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Abstract. In k-hypergraph matching, we are given a collection of sets of
size at most k, each with an associated weight, and we seek a maximum-
weight subcollection whose sets are pairwise disjoint. More generally, in
k-hypergraph b-matching, instead of disjointness we require that every
element appears in at most b sets of the subcollection. Our main result
is a linear-programming based (k − 1 + 1

k
)-approximation algorithm for

k-hypergraph b-matching. This settles the integrality gap when k is one
more than a prime power, since it matches a previously-known lower
bound. When the hypergraph is bipartite, we are able to improve the
approximation ratio to k − 1, which is also best possible relative to the
natural LP. These results are obtained using a more careful application
of the iterated packing method.

Using the bipartite algorithmic integrality gap upper bound, we show
that for the family of combinatorial auctions in which anyone can win at
most t items, there is a truthful-in-expectation polynomial-time auction
that t-approximately maximizes social welfare. We also show that our
results directly imply new approximations for a generalization of the
recently introduced bounded-color matching problem.We also consider
the generalization of b-matching to demand matching, where edges have
nonuniform demand values. The best known approximation algorithm for
this problem has ratio 2k on k-hypergraphs. We give a new algorithm,
based on local ratio, that obtains the same approximation ratio in a much
simpler way.

1 Introduction

In a matching problem we want to find the maximum weight subcollection of
pairwise disjoint sets within a given collection. Often these problems are studied
with respect to the maximum set size k (i.e. on “k-hypergraphs”); matching is
polynomial-time solvable for k = 2, while it is APX-hard for k = 3, even in
special cases like 3-dimensional matching [18].
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The b-matching problem generalizes matching: the input specifies a limit bv

for every vertex, and we can select at most bv sets containing each v; ordinary
matching results when b is the all-1 vector. A b-matching instance can allow each
set e to be selected multiple times up to some upper capacity limit ce. Simple
b-matching is the case where all capacities are unit. The uncapacitated case is
where c = −→∞, i.e. there are no capacity limits.

One of our results considers the generalization of b-matching to demand
matching, a notion originally introduced for graphs in [26]. For this problem
each edge is given a demand value de, and we now constrain that for every ver-
tex v, the sum of the d-values of the incident edges should be at most bv. When
d is the all-1 vector we recover the b-matching problem.

Hypergraphic matching problems are often studied via linear programming
relaxations. In this paper we use only the naive LP relaxations. The worst-case
ratio between the LP optimum and the optimal integral solution is called the
integrality gap. An LP-relative α-approximation algorithm is one that produces
(in polynomial time) an integral solution of value at least 1/α times the LP’s
optimal value — this both upper bounds the integrality gap by α and gives an
α-approximation algorithm. Many classical approximation algorithms are LP-
relative; so the notion is not novel, rather, this terminology helps us be concise.

1.1 Results

Our main result is the following theorem.

Theorem 1. There is an LP-relative (k − 1 + 1
k )-approximation algorithm for

k-hypergraph b-matching, for any capacities.

In [23] one of the authors announced, without a proof, a weaker result than the
above theorem, namely an upper bound of k−1+ 1

k on the integrality gap. Here we
give an algorithm to find an integral solution matching this bound in polynomial
time, requiring a significant extension of the techniques presented in [23].

For the special case b = 1, Füredi, Kahn and Seymour [15] proved an
upper bound of k − 1 + 1

k in 1993, while Chan & Lau [10] recently gave the
first polynomial-time algorithm matching this bound. Their technique does not
directly extend to the k-hypergraph b-matching case. The technique that we
use to prove Theorem 1 is iterated packing, the same technique from [23]. Part
of the contribution of the present paper is to simplify and extend some of the
approaches from [10,23]. Our main technical innovation is, using iterated pack-
ing, to explicitly specify particular additional solutions as ineligible for packing:
not only solutions that would be ineligible for the original problem, rather we
additionally prohibit solutions exceeding the ceiling of the current fractional
solution.

