few

examples of such questions include: Which of several internet subscription schemes

should I choose? When should the owner of a vineyard harvest his/her grapes so as

to balance quantity and quality? What is the expected long-term development of the

Danish population, in total and across age groups? How tall is the huge construction

crane working across the street?Will the North Pole ever be ice-free during summer

prior to 2050? None of these questions can be answered by mathematical means

alone. On the other hand, none of them can be answered in a satisfactory manner

without the involvement of some kind and amount of mathematics either.
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Let us agree to call, in short, modelling for purposes such as the ones just

mentioned descriptive modelling. In descriptive modelling we attempt to capture

and come to grips with, and – if relevant – eventually act in, some extra-

mathematical domain in the real world, in a field of practice or in an academic

discipline. For very good reasons, educational research and development regarding

mathematical models and modelling have traditionally focused on descriptive

modelling. The processes of descriptive modelling are typically represented by

one of several more or less similar versions of the modelling cycle, for example the

one shown in Fig. 5.1 (an earlier version was published in Niss 2010).

The focus of much research and development is on the key sub-processes in this

cycle:

Preparing the extra-mathematical domain, labelled D and depicted as an “amoeba”

in Fig. 5.1, for modelling by specifying and idealising the situation considered,

making assumptions about it, and by choosing and formulating the questions to

be answered. The resulting idealised situation is represented by a hexagon in

Fig. 5.1.

Mathematising the idealised situation and questions, by translating (by way of a

‘mapping’ f ) all the objects, phenomena, relationships, assumptions, and ques-

tions in D into mathematical “representatives” of them in some chosen mathe-

matical domain M, depicted as a rectangle on the right-hand side of the figure.

The sub-rectangle zooms in on the mathematical questions and the answers to

them. The mathematisation gives rise to the model (D, M, f), conceived of as a

triple in which no component can be left out of consideration.

Dealing with the mathematised situation, that is using mathematical concepts,

considerations, theorems, procedures, techniques, and reasoning to derive and
justify answers to the mathematical questions that resulted from the

mathematisation process. This process of mathematical treatment is depicted

as the curved arrow in the innermost rectangle within M.

Extra-
mathe
matical
domain

Specifi-
cation

answers

De-mathematisation
interpretation

Ideali-
sation Mathema-

tisation
translation

Mathematical
domain

Mathematical
answers

Mathematised
situation

cum questionsIdealised
situation

cum
questions

Fig. 5.1 The modelling cycle (Niss 2010, p. 44)
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De-mathematising the mathematical outcomes of the mathematical treatment

undertaken, by translating the outcomes back (interpreting them) into extra-

mathematical answers to the initial extra-mathematical questions driving the

modelling endeavour in the first place.

Validating the model by confronting the model output with the known reality of the

extra-mathematical domain, and by assessing the quality and relevance of the

answers obtained in relation to the purpose of the modelling undertaken.

In the literature, most of these different sub-processes of the modelling cycle

have been studied more or less extensively from theoretical, empirical and practical

perspectives (see, for example, Blum et al. 2007 and Stillman et al. 2010).

In addition to descriptive modelling there is, however, also another kind of

purpose of mathematical modelling, namely to specify or design objects or struc-
tures that are meant to inhabit some extra-mathematical domain whilst possessing

(if possible) certain required or desired properties. Here are a very few examples:

Where should a new power plant or a huge shopping centre be located? In what way

should seats be apportioned amongst parties in parliamentary elections? In what

way should the m members of a board of directors be elected by the electorate from

p candidates (m< p)? What would be a good measure of the degree of acidity of

substances? What would be a good measure of the viscosity of a liquid/fluid? How

should a loan amortisation scheme be defined so as to fulfil certain requirements?

How should plane drawings be constructed so as to faithfully reflect our spatial

vision? What dimensions should a box (a right-angled parallelepiped) holding 1 l

have so as to minimise the use of material?

The purpose of such modelling is not primarily to come to grips with some

existing part of the world, that is an extra-mathematical domain, but to design,
prescribe, organise or structure certain aspects of it. Inspired by Davis (1991), let

us agree to call modelling for such purposes prescriptive modelling. In prescriptive
modelling the ultimate aim is to pave the way for taking action based on decisions
resulting from a certain kind of mathematical considerations, in other words ‘to
change the world’ rather than only ‘to understand the world’.

The didactics of prescriptive mathematical modelling is the focus of attention in
this chapter. In order to provide substance to the discussion to follow in subsequent

sections, let us analyse some examples in greater detail. They have been deliber-

ately chosen to be simple and authentic.

5.2 Examples

5.2.1 Example 1: BMI (Body Mass Index)

In many health contexts it is customary to consider what is called a person’s body
mass index, BMI, originally introduced by Quetelet in the mid-nineteenth century

(Wikipedia a). It is defined as
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BMI ¼ w=h2;

where w is the person’s weight (measured in kilograms) and h is the person’s height
(measured in metres). Thus the unit of BMI is kg/m2. Along with the index come

four consecutive intervals containing the possible values of BMI (all of which are

positive). A normative label is attached to each interval as in the following

ubiquitous table (Table 5.1).

According to this table any individual whose BMI belongs to a given interval is

equipped with a certain label. Recently, in some quarters, the labelling has been

modified such that underweight is associated with BMI� 20, normal weight cor-

responds to the interval 20�BMI� 30, whereas obesity still corresponds to

30�BMI. Sometimes the two extreme intervals, “underweight” and “obese” are

divided into several subintervals.

In order to understand what is happening here, in terms of modelling, let us make

use of the modelling cycle.

First of all the aim of the endeavor was clearly to establish an index of ‘(relative)
heaviness’ for individuals in a human population. This aim can be seen as being

derived from a meta-question: how can we create a quantitative measure to capture

the evident variation of heaviness within and across human populations? Perhaps an

underlying agenda for this question was to establish a seemingly objective platform

for providing medical counselling to people whose body mass was likely to cause

them trouble sooner or later.

To this end, every human being is strongly idealised inasmuch as the only traits

of the person taken into consideration are his/her weight and height. In other words,

the person is parametrised (a special way of being represented mathematically) by a

non-negative real-valued 2-vector (w, h). This vector is then used as the argument

of a function f: R+
2!R+, given by f(w, h)¼w/h2, combining weight and height to

define our measure of ‘relative heaviness’. It is then decided to mathematise the set

of all people – the global population – by putting each member into one of four

classes, according to which of four non-negative intervals, [0,18.5], [18.5, 25],

[25,30], [30,1], their f-value belongs to. The literature does not seem to specify the

classification of the borderline cases 18.5, 25 and 30, which introduce a slight

ambiguity into the labeling scheme. Apart from this, the mathematisation of the

situation is now complete. This mathematisation translates real world entities

(individuals and populations, scales and yardsticks) into a mathematical domain

consisting of real number spaces, and (rational) functions on them.

The mathematical treatment of the mathematised entities is next to trivial. It

simply consists in calculating for any individual his or her BMI from w and h, and
then locating the resulting value in one (or two) of the intervals.

Table 5.1 Labels of BMI intervals

BMI� 18.5 18.5�BMI� 25 25�BMI� 30 30�BMI

Underweight Normal weight Overweight Obese
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The de-mathematisation is equally trivial as it consists in attaching real world

labels to the individual, based on his/her BMI location: underweight, normal

weight, overweight, or obese.

As to the validation of this model, it hardly makes sense to confront the

de-mathematised model output with the known reality of the extra-mathematical

domain (unless an independent non-impressionistic measure of relative heaviness

was established). The same is true as regards assessment of the quality and

relevance of the answers obtained in relation to the purpose of the model. In

other words, in contradistinction to what is the case with descriptive modelling,

validation of the BMI model is not really possible. More specifically, in principle

the model cannot be falsified.
However, it can be criticised and meta-validated. For example, what would

happen if another measure were chosen, for example, f(w, h)¼w/hα, perhaps with
α¼ 1 or α¼ 3? And what would happen if the interval boundaries were changed?

That could have a major impact on the attribution of heaviness labels to people.

Why does the model not distinguish between men and women, between young and

old, and between different ethnic groups? Why is body composition not taken into

account? If adopted across populations, what distributions of BMI values and

heaviness would we encounter? Questions such as these would help shed light on

some of the consequences of putting the model to use, but that is different to

validating the model directly.

This examination suggests that the descriptive modelling cycle becomes very
rudimentary when applied to the BMI model. No initial substantive modelling

questions were posed, only a meta-question, “what might a measure of relative

heaviness of human beings look like?” No extra-mathematical facts or assumptions

were involved in the modelling, except one very significant assumption: only

weight and height matters. The specific mathematisation, that is the formula f(w,
h)¼w/h2 largely came out of the blue, as did the labelling of the intervals. The

mathematical treatment of the model proposed boiled down to a mere calculation of

the specific BMI value, given w and h, followed by locating the value in an interval
(or two). Similarly, the de-mathematisation boiled down to attaching a weight class

label to the value obtained. Finally, no direct validation of the model was possible,

only a wide spectrum of meta-validation and critique of the use of the model. Thus,

only the first couple of sub-processes of the modelling cycle were in play in a

non-trivial manner.

5.2.2 Example 2: A-Paper (DIN) Formats

Imagine that you wish to design a system of paper sheet formats with the following

properties:

• Each sheet of paper is rectangular

• The area of the largest sheet in the system is 1 m2

5 Prescriptive Modelling – Challenges and Opportunities 71



• If any sheet of paper in the system is bisected across a mid-point transversal

between the two longer sides, each half sheet is also in the system and is similar

to the original one, that is side proportions remain the same.

These three wishes are depicted in Fig. 5.2.

Once again, let us analyse the modelling taking place here in terms of the

modelling cycle.

First, the aim is simply to design – if we can – the desired system of paper

formats by specifying the exact side lengths of each of the different sheets in the

system. No assumptions about reality are being made (except that paper exists and

can be cut into various shapes). They have been replaced by requirements or

wishes. The modelling questions then are “can these requirements be fulfilled?”

and “if yes, how?”

As to the mathematisation, each sheet of paper, the nth sheet (n� 0) being

denoted by An, is mathematised as a rectangle, and parametrised in terms of its

dimensions (ln, sn) 2 R+
2, where ln indicates its longer side and sn its shorter side.

The remaining requirements are mathematised as (a) the unit of length is cm, of area

cm2; (b) l0 � s0¼ 10,000 cm2; (c) the sheets are similar, that is, for every n� 0 we

must have ln+1/sn+1¼ ln/sn, as well as ln+1¼ sn and sn+1¼ ln/2. The mathematical

domain involved consists of real numbers and sequences.

The mathematised questions then become: does there exist a sequence (ln, sn),

n� 0, composed of positive elements, that satisfies (b) and (c)? And if so, what

elements does/can it have?

The mathematical treatment needed to answer these questions is as follows:

First, we observe that since for all n � 0, lnþ1=snþ1 ¼ ln=sn and lnþ1 ¼ sn and snþ1

¼ ln=2we obtain ln=sn ¼ lnþ1=snþ1 ¼ sn= ln=2ð Þ, fromwhichwe deduce that2s2n ¼ l2n,

that is ln ¼ 21=2sn. As this also holds for n ¼ 0, we have l0 ¼ 21=2s0. Moreover, since

l0s0 ¼ 104, insertion of the previous identity yields, 21=2s20 ¼ 104, whence

s0 ¼102=21=4 . Furthermore we have that l0 ¼ 21=2 s0 ¼ 21=2 102=21=4 ¼ 21=4 102.

In summary, l0 ¼ 21=4 102 and s0 ¼ 102=21=4. Next we have l1 ¼ s0 ¼ 102=21=4 and

Fig. 5.2 A-paper formats
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s1 ¼ l0=2 ¼ 21=4 102=2 ¼ 102=23=4. Continuing by recursion and induction we

obtain for any n � 0:

ln ¼ 102=2 2n�1ð Þ=4 and sn ¼ 102=2 2nþ1ð Þ=4;

all of which are, by the way, irrational numbers. This gives the complete answer to

the questions above.

The de-mathematisation consists of nothing but translating the numbers

obtained back to units in cm to answer the initial questions. Yes, there does exist

a uniquely determined (infinite!) sequence of paper sheet formats satisfying the

requirements or wishes initially posed. The dimensions of the nth sheet, An, are

ln ¼ 100=2 2n�1ð Þ=4cm, and sn ¼ 100=s 2nþ1ð Þ=4cm:

For example, the dimensions of the prevalent A4 sheet (A4) are l4 ¼ 100=27=4e
29:73 cm and s4 ¼ 100=29=4e21:02 cm.

How about the validation of this model? Well, the questions posed were

answered in the positive (and uniquely). The resulting design, when implemented,

creates reality, it does not describe it. So, from this perspective confrontation of the

model with reality has no meaning. The situation would be completely different,

however, had the initial modelling question been entirely different, for instance as

follows. Here we have a bunch of different paper formats. What were the principles

according to which they were designed? Hypothesising underlying principles such

as the third requirement for the model design above, one might perform descriptive

modelling and then validate the model outcomes by confronting them with empir-

ical data from actual paper sheets.

The modelling cycle for this prescriptive modelling is also very rudimentary.

Initially there was no existing extra-mathematical domain to model. We wanted to

design a new part of reality by specifying some requirements or wishes to be

fulfilled by our design, if possible. These requirements are already of a

pre-mathematical nature, since we speak about rectangular sheets, folding them

along a mid-point transversal and obtaining similar shapes. No assumptions about

reality were involved. Mathematisation amounted to translating the design require-

ments into mathematical requirements amenable to mathematical treatment. This

treatment was the centrepiece of the work done. Once this was completed,

de-mathematisation was trivial: attach units to the numbers and cut the paper sheets

accordingly. No validation was possible beyond the mere observation that a

(unique) positive and satisfactory answer to the design questions exists. Confron-

tation with the properties of an existing extra-mathematical reality prior to the

design scheme developed does not make sense. Meta-validation, too, does not make

sense here. Again, only a few sub-processes of the modelling cycle were in play in a

proper sense.
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5.2.3 Example 3: The Gini Coefficient of Income Inequality

Assume that we want to create an index of inequality of income in a population. To

this end we begin by specifying the fraction L pð Þ 2 0; 1½ �ð Þ of the total income of

the population which is owned by the fraction p 2 0; 1½ �ð Þ of the population having

the lowest income. L is called the Lorenz function and its graph in [0; 1]� [0; 1] the

Lorenz curve as shown in Fig. 5.3. In case of complete equality, the population

fraction p with the “lowest” income would own exactly the fraction p of the total

income, i.e. L(p)¼ p for every p. In the opposite case of maximal inequality one

“person” would own everything, that is L(p)¼ 0 for p< 1 and L(1)¼ 1.

In 1912 Italian mathematician Corrado Gini proposed (Gini 1912; Wikipedia b)

an index of inequality based on the “actual accumulated inequality”, specified as the

integrated difference between the Lorenz function corresponding to complete

equality and the actual Lorenz function, that is the area between the two curves:

IL ¼
ð1
0

p� L pð Þð Þd p ¼ ½�
ð1
0

L pð Þd p:

In the special case of maximal inequality, the accumulated inequality would beð1
0

pd p ¼ ½.

Now, the so-called Gini coefficient, G, is defined as the ratio between the actual

accumulated inequality and maximal inequality, that is

Fig. 5.3 The Lorenz curve

of income distribution
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G ¼
1
2
�
ð1
0

L pð Þd p
1=2

¼ 1� 2

ð1
0

L pð Þd p;

corresponding to twice the area between the Lorenz curve and the “equality line”.

Clearly, G 2 [0; 1], where G¼ 0 corresponds to complete equality and G¼ 1 to

maximal inequality. In summary, G is a measure of the degree of income inequality

in a population. The measure allows for comparison of income inequality amongst,

say, countries or regions.

The modelling cycle for this undertaking has the following features.

First, the aim of the endeavour was to construct an index measure which can

capture income inequality in a population. This requires the notion of “income” to

be specified in such a way that each individual possesses a well-defined income. We

want the measure to be constructed to fulfill certain requirements: The index must

be defined for any population, once individuals’ incomes are known. We want the

index to involve the notion of actual accumulated inequality in relation to the

maximal possible inequality.

The mathematisation undertaken then included four steps. First, all individuals

are ranked according to their income in non-decreasing order. Then the accumu-

lated income distribution is mathematised by way of the Lorenz function L: [0;1]!
[0;1], which is a real-valued function. Next, complete equality is mathematised by

Le (p)¼ p for all p, and maximal inequality by Lmi (p)¼ 0 for p< 1, Lmi (1)¼ 1.

Accumulated actual inequality is mathematised by IL ¼
ð1
0

p� L pð Þð Þd p. Finally,
the degree of income inequality in a population is mathematised by the Gini

coefficient GL¼ IL/Imi.
This mathematisation process is somewhat involved. In contrast, the subsequent

mathematical treatment is straightforward. For a specific given income distribution

L, calculate IL and Imi to obtain GL¼ IL/Imi.
De-mathematisation only consists in stating that the Gini income inequality

coefficient of population P is G. As this coefficient is a pure number, no units are

involved.

The situation concerning validation is much the same as for the BMI model. It

hardly makes sense to confront the de-mathematised model output with what we

know about the reality of extra-mathematical domain, unless we were in possession

of another, independent and non-impressionistic measure of income inequality as a

benchmark reference. The same is true with regard to assessing the quality and

relevance of the model in relation to its purpose. In other words, direct validation is

not really possible.

So, the Gini coefficient model cannot be falsified. But it can be criticised and

meta-validated by looking at questions such as: Is the choice of the kinds of

incomes taken into consideration reasonable? Which segments of the population

are taken into account? How about children? To what extent is comparison of Gini

coefficients amongst different populations possible and meaningful?
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Again we are faced with a very rudimentary modelling cycle. The extra-

mathematical domain consisting of people, populations and incomes does indeed

exist and is very complex, as are the features selected for consideration. The

mathematisation undertaken was rather intricate and involved, but the remaining

sub-processes of the modelling cycle – mathematical treatment,

de-mathematisation and direct validation – were trivial or not meaningful,

respectively.

5.2.4 Conclusions from the Examples

On the basis of these examples – and hosts of other examples – it seems fair to

conclude that prescriptive modelling, even though it shares significant features with

descriptive modelling, differs from it in characteristic ways, which become visible

when considering the modelling cycle. Whilst the preparation of the extra-

mathematical domain for modelling by way of specification and idealisation can

be rather similar in descriptive and prescriptive modelling, the mathematisation part

may – but need not – be very different, since in prescriptive modelling there may

not be any clue whatsoever concerning how to come up with a sensible model to

meet the aim of the modelling. The de-mathematisation and the validation parts are

normally very different as they are largely absent in prescriptive modelling. Math-

ematical treatment sometimes is similar and sometimes different in the two sorts of

modelling, depending on the context and situation. This suggests that the

sub-processes of the modelling cycle may not be able to fully capture what happens

in evaluating models arising from prescriptive modelling. Instead, meta-validation

becomes crucial.

It should be highlighted that the difference we focus on is between two different

kinds of modelling purposes, not between two different kinds of models. Thus, the

very same model can arise in descriptive and in prescriptive modelling. For

example, the model in the A-paper format example above arose as part of a

prescriptive modelling endeavour. However, the very same model may arise as

part of a descriptive modelling endeavour, if the task were to identify the design

principles underlying a collection of real paper sheets belonging to the A-paper

system. That is why we distinguish between descriptive and prescriptive modelling,
not between descriptive and prescriptive models.1

It is also worth mentioning that undertaking a prescriptive modelling task may

well involve undertaking certain descriptive modelling tasks along the way. This is

the case, for instance, in the Gini model example above, when the ranked income

1 In Blum and Niss (1991, p. 39), the authors spoke about descriptive models rather than

descriptive modelling, and also about normative models (not prescriptive models). Thus, the

terms proposed in the present chapter represent a move from focusing on the product (the

model) to focusing on the modelling purposes, whilst replacing ‘normative’ with ‘prescriptive’,
following Davis (1991).
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distribution of a population and the Lorenz function – results of descriptive

modelling – are being used as fuel for the construction of the Gini coefficient. On

closer inspection, this phenomenon of prescriptive modelling sometimes involving

aspects of descriptive modelling, and vice versa, turns out to be rather widespread.

For instance, this happens all the time in optimisation, which is nothing but an

instance of prescriptive modelling.

5.3 Teaching and Learning of Prescriptive Modelling

The examples above show that the modelling cycle of prescriptive modelling may

well be very rudimentary in key places. Depending on which sub-processes of the

modelling cycle are affected, this seems to give rise to significant challenges to the

teaching and learning of prescriptive modelling.

In cases in which the prescriptive modelling task is very generally and vaguely

defined, as well as complex, for example, when the task is “create a measure or a

descriptor of. . .”, it is usually not realistic to expect students to be able to undertake
the preparation of the situation to be modelled and to come up with a subsequent

mathematisation of it by transfer of experiences from descriptive modelling only.

The BMI index and the Gini coefficient are points in case. This is not surprising, as

the invention of good measures or descriptors (not to be confused with descriptions)

may actually prove to be significant scientific work. Just think of notions and

measures such as the pH value of acidity, acceleration, elasticity, least squares,

and hosts of concepts from descriptive (sic!) statistics. Unless students are guided

(or very well trained), the modelling process in such cases is likely to stop before it

begins. Let us agree to name such prescriptive modelling cases, in which the focus

is on inventing notions, descriptors or measures, Type I cases.
If, however, a Type I task is less complex, students may in fact be able to put

their possible knowledge of, and experiences with, standard descriptor models

(e.g., average, ratio, rate of change) to use in new situations. This is where

model-eliciting activities (promoted by Lesh, Doerr and others, e.g., Lesh and

Doerr 2003, and Amit and Jan 2010) and emergent modelling (Gravemeijer

2007) become helpful and significant.

In the complex Type I cases, which put high demands on mathematisation, for

students to prepare the situation at issue for modelling and then mathematise it

requires, most likely, tight guidance. In contrast, the subsequent mathematical

treatment and the de-mathematisation become trivial in principle, and validation

of the model usually makes no sense. However, as emphasised above, meta-

validation of models generated by such endeavours is essential.

If, on the other hand, the prescriptive modelling endeavour is well defined in the

sense that it rests on clearly formulated specific requirements or wishes of a

pre-mathematical nature, the first parts of the modelling process may well resemble

those of descriptive modelling, even though the entire modelling cycle remains

rudimentary. The A-paper format example above is a point in case. Preparing the
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situation for modelling and subsequently mathematising it are often straightforward

and accessible for students undertaking independent work. The mathematical

treatment becomes the core activity and may be more or less demanding, but not

fundamentally inaccessible to students. De-mathematisation and validation are

typically trivial. Meta-validation of the model will focus on the impact of the

resulting model on the (degree of) fulfilment of the initial requirements or wishes,

or on the impact of these requirements / wishes themselves on the modelling

endeavour, especially in cases where not all requirements or wishes could be

satisfied or, on the contrary, in cases where several satisfactory solutions exist,

amongst which choices can then be made if additional criteria are invoked. In other

words, in such cases – which we may agree to call Type II cases – prescriptive

modelling can well be within reach for students, even though the mathematical

treatment may sometimes prove to be a challenge.

Prescriptive modelling is omnipresent and highly important with significant

scientific, practical and societal impact. This implies that meta-validation of models

arising from prescriptive modelling is of crucial importance. Against the back-

ground outlined above, one might think that since the modelling process required in

tasks of Type I is only partially accessible to students, teaching and learning of

prescriptive modelling should be restricted to modelling tasks of Type II. However,
given the general importance of Type I modelling tasks, that would be a wrong

conclusion to draw. Rather, we must realise that we have to deal with both kinds of

prescriptive modelling in mathematics education practice, research and develop-

ment, and then try and find ways to overcome the difficulties encountered.

5.4 Challenges and Opportunities

Our overarching task and challenge in this context is to devise teaching and learning

environments and activities for prescriptive modelling, also covering situations in

which the students are unlikely to be able to complete every part of the modelling

process without assistance. I propose two focal points for such activities as ways to

meet this challenge.

Firstly, we should engage students in identifying and analysing the hidden or
explicit assumptions, requirements or wishes, as well as the prerequisites, underly-
ing the modelling (to be) undertaken, in particular as far as the mathematisation part

is concerned. Secondly, we should engage students in meta-validation of the

models arising from prescriptive modelling undertakings with respect to (at least)

the following points:

• The consequences of the modelling outcomes for the discourse on the issues

addressed by the modelling endeavour;

• Comparing and contrasting the model obtained with actual or potential model

alternatives;
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• Considering the impact of changed requirements or wishes for the modelling and

its outcomes.

Since prescriptive modelling in mathematics education has only been subjected

to theoretical and empirical research to a very limited extent, and then primarily at

the lower end of the complexity scale as is the case with model-eliciting activities,

our second challenge is to design and implement such research. An obvious first

focus for such research would be to investigate the similarities, differences and

relationships between descriptive and prescriptive modelling, and the ways these

(may) play out in mathematics education. As part of this endeavour, it will be

important to look into ways to further develop or supplement – or replace? – the

modelling cycle when it comes to adequately capturing the processes involved in

prescriptive modelling, especially as far as validation and meta-validation are

concerned.

The agenda just outlined is an extensive one. There is a long way to go to

complete it. It is time to get going.
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Chapter 6

An Approach to Theory Based Modelling
Tasks

Xenia-Rosemarie Reit and Matthias Ludwig

Abstract The MokiMaS project (Modelling Competency in Mathematics Classes
of Secondary Education) addresses the question how mathematical modelling

competencies can be evaluated in a holistic context and points out a theory-based

approach to assess students’ modelling competency at the end of lower secondary

education. In particular this chapter discusses criteria based modelling tasks,

constituting the core of the test instrument. The piloting of the modelling tasks

gave interesting insights into cognitive and structural differences of tasks. Further-

more, a strategy to classify the difficulty of modelling tasks on the basis of a thought

structure model, describing the cognitive load of solution approaches is presented.

Finally, the nature of a metrologically reasonable modelling task is discussed.

6.1 Introduction

There is broad consensus that the integration of the concept of mathematical

modelling into school must be increased. Of course this awareness is not new and

efforts have been set up during the last decade. However, not least PISA and TIMSS

reveal wide gaps of not only German students especially in the area of mathematical

modelling. Nevertheless, it is reasonable to question to what extent mathematical

modelling can be assessed in detail with a test instrument which “aim[s] to evaluate

[whole] education systems” (OECD n.d.). Test instruments which have been

developed in a smaller setting are almost always based on a treatment developed

within a study, such that these tests are restricted to specific sub-competencies of

mathematical modelling (e.g., Z€ottl et al. 2011). Moreover, Frejd (2012, p. 84)

found that every third paper and pencil test consists of multiple choice items of

Haines et al. (2000). As a result, sub-competencies can be evaluated but it is a

debatable point whether modelling competency as a whole is tested. Within his
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large literature review Frejd claims that “not a single item was found in this study

that assessed all aspects of modelling (holistic view)” (Frejd 2012, p. 80). In this

chapter we show the results of a pilot study in which modelling tasks have been

developed following a holistic concept.

6.2 Theoretical Framework and Method

The aim of the MokiMas project (Modelling Competency in Mathematics Classes of
Secondary Education) is to develop a paper and pencil test to assess mathematical

modelling at the end of lower secondary education. This test pursues a holistic1

approach and will be based on modelling tasks developed according to specific

criteria.

6.2.1 Task Criteria

The modelling tasks have been developed according to predefined criteria that form

a theoretical framework (Reit and Ludwig 2013, p. 805). Hence, we focused on

walking the world with eyes open and discovering mathematics everywhere (Blum

2006, p. 26). In doing so, the item Taj Mahal, for example, has been developed

during a journey to India. The following criteria serve as a basis for the develop-

ment of tasks:

• authentic context (Maaß 2007),

• realistic numeric values (Müller et al. 2007),

• problem solving character (Maaß 2007),

• naturalistic format for questions,

• openness relating to the task space.

Authenticity and relation to reality are core elements of modelling tasks. We

agree with Palm (2002 cited in Vos 2011) who defines authenticity of a task by

having its origin in reality. Furthermore, the task related situation actually occurs or

can occur in reality. There is no a priori known solution algorithm for the task that

can be applied by students directly. That means that the solution makes itself out to

be a problem at the students’ level. The questioning is either close to the living

environment of the students or takes up a realistic question that could arise in

reality. Openness of tasks is reflected by the task space. There has to be more than

1 In this context “holistic” is said to underline the fact that open modelling tasks are used, in

contrast to multiple choice tasks or those which concentrate on subcompetencies.
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one solution approach leading to a solution. The solution approaches distinguish

themselves by their mathematical model; thereby, students are able to have more

options to arrive at a solution. Openness should rather be based on alternative

mathematical models to solve the tasks rather than on approximating sizes.

Concerning this, we do not deny that making assumptions is an important part of

mathematical modelling but we want it to be limited to a degree that ensures an

assessable solution interval.

6.2.2 Degree of Difficulty

A common instrument to determine the degree of difficulty is the solution rate by

applying a dichotomous rating. Since the answer format in the test is very open and

compared to others rather extensively, it seems to us not adequate to determine the

degree of difficulty only by a dichotomous rating. However, to have a well-founded

basis to start from, we firstly rated the student solutions according to whether the

task has been solved or not. Of course it has to be defined what is meant by “the task

is solved”. Incorrect solution approaches which are unrewarding, are considered to

be unsolved, as well as those which show an abandoned solution process and thus

end up with no solution. Solution approaches drawing defective conclusions which

lead to unreasonable solutions are also rated as “unsolved”. If the chosen mathe-

matical model leads to an overall reasonable solution, the solution approach is

regarded as “solved”. This means that a solution approach has also been rated as

“solved” even if the chosen numeric values are not quite appropriate. Therefore the

solution rate does not necessarily provide an indication of the modelling compe-

tency because the solution approaches which are regarded as “solved” have

recognisable great differences.

To adjust the method of determining the degree of difficulty to our task format

we also applied a method based on the thought structure of the respective solution

approach. That means that we classified the student solutions in the main solution

approaches and analysed their thought complexity. In doing so, we tried to detect

the single thought steps, referring to the Simplex-Komplex-idea of Breidenbach

(1969). According to Breidenbach, a Simplex is a task consisting of three items and

every item can be determined by the two others (p. 180). However, for the study we

used the more broadly defined term thought operation to be able to include also

solution steps which do not fit in the Simplex structure, such as addition of three

values or duplication. In other words, we break the solution approaches into their

individual components and establish a relation between the order of thought

operations and cognitive demand. By analyzing the main solution approaches for

thought operations, we can reveal single cognitive steps which can be illustrated in

a kind of arithmetic tree. Combining this idea with Cognitive Load Theory (CLT),
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which describes the load of cognitive resources in the working memory (cf. Van

Gerven 2003, p. 490), leads to a promising method to determine the degree of

difficulty of holistic mathematical modelling tasks. Especially actions to be

processed simultaneously (which are characterised in the following as the width
of the solution) stress the working memory (element interactivity) (cf. Sweller

2010, p. 41). That means that several aspects in a task which are related to each

other and have to be considered and understood at the same time lead to a high

cognitive load for the working memory (cf. Sweller 2010). Applying this theory to

the arithmetic tree consisting of thought operations, especially the width of a

solution approach, appears to be an integral part when investigating the degree of

difficulty.

6.3 Design of the Pilot Study

The focus of this pilot study was not to assess the students’ competency in

mathematical modelling but to evaluate the adequacy of the tasks with regard to

the following main questions:

1. Is the working time adequate?

2. Which solution approaches are used?

(How many distinguishable and adequate solution approaches are used?)

3. What is the degree of difficulty?

4. What is the solution rate?

To come closer to the answer of what is a metrologically reasonable modelling

task, we analysed the student solutions in detail in view of what solution approach

had been used and whether the solution approach led to a reasonable solution. In

addition, we had a closer look at how the solution process was performed by

identifying its thought structure.

6.3.1 The Modelling Tasks

The piloting of a first booklet was conducted with grade 9 students from German

grammar schools. Due to technical reasons two items (Toothpaste and Taj Mahal)
have been tested by 108 and one item (Potato) by 79 students from different

schools. The students had 60 min in total to solve the task under seatwork condi-

tions. Additionally the time for one task was restricted to 20 min since we wanted to

find out if the working time was adequate.
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Toothpaste Item

Even little children learn how to brush their teeth and tooth brushing is part

of our daily routine. Can you give a general formula for how many days a

toothpaste lasts? Reason mathematically.

In the Toothpaste item the students are asked to come up with a general formula

for how long a toothpaste tube lasts. We assume that the students have a mental

picture of the dimensions of either the toothbrush or the toothpaste tube. With the

given picture we try to facilitate making assumptions by indicating that both,

toothbrush and toothpaste, are approximately equal in length.

The Taj Mahal item is more demanding in terms of reading requirements. The

façade of the famous mausoleum, Taj Mahal, has to be cleaned and thus surrounded

by scaffolding made of bamboo cane as is usual in India. The question is: How

many metres of bamboo cane are necessary to do so?

Taj Mahal Item

The mausoleum of Taj Mahal in India was built by a Great Mogul in

honour of his wife. The base structure is essentially a large cube with

chamfered corners. This white marble facade discolours over time due to

(continued)
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air pollution. Therefore the fragile outer facade has to be cleaned regularly

elaborately by hand. Traditionally Indians use scaffoldings made of bamboo

canes for this. In a first step the main building (without dome) needs to be

cleaned.

The question is how many metres of bamboo cane are necessary to

surround the main building completely? Reason mathematically.

Inspired by a TV documentary about industrial manufactured French fries, the

Potato item has been developed which asks: How many potato sticks can be

obtained from one potato of standardised shape?

Potato Item

Industrial manufactured French fries are supposed to be equal in size and

the single sticks are cut out lengthwise. Therefore the whole potato cannot be

used. The potato tubers which look similar to the picture above, are regularly

formed and approximately 10 cm in length.

How many of these potato sticks can be obtained from one potato? Reason

mathematically.

6.4 Results

The focus of our investigations lies in developing suitable modelling tasks which

can be used in a test setting. Therefore we analysed the student solutions in detail

bearing in mind the issues posed in Sect. 6.3. After a first look through the student

solutions, we classified them into several main solution approaches for each item.

These main approaches then have been analysed separately and comparatively in

detail. To be able to make a statement about the degree of difficulty we applied, on
the one hand, the Simplex idea of Breidenbach (1969) and additionally the solution
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rate (See Sect. 6.2). To do so we determined the thought structure of each main

solution approach individually and within an item. We then analysed their com-

monalities or differences to come to a general statement about the degree of
difficulty. We analysed how many Simplex structures had to be processed one

after another (length of the solution approach) and whether a simultaneous

performing of Simplex structures was necessary (width of the solution approach).
This method of determining the degree of difficulty has then been compared to the

solution rate of the respective item.

6.4.1 Toothpaste Item

Having a look at the Toothpaste item, it became obvious that the student solutions

can be classified into two main solution approaches (See Figs. 6.1 and 6.2).2

Figure 6.1 characterises a procedure where the student interprets the toothpaste as

a cylinder and estimates radius and height maybe based on the given picture and/or

a mental picture. Then the volume of the toothpaste is calculated to be able to divide

this result by the estimated daily toothpaste consumption.

In a different solution approach (See Fig. 6.2) the student estimates the tooth-

paste used either in ml or mg and assumes a number of teeth brushings per day. The

total consumption per day is then calculated and divided by the previously

estimated toothpaste used.

When analysing the thought structure behind these solutions, it becomes obvious

that two thought operations (circles in Figs. 6.1 and 6.2) have to be performed

consecutively in both approaches. That means that the approaches seem to be

Fig. 6.1 Item Toothpaste: abstract of student solution 1 and its thought structure

2 Solutions of the Toothpaste item will be explained more extensively and serve as an example for

the setting up of the thought structure model for the other items.
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comparable in their degree of difficulty having a solution space with a width of

1 (one thought operation per solution level) and length of 2 (two thought steps have

to be conducted consecutively). This suggests a relatively small degree of difficulty

which is in line with a rather high solution rate of 76 %.

6.4.2 Taj Mahal Item

The analysis of the Taj Mahal item indicates that there are also two main solution

approaches. In the following we only briefly describe the solution strategy of the

two approaches. The general concept of the two approaches is the calculation of the

length of bamboo cane needed to build one scaffolding on the one hand (i.e.,

unshaded left side of both parts of Fig. 6.3), and on the other hand, the calculation

of the total number of scaffoldings needed (i.e., right side shaded in grey in

Fig. 6.3). Multiplication leads to an answer of how many metres of bamboo cane

are needed to surround the Taj Mahal. It is clearly recognisable that in both

approaches the part shaded in grey is a lot more elaborate than to calculate the

length of bamboo cane for a single scaffolding. Even if the left approach in Fig. 6.3

requires one thought operation more than the right approach, we can assume a

comparable degree of difficulty since this thought operation does not increase the

maximal width of the approach. That means that both approaches have a width of

3 and a length of 4. This comparatively complicated thought structure is also

reflected by the low solution rate of 24 %.

6.4.3 Potato Item

When analysing the solution approaches of Potato item two main approaches

became apparent. Both approaches show the same thought structure (See

Fig. 6.4). Comparing the thought structure to that of the Toothpaste item similarities

Fig. 6.2 Toothpaste item: abstract of student solution 2 and its thought structure
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are obvious. This item also shows a width of one but a length of 3. A solution rate of

40 %, which is in between those of Taj Mahal and Toothpaste, supports the findings
of the thought structure method.

6.5 Discussion

In the following we want to interpret the results with reference to the main questions

of Sect. 6.2. With regard to the working time it became obvious that 20 min per task

is too long which reduces the total working time needed for a booklet. This is in fact

Fig. 6.4 Potato item:
thought structure of the two

main solution approaches

Fig. 6.3 Item Taj Mahal: thought structure of the two main solution approaches
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a positive observation since 60 min for a booklet might be too demanding in terms

of fatigue phenomena. It was unclear if the tasks meet the criterion of openness. It

was reasonable to assume a task space that allows for more than one distinguishable

solution approach but it was not clear if the students would really apply these

individually. Since at least two solution approaches per task were found, we can

assume that all criteria are met.

One aim is to determine the degree of difficulty in order to be able to weight each

solution approach by its difficulty to arrive at an exact assessment. It is reasonable

that a dichotomous rating does not account for the true complexity of the tasks;

therefore the solution approaches have been represented as an arithmetic tree,

illustrating the necessary thought operations. These illustrations enabled us to

reveal their degree of difficulty. A solution rate has been determined to support

this method (See Table 6.1).

Following Sweller (2010, p. 41), in particular the width of a solution approach is

responsible for the degree of difficulty since a simultaneous processing of data

stresses the working memory (See Sect. 6.2.2). This is also reflected in our results

when thought structure and solution rate are compared. A more complicated

thought structure as in the Taj Mahal item corresponds to a low solution rate. On

the other hand, rather simple thought structures, in particular those with a width of

one such as the Toothpaste and Potato items, have a higher solution rate. The

thought structure method seems to be a promising method to support the determi-

nation of the degree of difficulty, as it is in line with the solution rates.

6.6 Outlook

Although further tests have to be performed, these data suggest that using the

thought structure idea on the basis of cognitive load theory may be a suitable

method to determine the degree of difficulty. A further question now lies in how

far the results of length and width can contribute to assessing the student solutions.

It would be desirable to use this method to weight the student performance and thus,

to not only assess the result but also the solution process in an adequate way.

Table 6.1 Thought structure and solution rate of the items

Item n Thought structure (length, width) Solution rate (%)

Toothpaste 108 (2,1) 76

Taj Mahal 108 (4,3) 24

Potato 79 (3,1) 40
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Chapter 7

Facilitating Mathematisation in Modelling by
Beginning Modellers in Secondary School

Gloria Ann Stillman, Jill P. Brown, and Vince Geiger

Abstract Based on theoretical considerations, a possible means of gaining a

resolution of the long standing issues of problem formulation and specification and

their successful mathematisation by relatively naı̈ve modellers is proposed. This is

based on empirical evidence having been provided for paradigmatic cases of the

construct of implemented anticipation as proposed by Niss, that is, foreshadowing of

future action projected back onto decisions about current action during ideal

mathematisation. A Foreshadowing and Feedback Framework to Engage Beginning

Modellers in Implemented Anticipation and its theoretical underpinnings are outlined

and illustrated using empirical data.

7.1 Introduction

At ICTMA 12 in 2005 the beginning of a research agenda focussing on secondary

students’ learning and applying modelling skills in a Technology-Rich Teaching

and Learning Environment (TRTLE) was highlighted (Galbraith et al. 2007). The

specific aim was to learn more about the critical points that represent transitions

between phases in the solution of a modelling endeavour. A direct outcome of this

early work was a blockages framework (Galbraith and Stillman 2006). This

has since been extended (Stillman et al. 2010) and validated by ourselves
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(Stillman et al. 2007) and others (Huang 2012). If we use a different lens on the

same transitions looking at what is possible rather than what blocks progress, we

believe that we might gain traction on the long standing issues of problem formu-

lation and specification and their successful mathematisation by relatively naı̈ve

modellers.

The notion of anticipation as a key form of mathematical thinking is central to

resolving these issues. The complexity of the interactions between mathematical

content, modelling meta-knowledge and technology that students cope with when

successfully modelling in a TRTLE (see Fig. 7.1) emphasise the importance of

student perception and judicious enactment of affordances offered in a TRTLE

(Brown 2013). In more recent work Stillman and Brown (2012, 2014) have

investigated whether there is empirical evidence for the Niss notion of

“implemented anticipation” (2010, p. 55). Furthermore we propose that this idea

be extended to technology use when modelling in TRTLEs. In this chapter a

scaffolding framework that novice modellers in school could use during the tran-

sitions associated with problem specification, formulation and mathematisation will

be presented. This framework is grounded in the theoretical argument and empirical

evidence to date.

7.2 Theoretical Frame

Researchers in the area of applications and mathematical modelling use diagrams of

the modelling cycle as a means of communicating what appears to be happening at

a task and cognitive level during modelling. These diagrams are also used to

scaffold modelling activity of beginner modellers. The Niss (2010) modelling

diagram separates the extra-mathematical domain (i.e., the real world situation

and the modeller’s idealisation of this) and the mathematical domain. Finding or

generating a problem from a real world messy situation is a crucial cognitive step

(Getzels 1979). Once a problem has been found it needs to be posed. This happens

when a problem is formulated in such a way that it is amenable to mathematical

analysis (Stillman 2015). Idealisation (formulation of an ideal problem from the

real situation) occurs through making assumptions and identifying essential ele-

ments or features in the situation which are of interest that are then formulated, that

is, specified into a problem statement which may take the form of, or include,

question(s). The idealised situation is mathematised through translation into the

mathematical domain. The mathematical domain includes the mathematical model

Fig. 7.1 Modelling (M),

mathematics content (C),

and technology

(T) interactions (Galbraith

et al. 2007, p. 131)
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made of the situation, mathematical questions posed and mathematical artefacts

(e.g., graphs and tables) used in solving the mathematical model. Mathematical

outputs (i.e., answers) have then to be interpreted in terms of the idealised situation

and the real situation that stimulated the modelling (i.e., back into the extra-

mathematical domain). These outputs can then answer questions posed about the

real situation or, if they are inadequate for this purpose, stimulate further modelling.

Anticipation as a thought form has a long genesis in educational literature.

Dewey (1916, p. 83) writes of “conjectured anticipation” as involving “a tentative

interpretation of the given elements, attributing them to a tendency to effect certain

consequences.” Furthermore he recognised that it has both “projection” and “pro-

spective” aspects (Dewey 1917, p. 13). Both aspects come into play when engaging

in mathematical modelling. Within the context of mathematical modelling we

define anticipating as the foreseeing of what will be useful mathematically subse-

quently in transitions between phases of the modelling process. This anticipation

involves both foreshadowing and feedback loops between phases informing deci-

sion making. In order to produce a theoretical model of the mathematisation

process, Niss (2010) used this idea but coined the term, “implemented anticipation”

(p. 54). The use of the past tense in “implemented” was deliberate as successful

mathematisation, from the Niss perspective, involves not only anticipating what

will be useful mathematically in subsequent steps of the cycle but also

implementing that anticipation in decision making and carrying through of actions

bringing those next steps to fruition. He is thus harnessing the potential for guiding

future actions that Dewey saw in anticipation when he wrote: “Imaginative forecast

of the future is this forerunning quality of behaviour rendered available for guid-

ance in the present” (Dewey 1917, p. 13).

Figure 7.2 is an interpretation of the Niss model of ideal mathematisation.
Firstly, the idealisation and specification of the real situation from the extra-

mathematical domain involves deciding what elements or features are essential as

well as posing any related question or statement of the problem in light of their

anticipated usefulness in mathematising. Secondly, when mathematising this for-

mulation of the problem situation the modeller needs to do this by anticipating

Fig. 7.2 Niss’s model of ideal mathematisation
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mathematical representations and mathematical questions that, from previous

experience, have been successful when put to similar use. Thirdly, when anticipat-

ing these mathematical representations, the modeller has to be cognisant of the

utility of the selected mathematisation and the resulting model in future problem

solving processes to provide mathematical answers to the mathematical questions

posed by the mathematisation. This thus involves anticipating mathematical pro-

cedures and strategies to be used in problem solving after mathematisation is

complete.

It is our contention that “implemented anticipation” applies not only to mathe-

matics and mathematical artefacts but also to use of digital tools. We hypothesize

that at any of these transitions, anticipated use of digital tools in effecting use of

representations or solving procedures could also come into play (Galbraith

et al. 2007) through perception of affordances of such technology (Brown 2013).

The dotted double arrowed paths in Fig. 7.2 represent this three step foreshadowing

and feedback that are captured in successful implemented anticipation. There is an

obvious correspondence between this foreshadowing of the results of future actions

being “projected back onto current actions” (Niss 2010, p. 55) and the idea that a

“sense of direction” is of crucial importance in modelling (Maaß 2006; Treilibs

1979). Furthermore, we hypothesize that ideal mathematisation occurs when the

relationship between the modeller and modelling and technology is that of the

artisan where both the modelling and technology become an “Extension-of-Self”

(Geiger 2009).

Niss (2010) identifies four enablers to successfully use implemented anticipation

in mathematising a real or realistic situation. These are that modellers need to:

(1) possess relevant mathematical knowledge, (2) be capable of using this when

modelling, (3) believe a valid use of mathematics is modelling real phenomena, and

(4) have persistence and confidence in their mathematical capabilities (p. 57). It is

reasonable to expect that beginning modellers would experience the challenge of

ideal mathematising and have difficulties related to the three aspects of

implemented anticipation. Furthermore, these difficulties could possibly be

explained by lack of one or more of these four enablers.

7.3 Empirical Evidence

Niss has confirmed that no one to date, other than Stillman and Brown (2012, 2014),

has published attempts to use his model of ideal mathematisation in analysing

classroom or other data. As the purpose was to provide “paradigmatic cases”

(Freudenthal 1981, p. 135) for the existence of the Niss construct in theorising

mathematisation in modelling tasks, data examined came from an open modelling

context and a classroom context where relative novice modellers were participat-

ing. Empirical evidence was found for all three aspects of implemented anticipation

in open modelling situations with Year 10 and 11 students and for the last two in the

classroom data analysed (Stillman and Brown 2014) where students were not given
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the freedom to choose their own situation to model. In Stillman and Brown (2014)

we claim to have presented a set of exemplars from practice that form the basis for

our paradigmatic cases for the existence of the Niss construct in theorising

mathematisation in modelling or realistic tasks.

Unsuccessful mathematisation attempts were able to be explained using the Niss

enablers (Stillman and Brown 2014). In the open modelling situation the flaw in

mathematisation in one exemplar project was due to lack of relevant mathematical

knowledge as what was required was beyond the students’ current knowledge. In
the classroom context, unsuccessful mathematisation attempts were related to

inability of the particular students to use relevant mathematical knowledge in

modelling rather than lack of the other enablers. This was understandable for

Year 9 students being introduced to modelling attempting only their third extended

modelling task. In both contexts, successful implemented anticipation coincided

with all four enablers being present; however, an alternative interpretation in the

case of the third enabler, believing a valid use of mathematics is modelling real

phenomena, is that students engage with tasks in classrooms as that is the expected

norm. Further research is thus needed regarding the enablers.

7.4 Proposed Framework

Vygotsky raises the paradox that “the method [of enquiry] is simultaneously

pre-requisite and product, the tool and the result of the study” (1978, p. 65). This

is indeed the case for implemented anticipation. Implemented anticipation is a

pre-requisite construct that must be suggested theoretically before we could use it

to find empirical evidence for its existence in practice. Holzman (1997, p. 52) takes

this idea further commenting that “Tool-and-result come into existence together,

their relationship is one of dialectical unity, rather than instrumental duality”. Thus,

as beginning modellers engage in mathematisation of a messy situation

implemented anticipation is manifested simultaneously with the tool by which

that implemented anticipation can be evidenced, namely, dialogue.

Our overall goal is for students to be talking and doing mathematical modelling

– gaining leverage on the mathematisation processes. In schooling modelling is

usually conducted in groups through collective reasoning and activity. We therefore

theorise that during this collective engagement with the problem situation and each

other, students are drawn into the articulated thinking, reasoning, manifestation of

beliefs about modelling and mathematics and confidence in mathematical knowl-

edge and ability to use this, of others within the group. Mercer (2000) uses the term

“interthinking” (p. 141) to refer to this “pulling students into a shared communica-

tive space” (Hunter 2012, p. 3). Mathematising is manifested as the group works

on the modelling task engaging in interthinking and developing a group

mathematisation of the situation. Our focus is on how these modellers can be

facilitated into the discourse of modelling and mathematisation. We propose a

framework to engage beginning modellers in implemented anticipation (see
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Fig. 7.3) drawing on our extension of the theoretical ideas of Niss. The framework

consists of scaffolding questions related to the foreshadowing and feedback loops

(Fig. 7.2) associated with problem finding (F) and specification (S), mathematising

(M) and problem solving (P). Group members could ask these of each other in order

to develop a sense of direction for their modelling. Words in curled brackets are

alternatives that could be asked.

7.5 Illustrative Example

To illustrate how this framework might be applied by students an example is

presented that is based on data (video, digital photographs, written scripts, poster

and questionnaire responses) from an open modelling context where students chose

the task and solution pathways (see Stillman et al. 2013 for further details).

Potential links to the framework are shown as alphanumeric codes such as F1

meaning the scaffolding question “What situation are we interested in?” as per

Fig. 7.3 could be of use at this point in group decision making. At the 2010 AB

Paterson Mathematical Modelling Challenge, the first two authors mentored 46 stu-

dents in 13 mixed groups of 3–4 students from different schools in Queensland

and/or Singapore in one large room. One group comprising Tim1 (an Australian

Year 11 student) and 2 Singaporean students (Becky, Year 11, and Colin, Year 10)

was purposefully chosen to illustrate how the framework might be used in a

PROBLEM FINDING (F) & SPECIFICATION (S) FORESHADOWING & FEEDBACK LOOP

F1 What situation are we interested in?
S1 What features/elements of the situation are we interested in?
S2 Which of these features/elements are relevant {irrelevant} {essential}?

S4 What questions could we pose? Will these be useful in mathematising?
MATHEMATISING (M) FORESHADOWING & FEEDBACK LOOP

M1 How could we mathematize? 
M2 What representations {models} could we use?
M3 What representations have any of us used before in something similar?
M4 What mathematical questions could we ask?
M5 What has been successful in the past?
M6 What technological tools {do we know} {are available}?
M7 What would these tools enable us to do?
PROBLEM SOLVING (P) FORESHADOWING & FEEDBACK LOOP

P1 If we use that representation how will it allow us to work mathematically?
P2 If we use that model what mathematics would we need to know or find out how to use? 
P3 If we use this model how does that effect what features we mathematized? 
P4 If we use this model how does that effect what features of the situation we thought {relevant} {essential}?

Fig. 7.3 Foreshadowing and feedback framework to engage beginning modellers in implemented

anticipation

1 Student names used throughout this chapter are pseudonyms.
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TRTLE. These students used 3 laptops and remained in the room the entire time

allocated to working on their modelling situation (i.e., 9 h over two

consecutive days).

Group members were interested in “the feasibility of Hollywood stunts and

whether it is possible. . .to perform this [sic] stunts in reality” [Questionnaire,

Video Day 2] [F1]. One stunt they chose to model was “a scene from a movie,

The Man with the Golden Gun, and [they were] looking at the car scene in which the
car took off from the bridge, spins 360	 . . . before landing on the other half of the

bridge” [Becky, Video Day 2]. The students had visited Dreamworld theme park

earlier in the week to gather and analyse data from various rides using technological

tools such as 3D accelerometers and real world interface software like Logger Pro

[M6, M7]. All three had some knowledge of these tools and their affordances but

only Tim was expert in their application as Becky and Colin had not used them

before this event. The question the group posed was: “What is the speed of a car
needed to jump across a broken bridge?” [Questionnaire] [S4, M4]. The features

deemed relevant were launch angle, car length, and width of gap in the bridge [S1,

S2, S3].

Analysis of still images from the movie DVD was used to calculate their launch

angle [M5, M6, M7]. Tim demonstrated he was fully aware of the technical

conditions needed for the Logger Pro software to be used reliably to determine

angles and distances. He was also aware of the mathematics required and that

arbitrary units could be used (see Fig. 7.4a).

Tim: Fortunately enough, the video camera at one of the points is perpendicular

to the motion in the car, which is imperative when you are analysing these

kind of things. So we are able to take the angle of launch straight off the

video (see Fig. 7.4a). Just your simple trigonometry to find out that your

angle is 23.8	. [Video, Day 2]

Logger Pro was also used to find the gap in the bridge but this time they used the

length of the car to form a reference scale [M7].

Tim: So fortunately enough we had accessed the Logger Pro software, went

on-line and found that the length of the car is 4.71 m, set that as our scale

and then measured that from two other points on the video which gave us a

length of 17.06 m for the car to jump across (see Fig. 7.4b). [Video Day 2]

Fig. 7.4 Using Logger Pro software on DVD image to (a) calculate angle of launch and (b) find
length of gap
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The group made use of physics concepts related to projectile motion to construct

their model of the motion of the car in flight across the gap [M1, M2, M3, M5, P1,

P2]. The rotation of the car was ignored [P4].

Tim: Of course, it is easiest to do projectile motion through parametric equations.

We see a car jumping off at an angle of say, 24	. Its motion can then be split

into x and y components so we have done that by combining the velocity

with the angle it jumped off at. . . .And also we have assumed. . .that gravity
is equal to 9.8 m per sec [sic] so we have integrated that to see how it affects

the displacement, which is �4.9 t2; then combined that into a parametric

equation. [Video, Day 2]

Using a parametric equation the motion of the car in both the x and y components as

a function of time is thus modelled as follows: x tð Þ ¼ vcosθð Þt and

y tð Þ ¼ vsinθð Þt� 4:9t2.
However, rather than ignore air resistance the group decided to incorporate this

so there were other relevant features of the situation they now needed to include in

their problem specification and its mathematisation [P3, P4].

Tim: We have also decided to include air resistance because that is a really large

factor that affects projectiles. It is usually negligible but we decided to

include it for a far more accurate representation [Video, Day 2].

Their reason for including it was “in reality, the motion of objects is impeded by

the drag force” [Poster]. This can be quantified through the drag equation, Fdrag ¼ 1
2

CdAρv2 where v is the velocity of the car, ρ is the density of the air which the car is

flying through, and A is the reference area, that is, the surface area of the car which is

directly travelling through the air [M2, M3]. The AMC driver’s manual gave the

coefficient of drag of the 1975 Hornet, the car used in the movie, as 0.32. To

determine the reference area the front design of the car was modelled by a trapezium

and a rectangle (Fig. 7.5). The width was sourced from the Driver’s Manual on the

internet as 1.793 m. All other measurements were taken using this scale (see Fig. 7.5)

in Logger Pro [M7]. The reference area was therefore calculated as

b� wð Þ þ h
aþ b

2

� �
¼ 1:793� 0:448ð Þ þ 0:583

1:793þ 1:255

2

� �
¼ 1:69m2

Basing their argumentation on the film being shot in Thailand and there being “mild

cloud in the sky” on the DVD, the group suggested this indicated that the temper-

ature was approximately 25	, and that the humidity was relatively normal. Thus,

they estimated air density, ρ, to be 1.18. All constants were then combined into one

constant, k.

k ¼ 1

2
CdAρ ¼ 0:5� 0:32� 1:18� 1:69 ¼ 0:32
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This gave a drag force, Fdrag ¼ kv2 ¼ 0:32v2, which was then incorporated

into their parametric equation, but for this to occur acceleration has to be included

[S1, S2]. As air resistance impedes the motion in all directions, it is considered in

both x and y components. Using Newton’s second law, a ¼ F
m. The mass of the car

with driver was specified by the Special Features section of the DVD as 1,460 kg.

Thus, a ¼ 0:32v2

1, 460. This was then incorporated into their parametric equation as: x tð Þ
¼ v cosθð Þt� 0:32 v cos θð Þ2

1, 460 t2 and y tð Þ ¼ v sinθð Þt� 4:9� 0:32 v sin θð Þ2
1, 460

� �
t2

As determined earlier using Logger Pro, x¼ 17.06 m, and θ¼ 23.8 o giving:

17:06 ¼ v cos23:8ð Þt� 0:32 v cos 23:8ð Þ2
1, 460 t2. To solve this equation they had anticipated

the utility of the affordances of the TI-Nspire computer program for this purpose

[M7] (see Fig. 7.6).

Tim: We eventually incorporated the deceleration due to air resistance into the

parametric model as well which eventually allowed us to draw this graph

(Fig. 7.6). The TI-Nspire is a really good program to allow you to do things

like this because I could include sliders which would easily allow me to

modify the velocity, angle and all the different components that affect drag.

The output from the computer program was then demathematised by the group

as “travelling at 15.3 ms�1 which I think equates to 56 or 57 kmh�1, so that is

certainly achievable” [Tim, Video 2]. They concluded that the stunt was possible.

7.6 Discussion and Conclusion

Our purpose in this chapter has been to propose a framework of scaffolding

questions for beginning modellers related theoretically to the foreshadowing and

feedback loops associated with operationalising the construct, implemented antic-

ipation, during ideal mathematisation (Niss 2010). AsWillemain and Powell (2007)

have documented in researching the differences between novice and expert

modellers, it is not that novices do not discuss during modelling, rather it is the

focus of that discussion. Novices in their study “spent more time talking about the

Fig. 7.5 Group’s
modelling of front design of

car for reference area A in

drag equation
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problem than building a model and little time assessing their progress” (p. 1280).

Framework questions are not meant just to generate rich group discussion in

interthinking (Mercer 2000) but rather to facilitate productive discussion that

moves novices forward from a problem context focus to actualising model con-

struction. Our claim is that each question can be used at a decision making point to

facilitate the discussion moving towards this goal by activating foreshadowing and

feedback loops. The feedback, for example, from a foreshadowed refinement to the

model of the flight of the car to include air resistance highlights this framework

aspect. Once this refinement has been suggested its impact on the relevance of

situation features needs to be discussed. Questions P3 and P4 come into play raising

group awareness of this feedback effect and providing a means to progress the

model refinement rather than it remain at the level of suggestion.

As we believe modelling is enhanced for beginning modellers in a TRTLE we

chose an open modelling example where the group perceived and enacted

affordances of digital tools to conduct their modelling. They were operating in

the space where the interactions shown in Fig. 7.1 were coming to the fore but at

their own instigation. Although choosing a situation to model that would allow use

of the analysis software they had used recently seems an obvious choice, this was

the only group who did so. Real world interface software affords novice modellers

the concrete experience of measuring angles and distances directly from still

images of real objects frozen in motion. Optimum use of such tools requires

Fig. 7.6 Using sliders in TI-Nspire software to calculate velocity from their final parametric

model
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technical knowledge as Tim indicated but tool availability makes modelling acces-

sible to a broader spectrum of students. Thus questions M6 and M7 are necessary in

the framework if schooling is to keep pace with technological advances in society

and workforce changes where model creation and use are no longer left to experts

(Willemain and Powell 2007).

The main contribution of this chapter for the potential resolution of issues related

to problem formulation and specification and their successful mathematisation by

novice modellers is that it transforms and extends Niss’s implemented anticipation

within his model of ideal mathematisation into an operationalized scaffold so that it

can be used by such modellers. The framework related to the foreshadowing and

feedback loops shown in Fig. 7.2 facilitates group members asking each other

scaffolding questions to develop a sense of direction for their modelling (Treilibs

1979). The framework both facilitates and exposes interthinking (Hunter 2012;

Mercer 2000) but with the added purpose of enhancing the effectiveness of discus-

sion in leading to model construction through appropriate mathematisation

processes.
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Chapter 8

Authenticity in Extra-curricular
Mathematics Activities: Researching
Authenticity as a Social Construct

Pauline Vos

Abstract In this chapter I study authentic aspects in mathematics education, in

particular with respect to mathematical modelling. I define ‘authenticity’ as a social
construct, building on the French sociologist Émile Durkheim. For an aspect to be

authentic, it needs to have: (1) an out-of-school origin and (2) a certification of

originality. The study validates this definition, asking: what authentic aspects can

be identified within mathematics education? Data were collected from the excur-

sion Railway Timetable Dynamics. During the excursion secondary school students
were exposed to research carried out by university mathematicians on behalf of the

National Railway Company. The authentic aspects were mathematical or

non-mathematical. Often the certification was a testimony by an expert.

8.1 Introduction

In mathematics education, we encounter tasks in which mathematics is connected

to the real world. Many of these tasks are word problems, in which mathematical

exercises are ‘dressed-up’ (Blum and Niss 1991) into a story that contextualizes the

mathematics. For example, the division exercise 31
2

 1

4
¼ . . .may be concealed in a

pizza situation: How many quarter pizza slices can you get out of three and a half
pizzas? Or the same division may be concealed in a money situation: How many
quarter dollars ($0.25) make $3.50 ?

Generally, in word problems the degree of reality is far fetched: the problems are

completely inauthentic. In the above described word problems the division activity

remains isolated and the answer is a number and not a solution to a problem in real

life. The only need to carry out the division is pedagogical: to do a division of
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fractions. When set into a pizza situation or a money situation, the task may offer

learners an idea of how division is useful in out-of-school situations, but research on

adult consumers’ calculations has shown that school skills are poorly applied in real
life situations (Lave 1988). The lack of a link from mathematical word problems to

genuine out-of-school life has been criticized (e.g., Boaler 1993; Gerofsky 1996;

Verschaffel et al. 2000), pointing at problems such as: word problems ask for skills

that are hardly ever needed in real life (e.g., finding the numbers concealed in a text

and applying the right operation on these numbers), word problems do not offer

students a real experience of the usefulness of mathematics and word problems are

not appreciated by students either. Therefore, it remains a challenge of how authen-

tic out-of-school aspects can be integrated into learning environments. In a previous

study, I have problematized authenticity (Vos 2011). In this chapter, I will define

authenticity and study the operationalization and validation of this definition.

8.2 Theoretical Background

8.2.1 Authenticity as Simulation or Imitation

In defining authenticity, a number of researchers have put up lists of components.

For example, Heck (2010) refers to authentic student research projects if: (1) stu-
dents work on self-selected, challenging, messy, ill-defined, open-ended problems

rooted in a real life situation; (2) students do not follow some standard recipes, but

examine their problem from different perspectives, using a variety of resources and

high-order skills; (3) a broad range of competencies is required to make the project

a success, and one of these abilities is making use of ICT for information gathering,

data processing and reporting; (4) students’ work is open-ended in the sense that

there are multiple methods to obtain possible or even competing answers; (5) it

offers students the opportunity to be in contact with contemporary, cross-

disciplinary research and to learn about the nature of mathematics and science;

and (6) students disclose their own understanding through a portfolio, a report or a

presentation (Heck 2010, p. 116). Palm (2002, 2007) analyzes authenticity as the

extent to which a task simulates a real-life performance. He offers a list to analyze

tasks according to: the aspects of the event (might the event occur in real life?), the

question (might the question be posed in that event?), the purpose, the information/

data (are the data corresponding to real life data?), the presentation, the solution

strategies, the circumstances, and the solution requirements.

In the above cases, the researchers designed activities that imitate or simulate
real world activities. However, imitations and simulations are copies. The lists of

criteria make the imitations or simulations to be near perfect copies of out-of-school

activities, but the fact remains: copies are different from the real thing! In the study

by Heck (2010) on the modelling of bungee jumping, students experiment with a

Barbie doll in the gym, and not with real-life bungee-jumping, where a calculation
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error may cause death. In the study by Palm (2002, 2007), students work on a task to

organize a school excursion. However, they fill in an order form from a fictitious

bus company and after the number of necessary buses is filled in, the task ends and

there is not a real excursion. So, while these tasks may meet a certain set of criteria

set by the researchers, the tasks are still essentially inauthentic because they only

simulate or imitate real life. This fact complicates the definition of authenticity in

education, in particular in mathematical modelling education.

8.2.2 Authenticity as a Social Construct

According to dictionary definitions (e.g., Webster’s), authenticity means that an

object is authentic if it has a true origin and hasn’t been copied (or forged). The term
is illustrated through the discipline of Archaeology, where found artifacts are

considered authentic when they truthfully originate from human activities in the

past. The word authentic is used as a contrast to ‘being a copy’, such as imitations

and forgeries. The qualification of being authentic is dichotomous: an artifact is

either authentic or not; there is no artifact that is ‘more or less authentic’ or ‘more

authentic’ than another. It is possible that an artifact receives the tag: ‘authenticity
cannot be established’, but this un-decidedness does not render the artifact ‘more or

less authentic’. To establish authenticity, archaeologists have a number of methods

to justify the authenticity (e.g., similarity to other authentic artifacts, the site of

finding, the route that the object has travelled from the origin to its present

location). In Archaeology, only acknowledged experts can give an artifact the

classification of authenticity; if an outsider finds a Roman coin in his/her backyard,

she/he will need to consult an expert before the artifact can be confirmed as

authentic.

In this exemplary discipline of Archeology, we see that the term authenticity is
defined in an interplay between objects and actors. The objects are (1) an artifact,

that is: the object of study that is to be qualified as ‘authentic’ or not; (2) an origin,

that is: a reality that has produced the object. The actors are: (3) the experts who

decide on the qualification of authenticity; and (4) the outsiders who observe the

artifact and trust the expert’s authority.
The sociological analysis of the use of the term authenticity in disciplines such

as Archaeology, Law and Art, shows us that authenticity is a social construct: it is
an agreement reached through a social process. Social constructs were first studied

by the French sociologist Émile Durkheim (Berger and Luckmann 1966). He

studied the common language and knowledge of a community. Social constructs

are, for example, ‘money value’, ‘democracy’, or ‘science’. Generally, social

constructs become institutionalized and they are not negotiable by individuals.

Thus, a Roman coin found in someone’s backyard will not be taken as authentic

until an institutionalized procedure has been applied, that is until an expert has

confirmed its originality, eventually with a counter-expertise.

8 Authenticity in Extra-curricular Mathematics Activities: Researching. . . 107



Considering authenticity as a social construct, for an aspect in mathematics

education to be considered as authentic it requires:

1. an out-of-school origin

2. a certification.

These requirements align with the definition of authenticity by Niss (1992, cited

in Palm 2002, p. I-20): “We define an authentic extra-mathematical situation as one

which is embedded in a true existing practice or subject area outside mathematics,

and which deals with objects, phenomena, issues, or problems that are genuine to that

area and recognized as such by people working in it.” In this definition, the given

situation has a true origin and this origin is attested to by experts. My definition of

authenticity as a social construct is wider: (1) the origin can be mathematical, as long

as it is from out-of-school, and (2) a certification can also be offered by other experts

than “people working in it”, such as stakeholders linked to other problems than

workplace problems, such as consumer or environmental problems.

The study described in this chapter will validate the above definition by scruti-

nizing a series of mathematics activities on the presence of authentic aspects and

whether the authenticity can be related to an origin and a certification. The research

question is: what authentic aspects can be identified within mathematics education,
and in particular: are authentic aspects always related to non-mathematical objects

or can they also be mathematical?

8.3 Methods

For this study I observed systematically a series of mathematics activities on the

presence of authentic aspects. The mathematical activities were part of a school

excursion for mathematics. I selected an excursion instead of standard classroom

activities, because I assumed to identify (1) more authentic aspects and (2) clear

authentic aspects in extra-curricular, out-of-school mathematics activities than in

regular mathematics classes. The selected excursion is one out of a collection of

excursions that are organised by ITS Academy, a project in which four tertiary

institutions in the city of Amsterdam collaborate with secondary schools (see www.

ITSAcademy.nl). The goal is to motivate secondary school students for STEM studies

(science, technology, engineering and mathematics) by organising motivating expe-

riences for senior secondary school students (grades 10, 11 and 12). Many activities

are organised within the schools, for example university researchers come to the

schools to deliver guest lectures. Also, laboratory equipment can be borrowed by

schools, and there are video lectures and on-line applications to demonstrate the work

of researchers in schools. There are also excursions that take the students out of their

school environment. For the natural sciences, the excursions are focused around the

university’s laboratory equipment that schools cannot afford. To raise more interest

for Astronomy, there is an excursion to the university’s telescope. For mathematics

there are several excursions, for example on the modelling in Biodiversity (dynamic
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systems) and in Business Studies (the Black-Scholes-formula for investments). The

study presented in this chapter focuses on the excursionRailway Timetable Dynamics,
in which Graph Theory is used to model the routing of passenger trains. In this

excursion, the students physically visit Science Park, the campus of University of

Amsterdam where the Faculty of Science and Mathematics can be found.

The excursion was studied by two independent coders on aspects that could be

coded as authentic: the author and a research colleague. The coders familiarised

themselves with the setting of the excursion, the sequence of activities, and in the

spring of 2012 they joined visits by groups of secondary school students from two

secondary schools. Students’ activities were videotaped, the accompanying teachers

and three randomly selected students were interviewed. Thereafter, the coders created

a table, listing authentic aspects; for each authentic aspect they applied the criteria for

authenticity (origin and certification), so they noted a true non-educational origin and

the way the justification was offered to the students. Comparing between coders, it

was noted that their observations overlapped largely, albeit differing in wording. Not

all aspects were observed by both coders, but they reached consensus.

8.4 Results

In the excursion described here, Railway Timetable Dynamics, the physical envi-

ronment of the excursions was the first authentic aspect. The university premises

with professors, researchers and university students, and with university halls and

laboratories were all authentic. The buildings and all people present were real.
Clearly, the secondary school students were not taken to a theatre, in which a play

was performed by actors. The physical presence at the university scenes, being able

to see and speak with researchers and sit in university lecture halls served to certify

the authenticity of these aspects.

In the excursion Railway Timetable Dynamics the students are introduced to a

problem from mathematical Graph Theory. In 2007 a new railway timetable was

introduced by the National Dutch Railway Company (Nederlandse Spoorwegen,

NS), based on research on bottlenecks in the timetable by Prof Alexander Schrijvers

and his team. The research was carried out on behalf of the NS. In the excursion, the

students meet with a NS-manager through live video conferencing. They see him

against the background of the NS control room, while he explains the urge of the

railway company to collaborate with research mathematicians, see Fig. 8.1. The

live connection serves to certify the origins of the timetable problem of NS.

After meeting live with the NS-spokesman, the students’ task is to create a

timetable for the railway system in the northern part of the Province of North-

Holland. This region was chosen because it is in the vicinity of Amsterdam and

thus, it is a familiar region to most students. Also, this region is a peninsula and thus

the graph for its railway system is mathematically not too complex, see Fig. 8.2.

The activities in the excursion are scaffolded: students are introduced to the

mathematical symbols and techniques and they learn how a cyclic timetable is

repeated every hour. Deliberately, the start of the activities is kept simple, so that
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all students can step in, even if they are somewhat weaker in mathematics. They start

to formulate assumptions that need to be included into the model, such as the

limitations caused by faster trains that do not stop at all stations, the maximal waiting

time for a train (e.g., if a train waits for 20 min at a platform, this will cause passenger

dissatisfaction), the transit time for passengers, and the safety distance between

Fig. 8.1 Live video conferencing with the railway control room

Fig. 8.2 Picture from the

task in the excursion

Railway Timetable
Dynamics
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departing and arriving trains. After lunch, the students used modelling software to

build their own timetable, see Fig. 8.3. This software was specially created for the

excursion and simulates the software that the mathematical researchers used origi-

nally. It is explained to the students, that constructing software was part of the

mathematicians’ job when working on the bottle-necks in the NS timetable.

The original problem, to create a new timetable, was observed as authentic, as it

originated from the NS and it was certified in the live video conferencing. This live

connection turned out to be pivotal in convincing students that the mathematical

activities really served to solve practical problems. However, the problem given to

the students to find a timetable for the province of North Holland was observed as

inauthentic, because it was a reduced problem for pedagogical reasons and the

students merely simulated the researchers’ work. The original work was far more

complex and could not be covered in the time span of the excursion. Also, students

did not need to report back solutions to the NS in such a way that their solution

would be implemented. If they made errors, it did not have consequences for the

company nor for the passengers. Also, the software used was inauthentic, as well as

the ‘research experience’ (the excursion simulated the work of research mathema-

ticians; the students only worked for a few hours on one problem, not for weeks or

longer, not under time pressure). However, an authentic aspect in this excursion was

the ‘researcher’s frustration’, that is: students worked for a long time on one single

problem without finding a reasonable solution, and thereby discovering that

the problem was far more complex than anticipated. The authenticity of this

experience was certified by the university researcher who recounted his own

frustrations and his need for perseverance while doing research.

Fig. 8.3 Students working with the modelling software for the excursion Railway Timetable
Dynamics
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Another authentic aspect found was the applicability of mathematics, that is: the

excursion showed the students how real mathematics researchers use mathematics

to improve real timetabling problems of railway companies. This was certified by

the expert in the video-conferencing meeting.

8.5 Conclusion and Discussion

In this small-scale study we can observe a range of authentic aspects in mathemat-

ical modelling education. The authentic aspects can be distinguished as mathemat-

ical or non-mathematical. Observed authentic aspects that are within the field of

mathematics: authentic symbols (identical to the ones used by the researchers),

authentic research questions (to resolve the bottlenecks in the railway timetable),

authentic research experiences (working for a long time and not finding an answer).

As non-mathematical aspects, we observed authentic buildings, authentic profes-

sionals, authentic applicability of mathematics to authentic problems (graph theory

and its applicability to the railway company’s timetable problem) and authentic

problem settings (stations, platforms, waiting time for passengers).

In this excursion, Railway Timetable Dynamics, we also observed the reduction

of authentic aspects into inauthentic aspects: we observed how activities from the

real world were downsized, simplified and reduced to match the educational setting,

which is framed by time constraints and limited skills of the participants. This

reduction serves the educational purposes, which were: to offer students experi-

ences and give them a ‘feel’ of what real professionals do with real mathematics in

the real world. Within the learning environment for modelling education not

everything can or needs to be authentic. There are so many different aspects within

a learning environment, such as goals, resources, media, activities and so forth, that

it is unnecessary to have all aspects be authentic. If all aspects of a learning

environment would be authentic, the students would take up the full task of a

professional. This would mean that mathematical errors would have serious con-

sequences, such as errors in the railway timetable or loss of money for the company.

The extra-curricular experience for students offers an epistemological insight into

the learning of mathematics. Often, we discern in the learning of mathematics

different strands needed for becoming mathematically proficient, such as: conceptual

knowledge, procedural fluency, strategic problem solving competencies, and so forth.

The present study demonstrates the necessity for students to construct knowledge

aboutmathematics, in particular knowledge about the utility of mathematics (e.g., for

solving complex timetable problems). This knowledge may be attained without fully

understanding the underlying mathematical concepts or procedures. Whether this

knowledge affects students’ mathematical disposition is a point for further studies.

In this present study, authenticity is strongly related to the work of professional

mathematical researchers. Of course, this is due to the object of study: an excursion

to a university will mirror the work of university mathematicians. If the focus had

been on the modelling of consumer activities, the authentic aspects would relate to

consumer aspects.
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Taking authenticity as a social construct, we verified whether each aspect had an

out-of-school origin and whether this origin could be certified. Often the certifica-

tion consisted of a testimony by an expert, in particular the video conferencing with

the NS control room played a pivotal role in the certification. We noted that for a

number of authentic aspects the origins and certifications were not always explicitly

given, while this could have been done. For example, the symbols used in the

mathematical model were authentic, being the original symbols that the university

researchers had introduced in their research process. However, this fact was not

made explicit and the students complained of the symbols’ awkwardness. Probably
the excursion trainers were not aware of the importance of the certification, and the

visiting students did not ask. Here, we obviously see points for improvement in the

design of learning environments.

In this chapter I defined authenticity as a social construct, whereby each authen-

tic aspect has an out-of-school origin and a certification of this. This definition was

practical for separate aspects in a learning environment. This definition differs from

those definitions with lists of criteria, in which cause and effect are reversed. When

a modelling activity contains authentic aspects, this causes the activity to be fuzzy,

open-ended, requiring higher-order thinking and so forth. It means that the lists of

features offered by a number of authors (e.g., Heck 2010; Palm 2002, 2007) are

implications of authentic aspects and not indicators or descriptors of authenticity.

References

Berger, P. L., & Luckmann, T. (1966). The social construction of reality: A treatise in the
sociology of knowledge. Garden City: Anchor Books.

Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications,

and links to other subjects – State, trends and issues in mathematics instruction. Educational
Studies in Mathematics, 22(1), 37–68.

Boaler, J. (1993). The role of contexts in the mathematics classroom: Do they make mathematics

more “real”? For the Learning of Mathematics, 13(2), 12–17.
Gerofsky, S. (1996). A linguistic and narrative view of word problems in mathematics education.

For the Learning of Mathematics, 16(2), 36–45.
Heck, A. (2010). Modelling in cross-disciplinary authentic student research projects. International

Journal for Technology in Mathematics Education, 17(3), 115–120.
Lave, J. (1988). Cognition in practice: Mind, mathematics and culture in everyday life. Cam-

bridge, MA: Cambridge University Press.

Palm, T. (2002). The realism of mathematical schools tasks – Features and consequences. Ph.D.
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Chapter 9

The Teaching Goal and Oriented Learning
of Mathematical Modelling Courses

Mengda Wu, Dan Wang, and Xiaojun Duan

Abstract By analyzing the characteristics of mathematical modelling courses in

Chinese universities, we present a viewpoint on how to teach this course, including

what the instructor should teach andwhatwould be expected to be learnt by students. It

is worth emphasising that “teaching motivated by mathematical modelling thought”

should be the main goal of mathematical modelling courses. The mathematical

methods and modelling cases are the carriers of thought transmission and should

serve the goal so that the student can better comprehend the mathematical thought.

9.1 Introduction

In China, mathematical modelling courses are included in the curriculum schedule

in most universities (Xie 2010). Most Chinese teachers also believe that mathemat-

ical modelling activities can improve students’ ability to solve problems. The

findings of Dan and Xie (2011) from a small experimental study at a Chinese

engineering university with average-level students “provide strong evidence to

support the mathematical education reform in China with regards to mathematical

modelling courses and related activities as a vehicle to improve the students’
innovation ability” (p. 465). Ban (2001) surveyed Chinese high school students

and found “the high school students in China spent lots of time in learning math

[ematics], but they don’t feel the effect of the math[ematics], the mathematical

modelling activities can improve the interest in learning math[ematics]”. However,

mathematical modelling courses have not yet imposed a normalized teaching

system as have the traditional mathematical courses, such as Calculus, Linear

Algebra, Probability and Statistics (Ye et al. 2003). In Chinese universities, several

ways of teaching mathematical modelling courses have been paid attention by
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Chinese teachers, such as mathematical modelling teaching by mathematical

method or modelling case, also including teaching modelling method by case

researching (cf Clements 1984). Although these mathematical methods are impor-

tant parts in mathematical modelling courses, it is impossible for students to

become proficient at all of these mathematical methods through the teaching of

mathematical modelling courses since the course time is limited. So, a mathemat-

ical modelling course should provide a way of teaching in its own systematic

thinking pattern (Li 2013) and not be only a collection of various methods.

This chapter will mainly focus on collecting together some of the wisdom of

practice about the essential nature of mathematical modelling teaching at tertiary

level from our experience in China and relating it to similar ideas expressed in other

contexts. By analyzing the characteristics of mathematical modelling cases, two

viewpoints have been presented on teaching this course in this chapter, namely what

should the instructor teach (i.e., the teaching goal) and what should be learnt by the

students (i.e., the orientation of the learning). It is emphasized that summarizing and

spreading the message about the thinking underpinning mathematical modelling

should be the main goal of teaching a mathematical modelling course, whilst the

mathematical methods and modelling cases are the carriers of thought transmission

and should serve the goal to help students to comprehend and learn the mathematical

thinking. To this end, Blomhøj and Kjeldsen (2013), from their course at Roskilde

University, as well as others (e.g., Li 2013), have pointed out “that the modelling

context provides a window to students’ understanding and their images of the math-

ematical concepts they work with as well as to their understanding of a mathematical

model and modelling” (p. 151). We think that the teaching goal of the mathematical

modelling courses should be to develop the thinking underpinning mathematical

modelling. The main goal should not be that the mathematical modelling course is

just to help students become proficient in the application ofmathematicalmethods; the

more important goal is to help students understand the general principles and thinking

of mathematical modelling through the process of constructing the mathematical

model and solving it (i.e., to develop meta-knowledge about modelling). This process

will improve the thinking ability of students with respect to quantitative thinking.

In this chapter, we advocate several means of teaching such thinking during a

mathematical modelling course, including intuitive insights into how the problem

should be modelled, making connections, innovation through critique, choice based

on common sense and cultivating inductive thinking. In fact, these thoughts also

appear in many applied mathematics courses such as applied differential equations,

and mathematical biology; but such courses in China that emphasize the application

and teaching of methods, lack the summary of thinking. Next, these viewpoints will

be illustrated respectively.

9.2 Intuitions: Insights into the Nature of the Problem

To some extent, innovation relies on intuition. The intuitive ability to detect the rules

hidden in a complicated real-world phenomenon often leads to innovative ideas. In fact,

there are many mathematical modelling teaching cases where the final conclusions are
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contrary to “common sense”. Deep analysis of such cases can continuously correct

students’ first impression to a more profound and accurate degree. Therefore, through

this process, the student’s quantitative thinking ability could be enhanced (Borromeo

Ferri 2011). Furthermore, the author of Sciencenet blog posting (2013) points out that

the college students without this self-criticism ability for intuitive knowledge will be

destined to become a passive watcher of society rather than a participant.

For example, people easily form an intuition that the scientific reasoning ability

of a person is dependent on the knowledge owned; but in fact, it is not necessarily

true. In January 2009, Bao et al. (2009) published an article on learning and

scientific reasoning. The article revealed that: overall knowledge and scientific

reasoning ability are unrelated. The relationship between knowledge and scientific

reasoning of students is similar to that of lens imaging and the image’s resolution.
The amount of knowledge has been increased for students who graduated from

university; however the improvement for their scientific reasoning may not be

much. Similarly, the resolution does not become better along with the size of the

image increasing. Figure 9.1 (Bao et al. 2009) shows comparative results for China

and USA first year college students on various measures. Force Concept Inventory

(FCI), Brief Electricity and Magnetism Assessment (BEMA) are used to test

student STEM (Science, Technology, Engineering, and Mathematics) content

knowledge and Lawson’s classroom test is used to test scientific reasoning ability.

From these comparison data, Bao et al. (2009) drew the following conclusion: the

magnitude of physical knowledge of American students is 50 % less than that of

Chinese students, but their scientific thinking abilities are almost the same.

The same statement could be made from the following two cases:

Case 1: Lanchester Battle Model (Lucas 1983)

In the Lanchester battle model, only two factors influencing the outcome of

the battle are considered: numerical strength and fighting capability. The

variables x0 and y0 are denoted as the initial numerical strengths of side

X and side Y; a and b are denoted as the effective fighting capability

coefficients of side X and side Y. Under some simplified hypothesis, using

the Lanchester battle model, the requirement of side Y winning is:

y0
x0

� �2

>
b

a

Before giving the final conclusion of this model, students are asked to solve

this problem: If the initial numerical strength of side Y is just one half less

than that of side X, then side Ymust improve its fighting capability coefficient

to win the battle. How much should the fighting capability of side Y be

improved to guarantee winning the battle?

Most students answer that only when the fighting capability of side Y is two

times higher than that of side X, can side Y win the battle. However, the Lanchester

9 The Teaching Goal and Oriented Learning of Mathematical Modelling Courses 117



battle model shows that only when the fighting capability of side Y is four times

higher than that of side X, can side Y win the battle!

This case shows that most students are using a “linear thinking style”, which is a

habitual initial thinking pattern. The linear thinking mode is available and helpful

on many occasions, but when facing a nonlinear problem, we may fail to solve the

problems correctly (De Bock et al. 2007; Van Dooren et al. 2013). In mathematical

modelling cases, students should learn to rethink the initial thinking style,

correcting the frustrated initiation and reducing the mistake-making possibility.

Case 2: More Means the Smoother Journey? (Braess’s Paradox 2008;

Mind Your Decisions 2009)

In this case, due to poor transportation conditions, the time t spent on the

road from the “start” to A is linked to the total amount of vehicles T, which

(continued)

Fig. 9.1 Knowledge and ability relation between Chinese students and American students
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satisfies the condition t ¼ T
100

. While the road from “start” to point B has good

transportation conditions, the time t spent on this road is fixed at 45 min. In a

certain time, suppose that 4,000 vehicles are required to pass from the “start”

to the “end”, how do you allocate these vehicles to the different roads?

This is another case that is contrary to “common sense”. According to Nash

non-cooperation game equilibrium theory (Nash 1951), the Nash equilibrium point

is: each path carries 2,000 vehicles. Then all drivers of vehicles will think their

choice is optimum, the Nash equilibrium point is reached at this point.

By the above vehicle allocation, the time required from “start” to “end” will be

65 min. Now, suppose that a new road between A and B was built due to the long

time cost, which is shown as follows in Fig. 9.2. Additionally, suppose that the time

required between A and B can be ignored when compared with the whole time cost.

Generally, people think that more roads will lead to less time cost from the

“start” to the “end”. However, according to Nash equilibrium theory (Nash 1951),

all vehicles will choose the same path: START ! A ! B ! END. Under the

non-cooperation condition, all participants believe that their choice was optimum.

In this case, every vehicle would take 80 min to pass from “start” to “end”.

The research of the German mathematician Dietrich Braess comes to the con-

clusion: if the journey time of each road is linearly related with the vehicle number

of this road in a transportation network, there must exist a Nash equilibrium point. It

may cause the whole network to be under adverse conditions, which is called the

Braess paradox phenomenon (Braess 1969; Braess et al. 2005).

9.3 Connections: Reconstruction of Personal Knowledge
System

From the viewpoint of solving the real-world problem (Brown 2015), the construc-

tion of a personal knowledge system should not only involve the amount of

mathematical knowledge, but also encompass the “soft ability” (if the amount of

knowledge is called hard ability, here soft ability is the ability to analyze the

problem, modelling, design the experiment, etc.) for the application of the knowl-

edge (Brown this volume; Greefrath et al. 2011). This is like the performance of a

Fig. 9.2 Tracking model of

transportation
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database system depending not only on storage size, but also on input, output and

data retrieval functions. More importantly, mathematical modelling teaching

should focus on forming and strengthening the knowledge application ability of

learners (Spandaw 2011).

In the teaching process, “connections” should be emphasized, including the

connection between “knowledge” and “problem”, and the connection between

“knowledge” and “knowledge”. The famous mathematician Stefan Banach has

said “A mathematician is a person who can find analogies between theorems; a

better mathematician is one who can see analogies between proofs and the best

mathematician can notice analogies between theories. One can imagine that the

ultimate mathematician is one who can see analogies between analogies”

(BrainyQuote.com 2014). Higher level thinking not only relies on the amount of

knowledge, but also depends on the connections among knowledge. The knowledge

system we advocate is a system constructed with knowledge and connections. A

successful modelling process will not be prefect without deep understanding of the

problem and a thorough understanding of the model. Only when the two parts are

clearly understood, will the optimal connection between knowledge and problem be

“linked” and, based on that, a perfect modelling could have a good foundation.

9.4 Innovation: Critical Thinking Ability

Innovation usually comes from critical thinking. Innovation usually cannot come

forth without critique and accurately understanding a problem. A critical thinking

ability is an essential characteristic of innovation thinking. In the modern informa-

tion age, information content and information spreading have a rapid growth;

people will be more likely to suffer from an “information indigestion problem”.

So the critical thinking habits should be guiding ideas in teaching of mathematical

modelling courses. The teaching based on the real problem and case, which is a

major characteristic of mathematical modelling courses, can help the students to

achieve the training of critical thinking habits as pointed out also by Blomhøj and

Kjeldsen (2011). Let us elaborate this idea through a further case.

Case 3: Locks Packing Problem – Complaint Degree Tolerance

A certain factory produces locks, the key of each lock has 5 slots, the height

of each slot was chosen among the set {1,2,3,4,5,6}. Under the current

industrial technique condition, the experimental results to test whether the

key of a lock would open other locks are as follows: for 2 keys matched to

different locks, if there exist 4 slots with the same height in all 5 slots and the

height difference of the rest of slots is only 1, then these two keys may open

the lock of each other. On the other hand, the locks are often packed together

(continued)
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with 60 locks to sell, while customers often buy several boxes or more. Then

they may find different keys that may open the same lock. This situation is

called inter-opened locks. Now your group must try to solve the following

question:

(1)–(3) Design the way for packing the locks into a box.

(4) According to this packing method, how do you measure the customer’s
complaint degree (dissatisfaction with inter-opened locks) qualitatively?

The following conclusion can be gained by computing the mathematical expec-

tation of the number of inter-opened locks: average 2.33 pairs of inter-opened locks

can be found in a box; 9.41 pairs of inter-opened locks can be found in two boxes.

Then many modellers easily form the following reasoning process: the more boxes

the customers buy, the more inter-opened locks, then the higher degree of complaint

will be gained.

This reasoning process may seem reasonable. However, other modellers query

this. They criticize the viewpoint: the more inter-opened locks, the higher the

complaint degree. This assumption is reasonable only when the customer tests all

the locks to judge whether they can open each other. However, will the customer

really do all the tests? If a customer buys 50 boxes of locks, then the cumulative test

time to carry out all tests would reach 4.5 million. It is impossible! So it is more

likely for those customers to do inter-open lock tests randomly. Then the problem

reaches an essential point: which is the probability for finding inter-opened locks

does not linearly increase as the number of boxes purchased increases. So those

modellers come to the opposite conclusion that the more lock boxes the customers

buy, the less complaint they will have. This case requires students to pay attention

to engaging critical thinking when it is considered.

9.5 Choice: the Ability of Macro-coordination
and Direction Control

If we say students master the skill of designing the machine parts by classroom

study, the mathematical modelling process could be regarded as constructing a

machine, which involves the determination of the modelling tasks and a trade-off

among all constraints. In the mathematical modelling process, many situations and

different schemes need to be continuously selected and compromised. It is related

to macro-control ability for coordinating all these aspects. This ability could be

trained only in the process of solving practical problems (Stillman 2011).
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Case 4: Cable Car Operation Plan – Realistic Alternative

A certain scenic spot attracts many tourists due to its beautiful scenery.

Because of many tourists, there is a waiting queue for tourists to ride the

cable car to reach the summit of the mountain. Now the problem is: how to

solve this waiting time problem for tourists?

This is a test problem for our mathematical modelling thinking. Most students’
answers are: speeding up the cable car. It is pity that it is a wrong answer. We

denote by Q the carrying capacity of a cable car (which means the number of

tourists being carried in unit time), V as the cable car’s speed, P as the maximum

number of tourists that can be carried for each cable car, and L as the distance

between two neighbouring cable cars. Then the tourist carrying capacity for the

whole cable system can be expressed by the following formula:

Q ¼ V � Pð Þ=L

Considering safety, cable car arrival interval is fixed. It means that V/L is a constant

determined by the safety factor. So when accelerating the cable car’s rate, the

distance between two neighbouring cars should also be increased, this change

cannot help in increasing the whole carrying ability. The correct answer to this

problem is slowing down the cable car’s speed. This is unexpected. In fact, slowing
down the cable car’s speed also cannot improve the carrying capacity; however,

since the cable car’s speed is slow, tourists will have more time on the cable, which

decreases the waiting time on the ground, the degree of complaint is naturally

reduced.

In fact, there are many interesting mathematical modelling cases that are not

consistent with common sense. In brief, students not only learn the mathematical

modelling method and computation skills through studying these cases, but also

include judgment ability and trade-off ability to the real-world problem.
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9.6 Inductions: Improve Thinking Mode

In the modern information world, data modelling has become an important

approach to mathematical modelling (Engel and Kuntze 2011) since large datasets

have become available (see Kutz 2013). The mathematical teaching generally trains

students’ deductive reasoning ability in an inferential thinking mode, while math-

ematical modelling courses trend to train students’ inductive reasoning ability. In

the mathematical modelling teaching process, we should consciously emphasize the

training of students’ inductive reasoning ability. This will help to cultivate students’
thinking mode to adapt to the information world’s requirements.

Case 5: Forecasting Popularity – Induction of the Impact Factors (Roja

et al. 2012)

News articles are very dynamic due to their relation to continuously devel-

oping events that typically have short life spans. For a news article to be

popular, it is essential for it to propagate to a large number of readers within a

short time. Hence predicting the popularity of news items prior to their

release is an interesting and challenging task.

This is a complex problem for students because there are so many factors

influencing the popularity of the new articles. We also provide a lot of data to

students. Students need to induce the most influential factors from data. In this case,

the students will finish the following steps:

• Extract the influential factors by statistical analysis;

• Quantify the influential weight of the factor;

• Build the model between popularity and the influential factors by a statistical

model, and verify the model;

• Predict the popularity of an article.

In Roja et al. (2012), three factors are extracted as influential factors on the

popularity (T). They are the score (C) of the type of information, the score (S) of the
source of information, and the max score (Entmax) of the named entities (such as a

place, a person or a organization, etc.). Raoja et al. built a model as:

ln Tð Þ ¼ 1:24ln Sð Þ þ 0:45ln Cð Þ þ 0:1Entmax � 3

Students extract different influential factors and build various models to get the

description of popularity. Although students cannot build as perfect a model as

Roja et al. do, students try to understand how to induce the information from lots

of data. Further, the teacher can guide the students in training their inductive

reasoning ability.
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9.7 Conclusions

The chapter discusses two main aspects about the teaching of mathematical model-

ling courses: what should the instructor teach and what should be learnt by the

students. Some viewpoints are proposed: (1) We should attach importance to the

training of the thinking of students in mathematical modeling course. In the real

world, students will face unfamiliar problems; then, the training of thinking will

help students analyze and respond to the problem effectively rather than recall of

methods from memory. (2) The teacher should pay more attention to training of

students’ systematic thinking modes, not just the mathematical methods. (3) Sum-

marizing and spreading the message about the thinking underpinning mathematical

modelling should be the main goal of teaching a mathematical modelling course,

whilst the mathematical methods and modelling cases are the carriers of thought

transmission. (4) Students learn and understand the process of the mathematical

modelling through the training of the thinking. At the same time, students also learn

and understand the mathematical methods. This teaching mode will help students

improve their quantitative thinking ability to deal with real-world problems in

mathematical modelling courses. Only then might we reverse Bao et al.’s finding
(2009) and creativity be fully enhanced and discovered during students’
university life.
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Chapter 10

Modelling Competencies: Past Development
and Further Perspectives

Gabriele Kaiser and Susanne Brand

Abstract This chapter aims to describe the understanding of modelling competen-

cies and how it has developed since the establishment of the conference series

“International Conference on the Teaching of Mathematical Modelling and Appli-

cations” in the early eighties of the last century. Based on these descriptions and the

distinction of different strands of the modelling competency debate, the chapter will

point out, how the discussion has evolved. Using as example an empirical study on

the structure of modelling competency, namely holistic versus analytic, and a

comparison of two approaches to foster modelling competencies, namely a holistic

versus an atomistic approach, it will be pointed out that possible future develop-

ments will be based on more sophisticated psychometrical methods for the mea-

surement of modelling competencies leading to comprehensive descriptions of

‘modelling competency’.

10.1 Development of Modelling Competencies from
the Past Until Today

In recent years modelling competencies and their promotion have been included in

many curricula all over the world, many innovative projects aim to foster modelling

competencies and there exist many studies on their promotion. However, there still

does not exist a joint understanding of modelling competencies. So, the question

arises, how modelling competencies were understood at the beginning of the

discussion on teaching and learning of mathematical modelling, how this under-

standing has developed in the past and in which directions future developments

might go.
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In the following first part of this chapter we focus on the understanding and

conceptualisation of the construct modelling competency in the past, its under-

standing and occurrence at the beginning of the more recent modelling discussion

starting with the implementation of the conference series “International Conference

on the Teaching of Mathematical Modelling and Applications” in the early eighties

of the last century. Within this development fostered by this conference series and

the contributing group of researchers, differing descriptions and conceptualisations

of modelling competency and methods of measurement of modelling competencies

were proposed, which allow us to identify four strands of modelling competencies.

Besides many commonalities these four strands have developed their own under-

standing of modelling competencies, namely either analytic or holistic. Based on

analyses of these different conceptualisations and measurement methods of model-

ling competencies an empirical study will be described exemplarily, which incor-

porates aspects of these strands of the discussion and which has the potential to

show possible directions for future developments.

10.1.1 Modelling Competencies at the Beginning
of the Modelling Discussion

At the first conference of the international conference series on the teaching of

mathematical modelling and applications in 1983 at the University of Exeter, later

called ICTMA, David Burghes (1984), the conference chair, described the over-

arching goal of the promotion of mathematical modelling as follows:

The basic philosophy behind the approach . . . of the modelling workshop for higher

education is that to become proficient in modelling, you must fully experience it – it is

no good just watching somebody else do it, or repeat what somebody else has done – you

must experience it yourself. I would liken it to the activity of swimming. You can watch

others swim, you can practice exercises, but to swim, you must be in the water doing it

yourself. (1984, p. xiii).

However, despite this widespread consensus on the overall goal of teaching and

learning mathematical modelling, it remained in the publications of this time quite

vague, what it means to be proficient in modelling. No explicit discussion of the

definition or description of the construct ‘modelling skills’ or ‘modelling abilities’
took place at this time, no publication can be found in the proceedings of the

respective conferences on the teaching of mathematical modelling and applications.

The emphasis in the proceedings of ICTMA1 to ICTMA3 lay on the development

of courses and their evaluation, the creation of new examples and the widening of

mathematical themes to be tackled with a modelling spirit, especially the discussion

about new ways to design modelling courses was important (see Berry et al. 1984,

1986, 1987; Blum et al. 1989). Ways of assessment became important soon within
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the context of big curriculum projects developing new modelling courses and

accompanying assessment materials (for a detailed analysis of the development

of the modes of assessment within ICTMA see Frejd 2013). For example the

Enterprising Mathematics Course from the Centre of Innovation in Mathematics

Teaching at the University of Exeter, one of the most important projects at this time,

presented materials from this context-based course with accompanying assessment

materials at ICTMA4 (Francis and Hobbs 1991), in which for the first time

achievement tests for modelling were developed based on a definition of different

achievement levels. Especially the evaluation of coursework, in which modelling

tasks had to be tackled independently, created intensive discussions at this time.

Another important project at this time from the Shell Centre for Mathematical

Education at the University of Nottingham, the Numeracy through Problem Solving
Project, aimed to implement mathematical modelling for students of all abilities

(Swan 1991). Based on ground-breaking work from Treilibs, already developed in

1979, the project refined the distinction of different kinds of abilities necessary

within modelling processes distinguishing technical and strategic skills from other

ability components.

Characteristic of this time was the reference and connection to applied problem

solving, which became apparent in a joint publication by two theme groups from the

6th International Congress on Mathematical Education (ICME-6) hold in Budapest

in 1988 on “Problem Solving, Modelling and Applications” and on “Mathematics

and Other Subjects”. In their overview Blum and Niss (1989) devote one paragraph

on assessment and tests and summarise the state-of-the-art at this time at a general

level as follows:

In conclusion we could say that currently the role of assessment and tests is to inform
students and teachers rather than to provide bases for decisions or measures, and that the

character of assessment and testing is mostly qualitative and absolute with no reference to
well-defined standards. (p. 19)

The usage of the construct of abilities or skills is characteristic for this time

which is not only typical for the modelling tradition, but reflects world-wide trends

in psychology and pedagogy. Although no clear definition of the concept of

modelling abilities or modelling skills has been developed at this time at an

international level, significant studies on the identification of modelling abilities

have taken place at national level. The already mentioned ground-breaking study by

Treilibs (1979), in which he explored the relation of modelling to conventional

ability for school mathematics, is one important example. He distinguished differ-

ent component skills of modelling, which discriminate able from less able

modellers, namely the ability to generate pertinent variables, to select important

variables, to identify the question to be posed, to generate relationships between the

variables and to select adequate relationships. In her empirical study on the teaching

and learning of mathematical modelling Kaiser-Meßmer (1986) described different

abilities within her theoretical framework and distinguished abilities to apply
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known mathematics in order to solve real world problems from modelling abilities,

which referred to the abilities to carry out a modelling process, called model

building skills. These model building skills referred to the different phases of a

modelling process, which was described as a cycle starting from the real world

going to the mathematical world and coming back to the real world. In addition

general pedagogical abilities such as problem solving abilities, ability to develop

heuristic strategies and to communicate were formulated and examined in an

accompanying empirical study. These two quite different studies separate for the

first time within the modelling debate explicitly sub-abilities as components of the

modelling ability and connect them to the various phases and steps of a modelling

process. These two studies reflect the state-of-the-art at this time.

Elaborate discussions on the scope and the focus on the assessment of mathe-

matical applications promoted the modelling discussion significantly, the question,

what and why to assess, how to assess modelling without destroying the spirit of

modelling shaped the development based amongst others by the broad overview

given by Niss (1993) at ICTMA5. New assessment schemes were developed in

order to evaluate modelling courses continuing work already presented at earlier

conferences (Gillespie 1993).

At this time a new pioneering approach to assess mathematical modelling was

developed in the frame of a British and Australian Assessment Research Group

using rating scales in order to evaluate the efficiency of mathematical modelling

and in broader terms to assess the quality of students’modelling activities. Based on

experts’ rating of the level of quality of the modelling processes and their products,

test instruments were developed, which allowed assessing students’ progress during
the modelling courses, and referred to early versions of Item Response Theory. The

group aimed at developing a comprehensive assessment strategy which includes

oral presentations too. This work was widely acknowledged and discussed, not only

for the first time at ICTMA6 and many following ICTMAs (Haines and Izard 1995;

Haines et al. 2001), but also, for example, at the 7th International Congress on

Mathematical Education (ICME-7) (Haines et al. 1993).

Another important theme, which arose at this time, was metacognition, its

importance for modelling and possibilities to promote modelling skills. According

to Tanner and Jones (1995), who referred to the problem solving discussion,

“metacognition involves awareness and control of one’s own thinking” (p. 61)

and can therefore be promoted via peer and self assessment (Tanner and Jones

1993). They emphasise that distinct elements of metacognition are not only knowl-

edge of one’s own thought processes and the control and application of that

knowledge, important are “the learners’ beliefs about the nature of mathematics

and themselves as learners” (Tanner and Jones 1995, p. 61). Related to this work

was the approach by Matos and Carreira (1995), which was connected to applied

problem solving as well and analysed the cognitive processes involved in applied

problem solving activities. They had already distinguished empirically different

phases of modelling activities and different cognitive activities such as the identi-

fication of variables based on intuitive perceptions referring to different phases of
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the modelling process. Finally, these processes lead to the development of mental

models, which are underlying the modelling activities and guiding the modelling

process.