Theorem 1 is tight for infinitely many k: when k − 1 is a prime power, as
observed in [15], the projective plane PG(2, k−1) of order k−1 yields a matching
lower bound of k−1+ 1

k on the integrality gap. It is an interesting open question
to settle the integrality gap for any other values of k.
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We are able to determine the exact integrality gap for another interesting class
of hypergraphs. Call a hypergraph bipartite ([1]; cf. [24]) if, for some distinguished
subset U of vertices, every hyperedge contains exactly one vertex from U .

Theorem 2. There is an LP-relative (k−1)-approximation algorithm for bipar-
tite k-hypergraph b-matching, for any capacities.

Chan and Lau [10] proved Theorem 2 in the special case that b = 1 and
the instance is k-dimensional1. Proving Theorem 2 is similar to Theorem 1
plus extending an observation of [10] from k-dimensional hypergraphs to bipar-
tite ones. Like Theorem 1, a matching integrality gap lower bound is known
[14, p. 157] when k − 1 is a prime power: the hypergraphic dual of the affine
geometry AG(2, k−1), i.e. a truncated projective plane, has integrality gap k−1.

We obtain the following interesting corollaries from the bipartite case. In the
bounded-color k-hypergraph b-matching problem we are given an instance of the
k-hypergraph b-matching problem along with a partition of the edge set into l
color classes, E = E1 ∪ · · · ∪ El, and a positive integer wi for 1 ≤ i ≤ l. We seek
a feasible k-hypergraph b-matching of maximum weight such that at most wi

edges from class Ei are selected for each i.

Corollary 1. There is an LP-relative k-approximation for bounded-color
k-hypergraph b-matching.

Corollary 2. For combinatorial auctions where each bidder can win at most
(k − 1) items, there is a randomized polynomial-time mechanism that, in expec-
tation, is both truthful and (k − 1)-approximately maximizes social welfare.

We are not aware of any prior results for this extremely natural class of combi-
natorial auctions, cf. [22, Chap. 12].

The proof of Corollary 2 uses the mechanism of Lavi and Swamy [21], where
the distinguished vertices in the bipartite hypergraph correspond to the bidders.
For this application, it is crucial that Theorem 2 gives an LP-relative approxi-
mation in polynomial time.

Finally, we give a new short proof of the following known theorem:

Theorem 3 [23]. There is an LP-relative 2k-approximation for k-hypergraph
demand matching.

Our simpler proof is based on the local ratio method, rather than the iterated
packing used in [23]. We rely on a connection in [5, p. 12] between local ratio
and iterated packing.

1.2 Related Work

As Tutte observed [28], both in edge-weighted graphs and in the cardinality case,
uncapacitated graphic b-matching can be reduced to matching by replacing each
1 A hypergraph is k-dimensional if for some k-partition of the ground set, every edge
intersects every part exactly once.
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vertex by bv clones. Each edge uv is likewise cloned bubv times. This reduction
has two problems: (1) the clones cause an exponential increase in the instance
size (from lg‖b‖1 to ‖b‖1); and (2) it does not work in the capacitated case, since
we need to prevent too many clones of the same edge from being selected. Cloning
applies to hypergraphs, too, but has the same two problems. Algorithmically, we
can often avoid (1) by not dealing with the clones explicity. For graphs we can
fix problem (2): an edge-trisecting reduction [28] (see also [25, p. 562]) extends
cloning to work on capacitated instances. But for hypergraphs, there is no known
workaround for problem (2).

As a strawman, let us mention that one can reduce capacitated b-matching in
k-hypergraphs to uncapacitated b-matching in (k +1)-hypergraphs, by inserting
new vertices in each hyperedge and by moving each edge’s capacity to the b value
of its new vertex. One can even then apply cloning. But this is not that useful
for us: e.g., we cannot use the previously-known b = 1 case of version Theorem 1
to even prove the nonconstructive version of Theorem 1 for general b, since this
reduction increases the hyperedge size from k to k + 1.

Algorithmically, the simple (capacity c = 1) case of b-matching is the hardest.
The proof is standard, by fixing the integer part of an optimal fractional solution.

Observation 1. Given an (LP-relative) α-approximation to simple b-matching
in k-hypergraphs, we can obtain the same quality of approximation for general
capacities.