The aspect of assessment, that is, assessing modelling activities, to which the

issue of modelling abilities or skills or competencies belong, received growing

attention in the discussion on the teaching and learning of mathematical modelling

as it was displayed in the ICTMA proceedings. At the end of the last century

contributions – for example by Stillman (1998) – mentioned explicitly mathemat-

ical competence and their relation to meta-knowledge, with the latter aspect

continuing a discussion already started by Matos and Carreira (1995).

Summarising the current knowledge of this early phase of the modelling discus-

sion we can state that attempts to clarify students’modelling skills and/or modelling

abilities were generated by several approaches, innovative ways to assess these

abilities or skills were developed, not restricted to simple summative scores, but

using more ambitious psychometrical models. Especially the relevance of meta-

cognition and the analysis of cognitive processes were emphasised already at this

stage and were continued in the more recent modelling discussion.

10.1.2 Role of Modelling Competencies in the Recent
International Modelling Discussion

The more recent international modelling discussion can be described via the 14th

ICMI-Study on Applications and Modelling, which provided a survey of the state-

of-the-art on the teaching and learning of mathematical modelling embracing a

broad community (Blum et al. 2007). Modelling competencies played a strong role

at the study conference and within the ICMI study book and showed the growing

importance of mathematical modelling competencies, a construct now widely used,

and the high relevance of measuring modelling competencies.

Blomhøj and Højgaard Jensen (2007) introduced the construct competence

referring to the Danish KOM project as follows: “Competence is someone’s
insightful readiness to act in response to the challenges of a given situation”

(p. 47). With this definition, competence is “headed for action, based on but

identical to neither knowledge nor skills” (p. 47). Based on the distinction of

various phases of the modelling process, Blomhøj and Højgaard Jensen (2007)

(similarly Blomhøj and Højgaard Jensen 2003) described two different approaches

to support modelling competencies, namely the holistic and the atomistic

approaches. The holistic approach requires a full-scale modelling process, where

the students work through all phases of a modelling process. That approach is seen

as being contrary to the atomistic approach, where students concentrate on the

processes of mathematising and analysing models mathematically, because these

are seen as especially demanding. They conclude:
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we believe . . .. a balance between the holistic approach and the atomistic approach is

necessary when considering the design of an entire educational programme aiming at

(among other things) developing the students’ mathematical modelling competence. Nei-

ther of the two approaches alone is adequate (p. 137).

Apart from this very broad and unique approach to modelling competencies the

ICMI study on modelling and applications in mathematics education contained

several more papers – within a chapter devoted to modelling competencies – which

are classified by Greer and Verschaffel (2007) according to three levels of mathe-

matical modelling:

implicit (in which the student is essentially modelling without being aware of it), explicit

modelling (in which attention is drawn to the modelling process), and critical modelling

(whereby the roles of modelling within mathematics and science, and within society, are

critically examined). (p. 219)

Contributions based on the implicit usage of mathematical models dealt with

arithmetic operations as mental models (Usiskin 2007) or focused on students’
modelling behaviour from a psychological perspective (De Bock et al. 2007),

papers belonging to the group of explicit modelling proposed a scheme with levels

of modelling (Henning and Keune 2007), assessed the phases of mathematical

modelling (Houston 2007) or elaborated on the differences between novices and

experts (Haines and Crouch 2007). To the group of critical modelling belongs

amongst others the already mentioned paper by Blomhøj and Højgaard

Jensen (2007).

Connected to this discussion further elaborations took place at ICTMA12, where

a whole chapter in the proceedings are devoted to recognising modelling compe-

tencies (Haines et al. 2007) including a plenary on this theme (Maaß 2007). There

the already mentioned projects reported further results of their studies such as

Crouch and Haines (2007) on the differences between experts and novices model-

ling behaviours, or Izard (2007) on assessing progress in mathematical modelling

via special rating scales, or Højgaard Jensen (2007) on the assessment of modelling

competency bearing in mind various facets of this construct. In addition, further

chapters in the proceedings allowed an overview on the international discussion on

modelling competencies and its worldwide understanding for example from an

Australian perspective (Galbraith et al. 2007), or a Chinese perspective (Jiang

et al. 2007) or a Japanese point of view (Ikeda et al. 2007).

At the same time the European Society for Research in Mathematics Education

(ERME) established a working group devoted to the teaching and learning of

applications and modelling for their biennial congresses. At the Fourth Congress

of the European Society for Research in Mathematics Education (CERME4) in

2005 a rich variety of papers on competency were presented, which led subse-

quently to the publishing of two issues of ZDM – The International Journal on
Mathematics Education (2006). Maaß (2006) proposed a comprehensive under-

standing of modelling competencies referring to work by Blum and Kaiser, the

latter describing modelling activities with future teachers and students, which

aimed to foster modelling competencies (Kaiser and Schwarz 2006). At
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CERME4 already mentioned researchers presented their work, for example Haines

and Crouch (2006) or Henning and Keune (2006). Unfortunately the subsequent

conferences of this series did not focus specifically on modelling competencies.

A deepening of the understanding of modelling competencies took place at

ICTMA14, where a comprehensive chapter in the proceedings is devoted to model-

ling competency (Kaiser et al. 2011). The protagonists of the discussion on model-

ling competencies were reporting on the progress of their projects such as Blomhøj

and Kjeldsen (2011) who emphasised the role of students’ reflection within the

promotion of modelling competencies or Henn (2011), who analysed obstacles or

support of modelling competencies. Furthermore, Engel and Kuntze (2011) related

modelling competencies to statistical literacy, Frejd and Ärlebäck (2011) described

results of the testing of modelling competencies in Sweden, and Z€ottl et al. (2011)
reported on the assessment of modelling competencies based on a multidimensional

IRT-approach.

Summarising the earlier and more recent discussion on modelling competencies,

it can be concluded that modelling competencies can be seen as a settled topic in the

current modelling discussion, being promoted in various projects all over the world.

Analysing this discussion one can identify four important strands, which have

shaped the debate on modelling competencies:

– The introduction of modelling competencies in an overall comprehensive con-
cept of competencies within the Danish KOM project (Niss, Blomhøj, and

Højgaard Jensen)

– The assessment of modelling skills and the development of assessment instru-
ments within a British-Australian group (mainly Haines, Houston, and Izard)

– The development of a comprehensive concept of modelling competencies based

on sub-competencies and its evaluation by the German group on modelling

(Blum, Kaiser, Maaß)

– The integration of metacognition into modelling competencies by the Australian

modelling group (Galbraith, Stillman, Brown), based on earlier work by Carreira

and Matos and Tanner and Jones.

This list is of course not comprehensive, there exist highly important work on

modelling competencies outside these strands, which cannot be described here due

to space restrictions, but can be found in the mentioned publications. In the

following we will briefly analyse the essential characteristics of these four

approaches in order to identify characteristics for future developments.

10.1.3 Four Strands of the Earlier and the Recent
International Discussion on Modelling Competencies

As first strand the Danish KOM project can be identified, which serves as the central

source for the clarification of the concept of modelling competencies. Already as
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early as 2002 the project developed a comprehensive approach on the definition of

mathematical competencies. Niss and Højgaard (2011) described mathematical

competency as “a well-informed readiness to act appropriately in situations involv-

ing a certain type of mathematical challenge” (p. 49) comprising factual knowledge

and concrete skills to carry out certain types of mathematical activities. They

distinguished eight competencies and defined modelling competency as one of

the eight competencies, which are not seen as independent sub-competencies, but

seen as aspects of competencies describing mathematical competency holistically

in the sense of Shavelson (2010). Modelling competency is defined by Niss and

Højgaard (2011) as follows:

This competency involves, on the one hand, being able to analyse the foundations and

properties of existing models and being able to assess their range and validity. Belonging to

this is the ability to “de-mathematise” (traits of) existing mathematical models, i.e. being

able to decode and interpret model elements and results in terms of the real area or situation

which they are supposed to model. On the other hand, the competency involves being able

to perform active modelling in given contexts, i.e. mathematising and applying it to

situations beyond mathematics itself. (p. 58)

In addition Niss and Højgaard (2011) distinguished three dimensions of a

“person’s mastery of a competency”, which has been taken up in the modelling

discussion and differentiated for modelling by Blomhøj and Højgaard Jensen

(2007) as follows: namely:

– degree of coverage relates to the part of the modelling process the students work

with and the level of their reflection;

– technical level refers to the kind of mathematics students use;

– radius of action describes the domain of situations in which students are able to

perform modelling activities.

This distinction has been discussed widely and serves in many projects as

classification schema for modelling problems.

As a second strand of the modelling discussion on competencies, the continuing

work of the already mentioned British and Australian Assessment Research Group

on the development of assessment instruments for modelling skills and modelling

competencies can be reconstructed. The aim of this group can be identified as

development of rating scales, assessment schemas and modelling tests in order to

evaluate the efficiency of modelling courses and to explore more theoretical

questions such as expert-novice student behaviour. Of special interest is the proce-

dure, which was originally used by the group already in the 1990s in order to

generate these scales. They approached modelling experts, who developed descrip-

tors for assessing students’ modelling achievements and who proposed “indicators

of competence” (Haines and Izard 1995, p. 135) as descriptors of students’ model-

ling behaviour. Based on early versions of item-response theory rating scales were

developed describing students’ performance and descriptor effectiveness at related

scales (Haines et al. 1993). As a result of their work the group generated a

modelling test with multiple-choice items using a partial credit system. Based on

an analytic understanding of modelling competency they distinguished various
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sub-competencies along the modelling cycle and developed one item per

sub-competency. The total score achieved served as description of the students’
modelling competencies and aimed to contribute to an overall rating scale on

achievements in modelling. The developed multiple-choice items allowed a pre-

and post-design and were used in many studies as a robust assessment instrument

(e.g., Kaiser 2007).

As the third strand of the debate on modelling competencies, the work of

German modellers can be identified, who refer to an analytic understanding of

competency and base the concept of modelling competencies on different

sub-competencies connected to various phases of the modelling cycle including

process-oriented sub-competencies. Departing from the widely quoted definition by

Weinert (2001) on competency, Kaiser (2007) defined modelling competencies

analytically in distinction to modelling abilities as follows: “Modelling competen-

cies include, in contrast to modelling abilities, not only the ability but also the

willingness to work out problems, with mathematical aspects taken from reality,

through mathematical modelling” (p. 110).

This approach can be characterised by the detailed description of modelling

competencies by sub-competencies developed along the various phases of the

modelling cycle, namely:

• competencies to understand real-world problems and to construct a reality

model;

• competencies to create a mathematical model out of a real-world model;

• competencies to solve mathematical problems within a mathematical model;

• competency to interpret mathematical results in a real-world model or a real

situation;

• competency to challenge solutions and, if necessary, to carry out another model-

ling process. (Kaiser 2007, p. 111)

Maaß (2006, 2007) emphasised that metacognition is an important influencing

factor on the development of modelling competencies and defined the role of

metacognition within modelling as follows: “metacognition in this study describes

thinking about one’s own thinking and controlling one’s own thought processes”

(2006, p. 118). In addition further competencies were required for an overall

comprehension of modelling competencies, amongst others to model at least in

parts independently, social competencies such as the ability to work in a group and

to communicate about and via mathematics, to critically reflect about the modelling

process and to judge its results (Maaß 2006, 2007; Kaiser 2007). Departing from

this or similar definitions of modelling competencies a wealth of studies has been

carried out, developing amongst others various competence descriptions and eval-

uating the efficiency of modelling interventions (amongst others Blum 2011;

Henning and Keune 2006, 2007; Ludwig and Reit 2013; Z€ottl et al. 2011).
As the fourth strand of the discussion, the integration of metacognition into the

concept of modelling competencies by the Australian modelling group can be

identified. This approach emphasised the importance of reflective metacognitive

activity during modelling activities, especially in the transition phases between the
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different stages in the modelling process. Going back to the ground breaking

definition of metacognition and cognitive monitoring by Flavell (1976), Stillman

(2011) emphasised that a person’s ability of cognitive control relies on

metacognitive knowledge, metacognitive experiences, goals and strategies.

Concerning modelling that approach implied that metacognitive activities such as

controlling or monitoring cognitive activities were needed strongly during all

phases of the modelling process, although not all activities were productive.

Overall, Stillman (2011) called for the

orchestration by teachers of the optimal use by their students modellers of metacognitive

knowledge and strategies so as to develop students’ competencies in their productive use of

these within the modelling context to obtain not only a satisfactory outcome to the current

modelling activity but also to further their long-term reflective activity for modelling

purposes. (p. 179)

The work of this group (cf. Galbraith et al. 2007; Stillman and Galbraith 1998)

has many commonalities with the approaches described as the third strand

concerning the role of modelling activities along the modelling cycle, especially

concerning the distinction of similar sub-competencies based on an analytic under-

standing of competency. Both strands emphasised the high importance of metacog-

nition. As already described in the previous section, there existed several earlier

studies on metacognition in modelling processes such as the studies by Matos and

Carreira (1995) and Tanner and Jones (1993, 1995), which have already been

mentioned in the description of the earlier modelling traditions.

Having identified four important strands of the discussion, the question arises, in

which direction the discussion on modelling competencies may develop.

Summarising the characteristics of these four strands commonalities can be iden-

tified, especially the connection to the modelling process, maybe described with

slight differences. In any case, one important distinction becomes obvious referring

to the general discussion on competence (competences) versus competency (com-

petencies). In the general discussion on competence and its measurement two

different approaches on conceptualising modelling competency are important,

namely either holistically or analytically (see Shavelson 2010). Within holistic

approaches competences are seen as a whole, they describe an underlying complex

ability that can be reached to a certain extent. A criterion or performance level is

set, those who fail to reach this level are not competent and those reaching this level

are described as being competent, sometimes several hierarchical levels are distin-

guished. The first strand on modelling competence shaped by Niss, Blomhøj, and

Højgaard Jensen can be assigned to this holistic approach. In contrast to this holistic

description analytic approaches separate different facets or sub-competencies of

competency, in our case the modelling competency. The overall achievement is

determined based on the achievements within the different sub-competencies. The

other three strands can be assigned to this analytic approach. This fundamental

distinction is sometimes differently phrased as the question of whether competence

can be described as competence levels with criterion or performance levels set or as

competence structures exploring the relation of performance and underlying
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abilities. These two different kinds of approaches are not seen as mutually exclu-

sive, but ideally as complementary. These different theoretical approaches on

competency have consequences for the description of competence development,

which are either seen as continuous progression shifting successively from the

lowest to the highest level or as a non-continuous process with qualitative leaps

(for details see Klieme et al. 2008). Although the distinction is theoretically clear,

the usage of the terminology competency and competence is not clear-cut neither in

the general competence debate nor in the current modelling discussion.

Returning to the construct modelling competency, these principally different

approaches described as holistic versus analytic approach or as competence levels

versus competence structure pose several fundamental questions for modelling

traditions: How do we describe and conceptualise modelling competency, as an

underlying general ability or composed of different sub-abilities? How shall model-

ling competency be measured, with an overall score or by a score composed of

different sub-competencies? How do modelling competencies develop and how can

they be fostered most efficiently, holistically or along the various

sub-competencies, the latter being called atomistic by Blomhøj and Højgaard

Jensen (2007)? Additionally, apart from this central distinction, which modes of

assessment methods are appropriate for the evaluation of modelling competencies?

Are probabilistic test methods already used by the supporters of the second strand of

the international discussion adequate in order to evaluate the achievements of

students in modelling courses?

In the following we will describe one study as an exemplar that provides first

answers to these questions and seems to have the potential to point out future

directions of research on modelling competencies. This empirical study departs

from the question on the structure of the construct, modelling competency, and asks

which description – holistic or analytic – is more appropriate. In addition the study

goes back to the related question already posed by Blomhøj and Højgaard Jensen

(2003), namely: Which kind of promotion of modelling competency is more

effective, holistic or atomistic?

10.2 Further Perspectives on Modelling Competencies:
Evaluation of the Structure of Modelling
Competencies and Their Promotion

10.2.1 Aims and Design of the Study

The study is based on complex modelling problems, which are dealt with by

students in co-operative, self-directed learning environments and foster autono-

mous learning via different modelling approaches. As already mentioned the study

departs from the questions on the structure of modelling competency, holistic or

analytic and the adequate approach of the promotion of modelling competency,
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holistic or atomistic. While Blomhøj and Højgaard Jensen (2003) discussed that an

integration of both modelling approaches might be adequate for comprehensive

modelling problems, it remains an open – not empirically evaluated – question, if

one of the two approaches is more efficient in the promotion of modelling compe-

tencies. To answer these research questions, an empirical comparative study was

carried out considering various aspects of the four strands of the discussion on

modelling competency (for a detailed description of the study see Brand 2014a,

where a description of the instrument in German can be found, for a short descrip-

tion in English see Brand 2014b).

The study took place in 2012 in various schools in Hamburg, the second biggest

city of Germany. The participating classes were divided into two groups: one group

tackled modelling problems according to the holistic approach, another group

worked on modelling problems according to the atomistic approach. The interven-

tion period started in February 2012 with a teacher-training course for each group.

During the modelling project six 90-min modelling activities as well as a modelling

test in a pre-, post- and follow-up-design was integrated into their ordinary math-

ematics lessons (for an overview see Fig. 10.1).

The modelling activities of the holistic group consisted of complete modelling

problems with an increasing complexity while the modelling activities of the

atomistic group included sub-tasks of modelling. The sub-tasks covered especially

the transitions between the real world and mathematics and contained active and

passive parts, that is, tasks that require, for example, the building of own real and

mathematical models respectively and tasks that include the assessing and validat-

ing of given models or solutions. To ensure the comparability of the treatment,

around 80 % of the modelling activities were observed by future teachers. In

addition to this, all teachers filled in a short questionnaire after each activity

about the course of the modelling lessons.

All in all, 15 classes of grade 9 of 4 secondary higher-track schools and

2 comprehensive schools participated in the project. Eight classes were assigned

randomly to the holistic approach, seven classes to the atomistic approach. An

overview of the sample is given in Table 10.1. Unfortunately two groups of the

atomistic approach dropped out and did not participate in all three measurements.

Fig. 10.1 Design of the study

Table 10.1 Sample –

number of participating

students

MP 1 MP 2 MP 3 Panel

Holistic approach 168 164 169 132

Atomistic approach 159 152 97 72

Total 327 316 266 204
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Altogether, 204 students participated in all 3 measurement points (MP), 132 stu-

dents of the holistic group and 72 students of the atomistic group. The results

presented are based on this longitudinal study (called panel). The initial mathemat-

ical abilities of the students as well as their social background were different within

the two comparative groups but comparable between both groups.

To evaluate the progress of the students’ modelling competencies, a modelling

test in a pre-, post- and follow-up-design was developed and conducted. The

structure of the modelling test refers to the work described above in the second

strand, amongst others by Haines and Crouch (2001) and others, who developed

items in a multiple choice format which tested different sub-competencies of

mathematical modelling. A strong advantage of the approach chosen is the possi-

bility to measure different sub-competencies of students independently from

strengths and weaknesses in specific phases of the modelling process. With this

test design the overall question on the structure of modelling competency can be

tackled as well. This test design is similar to the design by Z€ottl et al. (2011) and
differentiates between sub-competencies – called in the following dimensions –

covering the three sub-processes of mathematical modelling and an overall model-

ling competency to solve complete modelling tasks as follows:

Dimension 1: Simplifying/Mathematising
This sub-process focuses on the transition between the real world and mathematics

and contains items referring to simplifying and mathematising of given modelling

problems.

Dimension 2: Working Mathematically
The items of this dimension relate to working mathematically in a mathematical

model.

Dimension 3: Interpreting/Validating
This sub-process covers the transition between mathematics and the real world and

includes items that require interpreting and validating of given solutions and

solving approaches.

Dimension 4: Overall Modelling Competency
This dimension includes in addition to the ability to carry out complete modelling

tasks metacognitive abilities, mainly monitoring the modelling process.

The modelling test consisted of two test booklets for each measurement point,

the booklets as well as the different measurement points were connected with a

sufficient number of anchor items. The number of items used per dimension of the

modelling competency varied between 15 and 24 per measurement point and is

shown in Table 10.2 (for details see Brand 2014a).

For scaling purposes the methods of multidimensional item response theory

(IRT) were used (Rost 2004) as was done previously with earlier versions of IRT

methods in the second strand. In detail, the scaling was carried out with Conquest

(Wu et al. 2007). The different dimensions of the modelling competency are

assumed as being the latent variables that can be estimated as a multivariate

function of the items solved. In order to answer the question of overall structure
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of modelling competency, different psychometrical models of the structure of the

modelling competency (see Table 10.3) were scaled and compared using the

psychometrical measures Akaike Information Criterion (AIC), Bayes Information

Criterion (BIC) and Consistent AIC (CAIC), in order to select the relatively best

model for the collected data (Rost 2004). The one-dimensional model A assumes a

domain-bridging, total modelling competency – reflecting a holistic approach on

modelling competence – while the other models describe various forms of analytic

approaches on modelling competency. The four-dimensional between-item model

Table 10.2 Number of items in the modelling test by dimension

Dimension

Number of items

MP 1 (booklet 1/

booklet 2)

MP 2 (booklet 1/

booklet 2)

MP 3 (booklet 1/

booklet 2)

Anchor

items

Simplifying/

mathematising

16 (15/11) 22 (17/16) 19 (13/17) 11

Working

mathematically

19 (17/14) 23 (17/18) 24 (19/21) 12

Interpreting/

validating

20 (15/16) 18 (18/15) 19 (14/16) 11

Overall modelling

competency

15 (15/15) 15 (15/15) 15 (15/15) 14

Table 10.3 Four different psychometrical models of the structure of modelling competency
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B postulates that each item loads only on one of the four dimensions. The three-

dimensional within-item model C starts from the premise that all answers to the

items are explicable by the three sub-processes of mathematical modelling while

the four-dimensional within-item model D assumes that an overall modelling

competency loads on every type of item.

The data were scaled using an approach of so-called virtual persons for all items

of the three measurement points. Following the selection of the best model on the

general structure of the modelling competency, weighted likelihood estimates

(WLE) were estimated as individual ability parameters. The students’ ability param-

eters for each measurement they participated in were then converted to an average

value ofM¼ 50 and a standard deviation of SD¼ 10. In order to answer the question

on the efficiency of the holistic versus the atomistic approach to foster modelling

competencywithin the two groups, in a first step the average test performances of the

students were tested for significance that were corrected by the Bonferroni method.

Additionally, the effect sizes of the performance differences were calculated. To

analyse the effect of the modelling approach on the performance increase, a

two-factor ANOVA with repeated measures was also carried out.

10.2.2 Results

The comparison of the different models of scaling points to the four-dimensional

between-item model (see Table 10.4, model B). The indicators of a global model fit

(AIC, BIC, CAIC) are the lowest for this model, so this model describes the data the

best compared to the others (Rost 2004). The indicators AIC, BIC and CAIC of

model D are very close to the results of model B, but the reliabilities of the different

dimensions of the modelling competency of model B are higher than of model

D. Model A has the best reliability, but in this case the indicators AIC, BIC and

CAIC are higher than the ones of model B and therefore fit worse. To conclude, the

Table 10.4 Model selection

Model A Model B Model C Model D

Number of items 95 95 95 95

Deviance

AIC

BIC

CAIC

61,721.53

61,911.53

62,002.59

62,097.59

60,454.06

60,644.06

60,735.12

60,830.12

61,911.25

62,101.25

62,192.31

62,287.31

60,458.39

60,648.39

60,739.46

60,834.46

EAP-/PV-reliability

Dimension 1 (SM)

Dimension 2 (WM)

Dimension 3 (IV)

Dimension 4 (OM)

0.899 0.767

0.817

0.796

0.821

0.702

0.783

0.751

0.633

0.661

0.643

0.852
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data of this study suggest an analytic description of modelling competency with

different sub-competencies.

Concerning the question of the efficiency of the atomistic versus the holistic

approach to promote modelling competency the data are varied: concerning the

different dimensions of modelling competency the data show highly significant

increases in both groups between the first and the second as well as between the first

and the third measurement (see Table 10.5). Concerning the first dimension,

simplifying and mathematizing, the data showed with 0.88 a larger effect size

increase for the holistic group between the first and the second measurement

compared to 0.72 for the atomistic group. Between the first and the third measure-

ment there was a higher effect size for the atomistic group (0.68) than for the

holistic group (0.59). Between the second and the third measurement there are

much stronger oblivion effects in the holistic group (see Table 10.5 and for a

detailed documentation of all results see Brand 2014a).

The effect sizes in increase in the dimension of working mathematically were

higher in the atomistic group between the pre- and the post-test (0.57 compared to

0.47) as well as between the post- and the follow-up-test (0.46 instead of 0.32). The

effect sizes in the dimension of interpreting and validating were larger in the

holistic group than in the atomistic group between measurement point one and

measurement point two (0.77 versus 0.69) and between measurement point one and

Table 10.5 Means and performance increases of the different dimensions of the modelling

competency

Group

Mean (SD) Difference (Cohen’s d )

MP 1 MP 2 MP 3 MP1!MP2 MP1!MP3 MP2!MP3

Simplifying/mathematising

Holistic group 48.26

(11.29)

57.60

(9.87)

54.90

(11.14)

+9.33***

(0.88)

+6.64***

(0.59)

�2.69*

(�0.26)

Atomistic group 51.21

(7.80)

57.62

(9.84)

57.08

(9.39)

+6.41***

(0.72)

+5.87***

(0.68)

�0.54

(�0.06)

Working mathematically

Holistic group 49.94

(10.18)

54.92

(10.83)

53.10

(9.29)

+4.98***

(0.47)

+3.16***

(0.32)

�1.82*

(�0.18)

Atomistic group 48.85

(9.16)

54.76

(11.35)

53.81

(12.33)

+5.91***

(0.57)

+4.95***

(0.46)

�0.96

(�0.08)

Interpreting/validating

Holistic group 47.93

(9.42)

55.83

(11.07)

54.38

(10.50)

+7.90***

(0.77)

+6.45***

(0.65)

�1.45

(�0.13)

Atomistic group 50.55

(8.86)

56.73

(8.95)

55.79

(9.59)

+6.19***

(0.69)

+5.24***

(0.57)

�0.95

(�0.10)

Overall modelling competency

Holistic group 49.78

(9.34)

58.08

(9.20)

55.55

(9.62)

+8.30***

(0.90)

+5.78***

(0.61)

�2.53**

(�0.27)

Atomistic group 50.75

(9.74)

57.28

(9.46)

54.21

(9.81)

+6.52***

(0.68)

+3.46*

(0.35)

�3.07*

(�0.32)

***p< 0.000, **p< 0.01, *p< 0.05
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measurement point three (0.65 compared to 0.57). In the overall modelling com-
petency there are larger effect sizes in increase in the holistic than in the atomistic

group between the first and the second (0.90 instead of 0.68) as well as between the

first and the third measurement (0.61 versus 0.35).

The two-factor ANOVA with repeated measures showed no significant influence

of the modelling approach in the two dimensions working mathematically and

interpreting and validating. However, there was a significant effect of the holistic
approach on the performance increase in the competence facet simplifying and
mathematising. In the overall modelling competency also a significant effect

(p< 0.1) of the holistic approach was found (Brand 2014a).

10.2.3 Discussion of the Results and Looking Ahead

From an overall point of view the results on the construct of modelling competency

confirm empirically the existence and possibility to distinguish different facets of

the modelling competency along the phases of the modelling process with an

overall modelling competency as an own overall component. These results on the

structure of the modelling competency differ concerning the role of overall model-

ling competency from the results by Z€ottl et al. (2011), which can be explained by

various factors such as the design of the intervention and the kind of modelling

examples as well as the definition of the overall modelling competency, which

include metacognitive aspects in this study. To summarise, the results of the study

suggests an analytic description of the construct modelling competency.

Concerning the efficiency of the different approaches on the promotion of

modelling competency the study shows highly significant increases in the holistic

and the atomistic group in all four dimensions of the modelling competency

between the pre- and the post-test as well as between the pre- and the follow-up-

test. Comparing these overall results of the holistic and the atomistic group more

deeply, both approaches show strengths and weaknesses. The holistic group showed

larger effect sizes in the dimension of interpreting and validating as well as in the

overall modelling competency while the atomistic group achieved larger effect

sizes in the dimension of working mathematically. The dimension of simplifying

and mathematising revealed mixed results: while there were higher effect sizes

between the pre- and the post-test in the holistic group, there were larger effect sizes

in the atomistic group between the pre- and the follow-up-test. Because the activ-

ities of the classes were not controlled after the project had taken place, the results

between the second and the third measurement points have to be interpreted

carefully. To come to a conclusion it can be stated that both approaches foster

students’ modelling competency in all dimensions and have strengths and weak-

nesses. The assumption that the holistic approach promotes the overall modelling

competency more effectively was confirmed by the data while the hypothesis that

the sub-modelling competencies connected to the sub-processes of the modelling

cycle can be fostered more efficiently by tackling different modelling sub-tasks via
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the atomistic approach was not confirmed by the data. Instead, there were higher

short-term effects in the holistic than in the atomistic group in the two

sub-competencies referring to the transitions between real world and mathematics.

The study shows that within a natural setting using real classes in their ordinary

environment complex evaluation studies on the effectiveness of various modelling

approaches can be analysed. However, these kinds of analysis demand larger

samples, the inclusion of only one or two classes is not sufficient. The study

shows that with complex evaluation methods using a careful classroom implemen-

tation of the study and advanced psychometrical methods important descriptions of

the structure of the ambitious construct modelling competency can be developed. In

addition, the study suggests that this complex construct can be described as

consisting of a global, overarching modelling competency and several

sub-competencies. Further studies are needed in order to examine the dependency

of the results from the examples, the intervention approach used and the test

instruments. These continuation studies might lead to better grounded results on

the structure of the construct modelling competency and long-term effects of

modelling projects and the possibility of various approaches to support modelling

competencies in an overall sense.
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Chapter 11

How to Support Teachers to Give Feedback
to Modelling Tasks Effectively? Results from
a Teacher-Training-Study in the Co2CA
Project

Michael Besser, Werner Blum, and Dominik Leiss

Abstract Assessing and reporting students’ performance is an important part of

every-day teaching. Doing so without focusing on marks but instead on supporting

students in further learning by giving individual, process-oriented and task-related

feedback to them is a central idea of formative assessment. Within a teacher-

training-study as part of the research project Conditions and Consequences of
Classroom Assessment (Co2CA), a special in-service teacher training has been

developed to foster teachers’ knowledge about formative assessment when dealing

with modelling tasks. A test on teachers’ pedagogical content knowledge

(PCK-test) has been used to evaluate the trainings. Quantitative results point out

that teachers having taken part in the trainings outperform teachers not having been

trained in formative assessment if dealing with modelling tasks within the

PCK-test.

11.1 Introduction

As part of general discussions about competency-oriented teaching of mathematics

and about how to improve it (see e.g., Blomhoj and Jensen 2007; Niss 2003), the

question of how to assess and report students’ performances in such a way that

students’ learning is supported as much as possible is of central interest. Based on
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this question the interdisciplinary research project Co2CA1 investigates how

assessing and reporting students’ performance can successfully be implemented

in everyday teaching of competency-oriented mathematics. One main finding of

previous work within Co2CA as a result of a laboratory-study (2009/2010) and a

field-study in school (2010/2011) is (see e.g., Besser and Blum 2012): The quality

of implementation of assessing and reporting students’ performance differs

extremely between classes and teachers. Therefore, an in-service teacher training

has been developed within a teacher-training-study to foster teachers’ knowledge
about formative assessment in competency-oriented mathematics, in particular

concerning mathematical modelling.

11.2 The Idea of Formative Assessment

While in school students’ performance is quite often assessed only once at the end

of a course and a summarized report is given to the students which “does not

normally have immediate impact in learning” (Sadler 1989, p. 120), theoretical and

empirical discussions hint at the importance of a more formative assessment within

classrooms, that is (Baker 2007; Black andWilliam 2009; Shepard 2000): Students’
performance should be assessed in short intervals, the assessment should be close to

students’ learning processes, and diagnoses of students’ achievement should be

used for supporting further learning. Additionally, as a special element of such a

formative assessment, appropriate feedback should be given to the students which

answers three central questions: “Where am I going? How am I going? and Where

to next?” (Hattie and Timperley 2007, p. 88). Moreover, some meta-analyses hint at

the following aspects of how feedback “with which a learner can confirm, add to,

overwrite, tune, or restructure information in memory” (Butler and Winne 1995,

p. 275) as part of formative assessment should look like:

• Kluger and DeNise (1996) point out that feedback does particularly have an

impact on students’ learning if it is close to the tasks the students had to work on
and the students’ solution processes for these tasks. “Effects on performance are

augmented by (a) cues that direct attention to task-motivation processes and

(b) cues that direct attention to task-learning processes” (p. 268).

• Deci et al. (1999) emphasise that feedback should not only tell students whether

a solution is right or wrong but also offer information about how to continue

learning without any kind of pressure (see also Bangert-Drowns et al. 1991;

Pittman et al. 1980).

1Conditions and Consequences of Classroom Assessment. Research project supported by the

German Research Society (DFG) as part of the current priority programme “Kompetenzmodelle

zur Erfassung individueller Lernergebnisse und zur Bilanzierung von Bildungsprozessen” (SPP

1293); principal researchers: E. Klieme, K. Rakoczy (both Frankfurt), W. Blum (Kassel), D. Leiss

(Lüeneburg). KL 1057/10–3, BL 275/16–3, LE 2619/1–3.
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11.3 Mathematical Modelling as Part of Competency-
Oriented Mathematics

Within the last few years, several countries have tried to implement national

standards for mathematics teaching and learning that should improve the overall

quality of teaching and learning at school (see e.g., NCTM 2000). A crucial aspect

of these standards is to no longer only tell teachers which mathematical content

should be taught at school but to prescribe which mathematical competencies

students should acquire. Besides other competencies (e.g., problem solving, rea-

soning, communicating – see Blomhoj and Jensen 2007), the concept of mathemat-

ical modelling can be understood as one central part of competency-oriented

mathematics. Working on real world problems, students do not only have to

“solve” purely mathematical tasks but also have to cope with everyday problems

by using mathematics. In detail, some central elements of the modelling compe-

tency can be described as follows (see also Blum 2011; Maaß 2010):

• Given a real world problem, one has to be able to simplify the problem and

transfer it into mathematics by creating a so-called mathematical model of the

real world problem.

• Being able to find a mathematical solution of the corresponding mathematical

problem, to transfer the mathematical result back to reality, and to validate this

result (does it make sense in the real world?).

11.4 Teacher Knowledge as Predictor for the Quality
of Teaching and Students’ Achievement

For nearly the whole twentieth century researchers have tried to explain students’
achievements by analysing the role of the teacher in the classroom – sometimes first

with a focus on the teachers’ personality, then with a focus on learning processes

and products, and more recently also with a focus on teachers’ expertise. Especially
since the work of Shulman (1986, 1987), the idea of explaining successful teaching

by teachers’ content knowledge (CK), pedagogical content knowledge (PCK) and

general pedagogical knowledge (PK) as part of teachers’ expertise helps to under-

stand the teachers’ role in the classroom. CK, PCK and PK can be said to be “three

core dimensions of teacher knowledge” (Baumert et al. 2010, p. 135). By describ-

ing, discussing and assessing teacher knowledge, several studies hark back to these

dimensions and stress the importance of these aspects of teacher knowledge for

teaching and for student learning. With a special focus on mathematics teachers,

especially the COACTIV-project (Baumert et al. 2010), the Michigan-Group (Ball

et al. 2005) and the TEDS-project (D€ohrmann et al. 2012) point out the importance

of CK, PCK and PK for the quality of teaching and students’ achievement.
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Furthermore with a special focus on teachers’ pedagogical content knowledge,

Baumert et al. (2010, p. 168) point out:

PCK – the area of knowledge relating specifically to the main activity of teachers, namely,

communicating subject matter to students – makes the greatest contribution to explaining

student progress. This knowledge cannot be picked up incidentally, but as our finding on

different teacher-training programs show, it can be acquired in structured learning envi-

ronments. One of the next great challenges for teacher research will be to determine how

this knowledge can best be conveyed to both preservice and inservice teachers.

11.5 A Teacher-Training-Study for In-service Teachers:
Formative Assessment in Competency-Oriented
Mathematics

As a result of the importance of implementing formative assessment in everyday

teaching of mathematics, the idea that students should be able to work on real world

problems and the importance of teacher knowledge (especially CK, PCK and PK)

for students’ learning, the main research questions of the teacher-training-study are:

1. Is it possible to develop and conduct a teacher training that fosters teachers’
pedagogical content knowledge and general pedagogical knowledge about for-

mative assessment in competency-oriented mathematics if dealing with model-

ling tasks?

2. Is it possible to develop tests (PCK and PK) which can be reliably used to

evaluate this teacher training?

3. Does a successful teacher training have any influence on the teachers’ way of

teaching and/or on students’ performance?

11.5.1 Design of the Teacher-Training-Study

In order to answer these questions, the study is conceived as follows (see also

Fig. 11.1): Overall 67 teachers took part in the teacher-training-study which started

in February 2013 and ended in December 2013. Due to organizational restrictions

there are four smaller experimental-groups (EG A1/EG A2 and EG B1/EG B2),

each consisting of a maximum of 20 teachers. Over a period of 10 weeks, the

teachers of every group had 3 days of training at the beginning and 3 days of

training at the end. Furthermore, the teachers had to implement central ideas of the

teacher training in their classroom-teaching within the 10 weeks of the teacher-

training-study. To control for teachers’ prior knowledge, the teachers were tested on
PCK at the beginning of the teacher-training-study (the PCK-test was taken from

the COACTIV-study; see e.g., Krauss et al. 2008). For being able to discuss

differences between the four experimental-groups there were additional tests for

teachers on PCK and PK at the end of the teacher-training-study as well as
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questionnaires for teachers about the perceived usefulness of the training and

questionnaires for students about the perceived quality of teaching within the

10 weeks of the study.

11.5.2 Content of the Teacher Training

The content of the teacher training differed between the two experimental-groups

EG A1/EG A2 and the two experimental groups EG B1/EG B2 and was identical

within EG A1/EG A2 respectively EG B1/EG B2. While there was a training

dealing mainly with ideas of formative assessment in competency-oriented

Fig. 11.1 Design of the teacher-training-study
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mathematics (with a focus on mathematical modelling) in the two experimental-

groups EG A1/EG A2, the training of the experimental-groups EG B1/EG B2

focused on ideas of competency-oriented mathematics in general without mention-

ing any aspect of formative assessment. In detail the teacher training concentrated

on the topics shown in Table 11.1.

11.5.3 Evaluating the Teacher Training: Tests on Teachers’
General Pedagogical Knowledge and Pedagogical
Content Knowledge

One central research question of the teacher-training-study is whether it is possible

to develop and conduct a teacher training that fosters teachers’ general pedagogical
knowledge and pedagogical content knowledge about formative assessment in

competency-oriented mathematics (with a focus on mathematical modelling). For

being able to answer this question, special tests on teachers’ knowledge are needed
which assess PK and PCK concerning formative assessment (FA) in competency-

oriented mathematics and which indicate whether teachers in the experimental-

groups EG A1/EG A2 outperform their counterparts in the experimental-groups EG

B1/EG B2. Since such tests did not exist before, items testing teachers’ knowledge
concerning the following topics were developed:

• Subtest on general pedagogical knowledge (PK-FA): Items assessing theoretical

pedagogical and psychological knowledge (1) about assessment in classroom,

(2) about ways to diagnose students’ strengths and weaknesses, and (3) about

how to give feedback to students’ strengths and weaknesses.

• Subtest on pedagogical content knowledge (PCK-FA): Items assessing subject-

specific knowledge (1) about modelling processes in mathematics, (2) about how

to analyse students’ solution processes to modelling tasks, (3) about how to

implement general ideas about formative assessment in competency-oriented

Table 11.1 Content of the teacher-training

Experimental-groups EG A1 and EG A2 Experimental-groups EG B1 and EG B2

(1) Formative assessment and feedback as cen-

tral element of formative assessment: A general

psychological and pedagogical point of view

(1) Mathematical problem solving as a central

element of competency-oriented mathematics:

General didactical ideas and task-analyses

(2) Mathematical modelling as a central element

of competency-oriented mathematics:

Analysing students’ solution processes and

giving feedback to the students

(2) Mathematical modelling as a central ele-

ment of competency-oriented mathematics:

General didactical ideas and task-analyses

(3) Implementing formative assessment in

teaching mathematical modelling

(3) Implementing tasks on problem solving and

modelling in teaching competency-oriented

mathematics
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teaching, that is especially about how to give feedback to students if working on

modelling tasks. (Examples of items assessing PCK at the beginning of the study

by using the COACTIV-test as well as items assessing PK-FA and PCK-FA are

given in Fig. 11.2.)

11.5.4 First Results of the Teacher-Training-Study

By August 2013, the first part of the teacher-training-study from February 2013 to

March 2013 (EG A1 and EG B1) was conducted and the subtests on teachers’
pedagogical content knowledge (administered at the end of the teacher training)

focusing on central ideas of formative assessment when dealing with modelling

tasks (PCK-FA) have been coded. Therefore results on teachers’ performance on

the PCK-FA-test comparing EG A1 and EG B1 can be reported here, offering first

insights into answers to the research questions (1) and (2). The subtest consists of

10 items (8 items with open responses). Depending on the item up to 1 score-point

(2 items), up to 2 score-points (5 items) or up to 3 score-points (3 items) can be

reached, a wrong answer is scored by 0. Based on a theoretical maximum of

21 score-points the results of the PCK-FA-test are as follows (see also Table 11.2):

• Altogether 40 teachers participated in the PCK-FA-test, 20 of these teachers

participated in the teacher training of EG A1 and 20 in the training of EG B1.

• The reliability of the PCK-FA-test – consisting of 10 items – can be said to be

quite good (alpha¼ 0.80).

Fig. 11.2 Examples of items; the “PCK-COACTIV-item” is taken from Krauss et al. (2008)
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• Within EG A1 the mean-score of the PCK-FA-test is m¼ 12.45 with a standard

deviation of SD¼ 3.76. Empirically the score-points range from a minimum of

3 to a maximum of 19.

• Within EG B1 the mean-score of the PCK-FA-test is m¼ 5.85 with a standard

deviation of SD¼ 2.98. Empirically the score-points range from a minimum of

1 to a maximum of 14.

• The differences between EG A1 and EG B1 concerning the mean-score are

significant with p< 0.01.

Due to some restrictions of the study the given results have to be interpreted

carefully concerning the effectiveness of teacher-trainings on teachers’ expertise:
(1) It is not really a longitudinal study but a study assessing teachers’ PCK being

sensitive to the trainings once at the end of the trainings. (2) There does not really

exist a typical control-group. The study investigates the effectiveness of teacher-

trainings by comparing two different experimental groups. (3) The teachers have

been assigned to the experimental groups by interest and not randomly. However

these preliminary results of a subgroup of the teacher-training-study already point

out big differences in teachers’ expertise concerning formative assessment if

dealing with modelling tasks in competency-oriented mathematics at the end of

teacher trainings dealing with different topics.

11.6 Summary and Outlook

According to theory and empirical studies, the idea of implementing formative

assessment in competency-oriented mathematics is crucial. Furthermore it has been

pointed out that teachers’ knowledge (CK, PCK and PK) is essential for students’
achievements. Within the teacher-training-study as part of the Co2CA-project,

teachers were trained in implementing formative assessment in competency-

oriented mathematics. For being able to evaluate the effect of the teacher-train-

ing-study, special tests on teachers’ general pedagogical knowledge and pedagog-

ical content knowledge have been developed for evaluating and comparing the

teachers’ performance at the end of the training. Using these tests, teachers trained

especially in ideas of formative assessment when dealing with modelling tasks

(EG A1 and EG A2) can be contrasted with teachers trained in general didactical

ideas of modelling and problem solving in competency-oriented mathematics

(EG B1 and EG B2). First results show that the teachers of EG A1 outperform

their counterparts of EG B1 at the end of the teacher training. These results are

Table 11.2 First results of the teacher-training-study

N m SD Emp. min. Emp. max.

EG A1 20 12.45 3.76 3 19 p< .01

EG B1 20 5.85 2.98 1 14

PCK-FA-test: 10 items; alpha¼ 0.80
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encouraging and hint at the importance of teacher trainings to foster teachers’
knowledge about teaching competency-oriented mathematics. Whether these

results are really caused by the teacher training – especially if controlling for

teachers’ general pedagogical content knowledge and teachers’ content knowledge
– are open questions that have to be answered at the end of the whole teacher-

training-study, as well as questions about the effect of teacher training on teachers’
general pedagogical knowledge and the quality of teaching.
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Chapter 12

A Reflection on Mathematical Modelling
and Applications as a Field of Research:
Theoretical Orientation and Diversity

Vince Geiger and Peter Frejd

Abstract This chapter explores the nature of theoretical approaches used in math-

ematical applications and modelling research literature focusing on the orientation

and diversity of these approaches within this field. The study is based on the

document analysis of a sample of book chapters from significant scholarly volumes

dedicated to applications and modelling published between 2002 and 2011. Our

analysis reveals that: research is oriented towards learners and teachers rather than

to contexts for learning; the number of chapters that tied theory to practice

increased whilst chapters focused on purely professional issues decreased; the

diversity of theoretical approaches utilised increased over time; and, use of local

theories specific to mathematical modelling coalesce around two approaches.

12.1 Introduction

Research within mathematics education known as mathematical modelling and

applications has received increasing international recognition over the last decade.

This recognition has included: the adoption of the International Community of

Teachers of Mathematical Modelling and Applications (ICTMA) as an Affiliated

Study Group of the International Commission on Mathematical Instruction (ICMI)

in 2004; the conduct of the 14th ICMI Study on Modelling and Applications in

Mathematics Education; and a plenary lecture by Werner Blum at the International

Congress on Mathematics Education in Seoul during 2012. Such recognition is
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generally bestowed on a distinctive, rich and coherent field of educational research.

The standard by which any field is judged, however, lies in the quality of its

publications as these are indicators of the theoretical advances being made, as

well as the milieu researchers are attempting to influence within a discipline.

As is the case with mathematics education in general, research literature in

mathematical modelling and applications includes an abundance of theories that

systematise and provide insight into different aspects of teaching and learning

mathematics (Kaiser and Sriraman 2006). The development of theory is evidence

of the vitality and vigour of a particular field of research (English 2002; Jablonka

et al. 2013). This view is succinctly captured by Sriraman and Nardi (2013) in

stating that “The development of theory is absolutely essential in order for signif-

icant advances to be made in the thinking of communities (or individuals within

them)” (p. 310). Further, the diversity of theoretical approaches can be an indicator

of the maturity of a field. Jablonka et al. (2013), for example, argue that the

utilisation of theoretical constructs such as single concepts or hybrids from other

less known theories can lead to new theoretical stances that provide original insight

into research problems. This chapter explores the nature of theoretical approaches

used in research literature within mathematical modelling and applications by

addressing the following research questions: What is the orientation and diversity

of theory used within the field of mathematical modelling and how has this changed

over recent time?

The exploration was conducted by applying two different analytical lenses to a

sample of relevant book chapters from volumes that offer international perspectives

on teaching and learning of mathematical modelling. The first lens is used to

determine the current orientation of mathematical modelling and applications in

relation to learners, teachers, and learning contexts (English 2002) and its connec-

tion to both research and practice (Kilpatrick 2008). A second lens is used to

ascertain the diversity of theory and how theories have been used in research

literature within the field (Tsatsaroni et al. 2003). The list of theoretical approaches

used as anchor points for this analysis is based on both local theories that are

specific to mathematical modelling and applications (Kaiser and Sriraman 2006)

and general theories used across lines of enquiry within the field of mathematics

education (Sriraman and English 2010). These two lenses will be outlined and

described as part of the analytical approach used in this chapter.

12.2 Method

In order to make judgements about the direction and diversity of theory within

mathematical modelling and applications, a document analysis was conducted on a

sample of relevant publications made available through the period 2003–2011. This

sample consisted of the books that draw together discussions that took place during

the biennial conferences of the International Community of Teachers of Mathe-

matical Modelling and Applications (ICTMA) and the publication that was the

outcome of the 14th Study commissioned by the International Commission of
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Mathematics Instruction (ICMI). The ICTMA books were selected because these

represent the perspectives of researchers and practitioners engaged with the work of

the peak international body devoted to mathematical modelling and applications.

The volume that covers the deliberations of the 14th ICMI Study is included because

the Study publications of ICMI are widely accepted as representative of the state of

the art in a field of research and practice within mathematics education. The

publications assessed in this analysis are listed in Table 12.1.

The approach to analysis was co-constructed and implemented by both authors

of this chapter. After negotiating the major thrust of the investigation and the

development of the two theoretical lenses for the analysis of data (outlined in detail

below), the authors generated decision criteria for the categorisation of chapters

within the sample. These criteria and elaborations for categorization were then

trialed by the authors on a selected section of the ICMI Study 14 volume indepen-

dently. This was followed by a discussion (over Skype) where the initial

categorisations of chapters were discussed, differences of opinion identified, and

the final placement of chapters into categories negotiated and agreed upon.

The discussion also served to assist in refining the decision criteria. This process

was repeated using further chapters from the ICMI Study 14 volume until both

authors were confident consistent judgments were being made using both theoret-

ical lenses – greater than 90% agreement on independent assessments. From this

point, remaining chapters in volumes from the sample were assessed independently,

the process supported by regular meetings, (again via Skype), to discuss any

uncertain decisions. Overviews and Section Introductions were excluded from the

process as these are concerned with multiple issues and varying theoretical

approaches and so could not be categorised. In a small number of cases, chapters

were too difficult to categorise and were recorded as other. An additional list

category labelled as no approaches was created for chapters where authors did

Table 12.1 ICTMA books 2003–2011 and 14th ICMI Study volume included in the document

analysis

1. ICTMA 10 – Ye, Q., Blum, W., Houston, S. K., & Jiang, Q. (Eds.). (2003). Mathematical
modelling in education and culture. Chichester: Horwood. [ISBN: 1-904275-05-2]

2. ICTMA 11 – Lamon, S., Parker, W., & Houston, K. (Eds.). (2003).Mathematical modelling: A
way of life. Chichester: Horwood. [ISBN: 1-904275-03-6]

3. ICTMA 12 – Haines, C., Galbraith, P., Blum, W., & Khan S. (Eds.). (2007). Mathematical
modelling: Education, engineering and economics. Chichester: Horwood Publishing. [ISBN:

978-1-904275-20-6]

4. ICTMA 13 – Lesh, R., Galbraith, P., Haines, C., & Hurford, A. (Eds.). (2010). Modeling
students’ mathematical modeling competencies. New York: Springer. [ISBN 978-1-4419-

0560-4]

5. ICTMA 14 – Kaiser, G., Blum, W., Borromeo Ferri, R., & Stillman, G. (Eds.). (2011). Trends
in teaching and learning of mathematical modelling. New York: Springer. [ISBN 978-94-007-

0909-6]

6. ICMI Study – Blum, W., Galbraith, P., Henn, H.-W., & Niss, M. (Eds.). (2007). Applications
and modelling in mathematics education: The 14th ICMI study. New York: Springer. [ISBN:

978-0-387-29820-7]
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not attempt to align with any theoretical approach. Descriptions of the two theo-

retical lenses and associated decision criteria that informed the categorisation of

articles are now presented.

12.2.1 Lens 1: The Orientation of the Field

To establish a framework for determining the orientation of the field of mathe-

matical modelling and applications, we drew on English’s (2002) matrix of

priorities for mathematics education research which divides advances in theory

related to mathematics education into dimensions devoted to learners, teachers,

and learning contexts and applied these to the selected publications. At the same

time, mathematics education can be viewed from the perspectives of both

research and practice (Kilpatrick 2008), a perspective reflected in ICTMA’s
mission statement.

The International Community of Teachers of Mathematical Modelling and Applications

(the ‘Community’) is a membership organisation that exists to promote Applications and

Modelling (A&M) in all areas of mathematics education – primary and secondary schools,

colleges and universities.

(retrieved from http://www.ictma.net/)

Thus, in analysing a chapter, we also considered if the focus of a chapter was:

purely theoretical; related to applying theory; or professional – directed at

informing practice. The inclusion of these dimensions and perspectives results in

the two dimensional framework presented in Table 12.2.

In order to make valid and comparable judgements, the authors developed

decision criteria for the placement of chapters into categories that represent a

dimension/perspective. In the case of the dimensions of English’s (2002) priorities
for mathematics education, decisions were relatively clear cut as judgements were

made on the basis of the principal focus of a chapter on: the activity of a learner

(e.g., nature of peer to peer discussion when attempting to validate a result); the

actions of a teacher (e.g., role in promoting mathematisation during an application

task); and, the nature and role of the learning environments (e.g., use of manipu-

latives, influence of a student management system).

In the case of the orientation of a chapter, it was necessary to develop

elaborations for the associated categories as presented in Table 12.3. In general,

these elaborations facilitated clear distinctions between the orientations of a

chapter. Cases where an assessment was not clear, or there was disagreement

between the authors, were resolved in the manner outlined earlier in the Method

section.

164 V. Geiger and P. Frejd

http://www.ictma.net/


12.2.2 Lens 2: The Diversity of Theory

To identify the diversity of theoretical approaches used within the sample

(Tsatsaroni et al. 2003), we drew on the notions of local theories as described by

Kaiser and Sriraman (2006) and general theories as identified by Sriraman and

English (2010). Local theories are those specific to research within a field of

scientific endeavour. In the case of mathematical modelling and applications,

there are theoretical approaches that are associated specifically with this field of

research. In our analysis these include those identified by Kaiser and Sriraman

(2006) as: modelling cycle, modelling competency and emergent modelling, models
and modelling perspective; and approaches for ‘authenticity’ and defining model-
ling tasks. A small group of chapters used a variety of other approaches but these

were amalgamated into a single category labelled other theoretical approaches
because of low frequency counts. General theories are established approaches to

viewing and working in the world that are drawn from the field of mathematics

education more generally. Examples of these theories include: radical constructiv-
ism, embodied cognition, socio-culturalism, semiotic approaches, and neuroscien-
tific approaches. The full list of general theories included as part of this analysis

appears in Table 12.6.

According to Niss (2007) there are researchers in mathematics education that

“do not explicitly invoke or employ any theory at all in their work” (p. 101). This

was evident in a number of chapters and these cases were categorised as no

Table 12.2 Dimensions and theoretical perspective of chapters

Dimension/perspective Purely theoretical Applied theory Professional

Learners and learning

Teachers and teaching

Learning contexts

Table 12.3 Decision criteria for orientation of chapters

Purely Theoretical: Non-empirical research studies that aim to build or develop new theory, new

theoretical framework, etc. This includes chapters focusing on critical reflections on a theory or a

theoretical perspective. Position chapters as they relate to the development of theory. Authors

may engage in polemic in attempting to discuss the strengths of one theoretic perspective over

another – but these must be scholarly with arguments based on research literature – not just

author’s opinion. The emphasis is on theory development not on data, if data are used these should

only be to emphasize or illustrate the theory.

Applied Theory: These are empirical studies that explicitly use a theory to analyse data and/or use
a theory to discuss the result. The analysis of data might be used to generate new theory or may be

descriptive in nature. Data can be of any acceptable format. These chapters must be scholarly and

cite the work of relevant authors in the field and it should be evident in these chapters that a theory

has been used not just cited.

Professional: These are empirical, descriptive or polemic/discussion chapters that aim to inform

teaching and learning practice at any level of education. The chapters may make use of data to

inform the reader but not to build or confirm theory.
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approaches. There were also authors who mentioned a theoretical approach in the

beginning of a chapter but who did not make use of the theory in any discernable

way in the development of a theoretical or conceptual framework used for the

analysis of data or as part of a discussion of findings. In this situation we took the

decision to categorise these chapters as no approaches because the theory, while

mentioned, did not appear to influence the argument within a chapter in any way.

12.3 Results

12.3.1 The Orientation of Publications

Chapters in each volume were categorised according to the dimensions and per-

spectives presented in Table 12.2. Frequencies against volume and dimension, and

volume against perspective, are recorded in Tables 12.4 and 12.5. These results are

represented as column graphs in Figs. 12.1 and 12.2 respectively.

Figure 12.1 indicates that for most of the sampled period, Learners and Learning
(L) were the primary focus of activity in mathematical modelling and applications,

although this emphasis is less prominent in the most recent volume sampled

(ICTMA 14). During the same period, chapters with a focus on Teachers and
Teaching (T) have waxed and waned, however, there is an increase in the number

of chapters with this focus in the last two volumes within the sample (ICTMA

13 and ICTMA 14). Interestingly, there was a balance between Learners and
Learning and Teachers and Teaching in the last ICTMA book – published in

2011. There have been a consistently limited number of publications related to

Learning Contexts (C) in the sample period.

Figure 12.2 indicates that there is a clear increase in chapters related to applied

theory. This increase corresponds with a parallel decrease in chapters devoted to

professional concerns, that is, chapters that focus specifically on providing advice

to practitioners about ways of teaching or improving learning in mathematical

modelling and applications. There were relatively few chapters from authors who

sought to address purely theoretical aspects of mathematical modelling and appli-

cations, that is, chapters that attempt to critique current theory or seek to generate

new theory.

12.3.2 Diversity of Theory

The 252 chapters included in the sample were categorised into the list of theoretical

approaches presented in Table 12.6. There were a small number of chapters that fell

into more than one theoretical approach (four chapters in ICTMA 12, two in

ICTMA 13, and four in ICTMA 14 are categorised into two approaches, and one
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chapter in each of ICTMA13 and ICMI 14 study are categorised into three

approaches).

The categorisation of chapters within this framework demonstrates the diversity

of theoretical approaches used in ICTMA proceedings has expanded over the

sample period. For example, the ICTMA 10 proceedings included seven different

categories of theoretical approaches while the ICTMA 13 and 14 proceedings

include 12 and 11 categories, respectively. An anomalous result to this trend is

recorded for the 14th ICMI study (2007) where there are 14 categories of theory.

Table 12.4 Publications

against dimensions learners,

teachers, context and other

Dimensions

Publication Learners Teachers Context Other

ICTMA 10 46 46 8

ICTMA 11 60 20 15 5

ICTMA 12 59 37 4

ICMI 14 63 17 17 6

ICTMA 13 68 21 11

ICTMA 14 49 51 0

Table 12.5 Publication perspectives pure theory, applied theory, and professional and other

Perspectives

Publication Pure theory Applied theory Professional Other

ICTMA 10 0 31 69

ICTMA 11 5 35 55 5

ICTMA 12 6 43 51

ICMI 14 16 44 36 6

ICTMA 13 9 53 38

ICTMA 14 8 59 33

Fig. 12.1 Frequency of chapters assigned to learners (L), teachers (T), and contexts (C)
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This should not be considered surprising as the ICMI Study conference most likely

attracted a different group of attendees to ICTMA events even though a degree of

overlap is likely. An examination of these data in relation to local theories reveals

that the categories of modelling cycle and modelling competencies were the most

frequent theoretical approaches used in this sample with other theories receiving

less attention. General theoretical approaches appeared less frequently than local

theoretical approaches. Of this group, socio-cultural and instrumental approaches
were the most frequent. These are followed by chapters that focus on beliefs,
attitudes and affects, ATD/TDS and pedagogical content knowledge. It should be

noted that there were no chapters that took approaches related to feminism,
ethnomathematics, and neuroscience. Other theoretical approaches are strongly

represented in the sample. The largest proportion of chapters, however, were

categorised as no approaches. This group represents about 50% of the chapters

within the sample. With the exception of ICTMA14, a positive trend emerges over

time in relation to the proportion of chapters that use a theoretical approach to

establish the purpose of the chapter and position findings against previous research

literature in order to show how these add to new knowledge. This can be seen in

Table 12.7.

12.4 Conclusions, Discussion and Implications

The data presented in this chapter demonstrate that there has been an increase over

time in the use of theory to underpin publications related to mathematical modelling

and applications – indication of the developing maturity of this research field.

Closer inspection reveals that local theoretical approaches are more frequently

used than general theoretical approaches within the selected sample of publications.

This may be another marker of maturity as theoretical stances and approaches

specific to the field of modelling are now available. This view, however, must be

Fig. 12.2 Frequency of chapters assigned to pure theory, applied theory, and professional

chapters
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tempered by the fact that the use of local theories strongly coalesces around only

two approaches – the modelling cycle and modelling competencies. These are used
more frequently than all general theoretical approaches combined. While this might

be an indication of the coherence of the research field, it could also indicate that

there is too strong a dependence on these particular theoretical approaches. Thus,

there is a danger that richness and diversity of thought within the field is too

constrained.

While there is clear growth across time in the number of theory oriented chapters

included in both ICTMA and ICMI publications, there are subtleties under this

general trend that are worthy of closer examination. This change is principally due

to an increase in chapters classified as applied research; an encouraging develop-

ment given that the nature of the field is related to the application of theory to the

activities associated with teaching and learning. At the same time, purely theoret-

ical papers were a relative scarcity, which raises concerns about the generation of

new theory. An additional issue is the decline in chapters that focus on the concerns

of practitioners. This change may be an indication of the increased “academisation”

of the field, for example, greater numbers of PhD students have completed studies

within the field of modelling and applications and are now contributing to its

growth through new publications, or of a decrease in the number of practitioners

participating in and lending their voices to ICTMA events. The trend could also

indicate the increasing pressure from universities for academics to publish research

orientated articles and papers rather than those that seek to inform and support

practitioners. All of these issues require further research if we are to understand

changes in the field as these develop.

Our analysis also identifies a number of white spots that offer potential for

further theory development. White spots are theoretical approaches within our

framework that have not yet been used to explain or theorise phenomena within

mathematical modelling and applications. For instance, sociological approaches,
linguistics, social linguistics, and semiotics approaches, critical mathematics edu-
cation, pragmatic approaches, feminist approaches, ethnomathematics, and neu-
roscience all remain potential aspects of theory within mathematics education

which were not utilised in our sample. The view of Sriraman and English (2010),

that advancement in the field of mathematics education has often been achieved by

Table 12.7 Chronological order against percentage of theory based chapters (2003–2011)

Publication (publication date) Percentage of theory based chapters

ICTMA 10 (2003) 28%

ICTMA 11 (2003) 41%

ICTMA 12 (2007) 53%

14th ICMI study (2007) 54%

ICTMA 13 (2010) 65%

ICTMA 14 (2011) 58%
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adapting theoretical approaches used within and outside mathematics education,

means that the white spots offer potential for greater theoretical diversity and

richness and the resulting advancement of mathematical modelling and applications

as a field of research.
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B. Grevholm, M. Måsøval, & F. Rø€onning (Eds.), Relating practice and research in mathe-
matics education: Proceedings of Norma 05 (pp. 97–110). Trondheim: Tapir.

Sriraman, B., & English, L. (Eds.). (2010). Theories of mathematics education: Seeking new
frontiers. New York: Springer.

Sriraman, B., & Nardi, E. (2013). Theories in mathematics education: Some developments and

ways forward. In M. A. Clements et al. (Eds.), Third international handbook of mathematics
education (pp. 303–325). New York: Springer.

Tsatsaroni, A., Lerman, S., & Xu, G. (2003). A sociological description of changes in the
intellectual field of mathematics education research: Implications for the identities of aca-
demics. Paper presented at annual meeting of the American Educational Research Association,

Chicago.

12 A Reflection on Mathematical Modelling and Applications as a Field. . . 171



Chapter 13

Problem Solving Methods for Mathematical
Modelling

Gilbert Greefrath

Abstract Providing a method for problem solving can support students working on

modelling tasks. A few candidate methods are presented here. In a qualitative study,

one of these problem solving methods was introduced to students in grades 4 and

6 (Germany), to be used in their work on modelling tasks. The students were

observed as they worked and were subsequently interviewed. The results reveal

differences between grades, and widely varying problem solving processes. The

differences in written final solutions are considerably less pronounced.

13.1 Sub-competencies of Modelling Competencies

The scope of mathematics is twofold: it deals in abstract structures and ideas, and

produces models which serve to describe the environment. In order to achieve this

second objective, it is essential to integrate realistic problem settings and applica-

tions into mathematical teaching. Mathematical modelling has therefore been

identified as one of the most crucial general-mathematical skills by the German

educational standards in mathematics. Modelling competency is described by NISS

et al. (2007, p. 12) as “the ability to identify relevant questions, variables, relations

or assumptions in a real world situation, to translate these into mathematics and to

interpret and validate the solution to the given situation, as well as the ability to

analyse or compare given models by investigating the assumptions”, checking

properties etcetera. Motivated by the great importance of this competency for

mathematical learning, this chapter aims to present and discuss problem solving

resources which can help students in their work on modelling problems in mathe-

matics lessons.

Problem solving resources for modelling tasks are usually based on prototypical

solutions of modelling problems, as illustrated by modelling cycles. These
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modelling cycles describe the persistent dialogue between reality and mathematics.

Some cycles are less detailed, regrouping the process of constructing a model from

a given situation into one single step. This step is, for example, labelled “modelling/

mathematising” by Ortlieb (2004). Today, modelling usually refers to the cycle as a

whole. Mathematising, like in Ortlieb’s work, usually refers to the stage which

starts on a real problem and ends with the completion of the mathematical model.

A model of the mathematical modelling cycle, elaborated by Blum and his

colleagues in the DISUM1 project, tackles the process from a cognitive perspective,

aiming to describe as precisely as possible how students approach a modelling task

(see Fig. 13.1). The main departure from the above-mentioned model crafted by

Ortlieb is the development of the so-called situation model (Blum and Leiß 2007).

The process of model creation is considered in more detail, representing in one

initial, additional step the process by which the model’s author extracts a mental

representation from an initial situation. This expansion was mainly motivated by

research into reading comprehension (see, e.g., Kintsch and Greeno 1985).

The capacity to execute each individual step in the modelling cycle can be

considered a sub-competency of modelling (cf. Maaß 2006). Blum’s modelling

cycle provides one way of characterising the individual sub-competencies involved

in modelling, as in Table 13.1. Working mathematically (step 4 in Fig. 13.1) is not

included as a sub-competency, as it is not specific to modelling competency.

Working from other cyclic models of modelling (e.g., Greefrath et al. 2013: Kaiser

and Sriraman 2006), other sets of sub-competencies with differing emphasis could

conceivably be used. The model of Blum (Fig. 13.1) differentiates the

sub-competencies in a clear and detailed way.

Explicitly dividing the modelling process into separate stages is one possible

way to reduce complexity for both teachers and students, making it possible to

produce more suitable tasks. In particular, this approach to modelling allows

individual sub-competencies to be taught separately, enabling a comprehensive

modelling competency to develop over time. The insight afforded by the division of

the modelling process into several independent sections can be used to create

problem solving methods for students, and thus to provide students with problem

solving resources during their modelling tasks.

13.2 Problem Solving Methods

Problem solving methods can support students’ work on tasks. They are one

possible form of problem solving resources. These resources exist in different

types and forms. Resources can, for example, help to motivate students to further

investigation, providing them with feedback which enables them to judge whether

1 The DISUM Project (Didactical intervention modes for mathematics teaching oriented towards

self-regulation and directed by tasks) led by W. Blum, R. Messner and R. Pekrun.
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their solution or solution strategy was correct or successful. They can also provide

content related hints or information which helps to solve the task. The following

categories of resources exist: motivational resources, feedback resources, general

strategic resources, content-related strategic resources and content-related

resources. Within each individual category, a further distinction between direct

and indirect resources can be made. Direct resources explicitly address the student,

a specific section of the problem setting, or a concrete mathematical concept.

Indirect resources, on the other hand, address the whole class, the task as a

whole, or less concrete mathematical concepts (Zech 1998, pp. 315ff.). The prob-

lem solving methods presented hereafter are indirect general strategic resources, as

although they do refer to general technical problem solving and modelling methods,

they do not provide any concrete and contextual indications relating to the content

of the task.

real situation
& problem

real model &
problem mathematical

model & problem

mathematical
results

mathematics

1   Constructing

3   Mathematising
4   Working
     mathematically
5   Interpreting 
6   Validating
7   Exposing

2   Simplifying/
     Structuring

rest of the world

situation
model

real
results

5

3

1

7

2

6

4

Fig. 13.1 Modelling cycle (Blum and Borromeo Ferri 2009, p. 46)

Table 13.1 Sub-competencies involved in modelling

Sub-competency Indicator

Constructing Students construct their own mental model from a given problem, and thus

formulate an understanding of their task.

Simplifying Students identify relevant and irrelevant information from a physical problem.

Mathematizing Students translate specific, simplified physical situations into mathematical

models (e.g., terms, equations, figures, diagrams, functions).

Interpreting Students relate results obtained from manipulation within the model to the

physical situation, and thus obtain physical results.

Validating Students judge the physical results obtained in terms of plausibility.

Exposing Students relate the results obtained in the situational model to the real situation,

and thus obtain an answer to the problem.
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In the DISUM project, Blum developed a problem solving method for students

based on a simplified modelling cycle (see Fig. 13.2). This method comprises four

stages, named understanding the task, establishing the model, using mathematics
and explaining the results. Each stage is explained to students with two explicative

bullet points. The introduction of the method to students can be supplemented with

additional example tasks, allowing them to practise its application.

B€ohm (2010) developed a problem solving method in three stages. The first

stage aims to understand the problem (“Problem verstehen”) to obtain a mental

representation of the task at hand. In the second stage, (“Mathematik ins Spiel
bringen und rechnen”), the problem is mathematised and manipulated mathemat-

ically. In the third stage, (“Resultat auf das Problem beziehen und pr€ufen”), the
results obtained by mathematical manipulation are related to the problem, and

validated. Z€ottl et al. (2010) use a similar problem solving method in the

KOMMA2 project. Their method consists of the phases understanding the task,
calculating, and explaining the result.

An alternative problem solving method was presented by Greefrath and Leuders

(2013). In the development of this method, the authors considered the stages of

problem solving as set out by Polya. In his book How to solve it, Polya compiled a

catalogue of heuristic questions designed to help manipulation in problem solving

tasks. The process of problem solving is divided into the following stages:

Fig. 13.2 Problem solving method as described by Blum (Blum and Borromeo Ferri, 2009, p. 54)

2 KOMMA (KOMpendium MAthematik) is a project aiming at the implementation and evaluation

of a learning environment for mathematical modelling.
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Understanding the problem, devising a plan, carrying out the plan and looking back
(Polya 1973). Schoenfeld (1985) added to this by describing some of the stages in

more detail. He introduced a distinction at the end of the problem solving process

between verification and transition. His suggested problem solving method for

students beginning secondary-level education therefore contains five steps, and

can be used for both modelling and problem solving tasks:

• Understanding the problem: rephrase it in the students’ own words

• Choosing an approach: describe assumptions and plan future calculations

• Performing: perform calculations and manipulations

• Explaining the results

• Checking: check results, calculations and approach

It has been demonstrated that the problem solving methods presented by Blum

(Blum and Borromeo Ferri 2009) and B€ohm (2010) are structured like a cycle,

whereas the problem solving methods described by Z€ottl et al. (2010) and Greefrath
and Leuders (2013) are structured more linearly, because there is no explicit link to

the starting point. This reflects that the first methods are more closely fitted to the

modelling cycle, whereas the second set of methods were more closely modelled on

the process of problem solving.

There exist some interesting empirical results on students working with problem

solving methods. Maaß (2004) used a simplified modelling cycle as a problem

solving method. In a qualitative study of grade 7 and 8 school students in Germany,

she examined classroom modelling competency, and was able to identify adequate

modelling competency in a large subset of the students at the end of the study.

Concerning the implementation of the problem solving method, she writes that the

students felt they were aided by knowledge about the modelling process and the

cycle representation. B€ohm (2010) views the three-stage problem solving method

as an intermediate tool for the classroom. It should be developed further at a later

point, including additional steps, so as not to prevent additional learning later

on. The problem solving method is part of a comprehensive programme which

aims at fostering modelling-related competencies.

Also in two big research projects in Germany, problem solving methods are

used. In the KOMMA project, Z€ottl et al. (2010) used structured examples (Reiss

and Renkl 2002) of problems solved, consisting of the problem statement and a set

of solution steps. Positive results were achieved in the domain of mathematical

reasoning and proof by implementing these structured solved examples in the

classroom. In a study by Schukajlow et al. (2010) during the DISUM project,

significant differences in students’ modelling performance could be demonstrated

when using the Blum problem solving method (Blum and Borromeo Ferri 2009)

applied to Pythagoras’ theorem. Lessons that included the problem solving method

were found to be the more effective form of teaching and learning. Also, students

exposed to the method were more acutely aware of the cognitive strategies they

were using, that is the method itself.

However, problem solving methods of this kind are also suspected to bear

disadvantages. Meyer and Voigt (2010), for example, have argued that problem
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solving methods are aimed towards understanding final solutions quickly rather

than towards understanding the actual problem solving process, and are little more

than additional subject matter for students to learn. Franke and Ruwisch (2010)

point out that it can be too much to ask students with little experience in problem

solving to search for solutions while simultaneously maintaining a general over-

view of the process as a whole when using a method.

13.3 Study Design

In a qualitative study, three pairs of German school students in each of grades 4 and

6 (10 and 12 years old), in Grundschule (primary education) and Realschule

(secondary education) respectively, were observed while working with the problem

solving method set out by Greefrath and Leuders (2013), and subsequently

interviewed. The first task (Teeth Brushing Task) aimed to achieve an understand-

ing of the method by asking students to arrange the described steps into the correct

causal order. This task was given identically to all participating students.

Teeth Brushing Task

Pia is attempting to answer the following question:

How much water could I save in a year while brushing my teeth?
To find an answer, Pia went through several steps:

• I should measure the amount, and add it up.

• Five cupfuls of water flowed through the tap. Five cups are about 1 l. There

are 365 days in a year, so that makes 365 l.

• When I brush my teeth, I need water to wash out my mouth. But if I let the

water run while I’m brushing, I’m wasting water. How much water runs

through the tap over a whole year?

• 365 l is equal to 36 buckets of fresh water that could be saved in a year.

That seems about right, because over the course of a year the tap will have

been running for many minutes in total.

• So, over a whole year, I could save 365 l of fresh water by turning the tap

off while I brush.

Put the steps of Pia’s solution in the correct order. Label each step with the
name that fits best: understanding the problem, choosing an approach,

performing, explaining the results, checking.

The second task involved using the problem solving method. The secondary

school students were presented with the method set out by Greefrath and Leuders

(2013) as described above, along with the following problem setting:
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Use this method to answer the following question: How much fluid do I drink
in a week?

The primary school students were given a photograph of a student their age

standing next to an oversized flip-flop, and asked to determine the height of a

(fictional) person whom the flip-flop might fit.

Flip-Flop Task

Determine the height of a (fictional) person whom the flip-flop might fit.

The observations and interviews were filmed. The videos were transcribed in full

and analysed based on Grounded Theory (Strauss and Corbin 1990). The transcripts

were analysed line-by-line, and each individual text passage was assigned one of

the steps from the problem solving method (understanding, choosing, performing,

explaining, checking). The different stages were assigned by two people working

independently in order to achieve the highest possible levels of inter-rater reliability

in coding.

13.4 Results

Although the first 6th grade pair followed the given problem solving method

closely, their attention was particularly focused on the concrete example from the

first task. The students mixed up the phases of choosing and performing, and

referred alternatively to the problem statement, example, and method. The method

did stimulate metacognitive processes, but did not help to optimise the process of
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answering the question. Even though observation showed that the two students

were not successful in following the given method closely, upon being asked

whether the method had helped them, they responded as follows: “I thought it

was good that we could always look at it. If we had had to do it from nothing, I think

it would have been harder. Instead, we had some sort of reference.”

The second 6th grade pair followed the given method closely. Some difficulties

were only revealed when they were asked to label each phase. A content-related

error occurred in the last part of the manipulations. Plausibility considerations did

not suffice to disclose the error. This pair of students demonstrated much more

clearly the procedure which is hoped to be achieved by providing the problem

solving method. Interestingly, one of the two students remarked in the final

interview that he saw a similarity to the advice usually given for word problems:

question, calculations, results. Overall, the use of this kind of method was met with

a very positive reception from the students. The written final solution of the pair

reproduced clearly the sequence and structure of the method.

Understanding: How much do you drink in a week?

Choosing: I drink about 2 l every day, so I would calculate 2 L ∙ 7.
Performing: 2 L ∙ 7¼ 14 L

Explaining: Each week I drink about 14 L, and each day about 2 L.

Checking: That’s equal to 9 ∙ 1.5 l bottles and one 0.5 l bottle.

The third 6th grade pair followed the individual phases of the method. They

completed all of the phases, except the last one. However, they followed the

example given in the first task more closely than the method itself. This led to

difficulties in abstracting from the example in places. The choosing and performing
steps were performed according to the method. The next two steps were, however,

mixed up and cut short. This pair also made positive statements about the method,

and described the explanations included as important:

Interviewer: Did you find the method helpful?

Student 1: So, I think that if the explanations weren’t there, with only

‘understanding’, ‘choosing’, I wouldn’t have been able to do it. It

says here also ‘write in your own words’, ‘describe assumptions’
and ‘plan calculations’. That helped.

Interviewer: What about if you had had to do the question without a method?

Would you have done it in the same way?

Student 2: I would have found it harder, and maybe needed more time to do it.

This pair also provided a written final solution that was structured according to

the given method. Details concerning the interview can be found in Hilmer (2012).

The grade 4 student pairs managed to solve the first task quite easily, putting the

steps in order. In the second task, no pairs used the method all the way through to

the last step. Two pairs managed nevertheless to provide a good answer. A

graphical representation (Fig. 13.3) of the typical answering process of a grade

4 pair shows that the students very quickly abandoned the structure of the method,

jumping back and forth between the different stages. Still, the method helped a few
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of the students to make a good start to their answer, and these students worked more

independently thereafter. (For details see F€orderer 2013.) A typical answering

process of a grade 6 pair (Fig. 13.4) shows that the students used the structure of

the method, not often jumping back and forth between the different stages.

13.5 Discussion and Conclusion

The results of this study show that students’ final solutions can be influenced by

providing a method for problem solving. The influence on the written solution is

more pronounced than on the solving processes that each pair of students went

through, which present considerable differences – from each other and from the

model solving process. This is reminiscent of the individual modelling routes that

were described by Borromeo Ferri (2007). One aspect that is clearly important is the

way that the method is established in lessons. In this study, the method was only

presented rapidly, and then used directly afterwards. Clearly, there are students who

have difficulty manipulating this type of method, and others who already benefit

from a short introduction, helping them to use the method themselves. The results

obtained from the students could plausibly be influenced by a more extensive

introduction to the method. Whether or not the method had any lasting effect on

the problem solving process, all pairs of 6th grade students interviewed recorded

positive impressions, and felt supported by its presence. This reinforces some

Fig. 13.3 Visualisation of an answering process typical of a grade 4 pair

Check

Explain

Perform

Choose

Understand

Fig. 13.4 Visualisation of an answering process typical of a grade 6 pair
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aspects of the findings recorded by Schukajlow et al. (2010). Providing full exam-

ples of solved problems, like in the first task of this study, seems to engage some

students in a clearly positive way. But there are more factors to control, for example

to investigate the effect of metacognitive beliefs (Garofalo and Lester 1985). A

more detailed study of school students’ problem solving processes seems essential,

as providing a method certainly produced a visible impact on the problem solving

process. The written final solutions of the students seem, however, to bear little

relation to the way the method was in fact used as the problem was being answered.
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Chapter 14

Improving Mathematical Modelling by
Fostering Measurement Sense: An
Intervention Study with Pre-service
Mathematics Teachers

Maike Hagena

Abstract Working on mathematical modelling tasks often requires knowledge

about different inner-mathematical content of everyday mathematics. It is espe-

cially the ability to handle quantities – that is mainly: having a feeling for units of

measurement (measurement sense) – being needed to work on modelling tasks

successfully. There is nothing known about how modelling competency and mea-

surement sense align. To remedy this, an intervention study with pre-post test

design has been conducted focusing on: “Is it possible to improve pre-service

teachers’ modelling performances by fostering measurement sense?” Forty-eight

pre-service teachers out of an experimental group have been trained in measure-

ment sense regarding the quantities, length and area. Another 45 pre-service

teachers have been part of a control group. Analysis of pre-service teachers’
performances on a modelling-test at the end of the intervention study revealed

that pre-service teachers in the experimental group outperformed their counterparts

in the control group.

14.1 Introduction

Mathematical modelling as part of competency-oriented mathematics as well as

measurement sense are central parts of everyday teaching and learning of mathe-

matics (NCTM 2000). Even though there exists a lot of studies discussing teaching

and learning of mathematical modelling (Blum et al. 2007) and many studies about

how to teach measurement sense (Clements and Bright 2003), there is a lack

of knowledge about how modelling competency and measurement sense combine.
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To date nothing is known about how measurement sense influences modelling

competency although Larson (2010) identified “quantitative reasoning as a useful

lens to apply to a Models and Modeling Perspective” (p. 117). Larson’s findings
from students working on a MEA indicated that operations chosen in modelling are

“reflective of the relationships they perceive among those quantities”. Furthermore

Larson (2010, p. 117) stated:

quantitative reasoning is a central mechanism for iterative refinement of solution processes

to real-world problems . . . As students work to develop a solution to this problem, they

repeatedly reason with and about quantities which they then operate on to create new

derived quantities.

These derived quantities are in turn used “to reason with and about the problem

situation”. For this reason, an intervention study has been conducted investigating

the influence of measurement sense on mathematical modelling.

14.2 Measurement Sense as Central Aspect of Handling
Quantities

Handling quantities is said to be a weakness around the world (Thompson and

Preston 2004); but what are the main difficulties of learners thinking about and

working with quantities? Having a closer look at the quantities length and area,

empirical research results point out that learners often do not understand the

quantities being measured or the units that are used for measurement (Outhred

et al. 2003). They also frequently confuse perimeter and area as well as surface area

and volume (Martin and Strutchens 2000) and need help to develop a repertoire of

benchmarks that can be easily represented and used for estimation (Joram 2003).

These mathematical weaknesses and misconceptions concerning handling quanti-

ties cannot only be identified when diagnosing learners at school but also when

asking pre-service teachers (Kellogg 2010). For this reason it becomes clear that

there is a lack of basic understanding of handling quantities, which prevents

learners – children as well as adults – from being able to reason about measurement

in complex situations (Baturo and Nason 1996). That is why several studies suggest

that it is important for learners to understand how and why measurement works

(Vasilyeva et al. 2009) as well as to have a feeling for units of measurement (Joram

2003) for building up so called measurement sense successfully. In detail having a

good measurement sense (MS) as a central aspect of handling quantities means:

MS 1 Being able to identify and distinguish different quantities of measurement.

MS 2 Being able to measure, to estimate and to round.

MS 3 Being able to decide whether to estimate, to measure and to round.

MS 4 Having knowledge about units of measurement which includes calculating

and converting units.

MS 5 Having a set of meaningful benchmarks for these units and being able to

use these benchmarks (Grund 1992; Shaw and Puckett-Cliatt 1989).

186 M. Hagena



14.3 Measurement Sense in the Context of Mathematical
Modelling

Translating between reality and the world of mathematics while dealing with real-

world problems is at the heart of mathematical modelling (Maaß 2010). From a

theoretical point of view if working on modelling problems one has to simplify and

structure a real world situation, transfer it into the world of mathematics, work

mathematically, interpret a mathematical result and validate a real result (Blum and

Leiß 2006). While several studies point out that all these steps of mathematical

modelling can cause problems if working on a real world problem (Blum 2011),

only little is known about how to support learners to deal with these steps of

mathematical modelling successfully. One possible approach for discussing diffi-

culties if thinking about mathematical modelling could be to examine the influence

of learners’ measurement sense on mathematical modelling (MM) performances –
since handling quantities is quite often needed to work on modelling problems

successfully (for a concrete example see Fig. 14.1):

MM 1 Having to understand a given real world problem one firstly has to identify

and/or distinguish different quantities of measurement (MS 1).
MM 2 Structuring and simplifying a complex situation often means measuring/

estimating/rounding missing data (MS 2). For being able to do so,

adequate benchmarks are needed (MS 5).
MM 3 Working mathematically on a structured, simplified mathematical model

requires being able to calculate and convert units of measurement (MS 4).

How many stones have been used for the 
outside walls of this house?

Measurement sense (MS) needed for mathematical modelling (MM) if working on the 
modelling task successfully:

MM 1 One has to understand that the area of the outside walls and not the volume of 
the house is asked for (MS 1).

MM 2 One has to structure and simplify the situation by estimating length, height and 
width of the house as well as of one single brick (MS 2).

MM 3 One has to work mathematically by multiplying/ adding lengths, height and 
width correctly and by converting m2 2to cm and vice versa (MS 4).

MM 4 One has to validate a mathematical/ real result by thinking critically whether  
the calculated amount of bricks is possible/ acceptable/ adequate or not. For 
doing so measurement sense for all is needed (MS 1 to MS 5).

Fig. 14.1 Measurement sense needed for working on the modelling task Brickhouse
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MM 4 For being able to validate a mathematical/real result critically distinct

measurement sense for all is needed (MS 1 to MS 5).

Based on these ideas one possible approach for supporting mathematical modelling

could be to enable learners to build up measurement sense.

14.4 Improving Mathematical Modelling by Fostering
Measurement Sense: An Intervention Study
with Pre-service Mathematical Teachers

Based on (1) learners often having difficulties dealing with mathematical modelling

tasks, due to the fact that (2) measurement sense is needed to work on many

modelling tasks successfully and in line with the circumstance that (3) nothing is

known about how learners’ measurement sense influences mathematical modelling

performances an intervention study with mathematical pre-service teachers has

been conducted to answer the following research question:

• Is it possible to improve pre-service teachers’ modelling performances by

fostering measurement sense?

To be able to answer this question, the following sub-questions are dealt with

within the intervention study:

• Is it possible to foster mathematical pre-service teachers’ measurement sense

within a short intervention? (Sub-RQ 1)

• Does mathematical pre-service teachers measurement sense influence mathe-

matical modelling performances? (Sub-RQ 2)

14.4.1 Design of the Intervention Study

The intervention study took place in January 2013. Overall N¼ 93 pre-service

mathematical teachers took part in the study. Before starting the study all partici-

pating pre-service teachers had taken part in mathematical modelling courses at

university and therefore were familiar with mathematical modelling in general. The

pre-service teachers were divided into two groups: nEG¼ 48 pre-service teachers

took part in a special intervention fostering measurement sense (i.e., the experi-

mental group—EG). Another nCG¼ 45 pre-service teachers were trained in dealing

with fractions (this group can be considered as a control group since measurement

sense had not been dealt with—CG). The pre-service teachers were assigned to

either experimental group or control group by controlling for performance (marks

within mathematical university courses) and gender. The intervention itself lasted

for four hours in the experimental group as well as in the control group. To be able
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to evaluate the effectiveness of the intervention special tests on pre-service

teachers’ performances immediately before and after the intervention (for details

see Fig. 14.2) were conducted.

14.4.2 Content of the Intervention

Based on the idea of fostering pre-service teachers’ measurement sense (Sub-RQ

1), and paying attention to the question as to whether measurement sense influences

mathematical modelling (Sub-RQ 2), the following topics were dealt with within

the experimental and control groups, respectively: Within the experimental group

the pre-service teachers were supported to build up the five central aspects of

measurement sense as mentioned in section 2 (MS 1 to MS 5). Within the control

group basic concepts about dealing with fractions were trained (calculating with

fractions). Neither in the experimental group nor in the control group was mathe-

matical modelling dealt with.

14.4.3 Evaluating the Intervention Study: Tests
on Mathematical Pre-service Teachers’ Measurement
Sense and Modelling Competency

For evaluating the study the following tests were used to answer the research

questions mentioned above:

Pre-test 1 – Test on Figural Intelligence (FI-Pre-test) Immediately before starting

the study all participating pre-service teachers had to work on a paper-pencil-test

pre-test 1:
FI-pre-test

pre-test 2:
MC-pre-test

post-test 1:
MS-pre-test

post-test 2:
MC-pre-test

post-test 3:
MSC-post-test

experimental group (nEC = 48): 
measurement sense

intervention: 4h

control group (nCG = 45): 

fractions

Fig. 14.2 Design of the intervention study
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assessing figural intelligence. The test consists of 25 items with closed responses.

A tested person has to continue a sequence of given figures logically. The test lasts

for 15 min. Results of this test are used to control for intelligence in general.

Pre-test 2 – Test on Modelling Competency (MC-Pre-test) Following the test on

figural intelligence the participating pre-service teachers had to work on two

modelling tasks with open responses for another 15 min (the tasks are similar to

the Brickhouse Task in Fig. 14.1). The test was administered as a paper-pencil-test

as well and assesses mathematical modelling competency in general.

Post-test 1 – Test on Measurement Sense (MS-Post-test) At the end of the inter-

vention a test on measurement sense concerning length and area was administered

to the pre-service teachers. The paper-pencil-test consists of 27 items (20 items with

open responses, 7 items with closed responses) and lasted for 20 min. The test

requires the ability to estimate (MS 2), knowledge about units of measurement (MS
4) and the existence of a set of meaningful benchmarks (MS 5) as selected parts of

measurement sense (for a sample item see Fig. 14.3).

Post-test 2 – Test on Modelling Competency (MC-Post-test) Similar to the MC-

pre-test there was a short post-test on mathematical modelling competency in

general consisting of another two modelling tasks with open responses – once

again these tasks were similar to the Brickhouse Task given in Fig. 14.1. The test

lasted for 15 min.

Post-test 3 – Test on Modelling Sub-competencies (MSC-Post-test) In addition to

the post-test on mathematical competency in general a newly developed paper-

pencil test on mathematical sub-competencies was used to evaluate the effective-

ness of the intervention. The test lasted for 30 min and consisted of 21 items

(10 items with open responses; 11 items with closed responses) requires the abilities

to understand (MM 1), to structure and simplify (MM 2) and to work mathemati-

cally (MM 3) on a given real world problem as selected parts of mathematical

modelling (for a sample item see Fig. 14.4).

Bus

Decide if the given quantity is adequate or not. If not, please fill in your own estimate. Take care 
of the units. 

Too less Ok Too much

A bus is about 8 m long. 

Own estimate: 

Fig. 14.3 Sample item out of the MS-post-test (asking for MS 2)
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14.4.4 Selected Results of the Intervention Study

All 93 participants worked on the two pre-tests and the three post-tests. While the

FI-pre-test, the MS-post-test and the MSC-post-test can be used for quantitative

analyses, the MC-pre-test and MC-post-test will be analysed qualitatively. To date

quantitative results concerning the reliability of the FI-, MS- and MSC-tests and

some descriptive results as well as some analyses of variance concerning the

effectiveness of the treatment can be reported.

Reliability of the Tests The FI-pre-test, the MS-post-test and the MSC-post-test

have all been scaled 1-dimensional. The answers to the test items have been scored

dichotomously, a correct answer has been scored with 1, an incorrect answer has

been scored with 0. The reliability (i.e., Cronbach’s alpha) of the FI-pre-test (.74),
the MS-post-test (.81) and the MSC-post-test (.81) can be said to be good. This

allows these tests to be used for further analyses describing the mathematical

pre-service teachers’ figural intelligence (FI-pre-test) at the beginning of the inter-

vention as well as the pre-service teachers measurement sense performances

(MS-post-test) respectively modelling sub-competency performances (MSC-post-

test) at the end of the intervention.

Descriptive Results and Differences Between the Groups As shown in Table 14.1

the pre-service teachers in the experimental (EG) and control (CG) groups scored

similarly within the FI-test. This means the two groups can be said to be comparable

concerning general figural intelligence. Within the MS-post-test on measurement

sense and the MSC-post-test on modelling sub-competencies at the end of the

intervention pre-service teachers in the experimental group outperform their coun-

terparts in the control group. The pre-service teachers in EG scored significantly

higher than those in CG.

Hamster

Hamsters are nocturnal animals which sometimes develop a proper addiction to 
exercise wheels. In this case they cover a distance of 500 rounds at a stretch.

Which of the following information do you need to calculate the length of the distance a hamster 
covers while running 500 rounds in his exercise wheel? Mark the correct response(s).

length of a hamster

perimeter of the exercise wheel

time the hamster needs for one rotation of the wheel

weight of the hamster

length and width of the exercise wheel

distance between the paws

Fig. 14.4 Sample item out of the MSC-posttest (asking for MM 2)

14 Improving Mathematical Modelling by Fostering Measurement Sense: An. . . 191



Analyses of Variance (ANOVA) To explain these differences concerning the MS-

post-test and theMSC-post-test analyses of variance were conducted (see Table 14.2).

These ANOVAs point out: (Sub-RQ 1) If controlling for general intelligence the

differences of pre-service teachers’ performances within the MS-post-test can partly

be explained by the treatment – about 17 % of the variance of the MS-posttest are

explained by the treatment. (Sub-RQ 2) Furthermore, about 31 % of the variance of

the MSC-post-test can be explained by the pre-service teachers’ performances within

the MS-post-test if controlling for general intelligence once again.

Referring to the research questions these results point out: Pre-service teachers’
measurement sense has been fostered within a short intervention successfully

(Sub-RQ 1). Furthermore, differences between pre-service teachers’ performances

concerning mathematical modelling are partly caused by pre-service teachers’
measurement sense (Sub-RQ 2). Overall, it seems to be possible to improve

pre-service teachers’ modelling performances by fostering measurement sense.

14.5 Summary and Conclusion

As has been shown above measurement sense seems to be a central element of

mathematical modelling of particular situations that afford use of measurement

skills. Surprisingly, by now nothing is known about the influence of measurement

Table 14.1 Descriptive results and differences between the groups

Group n Min Max M SD t-test for equality of means

FI-pre-test

EG 48 9 24 17.52 3.61 t(91)¼ 1.58

CG 45 8 24 16.33 3.62 p¼ .117

MS-post-test

EG 48 11 26 19.71 4.09 t(91)¼ 4.59

CG 45 5 25 15.58 4.58 p¼ .000

MSC-post-test

EG 48 5 21 13.67 3.20 t(91)¼ 3.44

CG 45 2 19 11.09 4.00 p¼ .001

Table 14.2 Analyses of variance (ANOVA)

Dependent

variable Fixed factor Co-variate

Adjusted

R2

MS-posttest treatment (CG¼ 0; EG¼ 1)

F(1, 93)¼ 18.32, p< .000, ¼
.169

FI-pretest

F(1, 93)¼ 3.90, p¼ .051, ¼
.042

.205

MSC-posttest MS-posttest

F(18,93)¼ 1.86, p¼ .034, ¼
.314

FI-pretest

F(1, 93)¼ 8.05, p¼ .006, ¼
.099

.302
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sense on mathematical modelling. Within the intervention study presented above

first quantitative insights into the interplay between measurement sense and math-

ematical modelling have been illustrated: Pre-service teachers’ mathematical

modelling competencies can be influenced positively by fostering pre-service

teachers’ measurement sense. As next steps these quantitative results need to be

confirmed by conducting further qualitative analyses examining more closely how

pre-service teachers’ performances develop when working on the open modelling

tasks. The tests on mathematical modelling administered to the pre-service teachers

before and after the intervention (MC-pre-test, MC-post-test) can be used for doing

so. Nevertheless, the quantitative results are encouraging suggesting: Fostering

measurement sense in a short intervention seems to be possible. Furthermore,

measurement sense seems to influence mathematical modelling that affords use

of measurement skills.
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Chapter 15

How Do Students Share and Refine Models
Through Dual Modelling Teaching: The Case
of Students Who Do Not Solve Independently

Takashi Kawakami, Akihiko Saeki, and Akio Matsuzaki

Abstract The purpose of this chapter is firstly to show how students who could

not solve an initial task by themselves shared and refined models through dual

modelling teaching, and secondly to derive suggestions for dual modelling teach-

ing. Through examining students’ worksheets and protocols of video and audio

records of the lessons, it was shown that unsuccessful modellers were able to

change/modify their own models and classmates’ ones and progress their dual

modelling cycle by sharing different models. One crucial point for progression in

the dual modelling cycle is the sharing of various models, which the modellers

could not interpret or find independently. As an intervention strategy for the

progression, teachers need to encourage students to share models that are related

with both the initial task and their similar one, and to ensure a variety of ways to

progress.
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15.1 Dual Modelling Cycle Framework (DMCF)

For responding to the diversity of modellers’ modelling processes (Borromeo Ferri

2007) and variation between tasks in their individual modelling progress (e.g.,

Matsuzaki 2011; Stillman and Galbraith 1998), Saeki and Matsuzaki (2013) elab-

orated a dual modelling cycle framework (DMCF) theoretically (Fig. 15.1). DMCF

is constructed using the modelling cycle of Blum and Leiß (2007) and is focused on

switching between a first modelling cycle of an initial task and a second modelling

cycle of a similar task. In DMCF, three types of cycles (single, double and dual) are

distinguished with corresponding progression of the solution (Saeki and Matsuzaki

2013). In the case of using a dual modelling cycle, modellers progress the first

modelling cycle by applying or referring to results from the second modelling

cycle. DMCF provides opportunities for tackling, reflecting and applying tasks,

where previously known or more accessible models are relevant in addressing the

tasks.

Matsuzaki and Saeki (2013) illustrated a typical dual modelling cycle through

a case study of undergraduate school students. Kawakami et al. (2012)

implemented the experimental class based on DMCF for Year 5 students and

reported typical successful cases of how students who could solve the initial task

by themselves progressed their dual modelling cycle; however the study did not

focus on the other students who were unsuccessful independently. The question

remains: How does the teacher facilitate the students’ progress of their dual

modelling cycle? The purpose of this chapter is (a) to show how the students

who could not solve the initial task by themselves share and refine models

through the dual modelling teaching (Kawakami et al. 2012) and (b) to derive

some suggestions for dual modelling teaching corresponding to a diversity of

modellers.

real situation
& problem

real situation
& problem

real model &
problem

real model &
problemmathematical

model & problem
mathematical
model & problem

mathematical
results

mathematical
results

mathematics mathematicsrest of the world rest of the world

situation
model

situation
model

real
results

real
results

5 5

3
3

1 1

7
7

2
2

6 6

4
4

[The first modelling cycle of the initial task] [The second modelling cycle of the similar task]

Fig. 15.1 Dual modelling cycle framework (Saeki and Matsuzaki 2013, p. 91)

196 T. Kawakami et al.



15.2 Diversity of Student Models in Modelling Teaching
Based on DMCF

15.2.1 The Teaching Material Based on DMCF

Oil Tank Task (Initial Task)

There are several types of oil tanks. Their heights are equal but their lengths

of diameters are different. Are their lengths of spiral banisters equal or not?

As conditions, angles to go up spiral banisters are all the same.

Toilet Paper Tube Task (Similar Task)

It is impossible to open an oil tank along the actual spiral banister. We can

instead take a toilet paper tube as a similar shape to an oil tank, which is to be

opened along its slit. Consider what the shape of an opened toilet paper tube

would be.

The teaching material consists of an Oil Tank Task [OT task] (initial task) and a

Toilet Paper Tube Task [TP task] (similar task). On the first modelling cycle of the

OT task, the authors set up 3D models of oil tanks such as in Fig. 15.2. One of the

2D models of oil tanks is a rectangle model (Fig. 15.3). In this case, spirals of both

tanks are the same by using mathematical ideas of equivalent transformation and

translation of spiral. On the second modelling cycle of the TP task, we perceive that

the 2D models of oil tanks are not only rectangle models but also parallelogram

models (Fig. 15.4). In the case of a parallelogram model, spirals of both tanks are

the same, which is supported by the mathematical idea of translation of the oblique

side. Furthermore, we recognised that there was structural or relational correspon-

dence between the rectangle model and the parallelogram model by using mathe-

matical ideas of equivalent transformation and translation of spiral (Fig. 15.5).

15.2.2 Outline of the Modelling Teaching Based on DMCF

The experimental class (see also Kawakami et al. 2012) consisted of three lessons

(45 min� 3). This class consisted of 33 Year 5 students (22 male, 11 female) aged

10–11 years old in a private elementary school in Japan. The data collection

comprised video and audio recordings and artefacts of the lessons. In the first and

second lesson, the students tackled the Oil Tank Task and the Toilet Paper Tube
Task. In the OT task, the teacher showed 3D models (Fig. 15.2). Through discussion

with the students, they drew 2D rectangle models of oil tanks to solve the OT task.

However, they could not solve it because an oil tank is too big to open directly. So

the teacher provided toilet paper tubes as similar shapes to the oil tank and students
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made 2D parallelogram models in the TP task. At the end of the second lesson, they

tackled the OT task again, with much referring to the TP task.

In the third lesson, the students shared three types of classmates’ solutions. At
first, the teacher illustrated the solution by focusing on the area of the parallelogram

model and calculating the length of the spiral. However, they could not calculate the

height of the parallelogram model using their own mathematical skills. Next, the

teacher illustrated the solution by measurement of the spiral in rectangle models

and parallelogram ones. The teacher said, “We found the approach by calculating is

difficult, but we can give an answer by measuring the reduced drawing”. Finally,

the teacher highlighted Kob’s solution by translation of the spiral where he applied

equivalent transformations in the rectangle model (Fig. 15.6a) and Matsu’s

10m
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25° 25°
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5mFig. 15.2 3D models of oil

tanks
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Fig. 15.3 The rectangle model: (a) original models, (b) half circumference models
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Fig. 15.5 Relationship between the rectangle model and the parallelogram model
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approach of translation of the spiral in the parallelogram model (Fig. 15.6b). By

illustrating two kinds of models, the teacher intended students to find the relation-

ship between the first modelling cycle and the second modelling cycle.

Kob drew his idea on the blackboard (see Fig. 15.6a) and tried to explain that the

length of the spiral was equal by applying the rate of area and equivalent transfor-

mation in the case of a quarter-length of the diameter. However, it was difficult for

most of his classmates to understand, as the compound idea in Kob’s explanation
confused them. Then the teacher complemented his idea by using Tomi’s idea in the
case of half-length diameter as the following protocols show:

Teacher: Tomi cut the rectangle in half along this dotted line and translated the

upper half [of the] rectangle to the bottom. Then the spiral is connected.

Students: I see!

Teacher: Tomi thought about the case as the half-length of the diameter. You

have to think about the case of one third and the quarter-length of

diameter too.

On the other hand, it was easy for the class to understand the parallelogram

approach as the following protocols show:

Teacher: OK, we will look at the approach by parallelogram. Matsu, explain

your idea. [Matsu drew his idea on the blackboard as in Fig. 15.6b.]

Matsu: It is probable that these spirals are all the same . . . and the length and

angle are all the same . . . so I think oblique sides of the parallelogram

are all the same.

Teacher: So how is this spiral [oblique side of parallelogram] moved?

Students: Translation.

Teacher: That’s right. Matsu said, “The length of the spiral is equal because the

oblique side of the parallelogram is translated”.

Fig. 15.6 (a) The rectangle models (b) The parallelogram models
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15.2.3 Types of Student Solutions

Table 15.1 shows how 33 students tackled the Oil Tank Task again at the end of the
second lesson. Sixteen students solved it by themselves. In tackling the OT task

again, ten students answered by translation of the spiral in the 2D parallelogram

model of the oil tank (Fig. 15.6a) (Type A), and 5 students answered by translation

of spiral in the 2D rectangle model of the oil tank (Fig. 15.6b) (Type B). Only one

student answered by measurement of spiral in both rectangle models and parallel-

ogram models (Type C). On the other hand, 17 students could not solve the OT task

by themselves. In Type A, four students could not solve it, although they used the

parallelogram model. In Type B, nine students could not solve it, although they used
the rectangle model. In Type D, four students could not solve it, although they used
other models (e.g., rotation rate of spiral in cylinder model).

Kawakami et al. (2012) analysed the solutions of Type A and Type B with typical

successful cases of how the students who could solve the OT task by themselves

progressed the dual modelling cycle. These successful cases give us suggestions to

consider what is ideal modelling teaching based on DMCF. However, there are

other students who could not solve the OT task by themselves as indicated in

Table 15.1. How do they progress the dual modelling cycle through shared class-

mates’ models? How does the teacher facilitate the students’ progress of the dual

modelling cycle? In the next section, we focus on the solutions of two female

students (Kawa’s case in Type A and Kato’s case in Type B) and analyse how their

original models in the first and second lessons were changed or modified by

examining their worksheets and protocols.