Hypergraph Matching. Matching problems in k-uniform hypergraphs are well-
studied algorithmically. For any fixed ε > 0 the best known approximation ratios
are k

2 + ε for the unweighted version by Hurkens and Schrijver [17] and k+1
2 + ε

for the weighted version by Berman [8]. In the case k = 3, the algorithmic results
of [10] give an ε-improved approximation ratio of 2 for 3-dimensional matching.
On the other hand, Hazan, Safra and Schwartz [16] showed that the problem
is hard to approximate within a factor of Ω( k

log k ) unless P = NP, even in the
k-dimensional case.

Hypergraph b-Matching. For b-matching in k-hypergraphs, Krysta [20] gave a
greedy k+1-approximation for the simple case, and Young & Koufogiannakis [19]
gave a k-approximation for the uncapacitated version. Both of these approxima-
tion algorithms give LP-relative guarantees. An improvement in some cases was
recently obtained by the k-exchange system framework of Feldman et al. [13]. The
b-matchings form a k-exchange system (this is explicit only for k = 2 in [13]). In
this way one can obtain a local search-based (k+1

2 + ε)-approximation algorithm
for weighted k-hypergraph b-matching. However, its running time is exponential
in k and it does not give any LP-relative guarantee.

It may be tempting to think that the b-matching problem in hypergraphs
is a simple extension of 1-matching in hypergraphs because the theory and
algorithms for b-matching in graphs closely relate to those for 1-matchings. As
evidenced by the results above, this does not appear to be the case. An approxi-
mation algorithm that runs in time polynomial in k with guarantee better than k
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for k-hypergraph b-matching had been an open problem that we resolve with this
work. Our methods are LP-based, whereas local search seems to give the best
known results; however, the bounding techinques used in local search for hyper-
graph 1-matching do not seem to readily extend to the hypergraph b-matching
case. For example, Arkin and Hassin [2] give a local search (k − 1+ ε)-algorithm
for weighted k-hypergraph 1-matching; however, as a warmup they present a
trivial bound of k — even this trivial bound does not easily extend to the
k-hypergraph b-matching case.

Other Work. Pseudo-greedy methods similar to iterated packing have been suc-
cessfully applied to several packing and coloring problems, including multicom-
modity flows on trees [11], independent sets in t-interval graphs [5], and weighted
edge coloring of bipartite graphs [12]. Iterated packing is a means of obtaining an
approximate convex decomposition; Carr and Vempala [9] have shown a strong
connection between the latter and approximation ratios of LP-based approxima-
tion algorithms.

As mentioned earlier, a 2k-approximation for k-hypergraph demand matching
is known [23]; a better ratio of 3 is possible when k = 2 [23]. These nearly
match (exactly match, when k = 2) the best known lower bound of 2k − 1 [3]
on the integrality gap of the natural LP relaxation (this construction does not
require that k −1 is a prime power). Bansal et al. [3] devised a deterministic 8k-
approximation and a randomized (ek+o(k))-approximation for the more general
problem of approximating k-column-sparse packing integer programs.

Stamoulis very recently introduced the bounded-color matching problem
(defined above in the more general hypergraph context) and devised a
2-approximation [27]. This result is also based on iterated packing. Stamoulis
observes that thebounded-colormatchingproblem is a special case of 3-hypergraph
b-matching. In fact it is suggested in this paper that a polynomial-time (k−1+ 1

k )-
approximation for k-hypergraph b-matching may be possible. Our work was
developed independently, and we observe that our results generalize Stamoulis’s
results, since the special hypergraph b-matching instances obtained by the reduc-
tion he suggests are bipartite, and we are able to leverage Theorem 2 to give a
k-approximation for the more general bounded-color k-hypergraph b-matching
problem, which we introduce here.

We will exploit the interplay between LP-relative approximation algorithms
and convex decompositions — an equivalence between the two was shown by
Carr & Vempala [9]. The Lavi-Swamy [21] mechanism combines techniques from
[9] with the VCG mechanism.