15.3 Analysis of Responses of Students who Could not
Solve Independently

15.3.1 Kawa’s Case

15.3.1.1 Lesson 1: First Trial of Oil Tank Task and Toilet Paper
Tube Task

In the OT task, Kawa drew two rectangle models and put a spiral only in the left

rectangle model (Fig. 15.7a), however she did not identify which is the case of the

long diameter or of the short diameter. The left rectangle model seems to be

mathematically correct. In the TP task, she drew a parallelogram model, however

she made a mistake in identifying the length of the spiral as the length of the

circumference (Fig. 15.7b).
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15.3.1.2 Lesson 2: Second Trial of Oil Tank Task Based on the Toilet
Paper Tube Task

Returning to the OT task, Kawa tried to solve it by the parallelogram model in which

a pair of adjacent sides are 10 cm and 5 cm; however she could not solve the task. Her

parallelogrammodel of the oil tanks did not correspond to Fig. 15.7b and to Fig. 15.2.

She did not understand the structure of the parallelogram model enough.

15.3.1.3 Lesson 3: Final Trial of Oil Tank Task Through a Class

Presentation

After the class presentation, Kawa wrote Kob’s explanation by the rectangle model

in the case of a quarter-length of the diameter (Fig. 15.8a). She described the

equivalent transformation from a quarter diameter oil tank to the original diameter

oil tank by using arrows and the phrase, “Cut and paste here . . . spiral is just

connected!” So she showed that the spiral was connected as the result of equivalent

transformation. She accepted Kob’s explanation to be applicable to other diameter

length oil tanks by her phrase, “We can vary the length of diameter!” She accepted

Kob’s rectangle model by referring to Tomi’s idea in the case of half-length

diameter. Additionally, she wrote a parallelogram model after Matsu’s explanation
(Fig. 15.8b). She did not copy Matsu’s statement from the blackboard, but

interpreted Matsu’s statement and her classmates’ statement of translation by

using her own expressions “Circumference is only extended” and “Stretch”. In

the end, she concluded that changing the length of the diameter of the oil tank has

Table 15.1 Types of student solutions to the Oil Tank Task (N¼ 33)

Solution type

Frequency solved

Independently Not independently

A Parallelogram model 10 4

B Rectangular model 5 9

C Parallelogram and rectangular model 1 0

D Other models 0 4

Fig. 15.7 (a) The rectangle models (b) The parallelogram model
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nothing to do with determining the length of the spiral banister of it even if its

height or its angle stays the same.

Kawa accepted Kob’s rectangle model and Matsu’s parallelogram model

because she could accept the mathematical structure of both models. Furthermore,

she concluded the OT task by the rectangle model and parallelogram model, and

generalized it by the latter.

15.3.2 Kato’s Case

15.3.2.1 Lesson 1: First Trial of Oil Tank Task and Toilet Paper
Tube Task

In the OT task, Kato drew two rectangle models and put spirals on both models. The

left rectangle model (Fig. 15.9a) is for the long diameter and right one is for

another. However, the latter model is not mathematically correct. In the TP task,

she indicated the relationships between the spiral and circumference correctly in a

parallelogram model (Fig. 15.9b).

15.3.2.2 Lesson 2: Second Trial of Oil Tank Task Based on the Toilet
Paper Tube Task

Returning to the OT task, Kato used a rectangle model and calculated the length of

the circumference and the spiral by using a reduced drawing in which the diameter

is 4 cm. This gave a circumference of 4� 3.14¼ 12.56 cm. However, she could not

solve the task. Her model is not correct mathematically because the spiral is

disconnected.

Fig. 15.8 (a) The accepted rectangle model (b) The accepted parallelogram model
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15.3.2.3 Lesson 3: Final Trial of Oil Tank Task Through a Class

Presentation

After the class presentation, Kato wrote Kob’s explanation using the rectangle

model in the case of the quarter-length of the diameter (Fig. 15.10a). It seems

that she did not accept the relationship of the spiral in the rectangle model and/or

apply the mathematical idea of equivalent transformation. Additionally, she wrote a

parallelogram model after Matsu’s explanation (Fig. 15.10b). She did not copy

Matsu’s statement from the blackboard, but interpreted Matsu’s statement and her

classmates’ statement of transformation by her expression “You can give a value to

the circumference”. In the end, she concluded, as did Kawa, that changing the

length of diameter of the oil tank has nothing to do with determining the length of

the spiral banister of it.

Kato did not adopt Kob’s rectangle model because she could not accept the

mathematical structure of the rectangle model and/or apply the mathematical idea

of equivalent transformation, however, she accepted Matsu’s parallelogram model

and the relation between circumference and spiral in it. Furthermore, she concluded

the OT task and generalised it by using the parallelogram model.

15.4 Discussion

In the first two lessons, Kawa made rectangle models of the oil tank in the first

modelling cycle (Fig. 15.7a) and the parallelogram model of the toilet paper tube in

the second modelling cycle of DMCF (Fig. 15.7b). However, her parallelogram

model was not correct mathematically. Returning to the first cycle from the second

cycle, she used the parallelogram model and tried to solve the Oil Tank Task,
however she could not solve it. From the viewpoint of DMCF, her modelling

process is a “double” modelling cycle because she could not progress the first

modelling cycle by findings from the second modelling cycle. In other words, she

could not transition from the second modelling cycle to the first modelling cycle

well. One of the factors of unsuccessful modelling is that she did not accept the

relationship between the circumference and the spiral in the parallelogram model.

Fig. 15.9 (a) The rectangle models (b) The parallelogram model
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In this dual modelling teaching, students confirmed the correspondence between

each part in the toilet paper tube and the parallelogram as its development

(Kawakami et al. 2012). If the parallelogram model is put on a different orientation,

the relationship between the circumference and slit (spiral in oil tank) is changed

(Saeki and Matsuzaki 2013). This might influence Kawa’s “reconstruction of the

figurative context” (Busse and Kaiser 2003, p. 4) offered in the OT task. Through

the third lesson, she modified the parallelogram model which she had mistaken by

objectifying and interpreting her shared classmates’ parallelogram model in her

own ways (Fig. 15.8b). She accepted her classmates’ rectangle model too

(Fig. 15.8a). Additionally, she concluded the OT task and generalized it by using

both her accepted parallelogram model and the rectangle one. Her modelling

process is a “dual” modelling cycle.

On the other hand, in the first and second lessons, Kato made rectangle models of

the oil tank in the first modelling cycle (Fig. 15.9a) and a parallelogram model of

the toilet paper tube in the second modelling cycle (Fig. 15.9b), however her

rectangle models were not correct mathematically. Returning to the first cycle

from the second cycle, she used the rectangle model and tried to solve the OT

task, however she could not solve it. Her modelling process is a “double” modelling

cycle as was Kawa’s in the first and second lessons. Through the third lesson, she

concluded and generalised the OT task in objectifying and interpreting only

accepted classmates’ parallelogram model in her own ways (Fig. 15.10b). When

she meant to solve it, she changed the rectangle model to a parallelogram model.

Her modelling process is also a “dual” modelling cycle. The reason she did not

accept her classmates’ rectangle model might be her misunderstanding of the

relationship of the spiral to a rectangle and/or the analogy of rectangle models

and parallelogram models. In this teaching experiment, the teacher could not spend

time confirming the mathematical structure of the rectangle model (Kawakami

et al. 2012).

Some unsuccessful modellers were able to change/modify their own models and

classmates’ ones and progress their dual modelling cycle by sharing different

models such as Kawa’s case and Kato’s case. Kawa and Kato interpreted class-

mates’ models in their own ways and solved them again by applying these models.

Fig. 15.10 (a) The unaccepted rectangle model (b) The accepted parallelogram model
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Similarly to Brown and Edwards (2013), students’ communication of their solu-

tions to the modelling task enhanced their mathematical understandings and model-

ling. On the other hand, Kawa and Kato sometimes could not transition from the

second modelling cycle to the first cycle well because they did not accept the

mathematical structure of the models and/or they could not apply mathematical

ideas. This also illustrates that individual modeller’s prior knowledge related to task
context including the mathematical content of a task (e.g., Matsuzaki 2011; Still-

man 2000) influences which models are able to be shared.

15.5 Conclusion

One crucial point for progression in the dual modelling cycle is to share various

models, which modellers could not interpret or find. As an intervention strategy to

stimulate the transition between modelling cycles, teachers need to encourage

students to share and use the models that are related with both the initial task and

the similar task. For example, teachers need to confirm with students structural or

relational correspondences between initial task models and similar task ones and

common mathematical ideas in both models. If they do so, unsuccessful modellers

can reinterpret and, if necessary, modify the solution of the similar task as a model

to reach the solution of the initial task or might integrate both solutions to generalise

the conclusion. Thus, teachers have to ensure there are various types of modelling

progress for each modeller through dual modelling teaching.
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Chapter 16

Exploring Interconnections Between Real-
World and Application Tasks: Case Study
from Singapore

Kit Ee Dawn Ng and Gloria Ann Stillman

Abstract Some findings from an interdisciplinary project work (PW) implemented

with Year 7 and 8 students (13–14 years old) from three Singapore schools are

reported. These are part of a study examining the impact of PW in terms of its

learning outcomes (LO). Of interest are findings associated with LO: the extent to

which the PW brings about student-perceived “interconnections” between school

disciplines, within mathematics, and between school-based mathematics and real-

world problem solving. There was an overall increase in mean scores on the scales

measuring perception of interconnectedness of mathematics and inter-subject learn-

ing (ISL) and beliefs and efforts at making connections (BEC) after PW. ANOVA

showed a significant impact of the PW on ISL but not BEC scores. Qualitative

results revealed that these seemingly positive results disguised issues with students’
ability to make the desired interconnections in a meaningful manner.

16.1 Introduction

Interdisciplinary Project Work (PW) was incorporated into the Singapore curricu-

lum in 1999 (Curriculum Planning and Development Division [CPDD] 1999) to

(a) enhance holistic learning (Ng 2008) by highlighting interconnections within and

among school subjects (Chan 2001) and (b) demonstrate the relevance between

school-based learning and real-world problem solving (CPDD 2012). PW is a

platform to foster the development of twenty-first century competencies
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(e.g., thinking skills) among Singapore students (Chang 2004). PW became an entry

requirement to university in 2005 (Ministry of Education [MOE] 2001). To date,

PW has been implemented in various forms (e.g., as an alternative mode of

assessment compared to paper-and-pencil tests, as a performance task) across

primary, secondary, and pre-university levels in Singapore schools. A PW involv-

ing the use of mathematics is perceived as one of the many ways the Singapore

mathematics curriculum prepares students in line with current expectations on

mathematical literacy which requires flexible, appropriate use of mathematical

knowledge and skills for application of mathematics in various contexts (OECD

2013).

PW is situated within real-world contexts. A PW with mathematics as one of its

anchor subject-disciplines is an applications task. One learning outcome in PW is

knowledge application. This requires students to display an integrated but critical

use of knowledge from various subject-disciplines to solve problems situated in

real-world contexts. In addition, students will be provided with opportunities to

perceive the relevance and inter-relatedness of what is learnt during knowledge

application in PW (CPDD 1999). Nonetheless, there appears to be a lack of

evidence from local research about whether the integrated use of subject-specific

knowledge as well as relevance and inter-relatedness are achieved through PW.

For this research, the term “interconnectedness” was theoretically defined by Ng

(2009, p. 167) as comprised of three components arising from critical analysis of

the work of Jacobs (1989; 1991) and Boix Mansilla et al. (2000) in line with the PW

learning outcome of knowledge application prescribed by the Singapore MOE:

“perceptions about (a) possible links between mathematics and other school-based

disciplines, (b) the usefulness of mathematics in understanding and learning other

subjects, and (c) the complementary relationship between mathematics and other

subjects in problem solving.” A major aspect of problem solving espoused by the

Singapore mathematics curriculum framework (CPDD 2012) is making connec-

tions. Connections refer to drawing links between school-based disciplines, within

mathematical topics, and between school-based mathematics and the real-world.

The complementary relationship described in component (c) above can be viewed

in terms of student efforts in drawing upon critical connections during problem

solving.

A broader literature analysis of existing research from other contexts on

extended real world projects at school level reveals mixed results with respect to

students’ engagement in learning being enhanced through mathematical tasks

embedded within meaningful real-world experiences of students. In tracking the

progress of Australian students participating in a variety of interdisciplinary real-

world problems over 2 years, Fielding-Wells and Makar (2008) claim that “math-

ematics problems that crossed curricular boundaries supported both deeper under-

standings and greater engagement” (p. 1). They concluded that such problems

added value to students’ cognitive engagement in mathematical learning as the

problems prompted more rigorous mathematical representations, reasoning and

argumentation processes. On the other hand, Venville, Rennie, and Wallace

(2004) reported that students perceived a lack of usefulness of school mathematics
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in a real-world interdisciplinary mathematics, science and technology task.

Wineburg and Grossman (2000) also raised the issue of mathematical learning

being placed as a subservient priority during interdisciplinary real-world tasks that

usually involved purely mathematical application and direct calculations without

necessarily advancing student mathematical content knowledge. Thus, it is unclear

whether and how, if so, interdisciplinary real-world projects involving mathematics

such as a PW in the form of an applications task has a desired impact on students’
engagement in mathematical learning in terms of how they perceive and actually

make use of interconnections.

Hence, the research question to be addressed in this chapter is: To what extent
does student participation in a PW involving mathematics implemented over a span
of several weeks successfully demonstrate the desired outcome of perceived and
displayed “interconnectedness” as part of the knowledge application learning
outcome in PW? This question originates from a larger study in Singapore second-

ary schools that investigated the impact of a mathematical PW on students’
engagement in mathematical learning in view of the stated learning outcomes of

PW, one of which is knowledge application (Ng 2009). Knowledge application was

partly examined with the lens of “interconnectedness” for the purpose of the larger

study. Initial reports on the process of scale development to quantitatively measure

the theoretical construct of “interconnectedness” during the larger study can be

found in Ng and Stillman (2007) and Ng, Stillman, and Stacey (2007). The

theoretical construct of “interconnectedness” became an operational definition

resulting from scale development. This definition is summarised in two scales

purporting to measure the perception of “interconnectedness”:

(a) interconnectedness of mathematics and inter-subject learning (ISL) and

(b) beliefs and efforts at making connections (BEC). This chapter focuses on

presenting qualitative findings from student interviews and work artefacts from a

mathematical PW. Brief quantitative results from scale measurement are provided

for a more comprehensive profile for understanding the impact of the PW on

perception and display of “interconnectedness”.

16.2 The Study

As part of the larger case study of PW in Singapore, the participation of Years 7 and

8 Singapore students (aged 13–14) in a PW involving mathematics, science, and

geography was investigated to gauge the extent this participation successfully

demonstrated the desired outcome of “interconnectedness”. A multi-site, multi-

case based approach (Yin 2009) was taken to glean a deep understanding of the

extent and nature of the perception of interconnectedness of mathematics for a

selection of PW groups across participating schools. Case study was chosen

because of the insights it could offer about students’ thinking and behaviours during
PW within the naturalistic environment in which it occurred. Mixed methods

(Creswell 2007) were used to examine the perception of interconnectedness of
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mathematics by students. The extent and nature of this perception was analysed and

represented using both quantitative and qualitative measures. However, in this

report, we will focus on presenting the qualitative results. Pertinent findings from

the quantitative analysis will be provided as a background profile for interpretation

of the qualitative results.

16.2.1 Sample and Sampling Process

Three government secondary schools that had been implementing PW since its

incorporation into the mathematics curriculum agreed to participate in the study.

They ran annual PW tasks for year levels not involved in national examinations.

They consented to using the PW task designed by the first author (see Sect. 16.2.3)

during their routine PW sessions with students in secondary one and two classes

(aged 13–14). There were 16 classes altogether (11 from high-stream and 5 from

average-stream) of students attempting the PW task. Of these, 398 students

(201 males and 197 females) agreed to participate in a questionnaire to gauge

their attitudes in interdisciplinary learning. Ten student-groups of four members

each agreed to participate in qualitative data collection. Group formation was at the

teacher’s discretion as the schools already had PW procedures in place.

16.2.2 Data Collection and Analysis

The students took part in the PW through 14–15 weekly one-hour face-to-face

sessions facilitated by class teachers. They participated in a pre- and post-PW

researcher-designed student questionnaire entitled “Mathematical Attitudes in

Interdisciplinary Learning” (MAILL) which included six constructs representing

the three attitudinal domains measuring students’ perceptions of (a) mathematical

confidence, (b) value of mathematics, and (c) interconnectedness of mathematics.

The third domain on the perception of the interconnectedness of mathematics,

which is the focus here, included two scales: the perception of mathematics and
inter-subject learning (ISL) and beliefs and efforts at making connections (BEC).
The two scales were developed by the first author to represent all three components

of “interconnectedness” outlined above (see Ng and Stillman 2007; Ng et al. 2007).

ANOVA was applied to compare the pre- and post-PW results from these scales.

Video and audio recordings were collected during three student-group discussion

sessions for each of the ten cases. These sessions were expected to have more

mathematical content in focus. Each student in the group also engaged in three

video-stimulated recall interviews (Lyle 2003) which the first author conducted

after every discussion session. Field notes on key teacher facilitating episodes within

each PW session were recorded. Facilitating teachers were also interviewed at two

stages of the PW implementation to understand their pedagogical decisions during

the sessions. Raw data were coded using grounded theory (Strauss and Corbin 1998).
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16.2.3 PW: Designing an Environmentally Friendly
Building

The researcher-designed PW task required student-groups to design an environmen-

tally friendly building in a location of their choice within Singapore. It was expected

that through this task students would draw upon the use of mathematics, science, and

geography in their decision making process (see Fig. 16.1). The mathematical

affordances of the task included applications of arithmetic and measurement concepts

and skills such as simple calculations, proportional reasoning, area, perimeter, and

scale measurement. Student-groups were to construct a physical scale model out of

recycled materials according to scale drawings prepared, complete a written report

about their project, and lastly make a presentation to their classes.

16.3 Findings

Quantitative results showed an overall increase in mean scores on the two scales

measuring the perception of interconnectedness of mathematics and inter-subject

learning (ISL) and beliefs and efforts and making connections (BEC) after PW.

Post-PW results revealed that ISL and BEC means also increased in the compari-

sons among subgroups (e.g., gender, stream, and school). ANOVA tests showed a

significant impact of the PW on ISL scores. This implied that students’ perception
about using mathematics for inter-subject learning had been positively enhanced

during PW although the partial eta squared value indicated a small effect size.

However, no significant difference was observed for BEC indicating PW had little

or no impact on students’ beliefs and efforts at making connections between

mathematics and other subjects during learning. It cannot be determined clearly

within the scope of the study why there was a lack of impact of PW on BEC scores.

Fig. 16.1 Designing an environmentally friendly task
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One reason could be because the prior experience of PW in primary schools by the

student sample had already shaped largely positive beliefs about connections

between mathematics and other subjects as observed by the mean score of 4.01

(on a 5 point scale) at the start of the research.

Further investigations into ISL as part of the extent and nature of students’
perceptions of the interconnectedness of mathematics were extended to the qualitative

data. The qualitative results are illustrated using four student-groups. Video recordings

of three PW sessions on decision-making about the environmentally friendly building,

calculations of the cost of furnishing an area within the building, and scale drawings

were analysed. This was done in conjunction with audio recordings of video-

stimulated recall interviews with respect to three aspects of interconnectedness:

students drawing connections between school-based disciplines, within mathematical

topics, and between school-based mathematics and the real-world.

16.3.1 Connections Between School-Based Disciplines

Most of the students when interviewed were conscious of possible connections

between mathematics and science in the PW task. Others named specific or general

connections between mathematics, art, geography, and design and technology when

interviewed:

Researcher: Can you see links between math topics and other subjects? How?

Alice: Yes, because like math before we need to. . .before we draw. . .we
are using art to draw then after that we have to use math for scale

and then after that. . .I have to use geography research on those EF

{eco-friendly} features and everything. . .
Lenny: Yes. . .for example. . .like Math and Design & Technology. . .

Geography. . .they interlink.

Although there was a significant increase in ISL scores after PW, actual discus-

sions of inter-subject connections occurred less frequently than expected during the

three video-recorded sessions. The students were engaged mainly with direct

applications of specific knowledge from one school subject (e.g., science in decid-

ing a water tank design) without drawing upon related mathematical calculations to

support their arguments. In other words, the students might not have perceived the

integrated use of mathematics within the content of another school subject. This can

be observed from the excerpt below which shows William from Group 4 discussing

the design of the water tank on the roof of their eco-friendly house:

William: [Nodding with approval.]. . .in the park. . .to prevent the mosquitoes to

actually grow, right, we can have something like a block here. . .when
the water actually flow{s} through. . .the block will actually open like

this. . .and then. . .when the water stops right. . .it will turn back like

this. . . {We could have pipes linking between the water tank and the

roof. We could also have a net to block the mosquitoes from residing

in the pipes.}
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William and his group had wanted to recycle rain water collected using a water

tank but were concerned with the possibility of the water tank becoming a breeding

ground for Aedes mosquitoes, a rampant problem in Singapore. The group decided

to add a net to the design of the tank not only to filter the water before usage but also

to block mosquitoes from coming into the tank. However, the entire discussion was

about the net and pipes without drawing in the necessary mathematical calculations

on the shape, dimensions, and capacity of the tank.

16.3.2 Connections Within Mathematics Topics

Video and interview data showed that some students perceived the connections

between the various mathematical concepts during the PW task whilst others did

not. For example, a few student-groups were observed making connections between

measurement and geometric concepts during the cost of furnishing discussion

session. Figure 16.2 shows Group 8 considered the shape of the toilet floor in

their eco-friendly house to be a square and subsequently embarked on the calcula-

tions for floor area using the correct measurement algorithms. Nonetheless, these

are rather unrealistic for the size and dimensions of the toilet area within a house.

In addition, 7 out of 10 student-groups sampled made connections between the

scale used and proportional reasoning during the scale drawing session. For

instance, the floor plan from Group 7 representing their eco-friendly mansion had

various parts of the building in reasonable proportion with one another. However,

Group 1 did not consider realistically the actual floor area of their eco-friendly

school hall which typically houses about 800 students when they first decided on the

scale of 1 cm on their drawing to represent 1,000 m for the actual building. This

lack of connection between scale and spatial visualisation was obvious from this

exchange between Chi and Yang and others in their group:

Chi: The scale? {What do you mean by scale drawings?}

Yang: 1 cm to 1,000 ah? Then the school is 1,000 to. . .
{How about 1 cm on the model representing 1,000 m in the real-life

building?}

Kath: [Interrupting Yang’s explanations.] That big meh?

{Are you sure this scale is appropriate? Our building will be very big if

that’s the case!}
Hasyim: What about 1 cm to 100. . .{How about 1 cm representing 100 m in the

real building then?}

Chi: 1 m is here to here [gesturing with his arms] 1,000 m is. . ..[trying to

estimate the size of 1,000 m].

Kath: Okay. . .okay 1,000 m. . .{Okay, we can have this scale of 1 cm to 1,000

m.}

16 Exploring Interconnections Between Real-World and Application Tasks: Case. . . 213



16.3.3 Connections Between School-Based Mathematics
and the Real-World

Real-world considerations featured during group discussions among almost all

groups but these considerations were not necessarily realised in mathematical

calculations. For example, Group 4 as reported in Sect. 16.3.1 did not work out

mathematically the desired capacity of the water tank and the required volume to

sustain usage in the eco-friendly house. In addition, real-world context was not

considered during scale drawings. This was observed from Group 1 above where

an inappropriate scale was used for the size of the school hall in their scale

drawings. In another instance, real world constraints were not considered during

scale drawing when a dominant member in Group 3 did not realise that the scale

drawings of different views (i.e., side, back and front elevations) of the

eco-friendly house her group was designing had to match so that a coherent

scale drawing of the house could be made and then used to make their scale

model to match the proposed real house. She encouraged group members

assigned different elevations to draw to use their own scales rather than one

common scale.

16.3.4 Connections Between ISL and BEC Scores
and Qualitative Findings

The ISL and BEC scores of the students whose work or conversations were

highlighted in the qualitative results as problematic were comparable with those

of their peers who did not have such difficulties and who were able to actively

make connections in their work during the PW task. Thus, complementary

methods and measures are necessary for the purpose of evaluating the attainment

of interconnectedness by PW, particularly in relation to inter-subject connections

if we were to understand the quality of interconnected use of mathematical

knowledge and skills.

Fig. 16.2 Calculations of floor area
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16.4 Discussion

This chapter reported on the extent to which a PW task involving mathematics,

science, and geography successfully attained the objective of interconnectedness.

There were varying perceptions of interconnectedness displayed by student-groups.

This was evident from both the quantitative and qualitative results. There was

also a range of interconnectedness perceived by students even within each group as

seen in the excerpt from Group 1 above. Whilst there was evidence to show the

impact of PW on students’ perceptions of inter-subject connections, the connec-

tions between mathematical topics, and connections between school mathematics

and the real-world, these were mediated by some issues which arose from qualita-

tive findings.

Firstly, when queried, students were able to state inter-subject connections from

the task yet there was limited actual integrated use of these particularly during

mathematical calculations and decision-making (e.g., water tank example from

Group 4). This brings into question whether students are really aware of how to

use mathematics in integration with other school subjects. Proponents of integrated

learning (e.g., Beane 1995) have argued for the use of authentic real-world projects

to streamline mathematical learning because schooling must be relevant to stu-

dents’ lives in order to engage them. The Singapore curriculum is structured

according to topics for each subject and there is little room to manoeuvre learning

across subjects during lessons unless an overhaul in school-based planning, staff

distribution, and teacher education can be carried out. Schools can only embark on

PW to highlight inter-subject connections on an annual basis but the impact may not

be as significant as envisioned by curriculum planners. This may be because

teaching in regular lessons is predominantly subject-focused with limited in-depth

links across subjects where teachers show how to infuse mathematical calculations

and arguments for decision-making in a real-world problem from the perspective of

another subject.

Secondly, echoing findings of van den Heuvel-Panhuizen (1997) in short

contextualised tasks, some student-groups proposed their mathematical solution

to the PW task without making sense of the solution within the real-world con-

straints of the problem. There were selected but limited connections between

school-based mathematics and the actual coordinated use of mathematics during

a real-world context (e.g., the scale example from Group 1). This may be due to

many teachers in Singapore mathematics classrooms not emphasising discussion of

mathematical problems nor their solution in view of how these make sense in the

world. Application problems in textbooks and resources attempt to show connec-

tions between the mathematics to be learnt and the context where it can be used; but

teaching has mainly focused on calculations and getting the correct answer without

much real-world interpretation.

Thirdly, there were obvious challenges faced by students during scale drawings

from the PW task used in the research. This was especially evident when student-

groups could not draw connections between the chosen scale and the computation
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of the actual area or length. This could be because of a lack of spatial visualisation

promoted in relation to the teaching of scale at secondary levels.

16.5 Conclusion

The findings have implications for teachers and teacher education in Singapore. For

teachers, there can be more deliberate attempts to connect real-world use of school-

based mathematics during regular classes and more efforts in helping students

translate their identification of inter-subject connections into relevant

mathematisation and accompanying mathematical calculations. During a mathe-

matical PW, students’ attention should be drawn to making “interconnectedness”

more explicit through teacher questioning. For mathematics educators, the incor-

poration of real-world interdisciplinary tasks such as applications and modelling

need emphasis in teacher preparation courses, equipping teachers with the confi-

dence and repertoire to discuss mathematics within real-world contexts. Finally, the

findings provide an added dimension from the Singapore perspective to the debate

on the mathematical educational value of interdisciplinary real-world projects.
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Chapter 17

Mathematical Modelling Tasks
and the Mathematical Thinking of Students

Bárbara Palharini and Lourdes Maria Werle de Almeida

Abstract This chapter describes a study that aims to illustrate how the interaction

between mathematical modelling tasks and students’ mathematical thinking takes

place. We based the study upon David Tall’s theory about mathematical thinking

regarding mathematical modelling as a pedagogical way to teach mathematics. The

research took place in the last year of a university course, with education students

undertaking a mathematics degree. A qualitative approach was used with an

interpretative analysis to infer points from data collected through audio recordings,

video, quizzes, and written data. We have concluded that mathematical modelling

can provide, and require the development of cognitive processes that promote

interactions between “elementary” and “advanced” mathematical thinking through

the cognitive processes of representation, abstraction and generalization.

17.1 Introduction

One of the main purposes of learning and teaching mathematics relates to the

construction of mathematical knowledge by students. This construction is present

in numerous studies in the field of mathematical education focused on the devel-

opment of students’ mathematical thinking. Many students demonstrate under-

standing difficulties when it comes to mathematics. According to Sfard (1991),

there must be something different in mathematical thinking:
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Indeed, since in its inaccessibility mathematics seems to surpass all the other scientific

disciplines, there must be something really special and unique in the kind of thinking

involved in constructing a mathematical universe. (p. 2)

A study about mathematical thinking is presented in this chapter using David

Tall’s theory, which traces an association between elementary mathematical think-
ing and advanced mathematical thinking. According to Tall (2002), the importance

of advanced mathematical thinking studies lies in investigating how mathematical

development takes place among people, as well as how people’s minds work. This

sort of investigation can lead the researcher to developing ways to improve math-

ematical lessons to help students develop advanced mathematical thinking. In this

chapter, we have considered mainly the work of Dreyfus (2002) and Tall (1995,

2002) to address the cognitive theory of mathematical thinking and cognitive

processes related to such a process.

We describe a research study reported in Palharini (2010) that took place in the

field of mathematical modelling, under the perspective of mathematical education.

The research was developed in the final year of graduation at the university with

19 students who were undertaking a mathematics degree to teach mathematics in

middle and secondary years of school, from which we analyzed the work of three

students. In this context, we considered the insertion of modelling tasks into the

discussion regarding their potential for the development of mathematical thinking.

The aim of this research is to answer the question: Does student engagement in

modelling tasks promote the development of advanced mathematical thinking? As

mathematical thinking is something that happens in people’s minds, during math-

ematical tasks, we view mathematical modelling tasks, following Almeida and Dias

(2004) and Almeida and Ferruzzi (2009), under a cognitive perspective described

by Kaiser and Sriraman (2006) and used by Borromeo Ferri (2006).

17.2 Theoretical Assumptions

17.2.1 Transitions from Elementary Mathematical Thinking
into Advanced Mathematical Thinking

Seeking to understand mathematical development in individuals, and how cognitive

development of mathematical thinking occurs, we studied the work of Tall and

Dreyfus regarding the cognitive theory of mathematical thinking, which these

authors proposed. To speak of mathematical development of an individual, it is

necessary to understand how people deal with their daily tasks, in particular those

involving mathematical processes. To execute such tasks, we have to think in a

mathematical way. Mathematics education deals with the theory regarding mathe-

matical thinking in terms of “elementary mathematical thinking” and “advanced

mathematical thinking”. According to Tall (1995), it is possible to visualize the

cognitive growth from elementary to advanced mathematical thinking:
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The cognitive growth from elementary to advanced mathematical thinking in the individual

may therefore be hypothesised to start from “perception of” and “action on” objects in the

external world, building through two parallel developments—one visuospatial to verbal-

deductive, the other successive process-to-concept encapsulations using manipulable sym-

bols—leading to a use of all of this to inspire creative thinking based on formally defined

objects and systematic proof. (p. 3)

Both advanced and elementary mathematical thinking involve cognitive pro-

cesses that consist of a large array of interacting component processes (Dreyfus

2002). According to Tall (2002), it is necessary to study mental processes that are

referred to, in this chapter, as cognitive processes, associated with thought. Repre-
sentation and abstraction are the most important processes of mathematical

thinking.

In addition, representation includes three sub-processes: visualization, switching
representations or translating, and modelling. Abstraction includes generalization
and synthesis. All of these processes take place in people’s minds as cognitive

actions performed without perception of such performance. However, in what

situations may educators perceive these processes? Are there moments in people’s
lives in which such processes appear and, if so, can they be refined? Is it possible to

create learning environments or scenarios to explore the emergence of such pro-

cesses in people’s mathematical tasks? These are some of the questions permeating

the research development, presented in this chapter.

In this context, we used a theory of three mathematical worlds formulated by

Tall (2004b): “Distinct but interrelated worlds of mathematical thinking each with

its own sequence of development of sophistication [. . .] that in total spans the range
of growth from the mathematics of new-born babies to the mathematics of research

mathematicians” (p. 1). The ideas of the three mathematical worlds are discussed

by Tall (2004a, b, 2006) and Gray and Tall (1994).

According to Tall (2004a) the name of the first mathematical world is the

“conceptual-embodied world,” or “embodied world,” and it “grows out of our

perceptions of the world, as well as it consists of our thinking of things that we

perceive and sense, not only in the physical world, but in our own mental world of

meaning” (p. 2). In the said world, things happen by reflection and by the use of

increasingly sophisticated language. Here, people can focus on aspects of sensory

experience. It is common for the emergence of representation processes to take

place, such as visualization, since it is necessary to see objects, manipulate them

and think of encapsulating their most important features, as a graphical represen-

tation or diagrams, such as a triangle.

The second world is the “proceptual-symbolic world,” or simply, “proceptual

world.” According to Tall (2004a), “it is the world of symbols that we use for

calculation and manipulation in arithmetic, algebra, calculus and so on . . . These
begin with actions (such as pointing and counting) that are encapsulated as concepts

by using symbols” (p. 2). In this world, the use of a symbolic representation is

necessary (one that cannot exist without mental representations), as well as pro-

cesses of abstraction, generalization or synthesis, used to deal with symbols,

switching representations or translating, or modelling.
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The third world, named by Tall (2004a) as the “formal-axiomatic world,” or

“formal world,” is “based on properties, expressed in terms of formal definitions

that are used as axioms to specify mathematical structures (such as group, field,

vector space, topological space and so on)” (p. 3). Here, mathematical thinking

processes in individuals relate to each other. Mathematical proof is used, and there

are increasing mathematical languages in a sophisticated way, using the logic and

rigor of mathematics.

During students’ engagement with mathematical tasks they move through the

Three Worlds of Mathematics. In this movement a few interactions take place

between elementary and advanced mathematical thinking. To analyze these inter-

actions it is possible to consider the emergence of cognitive processes of mathe-

matical thinking as studied by Tall (2002) and Dreyfus (2002). Considering the

importance for teachers to be conscious of these processes to comprehend some of

the difficulties their students face, we will present mathematical modelling as a

pedagogical way to teach mathematics from a cognitive perspective.

17.2.2 Mathematical Modelling

According to Bean (2003, p. 2), “all forms of ‘modelling’ require interpretive and
creative thinking”. When dealing with thought and cognitive processes, a cognitive

perspective of mathematical modelling is required. As to modelling perspectives,

Kaiser and Sriraman (2006) described, among others, a cognitive perspective, a

kind of meta-perspective, in which the research objectives and its psychological

goals are, respectively:

a) analysis of cognitive processes taking place during modelling processes and understand-

ing of these cognitive processes [. . .] b) promotion of mathematical thinking processes by

using models as mental images or even physical pictures or by emphasising modelling as

mental process such as abstraction or generalization. (p. 304)

Following Kaiser and Sriraman (2006), our research considers the analysis of the

emergence of cognitive processes during modelling tasks. When a researcher views

mathematical modelling from a cognitive perspective, it is necessary to see stu-

dents’ work in class. In this context, we understand mathematical modelling as a

pedagogical way to teach mathematics that suggests an approach through mathe-

matics of a problematic situation, not essentially mathematically-related, according

to Almeida and Dias (2004).

To illustrate elements regarding the way that students’ mathematical thinking

involved in modelling tasks takes place, we used modelling tasks where, from a real

situation, students need to translate between reality and mathematics, make

assumptions, choose variables, deduce a mathematical model, interpret it and

validate it according to the real situation. To indicate tasks for the classroom

where teachers can provide students with mathematical thinking processes, we

analyze modelling tasks.
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17.3 Methodology

This chapter describes a research, reported in Palharini (2010), that was developed

in the final year of graduation at the university with 19 students that were under-

taking a mathematics degree to teach mathematics in middle and secondary years of

school. We analyzed the work of three students who will be referred to as student A,

B and C. Data were collected during a school year while students were engaged in

modelling tasks. Data collection included audio and video recording of the classes,

students’ written and verbal response to quizzes and written data about students’
solution for modelling tasks. By considering all the procedures in the research we

used a qualitative approach following Bogdan and Biklen (1994), and an interpre-

tative analysis regarding students’ mathematical thinking processes while they

move through the Three Worlds of Mathematics, considering David Tall’s theory.
For the development of modelling tasks in class, during the school year, we used

a gradual introduction, as described as moments by Almeida and Dias (2004).

These moments were used as an approach to introduce modelling tasks and to

teach mathematical modelling to students. Firstly, the teacher brings to the class-

room mathematical modelling tasks already developed. Containing a real situation

and some initial data related with the situation, in this task there is a problem to

solve with necessary information to do it. Students, with the support of a teacher,

re-create the said task. In the second moment, the teacher, with the students, defines

a problem to study from a set of information about something real (here students are

responsible for the formulation of hypotheses, development of mathematical model

and other modelling stages). Finally, the students themselves create a modelling

task, including choosing a theme from the real world, the definition of a problem,

the definition of variables and hypotheses, the deduction of the mathematical

model, its interpretation and validation in order to answer the initial problem. We

analyzed four tasks, and each student participated in the development of two of

those (Table 17.1).

The data collected supports two types of analysis undertaken:

1. Specific analysis occurred where we analysed responses of all three students to

the Diazepam in the Body Task. Responses from the three students were then

analysed for the second task each engaged with (as indicated in Table 17.1).

2. Expanded analysis, involved considering the involvement of each of the three

students in the two tasks, in order to consider elements relating to what math-

ematical thinking was involved in mathematical modelling tasks.

Firstly we analyzed qualitatively data collected from all tasks (type 1). In the

expanded analysis we conducted an interpretative analysis following the theoretical

background.
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17.4 Results and Discussion

To illustrate elements that show us the emergence of advanced mathematical

thinking we try to observe and report mathematical thinking processes that

appeared during the modelling task development. We observe such processes

when students transit through the three mathematical worlds mentioned by Tall

(2004b). In all tasks, we can see students creating and using tables followed by use

of graphical representations to understand the real problem. To do this it is

necessary to create a mental representation of the problem, for example, for the

real problem stated in the Diazepam in the Body Task.

Diazepam in the Body Task

Diazepam is a medication indicated for patients with anxiety attacks, somatic

and psychological anxiety related to the treatment of psychiatric disorders in

the relief of muscle spasm due to trauma, such as injury and inflammation. It

is a prescription drug (black label) and its improper use or use for long

stretches of time can be harmful.

Information package leaflet:
Elimination: the Diazepam plasma concentration/time curve is biphasic:

an initial rapid and intense distribution phase, with a half-life that can reach

3 hours and a prolonged terminal elimination phase (half-life of 20–50 hours).

The terminal half-life elimination (t1/2b) of active metabolic nordiazepam is

about 100 hours. Diazepam and its metabolic effects are primarily excreted in

the urine, predominantly in conjugated form. The clearance of Diazepam is

20–30 ml/min.

Thus the half-life (Diazepam elimination) is given as follows: In the early

stage it can reach 3 hours. In the final stage it can last 20–50 hours.

Treatment should be administered at a starting dose not exceeding 10 mg

and the duration should be as short as possible not exceeding 2–3 months

including the period of gradual withdrawal of the drug.

From the context, students studied the situation to estimate the concentration of

Diazepam in the body over a period of time. During modelling tasks to initiate

mathematical development a simplification is necessary, an abstraction of a

Table 17.1 Student involvement in the various modelling tasks

Modelling task

Students

involved

A B C

Diazepam in the body ✓ ✓ ✓

World records ✓ ✗ ✗

Ethanol production vs the dynamics of vehicle production ✗ ✓ ✗

Quantitative analysis of nicotine and cadmium accumulated in a smoker’s body ✗ ✗ ✓
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non-mathematical situation to a mathematical situation. It starts with insights of

patterns and regularities that denote a data mathematical behaviour. Such insight is

called by Dreyfus (2002) an abstraction process. In this sense, we infer that students

develop advanced mathematical thinking, since abstraction use denotes a possible

occurrence of advanced mathematical thinking.

In Fig 17.1 we present how students used graphical representation or table

representation to obtain an algebraic model that describes the problem of diazepam

concentration in the body with numbered arrows 1, 2 and 3 representing the trans-

lations that students made to answer the question. In Fig. 17.1 it is possible to note

the use of objects, such as graphs and tables that allow the students to see the

behaviour of the data. This allows us to infer that students used the cognitive

process characterised by Dreyfus (2002) as visualization and that students’ thinking
transits through the conceptual-embodied world, since such objects are considered

by Tall (2004b) as embodied objects. Furthermore, the use of symbols (translations

1 and 3), make us believe that student thinking transits through the conceptual-

embodied and proceptual-symbolic world. In this transit the use of three kinds of

representation to deal with mathematical concepts is observed, as differential

equations and exponential functions, which were possible from a table given to

the students (Fig. 17.1). The transitions between representations are from the table

to an algebraic representation, using data provided by the table (see translation 1),

from an algebraic to a graphical representation, using the model developed (see

translation 2), and last from a graphical to an algebraic representation, where

students apply the model to estimate when a Diazepam dose of 10 mg is eliminated

from the body. We can consider these transitions being possible by the use of

representation processes, as characterised by Dreyfus (2002).

The same process took place in the tasksWorld Records, Ethanol Production vs
The Dynamics of Vehicle Production and Quantitative Analysis of Nicotine and
Cadmium Accumulated in a Smoker’s Body that was developed by the students from
choosing the subject to answer the initial question related to this subject, according

to the suggestion of the third moment of modelling referred to in Sect. 17.3.

In the formulation of the mathematical model students use mathematical sym-

bols and mathematical operations, theorems and definitions, such as the concept of

ordinary differential equations, concept of limits, Cauchy’s theorem, the concepts

of monotone and convergent sequences, exponential function, and others. These

actions operated by students are related to their transit through the proceptual-

symbolic and axiomatic-formal world (Tall 2004b), and with the emergence of

representation processes. The student written data from the World Records Task
reveals how the student moves in the axiomatic-formal world, and probably the use

of advanced mathematical thinking:

The data form a decreasing sequence, that is, (Rn) forms a monotonically decreasing

sequence. The human body has its limits, so it is impossible for one person to complete

the 100 m swimming in one second; we do not know the value of the limit, but it exists and

so (Rn) is limited. Given these observations, we believe that the data during the year leads to

a sequence (Rn) monotonically decreasing and also limited. Hence, by a theorem of analysis

(all limited monotone sequences are convergent), we can say that this is a convergent
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sequence. As the sequence is convergent, then there exists the limit of the sequence of

records. That is, there is a real number L such that lim Rn¼ L (Written data of the student A

in the World Records Task).

By processing symbols and using objects related to the formal mathematics there

is an interaction between the student’s transit in the symbolic and axiomatic worlds.

This interaction implies an interaction of thoughts, an interaction between elemen-

tary and advanced mathematical thinking. In this context, students use procedures

consistent with elementary mathematics and subsequently advanced mathematics,

based on abstract entities that should be used by deductions and formal definitions.

When students are constructing a mathematical model their focus is in obtaining

a symbolic representation which initially requires a mental representation. There is

the use of various representations, switching representations (as seen in Fig. 17.1),

and the generalization process is also required. This is what we can see in Fig. 17.2,

where students make a generalization to estimate the nicotine concentration in the

body of a smoker.

What Fig. 17.2 shows is how student C, from the amount of nicotine in one cigar,

developed a mathematical model, C tð Þ ¼ 0, 8 � 1�e�0,346573632t

1�e�0,346573632 , to eliminate the amount

of nicotine of various cigars of the smoker’s body in t hours. Whilst student C uses

symbols related to the symbolic world, by working with mathematical concepts and

deduction based on formal properties, he/she transits into the symbolic and axiom-

atic worlds. In this context, when students generalize from a simple case to a more

general case, they use the process of generalization, related to the abstraction

processes, in interaction with the representation processes. According to Dreyfus

(2002, p. 34), “if a student develops the ability of making abstractions, consciously,

of the mathematical situations, he/she reaches a level of advanced mathematical

Fig. 17.1 Representations used by student B during the Diazepam in the Body Task
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thinking”. In the same way, interactions between abstraction and representation

processes may represent the occurrence of advanced mathematical thinking.

17.5 Final Remarks

Considering modelling tasks where, from a real situation, students need to translate

between reality and mathematics, make assumptions, choose variables, deduce a

mathematical model, interpret it and validate it according to the real situation, from

our research it is possible to conclude that to solve problems students need to use

different objects of the three worlds. During students’ engagement with modelling

tasks we could see that they move through the Three Worlds of Mathematics and in

these movements interactions between elementary and advanced mathematical

thinking took place. Modelling tasks allow students to complete a cycle of devel-

opment, from one world to another, non-linearly, using cognitive processes related

to mathematical thinking. Advanced mathematical thinking occurs when multiple

processes interact. So, guided by data analysis, we can assert that students’ engage-
ment in modelling tasks promote the development of advanced mathematical

thinking. We can understand the transitions between the mathematical worlds as

a refinement of thoughts. In such refinement, students can develop mathematical

thinking from “elementary” to “advanced” and from “advanced” to “elementary”

thinking. According to our study it is possible to see that in situations with

modelling tasks educators can perceive and study mathematical thinking processes

and, by knowing these, it is possible to create learning environments or scenarios to

explore the emergence of such processes.

Nicotine concentration in the Body

=

… …

Fig. 17.2 Generalization by student C in the Quantitative Analysis of Nicotine Accumulated in a
Smoker’s Body Task
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Chapter 18

Measurement of Area and Volume
in an Authentic Context: An Alternative
Learning Experience Through Mathematical
Modelling

Santiago Manuel Rivera Quiroz, Sandra Milena Londo~no Orrego,

and Carlos Mario Jaramillo L�opez

Abstract This chapter shows the research results of the analysis of how Colom-

bian Year ten students built mathematical models, through the measurement of area

and volume, in the context of the flooding of their school. This situation allowed the

creation of mathematical models associated with the quadratic and cubic functions,

which were obtained from the environmental situation that allowed the students

their application. The study was a qualitative case study focussing on two pairs of

students. It took into account the everyday environment, communication, prior

experiences and the interaction of each member with the group. The aim of the

study was to explore and analyse the different ways students build models and apply

mathematical elements arising in an authentic context.

18.1 Introduction

This study was developed in the context of floods that occurred in an educational

institution in Caucasia (a municipality of the Department1 of Antioquia, Colombia)

because of the overflowing of a river. Moreover, it focused on the analysis of the
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way a group of Year ten students built mathematical models through the measure-

ment of the area and volume involved in the flood. Therefore, this study addressed

these mathematical elements that are strongly associated with the situation in

context, making easier the apprehension of concepts due to the use of mathematical

modelling. Therefore, from this, we aim for the student to manage data in order to

encourage thought about the application of mathematics in their everyday

environment.

18.2 The Problem

Currently, floods have increased in Colombia because of diverse biological and

environmental factors. In particular, some villages and small towns in Bajo Cauca

(a region of Antioquia) have been experiencing this problem and schools are greatly

affected by this situation. This is the environment where the students live and that

could encourage them to learn mathematics, geometry in particular. Wagner (cited

by Planas 2002) claims that the individual path of each student is also a product of

social practices and cultural meanings from which they learn to interact with their

environment. As a consequence, by observing the learning of mathematics in the

situational context of the students, their possibilities to learn the concepts in a more

meaningful way are greater. Thus, we consider that from a natural phenomenon,

such as floods, that directly affects a population, mathematical modelling situations

that promote the notions of area and volume from a metric-geometric thinking can

be encouraged. Our objective in this context is to analyse the way students build

mathematical models through the measurement of the area and volume arising from

an authentic context.

18.3 Mathematical Modelling as a Learning Strategy
in the Classroom

Mathematical modelling permits students to integrate mathematical aspects with

situations in their context or other disciplines, resulting in the application of

mathematical concepts to everyday practices. According to Biembengut and Hein

(2007), mathematical modelling ends up being the motivation for creativity in the

formulation and resolution of problems, capacity to use computers and to work in

groups, orientation to research, and capacity for presentation of research reports. In

addition, these authors think that for learning from mathematical modelling to

occur, several activities or steps consisting of limiting and stating the problem are

necessary, for there are many variables in an authentic context that cannot be totally

addressed. By addressing the context from a modelling approach, it is necessary to
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take mathematical elements that facilitate the understanding of a selected phenom-

enon. To this end, this study is aimed at establishing the relation between theory and

practice given that the students in this study had the opportunity to conduct some

fieldwork, to make measurements, to represent different registers and, based on

theoretical elements and mathematical concepts, to build models that allowed them

to understand the situation they were addressing.

18.4 Research Methods

This research studied the relations between the student, the mathematical modelling

work, the context, and the participative environment; all of these taking into

account the everyday environment, the communication and the experiences of

each participant, as well as those of the group as a whole. These are typical aspects

of a study based on qualitative research, undertaken by means of a case study

following Stake (1999) and Hays (2004).

18.4.1 Context

The research was developed in an educational institution of the municipality of

Caucasia, in the Department of Antioquia, Colombia, which is particularly affected

by floods because of the overflowing of the Cauca River. The school is 80 m away

from the bank of the river. The families of the students of this institution have a very

low income and most of them live close to the river and therefore are directly

affected by the phenomenon.

18.4.2 Participants

The study was undertaken with 35 Year ten students with whom we developed

some discussions, where their experiences were mutually shared. These conversa-

tions created an environment of trust, an essential aspect of the approach of our

research. Four of these students, Dani, Angélica, Pereira and Anyi, were selected to

create two work teams. These teams were analysed in the case study. Criteria for

selection were concerned with the willingness they showed for teamwork, respon-

sibility and interest shown in the activities. These students volunteered to actively

participate in the research. Three of them were directly affected by the phenomenon

(floods of their households). The investigative design was developed as fieldwork in

the following six stages: exploration at the time of the flood phenomenon, delim-

itation of a particular situation, the construction of a mathematical model for area,

the construction of a mathematical model for volume, validation of the
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mathematical models, and sharing presentations of the work. During these stages

the students were involved in different activities such as measuring, drawing and

representing of the areas affected by the floods.

18.4.3 Sources of Data Collection

The information was obtained through three sources: (a) the active observation of

the context where people live, through audio, videos and written notes—this

observation works as a conclusive element for the definition of the research

problem; (b) interviews where data were collected through an unstructured conver-

sation that allowed for the interviewee to give, openly and spontaneously, infor-

mation that could be important for the research; (c) written notes by the students,

that allowed the researchers to determine the different processes that the students

followed for the construction of models that related to the measurement of the area

and volume. Since the objective was to analyse the way in which Year ten students

build mathematical models resulting from an authentic context, the analysis of data

was made concurrently, that is to say, continuously, also making comparisons

between the data collected via written texts, videos and interviews. The data

gathered by means of the three sources were validated through triangulation from

the interview data.

18.5 Towards the Building of Mathematical Models

In this section we explain the steps that were taken into account for the building of

the mathematical models, such as the context and its social impact, the delimitation

of the situations in such a context, and the building of models regarding the flooded

surface area and its volume.

18.5.1 The Authentic Context: Flood Phenomenon
and Social Impact

The interaction of the students with the context of the floods is essential as it was

because of their experiences and knowledge of the environment that it was possible

for them to approach the learning of school mathematics. This context that affects

the Instituci�on Educativa Divino Ni~no (Divino Ni~no High School) and the commu-

nity in general, became a key interaction environment in which the students thought

about social and economical issues regarding the phenomenon through a series of

questions that were posed by themselves as they walked around and observed the
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different places affected by the flood such as the streets, sewers and different

buildings. Some of these questions were: Why do these flood phenomena occur in

the country? Why do you think some areas of our municipality flood? What social

and environmental problems do you think these floods imply for the municipality?

These questions were discussed in the classroom with the teacher. Based on these

thoughts about the phenomenon, the students were asked: Taking into account the
flood in the municipality, what are the mathematical notions that can be deter-
mined? The students identified the surface area and water volume of the flooded

areas as important mathematical elements; therefore, Angelica’s team made the

diagram shown in Fig. 18.1. This diagram, which resembles a pie graph in some

respects, is a representation of the flooded areas, and a product of the reflections of

the students due to their knowledge of the context. It is interesting to note how they

perceive the existence of a correlation of flooded areas, not only in the mathemat-

ical aspect regarding proportion, but also how those proportions show a great deal

of flooded area. Figure 18.1 is also evidence of the way they can delimit the

concept.

18.5.2 Delimitation of the Situations in the Context
of the Floods

Hein and Biembengut (2006), Villa-Ochoa (2007) and Blum and Borromeo Ferri

(2009) consider that it is essential to delimit the problem in a process of mathe-

matical modelling. It is important to highlight that for this particular context several

variables are presented, which cannot be totally addressed. Therefore, after

addressing several questions, posed along with the students, in which some depen-

dence situations between variables associated with the context and according to the

purpose of the research were shown, the students chose the following question:

Could a mathematical expression determine the flooded area from the water level?
This encouraged them to create a map of the school building to identify the different

flooded areas at different heights (10 cm, 20 cm and 30 cm) of the water using as a

reference a wall next to a sewer inside the building where the water that flooded the

different parts of the school flowed. Figure 18.2 shows the map of the institution

and a flooded area when the water level was 20 cm with respect to the point of

reference.

Thus, in the process of building a model, the students draw a map of the school

and use colours to represent the surface area of the flooded area. The representation

of a non-mathematical model (the school plan), becomes an important tool within

the process, since it is a means that interacts with mathematics for building

mathematical models and gives a solution to the problem posed. Students used
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the process shown by Del Olmo et al. (1993), since they made the transformations

and associations of the irregular forms to find the surface area and the volume of the

flooded area, making several measurements of the water level according to different

heights of water at the reference point.

Fig. 18.1 Representation of Angelica’s team

Fig. 18.2 Map by Team 2 (Dani) of the flooded area with a 20 cm height of water level
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18.5.3 A Mathematical Model: Surface Area Versus Water
Level

In order for the students to establish the relation between surface area and water

level, they make a representation on a Cartesian coordinate system, and so they

obtained a curved line from the different measurements of water level and the

respective measurements of the flooded areas as shown by the work from Anyi’s
team in Fig. 18.3. We can see the attempt of the students to generalize mathemat-

ically the results of the graph as they observed a dependence situation between the

two magnitudes, so it is suggested for them to attempt the following activity:

Propose a mathematical expression that makes it possible to relate the two
variables (water level and area) so the flooded area can be found from any
water level in the point of reference.

Firstly, both focus groups had difficulties, since in class they had worked with

only linear functions and (2 � 2) systems of linear equations previously. It was

suggested they search for different graphs of functions in books and on the internet.

The work teams consulted books and the internet finding some quadratic and cubic

functions that they related with those they drew on the Cartesian coordinate system.

This encouraged them to study the quadratic function, its definition and properties.

Under the guidance of the teacher-researcher, the class addressed the mathematical

problem that related the side of a square with its area which made the students

construct the equation y¼ x2, which, by replacing the variable x by any

Fig. 18.3 Graph of flooded

surface area by Anyi’s team
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measurement for the side of a square, it was possible to find its area. Thus, the

students observed that the quadratic function approached better to the graph they

had made. Therefore, they made an analogy between the surface area flooded with

the area of the square and the side of the square with the height of the water level.

They considered that the function drawn in relation to the flooded surface area

versus the height of the water level matched also a quadratic function that has the

general equation: y¼ ax2 + bx + c.
In order to progress in the process of model building and taking into account the

drawn graph, the teacher-researcher posed some questions to the students including:

What sort of function is it? What are the dependent and independent variables

involved in it? Are they known? The students held a discussion on which were the

dependent and independent variables and, how these variables were already known in

the graphs they had drawn. Therefore, the students made substitutions for the heights,

using the values of 10 cm and 20 cm, which they took as values for x variable and the
respective areas of these levels as y. In this way, they established a 2 � 2 system of

linear equations, using the variables a and b Then, the students used the method of

elimination through equating and found the values for a and b, as shown in Fig. 18.4.
By replacing the values they found for a and b in the quadratic function general

formula, the work teams were able to establish their mathematical models. Dani and

Anyi’s model was y¼ 1.2 x2 + 6.4 xwhilst Angélica and Pereira’s model was y¼1.27

x2 + 4.8 x. The mathematical model for area built by Dani-Anyi was drawn in

GeoGebra, allowing the students to visualize the graph and establish the different

areas compared to the different water level values. As the models were built using

water level heights of 10 and 20 cm, both models were verified by predicting the area

for a height of 30 cm from the models and the area for this measured and calculated in

the field. The results approximated those found in fieldwork.

18.5.4 A Mathematical Model: Water Volume Versus Height
of Water Level

The question that encouraged the creation of a mathematical model where we could

predict the volume of water that flooded the school from its level was: What’s the

Fig. 18.4 Building the model (Teams 1 and 2)
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relationship between the water level measured at the point of reference and the
water volume that is displaced? Similarly to previous activities regarding the

surface area, the students began by finding the volume of the water for a height

of 10, 20 and 30 cm. They calculated the volume using the formula V¼ length �
height � width. They discussed the possibility of dividing the result by two, given

that from the students’ experience and their context knowledge they realized that

the water level at the “edge” of the flooded area is almost zero. Afterwards, through

transformations and associations (see Fig. 18.5) they obtained the corresponding

values for volume depending on the height of the water level. To build the model,

the students drew a graphic with the volume found versus the height of water level,

obtaining a curve similar to the previous one (area versus height). The students

knew that they had used an additional magnitude to calculate the volume, that is, the

water level height. Also, they discovered in books that cubic functions are curved

and share some similarities with the quadratic function. After some discussion

about these questions raised by their mathematisations, they concluded that the

cubic function was the better match to the graph they drew, because after thinking

about the quadratic function y¼ x2, they concluded that the degree of that function

depends on the variables involved. Therefore, to find the volume, they analysed

three variables involved (length, width and height) that were related with the degree

of the x variable in the cubic function, where the volume is assumed as a

one-dimensional magnitude. Likewise, the regular patterns found between the

number of variables and the degree of the function allowed the students to take

the cubic function as base to build the model. This was found after creating 3 �
3 systems of linear equations using the method of equalization. As such an approach

was unknown to the students, it was necessary to handle it in the regular classes at

the same time. Figure 18.5 shows the geometrical figures used for calculation of a

volume section when the water level was 10 cm at the point of reference. Volumes

were verified for levels of 10 cm, 20 cm and 30 cm that resulted in quite approx-

imated data.

Fig. 18.5 Representation

of the flooded soccer field

by Dani
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18.6 Discussion

In this study, mathematical modelling as a learning methodology becomes a

strategy for students, through a measurement process, to understand the concepts

of area and volume, inherent in the floods phenomenon. The point of view of

Hein and Biembengut (2006), who consider that the teaching of curricular content

and the question to solve can be handled concurrently, was shown to be possible in

this case study. The mathematical modelling as a learning methodology in this

study became a strategy for the students who, from a measuring process appropri-

ated for themselves the mathematical notions inherent in the flood phenomenon

such as area and volume. This was done through direct and indirect measures,

transformations of irregular figures related to their fieldwork observations of the

flooded high school, relations depending on the water level height, which allowed

the development, together with the students, of a way of modelling that involved the

analysis of the variation and the geometrical elements implied in the context.

Mathematical models for surface area and volume were constructed for two

water level heights. They coincided with those found in the fieldwork. Then, they

tested for a third height producing precise results. The mathematical model built by

one team was drawn in Geogebra, allowing the students to visualize the graph and

establish the different areas in relation with different heights. In this sense, Moreno-

Armella and Hegedus (2011) point out technology as another example of represen-

tative description, especially when it is used with interactive geometry. Therefore,

the use of technology to represent results allowed students to interact with the

non-determined records in paper and establish relationships and display results in a

faster manner, making it easier for them to interpret and simplify those results, since

they could observe, for instance, that for a height of 1 m (100 cm), the surface area

was 12,800 m2. So, the development of the model allowed foretelling results.

Some further factors regarding the construction of models and aspects related to

them arose from analysis of the data.

The Authentic Context Students were encouraged to participate in the exploration

of a natural phenomenon in their context, so it was easier for them to understand

situations that happen around them, through mathematical modelling. This sort of

situation creates a connection with experiences, everyday life and previous knowl-

edge of the students about the phenomenon that is the object of study.

The Strategies The students, as inquirers, explored, delimited, simplified the con-

text and proposed strategies to build a mathematical modelling, through the study of

mathematical concepts such as quadratic and cubic functions that were later

compared with the graphs they made. In this aspect, the work allowed the students

to understand not only mathematical notions, but also identify aspects of the work

that could help them to take action to reduce the effects of the phenomenon as was

noted in the audio record.
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The Technology An important aspect of the work with the students was the use of

technological tools, which helped us to visualize and obtain a general idea of the

impact of the phenomenon on the community. By observing the surface area that

was flooded for heights over a metre, for example, they estimated, for instance, to

what height the surface area of the water could flood the whole municipality.

Mathematical Conceptualization Due to the activities, the students understood the

notion of area as the extent of the flooded area, and volume as the space occupied by

a certain quantity of water. Furthermore, throughout the development of the

measurement activities, the students perceived the area and the volume as magni-

tudes that can be compared, evaluated, approximated, added, and subtracted, as

one-dimensional, two-dimensional and three-dimensional magnitudes.

18.7 Conclusion

The study took into account the individual and group particularities of the students

in order to encourage discussion and thought about models built collectively.

Likewise, we are aware that the building of models reflects a partial reality of the

phenomenon, as according to Skovsmose (1999), “some aspects of reality are not

available to mathematics and remain within reach of the descriptions of natural

language and vice versa” (p. 185). As well as highlighting the ways of creating

knowledge, the way the students related with each other and their environment was

observed, with the purpose of facilitating the students not only to find an alternative

way to associate mathematics with their context, but also to have a critical attitude

towards mathematics that arises all around them and to consider solution alterna-

tives that help to reduce the social and environmental impact of the floods. To this

end, the students proposed solutions such as the improving of pipes, building of

dykes and docks, and programs for garbage collection for minimizing the impact of

a flood. This demonstrates that this activity related to the building of models goes

beyond the mathematical context. Likewise, we can claim that mathematical

modelling in the context of mathematical education allows students to see them-

selves as citizens that can read, think, reflect and propose solutions in their own

context.
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Chapter 19

Mathematical Modelling and Culture: An
Empirical Study

Jhony Alexander Villa-Ochoa and Mario J. Berrı́o

Abstract This chapter presents partial results of a qualitative case study involving

five students from a rural educational institution. The students, motivated by

making sense of mathematics beyond the classroom, chose topics for the mathe-

matical modelling of coffee farming. They detected some variables found in the

cultural practice of coffee growing and then limited the modelling problem so some

of their beliefs began to emerge. Results show that some students’ beliefs about
culture or contextual knowledge did not remain static throughout the study.

19.1 Introduction

In Colombia, theMinisterio de Educaci�on Nacional (Ministry of National Education-

MEN) has stated that mathematics teaching in primary and secondary school must

consider global and local issues in line with education for all; likewise it must

consider the diversity, inter-culturalism and the education of citizens with enough

responsibility to enjoy their democratic rights and fulfill their duties (Ministerio de

Educaci�on Nacional-Colombia 2006). In this sense, it is reasonable to suggest that

school mathematics should recognize the importance of situations, problems and

phenomena that emerge from social and cultural contexts thus considering these

elements as supporting the constitution of mathematical school knowledge. Thus,

mathematical modelling, when involved in the study of such contexts through

mathematics, seems to be assumed as an activity that is coherent with the goals

and ideals suggested for Colombian mathematical curricula.

To us mathematical modelling is a process of studying a phenomenon or

situation through mathematics. In this sense, “Modeling can be understood as a

pedagogical approach that emphasizes students’ choice of a problem to be inves-

tigated in the classroom” (Borba and Villarreal 2005, p. 29). Thereby, mathematical

J.A. Villa-Ochoa (*) • M.J. Berrı́o

Facultad de Educaci�on, Universidad de Antioquia; RECOMEM,

Bloque 9-415, Medellı́n 050010, Colombia

e-mail: jhony.villa@udea.edu.co; marioberrio7@hotmail.com

© Springer International Publishing Switzerland 2015

G.A. Stillman et al. (eds.), Mathematical Modelling in Education Research
and Practice, International Perspectives on the Teaching and Learning

of Mathematical Modelling, DOI 10.1007/978-3-319-18272-8_19

241

mailto:marioberrio7@hotmail.com
mailto:jhony.villa@udea.edu.co


modelling not only defines its scope and some philosophical discussions (mainly

those related to the transition from the real world, extra-mathematical consider-

ations, and the nature of knowledge of the nature of production practices), but also

gives such phenomena and those situations a constitutive role in the modelling

activity. According to Borba and Villarreal (2005), students play an active role in

modelling, “instead of being just the recipients of tasks designed by others” (p. 29).

These considerations make project work a favourable setting for mathematical

modelling. In this setting, the topics and problems students deal with emerge as

interactions between them, the context and their teacher. This establishes mathe-

matical modelling as an unstructured activity different from contextualised tasks

which generally are given in text books. Hence in our study, modelling is not

restricted to the task of resolving contextualized tasks, even when these tasks

include authentic contexts provided by a teacher or any other means different

from students’ everyday life and their culture.

This chapter reports part of a much larger study that identified some elements

that take place in the (re)construction that students make of mathematical models

when they are immersed in a specific cultural context. It analyses some aspects of

student performance in mathematical modelling in the culture of coffee farmers.

The focus research question was: What interactions occur between knowledge of

coffee farming and school mathematics through mathematical modelling?

19.2 Roles of Mathematical Modelling in Culture

In international research, some relationships between mathematical modelling,

society and culture have been recognized. In particular, Christiansen (1999) refers

to Niss’s work (1990) to highlight the importance of individuals being able to reflect

critically on models and their applications, as well as, to recognize that mathematics

plays an important role in shaping the limits of our activities. Likewise,

Christiansen emphasizes the fact that mathematics is implicit in culture and society.

In this sense, both Blomhøj (2004) and Blum and Borromeo Ferri (2009) have

stated the importance of modelling as a process that involves mathematics learning

founded in students’ reality; also, through this process, other views of mathematics

can be generated; but beyond that, other views can be developed about the contexts

themselves. In particular, mathematical modelling makes connections between

students’ daily life experiences and mathematics, which, besides motivating stu-

dents, place mathematics in culture as a means for describing and understanding

daily life activities (Blomhøj 2004).

The role of mathematical modelling has gone beyond an emphasis on cognitive

and conceptual processes of mathematics; this is done in order to lead to aspects

linking mathematics with critical societal issues and culture. Both Barbosa (2006)

and Araújo (2009) have globally contributed to exhibiting the main aspects of a

socio-critical perspective on modelling. Araújo (2009) and Rosa et al. (2012) have

emphasized the role of mathematical modelling, not only to explain situations that
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emerge from reality, but also as a way to enable students to have a critical position

facing social demands, as well as modifying, and transforming the world.

19.3 The Study

Since this study was focused on the elements that students take into account in

re-constructing mathematical models based on their own cultural situations, it was

necessary to address the research from a qualitative perspective using case studies.

According to Stake (2007), this kind of study allows investigation of the particu-

larity and complexity of a single case to understand its activity within important

circumstances. This study, in its first stage, involved a group of 29 students from a

rural school located in a town whose economy is based on coffee growing. These

students took a field trip around areas in the vicinity of their school with the purpose

of establishing a dependence relationship between variables. Students gathered in

teams. Each team chose its work project topic. This chapter analyses the oral and

written productions of one team chosen because they could see mathematics

involved in the context of coffee growing, which is a part of their everyday life

and of their families’ lives. The topic that emerged in these discussions was related

to the number of trees that could be planted on a plot of land according to

topographical features (flat or sloping) typical of this mountainous region.

Other stages the students conducted in this research were related to:

• a review of the mathematical models used by the Federaci�on Colombiana de
Caficultores (Colombian Federation of Coffee Growers),

• a (re)construction of a new mathematical model (e.g., models with trigonometric

functions),

• an approval of a proposed mathematical model,

• a mathematical model tracking what emerges from a triangular planting method,

and

• contrasting this research information with an expert.

Questionnaires were used and there were student-researcher (teacher) discus-

sions. The researcher was able to ask questions allowing him to probe in detail

students’ considerations. Data were collected through logbooks (drawn up by a

researcher), and documents (drawn up by students). Student discussions were

videotaped. Subsequently, we digitized the documents, and watched the videos to

determine which episodes could be analysed. While the data were collected, the

information was compared in parallel, so a general idea of the content could emerge

(Creswell 2008). Similarly, an emerging categorization process was developed, so

that each piece of evidence coming from each source of information was assembled

with the other pieces and a triangulation process was carried out.
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19.4 Some Findings

This chapter is based on the results obtained in the early stages of the research. In

these stages, it was possible to observe that mathematical modelling, not only has

implications for learning mathematics, but also it involves relationships with

students’ culture.
Students, after being involved in their chosen contexts and in discussions

regarding contextual mathematics, took on a topic related to the number of trees

that could be planted on a slope compared to the number of trees that could be

planted on flat land. Once the situation was defined, the students were divided into

two teams. Ana and Felipe formed Team 1; both of them were from Year 11, and

team 2 included Maria (Year 10), and Karla and Jaime (Year 11). The names used

in this chapter are pseudonyms. In the first part of the process, the students were

committed to the analysis of a rectangular sloping field; the dimensions of the plot

can be seen in Fig. 19.1a. Encouraged by their teacher, students first divided the

figure into squares with 100 m sides in order to have one hectare (10,000 m2,

agricultural unit of measurement). Figure 19.1b, c shows this process.

In Fig. 19.1b, c one can see that both teams sketched the hectare on a slope with

the dimensions of the land. Thus, they showed that they considered this measure as

a square that suits any land regardless of its slope. Our knowledge of the region

allows us to consider that this is an idea that seems to be widely present among

people in the agricultural sector. This idea of land area is related to terrain

dimensions, but not to its slope. The idea seems to emerge from the contact that

people have with their context.

To obtain more evidence about the characteristics that the students assigned to

the notion of area –which we will call “Euclidean surface” – the teacher invited

them to think about the following situation: “If you were to buy a rectangular piece

of land and you had two options, A or B, which one would you buy and why? You

can consider a plot of land to grow coffee and suppose that every square (i.e., a

hectare) costs the same”. See Fig. 19.2.

Facing this situation, students gathered, discussed, and then gave their opinions.

For Team 1, Ana reported her team’s work and stated:

Plot A is 13,200 m2 and plot B is only one hectare. [We would buy land A] because land A

is wider, and despite having a slope, it can be used [for] the “tresbolillos” method

[a triangular planting method] so there would be [many] more trees in a plot of land.

For Team 2, Maria reported her team’s work and stated:

We would buy land A, because we calculated the area. The area would be 13,200 m2 [Land

A], while land B would be about 10,000 [square] metres, then more trees would fit into this

[Land A].

Both team 1 and 2 agreed that the land that should be bought was land A, because

it was 13,200 m2 (sloping), while land B had only 10,000 m2 (horizontal). On the

other hand, team 2 mentioned the direct relationship between the area and the

number of trees: “the larger the area, the greater the number of trees that fit”. It is
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clear that the students noticed other variables that could be taken into account when

making a decision regarding which land to buy in terms of advantages and disad-

vantages according to its topography, yet they only focused on the connection

between the area and its relation to the amount of trees that could be planted.

According to students’ answers, there is an apparent disconnection between

mathematical considerations and cultural experiences. Accordingly, the teacher

asked students to research how planting is done on both types of land. Students

found in coffee farming books that the horizontal length from one tree to the other is

the same in both plots of land (See Fig. 19.3a). The teacher suggested they make

some drawings of the process. In one of the proposals, one of the teams had marked

one metre lengths in both the hypotenuse and the side representing the flat land (see

this mark in Fig. 19.3b). In this situation the teacher asked them to do it the way

they would normally do it in their lands in their daily life. Immediately, students

changed their layout and placed the trees according to tree projections (Fig. 19.3b).

Later they stated:

Felipe: When the land is on a slope, we draw the squares with a one-metre

distance, so as not to draw it one metre at ground level. [. . .] then we

make a kind of reflection [projection]. One metre in the air, and then it is

calculated one metre below, and it is repeated with the rest. When there is

zero slope, it is marked every other metre. (Team 1)

Maria: The distance between each tree is measured; then, there is a metre and it is

reflected [projected]. (Team 2)

Fig. 19.1 Sloping field (a) and sketching process of Teams 1 (b) and 2 (c)

Fig. 19.2 Slope (a) and flat ground (b)
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Next, the teacher suggested the students consider an 8-m distance to plant trees

and to assume a diameter of one metre at the top of the tree. With this task, the two

teams worked without any trouble and handed in a figure such as Fig. 19.4. Later,

the teacher asked them to use the same length to plant trees on a sloping ground; in

this same situation team 1 used a different argument, which is shown in Fig. 19.5.

The analysis of Team 1 students is not what the teacher asked for, but it allows us

to notice that students also managed to differentiate the “Euclidean surface” from

the area suitable for planting. In Fig. 19.5, it seems that the students used the two

distances (flat and sloping) with the same size; thus, projecting the trees from the

flat land to the slope. That is, students sketched the trees in the sloping land

considering the same angles as in the flat land. So the teacher asked them; how

many trees fit on the sloping land? Felipe replied:

. . .well, there are two ways. If we plant considering the projection as we have always done,
we plant 6 trees [taking into account the sloping land is 8 metres], because they are the

projection, [. . .], it is almost possible to plant seven trees, but actually the seventh one is not

possible as it is necessary [to have] an additional piece of land.

In his conclusion Felipe said: “if you want the same number of trees in a sloping

plot of land as in a flat one it is necessary to have a longer area”.

These findings allow us to see that students were able to overcome the idea they

had about a “Euclidean surface” as an equivalent to “agricultural area” concluding

that beyond physical distances, all surfaces having minimum horizontal projections

are equivalent in agricultural terms (e.g., Fig. 19.6a, surfaces on natural distance,

geometric distance and reduced distance have the same tree capacity despite having

different physical length). When students were able to understand that a slope is a

determining feature in the number of trees that would fit in a plot of land, they were

able to produce some mathematical models for flat plots of land (Fig. 19.6b) and for

plots of land having a sloping land projection (Fig. 19.6c).

Fig. 19.3 Planting
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19.5 Discussion

International research has shown that (figurative) contexts can have very individual,

unpredictable effects (Busse and Kaiser 2003) and that in an authentic context,

students not only participated and were empowered with such aspects as gathering

Conclusion: 8 trees fit in 8 metres leaving a one-metre distance from tree to tree

Fig. 19.4 Horizontal planting (Team 2)

Conclusion: 5 trees can be planted in a plot if they are planted
considering their reflections [projections].

Fig. 19.5 Planting on a sloping terrain (Team 1)

Fig. 19.6 (a) Three types of distances (Berrı́o 2012) (b) Model of number of trees C¼ al/(d1d2)
(c) Model of number of trees on both lands
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data, producing models and their meanings, but also, become more aware of

phenomena related to the aforementioned context (Mu~noz et al. 2014). In the

student cases reported in this chapter, tasks arose from student-teacher discussions

and agreements; in other words, tasks did not appear as a priori situations structured
by the teacher.

The data presented above show that at first students believed that a “Euclidean

surface” and “arable land” were equal. This fact may be interpreted as an apparent

disconnection between the world students live in and contextual situations

described in classroom tasks (Stillman 2000). To do an in-depth study to understand

this apparent disconnection, students were asked to describe why they believed

so. Students argued that “the larger the area [geographical or ‘Euclidean’] the

greater its tree capacity” in this case, students did not take into account the slope

in the plot of land. In fact, some students pointed out that coffee-growers believe

that to have a sloping field is to have more [geographical] area; therefore, it can be

sold for a higher price. According to students’ statements, beliefs such as the above-

mentioned can be considered typical of the coffee growing culture; thereby, aspects

such as explanation systems, philosophies, theories and daily actions and behaviour

must identify with culture (D’Ambrosio 2005).

The findings reported in the previous section show that this notion of equiva-

lence between surfaces did not remain stable during the modelling development. On

the contrary, such an idea changed as other thoughts emerged. Thus, students’
reflective attitude became a revitalizing action without ignoring the complexity of

the phenomenon studied; it allowed students to extend their ideas and thoughts on

the phenomenon being studied.

A fact worth mentioning has to do with the situation shown in Fig. 19.4, where,

in one of the groups, the students tried to use the same measure between the bases of

the trees in both lands. This action seemed to be inconsistent with the daily

procedures carried out in their culture, which measures the distance using only

horizontal figures. This action was a consequence of the previously explored idea

about the equivalences between the areas; in this situation, this idea seemed to

overshadow one of the daily procedures on which coffee tree planting is based.

Thus, it presented a certain “lack of meaning” of the mathematical activity at

school. According to this, the teacher-researcher motivated the students to support

their classroom actions and knowledge built from their everyday activities. This

way, the task is reoriented, and students can recognise the meanings associated with

context, in other words, it becomes a tool to understand the world.

Accepting the ideas students have on certain cultural aspects and not remaining

neutral in a mathematical modelling process requires a recognition of the role of

context as an establishing element of scientific knowledge at school (i.e., in

mathematics, other disciplines and the context itself). This does not only have a

utilitarian purpose, that is, so situations in which it is used as a context can promote

mathematical content or motivate students to mathematics; nor, once knowledge is

obtained, is context set apart solely for focusing on the mathematical knowledge

that could have been derived from the situation. In other words, the main role of

context in mathematical modelling must be to open the possibility of providing a
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cultural system of reference for mathematical activity, which gives value to peda-

gogical modelling which is not only limited to a strategy or a teaching method, or

the view of mathematics set in a context (mathematics-in-context). However, it

does not exclude these elements.

The previous ideas challenge researchers and teachers on the development of

skills that allow them to focus not only on the aspects that lead to mathematical

model production, but also to recognise other aspects, as shown in this chapter,

arising from students’ interests. Likewise, they demand a certain sensitivity to

recognise the opportunities that a context offers both to include student develop-

ment skills and to create knowledge based on context. To a certain extent, it is to

develop an idea about reality itself (Villa-Ochoa and L�opez 2011).

19.6 Conclusions

This chapter is based on a mathematical modelling thread in which students became

involved, supported by a teacher-researcher, in the understanding of a typical

situation of their own culture. Thus, the results of this study are consistent with

those provided by Rosa et al. (2012) who stated that in mathematical modelling the

knowledge was context based as it derived from experiences and it was strength-

ened by the cultural meanings in which the people were immersed. However,

beyond the mathematical knowledge students made use of mathematical modelling

(trigonometric models, rational functions, variations and measurements, etc.) in this

study, this chapter shows that students’ cultural or context knowledge does not

remain static throughout a modelling activity. In particular, we show that there are

situations in which mathematical modelling allows some considerations, ideas,

beliefs, and explanations that are part of students’ culture, and we want these

situations to be reconsidered and rethought at least at an individual level.

According to D’Ambrosio (2009), over time we would expect individual knowl-

edge to be discussed and analyzed from the perspective of its compatibility until

achieving socially shared knowledge. In that sense, this research states that knowl-

edge shared by the group is then socially organized, thus becoming a body of

knowledge which is a response to its members’ needs and will. In the situation

mentioned in this chapter, it could be stated that mathematical modelling activated

other dynamics of the individual knowledge of some members of a culture.

The research, from which this chapter derives, found evidence that converges

with other studies that highlight the educational and social role in modelling

(Barbosa 2006; Araújo 2009). In addition, this study highlights the intention not

only to bring a context or situation from culture with motivational purposes, or to

introduce or produce a concept or to produce utilitarian ideas for mathematics by

showing it is everywhere, but also it has many applications. Hence, without it,

scientific knowledge would not have reached its current level of development. This

is not just about learning a specific content in context or developing skills to

identify “forms” from a context comparable to mathematical “forms ”. In contrast,
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it is to accept the role of non-mathematical knowledge that emerges in a modelling

process. This research encourages researchers to produce other studies showing

implications to promote situations in which mathematics and context are linked

without being subordinated to each other.
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Chapter 20

Mathematical Modelling of a Social Problem
in Japan: The Income and Expenditure
of an Electric Power Company

Noboru Yoshimura

Abstract The problem of the income and expenditure of an electric power com-

pany was taken up as a teaching material for mathematical modelling. This teaching

experiment focused on students making assumptions and validating results in

mathematical modelling when posing their own solutions to the company’s finan-
cial deficit problem. As a result, it was confirmed that, in general, Japanese students

are not able to make assumptions appropriately from complicated real-life problems

and that students’ modelling skills in handling uncertain numerical values and

conditions were acquired through their discussion about the correct answers. In

addition, it demonstrated that it is possible to use mathematical modelling teaching

materials which deal with the income and expenditure of an electric power com-

pany for instructing junior high school students in Year 9.

20.1 Introduction

Japan’s electric power supply depends greatly on nuclear generation, which covers

about 30 % of the total electric power supply. Since the nuclear disaster at

Fukushima in March 2011, 53 out of the 54 nuclear power plants in Japan have

been shut down for security checks. This creates worries about power shortages in

the large metropolitan areas every year. The electric power company will restart

aging thermal power plants and buy electric power from other power companies to

make up for power shortages. The cost of producing electricity goes up due to such

things as soaring crude oil and coal prices. On the other hand, while the government

is giving a subsidy for solar power generation systems, it needs to move forward

institutionally with programs for promoting the installation of solar panels in homes
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and it obliges power companies to buy electricity produced by solar power. The

government and the power companies aim for a stable power supply. As a result, the

power companies have a terrible problem with the deficit.

“Essential characterisations of modelling and applications involve posing and

solving problems located in the real world, which. . .includes. . .general contexts of
living as they impact on individuals, groups and communities” (Niss et al. 2007,

p. 17). This is focused on making assumptions and validating results in mathemat-

ical modelling of students’ own solutions for eliminating the financial deficit borne

by utility companies. The aim of this mathematical modelling activity was to

develop students with the skills to lead the way in our society in keeping with

one of the goals of modelling, namely “to provide experiences. . .that contribute to
education for life after school. . .enhancing the quality of life” (Niss et al. 2007,

p. 19).

20.2 Teaching Practices

The teaching experiment involved a task that was implemented in Year 9 with

160 students in four classes from ‘T’ national junior high school. Three hours were

allocated to the task on different days in December 2010. The teacher was the usual

teacher of the task. The aims of the implementation were (a) training students in

mathematical modelling, and (b) allowing students to present their ideas for the

elimination of the deficit. At first the teacher made all students find solutions

in-class as is the usual traditional Japanese style lesson. Subsequently, he asked

them to discuss their ideas and for each group to give a presentation.

Electric Power Company Task

An extract of an explanatory document and a recent newspaper article about

power shortages in metropolitan areas every year showed that the power

companies have a terrible problem with deficit. The scenario for the power

companies was as follows:

In the electric power company, annual energy production is 150 billion

kWh. About 30 % of all electricity generation is covered by solar power and

the company buys 1kWh for 42 yen. About 70% of all electricity generation is

covered by thermal power and fuel cost is 7.4 yen/kWh. The other annual

expenditure (employment cost, equipment cost and so on) is 1,200 billion

yen. On the other hand, about 40 % of all annual electricity generation sells

for 20 yen/kWh for home use and about 60 % sells for 12 yen/kWh for

business use.

To consider: Propose an idea to eliminate the deficit.
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20.2.1 The First Period

During the first period the teacher presented students with the following tasks about

balance of payments in the present situation and gave some conditions regarding the

income of the power company.

Task 1: Get an Idea for How Things Really Are

1. Calculate the balance (the difference between income and expenditure).

Expenditure

150 billion� 0.3� 42¼ 1,890 billion (yen)

150 billion� 0.7� 7.4¼ 777 billion (yen)

1,890 billion + 777 billion + 1,200 billion¼ 3,867 billion (yen)

Income

150 billion� 0.4� 20¼ 1,200 billion (yen)

150 billion� 0.6� 12¼ 1,080 billion (yen)

1,200 billion + 1,080 billion¼ 2,280 billion (yen)

Balance

2,280 billion in income – 3,867 billion in expenditure¼ 1,587 billion yen

deficit

2. When sales for home use are x yen/kWh and the balance is y billion yen,

determine the functional relationship.

y¼ 150� 0.4� x+ 1,080–3,867¼ 60 x – 2,787 Ans. y¼ 60 x – 2,787

3. When sales for business use is x yen/kWh and the balance is y billion yen,

determine the functional relationship.

y¼ 1,200 + 150� 0.6� x – 3,867¼ 90 x – 2,667 Ans. y¼ 90 x – 2,667

4. Propose an idea that if the company raises the electricity price, sales for home

use is x yen/kWh and sales for business use is y yen/kWh then the balance

becomes 0 yen.

300� x+ 450� y¼ 19,335

Many students substituted x yen/kWh increased from 20 by degrees which is the

electricity price sales for home use and calculated the value of y yen/kWh which is

sales for business use. Through this approach they gained an idea of the estimated

values of x and y. Thus students substituted different values for x and y discussing
the ratio of x to y in order not to give both business and home users grievances. As a

result, they came up with their own ideas as shown in Fig 20.1.
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Task 2: If the Conditions of Income Are the Same and the Conditions

of Expenditure Change, Eliminate the Deficit

5. The other annual expenditures (employment cost, equipment cost and so on)

decrease by half. What is the rate of solar power to eliminate the deficit?

150� x 
 100� 42 + 150� (100 – x) 
 100� 7.4 + 600¼ 2,280

x¼ 10.98 Ans. About 11 %

6. If the other annual expenditures decrease by a quarter, how much should the

company buy 1 kWh of solar power for to eliminate the deficit?

150� 0.3� x+ 150� 0.7� 7.4 + 1,200� 0.75¼ 2,280

x¼ 13.4 Ans. 13.4 yen/kWh

7. If the other annual expenditures decrease by x % and the rate of solar power is

y %, then propose an idea to eliminate the deficit.

40� x – 173� y¼ 100

Many students made indeterminate equations. As is the case with Task 1 (4),

many students substituted x % increase and decrease by the other annual expendi-

tures and calculated the rate of solar power y%. Again, this gave them an idea of the

estimated values of x and y. On the other hand, when solar power covered about

30 % which is y recently, some students got the value of 46 % which is the annual

expenditures x% at the beginning. They considered the value of 46 % impossible to

attain and realized there is no possible answer with this condition. This is shown by

the fact that some students determined an appropriate scope of the values of x and y.
Thus they substituted different values for x and y discussing the relevance of these.

Each student had his/her own idea of how to eliminate the deficit through a trial and

error process. Students’ ideas were as shown on their worksheets (e.g., Fig. 20.2).

Fig. 20.1 The proposed idea in a student’s worksheet
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20.2.2 The Second Period

Task 3: Change the Condition of Both the Income and the Expenditure. Pro-

pose an Idea to Eliminate the Deficit Students worked the solutions individually

and then each idea was evaluated by each group. When students worked the

solutions individually, they began with the income. Students raised the electricity

price sales for home use, and business use and for both of them individually. After a

careful review of the income values, they worked with the expenditure. They

decreased the 42 yen the company buys 1 kWh for step by step and calculated the

ratio of the value the other annual expenditures decreased. They obtained a solution

for the estimated values. When they were unable to establish an idea, they started

these steps all over again. When each idea was evaluated by each group, some of

them handled the expenditures not the income at first. They reversed the order and

evaluated the idea. This suggests some students acquired the modelling skills in

handling uncertain numerical values and conditions through their discussion about

the correct answer.

As a result of intensive discussions among students, each group drew up a

refined idea to eliminate the deficit. Students’ ideas were as shown on their

worksheets (e.g., Fig. 20.3).

20.2.3 The Third Period

Each group made a presentation of the solution processes, the relevance of the

solution, and reconsidering and making assumptions the hard way.

Fig. 20.2 One student’s proposal to eliminate the deficit
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20.3 Evaluation of Students’ Beliefs

In Japan there is a growing trend for students who are not interested in mathematics

to be interested only in achieving a good grade in mathematics. Many students also

feel that mathematics is not useful in their lives. These are serious issues for

mathematical education in Japan. We found the same tendency in a survey of

students of ‘T’ national junior high school students who achieve at a higher level.

A survey of ‘T’ national junior high school students to evaluate if the teaching

material for mathematical modelling discussed in this chapter changes some aspects

of this situation was conducted.

20.3.1 Utility of Mathematics in the Junior High School

The assessment of students’ evaluation of the utility of mathematics in real

problems was carried out using a pre-questionnaire before teaching, followed by

a post-questionnaire after teaching. Students were asked:

Fig. 20.3 One of the refined ideas from the groups in the worksheets
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When you think about real problems, do you think that mathematics is useful?

The answer was chosen from the following choices: (A) Very useful;

(B) Agreeably useful; (C) Not so useful; (D) not useful at all.

Two tasks for mathematical modelling which were problems about pension tax

issues in the 7th grade (Yoshimura and Yanagimoto 2013) and about the choice of

electric cars in the 8th grade were given to students in addition to the problem about

the electric power company. Three hours were allocated to each task on different

days in December 2009 and March 2010. The results for the Electric Power
Company Task were as shown in Table 20.1 (Year 9) together with results from

these cohorts using different contexts for comparison.

The results reveal that the number of students who answered (A) or (B) were

89 % in the pre-questionnaire, 95 % in post-questionnaire for 9th grade students,

87 % in the pre-questionnaire, 94 % in the post-questionnaire for 7th grade students,

and 82 % in the pre-questionnaire, 91 % in post-questionnaire for 8th grade

students. In Year 9 the students commented that “We used mathematics to solve

the problem about the income and the expenditure”, “We solved the immediate

problem of an electric power company” and so on, as the reasons for changing their

answers between the two questionnaires. This confirms more students were able to

appreciate the usefulness of mathematics through this learning experience than the

previous two contexts.

In the 9th grade, another task about Bluefin tuna was implemented with 157 stu-

dents in four classes from ‘T’ national junior high school (see Yanagimoto and

Yoshimura 2013). Two hours were allocated to the task on different days in March

2010. The results are shown in Table 20.2 together with results for the current task

for comparison.

Table 20.1 Students’
evaluation of the usefulness

of mathematics (%)

Year

N Questionnaire

Response (%)

Level A B C D

7 152 Pre 40 47 11 2

Post 53 41 6 0

8 155 Pre 36 46 14 2

Post 47 44 8 1

9 156 Pre 36 53 11 0

Post 44 51 5 0

Table 20.2 Students’ evaluation of the usefulness of mathematics (%)

Teaching context

Year

N Questionnaire

Response (%)

Level A B C D

Bluefin tuna 9 157 Pre 20 46 30 4

Post 29 55 14 2

Electric power company 9 156 Pre 36 53 11 0

Post 44 51 5 0
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Sixty-six percent of students in the pre-questionnaire chose the answers (A) or

(B) before the Bluefin Tuna Task, whereas 89 % of students who were involved in

the three task sequence chose the same answers before the third task (Pension tax,

Electric cars and Electric power company). The post-questionnaire result shows

that the teacher guided mathematical modelling helped the students feel that

mathematics can be useful.

20.3.2 Students’ Interest in This Lesson

Previously, we also used the issue of pension tax in a teaching practice with Year

9 students (Yoshimura and Yanagimoto 2013). This is a serious modern social

problem in Japan. The assessment of students’ interest in this topic and the electric

power and Bluefin tuna topics was carried out using a post-questionnaire after

teaching. Students were asked:

Were you interested in learning about the income and expenditure of an electric

power company?

The answer was chosen from the following choices: (A) Very much, (B) Rather,

(C) Not so much, (D) Never. The results are shown in Table 20.3 together with

results from previous cohorts using different contexts for comparison.

This table shows that the students who participated in this study responded in

almost the same way as those when Pension tax (Yoshimura and Yanagimoto 2013,

p. 249) and when Bluefin tuna (Yanagimoto and Yoshimura 2013, p. 238) was used.

Previous work has shown that interest depends on how much students can relate to

the learning context (Yoshimura and Yanagimoto 2013, p. 248). The teacher of the

Electric power company study was different from the teacher of the Pension tax and

Bluefin tuna tasks. Thus, interest levels do not appear to be related to the identity of

the teacher or the task context in these examples. In this learning context about

80 % of students chose the answers (A) or (B), and showed as much interest as in

the other two studies 82 % and 79 %, respectively.

The reasons given by students undertaking the Electric Power Company Task for
answering (A) or (B) included: “I was surprised that the electric company had a

terrible problem with the deficit and that the energy policy issue was very impor-

tant”, “By thinking about this problem by ourselves. We thought about it more

deeply” and “We will face the same problem in future. We felt that mathematics

Table 20.3 Students’ interest (%) in different contexts

Teaching context

Year

N
Response (%)

Level A B C D

Electric power company 9 156 21 60 13 6

Pension tax 9 157 20 62 15 3

Bluefin tuna 9 157 26 53 14 7
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was necessary to solve this social problem.” All of these learning contexts include a

socially serious problem, topics discussed frequently in Japan. In general, students’
interests are influenced by their own involvement and the currency of topics.

20.3.3 Students’ Evaluation of the Pliability of Mathematics

All groups of students proposed a different idea to eliminate the deficit. An

assessment of the students’ evaluation of the pliability of mathematics was included

in the post- questionnaire for the Electric Power Company Task after teaching. We

asked:

Is there only one correct answer in mathematics problems?

The answer was chosen from the following choices: (A) Only one answer,

(B) Some answers, (C) Many answers, (D) Answers depend on the problems. The

results are shown in Table 20.4.

The result reveals that the number of students who answered (C) or (D) was 31 %

in the pre-questionnaire, 51 % in the post-questionnaire. In particular, the number

of students who answered (D) was 24 % in the pre-questionnaire, 38 % in the post-

questionnaire. Reasons given for students’ positive evaluation of the pliability (i.e.,
choice C or D) in the post- questionnaire included: “The answers varied with the

different ideas” and “In this study there were a lot of different solutions which the

groups proposed.” This teaching material allowed students to make assumptions

that led to validating results in mathematical modelling. This result confirms more

students were able to appreciate the pliability of mathematics through experiencing

this aspect of the teaching practice.

20.4 Conclusion

Firstly, it is possible to use mathematical modelling teaching materials which deal

with the income and expenditure of an electric power company for instructing

junior high school students. It is appropriately placed for Year 9 in the mathematics

curriculum in Japan. Students learn about indeterminate equations and linear

functions in Year 8, so this content is easy to treat as applied mathematics teaching

materials the next year. Students were able to discuss the relevance of the results

and the solution processes animatedly. It is thought that group learning was

Table 20.4 Students’
evaluation of the pliability of

mathematics (%)
N Questionnaire

Response (%)

A B C D

156 Pre 32 27 7 24

Post 11 38 13 38
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effective while using this teaching material of mathematical modelling in handling

uncertain numerical values and insufficient conditions.

Secondly, one of the goals of dealing with teaching materials for mathematical

modelling is to promote excellence in problem solving and also to make students

aware of the usefulness of mathematics. The students’ evaluation of mathematics

changed for the better. When asked, the percentage of students who answered

positively that mathematics was useful for solving real problems increased from

89 % to 95 %. We further claim, based on our continuing teaching experiments, that

a continuous focus on mathematical modelling can strengthen belief in the useful-

ness of mathematics overcoming a perceived disconnection between school math-

ematics and real-world applications by students. The mathematical modelling of a

social problem aroused students’ curiosity, made students’ open up to social issues

more boosting awareness as a member of society. Students who thought this

teaching material was interesting accounted for 81 % of the participants. Further-

more, interest levels are not related to the identity of teacher.

This teaching material allows students to make assumptions and to validate

results in mathematical modelling. The various assumptions led to a lot of different

outcomes so students felt that they discussed mathematical solutions to their

satisfaction. When asked, the percentage of students who answered that pliability

of mathematics for producing multiple solutions increased from 31 % to 51 % after

the task was completed. Despite these encouraging results, these are general

surveys. We need to obtain deeper insights into the level of performance of the

students on the tasks by further analysis.

With respect to the scheme developed by Maaß (2010) for classifying modelling

tasks so other potential users can be guided in terms of task features, objectives and

target audience, this teaching material has a general focus in terms of the whole

process as a modelling activity, though the teacher led students. There has also been

consideration about the contexts which interest students in other literature (e.g.,

Galbraith et al. 2010). Some of this literature has been related to the modelling of

social issues in schooling contexts (e.g., Julie and Mudaly 2007). Indeed, Galbraith

et al. (2010) and Caron and Bélair (2007) suggest that social contexts have several

benefits as topics for modelling. This teaching material appears to have interested

many students because it is a social context and related to their future lives, despite

the topic being chosen by teachers.

Our future challenge is to promote the development of mathematical modelling

teaching materials from the viewpoint of nurturing pioneers who will be trailblazers

in our society. The aim of this mathematical modelling activity is to develop people

who can lead the way in our society in keeping with one of the goals of applications

and modelling and their systematic embedding in the school curriculum (Niss

et al. 2007).
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Learning



Chapter 21

The Place of Mathematical Modelling
in the System of Mathematics Education:
Perspective and Prospect

Henry O. Pollak

Abstract Mathematical modelling is being introduced as a new product into the

complex system of mathematics education in many countries. It has to fit with the

existing parts and interfaces in this system. As one example, we will consider the

effect of mathematical modelling on the transition from secondary to tertiary

education. If mathematical modelling is of greater importance to the planners at

one of these two levels of education than at the other, stresses may result. As a

second example, we propose to examine changes in teacher education necessitated

by the introduction of mathematical modelling at the secondary level. Ideally, one

might wish to prepare teachers to teach mathematical modelling by concentrating

purely on modelling without the distraction of new mathematical ideas, but this

cannot always be done. Finally, the effect of mathematical modelling on the

relationship between mathematics education and mathematics itself is discussed.

Each should gain from cooperation with the other.

21.1 Introduction

When I was at Bell Laboratories, I learned the importance of thinking about the

telephone system as a total system. Part of the job of Bell Laboratories was to make

sure that any new product would work in the presence of everything that was

already out there. One simple example is: When the Princess phone, the first

pushbutton phone, was being developed, it became clear that a user would produce

the digits of a telephone number too rapidly for some of the existing central office

switching equipment. This problem could not be ignored.

In my second career as a mathematics educator I see the same problem again, but

with one enormous difference: There is no one organization whose responsibility it
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is to see that the whole system works together, and works well together as a system.

The total system for mathematics education has many different components that

have to work with each other, and many interfaces across which everything has be

compatible. We are now introducing a new product to many teachers in many

countries: We want to, or we have been told to, teach mathematical modelling. Now

think of the parts of the system. Here are a few: There are curriculum planners,

textbook publishers, textbook adoption procedures, teachers, the people who run

the educational system like principals, superintendents and commissioners of

education. There are students, test makers, other disciplines that use mathematics;

there is higher education, and there are employers, parents, and politicians. Oh, and

we must not forget teacher educators! And who would dare to overlook

mathematicians?

The effect of mathematical modelling on each of these system components is

well worth studying; so is the effect of modelling on the interfaces between pairs of

components. So the number of situations to be explored is somewhere between

linear and quadratic in the number of components. This chapter will take a look at

just three of these potential sources of difficulty. They will be the interface between

secondary and tertiary education, teacher education, and the relations between

mathematics and mathematics education.

21.2 The Effect of Modelling on the Relationship Between
Secondary and Tertiary Education

21.2.1 Modelling in the High Schools: What Will
Universities Do?

In the United States, there is a major effort to introduce mathematical modelling

into the schools. Will the universities change their placement examinations to take

this new ability into account? College placement examinations have the reputation

of being among the most immovable features of our mathematical scene. How will

the students’ ability to model be used at the undergraduate level? Will calculus

courses, will elementary science and economics courses, keep this new ability alive,

never mind actually use it to good purpose?

21.2.2 Modelling in the Universities: What Will High
Schools Do?

The opposite situation could become a problem in China. In recent years, there has

been a rapidly increasing interest in mathematical modelling at the tertiary level–

see, for example, Xie (2013). On the other hand, the history of the National
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University Entrance Examination in mathematics gives the impression that it is a

rather immovable feature on China’s mathematical scene. Will the national exam-

ination change in the direction of inclusion of mathematical modelling, and then

will the secondary curriculum reflect such a change? If modelling has become so

important at the tertiary level, can the secondary preparation ignore mathematical

modelling?

One final comment about the United States: If we are successful in teaching

modelling in secondary school; then the problem will be to keep it alive and to use it

at the tertiary level. If we fail in teaching modelling at the secondary level, others

will have to teach it at the tertiary level.

21.3 Teacher Education: Preparing Teachers to Teach
Mathematical Modelling

21.3.1 Teaching About the Modelling Process:
Can It Involve New Mathematics?

We in the USA have an enormous job preparing in-service teachers to teach

mathematical modelling. What are some of the issues: First of all, teachers must

see, or better still, they must work through, sample materials that teach mathemat-

ical modelling. They will not know what you are talking about without that. What is

involved in taking a group of teachers through a modelling experience? It means

that they must participate in formulating the problem situation, deciding what to

keep and what to ignore in creating an idealized model, do the mathematics in the

idealized situation, and then decide if the results make sense in the original

situation. A single example of this might take longer than a typical classroom

period, which may cause a scheduling problem. Textbooks may not facilitate a

need to spend several class periods on one modelling problem. A different kind of

difficulty, teacher educators might tell you, is that the mathematics involved in the

idealized situation should be completely familiar to the teachers. The argument is

that you do not have the time to teach both the modelling process and new

mathematics as well! You do not want to distract the teachers from the new

thing, namely mathematical modelling. And yet, the very fact that this mathematics

came from a modelling situation may naturally lead to mathematical questions that

you would not have asked otherwise! This is a serious difficulty! We will return to

this problem when we will look at an example of a modelling situation.
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21.3.2 Assessment: How Do You Judge the Success
of a Model?

It is natural that teachers’ comfort with mathematical modelling will be facilitated

by seeing what assessment questions for modelling will look like. Teachers want to

know how what they are teaching is going to be tested. But beyond that, assessment

has been very much in the news, and has become of significant and even interna-

tional political interest. But, as we see in every context we examine, mathematical

modelling brings a whole new dimension into assessment.

Think about what it means to assess success in modelling. The idealized model

must give results that are mathematically correct. Fine. But for the first time in the

experience of many teachers, mathematical correctness is not enough. The results

must also be sensible within the situation which is being modelled: The results must

be sensible from both points of view. This is a new experience for many teachers. It

is a loss of sovereignty for mathematics as it has been taught, that is, for unapplied,

pure, mathematics. How will teachers, and other levels of the mathematics educa-

tion system, react? By the way, how will mathematicians react?

Probably 40 years ago, I was an invited guest at a national summer conference

whose purpose was to grade the AP Examinations in Calculus. When I arrived, I

found myself in the middle of a debate occasioned by the need to evaluate a

particular student’s solution of a problem. The problem, as best as I can remember,

was to find the volume of a particular solid which was inside a unit 3-dimensional

cube. The student had set up the relevant integrals correctly, but had made a

computational error at the end and come up with an answer in the millions.

(I think he multiplied instead of dividing by some power of 10.) The two sides of

the debate: (1) He set everything up correctly, he knew what he was doing, he made

a silly numerical error, let’s take off a point. (2) My God, he must have been sound

asleep! How can a solid inside a unit cube have a volume in the millions? It shows

no judgment at all. Let’s give him a point.

My recollection is that side (1) won the argument, by a large margin. But now

suppose the problem had been set in a mathematical modelling context. Then it

would no longer be an argument just from the traditional mathematics point of

view. As I said, in a mathematical modelling situation, pure mathematics loses

some of its sovereignty. The quality of a result is judged not only by the correctness

of the mathematics done within the idealized mathematical situation, but also by the

success of the confrontation with reality at the end. If the result does not make sense

in terms of the original situation in the real world, it is not an acceptable solution.

Now how would you vote?

I need not remind you of one of the topics that has been much debated in recent

years: Is the main purpose of teaching modelling to help motivate the pure math-

ematics in the idealized model, or is our main purpose to teach mathematical

modelling for its own sake? Peter Galbraith has used the wonderfully compact

phrases “modelling as vehicle” versus “modelling as content” which he attributes to

Cyril Julie (see Galbraith 2007). Is our purpose really one of these two, or is it a

mixture of both? Will the various players in the system of mathematics education

268 H.O. Pollak



agree on the relative importance of modelling as vehicle and modelling as content?

One of the pieces of the mathematics education system which I said I was not going
to write about is the planners of the ideal curriculum; but this affects them.

21.3.3 What Do Teachers Believe Modelling Is?

If you are going to work with the mass of teachers who are going to be teaching

mathematical modelling, there is an interesting set of questions that you really

should consider before you start: What do teachers believe is the meaning of the

phrase “mathematical model”? Is a map a mathematical model? Is an architectural

blueprint a mathematical model? Is that dodecahedron in the display case in the hall

a mathematical model? What do teachers think mathematical modelling means, and

what do they think the purpose of teaching mathematical modelling is? Answers

may be found in “Teachers’ Conceptions of Mathematical Modeling” by Heather

Gould (2013). Here are brief statements of some of Gould’s results:

21.3.3.1 Mathematical Models

• Almost all teachers believe that mathematical models can be physical manipu-

latives such as fraction tiles, pattern blocks, 3D solids.

• Teachers agree that mathematical models can be objects such as maps and

blueprints.

21.3.3.2 Mathematical Modelling

• Teachers believe that mathematical modelling situations can come from whim-

sical, unrealistic scenarios.

• The majority of teachers do not believe that making choices and assumptions is

always part of the modelling process.

• About a third do not believe that you always have to check the mathematical

solution in the context of the modelling situation with which you began.

21.3.3.3 Mathematical Modelling in Education

Teachers are much surer that the curriculum intends modelling as vehicle than they

are that the curriculum intends modelling as content. Only about one third are

actually confident of the latter. As an example of their own beliefs, they strongly

believe that modelling helps in understanding scientific phenomena, but only one

third see modelling as helping in social sciences and the humanities. Apparently,

topics such as fair division, apportionment, and elections have not reached many

teachers.
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21.4 The Relations Between Mathematics
and Mathematics Education

21.4.1 A Modelling Problem

The following modelling problem is readily accessible to students:

You are a passenger in a car, and you wish to estimate the speed of a vehicle

which is going in the same direction as you are, and is passing your car.

Forgive me, this is in the USA, and I state the problem in English units, not in

metric units. The scene is a divided, multiple lane highway. First of all, make it very

clear that the situation is that you are a passenger in the car, not the driver. We do

not want drivers to think about mathematics rather than about their driving. The first

part of the modelling situation was the following: “As a second car starts to pass the

car in which you are a passenger, suppose you decide you would like to estimate

how fast the other car is going”. What kind of approach might students take? You

are in car A, the passing car is car B. You know the speed v(A) of the car you are

in. You see a landmark ahead, a bridge or a road sign for example, you count the

time t(B) it takes car B to get there, and compare it to the (presumably longer) time t
(A) for your car to get there. You know that distance equals velocity times time for

both cars, so you know that v(A)t(A)¼ v(B)t(B). So your estimate for v(B) is v(A)t
(A)/t(B). Your first act as a modeler is to check that this formula makes basic sense:

t(A)> t(B), so v(B) will be> v(A), so that is okay.

So you have a formula. What assumption did you make to obtain this formula?

That both cars keep going, each at a constant speed. How accurate can you expect

this computation to be? Here comes the first surprise: If your counting of seconds is

not correct, but either too fast or too slow, what will this do to the answer? This will

take some time and discussion, because this type of question is probably new to the

students. The answer is, it does not matter! Your velocity estimate is not affected.

This is a property of homogeneous linear functions, or, if you prefer, of a propor-

tion. Of course if your counting is uneven, that will affect your answer. Another
aspect of accuracy: Do the syllables in the language in which you count time allow

you to estimate half seconds? This will help your accuracy. Is there another method

to estimate time? Most people do not carry a stopwatch. Perhaps a student will

make the following interesting suggestion: It is raining. Use the windshield wipers

to measure time.

Think back to our earlier discussion: Yes, this problem requires only the most

familiar of mathematics, but the discussion of accuracy will probably be a new

aspect of the pure mathematics in your model. The modelling situation demands

that you examine an aspect of homogeneous linear functions, or of proportionality,

that perhaps does not arise in the teaching of the pure mathematics! To return to

another previous question: Is this modelling as vehicle, or modelling as content?
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Another part of the modelling process: What do you mean by the time that either

car reaches a landmark? Does it matter whether you try to time the front of the car

or the rear of the car when it gets to the bridge? Will that affect your answer more or

less than the accuracy of time to at best a half second? Does curvature in the road

matter? How about the extra time it takes the passing car to change lanes? Does it

matter? Those kinds of questions are part of modelling. What do you have to keep,

and what can you afford to ignore?

Now comes the second part of the model: What if you do not decide right away

that you want to estimate v(B)? Can you still make an estimate after car B has

passed car A? Perhaps the students will think about using two landmarks instead of

one. What happens to the sensitivity of the model? What, if anything, changes in

our previous modelling decisions?

Now a third part of the model: In the US, the longest truck permitted on the

highways as of this writing is 53 ft. Suppose your car is being passed, but passed

slowly, by such a long truck. You can count how many seconds it takes the whole

truck to pass car A. That is another way to make an estimate of speed. Add the rate

at which the truck is passing car A to the speed of car A, and you have the speed of

the truck. How does this differ from the previous method? Is the method still

insensitive to the accuracy of your counting? (Answer, no). And you will have to

know how to convert between the feet and seconds in your measurement of the

truck and the miles per hour of v(A). And, is the 53 ft the length of the trailer, or is it
the length of the trailer plus the cab? What does the 53 painted on the side of the van

actually mean?

If both methods are available to you, how would you choose between them?

Here is one possibility: If the truck is only a little faster than car A, then the new

method will do better; if the truck is much faster, you are better off using a distant

landmark. Not many students may have got that far in the discussion. Is there a

possible optimal combination of the two methods of estimating? That sounds like a

more difficult problem.

A possible assessment problem for the preceding modelling experience: What if

you want to estimate the speed of an oncoming car, a car that is going in the

opposite direction? If you can find a nice model for this, it might be simpler or more

general than the one we considered. You do not need a divided super-highway for

that, you can do it on an ordinary two-lane road; but maybe this will introduce other

complications!

21.4.2 Modeling as Vehicle and Modelling as Content

The mathematics used in the preceding idealized model is very simple and very

familiar, but some of the questions about sensitivity of the mathematical results

may not be very familiar. If you are giving a course on the teaching of mathematical

modelling, perhaps you cannot always avoid doing some new mathematics?
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During the 2011–2012 academic year, a team of students at Teachers College in

cooperation with COMAP, the Consortium for Mathematics and its Applications,

prepared a handbook consisting of 26 modules (Gould et al. 2012), each of which

consisted of a modelling problem ready for classroom use at the high school level.

This became available in the summer of 2012. Last fall, Heather Gould and I ran a

Saturday workshop on the teaching of mathematical modelling, six half days during

which we planned to teach 12 of the modules. We had a group of 31 people, partly

current secondary or college teachers of mathematics, and partly mathematics

education graduate students at Teachers College. We ended up teaching seven of

the modules, but only by combining two of them into one session: It took twice as

long for the group to complete a module, roughly four hours rather than the two

which we had expected. Prof. Margaret Kidd, who had tried some of the modules

working with in-service teachers in California, had warned us that this is exactly

what would happen! Even though most members of the group were participating in

the workshop voluntarily and were not taking it for university credit, almost all

stayed with us for all six sessions and one of the sessions was the Saturday after

Hurricane Sandy! A second TC-COMAP handbook (Teachers College 2013) was

prepared in the 2012–2013 academic year, namely a handbook of assessments for

each of the 26 modules in the first handbook.

21.4.3 Primary and Middle School

When it comes to elementary arithmetic, there are some aspects of the elementary

operations which students may not learn in elementary school. If you add two

numbers A and b, where A is large and b is small, the precision of b, and probably b

itself, do not matter at all. If you subtract B from A, where A and B are almost

equal, the answer may be meaningless. Dividing by 0 is forbidden, but dividing by

almost 0, while not forbidden, is probably stupid. These instincts should be acquired

in elementary school. A very good way to acquire them is from modelling

experiences.

Twenty five years ago, in a path-breaking experimental project called “The

Regional Math Network”, Kay Merseth from Harvard, with support from the

National Science Foundation, produced four volumes (Merseth 1987), centered

on sports, ice cream, the Quincy Market in Boston, and outer space, which used a

huge variety of applied and modelling situations, to teach 7th and 8th grade

mathematics. But what was so exceptional is that it took full responsibility for the

mathematics traditionally taught at that level. It didn’t just motivate, or just apply, it

guaranteed to do it all. It was way ahead of its time.
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21.4.4 Secondary School

COMAP’s “Mathematics, Modeling OurWorld” series (e.g., Garfiunkel et al. 1998)

was created in a similar spirit. As suggested in Sect. 21.3 above, mathematical

modelling should sometimes endeavor to take responsibility for a particular math-

ematical topic: Create the necessity for it, develop it, and fit it into the system. You

do not want the body of the mathematics education system to reject something that

feels like a foreign invader, you want it to absorb a new part of itself.

21.4.5 The Secondary: Tertiary Interface

One more example: You might cure a long-standing difficulty, at least in the United

States. In the traditional curriculum, we teach complex numbers in grade 11, as part

of the work with quadratic equations, but then in fact complex numbers never get

mentioned again until second year calculus, when students are ready to learn about

e and then e^iω. But you could do a discrete version of an oscillating spring using

just DeMoivre’s Theorem in high school rather than complex exponentials, and get

a nice “modelling as vehicle” example.

21.5 Modelling as a Source of New Insights
in Mathematics Itself

A final example will shed additional light on the effect of mathematical modelling

on the relation between mathematics and mathematical education. One of the joys

of creating a mathematical model for a real-world situation is that you can never be

sure what mathematics you are going to get into. The following is taken from Gould

and Pollak (2013).

The modelling situation in the module is to estimate the temperature at a location

for which a direct reading is not available. We idealize the problem by assuming

that the nature of the terrain permits one to assume that linear interpolation from

nearby temperature readings is a reasonable way to proceed. In other words, if you

had a reading of 71	 at one location, and a reading of 75	 at another, we assume that

at the place halfway between them, a guess of 73	 would be acceptable. If you have
readings of T1 at x1 and T2 at x2, our guess for a reading at αx1 + (1 – α)x2 would be
αT1 + (1 – α)T2 , at least if 0< α< 1. You are entitled to increasing doubts as α gets

further and further away from the unit interval.

How do we know that we have this correct, and not backwards? If we set α¼ 1,

then we are at x1. The temperature is T1, as it should be. If we set α¼ 0, we are at x2
and the temperature is T2, again as it should be. If α¼½, we are halfway between x1
and x2 and the temperature is halfway between T1 and T2.
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The problem becomes more interesting if you make it two-dimensional and

endeavor to estimate the temperature in the interior of a triangle at whose vertices

the temperature is known. Let us assume that for i¼ 1, 2, and 3, we know the

temperature Ti at three non-collinear points Pi. We assume for convenience that

T1<T2<T3, and that we wish to know the temperature at a point P inside the

triangle determined by the three Pi. One way to proceed would be to draw the line

from P2 to P and extend it until it meets the line segment between P1 and P3 at point

we will call X. You can find the temperature T(X) at X by measuring by interpo-

lating between T1 and T3 in the same proportion as P1X and XP3. Now that you

know T(X), find T(P) by interpolating between T(X) and T2 in the same proportion

as XP and PP2.

That is an answer to the modelling problem, but the mathematical fun, now that

we have come this far, is just beginning. You could just as well have drawn a line

from P1 through P until it meets P2P3 at some point Y. Then you can compute T

(Y) by interpolating between T2 and T3.

How do you know you will get the same answer? It’s all linear interpolation, so
you must get the same answer, but how do you prove it?

Now, forgive me, we are no longer modelling. Let us start to do pure mathe-

matics. We can turn this into a vector space kind of problem by defining three basis

functions: For each i, i¼ 1, 2, and 3, we define Fi as the linear function such that Fi
is 1 at Pi and is 0 at the other two points. Then the original temperature function can

be defined as

T1F1 þ T2F2 þ T3F3:

But we are not going to work with this, we will just work with one of the Fi, and

see what that tells us. So let’s acknowledge the fact that we are doing pure

mathematics by changing notation.

Here is our new picture:

We are looking at the linear function fA and at its value at P. Remember, this

linear function is 1 at A and 0 on the line segment BC. One way to say its value

at P is

f A Pð Þ ¼ PX

AX
:

Another way to say it is
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f A Pð Þ ¼ f A Yð ÞBP
BY

:

Thus we have two expressions for fA(P). Since they are equal,

PX

AX
¼ YC

AC

BP

BY

AC

YC

BY

BP

PX

AX
¼ 1:

But this is exactly Menelaus’ Theorem in geometry! Menelaus of Alexandria, in

about 100 AD, wrote a three-volume work on spherical geometry. This is the planar

version of one of his theorems, which was not in Euclid. You think of extensions of

the sides of triangle APY such that B, X, and C are collinear, and then the last

identity holds. It is usually proved by using many similar triangles.

This has been a small example of a mathematical modelling situation leading to

an unexpected approach to a result in geometry. Mathematical modelling can

benefit pure mathematics itself! Not that this thought is new – Information Theory

is a huge example of this phenomenon.

21.6 Coda

Where do we go from here? I believe that modelling problems should be problems

from the real world, and I believe we can teach such problems. There are good

problems all around us, many people, including myself, put a lot of effort into

finding such problems. But I believe that teaching a true modelling problem takes

time. I have seen examples of mathematics education systems where you cannot

find a whole period, never mind a week, for students to discuss a modelling

situation, formulate an idealized model, do relevant mathematics, and then examine

the success of what we have accomplished. We must avoid mathematical modelling

acquiring the reputation that it is just a fancier terminology for the same old word

problems. We must somehow find the time it takes to go through the complete

modelling cycle. Probably not every time, but can we have 3 or 4 h every few

months during which to do full-scale modelling? This may be a battle within the

mathematics education system, but in my opinion it must be undertaken.

A number of people have written books entitled something like “The Joy of

Mathematics”. I should like to see a book entitled “The Joy of Mathematical

Modelling” with fifty to a hundred examples, taken mostly from everyday human

experience. The joy I have had in my life of doing and teaching mathematical

modelling should be transmitted. Who will join me?
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Chapter 22

Moving Within a Mathematical
Modelling Map

Rita Borromeo Ferri

Abstract Comments and thoughts raised by Henry Pollak’s plenary are reflected

on at the meta-level and on the basis of a “mathematical modelling map” which the

reactor created as a simple instrument opening a field between applied and pure

mathematics as well as between theoretical aspects and empirical results

concerning teaching and learning of mathematical modelling. This map also

shows Henry Pollak’s and the reactor’s position within this map and their

“moves” in order to give an insight into two “generations” of mathematical

modellers.

22.1 Introducing the Mathematical Modelling Map

The mathematical modelling map (see Fig. 22.1) consists of four parts, with the

focus on teaching and learning of mathematical modelling (MM). Two parts of this

map represent the applied and the traditional, respectively, pure mathematics,

which can be seen on the one hand as contradictions and on the other hand as a

symbiosis, because one needs the other, especially when talking about mathemat-

ical modelling. Henry Pollak’s famous modelling cycle (Pollak 1979) includes

these two parts as well, and for him as an applied mathematician in his first career

it is necessary to ask, how these parts come together concerning teaching and

learning of mathematical modelling. Firstly, Henry Pollak shall be embedded in

the parts of pure and applied mathematics.

The two other parts of the map illustrate what is, firstly, meant by having a

theoretical background (“theory”) about modelling in an educational environment

and, secondly, when doing empirical research in this field. Under “theory” the
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following aspects are summed up, without pretending to meet any requirement of

completeness:

• teleological aspects, including justifications for applications and modelling in

school (Blum 2011) and theoretical perspectives on modelling (Kaiser and

Sriraman 2006);

• cognitive aspects, including modelling competency and subcompetencies, in

particular “blockages” (Stillman et al. 2010), and “modelling routes” (Borromeo

Ferri 2007);

• epistemological aspects, including relations between the real world and mathe-

matics; and

• task-development aspect.

In general it is still an open question whether theoretical thoughts were raised

first or whether empirical research was “intuitively” done in the late 1970s and

1980s, when looking, for instance, at the early empirical studies of Treilibs,

Burkhardt and Low (1980) or Kaiser-Meßmer (1986). “Intuitively” in this context

means, for example, the development of modelling tasks and then the investigation

of how this works in schools and how students, university students or teachers react

or deal with this development or how modelling processes look like, and so on. This

procedure was widespread, and so a lot of examples arose out of practice and for

practice.

Fig. 22.1 Mathematical modelling map
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Today, we have made progress concerning how we can design qualitative and

quantitative empirical studies and which instruments we use for these to fulfil

criteria of good research. Adequate, inventive and very stimulating research ques-

tions emerged in this field and over the last 15 years empirical studies increased

enormously. Furthermore, there are still a lot of open questions. Many of these

research questions have their origins in theoretical and epistemological thoughts of

pioneers like Henry Pollak. His modelling cycle was, and still is, a theoretical basis

or point of view between applied mathematics and educational thoughts for the

current debate and is still cited very often. All young researchers starting in the field

of mathematical modelling should know about this cycle for understanding the

beginnings and the ideas at this time.

22.2 “Moves” Within the Map

In the following, three key questions, which were raised implicitly in Henry

Pollak’s plenary are discussed, which causes certain “moves” within the map.

First key question (see Pollak Chap. 21 this volume, Sect. 21.3.2): Is mathemat-

ical modelling meant to help to teach mathematics or is the purpose to teach

modelling for its own sake? From a theoretical point of view, one would say that

mathematical modelling helps to teach traditional, curricular-based mathematics, if

we define it like, for example, exercising algorithms. If individuals work within the

“world of mathematics” during the modelling cycle they need these competencies

and their knowledge, for instance, about formulae or how to solve equations. So

mathematical modelling seems for many teachers to be a helpful instrument, which

they have to use anyway, because of educational-political requirements.

From empirical studies there is evidence about using modelling problems inde-

pendent of the current mathematical topic and so not curricular-based for a partic-

ular grade – this was done in many studies. But there is still an interesting question,

which needs to be proven empirically. This leads to the second key question (see

Pollak, Chap. 21 this volume): Are learners worse or better in their modelling

processes and in their understanding of mathematics when using modelling tasks

topic-independently?

A lot of experiences from modelling weeks in Hamburg (Kaiser and Schwarz

2010), Kassel and other German cities show that especially complex modelling

problems help pupils to learn modelling in huge parts for its own sake on the one

hand, but also to go deeper into mathematical content on the other hand. It is not an

argument which direction is better or not, but it clearly depends on the goals the

teacher has with the tasks he or she chose. So what comes first, the mathematics

itself or learning mathematics during modelling activities, is a didactical decision

anyway. Importantly, in any case, modelling is a “normal” part of mathematics

lessons and not an activity only when there is time left from other topics.

Both should be in an adequate balance, but it depends on a lot of factors like

different cultures, views on pre- and in-service teacher education, teacher training
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for mathematical modelling, university curricula and in particular on the school

curricula and educational standards in mathematics in different countries. A short

example is the current educational developments in Chile. The ministry of educa-

tion in Chile is now using more or less the mathematics standards from Germany,

where mathematical modelling is one compulsory competency and so mathematical

modelling is, if it is formulated in Henry Pollak’s words, a “new product” for the

teachers there. So, the goal in Chile is to spread it all over the country. What I

learned in Chile is that mathematical modelling problems there should be used only

at the end of a mathematical topic and not when starting, for example, with

functions. This is what is written in the Chilean mathematics curriculum. So here

one part of the didactical decision is already made by the curriculum developer.

These teachers in Chile, like thousand of teachers, for example, in Germany,

although the mathematics standards exist now for over 10 years, do not know

what mathematical modelling means nor do they have an idea how to deal with

modelling in school. This is the reality!

This brings us to the third key question (see Pollak, Chap. 21 this volume): Why

should modelling be taught and learnt? Still a lot of researchers in the modelling

community work on such teleological and more theoretical questions. The theoret-

ical underpinning of different perspectives and aims of mathematical modelling

within cultures or the question which modelling cycle can be used for a specific

purpose promotes the discussion. Also, the concept of the “implicit or intuitive

model”, for example, is a theoretical construct till now and it seems that it can be

reconstructed as something like a pre-model between fringe-consciousness and

consciousness (Borromeo Ferri and Lesh 2013). For this, more empirical studies

are needed for making these theories more fundamental and usable for school

purposes. So this constant interplay between theory and empiricism is important

for the research field of mathematical modelling.

When talking about this interplay and especially about empirical studies, knowl-

edge about qualitative and quantitative research approaches and about data analysis

or interpretation are needed. As a new doctoral student in the field of modelling and

also other research fields of course, there is more or less no other way to learn this

and to be familiar with empirical methods.

Moving back to the theory and from there to cognitive aspects gives an insight

into the modelling processes of students, which was a goal for many empirical

studies in the last years: For example to reconstruct cognitive barriers while

modelling (Blum 2011), individual modelling routes (Borromeo Ferri 2007)

or the question what kinds of blockages appear and how to minimize them (Stillman

et al. 2010). The role of meta-cognition within mathematical modelling was, and

still is, important (Stillman 2011). The results of these studies were very helpful for

teacher education and in particular for training teachers in their diagnostic compe-

tencies. Beneath knowledge about diagnoses a lot more dimensions of competen-

cies are needed, like the theoretical, task and instructional dimensions. This model

(Borromeo Ferri and Blum 2009), based on experiences from other studies, has no

empirical evidence as yet. Moving to the task-development aspect, which is also

one part of the model shown before, the importance of this aspect becomes clear:
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It includes knowledge and criteria about good modelling problems and ideas, and

how to develop or find modelling problems. For pre- and in-service teachers it is not

trivial to create adequate modelling problems, in particular complex ones, which

are used during the previously mentioned modelling weeks and days.

22.3 Conclusions

Henry Pollak mentioned that mathematical modelling is a “new product” in many

countries to fit into existing systems of mathematics education. So mathematical

modelling is addressed to the ministry of education, to the curriculum writers, to

students, to pre- and in-service teachers, university professors and university

students. All these people have to learn or gain ideas now about how to teach

modelling. But this is not trivial and cannot be expected as a transfer from other

disciplines. For this, all parts of the map are needed, strong theoretical thoughts,

well designed and conducted empirical studies and in the background and as a basis

the pure and applied mathematics, we need this for the daily work in mathematics

lessons or in university seminars as well as for research purposes in the next

decades.
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Chapter 23

Negotiating the Use of Mathematics
in a Mathematical Modelling Project

Jussara de Loiola Araújo and Ilaine da Silva Campos

Abstract Our goal, in this chapter, is to present the negotiation between a student

– Maria Estela – and the teacher, on how to use mathematics in a mathematical

modelling project. The study is based on a qualitative analysis of empirical data

from a meeting of Maria Estela’s group with the teacher to progress the modelling

project. It was the first time that Maria Estela had participated in such an activity

and she, as well as her group, did not know how to model mathematically the

phenomenon they were studying. From our analysis, we were able to understand

that the negotiation between the teacher and Maria Estela was crucial to the

continuation of the group project. The negotiation, at the time the group was

making decisions, revealed different understandings about how to use mathematics

and gave rise to a negotiation space, leading to an approach different from those

considered appropriate, at the beginning, by both the teacher and Maria Estela.

23.1 Introduction

Some authors such as Araújo (2010); Blomhøj (2009); Blum et al. (2007); Kaiser

and Sriraman (2006) discuss the growing interest of teachers and researchers in

mathematical modelling in mathematics education in several countries including

Brazil. In these studies, the existence of a multiplicity of understandings about

modelling, and of objectives regarding its implementation in school spaces, stands

out. In this chapter specifically, our understanding of modelling is based on Barbosa

(2006), who conceives it as a learning milieu in which students are invited to
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investigate problem situations from other areas of knowledge or everyday situations

using mathematics. Our interest in discussing modelling is in harmony with the

socio-critical perspective (Barbosa 2006), which aims to develop students’ compe-

tence to question the role of mathematical models in society, amongst other goals.

Based on the analyses of Kaiser and Sriraman (2006) and Blomhøj (2009), it is

evident that the socio-critical perspective is widespread in Brazil, from where this

chapter originates. Supporting this contention is the fact that most of the studies

cited by these authors, in this perspective, are from Brazilian authors such as Araújo

(2009), Barbosa (2006, 2009) and Caldeira (2009).

Part of the large number of studies on modelling in mathematics education is

related to students’ practices in these learning milieus. This is also the case with

research in which modelling is conceived from the socio-critical perspective. In

modelling activities, as we understand them, in which students are invited to

investigate problem situations in order to reflect on the role of mathematical models

in society, the activities proposed are open-ended, without a predetermined strict

orientation. When students develop mathematical modelling projects, or some other

open-ended activities, doubts about how to proceed may arise.

Alrø and Skovsmose (2002) claim that learning milieus in which students are

invited to investigate are still rare in mathematics classes. Therefore, students may

take some time to understand, or sometimes they do not even understand, what is

expected of them when activities different from the usual ones are proposed in

mathematics classes (Araújo and Barbosa 2005; Julie and Mudaly 2007). Alrø and

Skovsmose (2002) state that new patterns of dialogue and interaction are

established in activities of this nature, validating research that focuses on these

dialogues or interactions.

Sometimes, differences between what is expected and what is accomplished by

the students are only perceived after the task is completed (Borba et al. 1999). On

the other hand, when the teacher follows the development of these activities while

they are being carried out, negotiations can happen between teacher and students

(Leiß 2005; Oliveira et al. 2009) aiming at a greater agreement between their

interpretations.

Barbosa (2007, p. 239) calls negotiation spaces the encounter between the

teacher and the students to negotiate meanings related to the modelling task.

“Negotiation implies dialogue, which assumes that none of the parties wishes to

impose his/her perspective, but rather put it up for discussion.” We understand that

negotiation can take place to meet the different demands of the activity: to define an

agreement between the teacher and students, to meet the needs of the pedagogical

practice of the teacher, to guide the students’ own performance in the development

of the modelling activity, among other reasons.

Our goal, in this chapter, is to present the negotiation between a student – Maria

Estela – and her teacher, on how to use mathematics in a mathematical modelling

project. It was the first time that Maria Estela participated in an activity such as this

and she, as well as her group, did not know how to model mathematically the

phenomenon they were studying.
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In order to achieve this goal, we start by presenting the context and participants

of the study, the methodological aspects, as well as a description of the modelling

project developed by Maria Estela and her group. Excerpts from moments of

negotiation between the student, Maria Estela, and her teacher are presented in

Sect. 23.3. Section 23.4 presents a discussion of data based on the theoretical

framework. Finally, Sect. 23.5 brings some final considerations about the study.

23.2 Context, Participants, Methodological Aspects
and the Modelling Project

In this chapter, we will examine empirical data from the second meeting of a group

of students from the first semester of the Public Management course at the Federal

University of Minas Gerais (UFMG), Brazil, with a mathematics teacher, the

second author of this chapter. This meeting aimed to follow up on the development

of a modelling project.

The project was one of the evaluative activities of the subject Mathematics A,

where the teacher is the first author of this chapter1. The subject, under the

responsibility of the Mathematics Department of UFMG, aims to address functions,

derivatives and integrals, with a class load of 60 h in one academic semester. As

part of the activities of Mathematics A, the teacher of the subject requested that

students develop modelling projects from the socio-critical perspective. In this

perspective, the modelling activity is open-ended and it is common that students

have the freedom to choose the topics that they will address in their projects. The

topics were chosen and the groups were formed according to interest in the topics.

Nine groups were formed, each consisting of between five and eight students.

One student, Maria Estela, who is also a journalist, suggested the topic “the

controversy over health accounts in Minas Gerais”2. This topic is related to

expenses with the Sistema Único de Saúde – Unified Public Health System –

(SUS), which, by law, must ensure free and universal health care in Brazil. Other

students joined her, forming a group. Within this topic, the purpose of the modelling

project of Maria Estela’s group was to understand the accounts regarding the health
system in the State of Minas Gerais, from 2004 to 2008.

Maria Estela’s interest in this topic was related to her work as a journalist and she
had been researching this subject for quite some time. She suspected that the

Government of the State of Minas Gerais did not comply with the law on health

1 The first author of this chapter was the teacher responsible for the subject Mathematics A and will

be named “teacher of the subject”. The second author followed the development of the subject and

acted as advisor to two groups. She worked also as a researcher and was collecting data for her

masters research (Campos 2013). In this chapter, the second author is called “teacher”.
2 Brazil is a federative republic formed of 26 states plus the Federal District, and Minas Gerais is

one of the states.
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care spending. According to constitutional amendment 29 (EC-29), the Govern-

ment should allocate 12% of its revenue to health. However, information provided

by the Government and other organizations was conflicting with respect to this

subject, as can be seen in Table 23.1. This information was obtained by Maria

Estela who then presented it to the other group members.

Table 23.1 displays the percentages of revenue spent on health from 2004 to

2008 by the Government of Minas Gerais, based on three different sources. The

second column shows what should have been spent (12%) according to EC-29; the

third column shows what the Government reports having spent; and, the fourth

column shows what the Public Health Budget Information System3 (SIOPS) shows

the Government of Minas Gerais spent.

Table 23.1 summarises well what inspired the group’s modelling project – “the

controversy over health accounts in Minas Gerais” – since it shows a mismatch of

information relating to health spending. Although the Government claims to have

invested a percentage greater than that established by EC-29, according to SIOPS,

there is a health deficit. This aspect was emphasized by Maria Estela when she

presented this information to her group.

This study is qualitative in nature (Bogdan and Biklen 1994) as our objective is

to analyse the negotiation between a student – Maria Estela – and the teacher on

how to use mathematics in a mathematical modelling project. The main methodo-

logical procedure adopted was unstructured participant observation. According to

Vianna (2003), unstructured observation takes place in a natural context, which

enables the observer to become part of the culture of the subjects and to see the

world from their point of view. The data obtained through this method, are

presented in the next section.

Table 23.1 The ratio of health spending to revenue in the state of Minas Gerais

Year

Minimum percentage

established by EC-29

Percentage informed by the

government of Minas Gerais

Percentage

calculated by SIOPS

2004 12 12.16 8.66

2005 12 12.33 6.87

2006 12 13.20 6.04

2007 12 13.30 7.09

2008 12 13.12 8.65

3 The SIOPS, organization linked to the Ministry of Health, checks compliance with Amendment

29, which is based on the resolution no. 322, of 2003, of the National Health Council (CNS), which

regulates what can be regarded as expenditure on health in Brazil.
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23.3 “It Isn’t My Fault If I Already Have All the Data!”

The negotiation betweenMaria Estela and the teacher on how to usemathematics in the

mathematical modelling project took place in the context described previously. At the

beginning of themeeting,Maria Estela presented to the group various data, quantitative

and qualitative, on the topic of the project, which she had been collecting for some

time as part of her work as a journalist. That’s when the teacher asked the group:

Teacher: What’s your idea? I want to see if I can help you.

Maria Estela: So, the question is if they complied with Amendment 29, as provided

for in article 198 of the Constitution, and if the parameters of the

CNS were taken into consideration. What is the actual investment in

health?

Maria Estela continued explaining the data until the teacher questioned what the

group wanted to do:

Teacher: [. . .] Yes, people. And what about the project? What I can’t see is
. . . I can interpret these data, I can see what you are questioning.

And for this project? What do you want to say? You just want to

show that?

Teacher: See, Maria Estela, the issue I was discussing with José [another

group member] is that if you are only interested in interpreting,

then . . . Is this the project proposal?
Maria Estela: No, our proposal is to take these data and develop mathematical

relationships between them.

Teacher: Which kind of relationships do you want? [. . .]. These data are

ready.

Maria Estela, supported by José, explained how she understood the use of

mathematics in the development of the modelling project:

Maria Estela: [. . .] Well, here’s the thing: the mathematical modelling will build

relationships, create formulas. We have to create formulas for it,

right?

Teacher: Would the idea be to calculate the deficit?

Maria Estela: It is exactly a formula for the deficit. And that means what? Is it an

exponential function of [logarithmic] napierian growth? [laughter].

Napierian decrease?

José: What I understand [. . .] We understand that it is ready.

Maria Estela: That’s it, it’s ready. All we have to do now is to create a mathematical

relationship.

Teacher: The relationship to express that situation?

Maria Estela: [. . .]. That’s it. And that is what? A formula.
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The teacher explained how she understood the use of mathematics in the

development of the modelling project:

Teacher: You may have a problem. Based on that problem, we get to these

relationships. Because only getting the data and plotting it on

the graph and comparing it, to me this is not the kind of the work

that was proposed, do you understand? It is to investigate a

situation. In fact, what you’re doing is just a comparison of

something you are already sure of, that you’ve already analysed.

In other words, you just changed the language, from table language

to graph language.

Maria Estela: Well then! But, it’s not my fault if I already have all the data and I

didn’t have to research it, is it?

The group continued discussing and Maria Estela continued disagreeing with the

teacher:

Maria Estela: But, we need to create a formula.

Maria Estela: [. . .] No, no. This is a work that is ready, a work that is virtually

ready. It is an investigation work, a modelling project, that

doesn’t mean that I haven’t researched these data.

The discussion continued until the teacher made a suggestion with which Maria

Estela and José agreed:

Teacher: I’ll give an idea: we could think about the percentage for this year,
what was spent, and about the deficit for this same year. Then, we

think about the deficit for the next year and calculate the total

deficit that the State has with health.

Maria Estela: Hummm! We made a projection.

José: It was a different approach.

Maria Estela: No she didn’t use a different approach. She developed amathematical

relationship.

In this episode, the teacher wanted to know about the information that the group

already had in order to guide the students on how to proceed with the data obtained

previously. For Maria Estela, all numerical data related to the project had already

been collected and, to complete themodelling project, “All [they had] to do now [was]

to create a mathematical relationship.” In other words, they had to find a formula

to relate the data that had already been collected. So, for Maria Estela, modelling

is finding or developing (she uses both words) a mathematical formula that the

collected data fit.

The teacher, in turn, insisted that “only getting the data and plotting it on the

graph and comparing it [. . .] is not the kind of the work that was proposed”. She

realized that the only thing the students intended was to create a graph from the
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tables to confirm the certainty that they had about the topic of the project. However,

for the teacher, the proposal was “to investigate a situation” and, to this end, they

would have first to elaborate a problem. So, for the teacher to develop a mathemat-

ical modelling project is to propose a problem related to the topic chosen by the

group and to investigate, to search for information and data to obtain, by means of

mathematical models, answers to the problem.

23.4 The Negotiation Between Maria Estela
and the Teacher: Data Through a Theoretical Lens

In the episode presented earlier, there was a divergence between Maria Estela and

her teacher, but neither of them seemed to want to impose their point of view. On

the contrary, each presented arguments to support their views. Therefore, the

negotiation space was established (Barbosa 2007). According to the author,

although the voice of the teacher constitutes an authority in these spaces, he/she

does not seek to direct the students’ actions. According to Barbosa (2007), “if we

are interested in the students having an ‘authentic’ modelling experience, [. . .] it
[is] necessary to hear what [is] being said by the student and use it as a type of lever

to formulate the next comment” (p. 239, emphasis in original).

In harmony with this orientation, the teacher made a proposal that took into

account what Maria Estela intended to do, but which also included the way she

herself understood the development of a modelling project. In her proposal, stu-

dents would have to do something more than a simple reinterpretation of the data.

They would have to analyse the data, search for some mathematical formula to

correlate them (in the way Maria Estela understood modelling), but that would

allow future analyses, projections, which would require some research (as the

teacher understood modelling).

Since the teacher and Maria Estela disagreed about what should be done, both

had to give up some aspect of her point of view. Maria Estela agreed that the work

was not ready, that there was still something to be done, and the teacher agreed that

the group would not do something that she assumed to be part of the development of

a project of mathematical modelling – the search for, or gathering of, information

and data.

As well as hearing each other, we believe that giving up of some aspect of his/her

point of view is also a characteristic of the negotiation space. This style of

communication in mathematics classes is similar to what Alrø and Skovsmose

(2002) call inquiry cooperation model (IC-Model), which is “a particular form of

student-teacher interaction when exploring a landscape of investigation” (p. 46). In
the landscape of investigation, students are invited to explore situations in which
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mathematics is involved and to look for explanations. It is in this sense that, in the

episode analysed in this chapter, the teacher emphasized that it was necessary “to

investigate a situation” when we develop modelling projects. Such landscapes have,

as one of their main objectives, to destabilise what Borba and Skovsmose (1997)

call the ideology of certainty of mathematics. According to these authors, the

ideology of certainty sustains the character of neutrality of this science, imbuing

it with the power of the holder of the definitive argument in various debates in

society.

In the episode, the teacher claims that “In fact, what [the group was] doing [was]

just a comparison of something [they were] already sure of, that [they had] already

analysed.” We consider, then, that for the teacher, the level of certainty that Maria

Estela had about what she had proposed to study had influenced her to use

mathematics just to validate her arguments, corroborating the ideology of certainty
of mathematics.

In this sense, the divergences between Maria Estela and the teacher and the

negotiation between them on how to use mathematics in the modelling project seem

to originate from different conceptions of mathematics. Although we have not

carried out a study focusing on conceptions of mathematics, it seems that the

development of modelling projects in negotiation spaces, in which students are

invited to participate in the landscape of investigation of situations with reference

to the reality, can reveal different conceptions of mathematics and destabilize the

ideology of certainty of mathematics that is often supported by such conceptions.

23.5 Final Remarks

In our analysis of the dialogue between students and the teacher, we could verify

how much the negotiation between them was determinant on the continuity of the

project. The presence of the teacher, at the time the group was deciding on how to

continue the modelling project, showed different understandings about how to use

mathematics and gave rise to a negotiation space, leading to an approach different

from those considered appropriate, at the beginning, by both the teacher and Maria

Estela. We raised the hypothesis that different modelling conceptions originate in

different conceptions of mathematics, mainly from the actions of Maria Estela. In

this regard, we emphasize the role of the teacher in the negotiation spaces to

destabilize certainty with respect to mathematics. Another issue that was left

open is whether the negotiation between Maria Estela and the teacher could also

be interpreted as a negotiating of power between them, since the (mathematics)

teacher held the power that Maria Estela wished to support her arguments against

the Government of the State of Minas Gerais, while she herself held the power to

have the information used in the project.

Based on these questionings, we want to emphasize the importance of such

research which focuses on negotiation spaces in mathematical modelling milieus,

both from the point of view of the organization of modelling activities and the
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development of the scientific field. From the point of view of organization of

activities, these spaces allow students, even in their first experience with modelling,

to have authentic experiences (Barbosa 2007). From the perspective of the scientific

field, to analyse negotiations in these spaces can help us understand what happens

when different activities of investigative character are incorporated into the daily

life of the classroom, allowing discussions regarding conceptions of mathematics

and issues of power.
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desenvolver modelagem matemática em sala de aula. Boletim GEPEM, 55(3), 175–192.
Vianna, H. M. (2003). Pesquisa em educação: a observação. Brası́lia: Editora Plano.
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Chapter 24

Moving Beyond a Single Modelling Activity

Jonas B. Ärlebäck and Helen M. Doerr

Abstract In this theoretical chapter, we draw on a models and modelling perspec-

tive on teaching and learning to elaborate on the components of model development

sequences using the lens of variation theory. We give empirical examples of how

model exploration activities and model application activities can be described and

understood from a variation theory perspective. The chapter concludes by

presenting tentative principles for the design of such activities within a model

development sequence.

24.1 Introduction

Despite the steadily growing body of resources and research on the teaching and

learning about and through mathematical modelling, the uptake and impact of

mathematical modelling in classroom practice remains limited (Niss et al. 2007).

Traditional methods of teaching prevail in most classrooms, and often the adopted

textbook dictates the form and content of the implemented curriculum. The

approach to modelling in many textbooks can at best be described as what Blum

and Niss call “the island approach” (1991, p. 60), where a given mathematical

content is first treated purely from a mathematical point of view, and application

and modelling tasks coupled to the specific content are addressed after the formal

mathematics has been established. In some textbooks applied problems are used as

vignettes to introduce mathematical content. Typically however, modelling tasks

are like isolated islands in the ocean of pure mathematics.
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In this chapter, we want to move beyond an isolated, single modelling activity

and focus on sequences of modelling tasks that facilitate the development of

learners’ mathematical ideas and modelling competencies. One approach taken in

this line of research is that adopted by Barquero and colleagues (Barquero

et al. 2007; Barquero et al. 2013). These researchers draw on the Research and

Study Course methodology and praxeologies from the Anthropological Theory of

Didactics (Chevallard 2004, 2006) as didactical devices to teach mathematics and

mathematical modelling at the university level to first year technical engineering

students. Another approach that moves beyond a single modelling activity is that of

Dominguez and colleagues, who integrate first year university courses in mathe-

matics and physics (Dominguez et al. 2013; Dominguez et al. 2015). In their

research, modelling tasks form the basis for simultaneously learning mathematical

models and their applications in the physical world. A research study at the upper

secondary level by Galbraith and Clatworthy (1990) has demonstrated how a

modelling strand conducted in parallel with conventional mathematics coursework

over a 2-year period can develop students’ abilities to use modelling skills within

and outside of mathematics. This study also points to the need for a pedagogy that

supports this development. Our approach to this line of research has been to

examine and investigate model development sequences proposed by Lesh and

colleagues (Lesh and Doerr 2003b; Lesh et al. 2003). While model development

sequences have received some attention in the research literature, we want to

elaborate on the design and conceptualization of model development sequences

using variation theory (Marton and Booth 1997; Marton and Tsui 2004). Our goal in

this chapter is to draw on variation theory and our own empirical research to

formulate tentative design principles for model exploration and model application

activities, within a model development sequence.

24.2 Models, Modelling, and Model Development
Sequences

Model development sequences are situated within a contextual perspective on

modelling (Kaiser and Sriraman 2006) in which learners are confronted with

activities where they need to develop mathematics to make sense of meaningful

situations. The goal of such activities is for the learners to develop a conceptual

system or model that can be shared with others and used for sense making in

structurally similar contexts. More precisely, “models are conceptual systems

(consisting of elements, relations, operations and rules governing interactions)

that are expressed using external notation systems, and that are used to construct,

describe, or explain the behaviours of other system(s)” (Lesh and Doerr 2003a,

p. 10).

Much research within this perspective has focused on model eliciting activities
(MEAs) that confront learners with the need to initially develop a model to make
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sense of a meaningful situation. There are six well-established principles for

designing MEAs that are grounded both theoretically (Lesh and Doerr 2003b;

Lesh and Zawojewski 2007) and empirically in multiple settings (Diefes-Dux

et al. 2006; Iversen and Larson 2006; Lesh et al. 2000; Yoon et al. 2010). In

model development sequences, MEAs are the starting point, designed to elicit

learners’ initial ideas about a problem situation in such a way that their thinking

is made visible both to the learners themselves and to their teachers. In a model

development sequence, the MEA is followed by one or more structurally related

model exploration activities (MXA) and model application activities (MAA), as
shown in Fig. 24.1. These subsequent activities are intended to support learners

in developing their initial ideas or models. However, design principles for these

activities have not yet been theoretically developed and empirically grounded; we

aim to contribute to that development and grounding in this chapter.

The focus of a model exploration activity (MXA) is on the underlying mathe-

matical structure of the elicited model. These activities provide learners with

opportunities to make the model an explicit object of thought. This is achieved as

learners develop representational systems and language to use in thinking about

their models. The explorations of structure can involve investigating algebraic

representations, tables, interactive graphics, diagrams, animations or simulations.

A goal for MXAs is for the learner to experience the different strengths of various

representations, the structural similarities and differences between and among

representations, and ways of using different representations purposefully and pro-

ductively. In model application activities (MAAs), learners apply their initially

elicited model to new phenomena, situations and contexts. By applying their model

in new contexts, learners are often led to make further adaptations to the model, to

extend representations, to deepen their understandings or to refine language for

describing situations (Lesh et al. 2003; Lesh and Doerr 2003b).

Throughout a unit of instruction designed as a model development sequence,

learners develop their models through interacting with other learners and engaging

in multiple cycles of conjecturing, interpreting, describing and explaining (Lesh

Fig. 24.1 The general

structure of a model

development sequence
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and Doerr 2003a). We have recently been examining how variation theory might

help us to better understand how to design effective MXAs and MAAs to support

student learning. The methodology to reach this goal has been an iterative dialectic

approach, where we have coordinated our empirical results with the tenets and

constructs of variation theory.

24.3 Variation Theory

Rooted in phenomenography, which focuses on the nature of experiences and “is

the empirical study of the limited numbers of different ways in which various

phenomena in, and aspects of, the world around us are experienced, conceptualized,

understood, perceived, and apprehended” (Marton 1994, p. 4424), variation theory

is an experiential theory (Ko and Marton 2004). A central tenet of variation theory

is to consider what knowledge learners are intended to learn in a particular setting,

the object of learning, when designing the teaching and learning (Runesson 2005).

Learning comes about through discerning critical aspects and features of the object

of learning, along dimensions of variation in experiences. It is the variation that

opens up the possibilities for the learner to become aware of the critical aspects of

certain content and facilitates the development of targeted capabilities for solving

problems.

All capabilities have both specific aspects and general aspects (Marton

et al. 2004). The specific aspect is concerned with the knowledge of a particular

content of a given subject, whereas the general aspect focuses on the capability or

values that learners can develop through learning the content. It is through the

general aspect that multiple specific aspects are woven together to a more coherent

body of knowledge (Lo 2012).

From a variation theoretical point of view, it is imperative to pay attention to

what varies and what stays invariant in any learning situation. Variation makes

certain critical aspects appear in the foreground, while other aspects remain in, or

are pushed into, the background. This opens up the possibilities for the learners to

discern the critical aspects in a learning situation. Marton et al. (2004) discuss the

following four “patterns of variation” (p. 16), or types of variation: contrast,
generalization, separation, and fusion. Variation by contrast stems from the pre-

mise that in order to experience something in the first place, there must be a

comparison with something else. Hence, contrast variation makes it possible to

discern a new aspect of a particular object of learning. When an aspect is discerned

and has manifested itself in the learners’ awareness, generalization needs to occur

for the learner to understand the discerned aspect as fully as possible; this will

enable the learner to identify the discerned aspect in different situations, settings

and contexts. This type of variation that develops a more general understanding of

the object of learning is called generalization. Equally important as obtaining a
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generalized understanding of an aspect of the object of learning is for the learner to

crystallize the discerned critical aspect with respect to another critical aspect.

This variation of separation means varying the critical aspect while keeping

other critical aspects invariant, so that the critical aspect discerned is separated

from other critical aspects of the object of learning. When the object of learning is

complex and construed by multiple critical aspects, these aspects need to be fused,
so that the learner can gain a holistic understanding of the object of learning rather

than experiences of isolated critical aspects. By varying multiple critical aspects at

the same time, the learner experiences the complexity of the object of learning by

fusing together multiple critical aspects.

In variation theory, designing learning environments is about creating a space

that opens up dimensions of variation challenging the taken-for-granted nature of

learners’ experiences. This space of learning provides opportunities and makes it

possible for the learner to experience the designed variation in an instructional

sequence, and thereby learn. The experienced variation enables learners to discern

the distinctions realized in language, and linguistic distinctions enable learners to

discern the variation. In this way, language is a key means by which a shared space

of learning is constructed by teachers and learners (Marton and Tsui 2004).

24.4 Model Development Sequences in the Light
of Variation Theory

We examine model development sequences in terms of variation theory by identi-

fying the objects of learning within a given sequence. In so doing, we will identify

different patterns of variation that occur in MXAs and MAAs within a model

development sequence and we will draw on those patterns in formulating tentative

design principles for MXAs and MAAs. The examples given below come from a

model development sequence centred on the concept of average rate of change (see

Ärlebäck et al. 2013 for further details). This particular sequence begins with a

MEA that elicits students’ initial models of rates of change by using the learners’
bodily motion and motion detectors. This is followed by model exploration activ-

ities using a computer simulation of motion along a straight path. The sequence

ends with two model application activities: one investigating how the light intensity

varies with the distance from a point source, and one examining how the voltage

drop changes across a discharging capacitor in a simple resistor-capacitor circuit.

The goal with the MEA is for the learners to think up their models of rates of change
and to collectively participate in a shared space of learning where the objects of

learning can be subsequently explored and applied. Our tentative principles for

designing model exploration and application activities will be discussed in the

following section.
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24.4.1 Principles for Designing Model Exploration Activities

The purpose of an MXA is for the learner to explore the mathematical structure of

the elicited model, that is, to think about the model. The fundamental dialectic

relationship between the learners’ experiences and language development stressed

in variation theory align with the models and modeling perspective’s very definition
of models, where a central feature is for the learners to be able to express their

conceptual systems (models) using external notation systems. Language in general

and mathematical representational systems in particular are the key external nota-

tional systems that enable learners to express and share their evolving mathematical

thinking in a shared space of learning, and render it possible for new critical

features to be experienced and discerned through different patterns of variation.

Hence, in designing MXAs within a model development sequence, special attention

should be paid to the evolving space of learning initially spanned by the MEA,

engaging and to furthering the learners’ precise and careful use of language and

representations. This suggests the following principles for designing MXAs. A

model exploration activity should engage the learners in

1. contrasting strengths and weaknesses of various representations;

2. using language precisely and carefully;

3. using representations purposefully and productively.

The intent of these three design principles is to guide the development of

modelling activities to engage learners in thinking about their models. As the first
principle indicates, contrast variation is key in comparing strengths and weaknesses

of various representations. The variation of separation is key in gaining an under-

standing of when and why a particular representation can be more productively

used than another.

24.4.1.1 An Example of Contrast Variation

We illustrate the pattern of contrast variation in the model exploration activity in

the model development sequences centred around average rate of change. We

designed an activity focusing on the difference between the concepts of speed

and velocity. Learners’ difficulties in understanding these notions are well

established in the research literature (see Ärlebäck et al. 2013 for an overview).

Contrast variation makes it possible to discern a new aspect of a particular object of

learning by comparing it with some other aspect. The learners had worked with and

established relationships between piecewise linear position graphs and their

corresponding velocity graphs for scenarios with non-negative velocities. When

velocity is non-negative, speed and velocity appear as identical quantities. In this

MXA, negative velocities were introduced to contrast different aspects of the

corresponding speed and velocity graphs for the position graph of an object moving

with a negative velocity.
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Given the position graph in Fig. 24.2a, the learners are asked to construct both

the velocity graph and the speed graph, thereby beginning to sort out the structural

differences and similarities between speed (Fig. 24.2b) and velocity (Fig. 24.2c).

The relationship between speed and velocity can then be further explored by using

situations described by more complex piecewise linear position graphs.

24.4.1.2 An Example of Variation of Fusion

Multiple aspects of complex objects of learning need to be experienced simulta-

neously at the same time in order for the learner to fuse them together into a

coherent whole. In the model development sequence focused on average rate of

change, an intended object of learning is for the learners to coordinate and under-

stand the relationship between a moving character’s animated motion, its position

graph and its velocity graph (see Fig. 24.3). Dynamically linking the character’s
walking with its graphical representations, the learners explore different walking

scenarios, which thereby opens up the possibility for the learners to fuse these three

aspects of this particular object of learning (i.e., the average rate of change).

24.4.2 Principles for Designing Model Application Activities

The purpose of a MAA is for students to think with their model in a range of

situations. By applying their models in new contexts, learners are often led to make

further adaptations to their model, to extend representations, to deepen their

understandings or to refine language for describing the situation. Introducing new

contexts expands the space of learning, integrates and connects new models (along-

side with the structural aspects, use of language, and representation that comes with

the connected model). Hence, central for the design of MAAs is to systematically

vary the context in which the learners are to apply their models. This suggests the

following principles for designing a MAA. A model application activity should

engage the learners in

Fig. 24.2 Related position (a), speed (b), and velocity graph (c)
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1. using their model in a variety of distinct contexts;

2. extending their models or connecting their models to other models;

3. using language to interpret, describe and/or predict behaviour of a real

phenomenon.

These three design principles are intended to guide the development of model

application activities that support the learner in thinking with their model so as to

develop a generalized model (or conceptual system) that can be productively used

in a range of contexts. We give brief examples suggesting how these principles are

informed by variation theory.

24.4.2.1 An Example of Variation of Separation

By varying a discerned critical aspect while keeping other critical aspects invariant,

the discerned critical aspect is separated and kept distinct from other critical aspects

of the object of learning, so as to crystallize the learner’s understanding of that

aspect. In the model application activity with the discharging capacitor, the learners

developed exponential models of decay to describe and predict how the voltage

across the capacitor changes as the capacitor discharges. By varying only the

resistance or the capacitance in the circuit, the learners investigate the effect that

different values of resistance and the capacitance had on the rate at which the

capacitor discharged. Since other aspects of the circuit remained invariant, the

learners had the opportunity to interpret the effects of the change in resistance on

the graphical representations and in the exponential algebraic expressions model-

ling the voltage drop across the discharging capacitor.

24.4.2.2 An Example of Variation of Generalization

To develop a generalized understanding, the learner needs to identify a discerned

aspect (in this case, average rate of change) in different situations, settings and

Fig. 24.3 The coordination of simulated motion, position and velocity graphs (Kaput & Roschelle

1996)
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contexts. In the model development sequence, the aspect of generalisation is

manifested in the learners being exposed to the three contexts of (a) enacted and

animated motion along a straight path; (b) how light intensity from a light source

varies with the distance from the source; and (c) how the voltage across the

discharging capacitor varies with time. In all these contexts, the learners used

their models of average rate of change to make sense of the changing phenomena

in each of these situations, by applying, extending, connecting, and further devel-

oping their models of average rate of change.

24.5 Discussion and Conclusions

Our discussion of variation theory and model development sequences suggests that

the point of departure for any instructional unit should be grounded in the learners’
experiences. Model eliciting activities provide the learners with opportunities to

begin with their experiences and express their thinking using the language and

representations they have at hand, thus making public the elements of a shared

space of learning. By systematically using variation of contrast and separation in

model exploration activities, this shared space of learning can then be modified and

developed as new critical features of the model structure are discerned and

explored. Explicitly attending to different patterns of variation opened up the

possibilities for the learners to extend the space of learning and deepening their

mathematical learning. The collectively created shared spaces of learning then

support the learners in generalizing and fusing multiple aspects of more complex

objects of learning.

The tentative principles for designing model exploration activities and model

application activities we have presented are both theoretically grounded and

supported by previous and on-going empirical research. Taken together, these

tentative design principles potentially provide the foundation of a framework for

a pedagogy of modelling that is both theoretically and empirically driven. One

implication of this work is, that for learners to develop useful mathematical

knowledge and modelling competencies, we need to move beyond sporadically

implemented islands of isolated good modelling tasks (Blum and Niss 1991), and to

focus research on the design and implementation of sequences of modelling

activities. However, implementing model development sequences in schools pro-

vides challenges for the teacher, especially if different types of variation are to be an

integral part of what drives the learning. Hence, studies focusing on how to

characterize productive teaching practices drawing on both model development

sequences (and units of instruction that move beyond single modelling activities)

and variation theory are needed.

Model development sequences can be seen as a general framework for designing

and implementing learning activities that allows extensions by drawing on and

connecting to other theoretical frameworks. In this context, the variation theoretical

framework can be applied in a self-similar way to the model development sequence
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at different levels. Foremost, variation theory can inform and shed light on the

sequence of modelling tasks taken as a whole where the different types of model-

ling tasks (the MEA, MXAs, and MAAs) are regarded as the constitutive parts of a

model development sequence. The individual tasks in the sequence all address

special aspects of the object of learning. The development and ability to produc-

tively apply and modify a given model in different situations and settings, is the

general aspect of the object of learning, whereby learners develop the capability to

have a dynamic and flexible understanding of the model in question. Another

possibility variation theory offers, is to take the development of the learners’
modelling competences as the general aspect of learning and the specific aspect

to be the development and the learners’ ability to apply a particular model in

different situations and settings. The latter application of variation theory, as well

as the synergy between applying variation theory at the two levels of model

development sequences, are challenging endeavours, but nevertheless seems a

promising line for future research.
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Chapter 25

The Possibility of Interdisciplinary
Integration Through Mathematical
Modelling of Optical Phenomena

Jennifer Valleriano Barboza, Luana Tais Bassani,
Luciano Lewandoski Alvarenga, and Lucilaine Goin Abitante

Abstract Currently, several methodologies emerge with the intent of contributing

to meaningful learning, among which mathematical modelling stands out, making it

possible to relate mathematics to everyday problem situations and other disciplines.

An extension program was developed using this methodology to approach optical

phenomena in an interdisciplinary teaching process for mathematics and physics.

The target audience was teachers and future teachers of these disciplines and the

purpose was to promote practices that contribute to their training, encouraging them

to organise activities with their high school students, integrating these disciplines.

Therefore, four experiments were conducted involving physical and mathematical

concepts, allowing the creation of generic models and practices that promote

meaningful learning.
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25.1 Theoretical Framework and Justification

Currently, one can see that many elementary education students demonstrate an

aversion to the discipline of mathematics, that happens because of how the subject

is introduced in schools, considering it is, at times, disconnected from reality or it is

seen by students as something final and hardly understandable (Bassanezi 2002). A

possibility to reverse this scenario in the educational environment would be devel-

oping a way to educate through commitment to connecting the reality surrounding

individuals and their society (Bassanezi 2002). After all, the way of teaching and

intellectualising students is related to their time of existence and surrounding

society (Kuenzer 2007).

Based on this, it is necessary that teachers look for alternatives, with the

objective of including mathematical instruments, which should be connected to

the other areas of human knowledge (Bassanezi 2002). Besides, it is known that the

learning process, when contextualized with other knowledge areas, makes it possi-

ble for students to mobilize competences and solve real-world practical problems,

and, also, it stimulates their creativity and curiosity, a fact that may be assured

considering that:

Given the worldwide impending shortage of youngsters who are interested in mathematics

and science it is necessary to discuss possible changes of mathematics education in school

and tertiary education towards the inclusion of real world examples and the competencies to

use mathematics to solve real world problems. (Kaiser and Stillman 2011, p. v)

On the other hand, several methodologies arise with the objective of contributing

to meaningful learning, among which is the approach of making it possible to relate

mathematics to everyday problem situations and to other disciplines (Scheffer

et al. 2006), by promoting the learning of abstract concepts in many areas of

knowledge, since, according to Bassanezi (2002), it is a process that connects

theory to practice. By varying the pedagogical practice, the teacher can contribute

to the teaching-learning process, if not the students might become distracted and

lose their concentration and will to participate and learn (Braguim 2006).

Thus, it is possible to note the importance that teachers be in continual profes-

sional development, in order to follow pedagogical changes that may be introduced

into the classroom. For this reason, it is possible to talk about initial, continuous and

specialised graduation of teachers and still, emphasise continuous qualification, due

to its importance, because the professional is part of on-going knowledge construc-

tion and professional development (Anfope cited in Nunes 2000).

Furthermore, it is also verified how important it is for the teacher to develop

interdisciplinary activities. After all, as mathematics and physics are related to

several human activities and natural phenomena, it is also convenient that they are

related in the classroom, consequently altering the situation currently observed in

several schools in Brazil, where the curriculum separates the teaching into disci-

plines (Couto 2011). When it comes to interdisciplinarity, the individuality of the
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subjects is maintained, but they are brought together by demonstrating the multi-

plicity of factors which influence reality and the necessary language in certain

knowledge domains needed to be used (Brasil MEC 2002), which is supported by

Jackson and Davis (2000, p. 49) who note that “for schools that understand the

power of the big ideas for deepening the curriculum within disciplines, using that

power to show connections across disciplines is a logical step”. However, these are

practices that require the dedication of those involved, since these practices are not

built overnight, and the professional needs are of a reflexive consciousness

(Fazenda 1994).

In accordance with Fazenda (1996), interdisciplinary work is compromised by

society in general, and by considering the intentionality in which the participants

propose to teach, and to interfere in their daily lives and, thus, produce knowledge.

Knowledge is produced, after all, by the union of subjects and knowledge areas, and

the learning process shapes a quality educational system, thus approximating the

learned subjects to students’ daily lives, ignoring the education fragmentation.

Therefore, the curriculum should be integrated and interdisciplinary, so that, it is

possible to reduce isolation and fragmentation, since it is necessary to recognize the

constant knowledge construction, in an interdisciplinary and contextualized way,

resulting from individual and collective actions from the participants (Veiga 2008).

In this context, one can also justify the use of teaching mathematical modelling,

as it allows the expression of everyday problems in a mathematical language and

finding their solution by interpreting while relating them to the real world

(Bassanezi 2002; Biembengut and Hein 2011). Through mathematical modelling,

the teacher becomes a mediator in the construction of knowledge and is able to

facilitate the student in searching for solutions, modelling them mathematically,

and creating mathematical models which represent the proposed situation (Scheffer

et al. 2006). For Wessels (2014, p. 2),

various research studies reported on in the literature point out the feasibility and success of

a modelling approach in mathematics wherein rich, complex, open tasks are used to

construct meaningful mathematical knowledge to prepare learners for everyday life, ter-

tiary studies and their future careers.

In this context a project for extending the professional learning of teachers was

developed using this methodology with an optical phenomena approach to teaching

mathematics and physics. The project involved conducting a literature search on

geometric optics and mathematical modelling, fabricating roadmaps of activities,

developing and building experiments that enabled mathematical modelling by

observing optical phenomena, as well as organising and developing workshops

that led to the ongoing training of mathematics and physics teachers. This chapter

reports how the workshop dynamics happened and what was learnt by the teachers

and the participants.
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25.2 Methodology

The extension program began in October 2012 and was developed through math-

ematical modelling when approaching optical phenomena in the teaching of math-

ematics and physics. The target audience was the teachers from these disciplines,

from public and private schools from the city of Conc�ordia, Brazil, and

surroundings.

To accomplish this, the workshops were organized around four experiments

involving constructed concepts developed in physics related to the reflection of

light, specifically angular association, translation and rotation of flat mirrors, as

well as mathematical concepts and processes such as: recognition of variables;

directly and inversely proportional magnitudes; angles; one angle bisector; tabula-

tion and interpretation of data; graphical representation; understanding of mathe-

matical functions and relationships, with the goal of creating generic models; and

being able to view an application of limit of a function.

Some of these concepts were approached as an introduction and others were

discussed by the participants while handling the experiments and interacting in

groups. These discussions treated, at various times, hypotheses, findings and vali-

dation, which helped the participants know the phenomena and model them math-

ematically. At the end, participants created mathematical models and then judged

their validity.

25.3 Workshop Details and Observations

From the achievements of the course, the materials used for the proposal are

described in this section, as well as in the subsequent section where the analysis

and considerations obtained are described.

25.3.1 Participants

The workshop was delivered on four different occasions. Initially, the target

audience was the future teachers and teachers who were already working at public

schools (Licentiate students in physics – Campus Conc�ordia). It was also

implemented during the Academic week at the Rio do Sul Campus, with Licentiate

Students in Mathematics and Physics, and it was proposed in the form of a short

course at the International Congress of Mathematics Education (VI CIEM), which

was conducted in October 2013. When thinking about applying this practice for

basic school students, the researchers intended to offer the courses for the teachers,

in a way that every teacher involved, after familiarising themselves with the

proposed activities, would develop it with their students.

308 J.V. Barboza et al.



25.3.2 Methods and Materials

The proposed activities were implemented in groups of 5–10 people, in a way that

each group received one of the experiments. Data collected for the evaluation

reports involving the workshop, included discussions raised by the groups and

photographs of the participants’ scripts developed to obtain the proposed model.

25.3.2.1 Flat Mirror Movement

The phenomenon of flat mirror movement can be considered the easiest among the

four phenomena considered in the workshop. In order to build it (see Fig. 25.1), it

was necessary to use a mirror (20 cm � 20 cm � 4 mm), a wooden board marked

with lines of measurement covering approximately 90 cm and three objects.

Initially the participant is asked to manipulate the experiment –object/mirror, in

order to perceive the existing relations between the distances from the mirror to the

object and the virtual images obtained with and without displacement, which can be

modified.

25.3.2.2 Combination of Flat Mirrors and Parallel Flat Mirrors

In order to approach the next phenomenon, an experiment was initially proposed

involving the mirror combination, with two manipulated angle mirrors and after

another one, related to the combination of two flat parallel mirrors (0	 angles to

each other).

The first experiment (Fig. 25.2) required two mirrors (one 40 cm � 40 cm �
4 mm and another 40 cm� 39 cm� 4 mm), a hinge, silicone gel, a circular wooden

board with a diameter of 40 cm with an angle representation of 0	 to 360	 and a cut

Fig. 25.1 Mirror movement (Abitante et al. 2013)
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of 20 cm forming a radius of a circle (to balance the mirror). With this experiment,

participants manipulated it in order to change the angle and make the first obser-

vations and notes, making it possible to understand which quantities were varying

(i.e., number of images and angle). When the mathematical model was obtained, the

participants manipulated a similar experiment, which allows an interesting appli-

cation (see Sect. 25.4 for details).

During the initial activities the participants conducted the experiment by altering

the angle and making their first observations and notes, allowing them to notice

what the varying magnitudes were (i.e., images and number of angles). The next

task was to build a chart. From the following activities, it is intended that the student

observes that the smaller the angle, the bigger will be the number of images. Thus, it

is possible to verify the nature of the proportion involved (i.e., inverse) and the

operation in which the variables are related (i.e., division). Through subsequent

activities, it can be noticed that there are angles at which there are no images and the

relation between the number of images (denoted as N ) and the angle (α), comes to

an initial mathematical model, which will probably need to be complemented.

Observations from the implementations reveal there were groups that have

developed this project and built the model without using all the questions provided

in the guideline booklets, being able to confirm their impressions, because the task

solver is asked to observe that one of the visualizations is the real object itself,

implying it will be subtracted from the model, making the model come closer to

satisfying tests to be carried out in a subsequent task. In an intermediate activity,

through the creation of a chart, the behaviour is related to a possible mathematical

function that is to be expressed by the model discovered. Thus, the mathematical

law is obtained which expresses the situation, namely N ¼ 360	
α � 1.

Fig. 25.2 Combination of

flat manageable mirrors

(Abitante et al. 2013)

310 J.V. Barboza et al.



A final task refers to an infinitely small angle so as to tend to zero, allowing the

introduction and application of the limit of a function concept starting with the

second experiment (see Fig. 25.3) – the materials involved were similar (according

to Fig. 25.2). Through this experiment the student observes that when the angle

among the mirrors tends to zero, infinitely many images are formed, a phenomenon,

which is justified by the model. After all, when zero is substituted for α, division is

undefined. Thus, it is apparent that there is no division of a number by zero; instead

there is the limit, or, when the angle tends to zero the number of images tends to be

infinite, or in other words, when the independent variable is in the denominator and

tends to zero, the limit of the function tends to infinity.

25.3.2.3 Mirror Rotation

For an experiment dealing with mirror rotation (see Fig. 25.4), a mirror (20 cm �
20 cm � 4 mm) shaped as a quadrant of the circle and another square-shaped, a

laser source and mathematical tools such as protractor and ruler were used. In this

experiment, it is possible to manipulate the incident ray and the reflected ray, as

well as the mirror’s rotation angle, which allows the participant to establish

mathematical relations that address diverse mathematical concepts.

Fig. 25.3 Combination of

flat parallel mirrors

(Abitante et al. 2013)
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25.4 Results Analysis

In this section, aspects such as participation in the process of manipulation of the

experiment, considerations discussed in attempts to develop a model and conclu-

sions drawn in each of the experiments are analysed, observed in different groups

with whom the workshop has been used.

In the Flat Mirror experiment, participants were required to manipulate it. From

this point, the observations were discussed; from this it is possible to see that the

object and its image have a symmetric distance to the mirror, and that when

changing the location in which the mirror is inserted, the distance between the

two virtual images is twice the displacement from the mirror. These conjectures

allowed the establishing of relations to represent them by using mathematical

language. After analysing what was observed, the groups tried to use a new distance

to validate their model. This guidance was aimed at ensuring that, in the mathe-

matical model, the group had not operated with the sum of the number by itself,

instead of doubling the distance, thus, ultimately testing the elaborated model. In

this way, it was observed that the participant was able to obtain a mathematical law

to adequately describe the model and predict other results, to manipulate object and

/or mirror. Another observation was that the groups who started with this experi-

ment were able to understand and develop the mathematical model of the subse-

quent experiments with greater ease than groups who started the other two

experiments without this knowledge a priori.

As for the Combination of Flat Mirrors and Parallel Flat Mirrors experiment it
is possible to report that to obtain different data with the initial trials, data on the

number of images and angle were organized in a table. For Bassanezi (2012) the

modelling can start with an obtained data chart thus differing from Biembengut and

Hein (2011)’s assertion, which indicates that a picture or constructing a graphical

representation can already be considered as a model.

Fig. 25.4 Laser focusing

on the mirror (Abitante

et al. 2013)
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Next, the participants observed that the smaller the angle between the mirrors,

the larger the number of images. Thus, it was verified that there was a relation

considering that while the measure of the angle rises, the number of images lowers

and there are certain angles where there is no image and no finite result for the

operation in which the variables are related (division). When analysing the table, it

was possible to relate the number of images and the angle obtaining an approxi-

mation of the mathematical model, something similar to N ¼ 360	
α , which needed a

complementation so that a final validation was possible, since this mathematical

law did not satisfy the data from the table. We noted that there were groups who

developed this experiment and built the model making use of other perceptions

attributed by the manipulable material, since one of the views is the actual object

itself, which implies being subtracted and thus satisfies the table data when

substituted into the model. Thus, the mathematical law that expresses the situation:

N ¼ 360	
α � 1was elaborated. In addition, there were occasions when there was time

for the group to plot the graph of the data table, which also contributed to the

analysis and validation of the developed model.

Finally, the participants were guided to observe what would happen if they used

an angle as small as possible, with, the smallest angle obtained experimentally

being approximately 20	, depending on the hinge between the mirrors. After the

discussions, the second part of the experiment (Fig. 25.3) was introduced, which

refers to a considerably small angle in order to tend to zero, allowing the introduc-

tion and application of the concept of limit of a function. With this, the participant

visualized and concluded that, when the angle between the mirrors tends to zero,

infinite images are formed, which is also justified by the model as mentioned

before. This was considered one of the most important outcomes by the teachers

and future teachers who participated.

For the Mirror Rotation experiment previous concepts were discussed in the

group, such as what the incident ray, reflected, normal and bisector line were. Then,

the participants were oriented to direct the laser onto the mirror, from the different

angle of 90	; after all, with this angle the incident ray forms a straight line which

coincides with the line segment formed by the reflected ray. This way, the groups

recognized and traced the incident and reflected rays, as well as the normal line

perpendicular to the surface. With this, the angle of incidence of the laser is

maintained and movement is performed with the mirror so as to create a rotation

angle, from which the rays are traced back and Normal. Subsequently, it was

verified that, when prolonging the rays, some hypotheses about the existing relation

between angles may be implied. When measuring them, it was concluded that the

obtained angle equals the double of the rotation angle.

Moreover, it should be noted that participants appreciated the workshop, and

expected good results when developing it with their students in the future. How-

ever, they also discussed how much it would take them to build the experiments,

and considered if it was feasible using less material, thus lowering the cost.

Participants were invited to use the teaching laboratory at the institution that funded
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the development of the project in order to make the materials available for teachers

to use with their class.

25.5 Final Considerations

The construction of the optical experiments was intended to bring knowledge areas,

such as mathematics and physics together and provide in-service and future

teachers opportunities for activities that join these two areas. By handling the

experiments, the participants were able to define the problems, elaborate the

hypothesis, deduce and validate mathematical models in accordance with the

objectives of mathematical modelling, outlined by Silva and Almeida (2005).

Through these activities it was noticed that the mathematical models have great

importance in the teaching of physics, because participants understood the theory

through practice. Furthermore, it was possible to notice that in order to elaborate

physical experiments, it was necessary to understand the underlying mathematical

concepts. With respect to this, Campos (2000) states that these sciences comple-

ment each other, so that the mathematics enables a consistent physics, which is not

used only to formulate models.

In developing the workshops it was noted that both the insertion of mathematical

modelling as an interdisciplinary process and the use of manipulative experiments

contributed to the learning of mathematical and physical concepts involved and

stimulated the interest of the participants. It was found that the interdisciplinary

proposal approached both disciplines while it allowed the students to expand their

knowledge and broaden their vision on everyday situations. As much as some

proposals – as the interdisciplinary ones or the ones involving mathematical

modelling – are able to challenge teaching practice, since they take time, dedication

and the collaboration of all the people involved, it is up to the teacher to accept the

challenge and become involved, to facilitate the student’s understanding while

facing problem situations and increasing the possibilities of understanding physical

and mathematical concepts through mathematical models.

Through the first experiment, it was observed that participants often used the

manipulation of the mirror and the object to validate their results, find and establish

relationships. Moreover, it was possible to realize that the model is easy to

understand, making it possible for the teacher to perform this activity with their

students. The second experiment improved the participants’ mathematical knowl-

edge, because it allowed them to better comprehend mathematical concepts that are

complex, such as the limit of a function. For this activity, the discussion generated

made it possible for participants, after group discussion, to establish relations that,

without the experiment, would probably not have been perceived. With the third

experiment, it was possible to perceive that physics concepts and basic mathematics

may be understood by students, such as definitions of angles, reflection, and

refraction, amongst others.
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In general, it was observed that the proposed interdisciplinary activities provided

participants with the application of physical and mathematical concepts, which

helped them analyse aspects, without which, the experiment would be difficult to

understand, besides stimulating the participant group to discuss possible scenarios

and solutions in order to obtain the appropriate mathematical model for each

situation. Finally, it would be possible to complement the experiments by using

the laser in an aquarium with water, since it is possible in this context for a teacher

to approach the trigonometric relationships through the phenomenon of refraction

of light.
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Chapter 26

Activation of Student Prior Knowledge
to Build Linear Models in the Context
of Modelling Pre-paid Electricity
Consumption

José Luis Bossio Vélez, Sandra Milena Londo~no Orrego,

and Carlos Mario Jaramillo L�opez

Abstract This chapter presents partial results from a research project developed

through a case study of ninth grade students attending a country secondary school in

Colombia. The purpose of the study was to analyze mathematical modelling

activity in the classroom addressing the students’ social and family situations.

From the products and interpretations of some students in the creation of particular

linear models in a school context, we could observe the reality the students live,

brought to the classroom through the activities of the modelling process and their

arguments built around problem solving. The study shows that it is not necessary

for the teacher to suggest or make up real-world problems for modelling situations

for students to work on in class as the students pose appropriate situations to model

in the classroom from their our prior everyday experiences.

26.1 Introduction

This case study is an analysis of the mathematical modelling process applied by

secondary school students to situations from their sociocultural contexts addressed

in their classrooms. The ninth grade students activated prior knowledge of their
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particular real-world contexts to build their own linear models. Likewise, we

consider the discussion about ways to facilitate students to describe school math-

ematics with examples from their life experience, through a mathematical model-

ling process from an educational perspective.

26.2 Problem

The Ministry of National Education (MEN), the institution responsible for the

regulation of education in Colombia, points out that:

The learning of mathematics begins with informal mathematics from students in real-world

contexts and from school every day. It is necessary to mix the learning process for the

construction of contexts and situations that allow moving towards formal mathematics.

(MEN 2006, p. 78)

We understand this as an effort to recognize the reality of students, which

involves semantic and conceptual relationships that arise from their particular

cultural and historical context, so that new social purposes may be added to school

mathematics education. On the other hand, it is also a starting point for students to

recognize definitions, properties of mathematical objects, axioms, theorems and

algorithmic procedures from formal mathematics.

In the Lineamientos Curriculares para la Educaci�on Matem�atica (Curricular

Guidelines for Mathematics Education, MEN 1998), the teaching of school math-

ematics is presented as follows:

• Basic knowledge: numerical thinking and numerical systems, spatial thinking

and geometrical systems, metric thinking and measurement systems; probalistic

thinking and data systems; and “variational thinking and algebraic and analytical

systems”

• Processes: reasoning, problem posing and problem solving, modelling, commu-

nication; development, verification and execution of procedures

• Contexts: from mathematics itself, in everyday life and other sciences.

Accordingly, we think it is important to consider mathematical modelling aimed

at supporting variational thinking, and algebraic and analytical systems, in relation

to situations in the context of the everyday life of the student. Taking the example of

mathematical modelling in Colombia, it is still in a preliminary stage, even though

it is one of the processes for the mathematical classroom advocated by MEN since

1998 (Villa-Ochoa et al. 2009).

In our study, students developed a mathematical modelling process in the

classroom to generate linear models from an everyday experience. The participants

in the study lived in a rural area of the region of Urabá. Therefore, the question that

guided our research was:

How does a group of ninth grade students generate linear models in a process of

mathematical modelling from a situation in context?
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In order to answer and analyse this question, from the particular everyday prior

experiences of the student, we observed aspects such as the use of context, building

of linear models and their use. This enabled us to describe how social and cultural

factors engage students to use school mathematics.

26.3 Theoretical Considerations

In our study, theoretical referents from Niss et al. (2007) were considered regarding

connections between the real world and mathematics through a mathematical

modelling process, from the educational perspective related with the teaching and

learning of school mathematics; although there are other perspectives for mathe-

matical modelling as outlined in a classification scheme developed by Blomhøj

(2009). An educational perspective will allow us to describe and analyse the

elements involved in the process of development of mathematical models in a

certain situation in the context of the student’s everyday life, as well as the

utilization of mathematical concepts, the utilization of the models (i.e., process)

and the context of the situation (i.e., everyday life). It will be possible then for us to

analyze and describe the elements involved in that process applied to a particular

experience of their everyday context. Likewise, a space in the classroom to discuss

the situation concerned with the students consistent with a process of mathematical

modelling is established from this perspective.

Regarding the approach to modelling as a process, in teaching and learning

mathematics, we have taken the mathematical model as a structure appropriate to a

context-specific situation based on considerations by Niss et al. (2007): “Sometimes

a model will be an idiosyncratic, ad hoc building, but often it will be a variation of a

standard type (e.g. inverse proportionality, linear, exponential or logistic growth,

the harmonic oscillator, a Poisson probability process, etc.)” (p. 10). Accordingly, a

mathematical model made by the student, according to the variables of the situation

may not necessarily be related with a mathematical concept (i.e., it is idiosyncratic),

but with the use of a standard model for the student to model a phenomenon. In this

sense, a context-specific situation described in context is referred to by Niss

et al. (2007) as being of the real world meaning “everything that is to do with

nature, society or culture, including everyday life, as well as school and university

subjects or scientific and scholarly disciplines different from mathematics” (p. 8).

We recognize that by addressing social and cultural issues in the modelling

process, the reality perceived by the teacher may limit the different mathematical

relations built and linked to the school context of the students. In this case, we have

taken on board considerations of Villa-Ochoa and Jaramillo (2011) who refer to the

need for the teacher to develop a sense of reality as a tool to make easier the

interaction between socio-cultural contexts and school mathematics through math-

ematical modelling when confronting students with the reality of identifying and

manipulating data, and the simplification and abstraction of quantities and variables

in order to build models for use.
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26.4 Methodological Design

The nature of this research was a qualitative case study. In this sense, Stake (1999)

describes such research as the study of the particularity and complexity of a single

case to get to understand the activity in important circumstances. This method

enabled us to consolidate the description of a mathematical modelling process to

create linear models from a situation in a context for three (3) students, whom we

have given the pseudonyms: San, Ezel and Rita. At the time of the research, they

were ninth grade students, between the ages of 14 and 15 years old, They were

chosen because of the interest they showed in solving a problem regarding their

families’ economy. These students had no prior experience in mathematical model-

ling processes. For the purpose of this chapter, however, we will focus on the

description of only the process developed by Rita in the context of pre-paid energy,

as San and Ezel addressed a situation in the context of banana crops, and there is no

room to describe this other modelling. Therefore, we chose the situation in the

context of pre-paid energy as an exemplar from practice in the Colombian context

of a paradigmatic case (Freudenthal 1981) to argue the case for mathematical

modelling examples arising naturally in the classroom as students activate prior

knowledge from their everyday experiences.

The analysis of the data was performed according to considerations by Stake

(1999), where he refers to the necessity for coding, categorization, and triangulation

of data from interviews, direct observations and written documents. We isolated the

categories oriented to issues related to the use of context, construction of linear

models and their use, in order to build the themes of the final report.

Data were collected on eight occasions, lasting 2 h each, distributed over

3 months and supplemented with extracurricular activities, guided by the students

themselves. The following elements were used as instruments to collect data: the

written utterances to record the built models, recordings on tape as a means to keep

a record of the responses to questions asked in class, and comments written by the

teacher, who in turn, was a member of the research team.

26.5 Findings

26.5.1 Context of Pre-paid Energy: A Context
in the Student’s Life

The families of the Urabá region face the difficult situation of suspension of electric

service for nonpayment. Therefore, the power company in the region (Empresas

Públicas de Medellı́n – EPM) installed in their homes a prepaid electricity meter, a

device that allows purchasing of a number of kilowatts hours of electricity in

advance that lasts until the credit is expended. This is conducted through cards

ranging from COP $3,000 pesos upwards.
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From the situation described above, we can see what is known as a situation in
context according to Niss et al. (2007) when it comes to the real world, in which a

student is involved in her own family context. She described the pre-paid energy

situation as follows:

Rita: Well, I think the most important thing came up from a question my aunt

asked me. The thing is, she sells ice, but she realized that she doesn’t make

enough money out of the sales to pay the electricity bills. She has a modem

at home to charge credit. So she asked me ‘How come I ran out of credit so

soon?’ The sales of ice weren’t enough to pay the credits.

We can see that the problem stems from excessive power consumption, while

trying to find additional income to improve the economy of the family through the

sale of ice buckets. Therefore, Rita’s aunt poses the problem from her needs and her

business, but in this case, the student takes it as the starting point of the modelling

process. How come I ran out of credit so soon? In this question, we find issues that

are involved in matters, unknown to the student, regarding the subject of electrical

energy that will serve them as a guide to describe, explain, understand or build parts

of the world (Blum et al. 2002).

With this in mind, we can visualize the conditions that led to the posing of the

problem for the modelling process, so the fact the student knows of this credit

system (that the credit reload grants through money) is important for this process.

It allowed her to acquire the meanings and to identify the abstraction of quantities

involved in the situation. This can be noted in the following dialogue:

Teacher: How does the reload of power credits work?

Rita: If you pay $5,000 for a reload of power that contains 30 kWh, this unloads

as the power is consumed. When it reaches zero, the power is gone.

Up to this point, we understand the need for Rita’s family to understand the

reason for the instability of the household economy when they question the

excessive power consumption. Subsequently, we observe how Rita, being the one

responsible for managing the purchase and use of the PIN (Personal Identification

Number) that provides the power credit, comes to identify the variation in the

context of power consumption of the electrical appliances and consider using letters

to represent variables and build models.

26.5.2 Building of Linear Models Adjusted to the Context
of Pre-paid Energy

Immediately after Rita understands the relation between the value of the recharge

and the consumption in kilowatts hour, based on her experience, she opportunisti-

cally decides to use a digital device (the modem) to observe the average power

consumption in kilowatt hours for each appliance. Thus, she experiences variations
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in power consumption. She made this measurement by plugging only one device in

at a time in order to observe the average amount of consumption per hour of the

freezer and the refrigerator, and then compare them by representing them as two

straight lines in the Cartesian plane (see Fig. 26.1), and using the letters x and y to
represent the variables. This is evident in the following:

Teacher: Why should you use the letters x and y?
Rita: Because we can relate cause and effect, then x and y are the common

points that lead to an approximation. So I used y and x, and a line going
up, and what happens? On one side, I put consumption per hour, and on

the other side, I got the amount spent. For example, the hours are

represented by x and the consumption in kilowatt hours [are

represented] by y. Well, so, if the freezer is spending 4 kWh each

hour, in 2 h that’d be 8 kWh and so on.

Rita just described cause and effect as a way to relate the different changes in

their everyday context. We can understand this from Sierpinska’s (1992) perspec-
tive, who postulates cause and function as a human effort for trying to explain the

changes in the world. At the same time, use of letters in functional relations

(Trigueros et al. 2000) to generate a correspondence between the context of the

situation and mathematics is observed. “x¼H” “kwh¼Y” are written next to the

axes. The representation of the straight lines can be seen in the graph shown in

Fig. 26.1.

By representing and describing the use of the freezer in relation to the use of the

refrigerator with straight lines, Rita was able to interpret the slopes of the lines in

the plane in relation to the variation observed in the prepaid electricity meter (i.e.,

the Modem), and conclude that the higher the slope the greater the power

Fig. 26.1 Graphical representation of power consumption of the freezer and fridge

322 J.L.B. Vélez et al.



consumption. This action shows how a mathematical concept can be linked to

everyday issues in a school student’s life context, in this case the slope of a straight
line in the plane. The student describes it like this:

Rita: The consumption agrees with the inclination of the line, so the line of the

freezer slopes closer to the y axis than the line of the fridge, this shows us

that the freezer consumes more power than the fridge.

By identifying variations in power consumption from the graph, Rita was able to

build linear algebraic expressions to describe the power consumption of both the

refrigerator and the freezer, and another expression to calculate the consumption

cost of each appliance. This is related to what Niss et al. (2007) describe as the use

of standard models to explain a situation in the real world. This is obvious in the

following descriptions.

Rita: Well, in this graphic (Fig. 26.1), I am showing the freezer and the fridge

consumption. In order to calculate the consumption of the freezer, I had to

make this formula: y equals to 4 kWh (y¼ 4x). The formula for the fridge is

y equals 2 kWh (y¼ 2x). Here we can see that the freezer consumes 4 kWh;

in 2 h it consumes 8 kWh; in 3 h, 12 kWh. . . while the refrigerator

consumes 2 kWh each hour, 4 kWh each 2 h.... and a [power] reload of

$5,000, containing 30 kWh equals $166.66 pesos each (y¼ 166,66x).

From this, we can say that Rita uses linear functions to model the power

consumption in both the refrigerator and the freezer. According to (Posada et al.

2006) “it is important to determine from the statement if the rate of change is

implicit or explicit because, in both cases, if the rate of change is constant, then it

can be associated with a linear function” (pp. 140–141). In this sense, linear models

are generated when the student associates the constant rate of change with the

average hourly power consumption of both the freezer and refrigerator.

26.5.3 Use of Models to Make the Household
Economy More Stable

The use of linear models by the student served the purpose of calculating the power

consumption in kilowatt/hours through models for the freezer (y¼ 4x) and the

refrigerator (y¼ 2x). With these results, calculations were made with the model

y¼ 166,66x to find the cost of electricity. These calculations were validated from

the linear graphical representations, approaching the mathematical concept called

an equilibrium point (see Fig. 26.1, where the two rising lines intersect the line

y¼ 5,000 parallel to the x axis). Rita describes the results of the use of the linear

models as follows:

Rita: For a reload of $5,000, which contains 30 kW, the freezer would use them

up in only 7 h and a half, while the fridge would take 15 h.
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According to the above, we can understand how the student uses variational
thinking and algebraic and analytic systems when integrating the situation in

context, graphical representations and linear models, with the purpose of building

the arguments needed to solve the problem. This observation is supported from the

following commentary:

Rita: As we could see, the freezer spent more [power]. As we had the fridge and

as the sales are of approximately five trays a day, we could put them in the

fridge, as its upper side contains a freezer itself. Regarding the freezer, well,

we wouldn’t use it anymore, besides, it was very old anyways; I told her to

sell it and so she would use only one electrical appliance. I mean, there

would be only the fridge left because before there were two.

We can observe how Rita solved the problem, she inferred from her graphical

representation which appliance generated a high power consumption (the freezer)

and depleted the credit more quickly. At the same time, her aunt managed to keep

selling ice trays (as a way to generate additional income for the household) with

only the fridge to keep the trays frozen and stopped using the freezer.

26.6 Discussion

In social and cultural contexts of rural communities, there are situations in which

students can develop a process of mathematical modelling in the classroom, due to

the richness of the meanings, the relations built by the life experience of the

students, and their particular economic and social conditions. This way, an educa-

tional perspective of mathematical modeling makes it possible, in the classroom, to

lead to a process of school mathematics teaching and learning in order to transform

the social and family life of students in these rural contexts. Thus, classroom

activities are able to meet extra social objectives in addition to the mathematical

formation purposes of the curriculum as intended by the Ministry of National

Education (MEN 2006). In particular, by starting with the students’ real-world

contexts giving opportunities for prior experiential knowledge to be activated in

school, it is possible to link the learning process with going forward to formal
mathematics (MEN 2006, p. 78) through use of mathematical modelling opportu-

nities in class.

Some of the concerns of the students’ families regarding their household eco-

nomic difficulties come through questions of intellectual character, which are taken

as challenges by the students, motivating them to find out possible solutions. These

solutions become significant to initiate a process of mathematical modelling with

students in the classroom, so it is not necessary for the teacher to pose a problem for

a modelling process, far from the social context of students.

Some technological devices that relate to a situation in context are used by

students with a certain level of knowledge as tools to observe changes and make

measurements that would not be possible otherwise. The mathematics teacher does
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not always understand the use of these objects. In this sense, the teacher is the one

who should make an effort to recognize the use of these devices in order to support

strategically a possible modelling process suggested by students.

26.7 Conclusions

The mathematical modelling process addressed in this study, under the guidance of

the teacher, was developed in the classroom from an educational perspective with

students from a rural context. It is noteworthy that the problem was posed by the

students in order to benefit the household economy issues of their everyday lives.

From this perspective, we see that it is not necessary for teachers to suggest or

imagine real-world problems to pose to students, but rather, the same students are

able to engage in the development of a modelling process based on their life

experiences, that is, it is necessary for the teacher to recognize the sense of reality

(Villa-Ochoa and Jaramillo 2011) of the school context situations when students

approach their social and cultural environment.

The modelling process made by the students involved technological tools of

their environment that consisted in capturing the variation in the consumption of

two electrical appliances and then graphing them, by building linear models, using

the respective variables and their relations. From these models and their graphical

representations, they were able to find the approximate cost of the power consump-

tion of both the refrigerator and freezer, deducting which of these appliances

exhausted the power sooner. This allowed them to construct necessary arguments

to resolve the problem: the need to stabilize the household economy. Therefore, this

strategy of linear models building from a situation of the students’ own social and

cultural context creates a solution to foster societal life, by enabling the student to

relate their everyday life experience and the use of school mathematics in the

classroom.
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Chapter 27

Mathematical Modellers’ Opinions
on Mathematical Modelling in Upper
Secondary Education

Peter Frejd

Abstract This chapter examines and discusses how professional mathematical

modellers have learned about modelling as well as their opinions on the teaching

of mathematical modelling in upper secondary education. An interview study

showed that they developed most of their knowledge about mathematical modelling

during their PhD studies and through their occupation by working with ‘real
modelling’. According to the interviewees mathematical modelling should be a

part of mathematics education in upper secondary school, and in particular it should

be more emphasized as a part of general education to develop students’ critical
awareness about how models are used in society. They also gave suggestions for

approaches to teach modelling and examples of modelling problems to work with

from their own workplace.

27.1 Introduction

Mathematical modelling is considered as a bridge between the mathematics learned

and taught in schools and the mathematics used at the workplace (Sträßer

et al. 2012). This view is also found in school mathematics curricula, in the section

on the aim of the subject mathematics, as for example in Sweden where the subject

syllabus for upper secondary school emphasizes, the use of mathematics in relation

to workplace situations and to use investigating activities in an environment close

to practice (Skolverket 2012). One such investigative activity is mathematical

modelling, described as one of seven main teaching goals, so as to develop students’
ability to “interpret a realistic situation and design a mathematical model, as well as

use and assess a model’s properties and limitations” (p. 2). These descriptions
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suggest the use of realistic modelling activities in mathematics classrooms with a

relation to workplaces, at least if the modelling problem is chosen adequately.

However, even if the problems are chosen adequately there seems to be an

accepted view among educational researchers in mathematics education that work-

place mathematics is not identical to school mathematics. Workplace mathematics

is more complex and strongly situation dependent. It also includes specific tech-

nologies, social, political and cultural dimensions that are not found in educational

settings (e.g., Noss and Hoyles 1996; Wedege 2010). Mathematical modelling

applied by different actors at the workplace also seems to be workplace specific

and quite different from school situations (Mouwitz 2013). Frejd (2013) found that

some professional modellers work in groups where the division of labour is specific

and predefined (numerical analyst, meteorologist etc.) in contrast to school settings

in Sweden where students spend much time on individual work with exercises from

textbooks (Jablonka and Johansson 2010) with the goal to learn ‘everything’ about
the modelling process. In addition, there are other aspects of mathematical model-

ling that appear in a limited way in Swedish mathematics classrooms, but are large

parts of workplace practice, such as programming and that the consumer’s (the

company’s) purpose of developing the model must be taken into consideration

(Frejd 2013).

Assuming there is a gap between school mathematics and mathematics used in

the workplace regarding mathematical modelling, it is of interest to chart and

analyse how people who use mathematics in the workplace view mathematical

modelling, especially professional mathematical modellers in different occupa-

tions. There is also a need to observe different types of modelling activities found

in non-educational settings in search of potential links between the two practices.

To this end, this chapter presents empirical research aiming to describe how

professional mathematical modellers have learned mathematical modelling and

their opinions on how it should be included in upper secondary school. The analysis

has been guided by the following research questions:

• How do professional mathematical modellers describe their own learning of

mathematical modelling?

• What opinions do professional mathematical modellers express in terms of goals

of mathematics education in upper secondary school, goals of modelling in

upper secondary school, suitable examples for use in secondary school, and

mathematical modelling as a part of a general education?

Exploring and seeking answers to these research questions may contribute to

development of new insights into pedagogy and curricula, links between school and

the workplace, and how mathematical meanings are created in and out of school

contexts as well as to informing curriculum developers and others about the role of

modelling in the workplace.
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27.2 Workplace Mathematics, Modelling and Modellers’
Opinions

One goal of research on workplace mathematics is to explore how and what

mathematics is used in specific professions (Noss and Hoyles 1996). Other goals

concern the identification of similarities and discrepancies between what mathe-

matics is needed in the workplace and what mathematics is taught in school

(Triantafillou and Potari 2010), the analysis of communication between employers

and visitors (Williams and Wake 2007), and the search for strategies that will

improve a general curriculum that better prepares students for future work (Wake

2012).

One central part of workplace mathematics concerns the use of mathematical

models and modelling. At the Educational Interfaces between Mathematics and

Industry-ICMI study conference several research papers related to engineering and

modelling were presented (see Damlamian et al. 2013). Other examples of research

literature including modelling and the use of mathematical models in the work-

place, focus on employers that make their working decisions based on mathematical

models in technological artefacts, with input and output of numerical values, like

bankers (Noss and Hoyles 1996), telecom technicians (Triantafillou and Potari

2010) and operators in a chemical plant (William and Wake 2007). A common

finding in these studies is that the underlying mathematical structure of the models

used is not considered. Despite the facts the mathematical models sometimes are

hidden in technology and the linguistic conventions of representing mathematical

models used in the workplace (formula, graph, table) (Triantafillou and Potari 2010;

Williams and Wake 2007) differ from those in mathematics education, it is argued

that mathematical models together with metaphors and gestures facilitate commu-

nication of mathematics between workers and clients (Williams and Wake 2007).

One of the “principles for strategic curriculum design” that support workplace

mathematics (Wake 2012, p. 1686) emphasises communication about development

and validation of mathematical models. Other principles suggested by Wake (2012)

are: to take mathematics in practice into account; facilitate activities that pay

attention to technology; and, to let students critique mathematics used by others.

There are researchers who discuss implications for education based on results

from their own empirical research (observations and interviews) of the working

practice of professional modellers (e.g., Drakes 2012; Gainsburg 2003). However,

not much research is explicitly focused on modellers’ opinions on mathematical

modelling in secondary mathematics education. Previous research has shown that

modellers in the Netherlands are sceptical of the use of ‘messy’modelling problems

in secondary education (Spandaw 2011). They argued that modelling is too com-

plex and time consuming for students and that modelling projects are too compli-

cated for teachers to supervise. Instead the aim of secondary education should be to

teach basic skills in mathematics (i.e., algebra and analysis).
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27.3 Methodology

Research within the field of workplace mathematics should consider two closely

linked approaches, a general approach and a subjective approach (Wedege 2010).

A general approach focuses on (general) demands from the labour market and the

society for “formal” (school) mathematical competencies needed in a workplace,

whereas a subjective approach focuses on the workers’ abilities and their (subjec-

tive) needs in their specific workplace. Salling Olesen (2008) addressed both these

approaches in a heuristic theoretical model, which is suggested as a helpful research

tool for investigating the dynamics of workplace learning.

The model in Fig. 27.1 illustrates a relation between the three components the
societal work process (division of labour, type of tasks and work organisation), the
knowledge available (discipline, craft, methods and skills used in a workplace), and

the subjective working experiences (individual/collective life history and their

subjectivities like values, norms, emotions, etc. that appear to be profession spe-

cific). In the centre of Fig. 27.1 the words learning, experiences, practices, identi-

fications and defences illustrate “that learning in the workplace occurs in a specific

interplay of experiences and practices, identification and defensive responses”

(Salling Olesen 2008, p. 118). “A teacher in mathematics may say modelling
activities are time consuming (learned by experience), but we don’t have the time
we need the classroom time to prepare for the final tests (learned through practice)

and in mathematics we use the notation y” (learned through identification), but in

INDIVIDUAL
LIFE HISTORY

SUBJECTIVITY

PRACTICES

METHODS
KNOWLEDGE

DISCIPLINE/CRAFT

WORK TASK
WORK 

ORGANISATION

SOCIETAL DIVISION
OF LABOUR

DEFENCES
IDENTIFICATIONS

EXPERIENCES
LEARNING

Fig. 27.1 A model to analyse workplace learning (Salling Olesen 2008, p. 119)
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physics we use ÿ (learned through a defensive response). The suggested theoretical

model is helpful for this chapter, since “the model pays particular attention to the

cultural nature of the knowledge and skills with which a worker approaches a work

task, whether they come from a scientific discipline, a craft, or just as the

established knowledge in the field” (p. 118). The three components (the societal
work process, the knowledge available and the subjective working experiences)
may indicate the origin of the given opinions on how modelling should be taught

and learned.

In this research project semi-structured interview questions were developed to

pay attention to Salling Olesen’s (2008) model (for further details see Frejd 2013).

The interview questions addressing the research questions are:

1. Is mathematical modelling something that was a part of your education in school

or something you learned in your vocation? How?

2. What are the goals of mathematics education in upper secondary school?

3. Is mathematical modelling something that should be brought up in mathematics

education at upper secondary school? (if yes) How?

4. Do you have examples from your own practice that may be suitable to use in

secondary education?

5. Modelling as a part of a general education (personal finance, global warming,

etc.), should that be more emphasized in school and should that be a part of

mathematics education?1

Nine mathematical modellers in different areas of expertise were invited and

accepted to participate in this study. The following abbreviations are used in this

chapter when referring to the modellers: climate modeller [CLI], military defence

modeller [MD], modeller in physics [PHY], finance modeller [FIN], insurance

modeller [INS], construction engineering modeller [CE], traffic simulations mod-

eller [TS], biology modeller [BIO], and scheduling modeller [SCH]. Participants

were a convenience sample as two persons were previously known to the authors,

four others were either recommended by colleagues or interview participants to be

invited and three were found on a web search. The interviews that were conducted

and audio taped lasted from 40 min up to 90 min and were later transcribed,

summarized and analysed based on the five questions together with the three

components of Salling Olesen (2008).

All of the participants have at least a PhD degree in either mathematics, financial

economics, physics, biology, or technology and all participants claimed during the

interviews that mathematical modelling plays a major role in their profession. The

participants’ workplace problems were initially derived from reality with the aim to

describe, predict, explain or create physical or social reality. However, they did not

present coherent descriptions of what modelling means and how they work with

modelling.

1 The last part of question 5 was added after the three first interviews.
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27.4 Results and Analysis

The following sections (Sects. 27.4.1, 27.4.2, 27.4.3, 27.4.4, and 27.4.5) address the

research questions in relation to the results and analysis of interview questions 1–5.

27.4.1 Source of Learning of Mathematical Modelling

Four of the participants indicated that they studied university courses only in pure

mathematics and no explicit courses in mathematical modelling. Three of the

participants had some formal teaching in modelling in either a course in applied

mathematics, a set of seminars dealing with problems from industry, or in courses

that included some aspects of modelling like simulations with Matlab. The other

two participants indicated that they had experienced a more extensive teaching in

modelling, referring to courses in optimization and courses on how to solve

differential equations related to realistic tasks. All participants were insistent they

had learnt mathematical modelling mainly during their PhD studies and in their

occupation, by working with ‘real modelling’ problems either through schooling by

supervisors or by working individually or in a group. Some participants also

claimed that they had learned about modelling by reading scientific papers and

books. Opinions expressed were that modelling problems in education and in the

workplace and in research are quite different, where problems in education often

are restricted and limited, whilst the problems in workplaces are more complex.

The following excerpts from interviews illustrate that workplace learning of model-

ling (the societal work process) is the fundamental part in the experts’ opinions on
learning modelling due to the nature of their working problems:

When you get to the real problems [in research and in the workplace], not the idealised and

clarified problems that can be solved, then you need modelling. (PHY)

When you enter the workplace you “encounter problems that you never have encountered

before, you will not simulate three processes rather 5,000”. (INS)

In teaching modelling the problems are clarified, ‘they must be solvable within a reasonable

time’ and you have the data, but in reality they are more complex. (TS)

The participants’ opinions on the extent to which modelling was a part of their

own education may originate from Olesen’s (2008) three components the societal
work process, the knowledge available and the subjective working experiences. For
the climate modeller, for instance, subjective working experiences are mainly based

on working in teams where his particular task is to solve well-defined problems

(e.g., solve differential equations), societal work process, and the knowledge
available or the skills needed are methods for solving PDEs, also emphasised as

a skill he required during his university studies.
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27.4.2 Goals of Mathematics Education in Upper Secondary
School

The modellers’ opinions of the goals of mathematics education in secondary

education seem to be mainly subjective. Examples of opinions are: to gain knowl-

edge to handle everyday situations (INS); to train mathematical skills (CE); to get a

tool or a language to apply in different situations (BIO); to understand the role of

mathematics in society and as a part of our cultural heritage (FIN); to learn logical

thinking (SCH); and knowledge for further studies (TS). In addition, the goal of

mathematics education to develop democratic citizens is addressed:

we [citizens] will be deceived by politicians with different agendas if we don’t know
mathematics,. . ., everyone needs this [mathematics] or else our democracy will erode

(PHY)

The opinions expressed may be found in school documents like syllabuses (e.g.,

Skolverket 2012). There was also a variety in what participants stressed as impor-

tant to learn in terms of concepts versus processes. For example, one participant

emphasized understanding:

The possibility of understanding is more important than memorizing. . . understand why

and how it [mathematics] is used is more important than to understand how to do it. (INS)

Another participant focused more on the skills, stating that

The goal is to train a skill to be able to [make] unhindered use [of] things like standard

functions,. . .you should know the laws of logarithms and the trigonometric identities, it is

not something that you need to look up every time, if you forget you should be able to

derive them. (CE)

27.4.3 Goals of Modelling in Upper Secondary School

According to six of the participants, modelling should be a part of secondary

education, the other three being uncertain. A repeated argument for including

modelling in upper secondary school is that modelling motivates students to learn

and apply mathematics in different situations. A doubt expressed may relate to their

working tasks, societal work process, which is that the students are not “mature

[enough] and do not have practical experience” (MD) since “if it is going to be

realistic it gets very complex” (INS). The participants gave a range of suggestions

for how to include modelling in mathematics education that seem to be grounded in

subjective working experiences. The most extreme suggestion was a paradigm shift

in mathematics education, “instead of teaching mathematics I will teach mathe-

matics as a tool to solve problems” (BIO). Other less extreme approaches, such as to

explicitly express to the students that they actually use models, which now are

implicit (SCH) or that the teacher may adapt the models based on students knowl-

edge (CE). A suggestion of using interdisciplinary weekly assignments was put
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forward (FIN), which may include both general knowledge of how mathematics is

used in society and more deepened practice on how to model. One idea that may be

implemented in a classroom setting is for the students to work in small groups as

described in the following excerpt (INS):

[in these groups] the students can meet a practical problem, like a new pharmaceutical

product has been developed and the question is can we use it? How can we design an

experiment to evaluate that? [Let students] ask people, so they will meet the reality. . . I
don’t think that the problem always needs to be solved mathematically, they don’t need to

know all the mathematical models, but they need to reason about them. Then the teacher,

with help of the students, presents a way to solve the problem with mathematics. . . and
hopefully the students will realise that mathematics actually supports them.

The role of the teacher was described as an important factor for adequate

teaching. The teacher “needs to be passionate about it [modelling], because it is

nothing you do like this [snapping his fingers] you need to think carefully” (FIN).

One way to make teachers more interested and gain inspiration is to let them listen

to presentations given by modellers and researchers on how they work with

modelling (TS). Another way is to change the problems in the textbooks (TS).

27.4.4 Examples from Practice Suitable for Use in Secondary
School

Most of the participants’ opinions (seven out of nine) were that it is relatively easy

to adapt some modelling problems from their own societal work process to be used
in secondary school. One suggestion for upper secondary students is to investigate

the models used for score cards for loans, for which the following situation might be

adaptable:

If you go into a bank and apply for a loan, then they will collect information about you. For

example your age, your income, where you live, you savings, your loans etc. There is loads

of information that they put into a model, which the bank has developed, and the output is a

p/d number. The p/d number is probability of default, which is the likelihood that you will

be unable to meet its debt obligations and if that probability is not too high, compared to a

set number, then you will not get the loan. But if you get the loan the p/d number [. . .] will
effect the interest you have to pay. (FIN)

Other examples are: to explore the predator–prey relation with Excel (BIO); to

analyse how temperature affects the magnetism of a piece of iron (PHY); work with

‘realistic’ linear optimisation problems and networks problems (SCH); estimate

safety distances when cars are following each other on the freeway (TS); trying to

identify factors that should be part of the development of pension funds and how a

pension fund might be organised (INS).

334 P. Frejd



27.4.5 Mathematical Modelling as a Part of a General
Education

All participants indicated that modelling should be emphasized more in school as a

part of general education. It is important to understand results, and be able to form

an opinion and critically examine statistics to become a democratic citizen (CLI).

This is expressed in the following interview excerpt where it is claimed that

[Modelling] is the key response to the question, why do we need mathematics? If someone

wants to understand and be a part of the society, affect society and take part in decisions

made in everyday life, in family, at work, in society, in the world then you must know these

things (PHY)

In a society decision-making often depends on economic considerations, which

creates a need for awareness of mathematics and modelling (TS). The subjective

opinions above of the climate modeller, physics modeller and traffic simulation

modeller are examples of arguments for modelling being more emphasized in

school.

Opinions about whether modelling as a general education should be a part of

mathematics education or not seemed to be subjective and differed between the

participants. Three participants expressed that modelling should be taught mainly in

mathematics education.

I definitely think that it [modelling] should be central part of mathematics education (INS).

The other participants suggested that modelling may be used also in relation to

other subjects (FIN) like in physics, chemistry, biology and social science (CE) as

well as in home economics (TS).

27.5 Discussion and Implications

To summarize, the modellers interviewed have mainly learned mathematical

modelling during their doctoral studies and through their occupation, by working

with ‘real modelling’ problems. The modellers have used different learning strat-

egies either through guidance by supervisors or working in a group but a few were

self-taught through personal reading. One (societal) reason for this not being

through their education is the nature of their working problems – they are not the

idealised and clarified problems like the ones they found in their education. The

modellers’ opinions on how modelling should be taught and learned differed.

However, most of the modellers’ (subjective) opinions are that mathematical

modelling should be a part of mathematics education in upper secondary school.

They gave examples of how to implement modelling in mathematics education and

gave suggestions as to how their own workplace problems may be adaptable to be

used in secondary education. All modellers agreed that mathematical modelling
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should be more emphasized as a part of general education to develop students’
critical views on how models are used in society.

The results found in this study contradict to some extent those by Spandaw

(2011), where a majority of 12 scientists interviewed in the Netherlands were

sceptical about using modelling problems in secondary mathematics education. A

few of the Swedish modellers also expressed a concern that the modelling might be

too complex for upper secondary education, but the overall opinion was that

modelling may be very useful and motivational for students. The modellers in the

Netherlands argued that the main goal for mathematics education in secondary

school is to learn basic skills in algebra and analysis (Spandaw 2011), an opinion

raised also in this study. However, other more general goals mentioned were related

to modelling, such as becoming a democratic citizen and opinions that the emphasis

on mathematics education should not only be on procedures but also on why and

how mathematics is used in society. The need to consider these and other social

aspects of modelling in future mathematics curriculum design is discussed by

Jablonka (2010).

As the modellers in this study had limited experience of the present secondary

mathematics education, their opinions must be taken as opinions and subjective.
Nevertheless, they gave suggestions from their workplace for approaches to teach

modelling as well as proposals of suitable modelling problems to work with in

school that may be investigated in further research studies, indicating how model-

ling can function as a link between school mathematics and workplace mathematics

(cf. Sträßer et al. 2012). What was not discussed during the interviews, however,

was the difference in objectives for using modelling. In education, modelling is a

mathematical classroom activity either as an aim in itself (to develop modelling

competencies) or as an aim to develop a broader mathematical ability (modelling as

a didactical tool to learn mathematics) (see e.g., Blum and Niss 1991), whereas in

the workplace mathematical modelling is “the gateway into the use of mathemat-

ics” (Sträßer et al. 2012, p. 7872). The role of the teacher as mediator between

workplace mathematics and school mathematics objectives is therefore crucial for

all efficient collaborations between school and the workplace (Wake 2013), which

was also highlighted by the modellers’ opinions in this study on mathematical

modelling in upper secondary education.
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Chapter 28

Modelling, Education, and the Epistemic
Fallacy

Peter Galbraith

Abstract National curriculum statements continue to espouse the ability to solve

problems arising in everyday life, society, and the workplace as a major goal of

mathematics education. But support for such high sounding rhetoric is typically

weakened (or absent) when the specifics of curricula are elaborated. The epistemic

fallacy relates to the conflating of ontology and epistemology – confusing the nature

of an underlying reality with knowledge of it. Here the underlying reality concerns

mathematical modelling as real world problem solving. It is argued that manifes-

tations of the fallacy occur in critiques of modelling theory, in debates about the

authenticity of models and approaches, and in considering whether issues

concerning practice are most fundamentally a curriculum or a pedagogical matter.

28.1 Introduction

It is more than 40 years since Pollak (1969) challenged the mathematics education

community to more seriously engage with genuine applications of mathematics, by

drawing attention to the artificial nature of text book examples that claimed to

provide illustrations of its practical use. In the period since, the number of papers

and research reports addressing the theory and/or practice of mathematical model-

ling with some form of connection to education has continued to grow

astronomically.

At the ICME 12 Congress in Korea in 2012 mathematical modelling featured as

the substantive content of a Plenary Lecture, two Regular Lectures, a Topic Study

Group, a Special Interest Group, and the Affiliated Study Group meetings of

ICTMA1. Small wonder then that the literature contains a plethora of views
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concerning the theory and practice of mathematical modelling as it appears within

educational settings. Yet the outcomes continue to be mixed.

While applications and modelling also play a more important role in most countries’
classrooms than in the past, there still exists a substantial gap between the ideals of

educational debate and innovative curricula on the one hand, and everyday teaching

practice on the other hand. In particular genuine mathematical modelling activities are

still rather rare in mathematics lessons. (Blum et al. 2002, p. 150)

The problem of making modelling. . .a reality in every classroom is far from solved, even

when there is support at policy level. The challenge is always underestimated both by

governments and professional leadership. (Burkhardt 2006, p. 187)

Real world problem solving expertise as an espoused educational goal continues

to be reinforced internationally – as in the following:

• Australian Curriculum Assessment and Reporting Authority (ACARA 2010):

mathematics aims to ensure that students are confident, creative users and communicators

of mathematics, able to investigate, represent and interpret situations in their personal and

work lives and as active citizens. (p. 1)

• Common Core State Standards Initiative – USA (CCSSI 2012):

Mathematically proficient students can apply the mathematics they know to solve problems

arising in everyday life, society, and the workplace. (p. 1)

However such abilities can only develop if mathematical experiences are drawn

genuinely from these same areas of personal, vocational, and civic contexts. When

the Australian curriculum statement (ACARA 2013, p. 13) elaborates subsequent

curricular content it includes, for example, the following for a pre-University

Mathematics curriculum:

• identify contexts suitable for modelling by exponential functions and use them to solve

practical problems.

• use trigonometric functions and their derivatives to solve practical problems.

• use Bernoulli random variables and associated probabilities to model data and solve

practical problems. (p. 13).

Purposes expressed in this way pay no more than lip service to goals of

promoting student ability to apply their mathematical knowledge. They can be

met trivially through a token interpretation of what practical problems mean and

their presence over many years indicates that they are not sufficient to promote

capability of mathematical application in the sense described. That requires addi-

tional abilities – including to identify a feasible problem from a real context in the

first place, and to decide which mathematics (from among that available to an

individual) is appropriate to address it. These involve different attributes, from

those that look at examples of applications within a topic area that has already been

identified.

In this chapter I want to address issues deemed relevant to the disappointing

long-term outcomes (Blum et al., 2002; Burkhardt 2006) referred to above. To this

purpose the structure of the chapter is as follows. Different approaches to modelling

are identified in terms of their ontological roots and the epistemological

340 P. Galbraith



consequences that flow from them. Sample critiques of modelling, and consider-

ations of authenticity are then framed in terms of properties intrinsic to a modelling

genre, rather than in terms of user defined assumptions about the nature of educa-

tional settings, and a modelling problem is used to instantiate cognate principles.

Finally, Valsiner’s Zone Theory (Valsiner 1997) is invoked to address pedagogical

implications that arise when the integrity of a modelling approach is challenged by

competing classroom priorities.

28.2 Epistemic Fallacy

Accepting that ontology is concerned with definitions of fundamental categories of

reality we distinguish between formal and domain ontology. The former implies

something general about reality; the latter is concerned with different areas of

reality. Epistemology defines how we know and reason about a reality in question,

so that each ‘domain ontology’ will have a specific epistemology associated with

it. For example ‘maps’ used by a biologist studying colonies of bees will have a

different meaning from ‘maps’ used by a geographer in studying human settlement.

The epistemic fallacy (Bhaskar 1975; Bryant 2011) concerns the conflating of

ontology and epistemology – in confusing the nature of an underlying reality with

knowledge of it. (The ‘fallacy’ occurs when statements about ‘being’ are analysed
in terms of ‘knowledge of being’ – so that ontological questions are avoided

through being transposed to epistemological ones.) In the present context this

involves the replacement of the consideration of what ‘mathematical modelling’
is, by how the term is interpreted both for itself, and with respect to its place in

educational actions and settings.

In terms of our interests the underlying reality (ontology) is that in our world

exist things that cause difficulty (problems), and some of these can be addressed

productively through the application of ‘mathematics’. This is the fundamental

‘reality’ of modelling as real world problem solving. There is also a belief/assump-

tion that individuals can be helped to become better at this activity, through the

agency of ‘education’. Elaborating through an epistemological lens, Niss

et al. (2007, p. iv) describe a mathematical model as consisting of an extra-

mathematical domain, D, of interest, some mathematical domainM, and a mapping

from the extra-mathematical to the mathematical domain (see Fig. 28.1).

Objects, relations, phenomena, assumptions, questions, etcetera in D are identi-

fied and selected as relevant for the purpose and situation and are then mapped –

translated – into objects, relations, phenomena, assumptions, questions, etcetera

pertaining to M. Within M, mathematical deliberations, manipulations and infer-

ences are made, the outcomes of which are then translated back toD and interpreted

as conclusions concerning that domain. This so-called modelling cycle may be

iterated several times, on the basis of validation and evaluation of the model in

relation to the domain, until the resulting conclusions concerning D are deemed

satisfactory in relation to the purpose of the model. The ubiquity of a cyclic process
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is noted in many sources (e.g., Borromeo Ferri 2006), with no fewer than 17 vari-

ations included in Perrenet and Zwanefeld (2012). We note the important aside that

the solution path through a particular problem taken by an individual is usually

anything but smoothly cyclic – a host of to-ing and fro-ing occurs between various

stages of the overall process. This is mentioned because the literature suggests that

distinctions between the cyclic modelling process and individual solution pathways

are sometimes confused.

28.3 Models of Modelling in Education

Mathematical modelling activity does not occur in a vacuum, but in some setting

involving those engaged in it. Always learning will be involved, whether by an

individual from her/his personal activity, informally as when collaborating team

members learn from each other, or novice modellers are mentored by experienced

colleagues – or in formal educational contexts involving classrooms, students and

teachers. Within the field of formal education we note that various epistemological

lenses have been used to argue for a multitude of nuances of modelling. These may

legitimately be called different perspectives, but there are issues in describing them

as distinct genres. Fundamentally, it is argued that all variations of mathematical

modelling that appear in educational settings can be incorporated within one of two

basic genres as distinguished by Julie and Mudaly (2007) – modelling as content
(empowering students to become independent users of their mathematics) or

modelling as vehicle (modelling used to serve other curricular needs).

Central to the debate is whether mathematical modelling should be used as a vehicle for the
development of mathematics or treated as content in and of itself. A common notion

associated with mathematical modelling as a vehicle is that mathematics should be

represented in some context. The purpose for embedding mathematics in context is not

the construction of mathematical models per se but rather the use of contexts and mathe-

matical models as a mechanism for the learning of mathematical concepts, procedures. . .
Mathematical modelling as content entails the construction of mathematical models of

natural and social phenomena without the prescription that certain mathematical concepts,

procedures or the like should be the outcome of the model-building process. (p. 504)

extra-mathematical 
world

mathematical 
world

D M

Fig. 28.1 Mathematics and

the rest of the world
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The vehicle perspective is portrayed unequivocally in Zbiek and Conner (2006).

The curricular context of schooling in our country (USA) does not readily admit the

opportunity to make mathematical modeling an explicit topic in the K-12 mathematics

curriculum. . . .Engagement in classroom modeling activities is essential in mathematics

instruction only if modeling provides our students with significant opportunities to develop

deeper and stronger understanding of curricular mathematics. (pp. 89–90)

The distinction is thus elaborated as two poles of a duality (Niss et al. 2007,

pp. v–vi).

Curricular statements lauding the goal of students able to use mathematics to

address problems in their “personal and work lives and as active citizens” implicitly

endorse the treatment of mathematical modelling as content. On the other hand the

listing of applications and modelling related features as one of a plethora of

objectives buried in curriculum detail ensures that they become just another com-

peting priority in the classroom struggle for survival – a vehicle that can be used

productively, but also compromised, or discarded according to circumstances.

The introduction of an instructional setting that imposes its own contextual

priorities fundamentally changes the foundations upon which modelling can be

anchored. The respective dominance of modelling integrity or other educational

imperatives stand as definitive influences and potential antagonists with respect to

what mathematical modelling in education can expect to achieve.

28.4 Modelling Critique

An absence of clear ontological positioning, with consequential lack of epistemo-

logical clarity, is a likely major reason for the mixed bag of criticisms that attend the

role of applications and modelling in education. Criticisms in any field may be

error-detecting, constructive, ignorant, or mischievous, and ours is no exception.

Error-detecting and constructive criticisms are important to accept and act upon as

they stand to correct mistakes in theory and/or practice and to enhance the field. In

contrast criticisms resulting from ignorance, or with mischievous intent, need to be

dealt with, so that misleading messages do not remain unaddressed.

The modelling field is muddied by the presence of a multitude of epistemolog-

ical positions (some conflicting), that impact with confusing effect on parties not

well versed in applications and modelling as such. For example the terms ‘authen-
tic’ and ‘authenticity’ loom large in both modelling literature and curriculum

documents. Moreover individuals tend to have a private sense of what authentic

means to them. An example of the cross-purposes that have emerged in this area has

been provided by Sfard (2008), who argued that the minute an ‘out-of-school
problem’ is treated in school it is no longer an out-of-school problem and in this

sense the search for ‘authentic problems’ to be modelled is necessarily in vain – as

they lose their authenticity. This is a particularly useful example for it lies at the

heart of what mathematical modelling in education is about.

The above important assertion needs to be addressed on two levels. Firstly

counterexamples exist to demonstrate it is misplaced as a generalisation. The
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most potent evidence for authenticity is when students, having been taught model-

ling in school, independently apply the skills learned to problems of choice in their

personal world. Burkhardt (2006) gives an example of a junior secondary student

who successfully won a case made to his parents for increased pocket money by

presenting an argument based on a specific model. Another example involving a

12 year old girl and a pony is also found in Burkhardt (1981). The present author has

previously shared examples in which a student employed the modelling process to

redesign his hydroponic cultures, and a primary school class successfully presented

a case to their local council for a new crossing on the basis of statistical data

collected, interpreted, and synthesised.

Secondly, and more profoundly, the passage demonstrates how the imposition of

‘modelling as vehicle’ values distorts perceptions of what can be achieved through

‘modelling as content’ approaches. Ontological differences are starkly revealed

through the imposition of conceptions of what mathematics classrooms must be

like, and what mathematics teaching is allowed to be. This privileging of perceived

conservative classroom conceptions violates the ontological foundations of math-

ematical modelling as the content of real world problem solving.

28.5 Authenticity

The significance of authenticity is at the heart of constructions of mathematical

modelling as real world problem solving. As argued in Galbraith (2013) the term

has been used too globally, without sufficient regard to its scope and implications.

Authenticity was described in terms of four dimensions, which are important

whether the setting involves the activity of an individual on a private project, a

workplace example, or a classroom modelling project. These are:

Content authenticity: Does the problem satisfy realistic criteria – involve genuine

real world connections? Do the students possess mathematical knowledge suf-

ficient to support a viable solution attempt?

Process authenticity: Does a valid modelling process underpin the approach?

Situation authenticity: Brings conditions necessary for a valid modelling exercise

into direct contact with the workplace, classroom, laboratory, private workspace,

or other environment within which the modelling enterprise is conducted. The

essential characteristic is that ‘the requirements of the modelling task drive the

problem solving activity’. This means that pedagogical (and other) educational

choices will be decided by the needs of the problem solving process – not vice

versa.

Product authenticity: Given the time available: Is the solution mathematically

defensible? Does it suitably address the real world question asked?

The following example, it is argued, fulfils basic requirements for an authentic

problem, and also provides a focus for discussing subsequent issues relevant to the

education-modelling interface.
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28.6 A Modelling Example

Population Prediction

Australian population to top 23 million tonight (Updated 23 April 2013,
10:55 AEST)
Australia’s population will reach an estimated 23 million people some time

tonight, and demographers say it’s on track to hit 40 million by the middle of

the century.

The Australian Bureau of Statistics says the projection is based on last

year’s population estimate and takes into account factors such as the country’s
birth rate, death rate and international migration. ABS figures show that

around 180,000 people move to Australia each year.

It estimates that with a birth every 1 min and 44 s, a new migrant arriving

every 2 min and 19 s, and a death every 3 min and 32 s, the 23 million mark

will be reached just after 10:00 pm (AEST).

That means our population increases by one person every minute and 23 s.

Source: http://www.radioaustralia.net.au/international/2013-04-23/austra

lian-population-to-top-23-million-tonight/1120164

Investigate the claim that “demographers say it (the population) is on track

to hit 40 million by the middle of the century.” What are some societal

implications?

From the given data: Births/year¼ 303,439 and Deaths/year¼ 148,858

Birth rate: b¼ 303,439/23,000,000¼ 0.0132 per year

Death rate: d¼ 148,858/23,000,000¼ 0.00647 per year

Immigrants (net): I ¼ 24� 60� 60=139� 365:25� 365:25 ¼ 227 032 per

year

Assume, as implied by the news report that the given values of birth, death, and

immigration rates apply into the future.

Let P0¼ initial population (in 2013); Let Pn¼ population in year n
Let r¼ (b – d )¼ natural growth rate; Let I¼ average net annual immigration

intake

Solution 1. By Spread Sheet (no specialist mathematical knowledge needed)

P0 ¼ 23000000; b ¼ 0:0132; d ¼ 0:00647; r ¼ 0:00673; I ¼ 227 032

P1 ¼ P0 þ rP0 þ I ¼ P0 1þ rð Þ þ I ¼ P0Rþ I where R ¼ 1þ rð Þ
P2 ¼ P1Rþ I and copy down

P40 ¼ 40 459 252
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Solution 2. By Geometric Series (proceeding from above)

Pn ¼ P0R
n þ I Rn�1 þ . . .R2 þ Rþ 1

� �
Pn ¼ P0R

n þ I Rn � 1ð Þ= R� 1ð Þ; P40 ¼ 40 459 252

Solution 3. By Calculus (continuous approximation)

dP=dt ¼ Pr þ I
P tð Þ ¼ P0e

rt þ I ert � 1ð Þ=r where P0; P40 ¼ 40 526 191

A prediction of around 40 million in 40 years seems reasonable!

Evaluate If a population has an average life expectancy of L then on average a

fraction 1/L of the population dies each year. Using the figures provided above then

an estimate of average lifetime¼ 1/0.00647¼ 154.6 (years)!

So while the given figure might apply over a 24 h period (as here), or even over

short periods of time, it is no basis for robust population predictions.

Refinement To estimate the death rate we need to research robust statistical data

like the 81.5 years life expectancy found on the website: http://www.

australiandoctor.com.au/news/latest-news/australia-on-top-in-life-expectancy

For this life expectancy the long term average death rate¼ 1/81.5¼
0.0122699 year�1, and over time the actual value must stabilise to a value

consistent with this. We also note that the net immigration rate is quoted at about

180,000 per year rather than the higher figure derived from the overnight data.

Using the revised death rate and immigration figures: P40¼ 31,200,000 (approx.), a

substantially different prediction.

Discussion Points There are implications from population projections for the

future provision of jobs, housing, health, education and the list goes on. Are the

demographers wrong? Are the data robust? Has the media been creative with facts?

These are all issues raised for discussion by the modelling outcomes.

Following from the above how might matters next evolve in a classroom

situation, given that the refinement problem has been identified? If real world
problem solving is the driving force then authentic subsequent actions would be

determined by the needs of the refinement – so pursue the modelling activity;

examine implications as above; pose further questions. . . But if modelling is viewed
as a vehicle then the problem is vulnerable: We can’t afford more time on this

problem. We need to introduce the next course topic. . .etcetera.

28.7 Valsiner’s Zone Theory

In considering pedagogical issues such as the above that occur regularly at the

education – real world interface we need frameworks to guide the development of

theoretically consistent approaches to teaching and learning. This must involve the
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development of relevant person – environment relationships as they impact on the

context of modelling. We see value in the approach of Valsiner (1997) who defined

the Zone of Free Movement (ZFM) and the Zone of Promoted Action (ZPA) to

complement the Vygotskian Zone of Proximal Development (ZPD) as frameworks

for theorising and structuring teaching and learning.

• The ZPA is oriented to defining and promoting the acquisition of valued new

skills, and hence can encompass either narrow or broad visions of what is

intended.

• The ZFM structures an individual’s access to different areas in the environment,

the availability of different objects within such areas, and the ways the individ-

ual is permitted or enabled to act on accessible objects in accessible areas.

Both the ZPA and ZFM are culturally determined, and can be loosely associated

respectively with ends and means. While the ZPA identifies goals and purposes to

be attained, the ZFM determines which actions on the part of learners are possible

or permitted in the educational setting.

Within a learning context the ZFM for students is fashioned by environmental

constraints such as the existence of technological resources, or time pressures

exerted by curriculum and assessment requirements; by the particular learning

experiences provided or materials or devices available; and the ‘rules’ by which a

classroom or other situational context is run. Thus the ZFM has inhibiting or

enabling properties, with respect to the ZPA in facilitating or inhibiting the

achievement of new skills and abilities. It directs attention to activities, objects,

or areas in the environment necessary to the purpose for which individuals’ learning
is being promoted.

What is provided within a ZFM has a definitive impact on how successful the

intended learning, represented by the ZPA can be. When the goal is to nurture the
development of real world modelling skills, then a teacher committed to the

‘content’ approach will ensure that the ZFM provides what is required and more

in terms of support for the associated ZPA (Fig. 28.2a). Within a ‘vehicle’ approach
the incursion of other curricular priorities stands to restrict the ZFM to a level below

that needed to support a ZPA geared to supporting modelling as content

(Fig. 28.2b).

ZFM

a b

ZPA

ZPA

ZFM

Fig. 28.2 (a) Modelling as

content; (b) modelling as

vehicle
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28.8 A Curricular Imperative

Empowering students to use their mathematical knowledge to solve real problems,

involves much more than trying to find opportunities to infiltrate application related

activity (often contrived) into a crowded schedule. Significantly that does not assure

proficiency when a problem requires relevant mathematics to be first identified, and

then applied – essential if students are to apply their knowledge proficiently to

problems located in personal, work, or civic contexts, or other discipline areas. As

has been noted, the extent to which these capabilities have been provided to

students through modelling programs has fallen well short of what has been

hoped for.

Traditionally mathematics teaching goals have been overwhelmingly aligned

with the presentation of curricular mathematics, and an essential tension lies behind

reluctance to undertake modelling that seems so different from what has become

accepted school practice. To change this, mandated objectives for students to

formulate and solve problems located in their world must be as explicit as goals

associated with learning curricular mathematics. This would legitimise coexistence

of complementary strands in mathematics programs, so application and modelling

goals are afforded an integrity independent of that associated with learning of

conventional material. It does not mean strands need be equally time weighted,

but it recognises fundamental distinctions (in the ontologies) between the respective

purposes of learning new curricular mathematics, and learning to apply existing
mathematical knowledge to solve real or life-like problems fulfilling situation

authenticity.

Supporting students to become proficient users of mathematics goes far beyond

‘feel good’ statements about the importance of being able to apply mathematical

knowledge, for the belief that modelling can be somehow integrated as one com-

petency strand among many curricular imperatives has implications for what can be

pursued as modelling competencies. Educational traditions have led to the privileg-

ing of certain conceptions concerning school mathematics, and what mathematics

teaching and classrooms are allowed to be – traditions that impact severely when

modelling initiatives are required to fit the stereotype. By contrast, what modelling

as real world problem solving can do is to challenge some of those norms,

assumptions, and stereotypes: mathematical, situational, and pedagogical.

John Rennie when editor of Scientific American in September 2000 made the

telling observation: “When confronted with a crisis, you will not rise to the
occasion; you will sink to the level of your training.” Future citizens cannot call

on knowledge, abilities or experiences they have not been supported to develop and

foster for purposes of addressing problems in their world. Furthermore, in terms of

equity is anything more empowering and socially desirable than providing students

with abilities to use whatever level of mathematics they possess, to genuinely

address problems in their living environment?
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Chapter 29

Reconsidering the Roles and Characteristics
of Models in Mathematics Education

Toshikazu Ikeda and Max Stephens

Abstract A model is generally assumed to be built by translating a real world

problem into a mathematical representation. We attempt to re-construct this inter-

pretation and point to at least two distinct meanings: (Role 1) models as hypothet-

ical working spaces, and (Role 2) models as physical/mental entities for comparing

and contrasting. This leads us to draw attention to four different perspectives of

modelling: (a) where modelling is interpreted as interactive translations among

plural worlds not between two fixed worlds; (b) where models have the potential to

incorporate scenarios beyond the initial problem situation; (c) where the mathe-

matical world is used as a source of mental entities for comparing and contrasting;

(d) where modelling competency means knowing how to balance between these

different roles. Perspectives (a) and (d) are concerned with Role 1 and (b), (c) and

(d) are concerned with Role 2.

29.1 Research Background

Up to now, a number of trends have been identified globally with regard to

modelling approaches (Blum and Niss 1991; Kaiser and Sriraman 2006). Various

approaches based on different cultures and objectives exist and these include a

significant diversity in the interpretation of models and modelling (Gravemeijer

2007; Lesh and Yoon 2007). It has also been pointed out that the act itself of

defining the process of putting real-world problems into quantifiable terms to create

a mathematical model may not be appropriate for the problem being considered
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(Skovsmose 2005; Skovsmose and Nielsen 1996). Thus, the question of how to

think about models and modelling is an old yet new issue. In instruction focused on

mathematical modelling, a model has been regarded in the limited sense that

models arise when a problem in the real world is translated into, and considered

as, a mathematical model (Blum et al. 2007), but in the present chapter we

temporarily re-construct this framework to reconsider the meaning and role of

models in mathematics education in a broader sense, after which we once again

refer to their influences about modelling. Therefore, the aim of this chapter is to

elicit new perspectives about modelling by re-constructing the interpretation of

model in mathematics education.

29.2 Models in Mathematics Education and Their Role

At the beginning, we define the meaning of a model in mathematics education by

referring to the ideas of Pinker (1981) and Fischbein (1987) as follows:

When he/she judges thatM has the following three points,M is a model of O for

him/her,

(1) M has a similar structure with O in regarding a particular aim.

(2) M is relatively autonomous to O.
(3) M can be applied in order to get meaningful results about O.

Based on the above definition, it is not necessary that a model should be built up

in a mathematical world by translating a real world problem in mathematics

education. When a problem is derived in a real world, a model is built up in a

mathematical world. But, when a problem is derived in a mathematical world, a

model will be built up in a real world. Models can be built up in both a real world

and a mathematical world. In these two instances, it is assumed that a model is used

as a hypothetical working space. Fischbein (1987) noted “The main advantage of an

autonomous model is that the subject may rely on the model alone in order to solve

various problems posed by the original” (p. 124).

In contrast we can see an alternative role of model in science. Hesse (1966)

ascertained: “Now the important thing about this kind of model-thinking in science

is that there will generally be some properties of the model about which we do not

yet know whether they are positive or negative analogies; these are the interesting

properties, because, as I shall argue, they allow us to make new prediction” (p. 8).

Here, a model is not used as a hypothetical working space, but as a device to create

new predictions or problems. It can be said that a model is used here as a source of

physical/mental entities for comparing and contrasting.

Therefore, we propose there are two ways for learners to set up models, as

explained in the following subsections, and then we proceed to a general descrip-

tion of their roles in the context of the learner. In mathematics education, models

can be broadly classified as having two roles. The first role of a model is as a

hypothetical working space; and the other role of a model is as a physical/mental

entity for comparing and contrasting. These two roles for models serve important
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functions in mathematics learning and for cultivating mathematical thinking. That

is to say, the use of models when thinking serves to aid us in our own thought. These

two roles can be described as follows.

29.2.1 Role 1: Model as a Hypothetical Working Space

When it is difficult to consider the problem in the context in which it arises, it can be

replaced by a problem in another context that is easier to think about, and one can

attempt to produce an answer by processing the problem in this other context. By

“easier to think about” here, we mean that there are some factors in the second

context that facilitate human thought. In this case, the model refers to the thing in

the other context, or “other world”, that can be substituted for the problem at hand

and considered in its place.

There are at least three reasons for this. The first reason is that a model enables us

to consider abstractly with visual and manipulative tools. When it is difficult to

consider the problem in the context of the world in which it arises, operable models

can be created or selected, utilizing, for example, blocks, or number lines, or

graphs, allowing the problem to be considered visually and/or manipulatively.

For example, when students consider addition or subtraction in a real world, they

can do so in an operational way through the use of blocks or counters. When

considering the multiplication and division of rational numbers, we can do so in

an operational way by using a number line model to perceive the numbers visually,

or think about it using a graphical representation so that the mechanisms of change

can be understood. Thus, thinking about the numbers in a visual and operational

way, in this situation, a model is built from a concrete world into an abstract world.

Second, the idea of a model as a hypothetical working space can be also

effectively utilized when constructing new mathematical knowledge. When formu-

lating new mathematical knowledge, an imaginable concrete model with a structure

the same as the original mathematical problem is set up, and mathematics knowl-

edge can be developed by analysing the concrete model. When we think of

multiplication and division of decimals, fractions, or positive and negative num-

bers, we construct a system within the scope of mathematics by taking a problem

from a real situation as a model, and solving that problem (Ikeda and Stephens 2011).

One such case, for example, is the multiplication and division of fractions, where a

painting problem in a real world can be used as a model. Another case is where the

addition and subtraction of positive and negative numbers can be considered on the

basis of models such as a person walking east/west in a real world. This model is

built from an abstract world into a concrete world.

Third, a mathematical model enables us to consider systematically implications

arising within the resulting mathematical system. Typically, in mathematical

modelling, problems in the real world can be thought about in a mathematical

world. By translating a real world problem into a mathematical world, it becomes

possible to utilize the systems of mathematics to consider the problem through
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formal mathematical processing. For example, if we can make up a quadratic

function model about a real world situation, then we can get the maximum or

minimum value by transforming the formula systematically. However, the role of a

model in modelling is not limited to this standpoint, as will be explained.

To summarize, the idea of a model as a hypothetical working space provides the

following three advantages at least, enabling us to consider the situation being

modelled:

(R1-1) abstractly with visual and manipulative tools,

(R1-2) concretely with images in a familiar world,

(R1-3) systematically with a developed mathematical system.

29.2.2 Role 2: Model as a Physical/Mental Entity
for Comparing and Contrasting

The idea of Hesse (1966), who advocated that thinking develops dynamically,

precisely because there are models, threw new light on the role of models in

science. The model here is treated contradistinctively, as physical/mental entities

for comparing and contrasting, and it is used as a place from which to draw out

analogies. This kind of role for a model is clearly different from that mentioned

earlier, where the model serves as a hypothetical working space.

When it is unclear how a problem at hand should be thought about within the

world in which it arises, facts are discovered in another familiar world that is similar

to the one in which the problem arose. Then, one can attempt to explore the problem

at hand, taking the structures of, and relationships between, elements in the other

world as physical/mental entities for comparing and contrasting. For example,

when we build up the system of taxes according to a person’s level of income, we

pick up a proportional function in our mathematical world as a model and contrast it

with a real world problem. In this example, the mathematical world is considered

more familiar providing the problem solver with a thorough knowledge of the

relationships between the elements involved in the problem. The mathematical

representation allows other analogies to come into play because of the addition of

further areas that are likely to parallel the problem. In this case, the model refers to

the structures and relationships between the elements in a mathematical world that

serve as entities for comparing and contrasting and for drawing out analogies.

There are three main reasons that can be identified in this second role. The first

involves the creation of a mathematical model as a hypothetical working space,

which is then used for the purpose of contradistinction. In other words, we see that

in mathematical modelling, the two roles of models, as a hypothetical working

space and as a physical/mental entity for comparing and contrasting, are both

simultaneously fulfilled. Once a mathematical model is created that represents the

relationship between quantities in the real world, the potential to question the

consistency between the real and mathematical worlds arises. This in turn has
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implications on the perspective from which the mathematical model can be exam-

ined and revised. Further, we can also see the case when making a concrete model

based on the context of real phenomena related to the system in question.

Secondly, once a mathematical model has been created, one can consider the

scope to which the new model is both applicable and effective to expand and clarify

the real world situations being modelled. It is apparent that, in generalising the

mathematical model, the role of a model is not as a hypothetical working space, but

more as a context to draw out analogies through comparison.

The third situation is when one attempts to construct a new system within

mathematics. This can be done by using as a model a system which has already

been constructed within a mathematical framework. It can be a case of constructing

a new system, for example, by thinking of positive and negative numbers in terms

of a model of the addition, subtraction, multiplication, and division of natural

numbers, or by thinking of the addition and subtraction of vectors as a model for

the addition and subtraction of positive and negative numbers.

In summary, when one selects and contemplates a model from the other world, in

mathematics education, there are at least three principal cases that may be consid-

ered as enabling us:

(R2-1) to contrast an original problem situation with a developed model,

(R2-2) to expand and clarify real world situations satisfying a developed model,

(R2-3) to consider a new mathematical system by selecting some already developed

mathematical system as our exemplary model.

29.3 Two Roles of Models in Teaching of Modelling

It is possible to see how new modelling perspectives can be developed, if we reflect

on the teaching of modelling from these two roles. We describe four new perspec-

tives about modelling.

29.3.1 Modelling Is Interpreted as Interactive Translations
Among Plural Worlds, Not Simply Between Two
Fixed Worlds

When instructional approaches to modelling are perceived on an international level,

two traditional trends are identified: namely, a pragmatic trend and a scientific/

humanistic trend (Kaiser 1991). We note that Kaiser and Sriraman (2006) have

identified additional trends. In this paper, different approaches to modelling are

described, and attention is given to the differences in how models and worlds are

regarded. In the case of the pragmatic trend, people mathematise in order to enable

formal processing using systems of mathematics, and it is mathematisation for the
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creation of mathematical models that is emphasised. A dualism between the “real

world” and the “mathematical world” underlies this approach. On the other hand, in

the case of the scientific/humanistic tendency, the emphasis is placed not on a

mathematical model, but on the model as a medium for promoting mathematisation.

As Freudenthal (1991) noted,

According to my terminology, a model is just the – often dispensable – intermediary by

which a complex reality or theory is idealized or simplified in order to become accessible to

more formal mathematical treatment. . . . I lay so much stress on the role of the model as an

intermediary because people are all too often unaware of its indispensability. Much too

often mathematical formulas are applied like recipes in a complex reality that lacks any

intermediate model to justify their use (p. 34).

Both cases have in common the idea that the model functions as a space for thinking

that enables problems to be contemplated in a separate space. However, the

intermediate model for Freudenthal seems to be a model built between a real

world and purely mathematical world in order to overcome the difficulty of

mathematisation. This distinguishes Freudenthal’s usage from the idea of a prag-

matic trend in which mathematical modelling is interpreted in terms of two fixed

worlds (dualism). We have the term “real model” in the pragmatic trends (Kerr and

Maki 1979), and this term usually refers to a model that is expressed in words as an

actually arisen problem. However, as opposed to a model for facilitating

mathematisation, a model expressed in words may be more appropriately

interpreted as a model that acts as a communicable device to understand the original

problem. Being able to represent and describe what is being modelled is an

effective means for overcoming the difficulty of mathematisation. Therefore, the

idea of an intermediate model leads us into a new perspective where mathematical

modelling is interpreted as an interactive translation, not between fixed two worlds

(between a real world and mathematical world), but among plural worlds. If we can

represent an original action (or operation) with a new action (or operation)

explained with elicited properties, we can interpret that two corresponding actions

(original and new) each existing in a different world.

Consider, for example, the problem of determining the height of a balloon (Ikeda

et al. 2012). The problem for students is: “We can see the rising balloon. Let’s
devise a method to measure both the height of the balloon and the horizontal

distance from here to the point just below the balloon!”. Creating an effective 3D

model allows students to manipulate concretely using various mediums such as

drawing paper, which assist them to visually and operationally contemplate the

relationships between variables. Further, considering the problem geometrically by

drawing and measuring enables students to develop this kind of model and to

manipulate it symbolically. In this example, modelling is executed through inter-

active translations among at least four worlds. The first is the real world; the second

is a representational world which they can manipulate; the third is a world which

allows them to consider geometrically by drawing and measuring; and the fourth is

a world which allows them to consider symbolically and algebraically.

In this way, when we examine the relationships between quantities within a

given space, contemplation using a visually operable model is useful for
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investigating what the important variables are, and for exploring what kinds of

relationships exist between the variables. Further, contemplation with a geometrical

reduction model by drawing and measurement is useful for developing the trigo-

nometric relations among the variables. By regarding the modelling process as a

series of interactive translations among plural worlds, we can ensure that students

make progress over time, not necessarily in one defined teaching episode.

In summary, we propose a new perspective in which modelling is interpreted as

interactive translations among plural worlds, where the role of intermediate models

in plural worlds is intended to assist students to make progress in mathematical

modelling. If we cannot determine the role of a model in a certain world, we have to

delete that “world” since it is of no benefit to students. We need to study the

possibilities and limitations of this perspective.

29.3.2 Models Having the Potential to Incorporate Scenarios
Even Beyond the Initial Problem Situation

A model by its nature serves to emphasize the fact that not all things are equivalent.

When we focus on the role of a model as a physical/mental entity for comparing and

contrasting, this point comes into much sharper relief. When examining a mathe-

matical model that is intended to describe a phenomenon in a real-world setting,

there are two points to consider. The first point is that the mathematical model may

not – some would say cannot – include all the important variables required in the

initial problem scenario. The second point is that the mathematical model may

include points that lie beyond the original scope of the problem. In the teaching of

modelling, the former has probably received more emphasis, but we suggest that the

latter should be given equal emphasis. This point is one of the virtues of thinking

about a model as a physical/mental entity for comparing and contrasting. Accord-

ingly, after creating a mathematical model of a phenomenon present in a real

situation, an activity to clarify the extent of the model’s applicable range should

be encouraged. To illustrate this point, let us look at the mathematical model of

quantifying the hours of night (Ikeda 2013).

Although the mathematical formula has been created and described in the

Northern hemisphere as shown Fig. 29.1, if we consider a more general scenario,

we can ask what the situation would look like in the Southern hemisphere. Then, if

we scroll along the graph of the formula created, we notice that the function is also

expressed in terms of negative values as shown in Fig. 29.2. The negative values for

the latitudes can be considered to represent and quantify the hours of night time in

the Southern hemisphere, thus extending the applicability of the original formula.

Perceiving models in this way suggests that we can explore formats of modelling

instruction that can be generalized, without having to settle for one narrow problem

solution and interpretation.
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29.3.3 Where a Mathematical World Provides Entities
for Comparing and Contrasting Different Design
Standards

In mathematical modelling, sometimes the objective is to use mathematics in the

real world to establish fair standards or for design (Niss 2008). Some examples

referred to by Niss (2008) are taxation systems, examination-grading systems, IQ

tests, life insurance, and so on. In these kinds of problem situations, we must bear in

mind that the world of mathematics is being used as a model to test out different

design principles. According to critical mathematics education, the goal here is not

to produce solutions within a conventional mathematical modelling process. We

can interpret this as the action of taking knowledge from a mathematical world that

models a situation present in the real world, and then of applying and fine-tuning

Fig. 29.1 Night time in the

northern hemisphere

Fig. 29.2 Night time in

both hemispheres
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this model according to certain design principles or standards. For example,

consider the tax problem “How should we impose taxes according to persons’
incomes?” To deal with this real world problem, we could select a single propor-

tional function, y¼ ax, from a mathematical world as our model. By comparing and

contrasting the single y¼ axmodel with a real world situation, the following critical

question arises: “Is it desirable to impose the same rate of tax on both low income

persons and on high income persons?” By refining the model to take account of this

question, an alternative model providing for progressive rates of income tax

according to bands of income can be developed by combining three linear propor-

tional functions as shown in Fig. 29.3. This new model allows us to see that this

three-stage model is not necessarily the end of the story. It also allows us to evaluate

the merits of using a series of increasing linear functions as opposed to a contin-

uously changing rate. What we need to highlight here, therefore, is that the world of

mathematics is not being used as a hypothetical working space, but rather as a

model, in the sense of mental entity, for comparing and contrasting different design

principles.

This kind of situation forces us to distinguish the role of a model as a hypothet-

ical working space in conventional mathematical modelling from the role of a

model as a mental entity for comparing and contrasting using different design

principles. This distinction also has implications for mathematical modelling

instruction, as well as how to evaluate different schematic depictions of modelling.

29.4 Modelling Competency Interpreted as How to Balance
Between Two Roles of Models

In the teaching of modelling, we argue that the two roles of a model – as a

hypothetical working space and as a mental entity for comparing and contrasting

– are both required. Consequently, our focus needs to shift to the question of how

both roles should be meta-cognized and contemplated. Several earlier studies, such

as by Moscardini (1989) and Ikeda and Stephens (1998), have highlighted the need

to start out using an essentially simple model, and then gradually and realistically,

to examine and to revise one’s initial model by taking the real-world scenario into

account. This can be understood as a suggestion regarding the balance between the

income

taxFig. 29.3 A revised model
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two roles of models. Specifically, this can be interpreted as suggesting that the more

complex the problem, the greater should be an emphasis on using a model in its role

as mental entity for comparing and contrasting, rather than simply as hypothetical

working space. Of course, it is necessary to investigate how to make students aware

of this point, and as a consequence to investigate the optimal forms of instruction to

foster such awareness. This is a challenge for further research and study.
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Chapter 30

Developing Statistical Numeracy: The Model
Must Make Sense

Janeen Lamb and Jana Visnovska

Abstract Teaching statistical numeracy in middle school classrooms requires high

quality instruction that promotes opportunities to use mathematics in modelling

problem situations. In this chapter we report on a professional development session

that involved nine teachers from six rural and remote high schools in Queensland,

Australia. Results indicate that some teachers focused on the mathematics they

would teach, limiting numeracy opportunities, while others focussed on making

sense of the problem by modelling, thereby promoting statistical numeracy. This

research suggests that ongoing learning opportunities where such differences

become the point of professional discussions are needed to support teachers’
understanding and appreciation of the role of modelling in promoting statistical

numeracy.

30.1 Introduction

The Australian Curriculum has seven General Capabilities embedded across each

subject area. Numeracy is one of these capabilities. The Rationale for the Australian

Curriculum states that the national curriculum

develops the numeracy capabilities that all students need in their personal, work and civic

life, and provides the fundamentals on which mathematical specialties and professional

applications of mathematics are built. . . These capabilities enable students to respond to

familiar and unfamiliar situations by employing mathematical strategies to make informed

decisions and solve problems efficiently (ACARA 2013 para 1).
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Numeracy has been discussed in these terms for many years (AAMT 1997) and

research reporting on realising these goals recommends learning that is set in

experiences at school, at work and in civic life (Greer et al. 2007). However, as

Galbraith (2013) points out, being able to do this requires a new approach and

therefore new knowledges such as being able to select appropriate problems from

these contexts and to decide which mathematics could be used. Moreover, Greer

et al. (2007) argue that without a strong emphasis on context students will tend to

suspend sense making, concentrating instead on using mathematical procedures

without any reflection on the context of the problem. To promote sense making

Verschaffel et al. (2010) conceptualise problem-solving as a six-phase modelling

process. The phases are: (1) understanding the key elements in the problem

situation, (2) constructing a mathematical model of the relevant elements and

relations embedded in the situation, (3) working through the mathematical model

to derive mathematical result(s), (4) interpreting the outcome of the computational

work, (5) evaluating if the interpreted mathematical outcome is appropriate and

reasonable, and (6) communicating the obtained solution of the original real-world

problem (p. 10). Beyond the notions of context focus and sense making, Verschaffel

et al. (2010) also call for a different teaching approach.

One such teaching approach called ‘ambitious instructional practices’ has

become synonymous with high quality instruction (Franke et al. 2007). This

approach builds conceptual understandings in mathematics by using problems

that are cognitively demanding (Lampert et al. 2010) and where tasks are accessible

by all (Boaler and Staples 2008; Jackson and Cobb 2010). Consequently, the

teacher needs to manage students as they work on these tasks resulting in the

orchestration of productive whole class discussions of students’ solutions (Stein

et al. 2008). During the discussion phase of the lesson, teachers are to ‘press’
students for evidence or justification while students make connections between

their own solution and the solutions of their peers (Staples 2007). For these changes

to pedagogy to be realised, professional development (PD) needs to incorporate

access to ambitious instructional practices.

Current research recommends PD that provides ‘safe’ opportunities for teachers
to work on problems as students while the PD provider leads, demonstrating

ambitious instructional practices (Lampert et al. 2013). The priority is for teachers

to work collaboratively through intended classroom tasks that should be cognitively

demanding, non-procedural in nature (Boston and Smith 2009) and have multiple

entry points resulting in multiple solutions. While engaging in these activities,

teachers develop different solutions to be compared during the discussion phase

while at the same time building a strong professional community. This gives

teachers opportunities to experience as students how this phase of the lesson can

promote depth of understanding of the key mathematical ideas (Stein et al. 2008). It

also gives teachers an opportunity to reflect on these big mathematical ideas and

intended learning goals (Boston and Smith 2009) and provides opportunities to

rehearse ways to ‘press’ students, to revoice and to link student contributions. The

important issue here is that these pedagogical elements are considered teachable
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(Lampert et al. 2013). Moreover, ambitious instructional practices are well suited to

promote instruction aimed at sense making proposed by Verschaffel et al. (2010).

With this research literature in mind and the need to support teachers in their

teaching of statistical numeracy, the PD goal of our study was to enhance instruc-

tional practices in the teaching of statistics for teachers of 13 and 14 year old

students. Our research questions focused on characteristics of PD activities that

spark initial teacher interest, collaboration, and engagement in professional con-

versations, and help make teachers’ current instructional practices visible to the

research team. We conjectured that when provided with opportunities, teachers

would develop different models to represent data and subsequently compare

models, consider the relative strengths and weaknesses of these models, and explore

mathematical ideas that the models make available for classroom discussion.

30.2 Research Design

This project is set in a rural and remote region of Queensland, Australia, where

newly registered teachers are most often contracted to teach for 3 years. This

practice results in high teacher turnover, ensuring a constant flow of new, inexpe-

rienced teachers to these regions (Heslop 2003). Making this situation more com-

plex for the teaching of mathematics in years 8, 9 and 10 is the usual practice that

this teaching is often delegated to novice teachers without a mathematics back-

ground. The participants in this longitudinal project included 1 regional mathemat-

ics advisor and 11 teachers from 6 high schools spread over an area of 500 km2.

Three of these participant teachers had more than 3 years teaching experience.

Pseudonyms have been used for all participants.

A design research approach (Cobb et al. 2003) was adopted to support and study

teachers’ learning. This approach involves iterative “micro” cycles of designing PD

activities and conducting ongoing analyses of teacher learning that inform the

design of subsequent PD sessions. It also involves “macro” cycles where resources

developed in prior design studies (Visnovska and Cobb 2013; Visnovska

et al. 2012) are tested and modified as they are adapted to new PD contexts.

Given our understanding of the PD context we were entering, the themes of

statistical numeracy and modelling appeared broadly relevant to the teachers and

provided a promising starting point for collaboration.

30.2.1 The Task

We report on the first PD activity, where the Student Exercise Task was introduced
to the teachers on the first day of the project. This sense making activity involved

numerical data and was pitched at middle school student level so that the teachers

could use it in their own classrooms. Prior to the commencement of the activity, the
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teachers engaged in a discussion on statistical numeracy, mentioning a broad range

of relevant issues. Importantly, the discussion concluded that statistics without

context is meaningless and that we need context in order to make decisions about

data. The Student Exercise Task was then introduced.

Student Exercise Task

The data shows the number of paces per day for a group of 28 Grade

8 students. Teachers and the school principal are concerned that students

are not getting enough exercise. Your job is to organise and represent the data

in some way so that it can be presented to parents at a school open day. Find a

way to represent the data so that you can make some conclusions about the

exercise habits of these students.

12000, 10000, 4000, 5000, 800, 500, 5500, 7000, 9000, 11000, 5500, 4500,

5500, 5000, 12000, 7500, 4500, 4500, 5500, 5500, 11500, 9500, 5000, 9000,

5500, 4000, 6000, 5000.

Our intention with this task was twofold. Firstly, it was to provide us with an

opportunity to document teachers’ statistical understandings and inform the next

cycle of PD design. Secondly, it was to provide the teachers with an opportunity to

work collaboratively on a problem where aspects of statistical numeracy and sense-

making could be discussed while building professional relationships. To achieve

these intentions we asked the teachers to form groups of three and decide if the

Grade 8 students were getting enough exercise. They were to present their argu-

ments to the rest of the group as if we were parents. In this chapter we present the

work of two teacher groups. The first group had all teachers within the first 3 years

of teaching while the second group had two more experienced teachers in it.

30.2.2 Data Collection and Analysis

Data collected from the initial PD session analysed here included our research

planning log, field notes of one of the authors and photographs of teachers’ work.
The overarching approach to analysis is an adaptation of the constant comparative

method tailored for analysing data sets that are generated during design experi-

ments (Cobb andWhitenack 1996). In analysing the initial teacher participation, we

compared teachers’ data analyses with the six phases of problem solving activity

(Verschaffel et al. 2010). We then documented the mathematical and pedagogical

themes that became a topic of the PD discussion, how these topics were initiated in

the group, and how they were linked to ambitious instructional practices (Lampert

et al. 2013). Lastly, we noted the diversity of opinions within the group related to
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the discussed topics. Our primary goal was to develop insights into supporting the

work of newly formed PD groups of mathematics teachers and inform subsequent

PD design.

30.3 Results and Discussion

The researchers were prepared for an array of different models to represent the

Student Exercise Task knowing that some are better at providing insights into this

particular context. Moreover, the same graph can result in very different classroom

activities: The focus can be on the graphing conventions, or, more importantly for

developing students’ sense-making and numeracy, the activity can focus on how the

graph models the problem at hand, provides an insight to it, and helps us propose a

response (Greer et al. 2007).

The teachers enthusiastically worked on the task in their groups, developing

different models. During this time the researchers decided on the order in which the

groups would be invited to present, aiming to advance the PD agenda (cf. Stein

et al. 2008).

30.3.1 Teacher Models Give Opportunities for Discussion

During the discussion, teachers were given opportunities to justify their reasoning,

critique their own model and the models presented by other groups. The teachers

who developed the graph displayed as Fig. 30.1 were asked to present first. They

were selected as we believed it would be difficult to present a strong argument using

this graph to decide whether the students were getting enough exercise or not. The

teachers explained that they had decided to draw a histogram to represent the data.

They oriented the PD group to the graph explaining that the X-axis displays bins at
1,000 pace intervals while the Y-axis represents student frequency. They also

pointed out that all the important features of their graph were present including

the title, the positioning of zero and the labelling of each axis. This presentation did

not include an answer to the question: Are the students getting enough exercise?

One teacher, while trying to understand the graph and what it indicated about the

exercise habits of the students, pointed out that the height of bars did not correspond

to how many paces the students walked and that the model could mislead others to

think that it did. When the teachers in the presenting group were ‘pressed’ to answer
the question that was central to the task, they realised how difficult it was to use

their graph to present an argument. The ‘press’ for further explanation stimulated a

discussion of the importance of students knowing how to construct a graph that

included all the important elements on the one hand, and how to construct a graph

that purposefully assists in the interpretation of data thereby building numeracy

skills on the other hand.
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By placing particular emphasis on the mathematical conventions of graphing,

the first presenting group did not use the developed graph as a model and never

progressed beyond the second modelling phase (Verschaffel et al. 2010). Impor-

tantly, other teachers expected to progress further and held the first group account-

able for addressing the task question. The ensuing discussion helped us all see how

easy it is to suspend sense making and to concentrate solely on the mathematical

elements of the problem (cf. Greer et al. 2007).

The second group of teachers selected a pie chart to display the data and make

their case (Fig. 30.2). The presenting teachers oriented PD group to their model

highlighting that they knew that 10,000 paces per day was the recommended

benchmark and that the section of the pie graph with 23 represents the number of

students who walked less than 10,000 paces per day. The smaller section with

2 represents those students who walked less than 800 paces per day. The shaded

segment with 3 represents those students who had met or exceeded the recommen-

dation. To accentuate the size of the last group, the teachers visually cut this section

out and placed it to the side of the pie graph. They concluded their presentation

saying that with only three students meeting the benchmark per day, the students in

grade 8 do not exercise enough.

Fig. 30.1 First group’s histogram model of the Student Exercise Task
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A teacher started the discussion pointing out that there were recording errors in

this graph. For example, there were five students who met the benchmark, not three,

and thus the numbers marked in all sections were inaccurate. Another teacher stated

that it was more intuitive to read the ‘less than 800 paces’ group as a subgroup of the
‘less than 10,000 paces’ group, making her believe that the legend was inaccurate.

Once the graph accuracy issues had been addressed the researchers pressed the

group to consider whether this graph modelled the situation well and whether it

could support an argument about the grade 8 students’ exercise habits. Teachers all
agreed that the graph clearly and convincingly illustrated the magnitude of students

who did not meet the recommended benchmark.

When asked to compare the two responses captured by the graphs displayed as

Figs. 30.1 and 30.2, the teachers quickly concluded that the first response was more

closely aligned with teaching of traditional mathematics with a greater focus on the

elements of the graph, whilst the second response was more closely aligned with

modelling and required sense making so that an argument could be presented. From

the perspective of the researchers this was an important discussion. It allowed the

teachers to explore the difference in how the two graphs were used and to identify

that each use would target different learning goals for students. It also demonstrated

that not setting specific solution methods permitted rich discussions that teachers

could conceivably have with their own students when using this or similar open-

ended tasks. Further, even though the second group made an error in their graph, the

contribution was treated as valuable because it developed a clear argument about

the students’ exercise habits and allowed for model comparisons. Thus, important

pedagogical issues of use of graphs in modelling, use of open-ended tasks, and

treatment of errors became available for the group discussion in the context of this

PD activity.

Fig. 30.2 Second group’s pie chart model of the Student Exercise Task
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30.3.2 Effects of Teaching Experience on Modelling

A deeper issue that deserves consideration is that the difference in the amount of

teaching experience between the two groups was noticeable in how they

approached the task and whether they used graphs as modelling tools. Students in

rural and remote schools where there is only one mathematics teacher depend

largely on this teacher for opportunities to develop the numeracy skills intended

in the Australian Curriculum. The teachers are often novices but because they are in

the school for a limited time, investment by schools in their continuing professional

learning is not easily justifiable under the notion of developing local capacity. As a

result, if a PD is provided it is likely to target immediate teacher needs rather than

instructional practices suitable for modelling that require prolonged investment.

The difference between novices and more experienced teachers was further

highlighted when the group with more experienced teachers subsequently devel-

oped a second model. The teachers were dissatisfied with their pie graph because

it did not show how many students were close to the 10,000 paces per day

benchmark. Consequently, they constructed a further model, a graph (Fig. 30.3).

When presenting their second model, they pointed out that each bin along the

X-axis represented one student with the number of paces recorded on the Y-axis.
They also pointed out that the horizontal marker for 10,000 paces showed which

students met this benchmark, concluding that the students in grade 8 do not get

enough exercise. They made the point that there were clusters of students below the

10,000 pace marker, not just two groups “below” as it appeared from the pie chart.

Fig. 30.3 Second group’s graph of the Student Exercise Task
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The researchers ‘pressed’ the teachers to explain why Fig. 30.3 allowed for a

stronger argument regarding the student exercise habits. Teachers noted that order-

ing student data made it easy to see where students were in relation to one another

as well as the benchmark. They commented that the graph allowed for insights that

were not easily accessible in Figs. 30.1 or 30.2 and it was a representation that

students would likely understand. It was clear that this group used graphs to model

and make sense of the problem situation, and had progressed through all modelling

phases (Verschaffel et al. 2010).

30.4 Conclusions

The design research approach employed in this study allowed initial interactions

with teachers from rural and remote Queensland to provide some insights into the

teachers’ current instructional practices and ideas related to the teaching of statis-

tical numeracy, and to using graphs to model and make sense of problem situations.

First we identified that teachers may well focus on the mathematics of the problem

suspending sense making in the same way Greer et al. (2007) reported for students.

This suggests that teachers need to be supported to ensure that students in their

classrooms have access to problem situations that are set in suitable contexts and

demand them to develop the level of numeracy skills espoused in the Australian

Curriculum.

Second, the teachers did develop a range of different models and they collabo-

ratively critiqued and discussed these models. In particular, these discussions

highlighted the differences between learning to draw the graphs correctly and

learning to use graphs as models when interpreting and responding to contextual

problem situations. In addition to supporting teachers’ insights into ways in which

graphs may be used in mathematics classrooms, we conjecture that these discus-

sions laid the groundwork for teachers to have similar whole-class conversations in

their classrooms.

We aimed to demonstrate aspects of ambitious instructional practices as we

orchestrated the mathematical activities. We believe that both the selected task and
the order in which teachers’ responses were presented played important roles in the

type and quality of discussion that resulted. On initial reading, the task we decided

to use may appear ill structured. It was designed to provide multiple entry points, to

be non-procedural, and to allow for teacher explorations of graphs in a modelling

context (Boston and Smith 2009; Greer et al. 2007). As anticipated, the task was

suitable for these purposes. In addition, we identified and upheld cognitive demands

of the task, demonstrated ‘press’ where further explanations were required,

revoiced teachers’ contributions, and asked them to make connections between

models (cf. Lampert et al. 2013). Our orchestration of the Student exercise PD

activity became a shared reference point in the subsequent PD sessions, when

teachers engaged in planning and rehearsal activities before implementing data

analysis and modelling tasks in their own classrooms (Lamb and Visnovska 2013).
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Lastly, in addition to learning about teachers’ views and practices, the teachers’
interactions during the initial PD activity provided insights into supports needed for

the group to become a professional learning community with ‘safe’ opportunities to
interact with colleagues (Lampert et al. 2013). Teachers’ interactions suggested that
most of them were keen to collaborate on and share mathematical ideas, and that

challenges to mathematical ideas were accepted and handled respectfully. Peda-

gogical ideas and values remained somewhat private and largely unchallenged. For

instance, there were no challenges to acceptability of graphing conventions as a

learning focus in a mathematics lesson, although there seemed to be some differ-

ence of opinions about this issue in the group. Such dynamics is not surprising at the

beginning of a group collaboration where group members are yet to develop mutual

trust and shared goals (Visnovska et al. 2012). This initial phase of community

development might be a particularly difficult task for rural remote teachers who are

often physically isolated by large distances from colleagues who teach middle

school mathematics. Developing PD activities in which teachers start sharing and

challenging their pedagogical views was an important goal for the research team.

Implementing the General Capability, numeracy, requires new knowledge (Gal-

braith 2013) where context needs to be prioritised. The initial PD session

highlighted for us that this would not happen by osmosis, particularly for isolated,

inexperienced teachers in rural and remote regions. Therefore we suggest that

considerable work to support teachers in this endeavour is needed.
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Chapter 31

Mathematical Modelling and Cognitive Load
Theory: Approved or Disapproved?

Jacob Perrenet and Bert Zwaneveld

Abstract The research question for this theoretical study is: What is the use of

Cognitive Load Theory (CLT) for mathematical modelling education (MME)?

CLT is a notable theory about the consequences of human memory structure for

teaching, claiming specific relevancy for mathematics education. A set of scientific

CLT research papers at secondary level mathematics teaching is compared with the

Dutch Handbook of Mathematics Didactics on pedagogical perspective as well as

on concrete directives for modelling education. Cognitive scheme theory is the

common base, but concrete directives strongly differ. Most CLT directives appear

to be of limited use for MME, but some are interesting. A discussion of CLT’s
rejection of constructivism leads to the importance of structured support in teaching

use of the mathematical modelling cycle.

31.1 Introduction

Learning mathematical modelling is a complex task, for students as well as for

teachers. In our opinion (Perrenet and Zwaneveld 2012), mathematical modelling in

secondary mathematics education should be more than teaching how to solve a real

world problem by use of a given mathematical model. The students also should

actively construct the model, use it and improve it, as part of the whole modelling

cycle. Many representations exist for the series of actions comprising the mathe-

matical modelling cycle. We have described this variety and end up with our own

representation as seen in Fig. 31.1. Students have to learn to analyze, conceptualize,
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solve problems, interpret, verify, validate, reflect, communicate, use domain

models as well as mathematical models, act in the mathematical world as well as

in the non-mathematical world, and more. In addition, teachers have to teach,

facilitate, coach, test it, and more. This is a complex task for students and teachers;

in cognitive psychological terms: it causes, for students as well as for teachers, a

heavy cognitive load, so maybe Cognitive Load Theory could be helpful here.

Cognitive Load Theory (CLT) is an influential psychological theory, based upon

the limited capacity of human working memory and the process of scheme con-

struction in long term memory. It has produced a series of evidence based directives

for learning task characteristics. It claims specific relevance for mathematics

education, because of the high degree of interconnectivity of the elements of the

mathematics domain (Sweller 1994). We will give an overview of the theory in

Sect. 31.2 of this chapter.

Despite the claim of relevance, CLT does not seem to be known or accepted by

the mathematical didactical community. For example, in the new Dutch Handbook
of Mathematics Didactics (Drijvers et al. 2012) extensive attention is given to the

international knowledge base of (cognitive) psychology and although the concept

of cognitive load gets some attention, Cognitive Load Theory and its results are not

mentioned. Specifically, nowhere is CLT related to learning mathematical model-

ling, one of the chapters of the Handbook (Spandaw and Zwaneveld 2012). In

Sect. 31.3 of this chapter we will summarize the content of theHandbook in general
and the content of the chapter about modelling education specifically.

The absence of CLT in the Handbook stimulated us to undertake a literature

review to answer the question, What are the similarities and differences between

mathematical world

mathematizing

mathematical model

reflecting on the modeling process

conceptual model

solvinginterpreting
domain knowledge

non-mathematical world

conceptualizing
or problem analysis
domain models

problem situation
domain knowledge

mathematical solution

communicating

validating

verifying

iterating

Fig. 31.1 The mathematical modelling cycle
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both perspectives? In Sect. 31.4 we describe this review and its results (Perrenet and

Zwaneveld 2014). In Sect. 31.5 we apply these results to the learning and teaching

of mathematical modelling in order to answer the central question of this chapter:

What is the use of CLT for modelling education?
CLT originally disapproved constructivism and related educational perspectives

(Kirschner et al. 2006). In Sect. 31.6 we start from this stance and describe the

reaction from researchers from the school of Problem Based Learning (PBL), as we

are convinced that this discussion can be applied to mathematical modelling

education. The example of the PBL process leads to suggestions of how to decrease

the cognitive load of students and teachers in the educational process of using the

mathematical modelling cycle. In Sect. 31.7 we summarize our argumentation and

reflect upon our conclusions.

31.2 Cognitive Load Theory

CLT distinguishes two main parts of the human memory: long-term memory where

information and knowledge are stored, and working memory that processes incom-

ing information. Processing information means storing incoming information and

linking it to information already present in the long-term memory or the working

memory. CLT builds on experimental results of Miller (1956) that working memory

has a limited capacity of only about seven elements. However, the human brain can

create bigger wholes out of related elements, called ‘chunks’ or ‘schemes’. This
process increases the capacity of working memory, as former loose details become

part of schemes. According to Sweller (1994), one of the founding fathers of CLT,

the process of learning has two essential aspects, scheme acquisition and the

transfer of learned procedures from controlled to automatic processing. Working

memory is actively involved in these mechanisms.

Sweller (1994) distinguishes two types of learning tasks: ‘low element-interac-

tivity’ and ‘high element-interactivity’. A low element-interactivity task consists of

learning loose elements, for example words in another language. A high element-

interactivity task consists of learning more complex material, consisting of several

elements which are relevant on their own, but which together connectively con-

tribute to what Sweller calls a problem solving scheme. Specifically, learning

mathematics is a high element-interactivity task.

Sweller et al. (1998) distinguish three kinds of cognitive load. Intrinsic cognitive
load refers to the inherent difficulty of learning a specific subject. This load cannot

be reduced by the instruction design. Extraneous cognitive load is determined by

the instructional material and therefore can be influenced by the instructional

design. Germane cognitive load is caused by the learning process itself; it is

directed at the development of cognitive schemes. The general directive of CLT

for instructional design is to restrict the extraneous cognitive load in order to create

space in working memory for germane and intrinsic load.
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CLT research has shown a number of effects of specific types of (mathematics)

instructional design leading to various directives. The effects are proven by a

shorter learning time and better results at similar problems as well as at transfer

problems (Clarke et al. 2005; Paas and Van Merriënboer 1994). The directives are

aimed at decreasing extraneous cognitive load. We conclude this section with a

short summary of the directives:

• Use Worked-out Examples: Show the whole solution process of a problem.

• Use Completion: Present students with a part of the solution and ask to

complete it.

• Use Goal Free: Give a mathematical situation; ask what can be derived.

• Avoid Split Attention: Do not spread but combine information over text and

illustration.

• Avoid Redundancy: Do not repeat information if it is already given before or

known.

• Use More Modalities: Present complementing information audible as well as

visual.

31.3 Mathematics Didactics and Mathematical Modelling
Education in the Dutch Handbook

The Handbook (Drijvers et al. 2012) offers for a target audience of teachers and

teacher education students a summary of the existing international knowledge on

the learning and teaching of mathematics. Cognitive psychology, including cogni-

tive schemes, is an important part of the knowledge base. Successively treated

general themes are the goals of mathematics education, cognitive schemes and the

development of mathematical thinking, problem solving and routines, and instruc-

tion strategies. We summarize the text in the Handbook about modelling (Spandaw

and Zwaneveld 2012). It treats the knowledge, skills and attitudes, teachers and

students should have for modelling education.

The objective is that students know the (or a) modelling cycle and be able to use

that as a heuristic method to solve problems in a non-mathematical domain. The

core of a modelling process, with various stages, activities and forms of knowledge

is represented by the modelling cycle of Fig. 31.1 in the introduction of this chapter.

Moreover, students should be able to justify their strategy of attacking a modelling

problem. They have an investigating attitude and insight into the role of mathe-

matics in non-mathematical problems; they see mathematics as more than a set of

algorithmic rules and they have an image of subsequent education.

The teacher should, before (s)he really starts a modelling activity with the

students, be aware of possible strategies the students could use (depending on

experiences with modelling). The instruction goals should be clear: for instance,

one or more stages of the modelling cycle or the whole cycle. In connection with

these goals: what do the students already know of the situation, is their domain
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knowledge enough? A possible choice for the teacher is to divide the activity: first

the students try to make a conceptualization and after a discussion there is agree-

ment about one common conceptualization. The same procedure could be applied

to the other stages of the cycle. Another strategy is to let the students go further

through the stages of the cycle with their own conceptualization. In this case the

models could be different and also the solutions. This enables discussion about the

validity of the different models.

Modelling is such a complex activity that testing is, generally speaking, not

possible by a traditional individual testing paper in a session of 50 min or

so. Another argument against individual testing is that mostly students do their

modelling activities in groups. Modelling as a project with assessment by a (group)

report seems more suitable.

Students should be aware that an important part of modelling is to use domain

knowledge. This gives restrictions to the situations and questions, students have to

model. The more domain knowledge is used, the better the resulting models.

31.4 Cognitive Load Theory and Mathematics Didactics

As mentioned before, CLT is unknown, or more probably, considered irrelevant in

mathematics didactics. This triggered us to undertake a literature review (Perrenet

and Zwaneveld 2014), to answer the more general research question: What are
the similarities and differences between the perspectives on mathematics education
of CLT and Mathematics Didactics? We analyzed the similarities and differences

between the themes from the Handbook – goals of mathematics education, cogni-

tive schemes and the development of mathematical thinking, problem solving and

routines, instruction strategies – and the themes from CLT research, that is, the

previously mentioned instruction strategies to decrease extraneous cognitive load

and the underlying perspective of mathematics education. In Sect. 31.5 we apply

the results of this earlier study to MME.

Using the search terms ‘cognitive load’ AND (‘mathematics’ OR ‘mathemati-

cal’) we consulted the databases PiCarta, ERIC and PsycINFO over the period from

the first CLT publications (1988) until 2012. This resulted in about 100 hits. We

selected the research articles about mathematics in secondary education, since that

is the Handbook’s focus. The result was a set of 36 articles. We analyzed these

publications using the central mathematics didactical themes from the Handbook.
For each theme from the Handbook we investigated whether it played a role within
CLT and if so, whether or not the results and directives of CLT agreed with those

from the Handbook. The main results (Perrenet and Zwaneveld 2014) are the

following: Both CLT and the Handbook have the development of coherent cogni-

tive schemes as their point of departure, but they have different goals. CLT mainly

targets short-term instruction of a specific subject and automation of procedures.

The Handbook targets the long-term development of mathematical thinking by the

development of rich, meaningful and coherent schemes. This difference culminates
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in a different view on expert mathematical thinking: automation versus meaning-

fulness. CLT deduces its recommendations in a straightforward way from theory

and experiments; the Handbook is more eclectic. While CLT mainly limits itself to

the teaching of solving routine problems, the Handbook focuses on teaching the use
of heuristics in problem solving. The Handbook recommends many heuristic

methods; CLT recommends only the goal-free strategy (see Sect. 31.2). The

instruction strategies recommended by CLT, using worked examples or comple-

tion, are considered of limited usability by the Handbook; use of the goal-free

method as well as avoiding split-attention and avoiding redundancy might be small

but interesting extras to mathematics didactics; the advice to use the modality effect

is in the Handbook.

31.5 Cognitive Load Theory and Mathematical Modelling
Education

Based on the results of our literature search we will give a first answer to the central

question of this chapter:What is the use of CLT for MME?MME is conceived here

as a part of mathematics didactics. Clearly CLT gives no overall solution to the

problem of too much cognitive load in teaching and learning mathematical model-

ling. However its directives could improve the situation, that is decrease extraneous

cognitive load in favour of intrinsic and germane cognitive load. We will discuss

the application of the directives to MME.

Use Worked-out Examples: Show the whole solution. This would mean showing

a whole modelling problem solution. This looks useful but is not really new.

Showing a solution is a well-known mathematical instruction strategy, potentially

combined with the teacher thinking aloud.

Use Completion: Present a part of the solution and ask the student to complete

it. In the modelling chapter of the Handbook doing part of the cycle is mentioned,

but not which part. The directive means presenting a big part from the start of the

cycle on and asking for only the last part by the students, for example, only

validation or a second whole cycle. Another example would be starting with what

Spandaw and Zwaneveld (2012) call ‘small’ modelling, that is starting with giving

the model or with giving a few standard models.

Use Goal Free: Give a mathematical situation; ask what can be derived. This

directive would mean presenting a non-mathematical situation and asking for

possible models. This probably would be too open an assignment, as without a

problem question the set of possible models is often large. However, it could show

the relation between a model and the underlying problem question.

Avoid Split Attention: Do not spread information over text and illustration, but

combine it at the same location. This might be useful when relevant in modelling

texts and illustrations.
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Avoid Redundancy: Do not repeat information, if it is given already in the

problem description or known by the student. Just like the directive before, it

might be useful in a relevant situation. (Note that the directive does not mean

‘avoid irrelevant information’. This interpretation would go against the core of

modelling, i.e. separating relevant from irrelevant information in the first phase of

modelling.1)

As a first answer we conclude, that CLT offers, despite its limited perspective

on mathematics education in general, some directives that could be tried out as

valuable suggested activities related to modelling education.

31.6 Cognitive Load Theory and Problem Based Learning:
A Relevant Debate

This section gives a second answer to the question of the use of CLT for MME. The

answer is not derived from our own research but from a discussion within the field

of psychology.

In 2006 an article appeared written by three well-known CLT-researchers with

the provocative title Why Minimal Guidance During Instruction Does Not Work:
Analysis of Failure of Constructivist, Discovery, Problem-Based, Experiential, and
Inquiry-Based Teaching (Kirschner et al. 2006). Their argument was as follows:

Unguided or minimally guided instructional approaches are very popular and

intuitively appealing. However, the structures of human cognitive architecture as

well as evidence from empirical studies are ignored. Approaches that place a strong

emphasis on guidance of the student learning process are more effective and more

efficient. Learners are only ready for less guidance when they possess sufficiently

high prior knowledge to provide internal guidance (Kirschner et al. 2006). The crux

in their argument of course is how to handle the various types of cognitive load.

In our opinion, MME is related to, or at least uses, aspects of the series of

educational perspectives summed up in the title of the article mentioned above. So

the second answer to the question of the usefulness of CLT to MME would be that,

according to CLT, learning only limited forms of mathematical modelling would be

possible. It would disapprove MME as far as it is related to approaches like

Constructivist Learning, Discovery Learning, Problem Based Learning, Experien-

tial Learning, and Inquiry Based Learning. It would disapprove what could be

called ‘big’ modelling: exploring new mathematics when needed for the task,

although proven to be useful in higher mathematics education (Perrenet and Adan

2002, 2011). But would the conclusion be to use only ‘small’ modelling (Spandaw

and Zwaneveld 2012), that is, providing the model in advance, using only standard

models, using only very limited validation, and using only one iteration of the

1Verbal discussion with Paul Kirschner at the Onderwijs Research Dagen (Educational Research

Days) in Louvain, May, 2013).
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modelling cycle? Should secondary school level MME avoid authentic modelling

from the real, messy world, because of human cognitive architecture and the risk of

cognitive overload?

The argument of Kirschner et al. was countered from an unexpected angle.

Former CLT researchers, Paas and Van Gog, now working in the context of

Problem Based Learning (PBL), published an answer, titled PBL is Compatible
with Human Cognitive Architecture: Commentary on Kirschner et al. (2006)
(Schmidt et al. 2007).

At first, we will explain the characteristics of PBL. In PBL groups of students

(originally in higher medical education) start with a problem situation. They list

what they know; then what they should learn; they look for this new knowledge

individually and come back to the group to report, compare and reflect. The group

process is facilitated by a tutor. The steps of this process can be described by the

so-called seven-jump: (1) clarifying terms and concepts of the problem description,

(2) identifying the issues of the problem, (3) brain storming about possible expla-

nations, (4) setting learning objectives, (5) studying privately, (6) sharing results,

(7) evaluating results. See for further details Perrenet et al. (2000).

The counter argument of Schmidt et al. (2007) is as follows: PBL is not unguided

nor minimally guided, as PBL has a supporting action plan, the seven-jump, and

PBL uses scaffolding for student independence. The small groups are trained in

group collaboration skills prior to instruction. The learning task is to explain

phenomena described in the problem in terms of its underlying principles or

mechanisms; initially the problem at hand is discussed, activating prior knowledge.

The tutor facilitates the learning, using a tutor instruction, consisting of relevant

information, questions, etcetera, provided by the problem designer. There are

resources for student self-directed study: books, articles, and other media. Thus

PBL is well-guided, which decreases extraneous cognitive load.

The point for this chapter is not to compare the modelling cycle with the seven-

jump but to use an analogical argument: MME is not unguided nor minimally

guided, as MME has a supporting action plan, the modelling cycle. In addition,

MME uses scaffolding for student independence. Small groups could be trained in

group collaboration skills prior to instruction. The learning task is to solve problems

from outside mathematics using mathematics; initially the problem at hand could be

discussed activating prior knowledge (from the domain and from mathematics).

The teacher facilitates learning. Resources for self-directed study could be used by

students: books, articles, etcetera on mathematical as well as domain knowledge. In

this way the students’ cognitive load would be decreased. The teacher could use a

teacher instruction consisting of relevant information (from mathematics and from

the domain), hinting questions, possible student errors and misconceptions, etcet-

era, provided by the problem designer; the teacher instruction could also explain the

principles of group work and adequate testing. In this way the teacher’s cognitive
load would be decreased. Thus MME could be well-guided and this guidance would

decrease extraneous memory load. We use the term ‘could’, as we are not sure that
all measures described with ‘could’ are really present in MME practice and

Spandaw and Zwaneveld (2012) do not explicitly mention them. Eventually, the
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second answer to the question of the use of CLT for MME is, that it stresses the

importance of giving supporting structure for students and teacher in the modelling

process. An important difference with PBL and its seven-jump is, that there is no

uniform representation of the modelling cycle (Perrenet and Zwaneveld 2012) and

that even within a given modelling cycle students choose individual paths (Blum

and Borromeo Ferri 2009).

31.7 Conclusions and Discussion

At one hand the use of CLT for MME is to ask attention for the aspect of cognitive

load in complex tasks and the concepts of extraneous, intrinsic and germane

cognitive load. Some interesting minor suggestions to decrease extraneous cogni-

tive load are the use of Worked-out Examples, Completion, Goal Free, and

avoiding Split Attention and Redundancy. A major suggestion is to support the

student as well as the teacher with structure and resources, such as small group

training in collaboration skills, discussing the problem, activating prior knowledge,

and using resources for self-directed study for the students, and possibilities as a

teacher instruction consisting of relevant information, hinting questions, possible

student errors, explanation of the principles of group work and adequate testing to

support the teacher. On the other hand, CLT should not be followed in its rather

limited perspective on mathematics education in general. So, we are more positive

about CLT for MME than for mathematics didactics in general.

In our analysis we compared CLT publications with theDutch Handbook. We do

not pretend that the perspective of this Handbook represents all mathematics

education or all modelling education specifically. However, we feel confident that

many aspects of modelling education as described are shared with the ICTMA

community’s vision.
The characteristic of CLT as being narrowly focused and dogmatic has really

changed in recent years. Various CLT researchers now have more attention for

complex problem solving, reflection and longer learning perspectives, as especially

Van Merriënboer showed us.2 So, the image we sketched of CLT is only true for

what we would call the ‘classical’ CLT.
During the time our opinion of CLT has changed also. Originally, we mostly

disapproved CLT’s directives for mathematics education, just like our colleagues of

the Handbook did. Later on, we supported some of CLT’s directives as interesting
minor suggestions to decrease cognitive load, but still we disapproved the directive

to avoid redundancy. We mistakenly interpreted redundancy as referring to the

aspects of a problem situation not essential for the problem, and we considered the

activity of separating relevant and irrelevant aspects as an important modelling

activity. When this was clarified, we still disapproved CLT’s banning of all

2 Several discussions with Jeroen van Merriënboer by e-mail and by bike, Spring, 2012.
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constructive-like education. However, the debate about Problem Based Learning

broadened our view of CLT. We will end with a citation of Leron and Hazzan

(2006, p. 122): “Building bridges between the conceptualizations used in mathe-

matics education and in cognitive psychology may benefit both communities.”
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Chapter 32

Social-critical Dimension of Mathematical
Modelling

Milton Rosa and Daniel Clark Orey

Abstract Among innovative teaching methodologies, it is important to highlight

the use of the social-critical dimension of mathematical modelling to solve problem

situations that afflict contemporary society. Research related to mathematical

modelling and the social-critical dimension of this approach has redefined its

objectives, and is developing a sense of its own nature and potential of research

methods in order to legitimize its pedagogical action. In this regard, it is necessary

to discuss the importance of philosophical and theoretical perspectives found in

social-critical dimensions of mathematical modelling and its epistemology as well.

The importance of a learning environment that helps students to develop their

social-critical efficacy is supported by the use of mathematical modelling.

32.1 Introduction

In order to reflect on the social-critical dimension of mathematical modelling, two

questions are necessary:

• What is the role of schools in promoting students’ social-critical efficacy?
• How can pedagogical practices currently used in the process of teaching and

learning mathematics impact students’ social-critical efficacy?

This allows us to determine the main goals for schools that relate to the

development of creativity and criticality that will help students apply different

tools for them to solve problems faced in their daily lives as well as competencies,

abilities, and skills to help them to live in society.

Unfortunately, in most cases, these goals are established in school curricula

without the participation of community input. This curricular aspect contributes to

an authoritarian education which demotivates and promotes passivity in parents,
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teachers and students. The focus of education must be to prepare both teachers and

students to be active, critical, and reflective participants in society. However, in

order to reach this objective, it is necessary that the entire community supports

teaching and learning processes that help students to develop their social-critical

efficacy. This means that teachers should be encouraged and supported to adopt

pedagogical practices that allow their students to critically analyze problems that

surround them in order to promote social justice.

32.2 Conceptualizing Social-critical Efficacy

One of the most important characteristics of teaching for a social-critical efficacy is

the emphasis on developing the students’ critical analysis of the specific role

mathematics plays in the power structures of society (Mellin-Olsen 1987;

Skovsmose 1990). Another important feature of this kind of teaching is related to

the students’ own reflective abilities about social elements that underpin life in a

globalized world. Thus, critical perspectives in relation to social conditions affect

students’ own experiences and may help them identify common problems and

collectively develop strategies to solve them.

This is a form of transformatory learning based on students’ previous experi-
ences, which aims to create conditions that help to challenge predominant and

harmful values. By using their own experiences combined with critical reflection on

these experiences, students are able to develop their own rational discourse in order

to create meanings necessary for the structural transformation of society

(D’Ambrosio 1990; Fasheh 1997; Mellin-Olsen 1987).

Rational discourse is a special form of dialogue in which all parties have the

same rights and duties to claim and test the validity of their arguments in an

environment free of social and political domination. In so doing, rational discourse

provides an action plan that allows participants to dialogue, resolve conflicts, and

engage collaboratively to solve problems in accordance with a set of specific rules.

In this type of discourse, intellectual honesty, elimination of prejudices, and critical

analysis of the facts are important aspects that allow dialogue to happen rationally

(Rosa and Orey 2007). This rational transformation context encourages a critical

analysis of social phenomena, which can be based on the implications from studies

regarding the relation among mathematics, mathematical models, and society

(Barbosa 2003). In this kind of educational environment, discourse, conscious

work, intuition, creativity, and criticality present with important elements that

help students to develop their own social-critical abilities.
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32.3 Teaching for Social-critical Efficacy

Education towards students’ social-critical abilities places them at the centre of the

teaching and learning process. In this regard, classrooms become learning environ-

ments in which students develop and create critical abilities by applying

transformatory pedagogical approaches. However, in order for this kind of educa-

tion to be implemented in classrooms, it is necessary to discard some traditional

approaches (Jennings 1994). Teaching then becomes a social-cultural activity that

should induct students into the creation of knowledge instead of its transmission.

This means that pedagogical transformation approaches are the antithesis of ped-

agogical approaches that seek to transform students into containers filled with

information in a banking mode of education (Freire 2000).

Currently, the debate between these two teaching approaches continues, but the

discussions are centered in relation to content to be taught and limited in relation to

the time required to teach this content. In this regard, there is a need to elaborate a

mathematics curriculum that promotes critical analysis, active participation, and

social transformation (Rosa and Orey 2007). There is a need for curriculum changes

that seek to prepare teachers and students to become critical and responsible

citizens. This mission aims to use mathematics to find practical solutions to

problems faced by society, which must be in accordance with the values and beliefs

practised by communities. This means that it is impossible to teach mathematics or

other curricular subjects in ways that are neutral and sensitive to the true reality

experienced by students (Fasheh 1997).

Thus, an important objective for schools in a democratic society is to provide the

necessary tools and information through relevant activities so that students have

necessary tools to discuss and critically analyze curricular content by enabling them

to solve daily problems and phenomena. From our point of view, mathematical

modelling is a teaching methodology focused on students’ social-critical efficacy
because it engages them in relevant and contextualized activities, which allow them

to be involved in the construction of mathematical knowledge.

32.4 Theoretical Basis for the Social-critical Dimension
of Mathematical Modelling

The theoretical basis for the social-critical dimension of mathematical modelling

has its foundations in Sociocultural Theory and the Critical Theory of Knowledge.
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32.4.1 Sociocultural Theory

Learning occurs through socialization because knowledge is better constructed

when students work in groups and act cooperatively in order to support and

encourage each other. This approach allows students to reflect on complex prob-

lems embedded in real situations that help to construct knowledge by connecting it

to other knowledge areas in an interdisciplinary way. According to Sociocultural

Theory, students’ engagement with a sociocultural environment helps them to be

involved in meaningful and complex activities. It is through social interaction

(Vygotsky 1986) among teachers and students from distinct cultural groups that

learning is initiated and established.

Thus, in the mathematical modelling process, the social environment also

influences cognition in ways that are related to cultural context. In this regard,

collaborative work between groups of teachers and students makes learning more

effective as it generates levels of mathematical thinking through the use of socially

and culturally relevant activities Thus context allows the use of a dialectical
constructivism because the source of knowledge is based on social interactions

between students and environments in which cognition is the result of cultural

artifacts in these interactions (Rosa and Orey 2007).

32.4.2 Critical Theory of Knowledge

Studies of Habermas’ Critical Theory of Knowledge reinforce the importance of

social context for the teaching and learning processes because this theory promotes

the development of the critical consciousness of students so that they are able to

analyse how social context shapes their lives (Barbosa 2006; Rosa et al. 2012). This

analysis occurs through intellectual strategies such as interpersonal communica-

tion, dialogue, discourse, critical questionings, and proposition of problems taken

from reality.

The effects of social structure influence distinct knowledge areas purchased by

individuals in the social environment, and are partly determined by interests that

stimulate and motivate these same individuals. Thus, in this theory it is recognized

that there are three knowledge domains (Habermas 1971):

(a) Technical Knowledge (prediction) is defined by the way individuals control

and manipulate the environment. It is gained through empirical investigations

and governed by technical rules. In the mathematical modelling process,

students apply this instrumental action when they observe the attributes of

specific phenomena, verify if a specific outcome can be produced and

reproduced, and know how to use rules to select different and efficient vari-

ables to manipulate and elaborate mathematical models (Brown 1984).

(b) Practical Knowledge (interpretation and understanding) identifies individ-

uals’ social interactions through communication. In the mathematical
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modelling process, students communicate by using hermeneutics (written,

verbal, and non-verbal communication) to verify if social actions and norms

are modified by communication. It is in this kind of knowledge that meaning

and interpretation of communicative patterns interact to construct and elabo-

rate the community understanding that serves to outline the legal agreement

for the social performance.

(c) Emancipatory Knowledge (criticism and liberation) is defined by the acquisi-

tion of insights that seek to emancipate individuals from institutional forces

that limit and control their lives. It is necessary to determine social conditions

that cause misunderstandings in the communication process, tactics that may

be used to release particular oppressive and repressive forces, and risks that are

involved in these tactics. The objective of this kind of knowledge is to

emancipate individuals from diverse modes of social domination. In the

mathematical modelling process, insights gained through critical self-

awareness of the elaboration of mathematical models are emancipatory in

the sense that students may be able to recognize the correct reasons to solve

problems faced by their communities. During this process, knowledge is

gained by self-emancipation through reflection leading to a transformed

consciousness.

However, learning begins to be generated in technical knowledge in conjunction

with social existence through interactive and dialogical activities. In the mathemat-

ical modelling process, this approach helps students to take ownership of emanci-

patory knowledge. In this perspective, knowledge is translated in interdisciplinary

and dialogical ways so they can be used as instruments for social transformation.

32.5 Determining an Epistemology of the Social-critical
Dimension of Mathematical Modelling

Currently, there is no real consensus on specific epistemologies for social-critical

dimensions of mathematical modelling, which we describe as a process that

involves the elaboration, critical analysis, and validation of a model that represents

a system taken from reality. In so doing, students need to work in a motivating

learning environment so that they are able to develop and exercise their creativity

and criticality through reflexive analysis along with the generation and production

of knowledge.

One important objective of the educational system is to provide necessary

information that enables students to develop their mathematical thinking in order

to critically discuss and analyse mathematical curricular content. In this context,

modelling is a teaching methodology that focuses on the development of social-

critical efficiency of the students because it helps them to reflect on the role of

mathematics in society through the elaboration of mathematical models. It is

important to emphasize that models “are not neutral descriptions about an
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independent reality, but that the modelling process has devices that are usually

concealed to the general public” (Barbosa 2006, p. 294).

This involves a critical analysis of social phenomena through the elaboration of

mathematical models. This process develops a sense of conscious work, intuition,

creativity and emotion that helps students to develop their own social-critical

efficacy. In the academic context, this critical engagement is important because it

relates mathematical curricular activities with existing social problems in the

school and community (Skovsmose 1990). In the social-critical dimension of

mathematical modelling, students are expected to understand, reflect, comprehend,

analyse, and take action to solve problems taken from their own reality. Starting

from familiar problem-situations and contexts, students learn to make hypotheses,

test them, correct them, generalize, analyse, and make decisions about the phenom-

ena under study (Rosa and Orey 2007).

The social-critical dimension of mathematical modelling searches to explain

different ways of working with reality. Thus, reflecting about reality becomes a

transformational action that seeks to reduce its complexity by allowing students to

explain it, understand it, manage it, and find solutions to the problems that arise

therein. This learning environment allows students to work with real problems by

using mathematics as a language for understanding, simplifying, and solving these

situations in an interdisciplinary fashion (Bassanezi 2002). From this perspective,

there are at least three distinct mathematical modelling pedagogical practices that

may be used in the school curriculum (Barbosa 2003).

(a) Case 1: Teachers choose a problem, a situation, or a phenomenon and then

describe it to the students. According to the curriculum content to be devel-

oped, teachers provide students with necessary mathematical tools that are

suitable for the elaboration of the mathematical models in order to solve the

proposed problem. In our opinion, this is the first step to integrate mathemat-

ical modelling into teaching and learning processes. However, for the devel-

opment of social-critical efficacy, there is a need for active involvement of

students in the process of teaching and learning (Rosa and Orey 2007).

(b) Case 2: Teachers suggest and elaborate the initial problem. Students need to

investigate the problem by collecting data, formulating hypotheses, and mak-

ing necessary modifications in order to develop the model. Students them-

selves are responsible for conducting the activities proposed in order to

develop the modelling process. One of the most important stages of the

modelling process refers to the elaboration of a set of assumptions, aiming

to simplify and solve the mathematical model to be developed. In order to

work with activities based on the social-critical dimensions of modelling, it is

necessary that students relate these activities to problems found in their own

communities (Rosa et al. 2012).

For example, teachers may propose students investigate the following problem:
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River Pollutants Task

A company discharges its effluent into a river located near their facilities.

These waters contain dissolved chemicals, substances that can affect the

environment in which the river flows. How can we determine the concentra-

tion of pollutants in that river? How can you make sure that pollutant

concentration in the river is below the standard limit allowed by law?

Students need to investigate the problem by collecting data and are responsible

for conducting the activities proposed in order to develop the modelling process.

One of the most important stages of the modelling process refers to the elaboration

of the set of assumptions, which aims to simplify and solve the mathematical model

to be elaborated as well as the development of a critical reflection on the data that

will be collected.

In order to critically reflect on these assumptions, it is important to discuss if the

average velocity of the river water is constant, or what happens in the eventuality

when there is no seasonal change in the water level, or if the rate of flow is constant,

the rate of pollutant concentration in the river is constant, the pollutant and the

water are completely miscible regardless of the seasonal change in temperature,

there is no precipitation during the period of data collection, the pollutant and water

mix completely, the pollutant does not solidify in the sediments of the river, the

solid particles are deposited in the sediments of the river, the pollutant is volatile

because it can be reduced to gas or vapour at ambient temperatures, the pollutant is

chemically reactive, and the shape of the river bed is uneven (Rosa et al. 2012).

These assumptions are related to Halpern’s (1996) critical thinking that involves
a wide range of thinking skills leading toward desirable outcomes and Dewey’s
(1933) reflective thinking that focuses on the process of making judgments related

to what has occurred. This approach allows students to solve word problems by

setting up equations in which they translate a real situation into mathematical terms,

involve observation of patterns, testing of conjectures, and estimation of results by

elaborating distinct mathematical models.

It is also necessary to determine what the key questions are that may affect the

final concentration of pollutants in the river as well as on the rate of flow of

pollutants on its waters. This activity helps students to reflect on the mathematical

aspects involved in this problem, enabling them to understand this phenomenon so

they can critically solve this situation by turning it into the wellbeing of the

members of their community.

(c) Case 3: Teachers facilitate modelling processes by allowing students to choose

their own themes that have particular value and interest. Subsequently, students

are encouraged to develop a project in which they are responsible for all stages
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of the process, that is, from formulation of the problem to validation of its

solution. The teachers’ role is mediator of the modelling process because they

step back and only intervene when necessary. This approach enables students’
social-critical engagement in proposed activities in the classrooms.

On the other hand, even though there may be some disagreement regarding the

use of a specific mathematical modelling pedagogical practice, it is possible to

conduct activities, experiments, investigations, simulations, and research projects

that interest and stimulate students at all educational levels. Thus, the choice of the

approach to be used by teachers depends on the content involved, the maturity level

of the students and the teachers’ confidence with the modelling process itself.

However, we emphasize that the critical analysis of the results obtained in any

approach must be highly encouraged and developed.

During the development of the modelling process, the problems chosen and

suggested by teachers or those selected by students must be used to facilitate their

critically reflecting on all aspects involved in the situation to be modelled. These

aspects are related to interdisciplinary connections, the use of technology, and the

discussion of environmental, economic, political, and social issues. Thus, the use of

content in the social-critical context becomes the stimuli for students’ critical

reflection towards the analysis of problems faced by the community. Its aim is to

create conditions that help students to challenge dominant worldviews and values;

and then give them the tools to transform them to critically reflect on them in order

to develop a rational discourse (Freire 2000).

Reflective aspects are related to an open approach to mathematics curriculum

because its pedagogical practices offer activities that apply multiple perspectives,

and require constant critical reflection on the solutions to these activities. However,

the open nature of modelling activities may make it difficult for students to initially

understand and develop a model that satisfactorily represents the problem under

study (Barbosa 2003). In this regard, the social-critical dimension of mathematical

modelling may be considered as an extension of the Critical Theory of Knowledge.

In this context, the emancipatory approach directs the educational objectives by

addressing social and political issues in the pedagogical practices used in educa-

tional systems (Horkheimer 1982; Skovsmose 1990).

According to the Brazilian National Curriculum for Mathematics (Brasil 1998),

students need to develop their own autonomous ability to solve problems, make

decisions, work collaboratively, and communicate effectively. This approach is

based on abilities, which help students face challenges posed by society by turning

them into flexible, adaptive, reflexive, critical, and creative citizens. This aspect

emphasizes the societal role of mathematics by highlighting the necessity to analyse

the relevance of critical thinking about the nature of mathematical models and the

function of modelling in solving everyday challenges.
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32.6 The Process of the Social-critical Dimension
of Mathematical Modelling

Mathematical modelling provides opportunities for students to discuss the role of

mathematics and the nature of their models as they study systems taken from reality

(Kaiser and Sriraman 2006). From this viewpoint, mathematical modelling may be

understood as a language to study, understand, and comprehend community prob-

lems (Bassanezi 2002). For example, mathematical modelling is used to analyse,

simplify, and describe daily phenomena in order to predict results or modify the

phenomena. In this process, the purpose of mathematical modelling becomes the

ability to develop critical skills that enable teachers and students to analyse and

interpret data, to formulate and test hypotheses, and to develop and verify the

effectiveness of mathematical models. In so doing, reflections become a

transforming action, seeking to reduce the degree of complexity through the choice

of a system that can represent it (Rosa and Orey 2007). By developing strategies

that encourage students to explain, understand, manage, analyse, and reflect on all

parts of this system, the process optimizes pedagogical conditions for teaching and

learning so that students understand a particular phenomenon in order to act

effectively and transform it according to community needs.

The application of the social-critical dimension of modelling allows mathemat-

ics to be seen as a dynamic and humanised subject. This process fosters abstraction,

the creation of new mathematical tools, and the formulation of new concepts and

theories. Thus, an effective way to introduce students to mathematical modelling in

order to lead them towards understanding of its social-critical dimension is to

expose them to a wide variety of problems or themes. To this end, questioning is

used to explain or make predictions about the studied phenomena through the

elaboration of models that represent these situations (Rosa and Orey 2007).

Figure 32.1 shows the social-critical mathematical modelling cycle.

However, the elaboration of mathematical models does not mean they will

develop a set of variables that are qualitative representations or quantitative anal-

ysis of the system because models are understood as approximations of reality.

Since mathematical modelling is a process that checks whether parameters are

critically selected for solutions to models in accordance with their interrelationship

with selected variables from holistic contexts of reality, it is not possible to explain,

know, understand, manage, and cope with reality outside of a holistic context

(D’Ambrosio 1990).

From a social-critical context, mathematical modelling is impossible to work

without the theories and techniques that facilitate solutions for models that are not

simply memorized and then forgotten. Traditional teaching often prevents time for

students to learn creativity, conceptual elaboration, and the development of logical

and critical thinking. According to this perspective, social-critical dimensions of

mathematical modelling facilitate the competencies, skills, and abilities necessary

for teachers and students to play a transformative role in society (Rosa and Orey

2007).
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32.7 Final Considerations

Fundamental characteristics of teaching towards social-critical efficacy emphasize

a critical analysis of societal power structures through modelling. As well,

modellers are encouraged to reflect on social elements that underpin our increas-

ingly globalised world. Thus, a students’ critical perspective in relation to social

conditions affect their own experiences and help them to identify common prob-

lems and collectively develop strategies (D’Ambrosio 1990). This unique and

transformatory form of learning creates conditions that help teachers and students

work together to challenge worldviews and values dominant in society. Through

these experiences, students are guided towards developing rational discourse by

creating meanings that are necessary for the structural transformation of society

(Freire 2000). This transformation involves critical analysis of social phenomena

through the elaboration of data-based mathematical models.

In this context, mathematical modelling becomes a teaching method that focuses

on the development of social-critical efficacy that engages students in a contextu-

alized teaching-learning process that allows them to be involved in the construction

Fig. 32.1 Social-critical mathematical modelling cycle
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of solutions of social significance (Rosa and Orey 2007). This social-critical

dimension of mathematical modelling is based on comprehending and understand-

ing reality, in which students reflect, analyze and take action on this reality. When

we borrow systems from reality, students begin to study the symbolic, systematic,

analytical and critical contexts to their work. Starting from real problem situations,

students learn to make, test and correct hypotheses, make transfers, generalize,

analyze, complete and make decisions about the object under study. Thus, using

social-critical mathematical modelling can explain ways to work with reality

through a transformational action that reduces its complexity and allows students

to explain, understand, manage, and find solutions for their own interests and

problems.
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Chapter 33

Pedagogical Actions of Reflective
Mathematical Modelling

Morgana Scheller, Paula Andrea Grawieski Civiero,

and Fátima Peres Zago de Oliveira

Abstract In this chapter, pedagogical actions of reflective mathematical modelling

are presented and discussed. These actions took place at Instituto Federal Catarinense

– campus Rio do Sul, Santa Catarina, Brazil, with high school students undertaking

technical courses in Agroecology and Agriculture. For development of reflective

mathematical modelling, two environments were created, one in Scientific Initiation

(i.e., Foundation Science) classes and the other one in mathematics classes. The latter

occurred by means of reflective didactic transposition. Data analysis identified two

categories of knowledge: mathematical and reflective. Results from a qualitative

research study indicate that reflective mathematical modelling, promotes a critical

interpretation of reality, aids in elaboration of mathematical concepts, and gives

opportunity to develop human and social aspects.
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33.1 Introduction

We live in a technological society, in which social implications of science and

technology are directly related to construction of mathematical models. Thus,

mathematics is built up with social1 and technological change. Within this context,

school might be a space in which, apart from conditions for creating knowledge,

environments for discussion and reflection on reality are made possible, in order to

comprehend implications of mathematics on social constructs. Therefore, as edu-

cators, we commit to insert pedagogical actions that contribute to the formation of a

reflective, curious student, who knows his/her history and reality, and is able to

doubt, question and make decisions. Among these actions, we consider mathemat-

ical modelling within the context of discerning mathematical education an insti-

gating proposal for student and teacher education.

From this perspective, two pedagogical actions (i.e., lesson sequences) are

presented and discussed within a case study, both carried out with high school

students. The first lesson sequence was conducted within a Scientific Initiation

subject (SI) (i.e., a Foundation Science unit) and the second one within mathemat-

ics. This second lesson sequence searched elements of the Scientific Initiation

lessons to approximate the content taught in mathematics. In both, mathematical

modelling was present, either as a method of research, or as a teaching method with

research, as advocated by Biembengut (2009). These lesson sequences were artic-

ulated with critical mathematics education, in order to promote reflections and

attitude changes by students through a discussion of reality explored with

mathematics.

33.2 Mathematical Modelling and Didactical
Transposition: Thinking Process

The movement of mathematical modelling in Brazilian education has already

existed for three decades of research, having become more intense within the last

years by means of studies from several research groups in Brazil. These studies

have generated significant literature, such as research work and teaching materials

(sequels or work units), part of which concerns themes developed in or for high

school (Biembengut 2009). Since the beginning of this movement, modelling has

been understood as a set of necessary procedures to build a model where the process

can be used in any field of knowledge. According to Niss et al. (2007), to build and

use a model is to solve a real world problem, a problem that describes, explains or

designs parts of the world, with reality as the starting point for modelling. For

Bassanezi (2006), mathematical modelling is a process involving theory and

1 Fordism, Toyotism, among others.
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practice, leading the researcher to interact and understand the reality present within

the research, and which may result in action affecting it in order to transform.

Mathematical modelling allows for integration of questions of reality with mathe-

matical language, and, thus, “formulat[ing], solv[ing] and elaborate[ing] expres-

sions valid not only for a particular solution, but also serv[ing], in the future, as

support for other applications and theories” (Biembengut 2009, p. 13). For Niss

et al. (2007), Biembengut (2004, 2009, 2012), Bassanezi (2006), Maki and Thomp-

son (1973) and Oke and Bajpai (1982), mathematical modelling starts from a

problem and aims at the creation of a model to solve it, and this occurs through

several interactions, with coming and going movements.

Within the context of education, Biembengut (2004) defines mathematical

modelling as a research method used especially in the Sciences. As it follows the

steps of scientific research, the use of modelling has been defended in education.

The purpose is to encourage and involve students in doing research and learning

mathematics at the same time, which can be used in any phase of school education.

For Biembengut (2009), modelling can be used both as a research method and as a

mathematics teaching method. The latter is defined by her as mathematical model-

ling in education.

In mathematical modelling, the teacher, in his/her pedagogical action, develops

program content by redesigning mathematical models applied to a certain field of

knowledge, and, simultaneously, through orientation of students towards research

(Biembengut 2004). Teacher and students share tasks aimed at learning mathemat-

ical concepts, and, at the same time, develop a research exercise. As stated by

Skovsmose (2005), “thus, they experience what actions based on Mathematics can

mean and notice the importance of thinking” (p. 96).

In preparing a pedagogical action (i.e., lesson sequence) aimed at modelling

mathematical content is adapted. These adaptations may be related to Didactical
Transposition (DT), which, according to Chevallard (1991), is understood as a

process in which “a content referred to as knowing how to teach suffers from then

on, a set of adaptive changes that will enable him/her to play a role among teaching

objects” (p. 45). DT is undoubtedly seductive, a seduction which is not free from

ambiguities and ambivalences. In a strict sense, DT refers to the step from known

knowledge to taught knowledge, allowing for an articulation of epistemological

analysis with didactic analysis.

When thinking about the importance of the practice of mathematical model

creation by means of DT, we conclude that it is necessary to acknowledge reality as

a collective coexistence space. Therefore, it is not enough for students to understand

model construction. It is necessary to know its assumptions bound to the compre-

hension of the world in which it is inserted and to be able to make decisions based

on elements that constitute reality. According to Skovsmose (2001), “a model is not

a model of ‘reality’ itself, it is a model of a conceptual system, created by a specific

interpretation, based on a theoretical framework more or less elaborate and based

on certain specific interests” (p. 42). That is the reason for the need to include

reflective knowledge in the development of a mathematical modelling by means of

Reflective Didactic Transposition (RDT). This knowledge refers to the competence

of thinking about the use of mathematics and of evaluating it.
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Nowadays, both mathematical modelling and DT should be carried out with a

critical view. According to Civiero and Sant’Ana (2013), DT may occur in a

reflective manner, that is, it occurs during the teaching learning process, in order

to instigate thinking by introducing needs established by students. Thus, knowledge

undergoes adaptation connected to the desire of students and designed by means of

a critical conscience of knowledge produced in developing the proposed activity.

This approach, together with methodological and theoretical contributions of dis-

cerning mathematical education is referred to as “Reflective Didactic Transposi-

tion, as it is not enough to transpose knowledge, it is necessary to incite thought

about mathematical matters bound to reality” (p. 49).

DT without thinking may contribute to dissemination of science and mathemat-

ics as socially neutral. Scientific knowledge needs an environment of reconstruction

of learning in which knowledge is processed in the interaction between classroom

practice and the teaching subject. This aims at providing the student with the power

to doubt, propose, consider, and respond with justification. With this vision, we

suggest an approach that develops modelling integrated to critical aspects of reality,

that is, a reflective mathematical modelling.

33.3 Context of the Study

The study was conducted in Instituto Federal Catarinense – campus Rio do Sul, a

public school that offers high school integrated in technical and college courses.

Data were collected in two steps: first within the SI subject, and, later, in a

mathematics subject. The classes in which both lesson sequences were developed

were different. Both subjects were taught by the authors of this chapter in a high

school course concurrent to Agroecology and Agriculture Technician.

In High School at this institution, SI is understood as a subject in which all

students go through experiences by means of a basic research project,2 which is

created and developed with orientation. Aligned with Bazin (1983), we defend that

SI cannot reproduce selective, elitist and limited conceptions.

In SI project development, promotion of subject integration is sought. When

necessary, mathematics stands out. In this context, modelling was used as a

research method in Science that gives opportunity to study and comprehend

existing phenomena/problems in other subjects, as well as in everyday life. SI

classes had taken place for 2 h a week during the first three terms of the course.

Students, in groups of up to two, developed projects on a certain theme of their

interest with guidance of teachers.

2We understand that basic research occurs when the student is incited to develop an inquiring attitude,

from a dialogical, problematizing and reconstructive perspective of knowledge, and which allows for

an understanding of the relations between science, technology, and society, leading the student to show

an active attitude, interested in change. School research cannot be reduced to just anything, as for

instance: book reports; data collection or news from newspapers, magazines, books; or superficial

reading and writing about a theme, among other superficial activities called research.
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Mathematics classes had taken place for 3 h a week, during the first three terms

of the course. In this space, two mathematical models obtained in the project

resulting from the first pedagogical action (i.e., lesson sequence) were used and

submitted to the didactic transposition process (Chevallard 1991), enhanced by

Civiero and Sant’Ana (2013) as Reflective Didactic Transposition.

33.4 Methodological Procedures

This qualitative study (Bogdan and Biklen 2003) is an attempt at comprehending

details of meanings emerging from pedagogical actions and characteristics of

situations presented by researchers, instead of producting quantitative measures

of characteristics or behaviours. The purpose was to investigate the problem in its

natural environment (i.e., direct data source), as it manifests in activities, pro-

cedures and interactions between teacher and student.

A group of two male students (age 16) was selected for observation during

30 classes in the Scientific Initiation class within the period March to July 2007. In

the second pedagogical action (lesson sequence) – 14 mathematics classes – two

mathematical models arising from the project developed by students of the first

pedagogical action were used, involving 30 students (ages 15 and 16), within the

period September to November 2008. Unstructured observations were recorded in a

logbook. Materials written by students during the lessons were used as well.

For data analysis, procedures of Content Analysis (Bardin 1979) were used,

aimed at explaining and systematizing message content and the meaning of this

content by means of logical and justified deduction, having as a reference their

origin and message context or effects of these messages. This analysis process was

performed in three steps: firstly, a reading of the records of observations performed

and material produced by students took place, resulting in indicative elaborations

for result construction; secondly, codification, sorting and categorisation of infor-

mation contained within the records were undertaken; and, thirdly, inference and

construction were performed, aimed at making data more reliable and significant

according to literature.

33.5 Presentation of Pedagogical Actions and Findings

33.5.1 First Pedagogical Action

The first pedagogical action (i.e., lesson sequence) took place in SI classes, in which

students chose and investigated a problem: Which is the best waste for composting

used in lettuce production? For this, they followed the steps of scientific research, a

process similar to modelling defended by Biembengut (2004).
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As the following student transcript shows, the theme was chosen because of its

proximity to the course, because it was economically and socially feasible and

because there was a possibility of extension to the grower.

Student A: I wish to investigate something relating to something in the course

and which we can later show to others outside school as well, like

organic producers. To be used by producers.

It consisted of a research about composting from several kinds of organic waste,

which sought to analyse if the rotting process of five kinds of waste, disposed in

distinct windrows, occurred in a similar way or not for further use in lettuce

production.

Based on their curiosities, this group of students felt the need for using mathe-

matics to analyse the behaviour of the height of compost windrows. They elabo-

rated mathematical models recorded in tables, graphs and algebraic models,

permeated with natural and mathematical language. This led them to the perception

that the height of the four windrows of waste and fibre material, in the rotting

process, presented a constant variation (linear behaviour). On the other hand, the

height of the windrow with only fibre material showed quadratic behaviour. In this

phase, mathematical content was used to obtain answers for the query mentioned

above and was necessary for thinking about the theme studied. This process is

evident in student exchanges like the following:

Student A: Oh, this coefficient b refers to height of windrows in the beginning

of the process, and, with time, compost is formed and this height

diminishes, and, thus, there is a decrease of the height.

Student B: Initial and final heights of the two windrows were the same, but, during

the process, they displayed different behaviour.

Different mathematical concepts were involved in obtaining a relationship for curve

formation, such as variation rate, determinant, trigonometry, amongst others.

33.5.2 Second Pedagogical Action

The second pedagogical action (i.e., lesson sequence) took place by means of RDT

of knowledge produced in the first pedagogical action to knowledge to be taught in

the classroom in order to instigate thinking. In this pedagogical action, mathemat-

ical modelling was used as a teaching method (Biembengut 2009) for the develop-

ment of the concepts of polynomial functions of first and second degree.

Initially, mathematics teachers of the group suggested four3 SI projects devel-

oped from different themes to be treated in mathematics classes. The students chose

3 Suggested themes were: Influence of ancestry on performance of broilers; Conservation of onion

bulbs; Composting from different kinds of organic waste; Response of corn in direct and conven-

tional plantation system.
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the theme: Composting from different kinds of organic waste, accepting the invita-

tion to uncover mathematical models, which resulted from the research in the first

action (i.e., lesson sequence). Following the research, with the tabular data (evolu-

tion of height as a function of time), students were prompted to reconstruct reality

involved in the study, thus uncovering mathematical concepts existing in it. This

resulted in the mathematical models, with y being the height of a windrow after

x weeks, described by:

ya ¼ �1, 2xþ 30 and yb ¼ 0, 102x2 � 2, 777xþ 29, 843

The modelled real situation allowed for the explored mathematical concepts to

acquire meaning, as evidenced in the statements below:

Student G: The windrow is lowering always by the same measurement.

Teacher K: What does this mean for what you are investigating?

Student C: Look at the table, each week it lowered by 1.2 cm, it’s the same amount

that appears in the function. It’s negative because the windrow is

decreasing in size.

Teacher K: Are you talking about angular coefficient? And what does the linear

coefficient represent in this formation law?

Student D: It’s because of these �1.2x that the graph is a straight [line].

Teacher K: Are you talking about variation of height over time?

Student E: It came to a situation – it stayed 12, 12, 12 always. I think it stopped

decreasing. Then, it was time to remove the compost, it should be

ready.

At every developed step, new mathematical relations arose. To unveil formation

laws of functions obtained by Excel software, it was necessary to acknowledge the

curve adjustment process, as well as its relations and symbols. Therefore, students

used different methods, intensifying thinking and decision-making.

33.6 Discussion

Reflective mathematical modelling action provided, before data, initiation of dis-

cussions and representations. Data analysis identified two categories of knowledge:

mathematical knowledge and reflective knowledge. Concerning mathematical

knowledge arising from actions of reflective modelling, we point out that students

go through abstraction of mathematical knowledge in this process, acquiring its

meanings. These meanings are specific for mathematics as well as for the model

being elaborated in the reality being investigated as is evident in the second

statement of Student A.

Concerning reflective knowledge existing in the first pedagogic action, it made

an environmental work that is easy to perform and economically feasible possible

for students, becoming one more alternative for vegetable growers. Another high-

light refers to reality experienced during the project that provided students with an
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agroecological management, transcending modelling. Students, after solving parts

of the problem, identified the behaviour of waste that would provide compost for

lettuce production. In this moment, more than just identifying the best compost and

using it, they carried along all knowledge involved, mathematical or not, providing

for an enhanced vision of elements that constitute composting, beyond the height of

the windrow.

Despite the fact that students of the second action sequence had not experienced

the whole project, in accepting the invitation of the teachers and making the choice

of the theme to be treated, the reflective processes were evident. Discussion about

model creation provided a meaning for mathematical elements constituting each

one of the formation laws of functions, according to the explanations of students C,

D, and G. Reflective mathematical modelling led them to notice other elements of

the rotting process, presenting reflective knowledge that led to decision-making, as

shown by the statement of student E. In the model meaning step, as described by

Biembengut (2009), analysis of these results deepened human and social discussion

of development of this project, in a manner that emphasizes the need for reflective

mathematical modelling. In the reflective mathematical modelling process, there

was need for acquisition of mathematical knowledge in order to be able to think

about it and about the reality it is inserted into. In acquiring mathematical knowl-

edge, students took possession of knowledge for thought, as is implicit in the

statement of Student B.

The reflective mathematical modelling that occurred in the second action

sequence described depended on the education conception orienting practice of

the teacher. Confirming the claims of Civiero and Sant’Ana (2013), performance of

RDT occurred when teachers developed classes in an environment of questions,

“inciting” students to seek knowledge which would sustain, or not, assumptions

defined for problem solution. In this manner, the teacher does not bring ready-made

models to students, but conducts a reflective process for acquisition of such, in

which the student learns how to research and enhance mathematical concepts

interwoven with reality.

The role of the teacher in both actions (i.e., lesson sequences) was different. In

the first one, the teacher shared the task and guided, without being sure of what

would occur during the mathematical modelling process and the result it would

bring. In the second one, the teacher “incited” students to discovery, but already had

an idea of several possible paths to be followed by students. The teacher intended to

explore certain mathematical concepts previously stipulated, following a script,

which did not stop other content arising. However, both ensure thinking in the

mathematical modelling process. Themes approached by mathematics can lead to

thinking and critique in several moments of action. Thus, in debating questions

pertinent to reality, students showed that, aside from competence to create mathe-

matical models, they were equally prepared to think about their discoveries.
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33.7 Conclusion

This chapter sought to present and discuss two pedagogical mathematical model-

ling actions (i.e., lesson sequences) developed with high school students. Data

analysis provided evidence that reflective mathematical modelling actions allow

for the presence of reflective knowledge and mathematical knowledge during the

process. Mathematical modelling only makes sense if it is integrated into a process

of thinking about reality and of knowledge articulated with social issues, providing

the student with a search for alternatives in a solution, in researching, elaborating,

making questions, rebuilding knowledge and arguing with autonomy to exercise

citizenship based on science. With this focus, the reflective mathematical modelling

process was made effective. Mathematical modelling, as a research method or as a

mathematics teaching method (Biembengut 2009), when developed from a reflec-

tive perspective, allows for extrapolation of boundaries in the classroom. It also

allows for students, aside from acquiring mathematical concepts, to be the subject

of an action that demands autonomy and decision-making based on their thoughts

about the problems they are researching.

Within this context, mathematical modelling developed in the first action (lesson

sequence) by students composed the initial content for the second lesson sequence,

being adapted for the mathematics class by means of RDT (Civiero and Sant’ana
2013), maintaining the investigation process. In this manner, the process of under-

standing a problem from the students’ reality had as a result real meaning in

mathematical concept development.

As a continuation of this study, we suggest actions that make an enhancement of

the scientific glance possible for this reflective and mathematical knowledge made

possible by reflective mathematical modelling. Another question to be treated

further is the observation of how the student’s naive curiosity is overcome, in the

development of reflective mathematical modelling and/or RDT, as a start of

reflective mathematical modelling, for epistemological curiosity (Freire 1996).
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Chapter 34

Context Categories in Mathematical
Modelling in Fundamentals of Calculus
Teaching

Mara Kessler Ustra and Sandro Rogério Vargas Ustra

Abstract In this chapter we present results of a qualitative evaluation conducted in

the Fundamentals of Calculus classes in four service courses, Administration,

Biology, Accounting and Physics, from a federal university in Brazil. The objec-

tives were to analyze the main difficulties the students had regarding mathematical

modelling, especially with functions and the relationship of these difficulties with

the different fields of study. The analysis of the results identified some of the main

teaching difficulties were related to contextualization in mathematical modelling,

as well as the teaching of mathematical concepts for different courses, whether

these were related to the Exact Sciences or not.

34.1 Introduction

Despite recent technological and pedagogical advances most students from any

level of education fear mathematics (Furner and Berman 2005). Even though

mathematics has been one of the disciplines that have an important role in the

curriculum since Elementary School, it has a high failure rate, quite evident in the

results of national and international assessments (e.g., OECD 2014). Fundamentals

of Calculus teaching, whether or not related to an area of the Exact Sciences, also

presents many strengths and difficulties, which subsequently affect undergraduate

students’ failure rates at university. Thus, mathematical modelling has been really

important in making mathematics teaching more interesting and motivating.
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According to Brito and Almeida (2005), there is a consensus in the literature that

the mathematical model is a pedagogical tool, which helps link school mathematics

with an activity that is not essentially a mathematical problem.

In this chapter we present results from an evaluation study developed with four

groups, which take the subject of Fundamentals of Calculus in the courses of

Management, Biological Sciences, Accounting and Physics at a Federal University

located in Triângulo Mineiro, Minas Gerais, Brazil. This study aimed to analyze the

main difficulties these students had regarding mathematical modelling in functions,

as well as their relationships with their fields of study, whether these are inside or

outside the Exact Sciences. Thus, we developed various mathematical modelling

activities considering the concept of function and analysed the students’ perfor-
mance and the main difficulties they faced. The evaluation conducted is part of a

broader project, in which we intend to investigate contexts, possibilities and

prospects for mathematical modelling in university courses in order to encourage

students to effectively learn mathematical content in its various areas of application

or vocational training.

34.2 Theoretical Framework

The use of mathematical models in various areas has become commonplace

(Neunzert 2013). Typical examples are their use in technical processes mainly in

engineering and social applications (Ferruzzi and Almeida 2013; Laudares and

Lachini 2005), where they are important resources, since they provide conditions to

determine the optimal operation of a particular process (e.g., planning, optimiza-

tion, improvement, failure diagnosis, control, and so on). Several studies in litera-

ture suggest different modelling techniques to be adopted for specific or global

processes (Lima and Saraiva 2007; Quarteroni 2009). Sá (2012) reports the use of

mathematical modelling to help answer complex biosciences questions, that is,

mathematics has been helping answer an increasing number of questions from the

biological world. Biembengut (2009) outlines how mathematical modelling

performed at various levels of education has also been improving since its initial

proposal. This occurs through a significant rise in research and experience reports in

mathematical education, focusing on mathematical modelling. There is also a

significant academic production of monographs, dissertations, theses and articles,

as well as its insertion in official documents and educational guidelines.

Mathematical models consist of sets of equations (algebraic and / or differential)

that represent the relationships between the independent variables (controllable)

and the dependent ones (observable). This model serves as a framework that

attempts to explain a system or phenomenon as closely as possible to reality,

without reaching reality itself, which is only possible by direct observation

(Almeida et al. 2012).
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Mathematical modelling, which is an interactive process between reality and

mathematics and aims to build a model between them, consists of several pro-

cedures, divided into six subparts (Biembengut and Hein 2011):

(a) Interaction, through the direct or indirect study of the issue

– Problem-situation recognition

– Familiarization with the issue being modelled, determining a theoretical

framework

(b) Mathematization or translation of problem-situation to mathematical language

– Problem formulation, hypotheses formulation

– Problem solving in terms of the built model

(c) Mathematical model

– Solution interpretation

– Model validation, process assessment

In the development of these procedures, the better mathematical knowledge the

students have, the more complex the situations that can be understood and resolved

by them. The value of existing models is not restricted to their mathematical

sophistication, but it is related to personal engagement in the process and its results.

From a review of the literature with regard to research into modelling in Brazil,

Malheiros (2012) points to the consolidation of this line of research while

maintaining intersections with various educational theoretical trends, whether in

mathematics education or other areas of knowledge. Of these, Critical Mathematics

Education, interest, interdisciplinarity and contextualization stand out. Among the

elements that constitute the common theoretical support to the work just mentioned,

is the perspective in the “interest” that keeps students engaged in the proposed

learning.

A common hypothesis related to mathematical modelling education is the real

issues approach, which arise from the students’ interest, and how it can be moti-

vated and support given for the acquisition and understanding of school mathemat-

ics methods and content (Brito and Almeida 2005; Carrejo and Marshall 2007).

Thus, interdisciplinarity and contextualization loom large as privileged spaces that

arouse and maintain interest in learning. Particularly with respect to contextualiza-

tion, some careful observations are a necessary precaution because “when working

with modelling in the classroom, [it does] not contextualize the Mathematics, ie

Mathematics already has its own context. (. . .) However, (. . .) to develop modelling

activities, you can discuss mathematical questions in a different context than the

Mathematics itself” (Malheiros 2012, pp. 874–875).
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34.3 Methods for Evaluation

Through an intervention, observation and interpretive description, we investigated

our didactic activities on the subject by looking at the broader context of vocational

training, interpreting what occurred in the performance of the participants involved.

Using more descriptive data allowed a priority to be pointed out so as to make sense

of, or interpret, phenomena in terms of the meanings that the participants brought.

The identification of these meanings is another focal point of the evaluation. As

knowledge of reality is perspectival, that is, it is given by different points of view, it

was important to bring these meanings to the understanding of reality (Denzin and

Lincoln 1994).

The students participating in this evaluation study were taught this class in the first

semester of the following courses: Management, Biological Sciences, Accounting

and Physics. The groups consisted of 45 students on average. Even though in some

cases there were more advanced students, most of them had just finished high school,

and mostly came from public schools. The aim of the evaluation was to analyse the

main difficulties these students in the Fundamentals of Calculus classes in the four

targeted areas had regarding mathematical modelling with functions, as well as the

relationship of these difficulties with their fields of study.

Data were obtained through class experiences of the situations and their record in

the researcher diaries. We also used an in-class questionnaire for the Physics group.

In the extension course, after the Physics students were attending the Calculus class,

we administered a questionnaire with five questions on mathematical modelling. We

analysed responses from 11 questionnaires that were returned. The qualitative

approach to analysis was based on content analysis (Bardin 2011), and sought to

establish a set of categories for understanding the investigated subject.

In Biological Sciences and Accounting the usual name for the class is “Mathe-

matics”, whereas in Management it is called “Fundamentals of Mathematics”. In the

Physics course we developed a parallel intervention with Differential and Integral

Calculus I, which consisted of an extension course of 20 h, entitled “Oriented Studies

in Fundamentals of Mathematics”. In this course we taught the concepts of limits,

derivatives and integrals based on the discussion of functions related to motion. These

classes, except for the extension course, comprise 60 semester hours, divided into

four classes of an hour’s duration each every week. In Accounting, the classes are at

night, whereas the other ones are in the morning.

Fundamentals of Mathematics in Management aims to enable the student to

determine the domain, image and graphic of the main functions of a real variable

regarding real values. Mathematics in Biological Sciences aims to provide mastery

of basic concepts of elementary mathematics and specific problem solving for the

other disciplines, seeking to apply mathematics in biological-related situations.

Mathematics for Accounting aims to provide the students with tools that will

serve as subsidies for understanding the mathematical treatment in economic

theories, operational research, as well as improve their reasoning.

The content of functions for the groups had already been studied in high school

following a specific order. Thus, we began with an initial example of an area from
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which more general cases in the subject were explained. Afterwards, we gave them

a general characterization of functions, with the deepening of the concepts of limits,

derivatives and integrals. In the end of the disciplines, the students should be able to

choose situations where the content would be applied to their training areas, besides

developing a study and presenting it as a course completion assignment. Our

systematic monitoring within the study lasted for 40 h of the overall hours taught

in each field of study. Due to its didactic proposal, the monitoring in the extension

course was also fully planned and analysed from the perspective of the study.

34.4 Results

In this section, we point out some of the key moments we had in 2012–2013 during

both the classes and the extension course on the characteristics of mathematical

modelling.We chose thesemoments to characterize the categories that were identified

regarding the students’ learning difficulties. Due to the students’ difficulties in their

first systematic contact with mathematical modelling, we concentrate on the initial

moment to work with it in the related disciplines. Regarding this research, it has

highlighted more clearly the categories of analysis, which will be presented below.

On the other hand, the data from the extension course refer to the last moments

when the students were almost finishing the Calculus discipline, which was studied

with the other investigated and extension activities under the responsibility of a

different mathematics teacher. It is also important to note that the proposal of the

extension course arose from our observation that Physics students had trouble in

Calculus, which is taught in the first half of the course and has very high failure

rates and evasion, since it impairs their progression in the curriculum.

In Management we highlighted an in-class example on shirts examining the

manufacturing costs of a factory. Since the problem was how to calculate their

manufacturing costs, as well as the revenue and profit function, we questioned the

meaning of each term of the first degree functions:

R ¼ p : q and L ¼ R� C

where R¼ revenue, p¼ unit price, q¼ quantity, L¼ profit, C¼ cost.

It was difficult for the students to understand both the modelling process itself and

its purpose. This was evident in some of the students’ responses as follows:

Student A1: What’s this for?
Student A2: Why should we have trouble if we have all this technology

nowadays?

Student A3: In what part of the course will we use it?

Student A4: It is a lot of stuff!

In the Biological Sciences class students had great difficulty interpreting and

building graphical representations of functions. When we asked them to find the
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practical uses of this mathematics in their area, they just came up with simple

definitions. We showed the students a table with the values of dependent and

independent variables for the concentration of y mg/kg of aluminium due to

phosphorus accumulation in xmg/kg of a specific species of rice (Batschelet

1978), and facilitated a discussion on how to obtain the corresponding value for

each term of a quadratic function:

y ¼ 0:0065 x2 � 0:6213 xþ 14:5151

As the next example shows, not all students were convinced of the relevance of this

application of mathematics to their future career:

Student CB1: I will work with animals! Where will I apply functions working

with animals?

In Accounting to give the functions a context we used a set of examples taken

from the area – revenue function, cost and production function. The students found

the class tiring, and they wanted to go straight to the function definition. Some

student responses in this class follow:

Student CC1: The direction (of the exercise) is very big . . .Give us just the formula.

Student CC2: I’ll take a Philosophy course. . . with no math.

Student CC3: You must have a PhD to understand mathematics.

Student CC4: Only the equations . . . it is very easy! When practice starts, we get

confused.

In the extension course for Physics students (n¼ 12) who had already completed

the Calculus class, we administered a questionnaire with five questions about

mathematical modelling. We analysed 11 questionnaires after they were returned.

The first question was about the importance of calculus. All students considered it

important for their academic life, since it provides tools to solve problems, under-

stand phenomena and answer questions. Only one student said that it assisted their

reasoning development. When asked if they had solved any mathematical model-

ling exercise in Calculus applied to Physics classes, all the students said they had

not done this nor did they remember this kind of exercise. Regarding context, the

students pointed out that it is associated with the exercise directions or theory, the

Physics content, its practical uses, the historical context, or even that it is a

methodological resource the teacher uses to start a new content topic. Regarding

an exercise where the instructions call for calculating the derivative of a second

degree function, most students displayed a feeling of low confidence in being able

to solve it, because they did not know this. When they were asked whether the

exercise was Physics or not, only three students related it to motion. With regards to

another “contextualized” exercise on accelerated motion, students showed more

confidence in its resolution, even though only three of them could solve it correctly.
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Data analysis, considering the emphasis on the contextualization in modelling

developed with the different classes, allowed the identification of the following

categories from the analysis:

– relevance of the problematized situation;

– translation of the situation through modelling;

– personal context.

The relevance is mainly associated with the recognition of bonds between the

problematized situation, the training area and belonging to the students’ everyday
life. Translation refers to the field of mathematical concepts that enables proper

modelling. The personal context involves factors associated directly with students.

34.5 Discussion and Considerations for Future Teaching

Our teaching approach to mathematical modelling situations in the four classes

consisted of working with problems for modelling related to each professional area.

Although the students showed more confidence regarding these issues, their level of

engagement was weak, since they questioned even the relevance of the approach for

their course. The same holds true in the emphasis they expected from the taught

subject, that is, they did not want to deepen too much the meaning of the mathe-

matical concepts. Many of them even claimed they chose the course because it did

not require much mathematics. There was a commonplace sense among the stu-

dents that the mathematical concepts would not be very useful in future practice and

therefore it would not be worth their cognitive and time efforts to learn it. However,

as more specific situations related to the course were presented, the students had

several difficulties understanding the mathematics in the problems presented. We

attribute these difficulties mainly to the teaching approach that was used in both

Elementary and High School.

This questioning of the relevance of modelling activities for vocational training

is also related to the isolation of the disciplines of mathematics for

non-mathematical students in the curriculum of the courses considered, which do

not have a consistent articulation that justifies its importance (Silva 2007). This

curriculum isolation reduces the contributions of modelling practices for vocational

training in the courses considered, since fragmentation in the mathematics approach

has increased from the first years of schooling (Biembengut and Hein 2007).

It is a vicious circle, as these lacking links contribute to increasing the students’
difficulties in understanding and applying mathematical theoretical concepts in

everyday situations, as well as in situations concerning their future profession.

Thus, it is necessary that training situations be established, which will enable us to:

understand mathematics as a science that can be practiced by living so that some issues

arising from the student’s everyday life can be worked in the classroom, in a way which

enables the exploration and construction of mathematical concepts through activities that
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are meaningful to the students, and help them build their knowledge. (Ferruzzi and Almeida

2013, p. 157)

The results of our evaluation of our teaching matched other results on the merely

instrumental value of mathematical concepts, through the establishment of relation-

ships between the modelled variables and other elements, which are commonplace

for the students. Thus, modelling strategies can favour a broader understanding of

the relationship between knowledge and formative (new learning), translation

(of the real situation), structuring (of reasoning) and instrumental mathematics

(i.e., mathematics used as a tool); therefore it is most significant (Martini 2006).

It is not enough simply to associate the content involved in mathematical

modelling with the students’ daily lives; but it is also necessary to ensure a relevant
context for them (Bennett 2003). With respect to the notion of task context our

results indicate it should be greatly expanded to include other areas within the

mathematics. The contextualization comprises areas, spheres or dimensions from

personal, institutional (at the undergraduate level as well), social and cultural life,

which accounts for knowledge and skills, and allows the students to switch from

their passive spectator condition to a more active one (Kato and Kawasaki 2011).

Nonetheless, this familiarity of task context by itself is also not enough to cover a

broader understanding of modelling. It is also necessary to involve the contextual-

ization categories identified, which involve social reality itself, as well as its

understanding and transformation.

We believe category discrimination can really contribute for the contextualiza-

tion. Therefore, we suggest the same categories as those proposed by Silva and

Marcondes (2010): mathematical knowledge application to problematize situations

(KA), scientific description of commonplace facts and procedures (SD), social

reality understanding (SRU), and social reality transformation (SRT). In the last

two categories we promoted a discussion on social problem situations so that we

could make the students take a position and effectively act (SRT case) in the

problematic social reality, using the content to solve the problem being studied.

Social issues play a guiding role for mathematical, scientific and technological

content, so that they contribute to their understanding in a dialectical movement

that allows a decision-making focusing on changing the social reality (Aikenhead

2005). This way we may establish comprehensive relationships between the differ-

ent contexts that lie in the modelled problematic situation, which includes the

students’ vocational training context (and its various individual and collective

interests) in a cyclic movement (or spiralling) of comings and goings related to

the presented problem and its broader background panoramic. Based on the three

categories we established in our evaluation, we think that these broader relations

should be considered not only as expected or possible outcomes, but also as

possible obstacles to their own modelling work, especially in non-explicit

situations.
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The valorisation of social aspects, with a view to understanding and transfor-

mation refers to own origins of modelling in mathematics education, associated

with the ideas of Paulo Freire and Ubiratan D’Ambrosio in the late 1970s and early

1980s (Malheiros 2012). As Biembengut (2009) states:

Models are tools that help the person to process information, and stimulate new ideas and

insights, providing a structured and comprehensive view, which includes abstract relations.

They also enable us to observe and reflect on complex phenomena, and even to commu-

nicate our ideas to others. It is an important tool not only to help people’s everyday lives but
also to stimulate the mental process, helping us to think productively, once on the corner-

stone of technology or productions there is a model, i.e., a phenomenon and ideas repre-

sentation (p. 20).

The results of the evaluation allowed us to understand some of the teaching

difficulties regarding mathematical modelling, as well as teaching of mathematical

concepts for non-mathematical courses. Finally, we should consider the different

contexts presented and their similarities with the classroom situations, where

everything is worth attention and should be addressed.
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Chapter 35

Applied Mathematical Problem Solving:
Principles for Designing Small Realistic
Problems

Dag Wedelin and Tom Adawi

Abstract We discuss and propose principles for designing problems that let

engineering students practice applied mathematical problem solving. The main

idea is to simplify real-world problems to make them smaller, while retaining

important characteristics such that the solution to the problem is still of practical

or theoretical interest, and that the problem should invoke non-trivial modelling and

problem solving activities. We formalize our analysis in three dimensions of

learning, which provide a basis for reflection beyond just solving the problem.

We further discuss the benefits of being able to consider a large and highly varied

set of smaller problems for discerning problem solving patterns, and give examples

of such problems. We finally discuss the relationship with other proposed ways of

designing problems.

35.1 Introduction

If we wish to teach students to solve real-world problems, it is reasonable to assume

that real-world problems will serve as good exercise problems. This is, for example,

the starting point in both project-based and problem-based learning (Kolmos

et al. 2009; Mills and Treagust 2003). However, since real-world problems –

especially in engineering – are often large and complex, students may encounter

only a few such problems during their studies, which may provide insufficient
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variation to learn problem solving and to be able to effectively handle unknown

future problems (Bowden and Marton 1997).

In this theoretical chapter, we therefore present, discuss and illustrate a set of

design principles for smaller problems that preserve important characteristics of

real-world problems. We motivate the design principles by drawing on the literature

on problem solving and mathematical modelling, as well as our own previous work

in the area. These principles extend – and in some aspects go against – related

design principles that have been formulated for pure mathematical problem solving

(Schoenfeld 1991; Taflin 2003).

The set of principles that we propose have been successfully implemented in a

course in mathematical modelling and problem solving, developed by the first

author and offered to second-year engineering students at Chalmers University of

Technology (for a description of the course, see Wedelin and Adawi 2014). We

therefore expect that the work described in this chapter is useful to anyone who

wants to include similar problems in their courses, in order to develop their

students’ ability to apply mathematics in practice, and we expect the main princi-

ples to be applicable also in other domains.

35.2 Real-World Problems Have Solutions That Are
of Interest

Why is a real-world problem a real-world problem? One answer is that the problem

exists because someone is interested in its solution (for a similar characterization,

see Jonassen 2011). This can be for different reasons, mainly: (1) The solution is

directly needed in practice. (2) The solution contributes to the understanding of

some topic. In the second case, the problem may be a theoretical problem whose

solution is a useful result or insight within the context in which the problem is

posed, for example for the engineer, applied mathematician or other specialist. Note

that many school problems, designed just to practice the application of some

method, will not fall under either category.

Principle 1 The solution to the problem should be of practical or theoretical

interest.

For problems of this kind, it becomes natural not only to solve the problem itself,

but also to consider the context in which it is posed, and how its solution can be

interpreted and contribute to this context. The problem further acts as a reasonably

truthful representative of what you can expect in practice, helping students to

recognize the character of fruitful investigations, and what they typically lead to.

An obvious way to create a small problem with this property is to begin with a

real-world problem, in either of the two categories above. For the first category, we

may then focus on and simplify a critical aspect of a known applied problem that we

may know about in general terms (such as predicting the weather from past data), a
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problem we may know from own experience, or for example a problem from a

thesis project. The challenge is then to keep the essence of the real-world problem:

the simplified problem should still be a reasonably truthful model of a real problem

that is actually out there, and any solution and its derivation should be similar. This

can be seen as a modelling exercise for the teacher. A meaningful textbook problem

in some applied subject can possibly be used more or less as it is, provided that it is

used in a way that also satisfies the considerations of Sect. 35.3.

For the second category, we may focus on and simplify a critical aspect of a
known historical research task. This can be done by first thinking about a central

concept or result in some area – and then considering a particular realistic situation

where it is natural to use, explore or discover this concept or result. Or we may

consider some highly simplified “model” problem if its solution illustrates some

meaningful phenomenon or effect in the context in which it is posed; such problems

are often used in practice as vehicles for improved understanding. We may situate

the exploration directly in the theoretical context, such as defining a suitable

concept, or performing some derivation or generalization. The result is then of

interest as a part of the theory. Tasks of this kind are important since we want our

students not just to be able to apply given knowledge, but to develop new specific or

general knowledge as needed.

35.3 Real-World Problems Require Exploration

Real-world problems are often ill-defined (Mayer and Wittrock 2006; Jonassen

2011), and difficult to fully understand. They require finding a relevant point of

view, using the context and making relevant assumptions to create a model of the

real problem in terms of a simpler well-defined problem, which is actually solved,

and an interpretation of any solution in the real situation. This is known as

modelling, which can be seen as a key step in applied problem solving.

Then, in the modelling as well as in the theoretical analysis, real-world problems

typically give rise to situations where the method of solving the problem – or some

sub-problem – is not known, so investigating and exploring different ways to see

and to solve the problem, becomes an integral part of the process in order to

successfully proceed and not get stuck. This is traditionally known as problem
solving. See, for example, Lesh and Zawojewski (2007), Schoenfeld (1992) and

Jonassen (2011), for different perspectives on modelling and problem solving.

We can contrast these observations with the common practice in both mathe-

matics and engineering classes (especially when mathematics is involved), to solve

well-defined problems with a given method (Jonassen et al. 2006), which gives little

room for exploration. Models are present everywhere in engineering, but are often

perceived as truths, and many students remain unaware of the concept of a model

(Wedelin et al. 2015). Additionally, with more or less given methods, there is little

focus on developing problem solving skills.
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So, we must ensure that the challenge in solving the small problem is similar to

that of the real-world problem, and take care not to simplify too much. The problem

then provides an opportunity to learn to explore, and to develop modelling and

problem solving skills. Since the problem is not easily solved, it becomes natural to

talk to others as a means of moving forward, which is useful in itself and for the

supervision.

Principle 2 The problem should be challenging to understand in order to stimulate

modelling skills and communication.

Principle 3 The problem should be challenging to solve in order to stimulate

problem solving skills and communication.

Of course, the challenge is also a function of the students themselves, and how

much theory the teacher provides in advance. A routine problem can become a

challenging exploration simply by refraining to first introduce any theory for

solving it, creating an opportunity to learn to explore. The scope of the challenge

can also be controlled by formulating the question appropriately, possibly in a

progression where most students will be able to find something, and where the full

solution is within reach at least for some.

We note that a real problem sometimes requires learning and searching for

existing theory, and this can certainly be sensible to practice. However, there is a

risk that students then focus on the highly visible new theory and methods, and less

on the invisible skills, creating an imbalance in the long run. In fact, many students

believe that if they have difficulties in solving a problem they need to learn more

theory, expecting that new given problems will always be solved with new given

methods (Wedelin and Adawi 2014). If the learning objective is to especially

improve students’ own skills we may consider the following recommendation,

although it has little to do with the realism of the problem itself:

Principle 4 The problem should not require extensive new theory to be learned

before the problem is attempted.

35.4 Problems as Cases and Three Dimensions of Learning

A realistic problem designed along the lines we have discussed, can be seen as

offering learning opportunities in three dimensions:

• Familiarity with real-world problems. A realistic problem and its solution

(including any necessary derivation), acts as a representative example and

contributes to a familiarity with real-world problems in the domain of interest.

• Supporting knowledge. The concepts and methods needed to solve the problem,

and how they are used for this purpose (known in advance or created as a part of

the solution process).
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• Processes and skills. The particular way in which the solution (and its deriva-

tion) was found, among many different imaginable ways to approach the prob-

lem, and the modelling and problem solving techniques involved.

The first and last dimensions relate directly to the previous discussion, while the

second is the conventional dimension relating to the knowledge required to solve a

problem. We note that there is a rough relationship between these dimensions of

learning and a framework for mathematical modelling competency by Blomhøj and

Jensen (2007), although we are here concerned directly with properties of problems

rather than competencies.

We note that while these dimensions are important aspects of a problem, an

actual problem connects a particular real-world problem from which is has been

created, particular knowledge needed to solve it, and some particular approach for

solving it. It therefore contains more information than what can be seen in each

dimension separately. The problem may also contain other potentially important

aspects that we are unaware of.

So remembering the problem as a casemakes it possible at a later time to discern

relevant aspects of the problem, which may not have been of interest when the

problem was encountered. This can be important for seeing problem solving

patterns across problems, and to constructively relate to old problems when

approaching new ones. The importance of cases is widely supported in the literature

on applied problem solving (Jonassen 2011; Kolodner et al. 1996).

Even though the principles we have already suggested are likely to ensure that a

problem cannot become too small or insignificant, we still – considering the

abundance of very small and repetitive problems especially in mathematics –

suggest the following principle as a safety precaution:

Principle 5 The problem should be easy to remember as a case.

35.5 Extending the Problem Solving Experience:
Perspective and Variation

Given the three dimensions of learning, it makes sense for the students and the

teacher to discuss and reflect on the problems especially from these three points of

view. This includes the specifics of the problem in each dimension, as well as what

the problem as a representative example can convey about each dimension in

general. We may tell a story about the corresponding real-world problem, or

show a large-scale version of a related problem. Some results, observations or

methods can be explained to be generally important. When seeing the solution of

the teacher, and alternative solutions, students can reflect on their own difficulties in

solving the problem, and why they occurred. Overall aspects, such as strategies in

modelling and problem solving, and other considerations, can be discussed based
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on the students’ own attempts to solve the problems. We refer to this entire

reflection as a perspective on the problem.
In the perspective we include relevant insights, attitudes, beliefs and expecta-

tions. Such aspects are important to convey the views and ways of an experienced

teacher, and are known to be important in problem solving (Schoenfeld 1992).

Principle 6 Provide a perspective on the problem in all three dimensions of

learning.

We think of the perspective as an integral part of the problem, although it is not

presented in the actual problem text, but provided to, and learned by, the students in

other ways.

Finally, smaller problems allow us to combine many different problems to create

variation in all three dimensions of learning, as illustrated in Fig. 35.1. Variation is

essential for being able to discern critical aspects of a problem (Bowden and Marton

1997; Marton and Trigwell 2000). Through the variation, students get a chance to

experience differences and similarities between problems, including higher-order

patterns, and we create a basis for conveying different forms of experience in the

language of an expert. We note especially that modelling and problem solving

strategies are difficult to fully formalize, and have meaning mainly if the students

are able to experience patterns in their work across different problems.

Principle 7 Create a problem set with variation in all three dimensions of learning.

One way to do this is to more or less arbitrarily collect a number of problems,

and then iteratively build a subset of these problems under the constraint that they

should cover a number of aspects that we have defined in each dimension.

Fig. 35.1 Illustration of how several problems and their perspective span the three dimensions of

learning (each triangle represents one problem)
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35.6 Examples of Mathematical Modelling Problems

In order to give an impression of how we implement the principles in practice –

including the idea of variation – we briefly give five examples of mathematical

modelling problems from our course. All of the problems place students in a mode

of exploration, where they have to spend time to understand the problem and

explore alternatives, and where important metacognitive aspects are trained. (For

a detailed analysis of how the students deal with problems of this kind, see Wedelin

et al. 2015.) A more exact problem formulation for these and other problems is

available on the course homepage (Wedelin 2014); these formulations have been

calibrated based on how students typically approach the problems.

Kepler Curve-Fitting Problem We ask the students to suggest a function for fitting

a number of given points (time and distance). No method for curve fitting, or the

least squares method, is given in advance. The table contains planet data, and the

best solution to this problem is Kepler’s third law, making it possible to extend the

perspective to a historical context. The problem requires some informal judgement

about what a “good” solution to this problem is, and invokes real problem solving

where students need to explore different functions, discover the so called modelling
cycle, and so on.

Telephone Network Problem A Swedish mobile phone operator wants to rent

communication lines from the national fixed network operator to connect its base

stations to their central switch. Given the character of these communication lines,

and the prices, how can we decide which lines to rent for a low total cost? The

problem is based on a Master’s thesis, and many complicating details have been

removed. The problem is given as a theoretical modelling exercise, in a progres-

sion, where students are first asked to solve an even simpler version of the problem,

providing some insight into how varying the problem can influence the way you

solve it. The problem can be modelled as a mathematical programming problem,

but can also be solved heuristically with a modified spanning tree algorithm, which

is well suited to the natural dynamicity of the problem.

Bridge Problem A simple road network including two cities, and some assump-

tions about how speed changes with traffic intensity, is given. What is the expected

travel time between the cities, and how it might improve if a bridge is built? The

problem requires additional assumptions about driver behaviour and a precise

formulation of equilibrium conditions. It turns out that the travel time increases
with the new bridge. This is known as Braess’ paradox; it can happen in practice,

and is an instance of a Nash equilibrium (See Wu et at., Chap. 9, Sect. 9.2).

Drug Dosage Problem How can we calculate the time interval and dosage for a

drug? No specific details are given. Many assumptions are required, as well as a

combined qualitative and quantitative understanding of the real-world problem and

different models, and it is important to split the problem solving process in steps.

The problem also shows how you can reach further than what most students expect
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without substantial subject knowledge, by making significant assumptions and

seeing what they lead to, in a kind of thought experiment.

Project Planning Problem How can large projects consisting of many subprojects

be represented mathematically and how can the total project time be estimated? We

further ask how this time can be computed with the help of a shortest path

algorithm. How can the model be extended if we have uncertainty in the estimated

times? The well-known methods CPM (Critical Path Method) and PERT (Project

Evaluation and Review Technique) have been the source of this problem. The

problem includes modelling with graphs, the idea of modelling one problem (the

longest path problem) in terms of another (the shortest path problem), and thinking

about the modelling of uncertainty.

Insights and patterns that can be illustrated and discerned from this varied

ensemble of problems include the usefulness of changing the representation, the

importance of a qualitative understanding, how the problem solving can be split in

simpler steps, the exploratory nature of problem solving, creating examples, con-

sidering extreme cases, the power of making assumptions and drawing their logical

consequences to the limit, and so on.

35.7 Discussion of Related Work

Our work was inspired by similar work focusing on rich problems (for an overview,
see Taflin 2003). Drawing, in particular, on work by Schoenfeld (1991), Taflin

(2003) developed a list of design principles for rich problems in mathematics

education. These recommendations for designing good problems are similar to

ours in that the problem solving aspect is emphasized, and in that the problem

should be challenging to solve. However, our recommendation that the solution to

the problem should be of interest is for rich problems restricted to the mathematical
domain. Moreover, our recommendation that the problem should be challenging to
understand is contradicted for rich problems. This is because the notion of rich

problems does not take models and modelling into account. Our problems offer

significant learning opportunities in applied mathematical problem solving, in

addition to purely mathematical problem solving and mathematical content

knowledge.

The kind of problems we propose bear a strong resemblance to a class of

problems known as model-eliciting activities (MEAs), which is increasingly

being used in engineering education (Diefes-Dux et al. 2008; Hamilton

et al. 2008). MEAs are scaled-down, real-world problems that require students to

develop or adapt a mathematical model for a given situation. With roots in

mathematics education research, MEAs were originally developed to serve as

instruments for investigating student and teacher thinking at school level (Lesh

et al. 2000). A difference is that we start by looking at properties of real-world

problems, rather than first considering the kinds of problems that most effectively
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reveal student thinking. Moreover, we emphasize what we have called a perspective
for the problems, and the use of many small and varied problems in order to help

students to discern higher order patterns, such as problem solving strategies. In

other words, we take advantage of the opportunities that come with using many

small problems. On a more general level, MEAs appear to focus on most phases/

roles in a project, whereas our focus is more specifically on the kind of work

undertaken by an applied mathematician involved in the project.

Regarding the notion of authenticity (Vos 2011, 2015), we consider our prob-

lems to be authentic with respect to the real-world problem characteristics that we

intentionally retain, and in some way in how we work with the problems. It is,

however, not our goal to be as authentic as possible – the simplification itself is

clearly for educational purposes, in order to create smaller problems to highlight

important aspects of interest, and to exploit variation. And our point of view is that

of a specialist engaged in a particular role in several different projects, rather than a

person engaging in all aspects of a single project. We note that definitions of

authenticity do not generally consider the difficulty of the problems, since real-

world problems can be both easy and difficult.

35.8 Conclusions

The proposed way of creating smaller problems from real-world problems under-

lines aspects of real-world problems that we consider to be especially important for

developing applied problem solving skills. The smaller problems have the potential

to help students to develop in all of the three dimensions of learning, and they

provide the students with a case library to draw on in future courses and in the

workplace. We have also emphasized the importance of a perspective for the

problems – a reflection on the problems in all three dimensions of learning – as

an important complementary part of the problem. A prepared perspective also

makes it easier for other teachers to fully understand and use the problems.

Importantly, the use of smaller problems enables repeated and continuous
feedback on the entire problem solving process. Moreover, working with a set of

varied problems opens up for reflections on higher order patterns, for example

related to problem solving, and allows the teacher to talk about and convey his or

her general experience in a meaningful way. Due to their limited size the problems

are relatively easy to supervise.

The challenging nature of the problems is, in our experience, very effective for

making students’ own thinking visible, enabling more pointed feedback for devel-

oping complex skills and constructive attitudes. The problems encourage the

students to engage in creative thinking, and convey the message that students are

expected to do more than just applying given or known methods, including devel-

oping new theoretical concepts, models and methods as needed and that they are

able to do so.
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How do students in our course experience this approach to designing and using

problems then? Most students find it extremely motivating, yet quite frustrating. At

the beginning of the course they struggle, in particular, to develop effective

problem solving skills, and they are hampered by unsuitable attitudes and expec-

tations. However, the response of the students has been exceptionally positive, and

after taking the course most students express and demonstrate a fundamental

change in their abilities to “think mathematically”, in their understanding of the

nature of mathematics and its role in their future profession (Wedelin et al. 2015).

Compared to full real-world problems, the small realistic problems we propose

have a bias towards being more condensed and simplified, with potential discover-

ies just around the corner, and with less time-consuming (and possibly boring)

work. However, we have found these smaller problems very useful, and see them as

a stepping-stone towards a full ability to handle real and larger projects. A course

like the one we give therefore acts as an intermediate step between traditional

engineering courses and full-scale projects of the kind our students will meet in

their profession.
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Part IV

Influences of Technologies



Chapter 36

Visualisation Tactics for Solving Real World
Tasks

Jill P. Brown

Abstract Many affordances useful in facilitating the solution of real world tasks

are available in Technology-Rich Teaching and Learning Environments

(TRTLE’s). Of particular use are those allowing visual image generation by

technology. Whilst the TRTLE provides additional opportunities and approaches

to engaging with the real world, additional complexities also exist. One of the

transformational powers of the technology is to produce technology-generated

images to clarify and refine students’ mental models of the situation, but is this

power being realised? Following a grounded theory approach, this study showed

that students often did not take up the opportunities, such as the usefulness of the

data plot informing their choice of function model or comparing models with data

or each other, even though they had the technological and mathematical knowledge

to do so.

36.1 Background

A Technology-Rich Teaching and Learning Environment (TRTLE) exists when

teachers and students in the classrooms potentially have access to, and teachers

professional development support for, a wide range of electronic technologies. To

qualify as ‘rich’, with respect to a TRTLE, the environment would need to include

unfettered access to electronic technologies that enable particular mathematical

explorations. Building on the views of Pollak (1986) at ICME 5, Tikhomirov (1981)

and others in more recent times (e.g., Borba 2005, 2012), claim the use of electronic

technologies can transform mathematics, mathematical activity, and mathematical

thinking. Tikhomirov argues, “a transformation of human activity occurs, and new

forms of activity emerge” (p. 271) through the use of electronic technologies, that
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is, human activity is mediated by technology use (p. 277). Extending this, Borba

(2005) introduced the metaphors humans-with-media and students-with-technology

to describe the perspective where technology and humans are “completely

intertwined” (p. 56). He claims “knowledge is shaped by technologies of intelli-

gence and that such technologies are actual actors in producing knowledge and

communication even though there are many other factors that shape such pro-

cesses” (p. 59). Thus, in a TRTLE human mathematical modelling activity can be

transformed although this transformation can bring added complexity to task-

solving (Galbraith et al. 2007).

“Rapidly advancing modelling technologies . . . are making modelling accessible

to an ever-broadening cross-section of knowledge workers” (Waisel et al. 1999,

p. 1). Whilst TRTLE’s offer many opportunities, one critical to modelling is the

opportunity to use visual images generated by technological tools. However,

Waisel et al. (2008 p. 360) note that “student modellers drastically underuse

visualization”. Where students have access to graphing technology this allows

links to be made between different representations (algebraic, graphical, numeri-

cal). Such calculators make “plotting and dynamically changing graphs” simple.

Thus, technology assists the development of students’ modelling abilities as these

two enablers are identified by Pead and Ralph as “central to the modelling process”

(2007, p. 311).

In terms of mental models theory, Waisel et al. (2008), building on the work of

Johnson-Laird (1988), note there are (at least) three types of mental representation:

mental models, propositional representations, and images. Mental models, refer to

how we imagine a situation to be or could be as we can have multiple mental

models of a situation. Propositional representations are derived from information

presented as text to describe the situation (i.e., linguistic comprehension). Mental

images are views of some aspect of a mental model and are formed as we pose

questions about the situation (i.e., internal manipulations). Externalising these

mental representations, using technological (and other) tools, facilitates the devel-

opment and refinement of the mental model(s).

Real world situations are by their very nature complex, hence visualisation is a

critical component for successful modelling. This visualisation (both mental images

and technology-generated external images) includes the comparison of a model

with data (i.e., plot with function graph) and comparing models (i.e., visual

comparison of models for different situations and/or to consider multiple models

for the same data). Visualisation enables modellers to develop a ‘good sense’ of the
appropriateness of their models within the real situations hence positioning them-

selves to undertake ‘appropriate and foreshadowed’ analysis of the situation under

investigation. Visualisation may lead to the creation of better models and the use of

these models in subsequent analysis through increased understanding of the rela-

tionship between the model and the real world. The study to be reported here

investigates technology-generated visualisation practices of senior secondary math-

ematics students. However, Stillman (2004) found the need for such students when

attempting real world application or modelling tasks to have “a well developed

repertoire of cognitive and metacognitive strategies.. . .[with the latter including]
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strategies for monitoring, regulating and coordinating the use of these cognitive

strategies” (p. 63) in order to benefit from facilitating conditions such as task

features which encourage visualisation especially where there is access to

visualisations tools. The coordination of these multiple mental representations

and external models (e.g., a propositional model from text, an imagined mental

model, a view of either as we query them and an external representation on a

calculator screen) are of vital importance for efficient functioning of working

memory when attempting applications and modelling tasks (Stillman 2004).

36.2 Affordances

Affordances (Gibson 1966, 1977) of the environment are taken to be the offerings

of such an environment for both facilitating and impeding learning, describing

allowable actions between the technology and the student. However, the existence

of an affordance does not necessarily imply that activity will occur. To take

advantage of the opportunities arising, students need to perceive affordances and

act on them (e.g., Doerr and Zangor 2000).

One affordance related to visualisation that is particularly useful when solving

real world tasks is Function View-ability (Brown 2013). Function View-ability is an
umbrella term for affordances allowing particular views of a function to be

observed. Affordance bearers (Scarantino 2003) are the objects in the environment

that offer the affordance. Manifestations of this affordance include both global
function viewing (focus on ‘overall’ view) and local function viewing (focus on a

particular aspect or feature). Both involve the entering of a function in the function

window (y¼) and using one of several affordance bearers (e.g., GRAPH, WIN-

DOW, ZOOM on a TI-84 graphing calculator) to facilitate the finding of a Viewing

Window that allows aspects of the function of interest to be observed.

36.3 The Study

The study reported here examines two Year 11 classes that could be considered

TRTLE’s in the sense indicated above. The research question is: To what extent is
the expected transformative power of the technology, specifically the usefulness of
technology-generated visualisation, being realised in typical classrooms when task
solving? This visualisation relates to the perception of affordances that would be

useful during task solving, as well as the strategies undertaken in the enactment of

these affordances. The 16–17 years old students were solving a real world function

task, The Platypus Task.1

1 See Brown and Edwards (2011) for further details of the task.
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Platypus Task

The platypus is an endangered species that may become extinct unless action

is taken to save it. An annual survey held in a nearby national park showed an

alarming decrease in platypus numbers over the years 1993–1998. Two sets

of data representing a platypus population, before and after an intervention

project, were presented. Find a model to represent platypus numbers over

time for both data sets. Questions then considered included: did the interven-

tion improve the situation, what was the predicted population a decade later,

and when would the population return to the initial value?

Affordances that would be useful in determining and subsequently using models

for the platypus populations included: Data Display-ability, Function View-ability,
Represent-ability, and Check-ability. These will be elaborated in the following

sections. Technology-generated visualisation plays a critical role in each of these

affordances.

36.3.1 The Participants and TRTLE’s

The analysis reported here is based on deep examination of the two focus TRTLE’s.
These included two teachers, Peter and James [pseudonyms], and a total of 36 stu-

dents. The students in both TRTLEs had just completed a unit on polynomial

functions (linear, quadratic, cubic) in Year 11 Mathematical Methods and were of

average age 16 years. The first TRTLE [P11] included Peter and 16 students (nine

female, seven male). The second TRTLE [J11] included James and 20 students

(2 female, 18 male).

The educational context in Victoria, Australia, where the study was set has

included the expectation of technology use (including but not limited to graphing

calculators) in senior secondary mathematics for over two decades. Graphing

calculators include function graphing capabilities, data plotting capabilities, the

capability to access these simultaneously (i.e., function graph can be ‘overlaid’ on a
plot of data); table generating capabilities (ability to produce ordered pairs given

algebraic representation of a function is entered); function tracing capabilities

(ability to trace along function graph and have numerical coordinates displayed);

and function calculation capabilities (ability to calculate particular function values

including zeroes and local optimal values). All of these are often useful in solving

modelling and application tasks. Extended lesson observation prior to task imple-

mentation provided evidence the students were technologically and mathematically

capable to engage with the task. The students in this study all owned such calcu-

lators and made substantial use of them in class prior to task implementation.

434 J.P. Brown



36.3.2 Data Collection

Data collection included audio and video recording of students working on the task

which allowed the researcher to “capture rich behaviour and complex interactions”

(Powell, Francisco, and Maher 2003, p. 407)—two key elements of TRTLE’s.
Other data sources were individual student scripts, question and answer strips for

recording questions and responses of others, post-task sheets and key recordings of

students’ graphing calculator keystrokes. The task sheet, question and answer

strips, and the post task record sheet were all intended to encourage students to

record as many details as possible about their thinking during task solution.

Following task implementation, post-task interviews were undertaken with six

students from P11 and ten students from J11.

36.4 Analysis

Data analysis followed a grounded theory approach with transcriptions including

key recordings and student written work subject to open and axial coding (Strauss

and Corbin 1998). This showed that many appropriate affordances were perceived

and enacted in choosing various models. Several different yet appropriate

approaches were taken. The analysis reported here focuses on the use of

technology-generated visualisation particularly during the model finding phase of

the task. This included plotting the data (Data Display-ability and multiple Data
Display-ability where both data sets were viewed together), viewing the graphical

representation of a function used to model the data (Function View-ability), com-

paring a function model to the data (Data Display-ability and Function View-
ability), and viewing multiple models of the situation (multiple Function
View-ability). The latter included multiple models for the same data or viewing

models for both data sets.

36.4.1 Data Display-Ability

Whilst engaging with a task such as The Platypus Task, it was expected most

modellers would begin by viewing a plot of the data (Data Display-ability) as

they began their consideration of a suitable model, but this was not necessarily the

case here. Table 36.1 shows that only 28 of the 36 students enacted the affordance

Data Display-ability. In enacting this affordance three different strategies were

used. These strategies are related to whether the data were displayed (a) prior to

finding a model, (b) after a function model had been found and viewed, or (c) a plot

of the data was viewed simultaneously with a function model viewed graphically.

The first two strategies were additionally undertaken using a variety of sets of
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affordance bearers as shown (Table 36.1), illustrating the additional complexities of

solving real world tasks in a TRTLE as multiple enactment pathways are available

to the modeller. The majority of students viewed a plot of data thus providing

technology-generated visualisation in order to support subsequent consideration of

an appropriate function type given the shape of the data displayed. These students

looked at the plot to inform their model construction before finding a model. A

further five students enacted Data Display-ability after having already viewed a

function model. An additional two students generated the external visualisation of

the data simultaneously with their function model. These seven students were using

the external visualisation for purposes other than for supporting the mental devel-

opment of a model for the data such as checking.

36.4.2 Function View-Aability

Surprisingly two students although they plotted the data, did not consider that

finding a function to model the data would be useful. The remaining 34 students

all used the regression capabilities of the technology (Function Identify-ability) to
do so. Thirty-one of these successfully enacted Function View-ability, producing an
external visualisation of their model of the situation. For the three unsuccessful

students all three perceived Function View-ability but were thwarted by a combi-

nation of a lack of technological knowledge and an apparent lack of connection

between their mathematical knowledge and technological knowledge in enacting

this affordance.

36.4.3 Data Display-Ability and Function View-Ability

As shown in Table 36.2, 23 of the students enacted both Data Display-ability
and Function View-ability, thus viewing at least one model simultaneously

Table 36.1 Enactment of the affordance Data Display-ability in solving the real world task

Strategy Affordance bearers

Number of

students

View plot of data to consider appropriate function

type given shape

LIST, StatPlot, ZoomStat 13

LIST, StatPlot, WINDOW 7

LIST, StatPlot, WINDOW

+ZoomOut

1

View plot of data after function graph has been

viewed, in already set up window

LIST, StatPlot, GRAPH [WIN-

DOW used previously]

4

LIST, StatPlot, ZOOM Stan-

dard, ZoomStat

1

View plot of data simultaneously with function
graph

LIST, StatPlot, ZoomStat 2
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with the data. Of the remaining students, two enacted neither affordance and five

enacted Data Display-ability only – as noted earlier three of these perceived

Function View-ability but were unable to enact this. The remaining six students

enacted Function View-ability only. As illustrated in Fig. 36.1, at times students

enacted Data Display-ability prior to Function View-ability and at other times the

converse was true. Furthermore, sometimes they were enacted simultaneously.

These differences tended to relate to the purpose of enactment, for example,

considering the type of function that might be a useful model (Fig. 36.1a) or

checking the fit of the algebraic model to the data (Fig. 36.1b).

36.4.3.1 Multiple Data Display-Ability and Multiple Function

View-Ability

In a task such as The Platypus Task, affordances of the technology include oppor-

tunities to view the data before and after intervention simultaneously. If one’s
working memory is challenged by considering one mental model, then no doubt

considering two related mental models adds to the cognitive demand. Thus the

opportunities offered by the TRTLE for technology-generated visualisations of

both data sets and of multiple models would seem to be particularly useful for

mediating cognitive demand of the task (Stillman et al. 2004). In this case, multiple

Data Display-ability from multiple data storage lists allows the modeller to produce

multiple external visual representations of the data. In addition, multiple Function
View-ability from multiple entries in a function window allows the modeller to

produce multiple external visual models. In terms of the transformational power of

the technology the enactment of multiple Data Display-ability simultaneously with

multiple Function View-ability has the greatest potential in the model finding phase

of this task.

Table 36.2 Affordances perceived and enacted: Data Display-ability and Function View-ability

Data display-ability (DD)

No Yes

Function view-ability (FV) No 2 3

Yes 6 25

Fig. 36.1 Using (a) Data Display-ability followed by Function View-ability or (b) the reverse
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Surprisingly 24 of the students restricted their use of the lists to only two of the

many available. Firstly, this was time inefficient as they needed to delete one set of

population data on several occasions in order to view the other set, as they moved

back and forth in considering the data sets. Secondly, it was restrictive from a

modelling sense as they could not compare before and after intervention plots of the

data or models for these data using the technology. These 24 students were thus

unable to enact multiple Data Display-ability and thus produce technology-

generated visualisations of the two data sets simultaneously. Of the 12 students

using at least four data storage lists and thus able to view multiple plots (i.e., of

population data before and after the intervention project), all but one also used

multiple function entries, allowing the possibility of viewing multiple functions

simultaneously. Figure 36.2 shows the visualisations produced by one of these

12 students.

36.4.4 Consideration of Multiple Models

In addition to expecting all students to enact Data Display-ability, it was expected
that some students might also compare different graphical models for the same data

set. It was certainly expected that all students would view a plot of their data. The

limited enactment of these affordances was unexpected. Key recordings provided

evidence that only 23 (of 36) students actively considered multiple models for one

or both data sets, with only nine students considering this for both data sets. For four

of these nine, considering multiple models for both data sets - consideration stayed

at the mental model stage only for the before intervention data. A fifth student found

alternative models but did not view these. Hence, 22 students successfully found

multiple models (i.e., different function types) and produced technology-generated

visualisations of these, thus enacting multiple Function View-ability. Four of these
students found multiple models for the data both before and after intervention. The

remaining students did so for one data set only. The majority of occurrences of

viewing multiple models occurred sequentially, rather than simultaneously.

Only three students viewed their multiple models for the same data simulta-

neously (two doing so for both data sets). Figure 36.3 provides an illustration of the

Fig. 36.2 Visually representing models before and after intervention models simultaneously with

the data
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two ways of viewing multiple models, however Fig. 36.3a may be misleading, as

for the students when one view was visible, the other was not. Figure 36.3b gives an

indication of the advantages of the technology-generated visualisation being

viewed simultaneously. These examples show concurrent use of Data Display-
ability, however, concurrent use was not always enacted. Surprisingly, 20 students

did not record at least one of the models they considered. The key recordings were

invaluable in establishing what models were considered in these cases.

Most students who considered multiple models did so at the model finding stage

of task solution. As noted previously, some of these considered multiple models but

for various reasons were unable to pursue these. One student, May, considered an

exponential function. Using the Question/answer strips she asked: ‘I’ve forgotten

everything about exponentials. How do you predict the population in x amount of

years?’ (No response was given.) Her unsuccessful tactic of asking a knowledge-

able other suggests May is using prior knowledge of the task context yet with all

recent work being with polynomials, she seems to have forgotten how to enact

Function Identify-ability if an exponential function is required.

However, on occasions it was during the subsequent analysis that students

reconsidered their initial models. One student, Ada, initially used mathematical

knowledge to facilitate affordance enactment in selecting a quadratic model for the

data. Later she changed her mind apparently on the basis of her interpretation of the

constraints, in this case using non-mathematical cues to select a model, illustrated

using post-task interview data.

Ada: I think I changed my mind half way through.

I: So you actually did think about it being linear?

Ada: Yeah.

I: And it wasn’t because of the graph itself?

Ada: It was because I didn’t think it would go back up again. I don’t think it

would. . . .
I: What made you change? You changed your mind because it went up?

Ada: Because I started with a quadratic but I didn’t know how it could go up. I

think I was thinking too literally about the platypuses. I didn’t think it

would go up again and I thought it might be more of a linear.

Fig. 36.3 Using Data Display-ability and Function View-ability (a) sequentially (b) simulta-

neously in considering multiple models for a data set
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Ada took the question: Would the platypus become extinct? to mean extinction was

inevitable and so became dissatisfied with her original quadratic model that did not

predict extinction and hence used a linear model that did.

36.5 Discussion and Conclusion

The transformational power of the technology was not realised by many students.

An apparent lack of perception of several key affordances related to visualisation

(i.e., Data Display-ability, Function View-ability) restricted opportunities for stu-

dents to be provided with additional insight that would have been helpful during

task solving. Ultimately it is the student who must bring their resources and

competence in enacting affordances to the given enactment context. More attention

needs to be given to developing both of these.

Waisel et al. (1999) suggest “in order for potential modellers to make the most

efficient and effective use of these new technologies, the software must incorporate

visualization in such a way as to facilitate the process of modeling” (p. i). Graphing
calculators incorporate such visualization opportunities; however, we are not seeing

evidence of the actualisation of this visualization to the extent expected for a

TRTLE. Waisel et al. further argue that “software designers and developers, who

have tended to focus more on perceptual than cognitive issues, need to better

understand the cognitive role of visualization in modeling” (p. i) when designing

visualisation enabling software. Based on students’ reluctance to visualise, there is

little doubt that teachers also need to better understand the cognitive role of

visualization in modelling as students are not appreciating how the visualisation

can support their mathematisation, through concrete supports for their mental

models.

Making a mental model for the situation and refining this through technology-

generated external visualisations follows Borba’s (2005, 2012) notion that it is the

two way to-ing and fro-ing between the human and the technology, that is the

seamless interplay between the mental model! technology-generated

model! refined mental model. When this occurs a direct consequence will be

this facilitation of the modelling process. The calculator offers this facilitation,

however, it appears the students are not appreciating this potential.

To form a mental model, one begins with comprehension where

the information necessary for forming a mental model is gathered. During description a

mental model is formed based on the preliminary knowledge gathered during the compre-

hension phase. The contents of a mental model . . . are inaccessible until the mental model

. . . is queried and views of it are extracted (Waisel, Wallace, & Willemain 1999 p. 3).

Up until this point the mental model is manipulated in the modeller’s mind.

Limitations of one’s working memory foreshadow the benefits of using external

aids such as technology-generated visualisations (Stillman 2004; Stillman

et al. 2004). Thus the mental representation is formed from the text-based
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information and other images provided in the complex real world situation. The

coordination of these is able to be enhanced and modified through ‘deliberate/
thoughtful’ use of technology-generated supports. Stillman argues it is the coordi-

nation of these (the mental model and the image on the screen, for example, and the

integration of the two) that is difficult for students, therefore they do not use the

external aids to the extent we would expect them to do. However, Brown (2013)

notes in other cases, students do not even attempt to use them (the technology-

generated images) as they do not perceive the necessity for their use. So despite the

potential for technology to have a transformational impact on what students do in

classes where modelling is conducted this is not necessarily being realised. The

research reported here thus suggests several future lines of inquiry not the least of

which is the anticipation of use of digital tools in a modelling context (See Stillman

et al. Sect. 7.2).
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Chapter 37

Developing Modelling Competencies
Through the Use of Technology

Ruth Rodrı́guez Gallegos and Samantha Quiroz Rivera

Abstract This chapter focuses on the study of the development of modelling

competencies in a Differential Equations class where diverse technology is used.

First, it discusses how modelling can be used for the design of didactic sequences

for students of engineering. Secondly, it shows an innovative proposal that includes

the incorporation of diverse technology for teaching Differential Equations in the

context of RC (Resistor-Capacitor) and RL (Resistor-Inductor) Circuits. Finally, it

details qualitatively the way technology promotes the development of mathematical

modelling in students of engineering.

37.1 Introduction

Incorporating modelling into the school curriculum has shown encouraging results

such as the development of competencies for problem solving that promote the

relation between school mathematics and everyday mathematics (Rivera

et al. 2015). In universities, solving problems based on professional contexts is

now a priority objective according to international and national projects such as the

Programme for International Student Assessment (PISA) developed by the Orga-

nization for Economic Co-operation and Development (OECD) (2003, 2010) and

the Latinoamerican Tuning Project (Beneitone et al. 2007). Recognizing that the

development of technology generates more possibilities for using mathematical

modelling in classrooms (Galbraith et al. 2007), modelling activities are being used

along with technological devices in order to promote increased understanding based

on this strategy. This chapter shows the design of innovative didactic sequences for

teaching Differential Equations (DE) that involves modelling in Resistor-Capacitor

(RC) and Resistor-Inductor (RL) circuits contexts. Also, it describes how the
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technology was chosen in order to support the lessons and an analysis which

identifies the modelling competencies that were promoted for students of

engineering.

37.2 Mathematical Modelling and the Development
of Competencies

The main reason for teaching mathematics in schools is so that students can apply

the mathematical content for solving problems in a variety of contexts and daily

situations out of schools (Alsina 2007). In order to accomplish this purpose,

mathematical modelling provides a way that relates these worlds: that of the scholar

and the real world.

The representation of mathematical modelling in a scheme has been a central

aspect in much research. Student work has been analyzed using different points of

view and descriptions of the stages of the modelling cycle. Some researchers that

focus on that purpose are Blum (2002), Borromeo Ferri (2006) and Confrey and

Maloney (2007). In our research about the teaching of mathematics at university

level, we analyzed the modelling cycle through a scheme proposed by Rodrı́guez

(2007, 2010). This scheme is special for the kind of physical-technical examples we

use. It is shown in eight stages of four domains: Real, Pseudo-Concrete, Physical

and Mathematical (see Fig. 37.1).

Fig. 37.1 Mathematical modelling cycle (Rodrı́guez 2007, 2010)
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On certain occasions, the modelling situations that are presented to students, can

be considered to be in the Real Domain. Perhaps these situations have been

modified for their teaching in schools through a didactic transposition, a term

proposed by Chevallard (1985). The approach of situations that appear in the

scholar context, make us consider the existence of another domain named

Pseudo-Concrete. The Physical Domain appears when the contexts chosen for

modelling mathematics require previous physical knowledge. The existence of

that domain permits us to recognise the importance of specific knowledge that

generates a Physical Domain and after that, the elaboration of a mathematical

model. The mathematical modelling cycle presented in Fig. 37.1 can support the

design of didactical sequences for learning mathematics where the teacher can

generate inherent activities related to each stage presented in the scheme and

eventually achieve better learning of mathematics to obtain better results. This is

the case of the examples that will be presented in the next sections.

Some of the first results obtained help us to consider and identify some model-

ling competencies that were developed by students of engineering in a DE class.

Based on previous studies, especially Henning and Keune (2007), Houston (2007),

Kaiser (2007), Maaß (2006) and Singer (2007) with the purpose of unifying the

results of these, we chose a qualitative study that began a characterisation of the

main modelling competencies developed by the students in a DE class designed

according to transitions in the mathematical modelling cycle (see Table 37.1). The

didactical sequences described, incorporate innovative technology that researchers

selected specifically according to the objectives of each lesson. The central question

to discuss is:

Table 37.1 Mathematical modelling competencies (Rodrı́guez et al. 2014)

Transitions between stages of the modelling

process Modelling competencies promoted

PCM PM To identify and structure problems

To understand and analyse the real problem

PM MM To determine and manipulate variables

To create a mathematical model through real

terms

MM MR To manipulate the variables on the mathematical

model

To use mathematical knowledge to solve the

problem

MR PR To interpret the model in terms of the physical

domain

PR PCR To interpret the model in real terms

To interpret the result in the real situation

PCR MSR-C To adapt the model to new situations

To reflect on and validate the model

To evaluate the mathematical model

To communicate the model and its results
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How does technology impact in the promotion of specific modelling

competencies?

37.3 The Use of Technology and the Differential Equations

For many years now, teaching DE to students of engineering has emphasized

producing and memorising the analytical proceedings that are presented to students

like “cuisine recipes”. The consequences of this practice have been shown to be the

poor learning of the DE and a total incomprehension by students of the applications

of mathematics in real and professional contexts that they eventually use (Artigue

1996; Blanchard 1994; Rasmussen 2001).

The DE class at Tecnol�ogico de Monterrey, Monterrey campus, began a curric-

ular reform in 2008. These efforts resulted in a redesign of Differential Calculus and

Integral Calculus courses. The actual DE class is based on modelling as the

principal teaching strategy. We designed didactical sequences to allow students to

relate to diverse contexts where physics and empirical phenomena are studied. The

majority of the didactical sequences designed incorporates the use of innovative

technology available in the university. This allows the students the possibility of

interaction with some phenomenon described in experimental ways. Some of the

technologies used are: programmable calculators; temperature, voltage and move-

ment sensors; physical material (electric circuits); specialised software and online

resources.

In this chapter we present two didactical sequences designed for the learning of

RC and RL circuit modelling through a DE by the linear method. This class was

selected as it used diverse technology and the sequence has been adapted and

improved each semester.

37.4 Experimental Situation: RC and RL Electric Circuits

The experimental situation that we will detail was designed and implemented

beginning in August 2011. Both sequences are associated with mathematical

content and their teaching requires a technological device as shown in Table 37.2.

The main difference between the didactical sequences is the use of physical

materials, calculators and sensors in the first compared to the use of a simulator in

the second. The choice of a simulator for experimenting on a RL circuit was made

because of the absence of this physical material in the university. Nevertheless, we

found in the Project Physics Education Technology (PhET) from Colorado Uni-

versity, a simulator that has the elements of the RL circuit that can be easily

manipulated because of the user-friendly interface. The didactical sequences are

as follows:
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(a) RC Circuit

– Phase 1. Formulation of a DE that models the charge and discharge of the

RC circuit.

– Phase 2. Assembly of the electric circuit physically and re-collection of

data using voltage sensors.

– Phase 3. Analysis of the graphs given by the sensor, recognizing their

behavior.

– Phase 4. Analytical solution of the DE by linear methods and comparison

with the graph.

(b) RL Circuit

– Phase 1. Formulation of a DE that models the current of the RL circuit.

– Phase 2. Assembly of the electric circuit using a simulator.

– Phase 3. Analysis of the graphs given by the sensor of the simulator,

recognizing their behavior.

– Phase 4. Analytical solution of the DE by linear methods and comparison

with the graph.

It is possible to appreciate that Phase 2, “Assembly of the electric circuit

physically and re-collection of data using voltage sensors,” and Phase 3, “Analysis

of the graphs given by the sensor, recognizing their behavior,” are where the

technology can play an important role. In Fig. 37.2 the stages of the modelling

cycle indicate where the phases are shown as A and B, respectively. Both Phases

2 and 3 where the technology is applied are situated in the transitions between the

Pseudo-concrete, Physical and Mathematical Domains of the modelling cycle.

This research follows a qualitative paradigm. In keeping with this type of study

(Creswell 2007; Stake 2005), participant observation was used and the collection of

data was undertaken using a semi-structured observation instrument and the anal-

ysis of documents made by the students. All of these were supported by the lesson

being videotaped. The participants consisted of 25 third and fourth semester

students with different engineering majors who were enrolled in the DE class of

August, 2012. A sample of nine students working in three teams was chosen

randomly. The two didactic sequences were taught in two separate lessons each

of 90 min duration.

Table 37.2 Didactical sequences chosen

Didactical

sequence

Mathematical

content Technology

RC circuits Analytical linear

method

Electric circuits (connectors, capacitor, resistance and

four batteries)

Calculator

Voltage sensor

RL circuits Analytical linear

method

Simulator
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37.5 Results

We present the results categorised into the two principal uses of the technology

indicated on Fig. 37.2.

37.5.1 Assembly of the Electric Circuit

The first activity where the technology was used consisted of the assembling of the

RC circuit by each team. We present the results in both didactical sequences:

(a) RC Circuit: Observations showed that students in each team could assemble

the electric circuit using the given materials. In order to do that, they made use

of a tutorial designed by the teacher indicating the way they had to put each

element together. The manipulation of the materials was intuitive and after

some attempts the students could charge and discharge the capacitor on several

occasions. The assembly of the electric circuit generated dialogue and discus-

sion between the members of the different teams that provided explanations

about the phenomenon. We registered that they questioned themselves about

what was going on in the circuit in order to understand. The dialogue appeared

as answers to those questions and we noted that students had conceptions

about the phenomenon and they used physical terms to describe them. One

team, for example, drew a scheme of a RC circuit in order to explain the

phenomenon to their partners.

(b) RL Circuit: In the second didactical sequence, referring to the assembly of a

RL circuit, students manipulated the PhET simulator. Again, although it was

the first time students used the simulator, they did not have any difficulties, and

Technology used

Assemble the circuit
using physical material
or simulator
Generate a graph with
the sensor or the
simulator

Fig. 37.2 Using technology in the modelling cycle (Rodrı́guez 2007, 2010)
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they learned how to use the simulator very quickly. An important difference

noted was that, in using the simulator, it was possible to change the magni-

tudes such as inductance, voltage and resistance. Despite the problem that the

software determines the specific values, it was observed that students manip-

ulated the ranges of the magnitudes, and it motivated them to start a discussion

about possible answers.

37.5.2 Generation of a Graph Using the Sensor or Simulator

The second activity planned with technology was to generate a graph through data

collected using the sensors. Again we present results of both didactical sequences:

(a) RC Circuit: The students connected the calculator and the voltage sensor to the
RL circuit already assembled. The collection of data was made after several

attempts, enabling a better manipulation of the equipment and better measure-

ments. The qualitative analysis of the graph included an explanation of its

behaviour, its form and the asymptotes according to the phenomenon studied.

The answers described that the capacitor was charged exponentially with an

asymptote at 6 V. Some teams collected data again because the graph showed

negative values as a result of mistakes in the polarity of the wires. This allowed

us to see that students related the mathematics and the problem they were

required to solve.

(b) RL Circuit: To collect data in the RL circuit the sensor of the simulator was

used. As this sensor had to be manipulated in the computer, students had to

capture the moment when the current changed and the moment when it was

stabilized. The three teams were able to register the graph and drew it for its

qualitative analysis. On this occasion, the graph shown was easily read as an

exponential function with asymptote at 1A. As this didactical sequence was

implemented after the study of the RC circuit, students accomplished a faster

comprehension of the variables manipulated and the stabilization of the graph.

37.5.3 Modelling Competencies Promoted

After the analysis and triangulation of the results, and the dialogues between

students, it was possible to identify which modelling competencies were promoted

in the implementation of the technology previously described. First, the emergence

of questions for understanding the phenomenon with physical material or with the

simulator, enabled a dialogue between team members that promoted the compe-
tency to identify real problems. Before the main question of the lesson was

proposed, the students of the three teams talked about the possible variables for

consideration. The same comments promoted the competency to understand and
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analyse the real problem. This competency became possible due to the transition

between the Real Problem and the Pseudo-Concrete Model.

Generating graphs and the qualitative analysis provided the opportunity to use

physical terms to explain the mathematical results. Also, it promoted discussions

about the problem variables. That aspect was important in order to solve analyti-

cally the DE, validate the solution and find mistakes as the students already knew

the answer in a physical domain. It was possible to promote the competency to
interpret the model in physical terms and also the competency to reflect on and
criticize the mathematical model. In Fig. 37.3 the modelling competencies pro-

moted in the modelling cycle are shown.

37.6 Conclusions and Discussion

This investigation concludes that using technological devices can promote the

transition between the different stages of the mathematical modelling cycle. Prin-

cipally, the use of technology can make possible the experience of the phenomenon

in the lesson. It permits a better understanding of the context analyzed and promotes

the modelling competencies specified previously.

In addition, the use of a simulator in the second didactical sequence was just as

effective as the first didactical sequence where concrete materials were used. We

believe that it was possible because of the correct selection of a device that has all

the elements needed for the experimentation. We recommend for future investiga-

tions the design of didactical sequences that include other technological devices and

a deep analysis about the promotion of competencies not only mathematical, but

also technological and collaborative.

Competency to understand and analyse
the real problem

Competency to manipulate the variables
of the mathematical model

Competency to identify and structure
problems

Competency to analyse in physical
terms the mathematical results

Competency to use mathematical
knowledge to solve the problem

Competency to interpret the model in
terms of the physical domain

Competency to reflect and validate
the model

Fig. 37.3 Modelling competencies promoted by the use of technology
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Chapter 38

Model Analysis with Digital Technology:
A “Hybrid Approach”

Débora da Silva Soares

Abstract The advent of informatics and its fast development has allowed for new

ways of doing, thinking about, and applying mathematics. This chapter will address

one role of the software, Modellus, in the development of a teaching approach

based on Model Analysis, that proposes the analysis of a mathematical model for a

phenomenon to discuss old and new mathematical concepts with students. The

software gave access to graphical and numerical representations of model solutions,

which allowed students to analyse the model, even though it involved mathematical

concepts still advanced for them. Based on the notion of reorganization, the shift in

the way of dealing with mathematical models in classrooms suggests that Model

Analysis can be understood as a reorganization of modelling and applications.

38.1 Introduction

Applied Mathematics is the only obligatory mathematics discipline in the entire

curriculum of the Biology Major course at the State University of São Paulo, Rio

Claro, SP, Brazil. Its syllabus includes the study of functions, notions of limits,

derivatives and integrals and their applications, distributed in a workload of 4 h per

week. In this course it is usual to find students who do not like mathematics and who

actually do not understand why they should learn it nor how they could use this

content in their area of interest. Based on this scenario, I have developed a teaching

approach with the intention of creating an opportunity for these students to think

about mathematics in a way related to biology. This teaching approach is based on a

situation where the context is as important as the mathematics and it became the

background of the research published in Soares (2012).

The focus of this study was the identification and analysis of the roles of the

software Modellus during the development of a teaching approach, in which the

D.S. Soares (*)

Instituto de Matemática, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves,
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core idea was to propose the analysis of a mathematical model for a biological

phenomenon from the first day of class. This analysis had a qualitative character

and was developed in a way that the discussion of some mathematical content from

the Applied Mathematics syllabus was intertwined with it. This core idea is referred

to, in general, as Model Analysis (Soares 2012; Soares and Javaroni 2013). In this

chapter, I will discuss one of the roles of the software, which is to make the model

solutions accessible to the students.

38.2 The Teaching Approach

As mentioned before, the core idea of the teaching approach was to analyse a

mathematical model for a biological phenomenon from the first day of class in a

way intertwined with the discussion of some mathematical concepts from the

syllabus1 of the discipline. The focuses of this analysis were: to comprehend the

meaning of the model (including its hypothesis), the meaning of the parameters and

the information given by the model’s solutions regarding the phenomenon; to

analyse the behaviour of the solutions and the influence of the parameters in this

behaviour; to discuss some mathematical concepts (such as function, derivatives,

tangent line, maxima and minima) in relation to the phenomenon and the model.

The theme for investigation was the transmission of malaria. This is a disease

which is quite prevalent in different parts of the world, including Brazil, and which

is considered a neglected disease, since research for its cure is quite rare. In this

sense, this theme is relevant both biologically and socially, which were important

criteria used to choose it. Furthermore, it is a theme with which students could be

involved in the future as professional biologists.

A mathematical model already developed for the study of this problem was

presented to the students. The intention was that the model was relatively accurate

regarding the phenomenon and possible to be understood by the students. Follow-

ing these criteria, I decided to work with the Ross-Macdonald model (Basa~nez and
Rodrı́guez 2004), which is one of the first models developed for the study of

malarial transmission. Some important simplification assumptions behind this

model are: no human mortality by malaria; no incubation period; and the assump-

tion that once infected, mosquitoes will die infected. These assumptions were also

the focus of discussion during the work with students.

The model is composed of a system of two non-linear ordinary differential

equations (ODE), which is shown below (38.1), and its variables are: X(t), which
is the quantity of infected people in the region during time t; and Y(t) which is the

1 For more details about the teaching approach, refer to Borba and Soares (2011) and

Soares (2012).
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quantity of infected (female) mosquitoes in the region during time t. Roughly,2 the
main idea of the model is to describe how each one of these populations varies over

time, considering aspects that could influence the transmission of the parasite from

one person to another, which occurs due to the bite of a (female) mosquito.

ð38:1Þ

Analysing the model and to comprehend what information it gives about the

phenomenon are activities that need the study of the model solutions. The idea of

the analysis was not to find analytical solutions for this model (even because this

kind of system rarely has expressions for its solutions) but to propose a qualitative

analysis. Nevertheless, the students still need to access the solutions. In order to

achieve that, they worked with Modellus,3 a free software package that allows

working with models involving functions, iterations, difference equations and

ODE. Figure 38.1 shows a screen shot of its interface.

The software allows the setting of values for parameters and initial conditions,

and presents graphical and tabular representations for the solutions of the model.

Likewise the image shows it is possible to see several graphs simultaneously. In

Fig. 38.1 there are three graphs of the function X(t) for three different values of one
of the parameters. This characteristic of the software allows one to analyse how

parameters influence the behaviour of the solutions, which was one of the focuses of

the analysis proposed to the students, as mentioned before.

38.3 The Study

Inspired by design research (Doerr and Wood 2006), I developed three versions of

the teaching approach, the first as a pilot project, and the other two, full versions

applied in regular classes of the discipline. The research followed a qualitative

approach, and different sources of data were used, from which I highlight two: an

interview with 12 Biology Major students, in six pairs, at the end of the semester;

and videos generated by the software Camtasia Studio,4 which captures all the

activities done on the computer screen plus the audio of students.

These data were the basis to search for answers and to understand the following

research question: What are the roles of the software Modellus in the development

of a teaching approach based on Model Analysis? Three roles of the software were

2 For more details about the model, refer to Basa~nez and Rodrı́guez (2004), Borba and Soares

(2011) or Soares (2012).
3Website: <http://www.modellus.fct.unl.pt/>. Accessed on 15 June 2013.
4Website: <http://www.techsmith.com/camtasia.html>. Accessed on 7 Sep 2013.
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identified (see Soares 2012) and analysed, always taking into account the structure

of the teaching approach. In this chapter, I will discuss one of them: to make the

model solutions accessible to the students.

38.4 Model Analysis and Mathematical Modelling:
Some Reflections

When we talk about mathematical modelling as a teaching approach, despite the

diversity of perspectives we can find in the literature, the main idea that comes to

mind is that students are invited to create their own models for a problem situation.

It is possible to find in literature several schemes that try to represent the different

steps involved in doing mathematical modelling. From my point of view, they do

not show exactly what happens when one develops a model for a situation, but I

think they can help us to develop some reflections.

In Fig. 38.2 there are two schemes: one circular, proposed by Blum and Leiß

(2007) and one non-linear proposed by Doerr and Pratt (2008). Although these

schemes are different, it is possible to identify some commonalities between them:

both include a problem situation, a mathematical model, the determination of

solutions for this model, and the interpretation and validation of the model regard-

ing the problem situation. From the scheme proposed by Blum and Leiß (2007) it is

possible to infer that one should start the modelling process with a problem

situation; but from the scheme proposed by Doerr and Pratt (2008) it is not possible

to determine a starting point.

Fig. 38.1 Interface of Modellus
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Now when we look at Model Analysis we notice that students analyse a model

that already exists. In other words, they do not develop their own model for a

situation. Analysing the teaching approach proposed in Soares (2012), it is possible

to identify some tasks that were involved in the students’ work: (i) study of the

phenomenon to understand how the transmission of malaria happens in nature and

what factors influence it; (ii) analysis of the model’s assumptions of the model; (iii)

analysis of the behaviour of the solution and the influence of parameters in this

Fig. 38.2 Schemes representing the processes involved in modelling (a) Blum and Leiß (2007)

(b) Doerr and Pratt (2008)
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behaviour; (iv) interpretation of results for the model regarding the phenomenon;

(v) analysis of some limitations of the model; (vi) reflection about mathematical

concepts in a way related to the phenomenon, for example, about what information

the derivative of a solution can give about the phenomenon. Tasks (iii), (iv), (v) and

(vi) were deeply related to the use of Modellus since students used information

provided by the software to develop their reasoning and analysis.

How could we relate Model Analysis to mathematical modelling? We gain some

leverage about this question from the work of Blomhøj and Kjeldsen (2011). They

argue that a modelling cycle does not need to begin with a problem situation; it

could start with a mathematical model. Indeed, they give an example where

students from the University of Roskilde started with a mathematical model and

from there they developed a cycle of modelling, reconstructing that model. In

Model Analysis, students also start with a mathematical model but there is a critical

point of difference here.

If we look again at those schemes and we think about the teaching approach

developed with the Biology students, we notice that the activities they have worked

with focused on the step of interpretation (and maybe validation) of the model.

Based on the scheme proposed by Blum and Leiß (2007), we also perceive that

students worked in the transition from a real model to a mathematical model, since

they started by analysing a framework that described the dynamics of transmission

of malaria that already considered the assumptions of the model. However, there are

some steps such as collecting data, or simplifying the situation, that they did not do

by themselves. In other words, they analysed what other people have done. There-

fore, in this sense, we could consider that students did not complete the entire cycle

of mathematical modelling. Alternatively, we could consider that students are

developing a rudimentary modelling cycle, as suggested by Niss (2015) in his

discussion about prescriptive modelling.
According to Niss (2015), prescriptive modelling deals with situations such as

the body mass index (BMI). The main purpose of this kind of modelling is “to

design, prescribe, organise or structure certain aspects of [the world]” (Niss 2015,

p. 67). The critical point here is that it does not make sense to validate models such

as the BMI; however, it is possible to critique it, developing what Niss calls a meta-

validation. This author explains that the modelling cycle as suggested in the

schemes above is not completed in the case of prescriptive modelling. For example,

the mathematical treatment to the problem of BMI is reduced to simple calculations

of the specific index. What eventuates in this case is a rudimentary modelling cycle

– but it is still modelling, according to Niss (2015). Similar to prescriptive model-

ling, what happened in the teaching approach suggested in Soares (2012) was the

development of a rudimentary modelling cycle, with focus on the transition from a

model situation to a mathematical model and on the interpretation of it. The

reduction of the modelling cycle, in this case, is closely related to the use of the

software Modellus. As a consequence, in the next section, I bring some data to

guide a discussion about the software.
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38.5 The Role of Software Modellus

As mentioned before, Modellus had an important role in the development of the

teaching approach: it allowed the students to have access to the solutions of a

mathematical model quite accurate to the phenomenon, even though they did not

know how to solve an ODE system nor the concept of derivative. This possibility

offered by the software is one of the factors that causes the reduction of the

modelling cycle, since students do not need to solve the model to find its solutions;

that is, they do not develop a mathematical treatment of the model. Another

possibility offered by the software is to allow for experimentations such as the

modification in parameter values to study the influence of different conditions in the

evolution of the phenomenon. Both of these possibilities created the opportunity for

the students to interpret the model results, which was an important part of their

work during the semester. Below, I present an extract from the dialogue of a pair of

students, called N and R, while working on a task with a goal to analyze the

influence of parameters on the behaviour of the solutions. The students were

analyzing the parameter c, which gives the probability of a mosquito being infected

by the malaria parasite (plasmodium) according to its species, see equation (38.1).

N: Compare the graphs for the three cases [see Fig. 38.3]. In the first species. . .
the graph is decreasing.

R: Is this the first species? [R. points to the third graph from the top to bottom].

N: So. . . I don’t know. . . I think so, because here. . . first X, second X, third X. . .
This one that is decreasing [refers to the graph in gray]. . . look how it was big

in the beginning. . . then it has grown and then it decreased.

[. . .]
N: What is changing. . . it only changes the typeofmosquito. So, the graphof thefirst

species is decreasing because the probability of this species of being infected by

plasmodium is small. . . But. . . ok, it is small, but why [does] it grow?

R: Why? (Extract from students dialogue, Task 4)

In this extract, it is possible to notice that students, at first, identify which graph

represents which species of mosquito. Later on, they describe the behaviour of the

solutions, particularly of the graph related with the first species (graph in light gray,

Fig. 38.3), and then try to understand this behaviour in terms of the phenomenon

(malarial transmission). N suggests that the small probability of the mosquito to be

infected would be a possible explanation for this behaviour, but then she asks,

“Why [does] it grow?” referring to the first part of the graph. Students engaged in

the attempt to understand this behaviour and used a collection of information to

arrive at a plausible explanation. Due to space restrictions, it is not possible to show

all their dialogue, but this short extract gives the reader an idea of the kind of

discussion the students were encouraged to develop in some tasks and is also

sufficient for our following discussion.

In my understanding, based on the theoretical construct humans-with-media
(Borba and Villarreal 2005), the software has a central role in the processes of
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knowledge production. In this sense, the possibilities and restrictions it offers

influence the students’ reasoning and the kind of interaction with the software.

Therefore, if some different software were used, different kinds of interaction and

different ways of reasoning with the software would be prompted. According to

what I have discussed in Soares (2012), it is possible to perceive in the above extract

the reorganization of the processes involved in the analysis of the model. In fact, if

using only paper and pencil to develop a study about the influence of the parameters

on the behaviour of model solutions, one should at first choose a value for one

parameter and then carry out all the procedures involved in qualitative analysis of

an ODE system and in the outline of the solution (linearization, fixed points,

analysis of stability, etc.). On the other hand, working with Modellus, for example,

one can focus completely on the analysis of the behavior of solutions, since the

software gives feedback according to the different values chosen for the parameter.

In other words, one does not need to focus his/her reasoning on the calculations and

procedures involved in the analysis developed only with paper and pencil. This shift

in the focus of reasoning characterises the processes of reorganization of thinking.
An interesting point to consider is that reorganization of the analysis of the

model seems to create a “hybrid approach” between mathematical modelling and

applications. The differences between these two approaches on working with

models in classrooms have been a focus of discussion in literature for a long

time. According to Niss et al. (2007) modelling focuses on the direction

“reality!mathematics”, emphasizes the processes involved, and it could be

characterised by the following question: “Where can I find some mathematics to

Fig. 38.3 Graph of function X(t) showing three cases for parameter c
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help me with this problem?” (p. 10). On the other hand, applications focus on the

direction “mathematics! reality”, emphasize the objects involved, and it could be

characterized by the question: “Where can I use this particular piece of mathemat-

ical knowledge?” (Niss et al. 2007, p. 11).

As I have already argued in Soares (2012), although there are some conver-

gences between Model Analysis and applications, they are not the same, since the

aim of Model Analysis is neither to apply mathematical content in a real situation

to illustrate its use nor to analyse a model by itself. What we can notice in Model

Analysis is that, with the advent of appropriate software, students are able to

analyze an existing mathematical model for a phenomenon not as a way of applying

the mathematical content they have already learned, but as a way to discuss new

mathematical concepts, to relate these with a real situation, and to understand their

meaning regarding the phenomenon. From my point of view, this “hybrid

approach” is a consequence of changes in the nature of modelling activity in

particular, and mathematical activity in general, which are engendered by the use

of software.

In pedagogical terms, this kind of approach presents some potentialities and

limitations, which I will discuss in the following. One of the main gains is that

students can deal with mathematical models a bit more realistically earlier in their

academic life, since they do not need to know all the mathematical content

underlying the model, which can be too advanced for them. The relevance of this

fact is that, for students, it is important to understand how the mathematical content

can be useful for their area of interest.

Another important gain of this kind of approach is the creation of opportunities

for the students to develop some modelling competences (Maaβ 2006) such as to

interpret mathematical results in terms of phenomena from other scientific areas.

This kind of competence is deeply related to the processes of interpretation of the

model and its solutions, which are quite emphasized by Model Analysis. In fact,

even modelling competences such as to mathematise relevant quantities could be

developed in a teaching approach like this if we start with the analysis of a model,

examine its limitations and modify the model to create a new one that is better. In a

situation like this, modelling would emerge from Model Analysis.

Regarding limitations of this teaching approach, the main one observed was

related to the analytical approach of concepts such as derivatives. Since the

solutions X(t) and Y(t) of the model do not have an analytical expression, it is not

possible to work with algebraic aspects directly with the solutions. In the Applied

Mathematics course these aspects were addressed with the typical functions studied

in calculus courses (polynomial functions, exponential functions, etc.). This strat-

egy actually worked very well with Biology students since the qualitative analysis

was a pedagogical goal of the teaching approach. However, depending on the

pedagogical aims a teacher has, some changes in the phenomenon or the mathe-

matical model may be necessary.
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38.6 Final Considerations

The advent of informatics and its fast development has allowed for new ways of

doing mathematics and applying mathematics (Napoletani et al. 2014). In the field

of mathematics education these new ways of thinking have also been noticed and

have been the focus of research (Borba and Villarreal 2005). In this chapter, one

role of the software Modellus has been discussed in the development of a teaching

approach based on Model Analysis: to give access to graphical and numerical

representations of the model solutions, which allowed students to analyse the

Ross-Macdonald model, even though it involved mathematical concepts still

advanced for them. As a consequence of this role, students did not need to develop

a mathematical treatment of the model. In this sense, we can understand that they

were engaged in a “smaller” or rudimentary modelling cycle. In addition, this

possibility offered by Modellus allowed the formation of a “hybrid approach”

where an existing mathematical model is analysed as a base for the discussion of

new (to the students) mathematical concepts. Based on the notion of reorganization,

the shift in the way of dealing with mathematical models in classrooms suggest that

Model Analysis can be understood as a reorganization of modelling and applica-

tions. Finally, it is important to mention that the study of the mathematical model

was not only an avenue for presenting mathematical concepts. Even though Biology

students did not change the equations of the model, they were already preparing

themselves to do modelling in the future, since modelling competences such as

(a) understanding the real problem, identifying quantities and variables;

(b) interpreting mathematical results in extra mathematical contexts; and

(c) critically reflecting and analysing the found solutions, were all addressed.
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Chapter 39

Collective Production with Mathematical
Modelling in Digital Culture

Arlindo José de Souza Júnior, João Frederico da Costa Azevedo Meyer,

Deive Barbosa Alves, Fernando da Costa Barbosa, Mário Lucio Alexandre,

Douglas Carvalho de Menezes, and Douglas Marin

Abstract In our learning collective, we established the Nucleus for Research in

Media in Education including teams from computing, education and science. This

research group presents the role of mathematical modelling in the production of

Learning Objects, from the interweaving of theoretical and experimental knowl-

edge from individuals implicated in this process. In the production of learning

objects involving mathematical models, we note the existence of the following

phases of construction: (1) obtaining a mathematical model; (2) describing the

reality of the model; (3) the user accesses the application of the information;

(4) deciding on how to present the history of the mathematical model; (5) program-

ming the mathematical model; and (6) analysing the interaction between users and

their learning via a simulation model. This context shows that the construction of

learning objects requires firstly, a process of mathematical modelling.
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39.1 Introduction

The term Learning Objects began to be used by Wayne Hodgins in 1992. He was

observing one of his sons playing with Lego blocks while reflecting about

teaching strategies. It was then he realized that in this situation it was necessary

to build teaching blocks able to connect and express a series of educational

content. He used the term Learning Objects to identify such educational blocks

(Assis 2005).

Learning Objects can be understood as “Any digital resource that can be reused

to support learning” (Wiley 2000, p. 3). Learning Objects can be created in any

media or format and can be as simple as an animation or slideshow or complex

such as a simulation. It is an activity of handling situations with computer-

mediated interaction, it is supplementary to imagining and enables the ability to

anticipate the consequences of our actions. Learning Objects make use of images,

animations, applets, documents VRML (virtual reality), text files, hypertext and

others (Macêdo 2007).

Since 2004, the Brazilian government has been funding a project called Inter-

active Virtual Education Network (RIVED).1 The main idea is to break the disci-

plinary educational content into small snippets which can be reused in various

learning environments. Thus any material that comes from electronic information

for the construction of knowledge can be considered a Learning Object. This

information can be in the form of an image, a page of HTML, an animation or

simulation. In other words, Learning Objects must have a defined educational

purpose, an element that encourages student reflection and the application is not

restricted to a single context.

For the preparation and development of Learning Objects a multidisciplinary

team is needed in which pre-service teachers and faculty experts in areas of

knowledge work collaboratively with teachers, computer teachers, programmers

and web designers. It is essential that there is communication between the multidis-

ciplinary team and the teachers of primary students. “We point out the prospect that

academics who work the investigation of initial and continuing training of teachers

could form partnerships with teachers of elementary and middle school in order to

develop projects designed to work in the school routine” (Souza Júnior and Lopes

2007, p. 8).

The participation of undergraduates in this project enriches their education,

however, we must discard the myth that beginning teachers will change the world

when they come to school. There are many external factors that prevent teachers in

practice from using new technologies. However, that does not mean that student

teachers should not participate in such projects, we believe it is important, but you

need to see things more realistically.

1 Learn more at <http://rived.mec.gov.br/site_objeto_lis.php>, accessed 05/06/2011.
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Some authors believe that teacher training should provide pre-service teachers

with the ability to produce their own materials.

In the training of teachers, for example, there must be concern with pedagogy consistent

with the technological development of society in a way that future teachers need not only

know how to use technological resources that have been prepared and developed by others,

but yes, do they know their own material and even know how to use the new technologies

from the perspective of mediation training. (Abreu et al. 2006, p. 337)

In this context, Souza Júnior et al. (2007) stated that the aim of the RIVED

project was to attempt to improve teaching and learning and encourage the use of

technology in schools, seeking a new vision for education. For these authors the

construction and development of learning objects is a social production that fulfills

two well defined roles: Firstly, that the pre-service teachers can, in conjunction with

a team, create learning objects and secondly, immersion of technology in the

educational environment.

The RIVED project began a collective production of knowledge between the

areas of Computing, Education, and Science at the Federal University of

Uberlândia. These productions, according to Cintra (2010) made the knowledge

areas involved knit together with the important support of a core group of

researchers, in this case, the Center for Research in Media in Education

(NUPEME). In publishing, the three teams that participated in the RIVED-UFU

perspective of collective work, integrated the mentioned areas of knowledge. Cintra

also states that the project established a culture of analysis, production and use of

learning objects in special courses in Mathematics, Chemistry and Computer

Science.

Souza Júnior et al. (2010) argue that NUPEME aims to develop technological

resources and discussion of the pedagogical use of technology in the educational

process. Thus, we are striving to find the interaction between mathematics and

Learning Objects. However, for that to happen, we need to find the mathematical

model of a problem. According to Skovsmose (2007):

. . . the concept of math[ematical] modelling as a representation of reality is related to

dualism, a perspective of two worlds. On one hand, we can work with mathematical

concepts as part of the structured world, as suggested by formalism. On the other hand,

we can work with the reality of the empirical world. A mathematical model becomes a

representation of part of this reality. (p. 107)

However, he cautions that, “We can make good and bad representations. The results

of the model can be more or less adequate,” and raises questions such as “What part

of reality does this model address?” “What mathematics is used in building the

model?” and “How well does the model represent reality?” We understand these

questions, but we see them as ways make a difference in the development of

Learning Objects for mathematics teaching and learning. We now make the case

for our argument that it is through the mathematical model that Learning Objects

connect education, mathematics and computing.
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39.2 Production of Learning Objects: An Approach
to Bring the Real World into the Classroom

People engage with digital technologies in different contexts and embedded within

these contexts are different expectations about the nature of the interaction. This

engagement is closely interconnected to learning to recognise and produce there-

fore Cortella (2009) understands work as poiesis, a Greek word which he translates

as: What we build, and that is to create the subject creates itself as it creates the

world, otherwise every time we look at what we did not like being ourselves we are

oblivious. Thus, it is natural to allow undergraduate students to participate in the act

of producing Learning Objects so that they see if it is so.

This perspective is aimed at finding a solution to the question: What is the
“path” in the production of Learning Objects for teaching and learning of math-
ematics? We understand that such questioning seeks “a process that emerges from

[our] own reason[ing] and [is] part of our lives as a way [of deconstruction] and

expression of knowledge” (Biembengut and Hein 2002, p. 11). This process is

mathematical modelling, because the mathematical model represents part of a given

reality. The process by which we developed Learning Objects occurs in five

phases:

First Phase The first action in building a Learning Object is to develop a mathe-

matical model, since the model is the story of the real world in mathematical

symbols. We think this is the hardest part and we should have the greatest concern,

because it determines the rest of the construction of Learning Objects. Those

responsible for this phase are the pre-service teachers in mathematics, under the

guidance of expert faculty in mathematics.

Second Phase In this phase is a description of the real world, of people and the

problem that involves the mathematical model. It aims to find the elements of the

scenario: time, place and social climate, for the construction of learning objects.

Again, pre-service teachers in mathematics, under the guidance of expert faculty in

mathematics are responsible for this phase.

Third Phase In this phase, we choose the software for the development of Learning

Objects. For the case of objects developed by members of NUPEME that are

reported in this chapter these are produced using Adobe Flash. Those responsible

for this phase are the undergraduate students in computing, under the guidance of

faculty teachers of computer science.

Fourth Phase This involves the audiovisual resources. We think about how we

want to present the history of the mathematical model as well as the legal implica-

tions of using image, video or music. We define and start working with the

construction of the characters, background and other elements. It is at this phase

that the interface, the shapes and colours of Learning Objects are determined.

Those responsible for this phase are the undergraduate students in computing and

the pre-service teachers in mathematics, under the guidance of expert faculty. The

success of this phase depends on the interaction between these two groups.
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Fifth Phase The activity of this phase is to provide functionality and movement to

the mathematical model(s) by means of computer programming. Those responsible

for this phase are the undergraduate students in computing, under the guidance of

faculty teachers of computer science. The pre-service teachers in mathematics are

responsible for testing the Learning Objects in elementary schools. To the extent

that errors are found new versions are developed.

It is argued that, to create a learning object, we need to be involved with

mathematical modelling, since this is the “backbone” of what is created. Thus,

the Learning Object becomes a means of expression, an act of mathematical

modelling on the computer itself. This act of producing reveals an interaction

between undergraduate mathematics and computer science students, as well as

with their teachers. What is evident is a collective reflection on the construction

of computational and mathematical knowledge. From this point of view, we

illustrate our argument with the production of the Learning Object: Population
Dynamics, developed by undergraduate students in mathematics and computer

science in the RIVED project carried out at the Federal University of Uberlândia

in 2010.

39.3 Learning Object: Population Dynamics

Population Dynamics2 is a learning object that has as reference the history of Italian
marine biologist Umberto D’Ancona, during the years 1914–1923 when he

conducted studies on the fish sold in the markets of Trieste, Fiume and Venice.

He noted that because of the First World War, during which fishing was greatly

reduced in part of the Adriatic Sea, there was an initial reduction in fish numbers of

certain species followed by an increase in number of others. During the time fishing

was suspended, shark populations (predators) increased, then decreased when

fishing resumed.

The educational objectives of this object are given to answer the questions asked

by D’Ancona (1954): How does the intensity of fishing affect the fish population?
This case of predators and prey is well-studied by mathematical modellers, so

several models have been developed. The model used in our project uses simple

difference equations:

Pnþ1 ¼ Pn þ A � Pn � B � Pn � Qn � E � Pn ð39:1Þ
Qnþ1 ¼ Qn � C � Qn þ D � Pn � Qn � E � Qn ð39:2Þ

where

Pn is the initial population of fish (prey).

Qn is the initial population of sharks (predators).

2 Learn more at < http://goo.gl/nyFuV8>, accessed 14/09/2013.
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A is a positive real constant, which represents the reproduction rate of prey.

B is a positive real constant, which represents the mortality rate of prey when it

encounters with sharks.

C is a positive real constant, which represents the mortality rate of sharks by natural

causes.

D is a positive real constant, which represents the birth rate of sharks when feeding

on prey. To simplify the model, we consider B¼D.
E is a positive real constant, which represents the fishing rate. To simplify the

model, we consider the same rate of fishing for the two populations.

From this model, three statements guided the Learning Object simulation. The

initial statement was posed as a question: Is the increase of prey directly propor-

tional to the number of prey available (see Fig. 39.1).

It is easy to verify that the increase in prey¼A� number of prey. However, the
important thing is that from such questioning one can ask the user to reset the initial

population of sharks (i.e., the predators, Qn) and fishing (i.e., the prey, Pn). In this

way, by simulating as shown in Fig. 39.2, it is clear that the evolution of prey over

time can be represented by mathematical arguments as follows:

Pnþ1 ¼ Pn þ A � Pn ð39:3Þ

In this case, understanding that (39.3) is a geometric progression to calculate

from known values:

Pnþ1 ¼ Pn 1 þ Að Þm ð39:4Þ

Thus for Pn+2 we have

Pnþ2 ¼ Pnþ1 1þ Að Þ ¼ Pn 1þ Að Þ 1þ Að Þ ¼ Pn 1þ Að Þ2

Fig. 39.1 Simulation environment: statement 1
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The process is analogous to Pn+m, for any n and m belonging to the set of natural

numbers. We can generalize this relationship and write it as follows:

Pnþm ¼ Pn 1þ Að Þm ð39:5Þ

which takes the form of a geometric progression with common ratio (1+A).
Similarly, for the second statement (Fig. 39.3): The decline of sharks is directly

proportional to the number of sharks there are.

It is also easy to verify that the decrease of sharks ¼ �C� number of sharks.
So, because of this you can ask the user to reset the initial population of prey (Pn)
and fishing rate (E) for zero. Thus, to simulate, in Fig. 39.4, it is clear that the

evolution of predators with time can be represented by mathematical arguments as

follows:

Qnþ1 ¼ Qn � C � Qn ð39:6Þ

Fig. 39.2 Simulation environment: simulator

Fig. 39.3 Simulation environment: statement 2
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As this is analogous to expression (39.3), we conclude thatQnþm ¼ Qn 1� Cð Þm
it is the form of a geometric progression with common ratio (1�C).

The third statement was: The decline of prey and the increasing number of sharks are

directly proportional to the number of encounters between the two species (Fig. 39.5).

It can be noticed that the decrease of prey¼B � number of prey� number of
sharks and sharks have increased¼D� number of prey� number of sharks. Bear-
ing this in mind, linking the first two statements we can talk about changes in prey

and predator variation, in other words:

For fish ΔPn ¼ A : Pn � B : Pn: Qn and

for sharks ΔQn ¼ � C : Qn þ D : Pn: Qn
ð39:7Þ

To answer the initial statements: How does the change in fishing affect fish

populations as prey? And can change in fishing facilitate the reduction of fishing

Fig. 39.4 Simulation environment: simulator

Fig. 39.5 Simulation environment: statement 3
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sharks in relation to the number of sharks? It is necessary to add the fishing factor for

prey (� E . Pn) and sharks (� E . Qn). This returns us to equations (39.1) and (39.2):

Pnþ1 ¼ Pn þ A:Pn � B:Pn:Qn � E:Pn

Qnþ1 ¼ Qn � C:Qn þ D:Pn:Qn � E:Qn

Then, in the simulation, it is observed that by increasing the intensity of fishing

for sharks (E . Qn) the decrease in sharks may occur to extinction and the number of

prey (Pn), that is fish, increases, in the case when the extinction of sharks is

increasing exponentially Fig. 39.6.

As seen in Fig. 39.6, the fishing coefficient (E) was 0.0181 (shown as Fishery)

had a final population of sharks of 32 and a population of fish as zero. When we

increase only fishing rate to 0.0408, the final population of sharks has dropped to

zero and prey (fish population) increased to 230. From this we can conclude two

things: The lower the fishing rate the better fishing is for sharks and the higher this

factor, the better fishing is for the fish. This explains the increase in the percentage

reported values of D’Ancona (1954).

39.4 Final Considerations

We believe that teachers can be the authors of their own Learning Objects as Paim

(2005) describes a teacher as one who “thinks, plans, defines and implements

educational activities” (p. 149). For the concept of authorship, we draw on the

writings of Kramer (2002), who states:

Being author. . . say the word itself, coining it and your personal brand to brand yourself and
to others by word said, yelled, dreamed, spelled. . . Being author means to rescue the

possibility of ‘human’, to act collectively for what characterizes and distinguishes men. . .
Being author means producing with and for each other. (p. 83)

For pre-service teachers in mathematics to be authors of a Learning Object, we

have outlined a process which comprises five phases: (1) Find a mathematical model;

Fig. 39.6 Simulation environment: simulator
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(2) based on the model write a script that contains the history of the emergence of the

mathematical model; then (3) choose the features of interaction for the user; then,

(4) choose the type of visual, or design, image or video that the Learning Object will

have; finally, the last phase, (5) implement in a programming language.

This context shows that the construction of Learning Objects requires firstly that

a process of mathematical modeling occur. The formation of the pre-service

teachers in mathematics is facilitated as they learn to create their existence by

means of three sets of knowledge consisting of the complex interweaving of

theoretical and experimental knowledge; from Information Technology and Com-

munication, interacting – simulating with the Thematic and in turn interacting –

simulating the mathematical model and this subsequent interaction by simulation-

to-Information Technology and Communication.
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Part V

Assessment in Schools and Universities



Chapter 40

Learners’ Dealing with a Financial
Applications-Like Problem in a High-Stakes
School-Leaving Mathematics Examination

Cyril Julie

Abstract Research of students’ ways of working with modelling and applications-

like problems in time-restricted examinations is rare. Using ideas and notions from

ethnomethodology and the sociological study of work in science, the actual scripts

of examinees were analysed to tease out the examinees’ ways of working with a

modelling and applications-like problem in a high-stakes school-leaving examina-

tion. The analysis was anchored around the various agencies exerted by elements

present in the context of high-stakes school-leaving examinations. Three ways of

working which characterised the candidates’ ways of working are focused on. It is

demonstrated how the prevailing contexts of writing high-stakes examinations

exercised agency for these ways of working. The pragmatic value of analysis of

this nature is recommended.

40.1 Introduction

Applications of mathematics are currently an element of school mathematics

curricula in most, if not all, countries. It is thus expected that this element will be

part of examinations students are required to write to graduate from schools. Most

of these examinations are time-restricted examinations. If the common modelling

and applications cycle is taken into account, then it is obvious that time-restricted

examinations which a student must complete on his or her own, are not conducive

for allowing students to demonstrate their competence to deal with the applications

of mathematics. However, in these kinds of examinations the form in which

questions related to applications appear is of a guided nature. In the

South African situation with respect to applications of mathematics to financial
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contexts, further guidance is provided by supplying candidates with a formula sheet

which contains financial models. The examination problems, however, are, of such

a nature that the given models cannot always be directly applied. Examinees have to

do certain adaptations to the models in order to use information from the formula

sheet for the situation they are presented with.

In time-restricted examinations of the kind mentioned above, candidates also

have to particularise a model to suit the situation at hand. Item analysis of the

various questions of the mathematical topics in a national examination in

South Africa rendered that candidates found the items related to financial situations

the most difficult (Jacobs et al. 2014). In this chapter the outcomes of a qualitative

analysis of the ways of working with applications problems, as manifested in the

actual scripts of learners, are presented and discussed. The focus is one question and

the analysis is inspired by ethnomethodological studies of mathematical work.

40.2 Theoretical Machinery

The study reported here is situated within ethnomethodology and the social study of

science. Ethnomethodology “is the study of common, everyday methods – of

practical action and practical reasoning” (Livingston 1987), p. 4). It focuses on

how people go about achieving what they achieve in the contexts within which the

achievement is realised. In this sense, with respect to mathematics, it studies the

accomplishment seen as the realization/production of solutions (or personal reso-

lutions) to problems which are being pursued in mathematics, preferably in real-

time, at its site of pursuit. It seeks “to describe members’ accounts of formal

structures wherever and by whomever they are done, while abstaining from all

judgements of their adequacy, value, importance, necessity, practicality, success, or

consequentiality” (Coulon 1995), p. 42). Thus when studying students’ ways of

doing mathematics from this perspective, the ‘correctness’ of their answers or

compliance to some predetermined methods are treated with indifference.

A seminal ethnomethodological study in mathematics was done by Livingston

(1986). He uses his own way of working on proofs as data to open up the lived work

of proving in mathematics (Livingston 1986, 2006). He partitions the work into two

components: the lived work and an account of the work. For proving he asserts that

What is written and said is not really the ‘whole’ proof. It is a proof-account. The proof – as
one coherent social object – consists of a pair: [a proof-account/the lived-work of proving

to which the proof-account is essentially and irremediably tied]. The pairing – as one

integral object, not as two distinct ‘parts’ circumstantially joined – is the ‘proof’ in and as

the details of its own accomplishment. (1986, p. 111)

Different from Livingston, Pickering (1995) renders a description of Hamilton’s
construction of quaternions. He proposes disciplinary agency as “the agency of a

discipline—elementary algebra, for example—that leads us through a series of

manipulations within an established conceptual system” (p. 115). According to
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him in the pursuance of solution-seeking in mathematics, there are periods when the

problem solver is passive and the discipline exerts its agency. In this sense math-

ematical work is characterised as a dance of agency where human and disciplinary

agency intertwine during the solution-seeking process. He refers to this intertwine-

ment of these agencies as “the dialectics of resistance and accommodation, where
resistance denotes the failure to achieve an intended capture of agency in practice,

and accommodation an active human strategy of response to resistance” (p. 22).

Resistance occurs when an action does not produce an expected outcome. Pickering

demonstrates how Hamilton in his construction of quaternions encountered resis-

tance when the algebraic and geometric approaches rendered contradictory results.

Accommodation is the paths embarked upon to resolve resistance.

Merz and Knorr-Cetina (1997) analysed “the work and accomplishments of

theoretical physicists” (p. 73). Their work is situated within the application of

procedures of the new sociology of scientific practices on mathematics and, to a

certain extent, emulate the work of Livingston and Pickering to render an analytic

account of the practical work of theoretical physicists since theoretical physics is

“like mathematics,. . .a thinking science [where] work is performed at the desk,

instruments are reduced to the pencil and the computer, and processing is realized

through writing” (p. 74). They used the emails which the physicists used to

communicate their ongoing work and also data they obtained from conducting

interviews with the physicists. They assert that theoretical physicists achieve

resolutions to problems

through a first-order deconstruction, and, if this is hard to achieve, through a second round

of detours and tricks. [And] those [strategies] which can be deployed toward both first-order

difficulties and second-round problems. . .In a third run [of] theorists’ practical work of

dealing with computational objects [they employ strategies such as] variation, “doing

examples”, and model objects. (p. 95)

In previous work Julie (2003) used constructs from some of the above work to

analyse how a group of four practising teachers with no prior experience of

modelling went about to construct a mathematical model. He shows how a partic-

ular table constructed by the teachers drove the mathematical model-building

activity at a given time. This table played a crucial, mediating and guidance-

giving role. The performative actions they employed were identified as shedding,

compensation and variation.

Greiffenhagen (2008), on the other hand, had as data videos of actual lectures to

graduate students in Mathematics and interactions between doctoral students in

mathematics and their supervisors to illuminate such lived work in mathematics. He

found that mathematical work at its site of production is “both retrospective and

prospective, i.e., the lecturer is summarizing what he has just done (showing that

the two items are less than one), before projecting what he will do next”

(Greiffenhagen 2008, p. 17).

The difference between the lived work and the account of such work in math-

ematics is also foregrounded by Roth (2012). Using the proof of the theorem “the

sum of the internal angles of a triangle is 180	”, he demonstrates how the lived
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work of the proof emerges through drawing, seeing and concluding. He insists that

“the lived (subjective) work has to be enacted each and every time by the person

actually doing or following (observing) the proof” (Roth 2012, pp. 239–240).

The aforementioned studies reveal the possibilities and complexities of

analysing the lived work doers of mathematics engage in when constructing

resolutions to mathematical problems. It is clear that the constructs being used

are diverse and Livingston (2006) calls for “a vocabulary that provides descriptive

insight into the lived, perceived details and reasoning of mathematical discovery

work” (p. 63). It is not the intention in this chapter, to work towards such a

vocabulary. Rather, the study reported here is inspired by, and draws on, the

afore-mentioned studies. Where appropriate, some of the constructs are used and

others are constructed to tease out the ‘lived’ work of students’ production of

responses to an applications-like problem in a high-stakes school mathematics

examination.

40.3 The Context

In the above studies the contexts within which the resolution pursuance occurs is

accorded primacy. As already alluded to, resolutions of problems in mathematics

are accomplished with, as is the case for high-stakes examinations, pen and paper.

The temporally-emerging scribblings done on paper form an inextricable part of the

context. They exert some agency and, in a sense give guidance on how to (or not)

proceed further. In addition to the available pen and paper, the examinee also has

access to and can use a modern, non-programmable scientific calculator. The

scribblings arise from the examinee’s interaction with an available object in the

context—the question paper and its attachments. These objects demarcate the

disciplinary domain at stake and for a high-stakes examination; it also provides

the specific problems that must be solved. The question paper is a source of constant

referral. As invigilators of examinations will agree, examinees constantly, physi-

cally and/or visually, move between their produced answer text and the question

paper with the problem text. Another visible element in the examination environ-

ment is a time indicator in the form of a large display clock or some writing of the

time available or elapsed on the chalkboard or an examinee’s personal time

indicator device. Last, but crucial, the mathematically-historicised examinee is

present as agent. The examinees bring to the solution pursuance their entire

experience of at least 12 years of school mathematical work and the agentic action

“begins within the actor. . .[which] covers behavior ranging from [the] automatic

(throwing a ball) to [the] carefully considered (solving a math problem). . .(Hitlin
and Elder 2007, p. 175).

For this study the data are the answer scripts of examinees, purposefully selected

to have a wide range of calculation protocols. The problem that is focussed on was

presented as:

480 C. Julie



QUESTION 7

7.1 At what annual percentage interest rate, compounded quarterly, should a lump

sum be invested in order for it to double in 6 years?

(Department of Basic Education 2010), p. 6)

The entire examination consisted of ten questions, carried a total of 150 marks

and the maximum allotted time for the examination was 3 h. Rule of thumb advice

given to candidates in preparation for the examination is that they should not spend

more than 1½ minutes per mark on a question. Thus for a question carrying five

marks, as is the case for question 7, they should not spend more than 8 min.

The formulae related to financial mathematics given on the information sheet

attached to the question paper were: A ¼ P 1þ nið Þ, A ¼ P 1� nið Þ ,
A ¼ P 1� ið Þn, A ¼ P 1þ ið Þn, F ¼ x 1þið Þn�1½ �

i , P ¼ x 1� 1þið Þ�n½ �
i .

From the formulation of the problem and the fact that examinees had experience

in constructing these models it is clear that the expectation is that they would select

a model, particularise it for use with the given information, do the necessary

calculations and perhaps check the reasonableness of their answers. The majority

of their work thus has to do with the calculation component of modelling.

In what follows an analysis of how examinees accomplished their results is

presented. I do it primarily by focussing on the agencies exerted by different

elements of the above context. Three solution paths are focussed on.

40.4 Analysis of the Production of Answer Responses by
Examinees

40.4.1 Translation to Familiar Symbolism

Correct solutions were accomplished by basically selecting and transferring the

correct model from the formula sheet, doing the particularisations for the

compounding period, the doubling of the outcome amount and executing the correct

calculations. The doubling of the outcome amount normally resulted in the working

model becoming 2P ¼ P 1 þ ið Þn. There were slight deviations from this set proce-

dure. Figure 40.1 demonstrates such a deviation. Instead of using the symbol A, as
given for the model in the formula sheet for the outcome amount, x is used. This is
the familiar habituated symbol used with polynomial algebra and functions in

South Africa. In a sense this is a case of simplification by going to “less complex

special cases” (Merz and Knorr-Cetina 1997, p. 100). The simplification in this case

is something akin to ‘let me get it in symbols which I have experience of working

with’. Also noticeable of resorting to familiar symbols of polynomial algebra and

functions is the explicit writing of the division (
 x) that was performed in line
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2. Further, in the last line i is replaced by r, the symbol generally used colloquially

for interest in financial matters and particularly its Afrikaans equivalent ‘rente’.
Although i was written on the right-hand side in line 5, this changed to the left-hand
side for the subsequent lines due to the agency exerted by the historicised self of

what an expected representation should be for a response in mathematics.

40.4.2 Anticipation of Adjustments to Be Made

Another way of working to obtain a correct answer was to start with transforming

the model from the formula sheet to make explicit that the compounding period

should be adjusted and this adjustment should be to the ‘per annum’ connotation of
the model. This is indicated by m in the first line in Fig. 40.2. It emulates

Greiffenhagen’s (2008) notion of mathematics lecturers projecting of what will

be done next. The “done next” is confirmed be replacing m with 4 and 6� 4.

(It should be noted that the 2m’s represent different entities as the further procedure
with the calculation indicates.)

There is also resort to the x notation scheme as comes through in line 2. This is

discarded as the scratching out in line 2 shows. The work proceeds with the explicit

numbers, 2 and 1, (line 3) and the need for working with abstract symbolic

manipulation is abandoned since what is accomplished can accountably be accom-

plished without it.

40.4.3 U-Turning

A way of working forthcoming from the analysis is that of ‘abandoning a solution

path after a final answer was obtained’. The calculation is firstly worked through to

its conclusion. Upon obtaining an answer a ‘change of course’ is taken. A U-turn—

coming to a destination, finding that it is not the desired destination, going back and

choosing another route—is made. Three kinds of U-turns were identified.

Fig. 40.1 Translation to

familiar polynomial and

functions symbols

482 C. Julie



In Fig. 40.3 a kind of ‘go back to the start, restart with a different interpretation

of some of the given’ strategy is exhibited. Upon obtaining the answer, some

scratching out is done, indicating the going-back to start. The new course of pursuit

is to substitute the 24 for n with 6, the number of years given in the problem-text.

The 4, originally acquired from “compounded quarterly” is replaced by 12, presum-

ably the number of months in the year. It is plausible to conjecture that the

examinee re-read the problem after its first round of calculation and the phrases

“6 years” and “compounded quarterly” exercised some agency for the impetus to

pursue a different path.

In order to accomplish a resolution of the problem, Fig. 40.4 indicates that a

complete working through is done. This is marked ‘rough work’ and deleted

(Fig.40.4a). The rough work is very ‘detailed’ rough work and not of the kind

found where ‘rough work’ is ‘rough’ indicating a few hints, a possible path to

pursue and perhaps some interim calculations. The first three lines of the ‘rough
work’ and the offered ‘real’ response (Fig. 40.4b) are the same. In line 4 of the ‘real’

response an equality is set up between an element, 1 þ i
4

� �24
, of the previous line,

the 2 being replaced by 1 þ ieffð Þ6 and the sides being switched. This kind of

U-turn is different from the previous one. It is a ‘go back to the start and restart with
a different strategy’. Noticeable is that the left-hand side expression contains an

element, ieff, not part of the surrounding context within which the calculation is

being pursued. Its clue lies in the line, ‘effektiewe jaarlikse rentekoers (effective

annual interest rate)’. The 1 þ ieffð Þ6 is near to r ¼ 1þ i
n

� �n � 1, the model for

effective annual interest rate, with i the nominal interest rate. The historicised self

of examinee together with the phrase “annual percentage interest rate” exerted an

interpretative agency which resulted in a U-turn being taken and pursuing a

different path.

A third kind of U-turn inspiration is demonstrated in Fig. 40.5. It is of the nature

‘go to the start, restart because the obtained result does not comply with the dictates

of the extra-mathematical context’. The work proceeded until the result 48,98 %

was reached. Deletion from line 3 of this result is executed. In the reworked line

Fig. 40.2 Indication of anticipated adjustment to be made
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3, 1,12 is replaced by 1,029, that is, the result of
ffiffiffi
224

p
. The resistance exerted is not

disciplinary. Rather it is of an extra-mathematical contextual kind of resistance,

which enforced rerouting.

40.5 Discussion and Conclusion

The analysis of the examinees’ ways of work from a quasi-ethnomethodological

perspective and work forthcoming from the new sociology of scientific practices is

deemed important for a variety of reasons. Firstly, given that high-stakes examina-

tions place particular constraints on the way problems related to mathematical

Fig. 40.3 Abandoning the

‘correct’

Fig. 40.4 U-turn with rough work
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modelling can be posed, it is incumbent upon researchers to find ways to tease out

the different paths followed by examinees in their solution-seeking endeavours.

Although, as has been indicated above, research of this nature has been done on the

production of mathematical work by experienced mathematical workers at the site

where the mathematical work is done, it has not been the case for mathematical

work of school learners. Particularly, the analysis of learners’ mathematical work

produced in an examination setting is virtually non-existent. Secondly, such anal-

ysis has pragmatic value. It can be made available to and discussed with teachers for

them to decide how they will adapt (or not) their teaching taking into account the

results emanating from analyses of the kind above. Lastly, linked to the pragmatic

value, is the development of some fairly localised language with which to engage in

productive conversations with teachers about applications and mathematical

modelling work of their learners. From experience in working with teachers, I

have found that their preference for speaking about the work of their learners is one

that is less disciplinary-loaded. For example, they would speak about “problems

that are turned around” when referring to examination items which are not posed in

the standard form that it was taught. From the accounts of ethnomethodological

work above, the approach offers the possibility for the development of such

localised terminology exemplified by learners’ real work. This can lead to having

productive conversations with teachers to enhance their ways of dealing with

mathematical modelling and applications in their classrooms.

An issue that is normally raised when attempts are made to tease out the ‘lived’
work from the responses they produce in high-stakes school examinations is

whether the learners should be interviewed. The impracticability of this is obvious.

Furthermore, Roth (2012) draws attention to that if one asks someone to explicate

what he/she was doing when she/he was doing say, a proof of a theorem, he/she

rather gives an account of the doing and not the doing.

The above analyses show the struggles examinees go through to find satisfactory

resolutions to the adaptation and calculation components of the modelling process.

Fig. 40.5 U-turn resulting

from exertion of extra-

mathematical contextual

agency
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Three questions are begged. Would examinees have used what they initially

constructed to lead to more satisfactory resolutions if they were not pressured by

time? Would they have learned more and some ‘new’ tricks if a knowledgeable

other could have had the opportunity to give some commentary on their work? Is it

fair to assess their struggles only according to a script such as a memorandum which

depicts the work as a flawless procedure from the problem statement to the

solution? These are, at least for me, difficult questions but if we are interested in

the development of the competencies related to mathematical modelling and

applications of mathematics in schools, then we need to search for practical answers

to these questions.
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Chapter 41

Evidence of Reformulation of Situation
Models: Modelling Tests Before and After
a Modelling Class for Lower Secondary
School Students

Akio Matsuzaki and Masafumi Kaneko

Abstract In this chapter we discuss the reformulation of situation models. In

previous modelling teaching and tests, the modelling tasks related to a real situation

were reported for elementary school students. Here we administer a test before and

after a modelling class for lower secondary school students. The original situation

at the pre-test and the post-test were not changed. The students were required to set

up a problem from a real situation, and draw pictures to explain how they setup the

problem. We focus on pictures to explain the problems as evidence of situation

models. As results, we can confirm that the reformulation of situation models

occurred when simplifying the task, clearly explaining the task for others, or

structuring the task mathematically.

41.1 Situation Models Based on Individual Modelling

Blum and Leiß (2007) indicated that there are reciprocal processes between the real

situation and the situation model in a modelling cycle, and explained that this

process is most important as a phase in understanding a modelling task. Borromeo

Ferri (2006) focused on differences in individual mathematical thinking styles, and

explained the presence of these processes through distinctions between the situation

model/mental representation of the situation and the real model. In this chapter, we
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use two modelling tests before and after an experimental modelling class, report on

them, and discuss evidence of reformulations of situation models. In our previous

work on modelling teaching and tests, modelling tasks related to the real situation

were reported for elementary school students (Matsuzaki and Kawakami 2010) and

for upper secondary school students (Matsuzaki 2007). In addition, Matsuzaki

(2011) compared the modelling of a graduate school student with that of a working

adult. Findings indicate that modellers require a variety of experiences for solving

tasks successfully.

There is the possibility that modellers imagine situations from modelling tasks,

and the situations might be able to change. Here we distinguish two kinds of

representations of the situation model: First, one is a situation model formulated

from the initial imagined situation, and formulation of a situation model might have

occurred. Second, a situation model could be reformulated from the initial situation

model through processing modelling or it does not change in the process. In

previous studies we adopted drawing pictures as the method for gaining insight

into these experiences in setting up the problem from the task situation in the real

world (Kawakami and Matsuzaki 2012; Matsuzaki and Kawakami 2010). We also

focussed on formulation and reformulation of situation models from modelling

tasks. Here, modelling tasks to capture situation models are prepared to test

different situation models based on each modeller’s individual experiences.
In this chapter we try a similar research setting to the previous studies

(Kawakami and Matsuzaki 2012; Matsuzaki and Kawakami 2010) but this time

for lower secondary school students. We administer a test before and after a

modelling class. On both tests, students were required to set up a problem from a

real situation, and draw pictures to explain how they set up the problems for other

students. We focus on differences in pictures because changes in these we believe

are aspects of products of actualizing situation models. Of course, only these

artefacts are not enough for us to interpret situation models drawn on worksheets.

In addition, for explaining formulation or reformulation of situation models, we

interview selected students after each test, and try to interpret their responses with

protocols from interviews. We analyse situation models that these students imag-

ined for empirical evidence of situation model reformulation actions.

41.2 Case Study

Matsuzaki and Kawakami (2010) reported on an experimental modelling class in an

elementary school. In that case, the students were required to create models through

talking or discussing with each other, and they drew pictures for explaining the

problem to their classmates. In this chapter, we adopt a similar approach for lower

secondary school students. An experimental class was implemented with a seventh

grade class of 41 female students at a private lower secondary school in the Tokyo

metropolitan area. The teacher and the interviewer was the second author. All the

students were presented with the same problem situations and required to tackle

some tasks through setting up problems.
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41.2.1 The Modelling Pre-test

We prepared the following Brightness Situation Task and implemented it for 30 min

with the class. The aim of these tasks is to formulate an initial situation model. In

particular, task (1a) requires verbal expression whereas (1e) requires a pictorial

response. Although we presented the following five tasks, the students to this point

had not been instructed in modelling at that time.

The Brightness Situation

You read a book for 10 min every morning. Today’s weather is cloudy, and
sunlight that is enough for reading doesn’t reach the classroom. So you think

that you would like to read a book continuously in a bright place.

(1a) What kind of things did you imagine from this situation?

(1b) What kind of things should you research to read? Describe findings, what

is already-known, or what you would like to find out.

(1c) Set up a problem by using all or some of (1b).

(1d) Does the problem that you set up in (1c) seem able to be solved? Answer

‘Yes’ or ‘No’. If your answer is ‘Yes’, how do you solve the problem? If

your answer is ‘No’, why did you think that you could not solve the

problem? What is necessary for you to solve the problem?

(1e) You will explain the problem to your classmates. Draw a picture for

explaining the problem in detail.

Our intention was to have students set up problems through the tasks (1a) to (1c).

In other words, we expected students to achieve this through the processes of

understanding and/or simplifying/structuring the task to create a real model or

mathematical model via a situation model, with the questions or the demand for

extra-mathematical knowledge arising (Borromeo Ferri 2006, p. 92). In this chapter

we hope to show evidence of the formulation or reformulation of situation models.

After the pre-test, we interviewed five students on the following day.

41.2.2 Experimental Class

An experimental class was implemented for 50 min two days later. The teacher

provided two problems and two pictures to the students. Problems were copied and

pasted from student work for task (1c) and pictures were copied and pasted from

student work for task (1e). During this time, all the students wrote down their own

opinions about each problem and each picture.

The teacher selected two types of problems. The first one (see Fig. 41.1) was the

problem of the relationship between velocity and distance, and it was extremely
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easy for the students to generate an answer using calculations. This problem was a

type of mathematical problem and a picture for explaining the problem was

considered a mathematical model. The second one (see Fig. 41.2) was easy for

the students to answer without using mathematics because they could answer based

on their own daily-life experiences. This problem was a type of non-mathematical

problem and a picture for explaining the problem was considered a real model.

The Problem of Brightness Set Up by H.M.

A fluorescent tube is not working in the classroom. The teacher goes for a

replacement tube in the warehouse which is 500 m from the classroom. The

teacher walks 100 m per minute. How long until the teacher goes for a

fluorescent tube and back to the classroom?

The Problem of Brightness Set Up by S.K.

One person sits down right under the electric appliance, and another one sits

down between two electric appliances. Which place is bright?

The classroom
100 m per minute The warehouse

Distance Velocity = Time 

10 minutes

Since go and return 

Fig. 41.1 A picture drawn by H.M

Electric appliance

Person

Person

Electricity of 
Electric appliance?

Fig. 41.2 A picture drawn by S.K
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Each student explained the problem in terms of tasks (1a), (1b) and (1d). After

hearing their explanations, the other students asked the questions. Then the

teacher asked all the students which problem and picture was better. Responses

from the class about the better problem gave the following characteristics: include

required information to solve a problem; make a problem sentence short; the

situation should be fine to share, as we have to share setting up of the problem;

and do not include extra information. Responses about the characteristics of the

better picture were: it is easy to find problem situations, add explanations to picture

and draw a picture to help comprehend situations.

Following this, all the students wrote down what they found and stated their own

explanations on worksheets.

41.2.3 The Modelling Post-test

The post-test was implemented for 30 min three days after this class. The students

were presented with the same brightness situation as in the pre-test. The aim of

these tasks is to reformulate situation models. The students tackled the following

five tasks:

(2a) You will set up a problem referring to data. What kind of things did you

imagine from this situation for making a problem?

(2b) What kind of things should you research to read other than data?

Describe your findings and knowledge, or the things that you would

like to find out.

(2c) Set up a problem by using all or some of (2b).

(2d) You will explain the problem you set to your classmates. Draw a picture

for explaining the problem in detail.

(2e) Solve the problem that you set up in (2c).

After the post-test, we interviewed the same five students who were interviewed

after the pre-test.

41.3 Reformulation of Situation Models

At both tests, the students were asked to draw pictures for explaining their

own setting up of the problem to others. Here we focus on differences in pictures

drawn by two students who were selected from interviewees after each test. We

analyse reformulation of situation models that these two students, A.S. & Y.R.,

imagine for the situations by referring to their worksheets and their interview

protocols.
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41.3.1 Responses from A.S. Through Modelling Tests
and Experimental Class

41.3.1.1 Responses from A.S. at the Pre-test

For the first brightness situation [task (1a)], A.S. described “turn on light, go to the

toilet, move to bright place (especially, lavatory etc. . .), go to the library, and

change a big book which is easy to read” on her worksheet. For task (1b), she

wrote “Morning reading time is basically held in the classroom” and “Sunlight is

not hoped for” as her findings and already-known. Continuing, she listed: “Where is

the brightest spot in the classroom?”, “Is it possible to implement morning reading

except in the classroom?” and “Is it possible to turn on light at hand?” as the things

that she would like to find out. In task (1c), she set up the following problem

considered a real model.

A Problem Set Up by A.S. in Task (1c)

I would like to implement morning reading in a bright place. Outside is

cloudy, and sunlight that is enough for reading doesn’t reach the classroom.

In this case, it is possible to go out or to use some tools. How do you action

this?

In task (1d), she responded “Yes” to whether she thought the problem was able

to be solved and wrote reasons on her worksheet as follows: “I suppose that I go out

from the classroom or to use some tools.” Additionally, she pointed out two

possible solutions “to know bright spot and to use light”. In task (1e), she drew a

picture on her worksheet (Fig. 41.3). This picture reflects the alternatives that she

pointed out in task (1d).

The classroom Lights

BrightDark

Window

Book

Book

Fig. 41.3 A picture drawn

by A.S. in task (1e)
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41.3.1.2 Responses from A.S. at the Experimental Class

During the experimental class, A.S. wrote: “Another teacher may walk 200 m per

minute” in response to the problem set up by H.M. She described “It is so clear for

me, as adding explanations” to a picture figure drawn by H.M. In addition, she

noted: “the figure is easy for elementary school pupils who just learn ‘velocity’ to
understand the problem” as a result of discussing with classmates. A.S. commented

that ‘I think that positions of under electric appliance etc. . . have no relations with

brightness’ in response to the problem set up by S.K. In addition, she added the

annotation: “Generated electricity radiates. . .” to a picture drawn by S.K. and

described an alternative explanation (Fig. 41.4).

41.3.1.3 Responses from A.S. at the Post-test

In task (2a), A.S. noted, “The seat near the window is brighter than the seat at the

centre of the classroom” and drew a supplementary picture (Fig. 41.5) on her

worksheet. In task (2b), she commented: “It is better to go to the seat near the

window when possible” as a finding and already-known. She asked, “Is it possible

to move seats in the morning reading time?” and “Are there differences in bright-

ness right under the light and between lights in the case of window seats?” as the

things that she would like to find out. In task (2c), she set up the following problem

considered a real model.

but I think that normal light 
becomes like the figure above.

In a case of slit light, it becomes

A cross section is
Fig. 41.4 Alternative

explanation and pictures

described by A.S

Window

DarkBright

Fig. 41.5 A picture drawn

by A.S. in task (2a)
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A Problem Set Up by A.S. in Task (2c)

It is supposed that you sit down beside the corridor side seat in the classroom.

Some students say that it is possible to change their seat. Which seat do you

want to change your seat to?

In task (2d), she drew pictures like a four-frame comic book page on her

worksheet (Fig. 41.6). To clarify her thinking, the interviewer asked her:

Interviewer [00:59]: Why did you draw pictures within a four-frame?

A.S. [01:07]: I think that four-frame comics are fine for classmates to

explain.

In task (2e), she solved the problem she set up by herself in task (2c). Her answer

was “we can find that the window seat is the brightest, and I change B’s seat which
is most near to windows there”.

41.3.2 Responses from Y.R. Through Modelling Tests
and Experimental Class

41.3.2.1 Responses from Y.R. at the Pre-test

For the brightness situation [task (1a)], Y.R. wrote “If curtains in the classroom are

closed, I open the curtains to their full width and adopt sunlight. Now the curtains

are fully opened, but it is not possible to get enough sunlight; because of this, when

the classroom is dark, I turn on the lights and close the curtains. As a result, lights

are shut by the curtains and the classroom becomes bright” and “I want to go to the

biotope1 and read a book. Outside is brighter and I want to feel bright and nature”.

Window

Who is better...?

OK!

Me

Notice board

Corridor
Blackboard Please change!

Fig. 41.6 Pictures drawn by A.S. in task (2d)

1 The biotope is a small environmental natural habitat in the school grounds.
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For task (1b), she described “Only children without adults cannot enter the biotope”

and “Biotope is usually locked” as her findings and already known. She noted that:

“I ask the teacher whether it is possible to go to biotope in morning reading time” as

what she would like to find out. In task (1c), she set up the following problem

considered a real model.

The Problem Set Up by Y.R. in Task (1c)

You and your friends reached the biotope for playing. Now the biotope is not

locked. But children alone cannot enter the biotope and you have to get

permission from the teacher. At that time, there are birds in the biotope. Do

you enter or not enter?

In task (1d), she responded “Yes” to her problem being solvable but she did not

write reasons and did not draw a picture in task (1e). To clarify the interviewer

asked her reasons for no responses:

Interviewer [03:24]: I want to ask why you did not draw a picture in your

worksheet. Perhaps did you have no time?

Y.R. [03:27YR]: Yes.

41.3.2.2 Responses from Y.R. at Experimental Class

In the experimental class, Y.R. noted that, “This problem was different from what I

imagined as ‘the problem’” in response to the problem set up by H.M. She added,

“We find that the problem can be solved. But, we wonder that a mathematical

problem is possible or not” as the results of her group discussion. To a picture

drawn by H.M., Y.R. commented, “I think it is a very clear picture and expres-

sions”. Y.R. wrote “this problem was set up based on pondering in daily-life” in

response to the problem set up by S.K. In addition, she recorded, “We want to know

the kinds of electric appliance. For example, electric radiation from a fluorescent

tube or a spotlight is different”, as a result of their group discussion. To a picture

drawn by S.K. (see Fig. 41.2), Y.R. responded that, “I think that the person who sits

down right under the electric appliance is brighter than, but I reconsider the person

who sits down between two electric appliances after seeing this picture”. She

added: “We cannot understand the wording ‘electricity of electric appliance’”.
Using more complicated wording, “area of lighting” etc.. . .”, was taken as the

result of their group discussion.
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41.3.2.3 Responses from Y.R. at the Post-test

In task (2a), Y.R. wrote “I want to go near the windows to read a book” and “I want

to go to the biotope to read a book” on her worksheet. For task (2b), she noted:

“Morning reading time is basically held on my seat” and “My current seat is the

third seat from the window and the third seat from the front” as her findings and

already known. She asked: “Is it possible to walk around in morning reading time?”

and “Is it possible to change window seats?” as the things that she would like to find

out. For task (2c), she set up the following problem considered to be a real model.

The Problem Set Up by Y.R. in Task (2c)

It is possible to change seats only in morning reading. Six window seats have

already changed when you want to sit down at a seat at a bright place. Which

place do you sit down?

In task (2d), she drew a picture on her worksheet (Fig. 41.7). In task (2e), she

solved the problem set up in task (2c). Her answer was as follows: “Seats under the

fluorescent tubes are in the first, fourth and sixth rows; but six rows have already

changed. In this time, brightness is not changed in the case of seats right under the

fluorescent tubes and in the case of ones between the fluorescent tubes. As a result,

seats near the windows are bright. The answer is the fifth row which is the second

nearest seat from the windows.” Additionally, she explained this reasoning in

interview:

Y.R. [00:16]: Well. . .I can find that the window side is bright from data. I don’t
measure brightness in the biotope using luxmeter; but, the biotope

is brighter since the biotope is outside.

Blackboard

Windows

The fluorescent tubes are 
overhead above the rows.

Fig. 41.7 A picture drawn by Y.R. in task (2d)
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41.4 Discussion and Conclusion

In this chapter we discuss reformulation of situation models, and administer a test

before and after a modelling class for lower secondary school students. The original

situation at the pre-test and the post-test were not changed, the students were

required to set up problems and explain them to their classmates. We focus on

pictures to explain the problems as being evidence of situation models because

processes of understanding and/or simplifying/structuring the task to create real

models or mathematical models via situation models (Borromeo Ferri 2006). Both

instances of setting up the problems by the two students, A.S. & Y.R., are real

models.

In the case of the student A.S., both setting up the problems in task (1c) and in

task (2c) are based on the original real situation, and reflect the real classroom

situation. At the pre-test, she did not set the limit of possible places. In task (1c) she

described two ways “to go out or to use some tools” in the third sentence, however

she did not show the former way on the picture in task (1e). She responded that it

did not matter if the situation was inside or outside in task (1d). From the picture at

the pre-test we can confirm that reformulation of situation models has occurred to

simplify the task. At the post-test, she limited the places to within the classroom

based on her personally belonging to the classroom situation. Furthermore, she

devised pictures like a four-frame comic (Fig. 41.6) to explain the problem in task

(2d). The first scene shows the real classroom situation, however she explained for

“some students” with the supplementary three remaining scenes. Here the situation

model has occurred to explain the task for her classmates clearly.

In the case of student Y.R., setting up of the problem in task (1c) and the problem

in task (2c) are different, however biotope or placement of the seats are able to be

understood by all the students. At the pre-test, she did not draw explanatory images

in tasks (1d) and (1e) as she had no time to draw. At the post-test, she raised

two images in task (2a), that were continuous with her thinking for the pre-test,

although setting up the problem was limited to being inside the classroom. In

addition, this classroom situation was easy to share with her classmates, since the

situation of brightness was constructed based on her school. In other words, we can

say that the problem in task (2c) are based on the original real situation, and reflects

the real classroom situation: There are 41 seats consisting of six lines in a class-

room. In Fig. 41.7 she excluded six window seats. So she set up the problem by

referring to data collected by use of a luxmeter, as the window side is bright. After

the experimental class, we had provided the luxmeter to measure brightness and

some students tried to gather real data at various spots or places. Some of them set

up the problem using these data. Thus a situation model has occurred to structure

the task mathematically.

We re-iterate we have been able to confirm empirically the occurrence of

situation model reformulation processes occurring through our modelling tests. In

the future we will attempt to classify all the problems set up by the students

(cf Kawakami and Matsuzaki 2012) and characteristics of sharing types of models

as our next studies.

41 Evidence of Reformulation of Situation Models: Modelling Tests. . . 497



References

Blum, W., & Leiß, D. (2007). How do students and teachers deal with modelling problems? In

C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling: Education,
engineering and economics (pp. 222–231). Chichester: Horwood.

Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling

process. ZDM – The International Journal on Mathematics Education, 38(2), 86–95.
Kawakami, T., & Matsuzaki, A. (2012). A new approach for teaching mathematical modelling in

elementary school: Focusing on setting up problems from the task situation in the real world.

Journal of Japan Society of Mathematical Education, 94(6), 2–12 (in Japanese).

Matsuzaki, A. (2007). How might we share models through cooperative mathematical modelling?

Focus on situations based on individual experiences. In W. Blum, P. Galbraith, H. Hans-

Wolfgang, & M. Niss (Eds.), Modelling and applications in mathematics education
(pp. 357–364). New York: Springer.

Matsuzaki, A. (2011). Using response analysis mapping to display modellers’ mathematical

modelling progress. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends
in teaching and learning of mathematical modelling (pp. 499–508). New York: Springer.

Matsuzaki, A., & Kawakami, T. (2010). Situation models reformulation in mathematical model-

ling: The case of modelling tasks based on real situations for elementary school pupils.

Proceedings of the 5th East Asia Regional Conference on Mathematics Education, 2, 164–171.

498 A. Matsuzaki and M. Kaneko



Part VI

Applicability at Different Levels of
Schooling, Vocational Education, and in

Tertiary Education



Chapter 42

Mathematical Modelling in the Teaching
of Statistics in Undergraduate Courses

Celso Ribeiro Campos, Denise Helena Lombardo Ferreira,

Otávio Roberto Jacobini, and Maria Lúcia Lorenzetti Wodewotzki

Abstract In agreement with the elements of the statistics education theoretical

framework, as well as critical education, mathematical modelling allows the pos-

sibility of pedagogical projects that value interdisciplinarity and active participation

of the student in knowledge construction. In this chapter, we present a scenario that

occurred in the statistics discipline of an undergraduate course. We adopt Critical

Education practices to discuss global warming, its causes and consequences for

society.

42.1 Introduction

At any grade level, Critical Education aims to promote political awareness and the

discussion of social issues related to students’ reality. In our view, as in the opinion
of the main articulators of this theory (Freire 1974, 1998, 2000; Giroux 1988, 2010;

McLaren 2000), such a goal can be pursued independently from the syllabus of a

discipline. We believe that educators can build adaptations to the content in order to

cover topics that facilitate the discussion and the debate of political and social

issues relevant to students’ reality. Nevertheless, it is important to clarify that, as we

follow the Critical Education ideas, we do not search for a method or a rule, because
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“individuals who reduce [the] learning process to the implementation of methods

should be dissuaded from entering the teaching profession” (Giroux 1988).

The evolution of Critical Education led to the construction of Critical Mathe-

matics Education, articulated by Ole Skovsmose, in particular (Skovsmose 1994).

In Campos (2007) and especially in Campos et al. (2011), we show how Critical

Education can relate to Statistics Education and we build the foundations of Critical

Statistics Education. In this context, we take these foundations to highlight and

practice the valuing of socio-political interfaces within the teaching of Statistics in

undergraduate courses. In this way, in this chapter we present a fragment of the

theoretical basis of Critical Statistics Education and show, through a mathematical

modelling project, how it is possible to obtain positive results under Statistics

Education and Critical Education. This project was developed and applied in the

statistics discipline of an undergraduate course in Economic Sciences. One aspect

that seems worth noting is that, as recommended by Campos (2007), mathematical

modelling and working with projects that value the use of technological tools on the

one hand help to motivate students to practice research and, on the other hand,

extend and diversify the universe of opinions and insights on the topics addressed,

enriching and stimulating discussions in the classroom.

42.2 Critical Education, Statistics Education and Critical
Statistics Education

We understand Critical Education as an evolution of critical thinking, having

emerged as a counterpoint to traditionalism in the educational system. Its founda-

tions can be credited mainly to Jurgen Habermas in Germany (Habermas 1971) and

to Paulo Freire in Latin America. Freire’s emancipatory vision of education (Freire

1974, 1998, 2000) inspired Giroux (1988, 2010), who advanced the idea of

democratisation and politicisation of pedagogy, in a vision of the teacher as a

transformative intellectual. “Essential to the category of transformative intellectual

is the need to make the pedagogical more political and the political more pedagog-

ical” (Giroux 1988, p. 163). Thus, Giroux defended the use of forms of pedagogy

that treat students as critical agents, use an affirmative dialogue and argue for a

qualitatively better world for all.

Incorporating these concepts, Skovsmose (1985) progressed the development of

Critical Education and stated that “it is essential that the problems must be related to

fundamental social conflicts and it is important that students can recognize prob-

lems as their own problems” (p. 345). Focusing on the democracy issue, Skovsmose

highlighted that it must be present in mathematics education and, in this way, he

built a Critical Mathematics Education (1994), in which he valorised working with

modelling projects.

Although the American Statistics Association had developed a section on Sta-

tistics Education in 1973, it was only in 1982 that the first International Conference
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on Teaching Statistics (ICOTS) was convened, improving the research in the

Statistics Education field. Therefore, in the 1990s, there was an increasingly strong

call for Statistics Education (Garfield and Ben-Zvi 2008) and the Journal of
Statistics Education was first published in 1993. Since its beginning, Statistics

Education has been designed in a context of concern, questioning and reflection

on the problems of teaching and learning statistics. This is revealed primarily

through the difficulties that students have to think or reason statistically (even if

they demonstrate calculation ability). This context led to the development of

Statistics Education, which seeks to differentiate the pedagogical issues presented

by this discipline from those experienced by mathematics. Thus, several authors

(e.g., Chance 2002; Gal 2004; Garfield 2002; Pfannkuch and Wild 2004) converged

on the idea that the teaching of statistics should focus on developing three specific

competences: statistical literacy, statistical thinking, and statistical reasoning.
Statistical literacy, according to Gal (2004), occurs primarily by two interrelated

components: (a) people’s ability to interpret and critically evaluate statistical

information, arguments relating to research data and stochastic phenomena that

can be found in different contexts; and (b) people’s ability to discuss or communi-

cate their reactions to such statistical data, their interpretations, opinions and

understandings. To Gal (2004), the understanding and interpretation of statistical

data require the student to have the attitude of making inquiries, neither passively

treating the data available to them nor the results that are obtained. Also according

to Gal (2004), to develop statistical literacy, educators should encourage dialogue,

discussion, valorising the students and their ideas and interpretations, when faced

with real-world messages containing statistical elements and arguments.

Statistical thinking is related to the ability of identifying the statistical concepts

involved in investigations and in problems, including data variability, uncertainty,

how and when to properly use the analysis and estimation methods, and evaluating

the statistical problem in a global way. This capacity, according to Chance (2002),

foresees that the student has the ability to explore the data in order to extrapolate

what is prescribed in the texts, and generate new questions outside those indicated

in the investigation. Pfannkuch and Wild (2004) went deeper studying this capacity

and highlighting its importance.

The way in which people reason with statistical concepts comprises what is

generally called statistical reasoning. According to Garfield (2002), statistical

reasoning means to make appropriate interpretations on a certain data set, to

represent the data properly and make connections between the concepts involved

in a problem, highlighting variability, uncertainty and probability, for example. The

development of statistical reasoning should lead the student to be able to under-

stand, interpret and explain a statistical process based on real data. Based on this,

Ben-Zvi (2008) highlights the importance of this competence, stating that all

citizens should have it and that it should be a standard component in education.

Several researchers (e.g., Rumsey 2002; delMas 2002) noted many similarities

between the three competences, especially between statistical thinking and reason-

ing. We perceive the thinking and reasoning characterization in a similar way and

understand that there is a convergence of cognitive and conceptual aspects between
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them. In our view, it is more important than observing possible differences among

these competences, for statistical educators to undertake further research on how to

develop them in students. In this direction, Campos (2007) proposes, briefly, some

teaching practices (or pedagogical actions) for working in the classroom: (a) work

with real data and relate them to the context in which they are involved; and

(b) encourage students to interpret, explain, criticize, justify and evaluate the

results, preferably working in groups, discussing and sharing opinions. Addition-

ally, to address the major aspects of Critical Education, Campos et al. (2011)

suggest the following actions:

(a) problematise the teaching, working Statistics through projects contextualised

within a reality consistent with the student’s reality;
(b) foster debate and dialogue among students and between them and the teacher,

assuming a democratic pedagogical attitude;

(c) thematize the teaching, privileging activities that enable the discussion of

important social and political issues;

(d) use technological devices to make calculations, draw graphs, tables, access

information, databases, etcetera, as students live in a highly technological

society;

(e) adopt a flexible pace for the development of themes; and

(f) discuss the curriculum and pedagogical framework adopted with the students.

By adopting these actions and teaching practices in the educational process, we will

be practising the Critical Statistics Education that goes against the traditional

teaching model, in which, according to Giroux (1988), education takes place in

an alienating form by assuming a false politically neutral posture.

In this context, we have defended (Campos 2007; Campos et al. 2011) that work

with mathematical modelling projects composes an appropriate pedagogical strat-

egy to carry out Critical Statistics Education. Niss (1983) has argued that “the

mathematical education goal should be to enable students to notice, understand,

judge, use and apply mathematics in society, mainly in significant situations for

particular and professional life of each one” (p. 248). We thoroughly believe that

through modelling, we create motivation, facilitate learning, give meaning to the

content worked, value the applicability of concepts and develop students’ critical
spirit. This way, we stimulate students to transform their reality whilst we promote

the understanding of the socio-political role of statistics. We understand that

Critical Statistics Education worked through mathematical modelling consists of

an efficient articulation between theory and practice. It also favours the disruption

of arbitrary boundaries between disciplines, enabling more widespread and effec-

tive ranges, as long as students can experience the possibility of making connec-

tions among different content from distinct disciplines and between the scholar and

the real world.

It is also noteworthy to point out that statistical literacy has been well linked to

modelling competencies by Engel and Kuntze (2011), whereas previously Kuntze

et al. (2008) had connected the domain of statistical literacy to the competency of

using models and representations. We also note that Skovsmose (1992) had pointed
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out the connection between Critical Education and mathematical modelling, a point

taken up by others such as Mukhopadhyay and Greer (2001) when they proposed

the use of modelling as a critical tool for mathematics.

42.3 Environment Description

In the Economic Statistics discipline, taught in an Economics Sciences course by

the first author of this work in the second half of 2011, one topic in the program is

Correlation and Regression. In an introductory class, the teacher mentioned that

regression can be useful for modelling phenomena of several kinds, even outside

the economics context. The students were interested and asked for an application

example. The professor cited the study of global warming, and since this subject is

very controversial and has generated much debate, it was proposed to carry out an

activity related to the subject, organising groups, selecting topics to research and

making a presentation. Joining would be voluntary and the meetings would be held

outside class hours. It should be noted that Brazil would host (in 2012) the United

Nations Conference on Sustainable Development, known as Rio +20.

At the first meeting, 20 students attended and were interested in participating.

They were divided into four groups. It was decided that the groups would research

the following topics:

(i) rainfall in the city of São Paulo;

(ii) temperature in the city of São Paulo;

(iii) rainfall in the city of Rio de Janeiro; and

(iv) temperature in the city of Rio de Janeiro.

The choice of cities was made for convenience, because it might be difficult to

obtain historical data for smaller cities. The first task for each group would be to

obtain historical data in a series as long as possible for the temperature and

precipitation for the cities mentioned. The groups who investigated the temperature

obtained their data from the National Institute for Space Research (INPE) site:

http://clima1.cptec.inpe.br/. At this site, the temperature data can be obtained at the

Database option – climatological city database. The groups who investigated the

precipitation obtained their data from the National Aeronautics and Space Admin-

istration (NASA) site: http://disc2.nascom.nasa.gov/Giovanni/tovas/. At this site,

rainfall data are obtained in the ASCII option, by providing the location latitude and

longitude. The precipitation time series obtained by the students referred to the

period 1979–2009. The temperature series was from 1980 to 2009.

With the temperature data arranged in a time series, students could carry out a

regression over the deseasonalised data, using time as an explanatory variable

(x¼ 1, 2, 3, etc.). The aim was to check whether there was a demonstrable upward

trend in the series. With rainfall data, the students could make a graph using an

Excel spreadsheet in order to visually observe the data volatility. Through the

variance statistic of the data, the goal was to see whether there was an increase in
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the precipitation volatility, that is, whether the rainfall variation was constant

throughout the series or whether it had been accentuated in more recent times.

The idea of this study is to determine from empirical evidence if the temperature

studied over time was increasing. Our hypothesis, guided by global warming

literature, was that the temperature was increasing. Moreover, we knew that one

of the global warming consequences is the rainfall patterns change, accentuating

the rainfall concentration over time.

Not all the students in the class agreed to participate in the project. Thus, the

class was broken into two larger groups. In line with a democratic vision of the

pedagogical environment (Giroux 1988; Skovsmose 1994), it turns out this was

normal and after a brief dialogue, it was agreed that the groups engaged in the

project would make a presentation of their results to the class and students who did

not participate would make a presentation on the global warming topic.

42.4 Presentations and Results of Student Investigations

At an appointed date, first there was a presentation by the students who did not

participate in the regression project. They showed images related to global warming

and an excerpt from the movie An Inconvenient Truth (Guggenheim et al. 2006),

presented by Al Gore. With no empirical study made by students, there was no

arguments against the global warming phenomena; only Gore’s discourse, which
had convinced the students that made the presentation.

Secondly, groups (i)–(iv) presented, in this order. Groups (i) and (iii), who

investigated the rainfall, showed similar results. In both cases, the variance was

constant throughout the historical series, as indicated by a visual examination of the

graphs and the calculated heteroscedasticity. It should be noted that heterosce-

dasticity refers to the violation of the homoscedasticity assumption in the least

squares method, that is, the variance of each disturbance term ui, conditional on the
chosen values of the explanatory variables, is some constant number (Gujarati

2004). This verification was carried out by a hypothesis test, known as the Park

test.1 The results indicate that there was no verifiable evidence that there has been a

significant variation in rainfall over time in both samples studied by the pupils.

Figure 42.1 shows the students’ work on rainfall data.

Groups (ii) and (iv), who had investigated the temperatures, also obtained

similar results. In both cases, the calculated regressions showed a positive value

for the X variable parameter (time), indicating a slightly upward trend in the series.

However, although positive, this parameter showed a close to zero result, and

through a hypothesis test, student t test at a 95 % confidence level, the parameter

1 Park test consists in making the following regression: ln u2i¼ α+ β.ln Xi + νi. If β turns out to be

statistically significant, it would suggest that heteroscedasticity is present in the data (Gujarati

2004).
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was statistically null. This result indicates that there is no verifiable empirical

evidence in the sample considered that there is a growing trend in the analysed

historical temperature series.

After the presentations, the students discussed, along with the teacher, the results

obtained. The students themselves mentioned the limitations of the results, noting

that they do not refute the global warming hypothesis, mainly due to the fact that

only two regions were analysed and the time series obtained might not be as

extensive as necessary to observe trends. This discussion also addressed issues

relating to people’s behaviour and attitudes which they should have in order to not

aggravate the global warming problem. Another issue that emerged from the

discussion was public policies adopted by governments in relation to the global

warming issue. On this point, the students criticised the Brazilian government and

also those of other countries that did not adopt suitable policies in order to fight the

problem. In line with this, they cited the Kyoto Protocol, which is an international

treaty that commits State Parties to reduce greenhouse gas emissions. It was pointed

out that some of the major polluter countries did not sign the protocol and others,

who had signed, did not make enough efforts to achieve the agreement.

Fig. 42.1 (a) Graph of rainfall data made by group (i) using Excel (b) by group (iii) using Excel
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42.5 Analysis

42.5.1 About the Statistical Content

In this project, the statistical content worked was linear regression. Students

realised the importance of using technology to access reliable results (data were

obtained via the internet and the graphs and calculations were made with an Excel

spreadsheet). Additionally, they were able to note the importance of working with

real data. The project also highlighted the relevance of content in order to model

real problems. As they felt the necessity of doing correct calculations, collecting

reliable data, making correct assumptions and interpretations, they had discussed

among themselves and thoroughly studied the content before writing the report and

preparing the presentation. Thus, we realized that the students developed a deeper

knowledge of the statistical content. Nevertheless, we must point out that the

students who did not carry out regression analysis did not experience this deepness.

In this way, we must emphasise the weakness of the first presentation when

compared to the empirical studies.

42.5.2 About the Statistical Competences

For the three competences mentioned in the Statistics Education theoretical frame-

work, we found that working with real situations involved in the regression

calculations allowed students a global view of the problem. Students could realise

the difficulties surrounding the complexity of the topic and experienced the usage of

some statistical tools used in the regression universe. We understand that this work

tends to help the development of statistical thinking and reasoning about data and

measures. As for literacy, we believe that the preparation of reports, the use of

expressions and terminology typical of statistics, the construction of charts and

tables, in addition to hypothesis testing performed, and discussions involving the

regression theme tend to assist the development of competence with critical think-

ing and reasoning with statistics. It is important to note that there is no quantitative

measure of the development of the competences. Nevertheless, we pay attention to

the competences to ensure we are progressing towards them.

Concerning statistical literacy, we mentioned Gal (2004), who pointed out that

this emerges when students are able to interpret and critically evaluate statistical

information, arguments relating to research data and stochastic phenomena. He also

noted that literacy appears when people discuss or communicate their reactions to

such statistical data, their interpretations, opinions and understandings. We believe

that our students achieved this goal as they showed, discussed and communicated

their interpretations, critical evaluations and understandings of the regression

results.
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The interpretation of the statistical results made by students, that is, the inter-

pretation for the hypothesis tests that were carried out, can be seen as an ability to

explore the data, extrapolating what is prescribed in the books. Focusing on the idea

of verifying an empirical proof of the global warming phenomena, students were

able to carry out some interpretations of the results that are non-trivial. In line with

this, as was pointed out by Chance (2002), we can say that the students progressed

in the development of statistical thinking.
Garfield (2002) suggested that the development of statistical reasoning should

lead the student to be able to understand, interpret and explain a statistical process

based on real data. This was completely done by the students when they made

correct interpretations of the results and explained their conclusions for the class.

42.5.3 About Critical Education and Critical Statistics
Education

As we mentioned previously, according to Giroux (1988), Critical Education is not

a method. Thus, it is not a question of measuring its deepness or checking some

steps to be followed. Despite this, we understand that in many ways we highlighted

Critical Education in this project. Both in the presentations and discussions, many

opportunities occurred where the students came face to face with the global

warming problem, its causes and consequences. The debate sparked in the students

a sense of outrage at the attitudes of people and governments towards a problem that

affects everyone, rich and poor, but where the main consequence is for those who

are socially disadvantaged, who live in risk areas subject to flooding and landslides.

The social problems of irregular occupation of areas that should be preserved as

well as the authorities’ indifference towards environmental degradation were

highlighted in students’ discussions. Moreover, students discussed actions they

could do in order to change attitudes and raise awareness of the importance of

environmental preservation.

As for Critical Statistics Education, in a different way, we realised that during

the project we were on the path traced by the theoretical considerations provided by

Campos et al. (2011) as:

(i) we had problematised the teaching, we had worked topics related to statistics

through contextualised projects linked to a reality consistent with that of the

students;

(ii) we had encouraged debate and discussions among students and between them

and the teacher, thus taking a democratic pedagogical position;

(iii) we had thematized the teaching and focused on activities emphasising the

debate of several important social and political issues;

(iv) we had used technology in teaching and valorised technical skills to students;

and

(v) we adopted a flexible pace in implementing the work presentations.
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42.5.4 About the Mathematical Modelling

The question remains: Did we (or the students) really work on a mathematical

modelling problem? Beginning with a real world problem (global warming),

students had built a mathematical model, represented by a function. This model

was used to evaluate whether there is empirical evidence of global warming or not.

The results were analysed, debated and compared with the real evidence that we

feel in our ordinary life, that is, there was a discussion on the validation and

limitation of the model.

The model construction allowed us to work on statistical content, to promote the

development of some statistical capacities, which are important to learn the disci-

pline, and to implement a critical education class. Actually, students who used

regression analysis by means of mathematical modelling revealed a much more

powerful discourse, than the others, who just explored Gore’s arguments and

remained at a weaker level. The importance of the mathematical models to explore

the phenomena is clear, so we can conclude that mathematical modelling was a key

to making our goals successful.

42.6 Final Considerations

In the execution of the pedagogical activities related to the project described here,

we aimed to show the possibility of Critical Statistics Education insertion within a

statistics topic in an undergraduate course. In this context, we highlight the socio-

political interfaces involved in the proposed thematisation, which emerged from the

educational environment experienced by the teacher. Our interest in reporting this

experience was to show that the opportunities to insert themes related to social and

political problems occur several times in the pedagogical action. We believe that

educators must take advantage of these situations to encourage students’ critical,
investigative and advocator spirit, which has the potential to excel when they are

confronted with a social problem that involves their reality.

It also should be emphasized that throughout the project execution reported here,

there were two important keys to our success. One was the use of technology in the

project development. It brought the realisation of the potential of statistical content

and facilitated the students’ engagement in the activities executed to the extent that

they could realise the power of the tool that they were handling. The other key was

use of mathematical modelling. It had permitted us to focus on teaching and

learning of statistics within a critical vision of education, helping students develop

important capacities listed here.

We believe that, without losing the focus of statistical content, adopting Critical

Statistics Education within a technological mathematical modelling environment

can greatly enrich the educational process. It had given students the opportunity to

better understand their own reality and to find the paths that can lead them to actions
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that actually represent reactions against the social and political reality in which they

live. Thus, we understand that the teacher performs a much more comprehensive

role and makes education more meaningful, more interesting and more real.
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Chapter 43

Models and Modelling in an Integrated
Physics and Mathematics Course

Angeles Domı́nguez, Jorge de la Garza, and Genaro Zavala

Abstract This is an on-going study of an integrated first-year engineering course of

mathematics and physics using models and modelling instruction. This innovation

involves: redesigning the course content, combining teaching strategies, reshaping

the classroom setting, and the use of technology. The experimental course was taught

at a large private university in northern Mexico. This study analyses the students’
final projects of this integrated course. The general comments made by the students

were positive and affirmed this as a valuable learning experience. Students noted that

the course reduced boundaries between physics and mathematics, helping them to

better understand the application and need for the mathematics content.

43.1 Introduction

This chapter presents an attempt to close the gap between calculus and physics by

teaching an integrated college level course of calculus and physics using models

and modelling instruction. This innovation involves redesigning course content,

combining teaching strategies, reshaping the classroom setting, and the use of

technology. The course was taught at a large private university in northern Mexico

in an integrated Physics and Mathematics course for first-year engineering students.

Physics is a science in which all topics are interconnected with a small number of

physical laws (Chabay and Sherwood 2010) in which mathematics plays an
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important role (Dirac 1938). However, students often lack this connected view of

physics and the relationship between the mathematics and physics they are learning at

school (Adams et al. 2006; Dray et al. 2008; Martı́nez-Torregos et al. 2006). There

have been efforts both in physics and mathematics not only to increase students’
learning, but also to help students to see the connection between physics and

mathematics. For instance, in physics, Modelling Instruction (MI) by Hestenes

(2010) is based on students’ own building of the concepts with activities that are

more into what they will encounter in real life. The use of mathematics in the strategy

comes naturally in order to try to solve a situation. In mathematics, Michelsen (2006)

presents a framework for interdisciplinary instruction involving the interplay between

mathematics and science; whilst Lesh and Sriraman (2005) propose mathematics

education as a design science which provides a framework structured to promote

testing, communication with relevant communities and progression.

The need for bridging the gap between mathematics and sciences is well

documented. Several universities have designed integrated courses that involve

two or more areas. Some of these are recent such as a course that integrates calculus

and introductory science (Carpenter 2007) and a STEM course that integrates

chemistry, biology, computer science, physics, and mathematics (Gentile

et al. 2012). Our attempt, namely Fis-Mat, focuses on integrating calculus and

physics for first year engineering students (Domı́nguez et al. 2013).

At our university, the first attempt to close the gap between calculus and physics

was a redesign of the calculus curriculum (Alanı́s 2000; Salinas et al. 2011). This

redesign uses physics contexts to trigger mathematics concepts (Salinas

et al. 2001). However, the mathematics and physics courses were still taught

separately, and frequently mathematics concepts that had not yet been taught in

the calculus course were needed for application in physics. Fis-Mat fully integrates

the first semester calculus course with the first semester physics course and its

corresponding physics laboratory. This chapter provides a description of the course,

its teaching strategies, the classroom setting, the characteristics of the participants

and the academic results. It also offers some concluding remarks and proposed steps

for the future.

43.2 Teaching Strategies

Richard Feynman (1998) has stated that “The rules that describe nature seem to be

mathematical. . .. It just turns out that you can state mathematical laws, in physics at

least, which work to make powerful predictions” (p. 24). This is what we do in

Fis-Mat: we use mathematical laws to study physical phenomena so students can

make strong predictions and construct complete models using a variety of repre-

sentations (Hestenes 1987, 2010; Wells et al. 1995). The main pedagogical

approach of Fis-Mat is Modelling Instruction (MI), which focuses on qualitative

and quantitative model development in an explicit cycle that allows students to

conjecture, test and refine their models (Brewe 2008).
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The basic building blocks in science are the models, and science is a modelling

process. MI contends that science instruction should teach students the basic rules

of modelling and should organise the course content around a small set of scientific

conceptual models (Halloun 2004). The conceptual models that structure the course

content in MI are shared among members of the learning environment, and the

validity, deployment and interpretation of the models are established through

classroom activities and discourse. In this approach, models serve as conceptual

resources that can be used to develop an understanding of a variety of phenomena.

MI “helps students develop model-centred knowledge bases that resemble those of

practicing [sic] scientists” (Brewe 2008, p. 1156).

In a MI class, students work in groups of three to solve the given problems; they

record their analyses on portable whiteboards. Then, the entire class sits in a circle

to discuss their findings. All students are able to see the boards of every other group

and are encouraged to ask questions of their peers. The instructor facilitates the

discussion to reach a consensus. It is during these interactions that students nego-

tiate the use of conceptual models. The key for success is the design of the

problems. In Fis-Mat, most of the physics worksheets were adopted from the

material designed by Eric Brewe’s group at the Florida International University.

Two other teaching strategies implemented in the Fis-Mat course are based on

educational research in the disciplines, tutorials for introductory physics

(McDermott et al. 2002) and modelling (Niss et al. 2007). Students make pre-

dictions or conjectures about a physical situation and then they are led through

scientific reasoning or data collection to verify whether or not their predictions or

conjectures are correct. In Fis-Mat, modelling the situation using data analysis

involves the use of mathematical concepts. Often, students’ predictions or conjec-
tures contradict their results, fostering cognitive conflict (Festinger 1957) that

promotes learning.

Another relevant element of this course is the classroom setting. It consists of

round tables that accommodate nine students arranged in groups of three. This

setting fosters group interaction, promotes communication, empowers students, and

in turn facilitates the development of learning skills such as argumentation and self-

regulation. The variety of technological tools and equipment available in the room

facilitated students’ investigation of various models that were constructed based on

their own observations and data collection (Zavala et al. 2013).

43.3 Methodology

For this first experience, the participants in the Fis-Mat course were 20 first-year

engineering students. The research questions that guided this study are:

How do models reflect students’ understanding of the physical and mathematical

concepts? How does modelling work as a core for an integrated physics and

mathematics course?
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43.3.1 Course Description

Fis-Mat uses the physics curriculum as its backbone, while the mathematics brings

the support for idea-building and operations. In developing this course, we consid-

ered previous research (Dray et al. 2008; Martı́nez-Torregos et al. 2006) and added

modelling as a principal teaching strategy (Blum and Borromeo Ferri 2009; Brewe

2008), along with an innovative classroom design that also serves as a physics

laboratory to conduct experiments (Zavala et al. 2013). The primary goals of the

Fis-Mat Project are: (a) to improve students’ abilities to make connections between

physics and mathematics, (b) to increase students’ motivation to advance in their

engineering studies, and (c) to develop diverse competencies, such as critical

thinking and the ability to work collaboratively.

There were four faculty members from the School of Engineering involved in

the development of the Fis-Mat course: two from Physics and two from the

Mathematics Department. All four met regularly to discuss and make decisions

on the implementation. Joint teaching of the course began in the fall of 2012 with

one Physics and one Mathematics faculty member. The major topics covered in the

Fis-Mat course included at least all the topics of a regular first year physics course

and calculus course for engineering majors (Domı́nguez et al. 2013).

43.3.2 Final Project of the Course

The implementation strategy of using projects in engineering education has proven

successful, as it fosters individual responsibility in students and creates an envi-

ronment that is similar to that of professional engineering. Based on this idea,

students had two weeks to work on the Spring-Mass System Project as a final

assignment, in which they had to design, implement, document, and (orally) present

to the entire class on the last day of classes. Seven teams of three students were

formed, and each turned in a final report and gave a presentation about their

approach and solution to the problem.

Spring-Mass System Project
On a table there is a block attached to a spring, and the spring is attached to a

wall. A person slides the block onto the table, stretching the spring. Then, the

block is released (still attached to the spring) and it slides onto the table.

Use the modelling tools to analyze the situation and complete the follow-

ing tasks:

1. Determine the friction coefficient between the block and the table.

2. Determine the spring constant.

3. Construct a mathematical model that describes the motion of the object at

any time from the moment the block is released.
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The Spring-Mass System Projectwas designed to serve as a complex problem that

involves different concepts dealt with during the course, like friction and forces on a

spring. Students need to take what they have learned and broaden their understanding

of these concepts using numerical methods to solve the problem. The more represen-

tations (diagrams, drawings, principles, and relationships that complement one

another) used in the model, the more robust the model is (see Fig. 43.1).

The criteria that students had to meet were: (1) establish the connections

between physical and mathematical concepts and procedures; (2) present a project

design before setting the experiment and collecting the data; and (3) document their

work, and prepare a written report and an oral presentation. The report was graded

on the results, the consistency of their model, and creativity of the design project;

the oral presentation was graded on content and communication skills.

43.4 Results

Students presented reports in which they explained the three different tasks they

were asked to work on in the Spring-Mass System Project. In this section, tables

summarise the collaborative work of the students. Each table corresponds to a

Fig. 43.1 Complete model for calculating the acceleration of the object
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different task. There are two forms of evidence for each task. We use the word

“explicit” when students show evidence in the report; however, we use the word

“implicit” when students describe the schema or situation but they do not show the

schema or drawing in the report.

The analysis of students’ models for the first task is presented in Table 43.1.

The first column shows the name of the collaborative group, the second column the

assumptions made explicitly by the group in their model, and the third column

the physical principle students used for their model (Newton’s Second Law or Energy

Conservation Principle). The following columns indicate whether students made

explicit drawings of the physical experiment, the abstraction of the system (system

schema) and the force diagrams. The last column indicates whether the students were

able to construct the function to calculate the kinetic friction coefficient, μk.
We can observe in Table 43.1 that no matter what model students based their

answers on, Conservation of Energy or Newton’s Second Law, if they explicitly

stated it in their reports, they arrived at the correct model for calculating the friction

coefficient. Group Kappa made a conceptual mistake that led them to determine the

static friction coefficient. That mistake could have been avoided if the motion map

had been included, something none of the groups did. The complete model for this

task is shown in Fig. 43.2.

When a group arrived at a correct relationship for calculating the kinetic friction

coefficient, we are assuming that they had at least implicitly considered force

diagrams and system schema. In that case, we also assumed that since all groups

designed and constructed their experiments, they had a clear idea of the physical

arrangement of the objects.

On the other hand, when a group was unable to determine the correct relation-

ship, we could not consider those assumptions. This was the case with the second

group; Beta had only a verbal representation of the situation and was unable to

reach the correct representation. We could not assume that group Beta implicitly

considered the other representations. It is worth noting that although most of the

Table 43.1 Model completion for calculating the kinetic friction coefficient

Group Assumptions

Principle

based on

Physical

situation

System

schema

Force

diagram
μk ¼

FC
W!B � ma

mg

Alpha No friction on

pulley

Second law Verbal Implicit Implicit Yes

Beta Implicit Second law Verbal No No No

Gamma Implicit Energy

conservation

Yes Implicit Yes Yes, energy

Delta Implicit Second law Implicit Implicit Implicit Yes

Epsilon Implicit Second law Verbal Implicit Implicit Yes

Kappa Implicit Energy

conservation

Verbal Implicit Energy No, static friction

Lambda Implicit Energy

conservation

Implicit Implicit Energy Yes, energy
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groups recorded no explicit assumptions on the written reports, we know students

considered those assumptions based on the results of their work, their oral presen-

tation, or the experiment design submitted before conducting the experiment.

Table 43.2 shows the analysis for the second task in this model, determination of

the elastic constant of the spring. The results in this table are presented using the

same structure and criteria as in Table 43.1.

The model needed to obtain the spring constant seemed to be easier for these

students. This might have been influenced by the fact that students had conducted a

similar experiment two weeks before the due date for the final project. As in the first

task, students used either Newton’s Second Law or the Energy Conservation

Principle for their models. However, the group that used energy was not able to

construct a model that allowed them to calculate the spring constant. None of the

groups recorded explicit assumptions nor used motion maps in their models.

Group Kappa considered friction in their implicit assumptions, but neglected it

in their experiment. They might have noticed something was missing, if they had

drawn the system schema. Therefore, that representation would have shown that

there was one interaction with the track that they had completely ignored.

Fig. 43.2 Complete model for calculating the spring’s elastic constant

Table 43.2 Model completion for calculating the elastic constant of the spring

Group Assumptions

Principle

based on

Physical

situation

System

schema

Force

diagram k ¼ �FC
S!B

d
Alpha, Beta,

Gamma

Implicit Second law Verbal Implicit Implicit Yes

Delta, Epsilon,

Lambda

Implicit Second law Implicit Implicit Implicit Yes

Kappa Implicit Energy

conservation

Verbal Implicit Energy No
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Table 43.3 shows the analysis for the last task on the model, determining the

complete model for the object motion. Similar columns to those in Tables 43.1 and

43.2 are listed in Table 43.3 that show what students did in the report.

Table 43.3 shows that all groups were able to propose a function of how the block

would move after it is released. Yet, a sign error appears in most of the work of the

groups. That error seems to happen when they explicitly avoid doing force diagrams,

leading them to think that the force of the spring is in the same direction as the friction

force. A careful use of the force diagram would have helped them avoid such a

mistake. Moreover, none of the groups presented a complete model (Fig. 43.1), they

only used some representations of the full model as shown in Table 43.3.

43.5 Discussion and Conclusions

Students worked on the project according to the model perspective learnt in class.

The project was open enough that students in an implicit or explicit way had to

make many assumptions, as well as make decisions on how to solve the problem

and on what experiments to perform. These decisions made the project valuable

because the process was as important as the results. During the semester, students

worked on constructing models which led them to the concepts and principles of

mechanics and calculus. The activities had the objective of covering a topic that

was in the course content. The final project, on the other hand, had the objective of

applying the model-constructing process for a new situation.

Most of the groups succeeded in proposing an acceleration function of the

object, although they did not succeed in predicting the block motion. That is,

students succeeded in constructing a model, identifying the variables involved

and their relationships. In Table 43.3, we presented the evidence that all teams

followed the process.

Domı́nguez et al. (2013) argued that students in this course learned concepts in

mechanics better than most students in similar classes in which physics and calculus

are taught separately. Their conceptual understanding at the end of the semester was

Table 43.3 Model completion for the motion of the object

Group Assumptions

Principle

based on

Physical

situation

System

schema

Force

diagram
a ¼ �kΔxþ μkmg

m

Alpha,

Beta

Implicit Second law Yes Yes Yes Yes

Gamma Implicit Second law Verbal Implicit Yes Yes, sign error

Delta,

Lambda

Implicit Second law Yes Implicit Implicit Yes, sign error

Epsilon,

Kappa

Implicit Second law Verbal Implicit Implicit Yes, sign error
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similar to that of students in honours classes in that university. Students’ general
comments were positive (e.g., “this was a good learning experience”). They

commented that the reduced boundaries between physics and mathematics helped

them to better understand the application of, and need for, the calculus content.

The evidence collected suggests that the more robust the model developed by a

student or group of students, the more likely it is that they will not make mistakes.

As a result, they are more likely to have a correct model to present and predict how

a physical situation will evolve over time. Also, the evidence shows that students

are able to take the modelling skills they have learned and apply them to the

constructions of models not seen in class, such as the case of the Spring-Mass
System Project which corresponds to a non-constant acceleration model.

Our view of modelling brings two elements to the perspective; that is the

Modelling Instruction as a main teaching strategy and the model construction

process that students face in every class of the Fis-Mat course. In this way, students

focus on understanding the relationship among variables and the different repre-

sentations that can be used as a means to build models that become more robust as

more representations are combined. There is, however, much that needs to be done.

First, we would like to frame the problem within a context that is a more realistic

situation for students. Second, to better understand the model construction process,

we would like to analyse students’ responses at different stages of the Fis-Mat

course. Third, we believe that the modelling approach of the course promotes

deeper understanding of the mathematical and physical concepts as well as facil-

itates the development of critical thinking, problem solving and argumentation

competences (Brewe et al 2012). It is desirable to collect evidence of such claims.

So far, our findings indicate that, since they actually constructed more robust

models, it would appear they found the multiple representations helpful in their

problem solving. We believe that the teaching methodologies, activities, classroom

setting and evaluation implemented point towards a reasonable direction to inte-

grate physics and mathematics in an engaging way.
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Chapter 44

Research-Based Modelling Teaching
Activities: A Case of Mathematical
Positioning with GNSS

Xiaojun Duan, Dan Wang, and Mengda Wu

Abstract This chapter explores the mechanism of modelling teaching based on

research, including modelling problem collection and issuing of problems for

selection by students, the feedback of students and consultation between teachers

and students, mathematical modelling and problem solving process, discussion and

assessment. Based on the Innovation Practice and Internship Base for Mathematical

Modelling, research-based problems are issued for senior undergraduates to culti-

vate modelling competency when solving practical problems. A case of mathemat-

ical positioning with GNSS, multipath, is introduced to show the whole process in

detail focussing on developing active and critical thinking, in particular the inno-

vative thought of students, by the process. From years of practice, research-based

modelling teaching has been shown to be a very effective platform to improve the

modelling competency of students.

44.1 Introduction

Teaching and application research activities on mathematical modelling have been

carried out for nearly 30 years at the National University of Defence Technology

(NUDT) in China. The focus is not only on the mathematical modelling course

teaching, but also the training of students’ mathematical modelling innovative

thinking (Li 2013). The Innovation Practice and Internship Base for Mathematical

Modelling is established in our university. One of its tasks is to organize students to

carry out mathematical modelling innovative research projects and related activi-

ties. Stillman (2015) notes that with mathematical modelling the direction reality to

mathematics becomes the focus. The question to ask as a modeller is then: “Where
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can I find some mathematics to help me with this problem?” The model has to be

built through idealising, specifying and mathematising the real world situation.

Based on the Innovation Practice and Internship Base for Mathematical Modelling

at NUDT, we built a student innovation training system of mathematical modelling

to enable students to experience these processes in a supervised environment.

The system includes not only a generic training for mathematical modelling, but

also mathematical modelling training for the professional fields. The training task

covers the teaching of mathematical modelling courses; the student’s training

programs and the scientific research training projects. The support environments

of this system involve a mathematical training laboratory, the Innovation Practice

and Internship Base for Mathematical Modelling and the professional laboratory of

applied mathematics. Unlike many other university programs involving profes-

sional/industry training (e.g., Araújo et al. 2013; Cumberbatch and Fitt 2001), the

mathematical modelling competency training of undergraduates is an ongoing

process in our system involving students from low-level to senior undergraduates.

The training goal of the system is to cultivate the student modelling competencies,

including not only generic mathematical modelling ability and professional model-

ling ability, but also an open and cooperative consciousness. In this system, the core

is the problem-oriented and the research-based mathematical modelling training.

We have designed a program as research-based mathematical modelling, directed at

the training of mathematical modelling.

This chapter firstly introduces the mathematical modelling training system, and

then the mechanism of modelling teaching based on research is presented in detail,

including modelling problem collection and issue, the feedback of students and

consultation between teachers and students, and the mathematical modelling and

problem solving process. A case of mathematical positioning with the Global

Navigation Satellite System (GNSS) is then introduced to show the whole process

in detail, focusing on stimulating the interest, recognition and innovative thought of

students.

More concretely, in the mathematical modelling related to positioning based on

GNSS to be discussed here, there is a need for sophisticated algorithms (Pecchioni

et al. 2007) for accurately and reliably processing the GNSS signals for timing and

navigation. Mathematical modelling is of critical importance in this. Areas of

mathematics that are relevant include linear and non-linear algebra, optimization,

filtering, and statistics. This chapter will focus on one of the mathematical issues

(i.e., multipath, integrity, resolution of the phase ambiguity, global tomography)

that arise in increasing the processing speed, accuracy and reliability of GNSS—the

multipath case.
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44.2 The Mechanism of Research-Based Mathematical
Modelling Activities

During mathematical modelling, modellers are simplifying and structuring a real

world problem, transferring it into the world of mathematics, working mathemat-

ically and interpreting a mathematical result as well as validating a real result

(Maaβ 2006). Thus whilst a mathematical course could provide basic training of

mathematical reasoning and logical thinking, mathematical modelling could pro-

vide an environment for the overall training for students as a small paradigm of

scientific research, including improving their mathematical application ability,

innovation, the ability to plan as a whole, synthetic knowledge level, engineering

accomplishment, insistence on purpose, expression, and cooperation amongst other

things.

44.2.1 The Practical Mathematical Modelling Program
in NUDT

If we accept the need for a mathematical modelling course, practical modelling

training is also important. Based on the Innovation Practice and Internship Base for

Mathematical Modelling at NUDT, we built a student innovation training system.

The mathematical modelling training is divided into three levels (see Fig. 44.1).

The first level focuses on the teaching of mathematical modelling courses and

contest activities (e.g., Li 2013; Xie 2013). It is a generic training and suitable for

first and second year. The second level is a middle phase of mathematical modelling

training. Student interest and competency in mathematical modelling is much

developed by some innovation training programs from real life, such as transpor-

tation problems and insurance issues. The third level is a senior phase of mathe-

matical modelling training. In this level, we combine the teacher’s research project

with the student’s training programs and design a program as research-based

mathematical modelling, directed at the Junior and Senior undergraduates.

In reality, the middle phase and senior phase are not independent. They are both

attempting to train the student’s ability in mathematical modelling through solving

real world problems, but the problems in the senior phase are more difficult than the

former. The problem-oriented research is precisely the important aspects of scien-

tific studies. We call this training research-based mathematical modelling.
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44.2.2 The Scheme for Research-based Mathematical
Modelling

Now, the scheme of the research-based mathematical modelling in detail is as

follows.

1. Collection of modelling oriented research problems. Each June, the organising

committee of the Innovation Practice and Internship Base for Mathematical

Modelling sends notices to tertiary teachers to collect modelling-directed

research problems. The basic requirements include: (a) the origin of the prob-

lems should be from practical scientific research, (b) the problems are

remodified to be fit for the level of undergraduates, (c) they are not too difficult

and (d) they do not require too much special background knowledge. Generally,

the initial collection of the problems finishes in September. After receiving these

problems, the organising committee with experienced modelling teachers helps

rewrite or polish the problems to make them easier to understand for

undergraduates.

2. Issuing problems and consultation. Every early-September, the research-based

mathematical modelling problems are issued first on the campus internet for

students. Almost half a month later, a consultation conference is held for those

students who are interested. Firstly, the teachers introduce the background and

the problems, the interested students put questions to the teachers in a
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Mathematical modeling
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GenericModeling Course
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Fig. 44.1 The mathematical modelling training system
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subsequent one-to-one communication process. Several days later, the students

are required to submit their choices of problems to the Base.

3. Learning the background of the problems. Different from the general mathe-

matical modelling exercises, the research-based mathematical modelling prob-

lems are still related to much engineering background. Therefore, in order to

solve the problems better, the students need to learn more of the engineering

background involved in these problems. In this process, the teachers prepare all

needed materials and give several lectures to students, to make sure they

understand the problems correctly.

4. Modelling exploration and solution. This step is of most importance to cultivate

the modelling competency of the students. Since there is no standard solution for

the research-based mathematical modelling problems, it is challenging to obtain

a better solution satisfying the practical engineering requirements. In many

cases, the theoretically best solution may not be the best choice in practice as

Pollak (1997) and Neunzert (2013) have pointed out. Consideration might need

to be given to the balance for the solving method among the performance,

realization cost, and reliability, amongst other things.

5. Discussion and assessment. After obtaining a satisfactory solution, summary and

feedback are also crucial. Usually, students submit a paper describing the

process involved in solving the problems under supervision. The paper is sent

to two other teachers for assessment. The students also need to give a defence for

their papers, in this process the inquiry and discussion can be intensive.

44.2.3 Cultivation of Modelling Competency

Innovation consciousness and ability are crucial for modelling competency. With-

out a standard answer for the modelling problems, the inexistence of a unique best

solution of the modelling problems provides a capacious creation space for the

students (Li 2013). That uncertainty and challenging character makes modelling

more attractive.

Students are inspired to use their originality to solve the same problem using

different methods from different aspects, which is very helpful for their imagination

and open thoughts. The inspiration is based on deep understanding of the knowl-

edge and deep thinking about the problems. In one case, for example, the optimi-

zation algorithm is needed to calculate the assignment of resources. Some students

chose to use new intelligent algorithms such as neural networks or the genetic

algorithm, while others used the classical heuristic algorithm. However, in this

case, the classical heuristic algorithm achieved a better result since there existed too

many local extrema in the problem. So focusing on only the innovation of the

method is not enough, the students need to investigate more rational methods to

implement the intrinsic character of practical problems. Especially, in the research-

based mathematical modelling process, the practical background is very important,
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thus the students should consider the convenience to be realised in reality besides

other performance of the solution.

We also helped the students to be persistent in solving the problem even when

they encounter difficulty, which is a very good character in life. The young are

always eager to do well in everything, but cannot keep persisting in many cases.

The greatest results are usually attained by simple means. In the training and

cooperative research, we encourage the students steadfastly to apply effort and

grapple with each difficulty in the process of problem solving. We show examples

to demonstrate the different sequels for giving up or insisting on facing difficulties.

Since the students have to think more of insisting on overcoming difficulties, many

report the training improves their self-confidence by cooperative research experi-

ence. They often experience the range of feelings from confusion and anxiety to

satisfaction in the process of overcoming difficulties by thinking of many kinds of

methods.

It is also very important to improve students’ ability to express opinion and

understand other people’s opinion. It is the first time for many students to take part

in a practical program. Some of them are not good at expressing themselves, and

also have some problems in communication. Therefore, the supervisors encourage

them to show themselves in a better light and make a more active communication

atmosphere, identifying some tactics in communication during the training process.

44.3 A Case: Multipath in Mathematical Positioning

The GNSS, including GPS, GALILEO, GLONASS, and Beidou System, utilizes

the pseudo-range and carrier phase from a constellation of satellites in earth orbit to

accurately locate a receiver antenna position relative to these satellites. Applica-

tions include land surveying, autonomous vehicle control, navigation, air traffic

control. With the addition of differential or relative signals, the ultra-high precision

GNSS is capable of position accuracies of the order of a few centimetres. A user

may receive signals coming from several different satellite systems in the future. It

is important to make full use of the whole navigation information of all the

constellations. There is a need for sophisticated algorithms for accurately and

reliably processing the GNSS signals for timing and navigation. Mathematical

modelling is of critical importance here. Areas of mathematics that are relevant

include linear and non-linear algebra, optimisation, filtering, and statistics.

In this section, the case of multipath is introduced as an example in the Innova-

tion Practice and Internship Base for Mathematical Modelling. Multipath is the

propagation phenomenon that results in radio signals reaching the receiving

antenna by two or more paths. Causes of multipath include atmospheric ducting,

ionospheric’ reflection and refraction, and reflection from water bodies and terres-

trial objects such as mountains and buildings. It is related to the characteristics of

the signal, the processing method in the receiver, the antenna and signal receiving

scenario (Satirapod and Rizos 2003; Zhang and Bartone 2004). To solve the real
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signal from the multipath is an optimization problem. The complex factors make it

difficult to eliminate the multipath errors. The mathematical modelling methods are

introduced here and an adaptive filter is proposed. We modify the problem to fit

for undergraduates, this embodies the idealising, specifying and mathematising

processes of modelling.

Through this case we expect to develop the student’s modelling ability, includ-

ing exploring possible solutions to problems, active and critical thinking on explor-

ing the way to solution, scheme selection, data analysis and summarization, and

so on.

44.3.1 Guiding Exploring Possible Solution to Problems

In the research-based modelling teaching process, we do not give out the problem-

solving thought directly. The students have to seek for the ways to solve the

problems themselves. In the multipath mitigation case, the students had to learn

more of the engineering background involved in GNSS. In addition, the teacher

instructed the students on literature to find, what others have done on GNSS (e.g.,

Kneissl et al. 2009), and how they have done this (e.g., Pecchioni et al. 2007), what

progress has been made, what is the problem which is still not solved, what is the

difficulty and hotspot, what is the key, what is valuable, what is meaningless, and so

on. Furthermore, the teacher also guided the students in how to improve the

efficiency of reading literature.

At the beginning, most of the students were not familiar with GNSS. Through a

large number of information inquiries for multipath, they learned that there were

two ways for multipath mitigation: Nonparametric and Parametric methods. They

gradually understood and compared the two methods. The following is a brief

summary of the student design specification concerning the two methods.

Nonparametric method reduces multipath interference based on a phase discrim-

inator function design related to the physical signal. Parametric method is a

mathematical modelling approach by considering the received signal as the super-

position of the direct signal and multipath signal, it transforms the multipath

mitigation problem into a direct signal time delay estimation problem.

When they had any questions about the two methods, the teachers prepared

materials and gave several lectures to students on Nonparametric and Parametric

methods. In this process, the students felt that they gained a lot. As one student

reported, “I really enjoyed expanding my mind. It pushed me to develop my own

thoughts”.
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44.3.2 Directing Solution Selection

The process to guide students to complete mathematical modelling for a practical

research question is that of motivating the student to make factor trade-offs and

scheme choice. By this training, it promotes the students’ ability of macro-control

and judgment (see Wu et al. this volume for further details).

Students needed to consider two levels of scheme choice in the process of

multipath research. The first level is to select the nonparametric method or para-

metric method. The second level is to choose the concrete implementation algo-

rithm in the framework of nonparametric method or parametric method. Most of the

students decided to take the parametric method in scheme selection in the first stage

selection, since the nonparametric method cannot completely solve the problem of

multipath mitigation. In the process of the choice of the second level, the parametric

methods are mainly concentrated on the Maximum Likelihood estimation

(ML) method, and nonlinear filtering method.

The following is a brief summary of the students’ design specification

concerning the second level.

“ML method, however, does not take advantage of the priori information, it

assumes that the parameters in the processing time does not vary over time. In

practice, however, due to the existence of the Doppler Effect, the signal delay often

varies over time.”

“To Nonlinear filtering method, the equation of state reflects the prior informa-

tion of parameters, measurement equation reflects the observations, which is a

blend of a priori knowledge and measurement to estimate the state. Therefore,

nonlinear filtering is also a good tool to handle such problems.”

At this level, the majority of students chose the ML method which is in more

common use, but there were some students who wanted to choose a more chal-

lenging solution, namely, the nonlinear filtering method. Supervisors would also

advise them that the ML method, which is more popular and easier to realize in

practice, would encounter some difficulty in dealing with the time varying delay

problem. So, students should make an appropriate choice in this case according to

the data they have.

44.3.3 Developing Active and Critical Thinking

Mathematical modelling needs critical thinking. After the mathematical model is

built and the solution is obtained, we need to re-evaluate the established mathe-

matical model, and improve the model in time, in order to seek the best results. At

the same time, we also need to point out the practical significance of the model, and

to promote its performance. In research-based modelling teaching, developing the

student’s critical spirit and deep thinking habit is always one of the teaching goals.
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In this process, we guide the students to think deeply on solving the problem

with different methods. The nonparametric method is based on an error control

system rather than eliminating system error, so it cannot fundamentally eliminate

the interference of multipath error. The ideal multipath error mitigation method

is modelling the multipath interference system error, which minimizes the

interference of multipath error. The parametric method models the multipath

signal processing by considering receiving signals as the superposition of the

direct signal and the multipath signal. It estimates the multipath signal delay

and direct signal separately. Subsequently, it transforms the multipath mitigation

problem into a parameter estimation problem, so as to restrain or eliminate the

multipath error.

To accompany the problem solving, we all undertake the training of feedback

with probing questions: Is the result right? Is it conforming to the practice? Where

are the advantages and disadvantages of this method? Is there a better solution?

How can you improve? Can this solution be promoted? In the process of the

training, students’ critical thinking will be strengthened and improved. As a student

noted, “The most attractive aspects were the freedom to create a non-traditional

learning method”. Another student reflected that, “It was the highlight of my

university life. It reminded me of why I went into academia”.

44.3.4 Improving the Ability of Data Analysis
and Summarising

In this case of Mathematical Positioning with GNSS, the students who chose the

parametric method compared the advantages and disadvantages of the different

methods, and they made generalizations. The students who chose the ML method

and nonlinear filtering method analyzed the characteristics and applicability for the

methods in different cases.

Here there are two cases to consider: Case 1 showed that the relative delay of the

direct signal and multipath signals remains unchanged within the processing time

(Fig. 44.2a). Case 2 showed that the relative delay of the direct signal and multipath

signals decreased quickly within the processing time (Fig. 44.2b). The data analysis

results are shown in Fig. 44.2, in which ML stands for Maximum Likelihood

method, D-EKF stands for EKF (Extended Kalman Filter) method of nonlinear

filtering, D-UKF stands for UKF (Unscented Kalman Filter) method of nonlinear

filtering.

The data analysis results show that the ML method and nonlinear filtering

method have equivalent levels of efficiency in the case of the relative time delay

remaining unchanged. However, the ML method is more robust. When delay

dynamic change is more obvious, the nonlinear filtering method is significantly better

than theMLmethod in suppressing multipath error. As for nonlinear filtering methods,

the UKF is more adaptive for the much stronger nonlinearity problem, so it is better
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than that of EKF method in this case. Therefore, the methods show different adapt-

ability in different cases.

Thus, based on the practical problem put forward, we improve students’ ability
of mathematical modelling and help them adapt to solve the practical problem by

the process of exploring the solution, critical thinking, scheme selection, data

analysis and conclusion.

44.4 Conclusion

We have described the Practical Mathematical Modelling Program in NUDT. We

have introduced the mechanism of modelling teaching and shown how to cultivate

modelling competency for senior undergraduates. Our main experience is, to create

an environment to attract the students’ learning desire, cultivate their ability to

study independently and enhance their mathematics quality and creative ability. We

emphasize the ability to acquire new knowledge and a process of problem solving,

rather than knowledge and result. The most important thing is to inspire students to

solve the problem.

The solution proposed in this chapter, supported by good practices and experi-

ences from a successful case, is a research-based Modelling Teaching Activity,

which provides a capacious creation space for the students. It is the uncertainty and

challenging character that makes modelling more attractive to students as noted in

the student comment. With years of practice, a lot of achievements have been made

in many kinds of student involved modelling activities. We think that research-

based modelling teaching is very effective and it is a good platform to improve the

modelling competency of students. We intend to pursue further research to improve

the mechanism.
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Chapter 45

Mathematical Texts in a Mathematical
Modelling Learning Environment in Primary
School

Ana Virgı́nia de Almeida Luna, Elizabeth Gomes Souza,
and Larissa Borges de Souza Lima

Abstract This chapter deals with a study involving mathematical modelling in

primary school. It aims at analysing what kinds of text are produced in the learning

environment of mathematical modelling. The participants were the teacher and her

22 students, aged 9–10 years old, who attended the fourth grade in a private school

in Brazil. According to Bernstein’s theory, the principles governing the pedagogical
practice of a given context allow the production of different texts for the instruction

of school mathematics. In this study, three types of instructional mathematical texts

were identified: contextualized, critical and interdisciplinary.

45.1 Introduction

This chapter analyses the development of a mathematical modelling activity which

was conducted with primary school students. The main objective was to identify

and classify some mathematical texts produced by the teacher and students in the

development of modelling activities. At times, in this chapter, the term modelling

will be used in substitution for mathematical modelling.
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Studies analysing the insertion of mathematical modelling into the first years of

schooling are not commonly found in the international literature as reported by

English and Sriraman (2010) and English (2009). Nevertheless, existing studies

highlight that this insertion contributes to the development of skills by young

students, to solve problems, argue mathematically, understand and relate mathe-

matical concepts and objects, etcetera (Biembengut 2007; English 2009, 2010;

English and Sriraman 2010).

This study presents an analysis of the discursive production of students and a

teacher in conducting a modelling activity based on the theoretical concepts of the

sociologist Basil Bernstein (2003). Bernstein’s theoretical framework (2003)

allows us to identify the nature of the participants’ discursive production in light

of the understanding of social relations formed between the students and the teacher

in performing modelling activities.

Among the various conceptions of mathematical modelling (see Lesh

et al. 2010), we understand it as a learning environment in which students are

invited to question and investigate problems with reference to reality (Barbosa

2010). Modelling activities enable students to discuss daily life problems in math-

ematics classes. The use of modelling in primary school allows students to be in

contact with mathematics at an early age, and by doing so, they can understand the

importance of mathematics and its presence in various situations of the real world at

the very early stage of their scientific thinking (English 2013).

The teacher and students in primary school (Years 1–5) present different char-

acteristics, as elsewhere, compared with those at other levels of schooling within

the Brazilian educational system. In particular, the mathematical content is inte-

grated with other school subject matter content. Apart from that, the students have

only one teacher teaching different subject matter, and this teacher may not have

specific academic training in mathematics, but just a generalist qualification.

When we refer to modelling in primary school, we aim to provide students with

problems and real data from the very beginning of their schooling. According to

Lesh and Fennewald (2010), modelling does not work with what is called a

textbook problem, which deals with particular mathematical knowledge, in which

the student will have to use predetermined mathematical tools. On the contrary,

students use their mathematical knowledge to understand the theme chosen and

respond to real problems. In addition, the implementation of mathematical model-

ling in primary school enables students to begin to identify the presence of

mathematics in society, and reflect critically about such presence.

Therefore, we suggest that mathematical modelling in primary school should be

used in a socio-critical perspective (Barbosa 2006; Kaiser and Sriraman 2006). The

socio-critical perspective is viewed as that which focuses on the development of

modelling as the analysis of the presence of mathematics in society, through

discussion and critical reflection on the assumptions that underpin the social

arguments based in mathematics.
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45.2 Pedagogical Practice Based on the Theory of Basil
Bernstein

In order to develop this research, we have based our thinking on the theoretical

framework of Bernstein (2000, 2003). A pedagogical practice is regulated by

pedagogical discourse. Bernstein (2003) understands pedagogical discourse as a

set of principles. These principles are analysed in terms of communication, that is,

what is legitimate to speak and how to speak in a certain context, in this case, the

school context.

According to Bernstein (2000), pedagogical discourse is a principle of appro-

priation of other discourses, a recontextualizing principle. Pedagogical discourse

comprises a set of rules to embed and relate two discourses: the instructional
discourse (the specialized discourse of the sciences that is expected to be transmit-

ted at school) and the regulative discourse (a discourse associated with the values

and standards in the pedagogical relationship). The instructional discourse is

embedded in the regulative discourse.

In pedagogical practice, texts are individual productions of the agents that

constitute the practice, in this chapter, the teacher and her students. Texts can be

based on instructional discourse and regulative discourse. Text is understood in

terms of communication, and for this reason we should not restrict writing to the

conception of the term, but extend it to any communicative act, such as a gesture, a

way of expression, a glance. Similarly, we can speak of different types of text, such

as verbal, written or gestural (Luna et al. 2011). For Bernstein (2000), legitimate

text is a text, produced by the agents, that presents relevant meaning to the context

of a given pedagogical practice.

We will take two principles that control the pedagogical practices, which are

named by Bernstein (2000) as classification and framing. As for the hierarchy,

classification can be stronger or weaker. Stronger classification means separation

with well-defined borders between agents (teachers and students); weaker classifi-

cation indicates that there is some interaction between the agents or disciplines.

Classification governs power relations involving the spaces of each agent hierar-

chically. The second principle is framing, which refers to the way and place of

communication among the agents, between the teachers and students. The framing
involves control relations governing communication practices within social rela-

tions. Therefore, control relations establish legitimate ways of communication for

each group. Framing can be stronger or weaker. When the relations of control on

the teacher and students are weakened, the latter have the opportunity to produce

their texts, which can be legitimised by the first; however, when control relations
are strengthened, the text is produced predominantly by the teacher.
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45.3 Method, Participants and Research Context

Qualitative research can be defined as the analysis of material forms of life, beliefs,

discursive production, individuals’ practice, etcetera, because the data analysed in

qualitative research are texts, not numbers (Denzin and Lincoln 2005). Thus, the

investigation conducted is qualitative because it aims at determining what types of

texts are produced in mathematical modelling activities. We captured this discur-

sive production by using an observation method for the collection of data. We used

observation as a method of data collection because we intended to identify the types

of texts produced in developing modelling activities at the time they were created.

Observation is the procedure for data collection, and its main characteristic is to

allow the understanding of the study theme in the temporal moment of data

constitution (Angrosino 2005). The participants whose production of texts was

analysed were 22 students (aged 9–10 years old) who attended the fourth grade of

a private primary school and a teacher who developed the modelling activity on the

topic Virtual Water. Virtual water represents all the water used for the production of
certain foods, from cultivation to manufacture.

45.4 Data Analysis

The modelling activity on virtual water was performed on three consecutive days. The

lessons were videotaped, totalling 6 h of recording, and transcribed in their entirety.

The written material produced by the students along with their texts and the teacher’s
texts were selected and categorized. The process of categorization revealed different

types of mathematical texts of instructional discourse; however, in this chapter, wewill

present only three of these, those we consider representative of the development of

modelling activities in the early years. The following texts were selected:

contextualised mathematical text, critical mathematical text and interdisciplinary
mathematical text. Furthermore, although regulative discourse is inserted in instruc-

tional discourse, this chapter will focus on the analysis of text production of instruc-

tional discourse.

45.5 The Modelling Environment

The teacher started the development of the modelling activity by asking students if

they knew what virtual water would be. Based on a selection of the answers given,

the teacher showed a video1 on the topic to the students. The modelling activity, in

this chapter, is understood as pedagogical practice regulated by principles.

1 The videowas extracted by the teacher fromhttp://www.youtube.com/watch?v¼HCXkGETpmwm.
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After reviewing and discussing the concept of virtual water, the teacher gave the

students a text that reported the amount of water used in the production of various

food products, such as soya, tomato, coffee and rice. The following texts refer to a

specific discussion about the total amount of water used in the annual soybean

production.

Teacher: According to the text we have just read, Brazil exports soya to other

countries and spends 45 million cubic metres of water yearly.

Student 1: Teacher, what does cubic mean?

Teacher: It is a measure; the depth of a pool, for example.

Teacher: On the internet here, I see that a swimming pool, like those in which

Gustavo Borges2 swims, I mean those Olympic ones. It says here it

has the capacity to hold 2,700 m3 of water.

Teacher: How about calculating it? I would like to know how many times

2,700 m3 fits in 45,000,000 m3.

Student 2: What type of operation is it? Multiplication or division?

Student 3: [Using a calculator, the student divides 45,000,000 by 2,700 and finds

16,373 for a result.]

Teacher: Kids, look what we found. How many pools of water are spent in the

annual soya beans production in Brazil?

Student 1: 16,373.

Teacher: Is this little or a lot?

Students: It’s a lot.

In this excerpt, we identify that the control relations are weakened, because both

the teacher and the students produce texts, not only the teacher. This enables the

production of texts of instructional discourse by both the teacher and students. We

note that sometimes the teacher assumes the role of producing legitimate texts,

which occurs when the same student responds to a question about cubic metres.

However, the production of legitimate texts is also performed by the student, when

he/she chooses and elaborates the mathematical procedure to be adopted. The

weakening of control relations in modelling activities enables and recognises

the students’ own ideas as valid in the resolution and conducting of appropriate

calculations for understanding the problem. The students seek clarification with the

teacher, but they also propose mathematical procedures, find answers, and interpret

the results.

The fact that the students can also produce legitimate texts indicates that the

power relations are weakened in the excerpt analysed. The role of producing

legitimate mathematical texts is also exercised by the students. The weakening of

control relations in modelling activities, namely the ability of students to interact

with each other, propose their responses to the questions studied, etcetera, is

documented in some studies, such as those conducted by English (2013).

2 Gustavo Borges is a popular Brazilian Olympic swimmer.
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However, in this excerpt, we note that the student is given a possibility to

propose ways to understand the question and legitimate mathematical procedures

to solve it. Moreover, the teacher recognises, that is, agrees with and accepts the

students’ ideas as valid. This fact questions the understanding of this being a role

exclusive to the teacher, and that, therefore, the texts of instructional discourse are

produced exclusively by the teacher. The production of texts, by the teacher and

students, previously mentioned, indicates that modelling activities can enable

students to indicate and produce legitimate texts too, not only the teacher; therefore,

the teacher’s role is not restricted to assessing the discursive production of students.
In a strengthened power relation, for instance, students can produce their texts, but

only the teacher can assess or give legitimacy to such production.

With control relations also weakened, one of the students questions the teacher

about the meaning of cubic metre. The teacher compares the idea of cubic metre to

the capacity of a pool. To make the students understand this quantity, the teacher

related the capacity of an Olympic swimming pool with the total amount of water

required for the country’s annual soya bean production.

We classify these texts produced by the teacher and students as contextualized
mathematical texts of instructional discourse. In this case, the teacher and students

produce texts about the capacity of a pool when they discussed the concept of cubic

metre, a concept of instructional discourse of the school, that is, the instructional

discourse of school mathematics. The teacher used an example, a context, to teach

the students about the concept of cubic metre.

After the discussion on Virtual Water, the teacher asked the students to perform

an individual virtual water research, specifically on the virtual water that may be

consumed in their daily meals. The following is the production of texts related to

this task.

Teacher: What did you like best in your research? What did you find most

interesting?

Student 5: We thought we spent little water, but we spend a lot, and when we

have a look at the water bill, it does not show exactly how much water

we spend to make the products.

Teacher: That’s it.
Student 5: The water bill only shows the quantity we spend at home.

Teacher: You have said something interesting. Take that package of rice over

there to check if the label shows how much virtual water is spent. Will

there be this information?

Student 5: I don’t think so.

In this excerpt, the students question the fact that the consumption and billing of

expenditures on water does not include the actual expenditure of a family on water,

because it does not show the amount of water spent to produce the food consumed.

This is indicative of a second type of text of instructional discourse – the critical
mathematical text. This text is characterised by criticism about the presence of

mathematics in a given text used in society. In the analysis performed here, the text

analysed by the students was the one of the water bill of their homes.

540 A.V. de Almeida Luna et al.



In this case, the control relations are still weakened, but the power relation

becomes stronger because the teacher indicates which production she considers

legitimate – “You have said something interesting”, and encourages the students to

reflect about the importance of having information of the total water consumption

on food packaging. Thus we can observe that the production of critical mathemat-

ical texts was initially prompted by a child and later legitimised and emphasised by

the teacher.

Next, we introduce a scheme produced by one of the students in response to the

teacher’s request. This scheme refers to the third and final type of production of

texts analysed in this chapter.

In the texts shown in Fig. 45.1, we can identify that the students sought to present

the total amount of water required for the production of butter, calculating the

amount of water consumed to maintain the pasture, raise the cows, and produce the

milk. The students have drawn a cycle of the food chain and accounted for the water

consumption involved in the entire production of butter, thus relating to the

instructional science text studied at school.

The texts produced by the students have led us to identify a third type of text of

instructional discourse – the interdisciplinary mathematical text. The production of
this text indicates that modelling activities can prompt students to make their own

relations between the instructional discourse of school mathematics and other

instructional discourses addressed in the school context, in the temporal moment

of realisation of the modelling activity. In this case, the instructional discourse of

sciences – the food cycle.

45.6 Final Considerations

The theoretical framework of Basil Bernstein (2000, 2003) has allowed us to

understand the development of modelling activities in the school context as regu-

lated by principles. Thus, in this chapter, we analysed the development of a

world water virtual

green

butter

milkcrow

milk

paper

beer

corn

bread

food cycle litre

Fig. 45.1 Student texts on the Virtual Water consumption for butter production
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modelling activity from the standpoint of the social relations that are formed in that

environment, that is, we did not analyse just a modelling activity and the responses

the students elaborated about it. Thus, this framework extended our analysis to the

principles that permeate social relations in modelling activities. In this chapter, they

were analysed with respect to the rules of the school environment, the curriculum,

the role of agents in practice, and teaching strategies, amongst others. Therefore, we

believe that modelling activities developed in the school context are governed by

relations of power and control. There are instructional discourses that are widely

legitimate and accepted by the agents that constitute the pedagogical practice and

there are also ways of producing these discourses. In other words, there is legiti-

macy in “what to speak” and “how to speak”, and this legitimacy should be

considered when we analyse the development of a modelling activity in the school

context.

The texts produced by the teacher and students enabled us to identify that this

legitimacy is regulated by the relations of power and control that govern the

pedagogical practice. Relations of power and control are not fixed; they are social,

that is, are constituted by their agents, in this case, the teacher and her students. In

the modelling activity analysed in this chapter, these relations were weaker and/or

stronger depending on the circumstance. The variations of power and control

relations observed in the excerpts analysed in this chapter allowed us to identify

legitimate texts produced by the students. The students produced critical mathe-

matical texts of instructional discourse and interdisciplinary mathematical texts.

This production points to the matter of the nature of students’ participation in

modelling activities. Do the students participate only when they propose their ideas,

argue about their answers, and look for ways to solve the problems?

The texts in this chapter produced by the students indicate that they can also have

the opportunity of preparing legitimate texts of the instructional discourse, that is,

they can propose mathematical procedures, select mathematical concepts, develop

their answers to the problems posed in modelling activities and so on, because of

the weakening of relations of power and control.

The production of contextualised mathematical text of instructional discourse

produced by the teacher indicates the pedagogical strategies that the teacher uses, or

can use, to prompt the production of instructional discourse of school mathematics

by the students. The teacher chose to produce contextualised texts, texts not directly

related to instructional discourse, but used in comparison with this discourse. Is this

pedagogical strategy peculiar to the production of instructional discourse with

young students? What other strategies are peculiar to this level of education?

It is possible that the specific production of these texts is a peculiar feature of

pedagogical practice instituted in the use of modelling in primary school. There is a

need for further studies that identify these and other features of implementation of

mathematical modelling in primary school.
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Chapter 46

A Differential Equations Course
for Engineers Through Modelling
and Technology

Ruth Rodrı́guez Gallegos

Abstract This chapter presents an experience of an educational practice in a

private university in México involving a different way to teach a Differential

Equations course for future engineers based on a didactical proposal developed

through mathematical modelling. This proposal emphasizes that mathematics is a

human activity that answers problems of a different nature, and throughout this

problem solving activity it is likely that the emergence of mathematical concepts,

notions and procedures occurs. Modelling is an important foundation to the design

of this proposal. Three modelling situations are presented that are performed in a

class of differential equations designed to ensure that students transitioning

between different stages of the modelling cycle put into play different skills that

are generally poorly treated in a traditional setting. Some preliminary results are

outlined.

46.1 Introduction

The purpose of this chapter is to share the experience of an educational practice in a

private university in México. This experience involves a different way to teach

Calculus and Differential Equations courses for future engineers based on a pro-

posal developed by the Mathematics Faculty over 14 years. This proposal origi-

nated from the idea of re-designing the scholarly mathematical discourse present in

the Integral and Differential Calculus courses for engineers. It emphasizes that

mathematics is, above all, a human activity that answers several problems of a

different nature, and throughout this problem solving activity it is likely that the

emergence of mathematical concepts, notions and procedures occurs. The teaching
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of mathematics is an important goal to prepare critical citizens. These citizens

should develop the correct skills to identify and solve problems in whatever context

they encounter them as well as be able to express, test, revise or reject even their

own ways of thinking (Alsina 2007). To achieve this goal requires the development

of activities that allow students to recognize the importance of mathematics in

everyday life situations.

In our institution, the DE course is the last formal course in basic mathematics. It

is intended that the students are able to use this knowledge in later subjects of their

specialty but that does not happen automatically or successfully. This course is

currently taught in 25 different engineering programs. Since in the current context it

is important to prepare future engineers who are able to solve problems in their

disciplines, important background to this study is the redesign of the mathematics

curriculum that the Engineering school started in 1999 (Salinas and Alanı́s 2009).

The questions posed then were not only how to teach mathematics – in terms of

methodologies and didactic techniques – but also what and why to teach such

content. Students first learn the instrumental aspect of mathematical notions. It is in

this spirit that our proposal takes over the beaten path and enriches it with a

proposal for the Differential Equations (DE) course: a mathematical modelling

approach (see Sect. 46.3); thus, emphasizing the fact that mathematical objects

(the DE in our case) are seen primarily as tools to model various phenomena in

different contexts. To do this, the work of Rodrı́guez (2009, 2010), which justifies

the choosing of DE as an ideal tool to model phenomena of different natures, is

extended. Students should find meaning within the mathematical object itself. The

concept of the mathematical modelling process is explained in the following

section. The work is still in progress; however, there has been great advance in

the curriculum design for Differential Equations.

46.2 Designing a New Proposal: The Case of a Differential
Equations Course

We have worked on the design and implementation of an innovative course of

differential equations (DE). We want to demonstrate how DE can be taught to

future engineers from the perspective of mathematical modelling and with the use

of specific technologies.

46.2.1 Problems in the Teaching and Learning of DE

In universities worldwide and specifically in Mexican universities, the teaching of

differential equations predominantly focuses on analytical methods (Artigue 1996)

rather than on qualitative and numerical methods. This has been reported despite
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the wealth of both approaches in the teaching of DE (Arslan et al. 2004). This, and

other developments, have been evidenced in the community of mathematics edu-

cation for over 20 years, yet little changes have been reported in daily classroom

activities. While successful innovative proposals have been documented on teach-

ing DE (especially internationally) over the past few years (e.g., Blanchard 1994;

Kallaher 1999; Rasmussen and Whitehead 2003) and some other research on the

subject has been published, only few changes can be observed in classrooms and

academic programs at various universities nationwide in México, particularly in the

area of engineering. This proposal aims to acknowledge the importance of the

changes in registers (algebraic, numeric and graphic), the modelling approach, and

the effective use of technology in the teaching/learning process of DEs.

46.2.2 Re-designing a DE Course, a Collegiate Experience

In brief, the background of this departmental educational project started in August

2008 in our Institution, Tecnol�ogico de Monterrey (TEC, Mexico). The main

purpose was to re-design the DE course, implemented in our institution. It was a

collegiate work of the faculty members of the Academy of Differential Equations.

The early findings demonstrated that there were several educational proposals

claiming the urgent need to reformulate the way DE was taught. As a result and

with the active participation of the faculty members of this group, a new syllabus

for the DE course at the undergraduate level was approved systemwide (for the

32 campuses of the TEC system).

46.2.3 A Mathematical Modelling Perspective in the DE
Course

The study of mathematical modelling began at least four decades ago (Niss

et al. 2007). It aimed to bridge school mathematics and the mathematics used in

other settings. From six perspectives identified for mathematical modelling by

Kaiser and Sriraman (2006), this chapter focuses on the realistic or applied. This

perspective stresses the importance of teaching through mathematical modelling as

a more pragmatic approach to solve real problems and to develop certain compe-

tencies in students, particularly those of modelling.

After a detailed study of several authors (e.g., Blum and Niss 1991; Niss

et al. 2007), we proposed to visualize the mathematical modelling into a scholar

setting, and we chose to further this study adopting the description of this process in

terms of stages (e.g., Real Situation RS) and transitions (e.g., a, b) between stages as
shown in Fig. 46.1. This proposal explicitly incorporates two important elements:

the inclusion of a physical domain which is modelled and the importance given to
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the pseudo-concrete domain as the difficult transition for students in the modelling

process. It is important to note that the mathematical model is understood as the

different graphical representations of the DE: solution graph, the DE itself as an

analytical model, and a table of data that can eventually be modelled by a DE and/or

its solution. The literature analysis has made it clear that mathematical modelling

has allowed multiple benefits when used with students at different educational

levels (Blomhϕj and Carreira 2009). The benefits have translated into the achieve-

ment of connections between school mathematics and everyday life mathematics,

reduction of anxiety towards the subject, promotion of communication and collab-

orative work, and the development of mathematical skills (Lombardo and Jacobini

2009). In more recent studies (Rodrı́guez 2010; Rodrı́guez and Quiroz 2015; Zavala

et al. 2013), a precise theoretical approach has been formulated to implement

mathematical modelling in the classroom, which includes, among other elements,

the role of technology in learning mathematics, the importance of collaborative

learning, and the development of modelling competencies according to the specific

levels in the development of such competencies.

46.2.3.1 Development of Modelling Skills in a Differential

Equations Course

Together with the above-mentioned, it is important to highlight that interest in the

development of generic skills has been a matter of concern for different national

Fig. 46.1 Modelling schema (Rodrı́guez 2010, p. 194)
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and international institutions such as the Tuning Latin American Project (Beneitone

et al. 2007), the Accreditation Board for Engineering and Technology (2011) and

the 2015 Mission and Vision statements of Tecnol�ogico de Monterrey, all of which

base their views on the development of students proficient in solving problems in

their settings and acquiring technological and collaborative skills. Likewise, the

Organization for Economic Cooperation and Development [OECD] in the PISA

Study (OECD 2003) presents the development of mathematical competencies, and

more specifically those in modelling, as important. In an effort to define these

competencies the PISA Study shows in the definition of mathematical literacy that

mathematical modelling skills include the abilities to perform the modelling pro-

cess adequately and to focus it properly. It is also concerned with the possibility of

setting those skills into action. Based on the above approach, this chapter intends to

present the design of activities to facilitate the transition between the various stages

of mathematical modelling by having students face situations that are related to the

contexts that students commonly experience in engineering.

46.3 Methodology in the Design and Implementation
of Innovative Material in the DE Course

Innovative material (hands-on activities, laboratory practices, modelling and sim-

ulation practices, worksheets or spreadsheets) has been developed for the DE

course. Its main focus is concerned with the modelling of biological, physical or

chemical phenomena. Several researchers (Blanchard 1994; Kallaher 1999;

Rassmusen and Whitehead 2003) have shown the need to change the way DE is

taught, from the “traditional” way, which emphasizes analytical methods, to an

integrative mode, which uses graphical and numerical methods. This integrative

mode should enable students to identify and recognize a DE in its different

representations; and thus, improve the learning of DEs as mathematical objects.

The student should not only learn how to use techniques to solve DEs but also learn

the application of the DE as a tool to model several problems. This is also

strengthened through the use of specific technology and software such as CAS;

simulations, and laboratory practices with sensors in the classroom to better model

and understand the phenomenon of study: temperature, an RC circuit, or a spring-

mass system. The student should be capable of integrating mathematical knowledge

(DEs) with practical skills through modelling. Different active learning environ-

ments play an important role in promoting the implementation of the course with

hands-on, modelling, and simulation activities, and the development of communi-

cation, problem solving and modelling skills.
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46.3.1 Using Technology in a DE Course

Within the available software to teach mathematics, there are several educational

technological products meant as tools with no explicit disciplinary content. The

assorted technology available is considered as follows: specific mathematical CAS

software such as Mathematica, or other resources freely available on the internet

such as Wolfram Alpha; graphing calculators for Symbolic Computation; the use of

sensors (temperature, voltage, motion) so that the student can perform some

experimental practices in the classroom and see the illustrated form of a DE

model in a real phenomenon, taking real data and adjusting, suggesting a model

and verifying; Open Educational Resources (OER) such as PhET simulators from

the University of Colorado and the DE Tools. The technology described above

enables the design of activities in which the modelling skills may be eventually

developed and foster meaningful learning of DE as a mathematical object as well as

a tool.

46.3.2 Designing Modelling Activities

We have designed several activities for the DE course. Three are overviewed

emphasizing two design aspects as follows: as models to represent various phe-

nomena and as mathematical objects. In particular, some of the modelling stages

defined in Fig. 46.1 (see transitions between stages) are explored with the idea that

the student, through these tasks and the use of appropriate technology, develops

modelling skills through the DE object. We want to share with the reader how the

sequences of these activities have been chosen taking account of a specified

theoretical perspective of mathematical modelling (Fig. 46.1) and how we recog-

nize the importance to the student to have experiences in the transitions through

several stages of the modelling process.

46.3.2.1 Modelling the Temperature of Hot Water

This activity is useful to show the students how experimentation could give

meaning to the DE model and help them to build an empirical deduction of a

model. In the change in temperature of an object activity, the situation is to measure

how the temperature of liquid changes (boiling water, oil or alcohol) versus time, by

using the temperature sensor EasyTemp. Students are asked to establish the way in

which temperature changes with regards to time by using graphical and numerical

representations provided by the TI-Nspire CX CAS. In other words, through a real

situation students can understand the underlying DE associated with the phenom-

enon (see Fig. 46.2).
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In this activity, students have shown great interest in recognizing a theoretical

model such as Newton’s “law” on data they have. They have had to adjust the

theoretical model to their data and are pleasantly surprised how effective their

proposal may be. Students recognize in this activity the importance of working a

proposed model with different data. Some issues related to why the sensor data does

not behave exactly like the theoretical model data (DE) have appeared bringing up a

topic for discussion in class on issues that are usually little or never addressed.

46.3.2.2 Modelling the Mixing of Water and Salt in a Tank

This activity was designed to show how simulation is useful to recreate the situation

for students to set the DE associated with the phenomenon. In the study of how
salinity changes in a tank of water, the situation is to measure the amount of salt in a

tank with regards to time, using the PhET simulator (see Fig. 46.3). Students are

asked to establish the “way in which the amount of salt in a tank of water changes in

regards to time” by the initial use of an activity and the simulator. In other words,

through a real situation, students can propose a DE to model the phenomenon.

To implement the modelling activity of the mixing problem with differential

equations the following steps are considered: step 0, organization in teams of three

students; step 1, creation of awareness to the phenomenon through a video showing

the hypothesis to the problem; step 2, three-part activity begins. This step 2 is

separated into Part I: Identification of potential variables to study. It aims to

highlight the step in the modelling diagram from the “real” or pseudo-concrete

(Text of the exercise) situation to a graph or qualitative representation of the

evolution of the amount of interest. Part II: Identification of the Mix Mathematical
Model in its analytical representation. Through the writing of the activity, the

students are guided in the theoretical explanation of the tank model (chart to DE).

What is mainly discussed is the way in which the concentration changes over time

according to the law of conservation of matter. In this step, based on the modelling
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diagram, the student transitions from the Pseudo Concrete Model (statement) to the

physical model (tank diagram) and / or the “virtual physical” model (simulator) to

the mathematical model as a first order DE. Afterwards, students are asked to

analyse the type of DE (ordinary) and its order (first order); to solve it by previously

identifying the method to use (linear model); and to finally sketch the graph. Part III

corresponds to the part in the modelling process to establish a mathematical model
in its analytical representation (DE) and / or graphical representation (curve of the
solution function). It is important to note that this part of the DE resolution is an

essential aspect of the course; however, this teaching proposal is only one part of

the modelling process. This part will eventually be facilitated through a technolog-

ical resource (see Fig. 46.3). The final step 3 is the learning affirmation done in three

ways: assigning for homework to solve some problematic mixing situations, in

similar contexts and/or slightly different from those treated in class; or giving a

monthly examination or the final examination containing a mixing problem.

This activity is important in the DE course because we explain to the student the

situation and they need to build a mathematical model (DE). It is a challenging

situation for them but due to the design of the activity into three parts they must

think what variables are most interesting to watch (Part I, little generally requested)

and propose a model taking into account a mass balance (Part II). It is an intuitive

context for them that allows them to at least try to build a mathematical model in the

classroom. The third part of the class was successfully achieved but the rest

presented major difficulties in a central aspect of the model: the concentration of

salt x(t)/V(t).

46.3.2.3 Modelling the Change of Charge in an RC Circuit

In this activity, we propose an experimentation and simulation to recreate a

situation for students to become familiar with the electrical phenomenon and to

verify the DE associated with the phenomenon. We are interested in measuring how

Example of the Physical (Virtual) 
Model with PhET
Modelling transition cba

Graphical Representation

Modelling transition cba

The DE is:
dx

dt
=Ce* fe

x

V (t)
* fs
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or  Wolfram Alpha

Analytical
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Fig. 46.3 Steps and transitions in the modeling cycle and different representations of the DE of a

mixing context
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the charge q(t) changes in a capacitor C over time, using the voltage sensor.

Students are asked to establish “the way in which the charge in Capacitor

C changes over time t” by using graphical and numerical representations using a

graphing calculator (see Fig. 46.4). Then students are asked to model an RL circuit,

but due to the lack of material in the laboratory (in particular, coil L), the PhET
simulation is used to accomplish this assignment (see Fig. 46.5). It is a good

moment to introduce a variable, a voltage source with an AC (sinusoidal). There-

fore, the way to solve it is analyzed in terms of steady and transient state.

In summary, the implementation of this class activity was designed as follows:

(1) Discussion in groups of previous knowledge regarding the DE analytical model

that models the change of the load of a capacitor in an RC circuit. (2) Assembly of

an electrical RC circuit and measurement of the load capacitor through a voltage

sensor. The material used for the activity consisted of a circuit (a bulb, a capacitor, a

set of four batteries and connectors) for each computer, a TI sensor of voltage, a TI

browser and the worksheet for the practice. (3) Analysis of the graph generated by

the sensor and recognition of its shape; analysis of the behaviour with regards to the

modelled real phenomenon. (4) Solving analytically the DE of a RC circuit with

constant voltage input with the linear DE method previously studied in class by

three-member teams. (5) Solving a DE of an RC circuit of variable voltage input

analytically and individually.

Fig. 46.4 Physical model (a), lab practice (b) and simulation in a DE course (c)
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Fig. 46.5 Different representations of the DE in the setting of an RC circuit
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This activity is designed to be useful in bringing students to an unfamiliar

context that is intuitive for a few of them: the electrical phenomenon. Some results

observed were that students benefited by understanding more what is mathemati-

cally modelled and interpreted over the sensor results and the model in terms of the

response of the RC circuit to a specified source of voltage (DC/AC). The use of

simulators was very useful to simulate RL and RC circuits in the classroom.

46.4 Conclusion

This chapter aimed at presenting the activity design in a DE course, particularly

showing the theoretical foundations that support the design and eventual imple-

mentation of activities in the classroom. The role of Student-Centred Learning

Environments (SCLE) such as the ACE classroom (ACE are the initials in Spanish

for SCLE, see Zavala et al. 2013) and a technological classroom as well as the

proper use of appropriate technology used in these activities (calculator, sensors,

software, simulators) are discussed in-depth in Rodrı́guez and Quiroz (2015, this

volume). It is important to highlight the role that technology plays in a Differential

Equations course geared at future engineers. The emphasis given to DE as models

to represent different phenomena in nature, and further emphasis on showing the

students’modelling stages (where the object DE is one of many ways to represent a

phenomenon) shows a large potential to use technology in the classroom not only to

simplify the algorithmic part but also to solve through dsolve, view graphic

solutions, inspect behaviour in data tables, analyse the meaning of parameters in

the solution graphs and above all show the experiment and data collection prior to

the establishment of a DE. Given the portability of current technological devices

(e.g., calculator and sensors) partners can take them to a classroom with the

infrastructure and minimum equipment necessary to implement this in class. The

idea is not to teach another discipline in mathematics classes, but to encourage

future engineers to give context to first- or second-order DEs and to re-signify the

parameters, variables or behaviours seen in experiments in the proposed model.

Finally, technology use aims to highlight the richness of the new course to show

students the range of possible multiple representations of the same mathematical

object (DE). It is expected that at the end of this course, the future engineers will

have a better idea of the meaning of DE in both models to represent various

phenomena and solutions to be the same over a catalogue of analytical methods

in solving DE. It is important to note the enormous access to simulators with which

students relate real phenomena and key concepts of DE. Finally, this chapter

concludes by emphasizing the importance of the teaching of mathematics in general

and DE through modelling, especially the work of designing activities based on the

stages of the process and the contribution of each to leading students to move

between key stages and modelling.
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Reflexiones y perspectivas de la Educaci�on Superior en América Latina, Informe Final
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Chapter 47

Contributions of Mathematical Modelling
in Education of Youth and Adults

Jonson Ney Dias da Silva, Taise Sousa Santana,

and Carlos Henrique Carneiro

Abstract This chapter discusses a case study in Education of Youth and Adults

that attempts to capture critical pedagogical practices in a multi-disciplinary

approach to improving student learning. The aim was to show possible contribu-

tions of a mathematical modelling environment for using mathematics to under-

stand phenomena in other knowledge areas, including students’ prior knowledge
and everyday experiences. A class of youth and adults who were part of a project of

Youth and Adult Education in a state college in Brazil participated. Student

involvement in the activity as well as their difficulties in interpreting the informa-

tion mathematically in order to solve the questions posed were observed. The

teacher acted as a mediator between the real situation and the mathematical objects

used in mathematising to facilitate students refining their mathematisations.

47.1 Introduction

The Education of Youth and Adults (EYA) in Brazil began in the colonial period

when the Jesuits Society of Jesus came to Brazil in order to teach the indigenous

people to read and write, because only then would the Christian faith spread among

them. According to Gadotti and Romão (2005), the EYA was instituted only after

the completion of the First International Conference on Adult Education in 1949 in

Denmark, when it was possible to give another direction to this type of education,
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making it a kind of moral education. Since then, every decade, policy makers and

education professionals have sought public policies and better methodologies for

teaching contextualisation of the reality of life for these students in order to enable

more meaningful ways of teaching, serving not only the purpose of raising the level

of education of youth and adults, but also human development and citizenship for

many of them who for a variety of social and educational reasons had no access to

education when they were at school age (Brasil Ministério Da Educação, Secretaria

De Educação Fundamental 2002).

For Arroyo (2006), the richness of the EYA student lies in the fact that they have

different backgrounds, ages, professional experiences, educational and learning

pace. These students are typically people who work, have families that depend on

their work and whose ethical and moral values come from their experience, from

their environment and cultural reality in which they are entered and none of these

should be accounted for in the educational process.

Thus, in an attempt to develop this EYA proposal, the Government of the State

of Bahia in Brazil, inserted this kind of program in schools, in order to make

learning something as close as possible to the contextual realities of these students

by using everyday situations to address and discuss the content of the school

subjects, not valuing only the content but also the skills necessary for their forma-

tion, in a qualitative process of skills and competencies evaluation by these

students. To meet these specific needs it is proposed to overcome the multidis-

ciplinary paradigm for developing students’ learning not by discipline (i.e., school

subject) but by knowledge area (languages, the study of society and nature, human

sciences and natural sciences and mathematics) to contribute as an instrument

capable of accounting for or explaining the issues of social practice. Thus, the

use of non-mathematical contexts to teach mathematics can enable everyday

situations to be problematised in the classroom.

In the literature different ways are presented to organize the mathematics classes

in which knowledge from other areas such as chemistry, biology, physics, or

situations of everyday life, are moved into the contexts of mathematics classes

(Barbosa et al. 2007; Blum et al. 2007). In particular, the use of modelling in the

context of EYA is little discussed in Brazil and internationally appears as a gap in

the literature, including the works of ICTMA.

This approach is called, in mathematics education, mathematical modelling

(Barbosa et al. 2007; Bassanezi 2002; Blum et al. 2007; Carrejo and Marshall

2007). These authors argue that the use of modelling1 in mathematics classes

enables students to understand the problems of daily life and from different areas

of knowledge. It also encourages students to investigate how mathematics is used in

society and science and how mathematics is used in making decisions (Skovsmose

2007). According to Bassanezi (2002), modelling was conceived as drawing out

mathematical models, being initially a practice performed only in professional

1 To avoid repeating mathematical modelling, whenever we use the term modelling we are

referring to mathematical modelling.

558 J.N.D. da Silva et al.



areas and/or applied mathematics, for example, the mathematical models of popu-

lation growth, economic growth and forecasting that can provide the number of

those infected during the outbreak of an epidemic.

In the educational context, according to Barbosa (2009), the modelling has to be

performed with the purpose of learning mathematics. This concern was to facilitate

mathematical learning from students’ everyday themes. Furthermore, the modelling

environment allows the teacher to develop activities that can support students in

understanding how mathematics is used in social practices (Barbosa 2003). From

this perspective – called socio-critical by Barbosa (2003) – modelling has an

emphasis on analysis of the role of mathematics in social practices and how to

create opportunities for student performance in social debates in society.

In this perspective, the present work aims to contribute to the debate on the

inclusion of the modelling environment in the context of EYA both in Brazil and

elsewhere (see, e.g., Mouwitz 2013; Noss and Hoyles 2010), analysing the possible

contribution of this environment to use of mathematics to study and understand

phenomena in other disciplines, whilst making room for the inclusion of extracur-

ricular knowledge of students. For this purpose, we developed a modelling activity

with a class composed of young adults who were part of the Time Formative – Axis

VII of the State College Agostinho Froes da Mota, in the city of Feira de Santana –

Bahia – Brazil. This type of teaching for EYA appreciates mathematics through

projects addressing cross-cutting issues2 proposed by the National Curriculum as

well as everyday situations of the student. It is thus a multi-disciplinary approach to

student learning. In the following sections the context and methodology used to

develop the study will be presented.

47.2 Methodology and Participants

The present study falls within what might be called a qualitative case study because,

according to Bogdan and Biklen (1992), qualitative research is interested in inves-

tigating such problems as they manifest themselves in activities, procedures and

daily interactions, using the naturalistic environment as the direct source of data.

The class chosen for the development of the activity consisted of 40 students, aged

18–30 years old, coming from the rural and urban zone of the city of Feira de

Santana and two students with special needs, who had an accompanying specialist

teacher of Braille.

2 According to Ministério da Educação (MEC – Education Department), cross-cutting issues “are

issues that are facing the understanding and the construction of social reality and the rights and

responsibilities related to personal and collective life and the affirmation of the principle of

political participation”. Based on this idea, the ME set some cross-cutting themes that address

values related to citizenship: Ethics, Health, Environment, Sexual Orientation, Work and Con-

sumption and Cultural Plurality.
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This activity was undertaken in four lessons lasting 50 min each, which were

distributed equally over 2 days. The first day was dedicated to the invitation of the

teacher (i.e., scene setting) and the organization and development of activities by

the groups. The following day, the activity ended with sharing and discussion of the

results developed by students.

A group of students was selected, by drawing lots, for observation which was

carried out by the authors in the naturalistic classroom environment where the

students’ utterances were produced. This group consisted of four students who had

no previous contact with the particular living or discussion on the subject. In order

to preserve identity students will be referred to as Student 1, 2, 3 and 4. The

observations took place during all classes and were recorded through filming.

Copies of all written materials developed by students during the activity were

collected.

In this case study we chose to use non-structured observation, a method in

which, according to Adler and Adler (1994), the behaviours to be observed are

not predetermined. They are observed and reported on how they occur, in order to

describe and understand what is occurring in a given situation. Given the objectives

of the research, we are interested in the verbal interactions occurring among

students and between them and the teacher during the development of a modelling

activity. The following section describes the moments of activity development, as

well as the analysis of the observed data.

47.3 Activity: Study of Recycling of Aluminium Cans

On the first day, the class was arranged in a semicircle and the classes were divided

into two periods, the invitation and group activity. The invitation began with the

presentation of a short video that featured the theme of recycling in Brazil, as the

country occupies the top position in the world ranking for recycling. Subsequently,

students were asked with the aid of slides: What is recycling? Have you ever

recycled some material? What influence does this process have in your life?

What products can be recycled? These questions prompted an initial discussion

starting on the topic, which allowed students to participate by presenting their lived

experiences about the issue at hand. The importance of working with

non-mathematical topics, which allows students to express how they see things

and understand certain concepts was noted, as some students presented themselves

as professional scavengers.

At that time, the written handout for the activity which contained information on

the topic was distributed. The teacher asked students to read aloud to the class

monitor. Students discussed the information contained in the text mediated by the

teacher who encouraged students to debate on the topic.
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D’Ambrosio (1986) states that modelling can stimulate the ability the student

has to analyse a situation of global reality in which it appears, and, from the

knowledge that they have at their disposal, extract the necessary tools to understand

and act on this situation. Modelling also enables the students to learn about the

possible role of mathematics in society, when they become familiar with the

analysis of real situations mathematically sustained, and to realize that mathemat-

ical arguments are used, for example, to give support to political decisions

(Almeida and Dias 2004; Barbosa 2003; Jacobini and Wodewotzki 2006).

Continuing on, the teacher asked students to form groups in order to solve the

proposed problem. Then, there was a reading of each question slowly discussing

questions that arose. The first question asked of the students was to try to find the

amount of cans produced using the maximum possible recycling process from 1 kg

of cans. Later, they were asked: What is the cost benefit of this whole process for the

recycling can collector? Students, a priori, armed with the information contained in

the text and with the support of the discussions developed earlier, began talking

about what would be considered for the development of this issue.

Thus, during the discussion it was realised that the groups were developing a

strategy that did not represent the given situation. The question asked of students

was to find out what would be the value of the loss of material during the recycling

process. The text of the activity presented information that 1 kg cans represent

75 cans and that after the first recycling process 62 new cans are produced. With

these data the students launched into a subtraction finding the value 13, which

represents the amount of cans lost in the process, as can be seen in the discussions of

the students below:

Student 1: The recycling process is per pound.

Student 2: So this [. . .]
Student 3: One kilogram.

Student 2: That’s not what he wants? That [is] after recycling, how can [we do

that]?

Student 1: Oh! 62.

Student 2: That’s it.
Student 4: And 75? Are 75?

Student 1: Look 75 every 75 units you produce 62 cans. Got it? Student 4?

Student 2: So, ask him to come here to explain to us. I think he means that [. . .]
Student 1: How many times [. . .] of 62 [. . .] Then we will reduce how many?

From 75 [. . .]
Student 4: In this case, it’s 13, out of 75 to 62 [. . .]
Student 1: 13, from 62 to 75 will decrease of 13, by 13, won’t it? [Doing the

calculations on the notebook.]

Student 1: We made the following calculation here, as it is shown here in the text

that 75 units of cans with 75 recycled cans, 62 cans are done. We made

the following calculation: gave 75 minus 62 is 13. So this 13 is what

we were decreasing from each [process] of can recycling . . . here was
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a process according to the second, third, fourth, and fifth processes of

recycling, just 10 cans left so these 10 cans can still be reused so in

[this] case, we have six processes of recycling.

In this excerpt, first the students try to understand how the amount of cans decays

after the recycling process. They concluded that this decay occurs in a linear

manner, that is, every recycling 13 cans diminish. Considering this strategy, they

began to sequentially subtract the value of 13 each result found, disregarding that

the loss would not be represented by an integer, for a variable value represented by a

portion of the whole, which would change according to the number of cans to be

recycled. Thus, this loss could be better represented by percentage, that is, a

percentage of loss or recovery of material.

Following Silva and Barbosa (2011), one can say that the strategy used by the

students in the calculation of the loss of material of the cans in the recycling

process, shows that somehow the “real” problem situations brought to the students

seem to be approached by being structured in terms of objects of school mathemat-

ics. In other words, phenomena external to school mathematics seem to be

converted into objects of school mathematics. For the authors, this situation

characterises the formatting power of mathematics, in other words, students use

mathematical objects of the school context to create representations of some reality

(Skovsmose 1994). These representations are structured by mathematical objects

used. In the activity analysed, for example, the calculation of the amount of cans

lost in the recycling process was directly related to subtraction, considering that the

students were working with the idea of loss. According to Skovsmose (1994), the

formatting power of mathematics is also revealed in the process of representing a

certain phenomenon.

To help students understand this situation, the teacher decided to use a sheet of

paper to explain that the loss was given by the recycling ratio, which was deter-

mined from the initial value that was being recycled. At this point in time the

teacher tore off a part of the sheet that would represent a loss in the recycling

process. With the part remaining, he asked the students, if the piece was recycled

again, would the loss of the whole be the same. Students said “No”, because the

whole had diminished in size, then the loss would be smaller than the previous one.

After this explanation, groups realized that the loss of recycling material was

proportional to the amount of recycled material and that this quantity could be

represented by a percentage. Continuing this activity, groups were able to find the

loss value in the process, thus completing the partial resolution of the problem

posed.

To bring students to this realisation, the teacher adopted a style of open com-

munication (Barbosa 2011), since he formulated an approach that challenged and

encouraged the students to analyse the strategy adopted by them for resolving the

situation. For Oliveira and Campos (2007), conducting modelling activity in prac-

tice demands certain teacher strategies and actions to be adopted for facilitating this

environment. This moment shows how the teacher can play the role of mediator
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between the mathematical objects and their application in mathematising, which

strengthened the confidence of the students.

After finding the result of the maximum amount of process 1 kg of aluminium

cans could suffer, the students worked on solving the other question posed to them

which aimed to find the cost value benefit to the collector of the cans. With

calculations they found a value which was too low and not expected regarding

this cost benefit, which generated a great discussion between all members of the

groups, who considered it the value received by the collector. Also at the time, the

experiences and knowledge of students about the situation with reference to reality

was evident in their exchanges as can be seen in the following:

Student 2: And one thing is that the tin is varied [in] value, [you] have the times

that the cost is higher and have times cost is lower.

Student 3: And is it?

Student 2: Yeah, and in the can of iron, of iron a kilo is five cents.

Student 3: And why does it cost [. . .] this costs R$3.50?
Student 2: There is a party that can increase R$0.10. Now that one is the recycling

process that lasts longer, of aluminium, it costs [. . .] R$2.50. so in the

parties [time] it increases.

Student 2: Hey teacher, but the price isn’t fixed because the can, there is a kind of
can that at parties time costs R$3.50. When it’s not a period of parties

it costs from R$2.00 to R$2.50.

In this excerpt, student 2 reported how the trade of purchasing and selling cans

fluctuates as there are price variations and weight changes with metals, such

knowledge comes from her everyday life experiences. This was a time of many

discussions, where students wanted to express their opinions on the topic. Thus, it

was necessary to ask these students to continue the activity and discussion of these

results at the presentation time.

It is noted at this point that the social system offered students a symbolic

representation of a certain reality, which allowed for the interpretation and organi-

zation of data gathered from the real world experience (Lerman 2001). This

reinforces the point of Araújo and Barbosa (2005) that upon entering the school

the students consider the parameters of school practice, but school fails to consider

their other experiences.

At the end of the first meeting students were asked to organize group results for

presenting at the next meeting. At this point, we wanted to know how those

presentations would be planned and how we could organise and enable the partic-

ipation of all groups involved.

For the classes on the second day, the seating in the room was organised in a

semicircle in an attempt to create opportunities for the participation of all. Initially,

the teacher took up the theme of the work with the presentation of the first group.

The solution for this group of the first question generated some discussion, since the

group of students chose to solve it by finding the percentage of utilization, whilst

others used the percentage representing the loss. This provided an opportunity for

the groups to discuss their findings on the first question. At the end of the
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presentation the teacher asked which of these solutions could be considered a

recovery or a loss. The teacher then showed the students both solutions gave the

same end result.

In the second presentation, the group discussed the calculations realised to find

the value received by the collector. This generated much discussion in the room as

the students judged the result to be a very low value. The students mentioned

reports of people who worked as scavengers, and the strategies they used to change

the weight of the cans, which favoured an increase in the amount received. A

student reported that he puts small stones inside the dented can to change the

amount of weight during weighing.

47.4 Discussion and Final Considerations

During all stages of the development of the activity, full student involvement was

evident, which may have been due to the topic being part of students’ interests and
part of their everyday life as found by others (e.g., Yoshimura and Yanagimoto

2013). On the other hand, the difficulty of students interpreting the information

contained in the activity was striking. In the development of the activity it was

realised that students could not understand how to interpret the situation in math-

ematical terms in order to solve the questions proposed in the activity. This finding

has been reflected in many contexts with beginning modellers and is an exempli-

fication of the paradox raised by Niss (2010, p. 57), “How can students learn to

anticipate putting mathematical knowledge to work in modeling before they have

learnt modeling?”

This difficulty in translating the problem situation into mathematical terms is,

according to Silva and Barbosa (2011) and others (e.g., Stillman et al. 2010),

because it is a far more complex modelling process and because of the difficulties

presented by the students in the interpretation and explanation of the data. Silva and

Barbosa, in keeping with the Niss (2010) paradox, believe that this is due to lack of

experience of the students, who often cannot distinguish which data should be used

and how to use them for the development of the resolution of the situation. In this

case study the teacher adopted the pedagogical practice of taking on the role of

mediator between the real world and mathematical objects used by students in

representations of elements of it to encourage students in refining their

mathematising.

In terms of satisfying the objective of conducting this research, namely to

investigate the possible contribution of a modelling environment to use of mathe-

matics by youth and adults to study and understand phenomena in other disciplines,

as well as making room for the inclusion of extra school knowledge for students, we

note that the modelling environment allowed the teacher to develop activities that

allowed students to develop an understanding of how mathematics is used in social

practices (Barbosa 2003). This modelling perspective—called socio-critical by

Barbosa (2003)—places an emphasis on the analysis of the role of mathematics
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in social practices and how to nurture the performance of the student as a member of

society in social debates. Thus, we have demonstrated through this case study that

modelling activity in the context of an educational proposal for EYA enables the

students to work with their life experiences that can both contribute to the process of

acquiring knowledge and to providing learning. Additionally, the activity has

allowed us to learn how to reorient the teacher’s pedagogical practice in EYA

aiming at literacy and mathematical literacy as an enabler to reduce the distance

between interdisciplinary knowledge and appreciation of students’ previous expe-
riences of the particular teaching context and how they perceive and relate math-

ematics in society experiences with the school knowledge environment.
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Chapter 48

Pre-service Mathematics Teachers’
Experiences in Modelling Projects from
a Socio-critical Modelling Perspective

M�onica E. Villarreal, Cristina B. Esteley, and Silvina Smith

Abstract Partial findings from a research project aimed at characterising

experiences in mathematical modelling (MM) projects carried out by pre-service

mathematics teachers are reported. The non-mathematical themes selected and

the mathematical content used in designing and developing free MM projects are

reported. Aspects of the socio-critical modelling perspective present in such

projects are also analysed. This analysis revealed that: (a) the selected themes

could be categorized as: socio-economic, ecological, personally relevant, didactical

and mathematically focused; (b) the mathematical content involved in the projects

were associated with statistics, probability, and analysis. The study of a single

project about trash and recyclable collection reveals characteristics of socio critical

modelling perspective, difficulties of the MM process, and educational reflections.

48.1 Mathematical Modelling and Teacher Education

The incorporation of applications of mathematical models into real world problems

(in the sense of Blum et al. 2003) or the development of modelling activities in

mathematics classes at different educational levels is a trend that has spread in

recent decades in the international context (Kaiser et al. 2013; Stillman et al. 2013b).
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More recently, extracurricular modelling events for students have gained popularity

in some places (Stillman et al. 2013a). Although there is agreement that modelling

should play an important role in mathematics education, resistance and obstacles

related to MM are still present in school and university (Silveira and Caldeira

2012).

In our local context,1 various (national or state) curriculum documents give

some recommendations for working with MM at secondary school level and during

mathematics teacher education. In the Curriculum Design for Secondary Education

of the state of C�ordoba (Ministerio de Educaci�on del Gobierno de la Provincia de

C�ordoba 2011), it is suggested to consider modelling for solving problems, external

and internal to mathematics and to encourage the study of limits of the mathemat-

ical model to explain a problem or phenomenon. The curriculum documents also

emphasize the relationships between the real world and mathematics through

modelling processes; however, most of the activities that are found in textbooks

and classrooms are illustrative applications (Muller and Burkhardt 2007) to solve

semi-real problems (Skovsmose 2001). Although there are some local experiences

at secondary schools working with open MM projects (Villarreal et al. 2010;

Villarreal and Esteley 2013), the engagement of teachers, pre-service teachers or

students in active modelling is still scarce.

Many mathematics educators believe pre-service teachers should experience

MM activities if we intend that modelling become an extended trend at school

level (Doerr 2007; Lingefjärd 2007; Widjaja 2013). According to Doerr,

“Pre-service teachers need to encounter modelling experiences that provide for a

range of contexts and tools and that engage them in meta-level analyses of their

modelling activity” (p. 77). Lingefjärd states that “in order for modelling to become

a part of a teacher’s functioning and practice, experiences provided for them in the

course of their own mathematics learning should assist them in constructing an

image of the teaching and learning that is enhanced by modelling” (p. 477). In

agreement with these ideas, Widjaja accomplished an exploratory case study with

Indonesian pre-service teachers to build awareness of MM, having in mind to

provide teachers with knowledge and skills to make possible student-centred

lessons.

If we turn our attention to teacher education in Argentina, we can find statements

coming from recent official documents, espousing the importance and necessity of

introducing MM activities during initial education of mathematics teachers.

Meanwhile, the teaching of mathematics at our university for pre-service teachers,

usually gives little room for active modelling. It seems that in order to turn around

this situation and give account of the curriculum demands, it is necessary to review

and act on teacher education.

1 In the Argentinean school system, even though there are national curriculum orientations, the

design and implementation of the curriculum are the responsibility of each state.
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In agreementwith the ideas ofDoerr (2007) and Lingefjärd (2007), and considering

our local context we decided to propose a MM scenario in which pre-service math-

ematics teachers have the opportunity of experiencing a completeMMprocess.AMM

scenario is characterised by the presence of a set of spaces, situations, conditions,

materials, actions and interactions that give sense to the MM process transforming it

into an experience that aims to introduce into educational contexts MM as a pedagog-

ical approach and as a mathematical activity (Esteley 2010).

In our proposal we promoted the creation of MM scenarios characterised by:

(a) the open nature of the activities, due to the free choice of a real world theme to

study and posing of questions, and the absence of pre-determined mathematical

content to be taught; (b) the interdisciplinary nature of the work; (c) the promotion

of reflections about mathematics itself, the models created, and the social role of

mathematics and MM, and (d) the domain of the whole modelling process. The

creation of such scenarios usually encourages and promotes the treatment of critical

social aspects. Modelling activities with these characteristics, can be recognized as

belonging to the socio-critical modelling perspective (Kaiser and Sriraman 2006),

to which our work belongs. For these authors, such a perspective “emphasises the

role of mathematics in society and claims the necessity to support critical thinking

about the role of mathematics in society, about the role of and nature of mathemat-

ical models and the function of mathematical modelling in society” (p. 306). A

main teaching objective for this perspective is the promotion of critical thinking and

students’ debates during MM. This particular perspective has roots in Brazil where

it is closely related to the ethnomathematics movement. In addition, the socio-

critical perspective is strongly related to thematic project work as developed by

Skovsmose (1994, 2001) within the framework of Critical Mathematics Education.

Literature within this perspective is increasing in the international mathematics

education community. Some examples are Araújo (2012), Greer et al. (2007), Julie

and Mudaly (2007) and Barbosa (2006) that bring discussions about learners’ or
teachers’ engagement with the MM of social issues and how modelling could be

used as a tool for critical analysis of various unjust or discriminatory situations or

social problematic issues in their contexts. Our work adds to the socio-critical

perspective considering the study of MM scenarios for pre-service mathematics

teachers, differing from the provision of MM experiences by other teacher educa-

tors such as Widjaja (2013) by focusing on development of this perspective in the

pre-service teachers.

In summary we decided to create a MM scenario for pre-service teachers and

consider such experiences from an investigative point of view with the aims of

(a) analyzing mathematical content that they used to create a mathematical model,

the thematic issues that they selected in designing and developingMM projects, and

the relations with social concerns, and (b) studying characteristics and difficulties of

the socio-critical modelling perspective present in the modelling projects. Regard-

ing this last aim, in this chapter we will restrict the analysis to one particular

modelling project due to space limitations.
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48.2 Methodological Approach

In order to give account of our aims, we developed a qualitative research, based on

data from a larger study on the professional development of pre-service teachers in

modelling scenarios. In this chapter, we focus on the analysis of 11 MM projects

developed by pre-service teachers from the Faculty of Mathematics, Astronomy

and Physics at the University of C�ordoba (Argentina). In this institution, the

graduate course lasts 4 years with 66 % of the syllabus being mathematics courses

taught by mathematicians. The remainder of the course deals with educational

issues, including mathematics education. During the mathematics courses, the

pre-service teachers do not work with authentic MM processes. Mainly, these

courses focus on pure mathematics with few applications of ready-made models

to extra-mathematical contexts.

The context for our research was within a regular annual course on mathematics

education, conducted by two teacher educators, always one of them being a

researcher of our team. During this course, the teacher educators and pre-service

teachers discussed several trends in mathematics education: problem solving,

critical mathematics education, uses of technology in mathematics education,

ethnomathematics and mathematical modelling. With the aim of allowing the

pre-service teachers to experience a complete process of MM, we asked them to

develop, in small groups, MM projects starting from a free choice of a real world

theme of interest. At the end, they had to elaborate a written report and they had to

present their work to the whole class. The decision for carrying out MM activities in

a course of mathematics education was motivated not only by the richness and

opportunities that such an environment opens to the future teachers, but also by

consideration of the future curriculum demands that they would face as mathemat-

ics teachers. This experience was repeated with three cohorts of pre-service

teachers, 2010–2012.

Our main data sources were the written reports produced by 11 groups of

pre-service mathematics teachers belonging to cohorts 2010–2012, the videotapes

of oral presentations produced in 2011 and our field notes.

In our analysis, we first focus on the 11 modelling projects considering the

following dimensions: the mathematical content that the pre-service teachers used,

the thematic issues, and their relations with social problems. Finally, we study in

depth a modelling project developed by one group according to the socio-critical

modelling perspective. We also refer to some emergent difficulties and challenges

which are relevant for the future professional practice of the pre-service teachers.

48.3 Results and Discussion

In order to present our results, we first offer a general analysis of the 11 modelling

projects. Later we focus on a particular project.
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48.3.1 The Mathematical Modelling Projects

From a general analysis of the data, specially the written reports, there was diversity

in the themes proposed by the pre-service teachers as well as on the issues that seem

to motivate the selection of these themes. In order to systematize the data, the

projects were first analyzed and then classified according to mathematical content

used, thematic issues and their relations with social concerns. Table 48.1 displays

the four main mathematical content areas that were evident in the 11 projects

considered. As the table shows, the pre-service teachers addressed their problems

appealing mostly to statistics, probability or analysis. Within these areas, in general,

only a reduced set of tools was used. The projects, in which statistics or probability

was used, were based on surveys and frequency tables. Those which appealed to

analysis, limited its use almost exclusively to functions fromℜ toℜ, mostly linear

or affine, although some other functions appeared: two variable affine functions in a

project about water harvesting in dry areas, exponential and logarithmic functions

in a project regarding investment recovery for a given business, and inverse

proportionality functions when trash and recyclable collection was studied.

A second analysis allowed us to classify the projects taking into consideration

the thematic issues selected by the pre-service teachers. We were able to distribute

the projects into five groups, as shown in Table 48.2. These categories were socio-

economic issues, ecological issues, personally relevant issues, didactical proposals

and mathematically focused.

When we related the themes and problems posed by the pre-service teachers

with social issues, we noticed that the projects included in the first two categories

had authentic social concerns. We infer this from the nature of the issues posed and

the ways the pre-service teachers analyzed these themes in their written or oral

presentations. The pre-service teachers who developed the project focused on lack

of water, considered such a question as a societal problem and they particularized

the study in a rural area of the state of C�ordoba which is characterized by serious

Table 48.1 Mathematical content in the projects

Mathematical content Pre-service teachers’ MM projects

Statistics Household electric energy consumption

Household water consumption

Probability Lottery games

Genetic transmission and human characteristics

Linear functions Waiting time at the university dining hall

Bottled gas supply in a countryside area

Soy consumption

Trash and recyclable collection

Non-linear functions Investment recovery for a given business (exp, log)

Trash and recyclable collection (f (x)¼ c/x)

Water harvesting in dry areas (function of two variables)

Linear programming Travel costs for end-of-year school trip
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problems of access to water. The constructed model was then critiqued on the basis

of the cultural, economical or natural conditions of the selected region. The

pre-service teachers who focused their study on issues related to ecological con-

science proposed a topic that can be considered open enough as it affects all

societies; however, they treated the issues from a local point of view. Whilst two

projects particularized the study on water or electrical consumptions in their homes,

the third one extended the issue, considering trash and recyclable collection in their

city (C�ordoba). This distinction conferred a greater relevance to this last project due
to the variety of data as well as to the implications of the results in terms of

proposals and critiques. We analyze this project in the next sub-section.

We observe that the themes selected highlight different perspectives and relation-

ships between pre-service teachers and the contexts that surround them. Some pro-

jects are tightly related to their everyday contexts whilst others broaden their local

perspectives and contexts. Some projects focus on micro aspects of society, whilst

others on macro aspects. These issues not only become evident in the type of selected

environments for the projects but also in the imposed conditions, the data collection

and the scope of their conclusions and proposals. These differences derived from the

commitment that pre-service teachers are able to establish with their own socio-

environmental contexts and with the ways they understand the ideas related to the

MM socio-critical perspective as treated during the mathematics education course.

48.3.2 The Project About Trash and Recyclable Collection

In this section, we concentrate on one particular case, a project related to trash and

recyclable collection. Such a project illustrates the MM process followed by a

Table 48.2 Classification of projects according to thematic issues

Thematic issues Pre-service teachers’ MM projects

Socio-economic The lack of water as a social issue

Ecological conscience Household water consumption

Household electric energy consumption

Trash and recyclable collection

A problematic that affects them personally or as a

group

Waiting time at the university dining

hall

Bottled gas supply in a countryside area

Human genes– Interactions

Soy consumption

Didactical: a teaching proposal Travel costs for end-of-year school trip

Mathematics Lottery games

Investment recovery for a given

business
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group of two pre-service teachers, Irene and Rose. We analyze a piece of their

project work. All figures and quotations used belong to the oral presentation that

they prepared to show their work to the whole class. This presentation was

videotaped.

Irene and Rose referred to the difficulties they had in selecting a theme and

posing problems to solve. They mentioned all the themes that came to mind as a

kind of “brain storm”: petroleum reserves and types of uses, car accidents, affor-

estation and deforestation, transportation, music and mathematics and trash and

recyclable collection, the last being the selected theme. The reasons for their final

choice were twofold: they recognized that recyclable collection has a social func-

tion and that it was a local problematic of our city, C�ordoba. After selecting the

theme, they posed several questions: “How much recyclable trash is collected per

day/week? Is it classified? What are the classes? How many people have this

service? Does everyone classify the trash?” They then looked for information to

answer their questions. Separate trash collection and the environmental and social

aspects related to it, including the benefits of recycling were investigated. They

interviewed an employee of the city government in charge of the city recycling

program and visited the website for this program. Finally, the results of the 2010

census of population and housing in C�ordoba were obtained.
Considering the questions they had raised, Irene and Rose were concerned with

the mathematical complexity that would be involved in their models. During their

oral presentation, they said that at the beginning of their project they wanted to

obtain a sophisticated formula, or to apply more complicated mathematics, not just

linear models. Then, after a very thorough search of the internet and discussion of

many issues concerning trash, they decided that the main aim of their project would

be “Modelling to raise awareness” and not modelling “to obtain a super formula”.

This decision is evidence of the pre-service teachers’ concerns with social issues

related to the trash. In this case, mathematics is subordinated to a social aim, it is a

tool to understand the phenomenon and think about it.

Considering all the data and information they collected, the pair raised the

following hypotheses:

• The inhabitants of C�ordoba aren’t aware of the amount of recyclable trash they

produce.

• The trash that one person produces, each year, is more than his own weight.

• A large percentage of trash that could be recycled is thrown away with regular

trash.

After establishing their first hypotheses, they considered the following data: the

city of C�ordoba had 1,329,604 inhabitants (2010 census); the inhabitants of

C�ordoba produce 1,500,000 kg of trash per day; 31 % of the population sort the

trash; 28 t of trash are collected per day. Based on these data, Irene and Rose raised

an additional hypothesis: Suppose that every person produces a similar amount of
recyclable trash. With this assumption and using all the available information,

Irene and Rose started to produce their linear models in the form of numerical

indicators, such as that shown in Fig. 48.1a, considering the quotient between the
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total amount of trash collected per day and the total population of the city of

C�ordoba. In this way, they obtained as a first numerical indicator: the inhabitants

of C�ordoba produce 1.3 kg of trash per day per person.

Figure 48.1b shows another indicator: if 31 % of population sorts the trash and

that means that we have 28 t of recyclable trash per day, then, supposing that every

person produces the same amount of recyclable trash per day, the inhabitants of

C�ordoba produce 90.32 t of recyclable trash per day. After this calculation, Irene

and Rose raised the following question: “Do you have any notion of how much is

90.32 t?” In order to answer this question, they made a video. The video presents a

visual representation intended to give a notion of what percentage of the recyclable

trash is being recycled in C�ordoba (see Fig. 48.2).
The video starts by proposing the viewer thinks of a 90 kg man. Under this

assumption, it would take 1,003 men to make 90.32 t. Then, a sequence of images of

“trash men” (men wearing trash) begins to appear up to 1,003 units. After that, the

following texts appear: “Only 31 % of those 90.32 t goes to recycle collection. The

rest goes to regular refuse collection”. Finally, the image of 1,003 trash men is

Fig. 48.1 Numerical indicators shown by Irene and Rose in their oral presentation

Fig. 48.2 The sequence of the video
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divided representing the percentage of recycled men with the final text stating:

“That means that only 311 ‘trash men’ are recovered and recycled. The remaining

692 men are thrown away as waste”. This video is a way of giving account of Irene

and Rose’s aim: modelling to raise awareness.

Irene and Rose concluded their oral presentation by saying that the theme they

selected had many possibilities to be treated at the school level. They also

previewed ways to continue studying the problematic of trash having in mind a

new aim: “Modelling to encourage waste recycling”.

During the analysis of Irene and Rose’s work, we focused on two main aspects:

(1) difficulties that they faced during the modelling projects and, (2) educational

reflections that they made when they were immersed in a modelling project.

Considering the difficulties, we could identify two. Firstly: the difficulty in selec-

tion of theme was evident in the way they presented this issue as a “Brain storm”.

The criteria for selection were related to social concerns. In their talk, they asserted:

“We will concentrate on a local problematic with a social function”. A second

difficulty is that the pre-service teachers’ strong mathematical background and the

institutional context imposed certain restrictions regarding what mathematics to

use. Irene said: “We thought that a model should be a complicated formula

involving many variables. It took us some time to understand that the phenomenon

could be described linearly. . .” From these words, we can infer that they felt that the

kind of mathematical content they were using was not at the level expected for them

by their mathematics teachers at the university. Regarding the second aspect, we

will use their own words to note educational reflections that they made while they

were immersed in a modelling project.

Rose: We were constantly moving from the role of students to the role of teacher.

As students, we were doing a project but, at the same time, we wondered

what may happen if we propose such a kind of project for a student (oral

presentation).

Irene: I also thought that this could be perfectly done with children in a much

more entertaining way than doing. . . those typical exercises of the

paradigm of exercise that don’t lead anywhere. . . I was interested in

the project because you can see the mathematics of reality, you can

interpret the mathematics in everyday reality. . . this is a critical reading
of everyday mathematics. . . of what we do everyday. . . and there, you

have the percentages (oral presentation).

The words of Irene and Rose illustrate a meta-level analysis of their modelling

activity focusing on their future activity as teachers. Their experience with model-

ling seems to provide a view on “mathematics of reality” and its relation with a

particular mathematical content (percentages). The reflection about their own

mathematics let them imagine possible and future learning contexts related to

everyday mathematics.
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48.4 Concluding Remarks

Considering the 11 modelling projects produced by the pre-service teachers, the

results have provided evidence and examples of the peculiarities of working in MM

scenarios in which the pre-service teacher has the opportunity to freely select

themes and pose problems. The different thematic issues considered for the MM

projects offer to future teachers conditions to think about the use of mathematics in

different real contexts, imagine MM scenarios for their future classes, and discuss

the role of mathematics to treat social concerns.

Considering the work done by Irene and Rose, we would like to remark that, as

other pre-service teachers in our study, they were able to build up a MM project

developed from a socio-critical modelling perspective. Such a project promoted

reflections about mathematics itself, the models created, and the social role of

mathematics. In order to build up the project, Irene and Rose had to overcome

two main obstacles: one of them was related to the selection of significant themes

and problems and the other one was associated with their experience as students in

the institutional context of the university. These obstacles were overcome when

they realized that they were having a new learning experience. The new experience

had to do with: (1) a new way of doing mathematics and understanding its

implications for the real world; and (2) the possibility of imagining themselves as

mathematics teachers.

Our research suggests that when pre-service teachers develop free MM projects

in the context of a regular mathematics education course, they are able to discuss

educational issues related to MM. Our MM scenario differs from other proposed for

university students, such as the one studied by Caron and Bélair (2007). In their

case, open-ended MM projects were carried out by the students as an assignment for

a MM course in which they worked with real world themes selected by the

instructor, and the focus was on the development of modelling competences

among the students.

In line with the ideas of Doerr (2007) and Lingefjärd (2007), we consider that

our findings bring evidence of the importance of MM experiences for future

teachers, such as the work of Widjaja (2013) also brings (although in that case

the pre-service teachers worked with a single assigned modelling task). The expe-

riences we report also contribute to the discussion of social issues related to

mathematics, which we consider is an important, but sometimes forgotten, dimen-

sion of mathematical education.

In summary, we can assert that experiences with MM during pre-service teacher

education contribute to the final educational aim of promoting and extending MM

as an important pedagogical trend and mathematical activity in school. In this

sense, although it is not the focus of this chapter, we would like to emphasize that

the MM experiences lived by our pre-service teachers encouraged some of them to

create didactical proposals with a different kind of open modelling tasks to carry out

during their supervised period of teaching practice at schools.
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Chapter 49

A Mathematical Modelling Challenge
Program for J.H.S. Students in Japan

Akira Yanagimoto, Tetsushi Kawasaki, and Noboru Yoshimura

Abstract We are in the process of carrying out modelling challenge programs for

junior high school and high school students in Kyoto for 3 years. The first year of

the program for junior high school students was carried out in February 2013. Two

courses which consist of scientific and social content were prepared in the program.

One course dealt with a problem concerning the phenomenon of a cart with a sail

rolling down a slope, and the other course dealt with a problem concerning the

income and expenditure of an electric power company. As a result, students showed

strong interest in mathematics and became aware of the possibility of applying

mathematics more freely to real-world problems.

49.1 Introduction

There are several challenge programs for mathematical modelling and application

being carried out around the world, for example, the mathematical modelling

challenge program in Hamburg University (Kaiser and Stender 2013), HiMCM in

U.S.A., A-lympiad in the Netherlands (Andersen 1998), A B Patterson Gold Coast

Modelling Challenge (Stillman et al. 2013), and so forth. Galbraith et al. (2010)

took an analytical approach to the design and selection of modelling and applica-

tions tasks that involve topics found to interest adolescents in secondary school.

Maaß (2010) also developed a comprehensive classification for modelling tasks.
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These give us many suggestions to consider when designing modelling tasks in

challenge programs for secondary students.

Yanagimoto (2003), Yanagimoto and Yoshimura (2001, 2013), Yoshimura and

Yanagimoto (2013) and Yoshimura (2015) have successfully introduced modelling

tasks into the classroom for Japanese secondary students which had social or

ecological content. However, the content of mathematical modelling is generally

not taught in school mathematics in Japan. Most Japanese students do not know the

term “mathematical modelling” or the concept. Of course there were no mathemat-

ical modelling challenge programs in Japan previously; but, the new Japanese

course of study attaches great importance to making use of practical mathematics

and mathematical activities. We think that mathematical modelling should be

taught in regular mathematics classes in Japanese junior high schools and high

schools, and that some challenge programs on mathematical modelling should be

prepared. Therefore, we planned to carry out modelling challenge programs for

secondary school students in Kyoto over a 3-year period. The first program for

junior high school students was carried out in February 2013. Two courses,

consisting of scientific and social content, were prepared in the program. The

detailed content of the program and the responses of the students participating in

the program will be discussed in Sects. 49.4 and 49.5.

49.2 Aims and Design of Teaching Units

Our aims in carrying out modelling challenge programs for Japanese students are to

clarify what mathematical modelling problems they could concentrate and work on,

and what kind of mathematical modelling problems they are interested in, that is,

which do they prefer to solve, scientific problems or social problems. Furthermore,

we intend to investigate the perception of the students about mathematics, the

learning of mathematics and their interests and motivations through this modelling

challenge. This challenge program could allow Japanese teachers to recognize

mathematical modelling more widely. We intend to examine the relation of the

mathematical modelling in the challenge programs and the classroom in the future.

We considered the following when we designed the teaching units:

• It is possible for Japanese ninth grade students to work on the problems using

learnt mathematics.

• Students can perform multiple condition setting. The success of this technique

with Japanese students was demonstrated by Yanagimoto and

Yoshimura (2013).

• Students can carry out any actual experiments using graphic calculators in the

scientific course. Yanagimoto and Yoshimura (2013) have shown how graphic

calculators were useful enablers of students at lower levels of schooling being

able to treat more advanced mathematical models.
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• The problem is a contemporary serious problem in Japan in the social course.

This was the motivation for the choice of task in previous work (e.g., Yoshimura

and Yanagimoto 2013) which has been shown to motivate some students. It is

also one of the reasons students choose particular topics during modelling

challenges where the students choose the topic (Stillman et al. 2013).

For the first year of the program, the problems chosen related to a rolling cart and

the finances of an electric power company. The example of a rolling cart with a sail

is a classical physics problem, but it is easy for us to experiment under several

conditions in the scientific course. Furthermore, it can be regarded partly as a

quadratic function or a linear function. On the other hand the income and expen-

diture of electric power company is now a very serious problem, and many people

are interested in it especially in Japan.

Galbraith et al. (2010) outlined six principles as suitability criteria for modelling

problems, that is, relevance and motivation, accessibility, feasibility of approach,

feasibility of outcome, validity, and didactical flexibility. The problems we chose

for our two courses adopt most to these principles. Furthermore, Blum (2011)

stated, “By modelling, mathematics becomes more meaningful for learners” and

pointed out that “mathematical modelling is meant to help students’ to better

understand the world and to contribute to an adequate picture of mathematics,

and so on”. These teaching units are chosen under the consideration of such an aim,

though it is only a short 1 day program and not sufficient to ensure the sustainability

of this outcome (see Bracke and Geiger 2011).

49.3 Framework of the Challenge Program in 2013

The challenge program was carried out for the junior high school ninth grade

students on Saturday February 16th 2013 at Kyoto University of Education. Eight

students from two schools in Kyoto participated in the challenge program. Two

teams, one consisting of five students, tackled the scientific problem, and one team,

consisting of three students, tackled the social problem.

This was a 1-day challenge program and took 5 h. Students worked on the basic

challenge activities for 2 h in the morning and the advanced challenge activities for

2 h in the afternoon. Two teachers supported their activities during these two

program courses and some university student staff members helped with the

challenge program.

The students in the scientific course carried out a physics experiment with

PAScar Dynamics Systems which combines a high quality aluminium track with

polycarbonate plastic carts, Graphic Calculator fx-9860II, Data Analyzer EA2000

and Motion Sensor EA-2. When a cart rolled down a 1.81	 slope, the time and

distance were measured and then students tried to analyze the functional relation.

On the other hand, in the social course the students used only simple calculators.

In this course, students took on the challenge of mathematical modelling regarding
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the problem of income and expenditure of an electric power company. Students

needed to use calculators to deal with the complex calculation.

49.4 Description of the Modelling Examples

49.4.1 The Scientific Problem Course

Experiment A Firstly we treated a quadratic function approximation in regards to

the phenomenon of a PAScar rolling down the slope naturally. The incline of the

slope is about 1.81	. Students were asked to examine the relation between time

(x second) and distance (y metre) when a PAScar rolled down the slope.

In experiment I, they measured the change in time and distance when the cart rolled

down for a distance of 2 m. The students drew the graph from the data and

mathematized the graph. The students were required to answer the following

problem:

PAScar Task A

When the cart rolls down the slope in the same condition, how do you predict

the following items (i) the distance the cart rolls in 5 s (ii) the time it takes for

the cart to roll 6 m?

In experiment II, after the students made a mathematical prediction, they

performed a measurement experiment in which the cart rolls 6 m. They confirmed

how big the error was and how accurate the prediction was. Figure 49.1 shows the

graphs of experiment I and II.

Experiment B Secondly, we took up an experiment that examined the relations of

time (x second) and distance (y metre) when the PAScar with a 25 cm by 25 cm

square sail rolled down a slope. In experiment III, students measured the time and

distance as the cart rolled down for a distance of 4 m. The students drew the graph

from the data again and mathematized the graph. The students were required to

answer the following problem:

PAScar Task B

When the cart rolls down under the same conditions, how do you predict the

following items (i) the distance the cart rolls in 7 s (ii) the time it takes the cart

to roll 8 m?

In experiment IV, after the students made a mathematical prediction, they

performed a measurement experiment in which the cart rolled 8 m. In addition,
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they confirmed how big the error was and how accurate the prediction was. In this

case, the teaching staff helped the students with a stopwatch and measured the time

manually, because the motion sensor could not measure such a long distance.

Figure 49.1 shows the graphs of experiments III and IV. Figure 49.2 shows a

diagram of the experiments.

For PAScar Task A, one group came up with the formula y ¼ 0:15x2 þ 0:3, and
predicted 7.56 m for (i) and 7.16 s for (ii). Another group came up with the formula

y ¼ 0:164x2 þ 0:25. For PAScar Task B, at first, the students expected that the

curve of the graph would become gentler than in experiment A, and supposed that

the relation formula becomes the function y ¼ ax2 þ b. However, they concluded

that the graph might not show a parabola because the value of a became smaller due

to air resistance as the value of x became bigger. The students did not think that the

graph was divided into two parts and that the first half looked like a parabola and

that the latter half was similar to a straight line, though we teachers assumed so.
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Fig. 49.1 The graph of experiments I, II, III and IV
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49.4.2 The Social Problem Course

In the second course, firstly students studied how to solve the following Home
Electricity Generation Task concerning the home generation of electricity from

sunlight for about 2 h in the morning.

Home Electricity Generation Task

In Giraud’s house, the monthly average electricity consumption is 500 kWh,

and the monthly electricity bill is 12,000 yen. The electricity consumption

during the daytime is between 20 % and 30 % of the total. His family talked

about energy saving and made a plan to attach 24 pieces of 190 W sun panels

with an output of 4.56 kW this month for a cost of two million yen for

equipment. In the case of the Giraud family, the subsidies from the state, the

prefecture, and the city amounts to 400,000 yen. The electric power company

buys the excess electricity generated during the daytime for 42 yen per 1 kWh

for the time being. There is no battery charger. As for the total sum (including

the cost of equipment) of the electricity bill, how do you think it will change?

1. In the following two cases, draw graphs for the electricity bill y yen after

x month, and compare the two graphs:

(a) when they do not attach the sun panels

(b) when they attach the sun panels.

2. How many months after the installation of the solar panels will the total

sum of the electricity bill become lower than before the installation?

Secondly, in the afternoon the students worked in groups on the following

Problems A, B, C of income and expenditure of the electric power company

sequentially.

Electric Power Company Finances

Real Situation: Electric power company K generates 150 billion kWh of

electricity a year. 30 % of this is generated by photovoltaic power generation

(continued)

y m

Motion senser

Cart with a sale
start

0.2 m rolling

x  sec

0 sec

Fig. 49.2 The diagram of experiments III and IV
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and bought by electric power company K for 42 yen per 1 kWh. 70 % is

generated through thermal power generation with a fuel cost of 7.4 yen per

1 kWh. In addition, it costs 1,200 million yen a year for other expenditures

(personnel expenses, cost of equipment, etc.). On the other hand, they sell

40 % of the annual generation for 20 yen/kWh to general families, and sell the

remaining 60 % for 12 yen/kWh to businesses.

Problem A: When there is a change in income:

1. How much is the annual income and expenditure settlement of accounts?

2. If we change only the general home sale rate to x yen/kWh and the

settlement of accounts is y 100 million yen, what will the function be?

3. If we change only the sale rate for businesses to x yen/kWh and the

settlement of accounts is y 100 million yen, what will the function be?

4. Company K raises the price to x yen/kWh for general families and the sale

rate to y yen/kWh for companies, and expects the annual accounts to be

zero. What is the equation? What kind of price rise would you suggest?

Problem B: When there is a change in expenditure:

1. When the other expenditures are reduced by half, what percentage of

photovoltaic power generation will be needed for getting rid of the deficit?

2. When the other expenditures are reduced by 25 %, what should the

purchase price of photovoltaic power generation be to cancel the deficit?

3. Let the other expenditures be reduced x % and the percentage of photo-

voltaic power generation be y %. What is the equation for cancelling the

deficit?

Problem C: When we change both the conditions of the income and the

expenditure, suggest your plan for breaking even.

As for Problems A and B students had an animated discussion and were able to

find the solutions enthusiastically in a group. Due to the complexity of the prob-

lems, they sometimes seemed to fall into a panic in the process. However, they

patiently wrestled with the problems and were able to come up with the answers.

For Problem C, one group of students produced the following analysis:

The current deficit is 1,587 billion yen. Items suppressing expenditures are the

photovoltaic power generation purchase price of 42 yen/kWh and other expendi-

tures of 1,200 million yen. The students supposed a 30 % cut to be the limit of the

other expenditures. As for increasing the income, the only method is to raise the

sales prices. Fixed are the total power consumption of 150 billion kWh, the selling

ratio 2:3 between general families and businesses, and the fuel cost of 7.4 yen/kWh.

Let the selling price for general families be a yen, the selling price to businesses
be b yen, the photovoltaic power generation purchase price be x yen/kWh, and the
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ratio of the photovoltaic power generation be y. Then we could formulate the

following equation:

600aþ 900b� 1500 1� yð Þ � 7:4� 1500xy� 12000� 0:7 ¼ 0

that is 2aþ 3bþ 37y� 5xy ¼ 65

Here we suppose that y¼ 35, a¼ 28, and b¼ 18. Then x¼ 33. (omit it after this)

49.5 Response of the Students

Eight students participated in this modelling challenge at Kyoto University of

Education. The perception of the participating students was examined by carrying

out a pre-test before this challenge program and a post-test afterwards. The tests

showed the following results.

Reasons for Participating and Satisfaction Afterwards Four students participated

because of recommendations by teachers, two students responded that they were

interested in this program, and the remaining two students participated because of

recommendations by friends. However, all students stated that it was very good to

participate in this challenge program. Some student responses were:

“Because modelling is usually not taught in school and we learned a lot from

today’s experience.”
“Because new discoveries were made when we made numerical values through real

experiments and not through figures in text books.”

“I was able to sense the applied power of mathematics firsthand.”

Purpose of Learning Mathematics Six students liked mathematics, so most of the

participants were interested in this challenge program. We examined the students’
attitudes regarding the benefits of learning mathematics before the challenge. Seven

students considered mathematics to be ‘training of the thought’, five students chose
‘enjoyment’ and ‘necessity for entrance examination’, four students chose ‘benefi-
cial for future career’, and three students chose that it was ‘cultural’. In our past

examination of ninth grade students in a national school, which consists of top half

students, the percentage of students who liked mathematics was approximately

30 %, the percentage of students who dislike mathematics was approximately 30 %,

and the percentage of student who said they neither like nor dislike mathematics

was approximately 40 %. So it appeared that all eight students who participated in

this challenge program had a favourable attitude toward mathematics unlike what

might occur in a typical classroom.

Usefulness of Mathematics The number of students who answered that mathe-

matics was very helpful when applied to a real-life problem increased to six after

this challenge, as opposed to four students before this challenge. Before the

challenge some students said: “We can’t make use of what we learned in
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mathematics in our everyday life”, or “I think that there is a limit to what we are

learning”. But after this challenge they said, “By expressing things in formulae,

mathematics is helpful for us to think about things logically”, “I realized that I could

use mathematics in today’s example and even in other cases”, “I think that I can

understand problems better with a knowledge of mathematics”, and so forth.

Interest in this Challenge Program All the students who participated in this

mathematical modelling challenge stated that it had been a very good experience.

Typical responses were:

“I was able to think by myself and was able to present my thoughts with my

friends.”

“I was able to come up with an answer after having thought it through thoroughly.”

“I was able to feel my ability to apply mathematics.”

“We usually do not readily have such an opportunity and we were able to learn a lot

through today’s experience”.

In addition, almost all the students were very interested in the challenge of

solving problems.

Image of Mathematics The images that many students generally have of junior

high school mathematics in Japan were as follows: “Because we work on problems

with only one concrete answer, we can develop our ability to think, but we don’t
acquire much social application ability”, “Mathematics in junior high school is the

foundation of high school and university”, “It is something which just cannot be

applied to a real problem”, “Its practical use is limited”, and so forth. However,

after this modelling challenge, the students’ impression of mathematics was

transformed:

“I realized that mathematics is something you adapt and apply to problems and that

I didn’t have the ability to do so. It was interesting and I was able to develop my

ability to apply mathematics and enjoy it at the same time.”

“At first, I felt it would be impossible, but I was able to think from various

viewpoints. Coming up with new ideas was really enjoyable.”

“Though I was working on ‘a function’, I really didn’t feel as if I were. I felt that this
was the mathematical view and way of thinking. I am happy that I participated in

this program.”

49.6 Conclusion

In Japan, it is difficult to press ninth graders to participate in a mathematical

modelling challenge program, because they are busy studying for entrance exam-

inations, do not understand mathematical modelling and do not have any back-

ground at all in mathematical modelling. However, it was confirmed that such a

program was effective in improving the perception of mathematics by junior high

49 A Mathematical Modelling Challenge Program for J.H.S. Students in Japan 587



students. In other words, they realized that mathematics becomes more useful when

dealing with real-world problems and that they can use mathematics more freely.

It was not possible to clarify what mathematical modelling problems students

could concentrate and work on, or whether they prefer to solve scientific problems

or social problems, because of too few participants in the program this time.

However every student concentrated and worked on problems given in both

courses. So it is thought that the four points we considered when we designed the

teaching units were effective. Furthermore, it was clarified that it is possible to carry

out a day long program of the mathematical modelling challenge in Japan on a

holiday. That will be generally better for eight or tenth grade students, because there

is an entrance examination for ninth grade students in Japan.

It became clear through the scientific course that Japanese students are not used

to dividing a phenomenon into its every domain and considering each by an

approximate function. So we suggest teachers should handle such learning activi-

ties more in regular mathematics lessons. This is an important modelling skill, but

there is insufficient teaching of this skill in Japan. We generally have to handle

algebraic expressions including many variables as in this social course while we

work on modelling tasks. Therefore it is clarified that more complex algebraic

expressions should be handled in mathematics classrooms.

We intend to open the program to tenth grade students and carry out this

mathematical modelling challenge program again, and investigate problems that

occur when conducting this type of program in Japan.
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Modelling and Applications in the Lived
Environment



Chapter 50

Modelling the Wall: The Mathematics
of the Curves on the Wall of Colégio
Arquidiocesano in Ouro Preto

Daniel Clark Orey and Milton Rosa

Abstract In this chapter, the authors share results initiating from a conversation

during a walk along a street in Ouro Preto, in the state of Minas Gerais, Brazil. The

simple observation of a common everyday phenomenon and its mathematical

potential initiated a debate that turned the observation into an exploration of the

mathematics inherent in a common architectural detail. There are many similar

situations in any city that can easily be used to encourage conversation, develop

models, and explore the relationships between mathematics, procedures, and prac-

tices developed by members of a community; in so doing, the authors of this chapter

studied mathematical models of the curves along a brick wall and sought to verify if

these curves were related to exponential, parabolic or catenary curves.

50.1 Introduction

As a visiting professor and now a professor at the Universidade Federal de Ouro

Preto, professor Orey began a project which has come to be known as the Trilha de
Matem�atica de Ouro Preto (Ouro Preto Mathematics Trail). The project began in

2005–2006 during which time the Prefeitura (City Hall) of Ouro Preto developed a

program called O Museu Aberto (The Open Museum) that was designed to encour-

age people to take pride in their city. In this program, the city developed historical

routes that encouraged people to walk in different neighbourhoods of the city and to

read the informative plaques placed on important homes, structures, buildings, and

historical points of interest throughout the city. Figure 50.1 shows the view of Ouro

Preto, in the state of Minas Gerais, Brazil.
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In 2005, a course on mathematical modelling was taught at the Universidade
Federal de Ouro Preto by Prof. Orey who had been documenting numerous

opportunities for ethnomathematics and modelling research. In collaborating with

university students and with the Ouro Preto Municipal Schools, an interesting

pattern was noticed on the wall of the Colégio Arquidiocesano along Rua

Alvarenga. The observation of the curves on this wall created potential for an

interesting debate that quickly turned this observation into an exploration of the

mathematics inherent in a common architectural detail.

There are many similar situations that can be used to encourage the development

of models to explore the relationships between mathematical ideas, procedures, and

practices developed by the members of a community to academic mathematics

(D’Ambrosio 1990). This context allowed us to develop models related to the

curves along a wall of a school and to verify if the shapes of these curves were

related to exponential, parabolic, or catenary curves. The curves on the wall provide

an interesting insight into the mathematics of an architectural feature. Figure 50.2

shows the curves on the wall of the Colégio Arquidiocesano.

In this context, mathematical modelling is the study of problems or situations

taken from reality for understanding, simplification, and resolution with insights for

a possible forecast or modification of the studied objects (Bassanezi 2002). Here,

the learning of mathematics is not unlike that of learning a second language, and the

development of mental concepts that incorporate individual reality and context

(Rosa and Orey 2007). Thus, any study of mathematical modelling represents

a powerful means for validating contextualized mathematical situations. This

perspective forms the basis for significant contributions of a Freirean-based math-

ematical perspective in re-conceiving the discipline of mathematics in a pedagog-

ical practice.

Fig. 50.1 View of Ouro Preto (Source: Daniel C. Orey)
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50.2 Mathematical Modelling and Its Relation
to the Community Context

An effective mathematics learning environment encourages deep understanding,

which allows users to debate and interpret their own ideas and findings. Previous

experiences that students possess take-on new forms of knowledge by evolving new

and increasingly complex contexts, ideas and procedures as they learn to solve

problems that exist in their own communities (Rosa and Orey 2010).

This often stands as a creation incorporating the historical-cultural nature of

mathematical concepts, by assisting educators and students to reflect in context on

the mathematical processes that they use (D’Ambrosio 1990). As they gain more

confidence in developing new ideas for themselves, they show the presence of

mathematics in their daily lives through dialogue and respect. The construction of

mathematical knowledge must incorporate situations, problems, and phenomena

that occur in the cultural context of the school community (Orey 2000).

50.2.1 Ethnomodelling: The Cultural Aspects
of Mathematical Modelling

Studying the mathematical action on a system allows it to become an object of

critical analysis (Bassanezi 2002). The process by which we consider, analyze, and

make these critical reflections on a system is named ethnomodelling (Bassanezi

2002). This allows for the development of fluency in mathematics by acquiring

understanding, and representations of problems. The relations between systems and

Fig. 50.2 Curves on the wall of the Colégio Arquidiocesano (Source: Daniel C. Orey)
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their representations help in validating findings and occur through triangulation,

dialogue and ongoing analyses of models. In this regard, ethnomodelling is much

more than standard transference of knowledge.

The use of ethnomodelling as pedagogical action for the teaching and learning of

mathematics values students’ prior knowledge by developing their capacity to

assess the process of elaborating a mathematical model in its different applications

starting with their social context, reality, and interests (Rosa and Orey 2010). In this

regard, ethnomodelling is much more than the standard transference of knowledge.

Here, teaching becomes an activity that introduces the creation of knowledge. This

transformative approach in mathematics education is the antithesis of turning

students into containers to be filled with information (Freire 1970).

To pursue this direction, it is necessary to start with problems and situations

found in the day to day lives in the community. This approach allows educators to

develop skills as facilitators and to create conditions for increased involvement

making mathematics accessible for all (MEC 1996; National Council of the

Teachers of Mathematics 1989). It is important to emphasize that this process

enables learners to learn how to engage in a process of continual modification, to

alter their reflections, to develop mature arguments, to create ongoing analysis and

to develop solid conclusions regarding their models and allows them to experience

the scientific method within the context of learning mathematics.

50.3 Modelling the Wall: Searching for Mathematical
Models

What happened in Ouro Preto was something altogether surprising, and in the end,

the final results, important as they are, were eclipsed by the actual opportunity we

had to discuss and debate aspects related to exponential curves, parabolas, and

catenaries as we determined ways to relate functions to patterns found on the wall.

Not unlike archeologists or ongoing restoration efforts in Ouro Preto, as our work

progressed and the group had discussions as data were gathered, we worked on the

models and discussed mathematical concepts and patterns that many had never

taken much notice of along Rua Alvarenga.

By observing the architectonic design on the wall of the Colégio

Arquidiocesano, we were trying to relate these features to several curves. Initially,

we tried to check the similarity that seems to exist between these shapes and the

exponential curve when we considered the shapes on the wall as a whole. Further,

by analyzing these shapes, individually, we were trying to relate them to exponen-

tial curves, parabolas, and catenaries. Thus, in getting to the object of our study, it

was interesting to discuss if the curves had an exponential, parabolic or catenary

shape. In order to have the necessary arguments to answer this conjecture, some

mathematical models were elaborated and analyzed, and discussed.
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50.3.1 Data Collection and Mathematical Models

Curves were randomly selected on the wall of the school and an X-Y coordinate

system was constructed using string to determine the X and Y axes. After a brief

discussion, it was decided that the origin of the X-Y coordinate system would be

placed on the lowest point of one of the curves. At that point, there was no certainty

if the lowest point was the vertex or the apex of the curve. Figure 50.3 shows the

curve on part of the wall of Colégio Arquidiocesano with the strings that represent

the X and Y axes. The points placed on the selected curves on the wall were

organized in tables for further analyses. Table 50.1 shows the coordinates of the

points that were placed on the selected curve on the wall.

The first mathematical model elaborated was related to the adjustment of these

points to an exponential curve; the second model was related to its adjustment to a

parabola, and the third one to a catenary. On the other hand, we also obtained a

quadratic function (i.e., the graph with highest y-intercept) whose graph is also

similar to the graph of the catenary function. When we visualized the shapes in only

one part of the curve on the wall, we could observe the existing similarities between

the graphs of all the functions in the restricted domain. In this regard, after

examining the data collected when we measured various curves on the wall of the

Colégio Arquidiocesano and tried to fit them to exponential and quadratic functions

through mathematical models we came to the conclusion that the curves on the wall

best fit that of a catenary curve (Fig. 50.4).

Fig. 50.3 Curve on the wall of Colégio Arquidiocesano with the string X and Y axes (Source:

Daniel C. Orey)
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50.4 Similarities and Differences Between Parabolas
and Catenaries

After the students’ reflections on the elaborated models, we guided a discussion

about similarities and differences between parabolas and catenaries because these

curves are frequently used in architecture. For example, catenary shapes can be

applied in complex architectural buildings because they are very efficient in

carrying heavy loads while parabolic shapes are frequently applied in suspension

bridges because in general the roadway is very nearly a uniformly distributed load,

and each cable hangs down in a curve closely approaching that of a parabola. On the

other hand, we decided to not have a discussion about exponential curves because

they are mainly applied to exponential growth and decay such as population,

interest, and depreciation.

In this context, we discussed that parabolas and catenaries are two similar and

yet different curves. Both are symmetrical and have a cup shape; which goes up

infinitely on either side of a minimum value. In Figure 50.5, the left graph

represents the parabola and the higher right graph represents the catenary function,

graphed together here for readers to see their similarities and differences.

Table 50.1 Points placed on

the selected curve (Source:

Daniel C. Orey)

x (in metres) y (in metres) Points

�0.925 0.23 A (�0.925, 0.23)

�0.745 0.15 B (�0.745, 0.15)

0 0 C (0, 0)

0.7 0.125 D (0.7, 0.125)

0.91 0.2 E (0.91, 0.2)

Fig. 50.4 Graph of the curve containing points in Table 50.1
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The mathematical equation y ¼ cosh xð Þ�1ð Þ
cosh 1ð Þ�1ð Þ is the hyperbolic cosine function of the

catenary. When we move the vertex from (0, 1) down to the origin, it agrees with

the parabola when x¼ 1. The catenary is just slightly more flat at the bottom and

rises faster than the parabola for large values of x. In fact, when we graph parabolas
and catenaries for larger domains, the catenary is different from the parabola.

While parabolas possess the shape of the curve y¼ x2, catenaries take on the

shape of the graphs of the hyperbolic cosine function y¼ cosh(x) graphs. Parabolas
and catenaries are mathematically distinct types of curves, with similar properties.

When both curves open upward, they have a single low point. In this case, the

lowest point of the parabola is called its vertex, and the lowest point of the catenary
is called its apex. They also have a vertical line of symmetry and appear to be

continuous and differentiable throughout the shape of the curve. Both curves have

slopes that are steeper as they move away from the lowest point where the curves

never become vertical lines and they may be generated by hanging a flexible cable,

wire, or chain between two fixed points.

The difference between the two curves is related to the ways that the weight is

distributed along the length of each cable, chain, string, or wire. For example, if the

weight is distributed evenly along the length of the chain, then the curve is a

catenary and if the weight is distributed evenly along a horizontal line, then the

curve is a parabola. The reason the St. Louis Gateway Arch, a hanging cable, or the

curves on the wall take the shape of a catenary, whilst the cables on a suspension

bridge form a parabola is a result of the physics of each situation. By applying

calculus, we are able to verify that the catenary is the solution to a differential

equation that describes a shape that directs the force of its own weight along its own

curve, so that, if hanging, it is pulled into that shape, and, if standing upright, it can

support itself.

It is important to emphasize that, in mathematics; the catenary is the shape of a

curve described by an ideal string that is suspended by its two endpoints. In this

case, the ideal means that the string is perfectly flexible, that is, the curve is

inextensible, with no thickness, with uniform density, and is subjected to only the

Fig. 50.5 The graph of a

parabola and the graph of a

catenary (Source: Daniel

C. Orey)
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influence of gravity. This shape imparts great strength to structures when built in the

shape of a catenary. On the other hand, the parabola does not have the same

property, but is the solution of other important equations that describe other

situations. For example, in nature, approximations of parabolas are found in any

number of diverse situations. In physics there is the trajectory of a particle or body

in motion under the influence of a uniform gravitational field without air resistance

such as the parabolic trajectory of a baseball and projectiles.

Parabolic shapes are also found in several physical situations such as parabolic

reflectors commonly observed in microwave or satellite dish antennas. The math-

ematical properties of parabolas make them excellent models for physical objects in

which a focusing component is essential. It can be shown that parallel lines drawn

on the inside of any parabola are reflected from the curve of the parabola to its

focus. Thus, many telescopes and satellite television receivers are designed using

parabolic reflection properties. Parabolas also model the motion of a body in free

fall towards the surface of the Earth and are used in the design of bridges and other

structures involving arches. After looking at the designs on the wall, we decided to

compare them with what we knew about parabolic or catenary functions and how

they related to suspension bridges.

50.4.1 The Specific Case of Suspension Bridges

In light of the facts discussed previously, the following question was formulated

and debated with the students: Do cables of suspension bridges have a catenary
shape? Figure 50.6 shows the construction proceeding on the Brooklyn Bridge in

New York, in 1881.

After discussing differences between parabolas and catenaries we decided that

the answer to this question is no. In this specific case, it is interesting to note that

when suspension bridges are constructed, before the suspension cables are tied to

the deck below them, they initially have a hyperbolic cosine function shape, that is,

the shape of a catenary. This happens when the structure of the bridge is being built

and when the main cables are attached to the towers and then the cables are attached

to the deck with hangers. In so doing, the cable of a suspension bridge is under

tension from holding up the bridge. The cable is also under the influence of a

uniform load, that is, the deck of the bridge, which deforms the cable into a

parabola. This deformation happens because the weight of the deck is equally

distributed along the curve. In this regard, it is possible to conclude that the catenary

curves under its own weight while the parabola curves under both its own weight

and by holding up the weight of the deck.

600 D.C. Orey and M. Rosa



50.5 Some Concluding Remarks About
the Ethnomodelling Process

In order to gather more information about this investigation, we had a meeting with

the principal of the Colégio Arquidiocesano, which was founded in 1927 and started

its activities in Ouro Preto in 1933. In this meeting, we learned that there was no

architectural drawing of the wall. According to this context, it is important to

emphasize that the main issue being investigated was to understand how the

builders had managed to capture the shape of a hanging chain as it was built into

a wall.

In this regard, from the outset we presumed that the procedure may have been

done by the builders hanging a chain between two support posts as well as using it

as a template to build into the wall. In so doing, if one hangs a chain between two

support posts along a wall, while making sure the chain can glide and find its own

equilibrium, one may discover that the shape of the chain depends nearly uniquely

on its own length. In so doing, the catenary curve searches for its own point of

equilibrium, that is, the point where the sum of the weight of the two hanging ends

equals the weight of the chain hanging in between the support posts. This means

that in order to produce the most stable wall, it was necessary that its curves had

Fig. 50.6 Construction of the Brooklyn Bridge (Source: Museum of New York)
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catenary shapes. This approach ensured that the majority of the gravitational forces

acting on the wall were directed downwards rather than sideways. This means that

the tension passing through the curves on the wall chain is equivalent to the

compression in a standing wall. In this regard, the weight of the wall is distributed

through its structure.

After discussions related to this issue, we agreed that it would be unlikely that

any other practical method would have been used by the builders so quadratic or

exponential shapes are unlikely. Consequently, the purpose of applying

ethnomodelling was to understand how the builders may have managed to obtain

such a feature in the wall.

50.6 Final Considerations

Any study of mathematical modelling represents a powerful means for validating

contextualized mathematical situations. The use of ethnomodelling as pedagogical

action for the teaching and learning of mathematics values the previous knowledge

of the mathematical practices of the members of the community by developing

students’ capacity to assess the process of elaborating a mathematical model in its

distinct applications and contexts by having started with the social context, reality

and interests of the students.

In this chapter, we have shared the results from an activity from our walks with

students and colleagues along streets in Ouro Preto. The context here in which this

particular model arose was the curves found along the wall of the Colégio

Arquidiocesano. By observing the design found along the wall of the school, we

attempted to relate them to several curve functions. By analysis of these shapes, we

related them to exponential curves, parabolas, and catenaries.

From the results of this investigation, we found that the mathematics that defined

the required shapes of the curves comes from real physical laws of a parabola and a

catenary, while the exponential curve is much more of an idealized mathematical

abstraction, and was not really consistent with what we observed along the wall.

Discussions related to the application of mathematical modelling in a cultural and

common context allowed us to see that there are good physical and mathematical

reasons why curves used in architecture would be more like catenaries than

parabolas.
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Richard Lesh Indiana University, USA

Issic K.C. Leung The Hong Kong Institute of Education, Hong Kong

Thomas Lingefjard G€oteborgs Universitet, Sweden
Nick Mousoulides Cyprus University of Technology, Cyprus

Kit Ee Dawn Ng Nanyang Technological University, Singapore

Mogens Niss Roskilde University, Denmark

Daniel Orey Universidade Federal de Ouro Preto, Brazil

Irit Pelid University of Haifa, Israel

Jacob Perrenet Technische Universiteit Eindhoven, Netherlands

Xenia Reit Geothe-University Frankfurt, Germany

Ruth Rodriguez Tecnol�ogico de Monterrey (Monterrey), Mexico

Milton Rosa Universidade Federal de Ouro Preto, Brazil

Stanislaw Schukajlow University of Paderborn, Germany

Bj€orn Schwarz Universität Hamburg, Germany

Hans-Stefan Siller University of Salzburg, Austria

Maxwell Stephens University of Melbourne, Australia

Monica Villarreal University of C�ordoba, Argentina
Pauline Vos University of Agder, Norway

Geoffrey Wake University of Nottingham, United Kingdom

Dag Wedelin Chalmers University of Technology, Sweden

Mark Winter University of the Witwatersrand (Johannesburg), South Africa

Jinxing Xie Tsinghua University (Beijing), P.R. China

Akira Yanagimoto Kyoto University of Education, Japan

606 Refereeing Process



Index

A
Ability

innovation, 115

intuitive, 116

Abitante, L. G., 305–316

Abstraction, 221, 222, 224–227

Activity, design, 298

Adawi, T., 417–427

Affordances, 5, 20–21, 102, 433–435, 437,

438, 440

Agency, 477, 479–480, 482, 483, 485

Alexandre, M. L., 465–474

Almeida, L. M. W., 45–53, 219–227

Alves, D. B., 465–474

Anticipation, 4, 5, 20, 22

A-Paper formats, 71, 76, 77

Applications, 161–170

Approach

atomistic, 133, 134, 140, 143, 146

emancipatory, 392

holistic, 133, 134, 138, 140, 142,

143, 145

multidisciplinary, 25

Argument, 367, 369, 371
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