We give an overview of iterated packing in the next section. There, we
also introduce a structure theorem from [10] and its specialization to bipartite
instances, versions of which will be used throughout the paper. Next, to further
introduce the iterated packing methodology, we give an iterated packing proof of
the same result, although it does not run in polynomial time. This is extended
to b-matching in Sect. 4, which contains our main technical innovations. First
an existential proof is given (Algorithm2) and then finally Algorithm3 proves
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Theorems 1 and 2 constructively. Then in Sect. 7 we present the proof of
Theorem 3, which is based on the local ratio method.

2 Iterated Packing Overview

The notion of an approximate convex decomposition is essential to iterated pack-
ing, as the latter iteratively builds such a decomposition for a given fractional
solution. Here we present a slightly different notion of an approximate convex
decomposition than usually considered.

Definition 1. For α ≥ 1, define α-convex multipliers to be any collection of
nonnegative reals whose sum is α. Likewise, we say that x is an α-convex
combination of the points {xi}i if there are α-convex multipliers {λi}i so that
x =

∑
i λix

i.

The utility of α-convex combinations is that they provide a convenient way to
talk about integrality gaps without rescaling as was done in [9] or [23].

Proposition 1 [9]. If every feasible LP solution for a packing program can be
written as an α-convex combination of integral feasible solutions, then its inte-
grality gap is at most α.

Proof. We need to show that for any nonnegative weight function w, if x∗ is
the fractional solution that maximizes w(x∗), then there is an integral solution
of weight at least w(x∗)/α. A random solution from the α-convex combination
representation of x∗, drawing xi with probability λi/α, has expected weight∑

i
λi

α w(xi) = w(x∗)/α. So one of the xi has at least this weight.

(In fact [9] also proves an algorithmic converse, used also by the Lavi-Swamy
framework [21] underlying Corollary 2.)

We will use Proposition 1 as follows: we develop a polynomial-time algo-
rithm to write fractional hypergraph b-matchings as ρ-convex combinations of
feasible integral b-matchings. Then by Proposition 1, we get the LP-relative ρ-
approximation algorithm claimed in Theorems 1 and 2.

In [23] the idea of iterated packing was introduced. Each iteration, called a
packing step, updates the current α-convex combination to a new one, increasing
some terms of the combination on one coordinate.

Definition 2 (Packing Step). Let us be given an α-convex combination x =∑
i λix

i where the xi are feasible integral solutions, an edge e to pack, and a
target value t ∈ R+. We may think of a packing step as packing the edge e
into some of the solutions xi such that each resulting solution is still feasible
and that we have packed e into solutions with a total mass of t, i.e. the sum of
corresponding λi is t.

Let χe be the vector in R
E with coordinate 1 on e and 0 elsewhere. A packing

step will replace some 0 ≤ λ′
i ≤ λi portion of each xi with xi+χe, where we allow

λ′
i > 0 only when xi +χe is feasible. Therefore

∑
i(λi −λ′

i) ·xi +
∑

i λ′
i · (xi +χe),

the result of the packing step, expresses x + tχe as an α-convex combination of
integer feasible solutions.
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For a packing step to actually be feasible, it is clearly both necessary and suf-
ficient that the set P = {i | xi + χe feasible} of solutions into which e can be
packed must satisfy λ(P ) ≥ t.

For the sake of polynomial-time implementation of our final algorithm, note
we can ensure at most one i has λ′

i /∈ {0, λi} in the above argument, so that
each packing step increases the number of terms by at most one. Alternatively
we could use Carathéodory’s theorem which guarantees that any α-convex com-
bination can be rewritten as one with at most d+1 terms where d is the number
of coordinates.

The basic iterated packing formula starts with a fractional solution x in
hand and iteratively constructs an integral solution by starting with an empty
hypergraph on V . The edges are processed in some order, and for each edge e,
a packing step is performed on e with a target value of xe. One key fact about
iterated packing is that when a target value is larger, packing is easier, hence
iterated packing shows how large fractional values facilitate approximation for
packing problems much like iterated packing does for covering problems. The
basic approach may be refined in several directions. One may start with base
integral solution that is non-empty hypergraph. This was explored in [23] to
derived an improved approximation for the demand matching problem. Another
improvement is to consider a specific ordering of edges.

This key idea driving our algorithm is analyzing an ordering of edges which
allows us to obtain a polynomial-time algorithm. Although, as announced in [23],
extensions of ideas from [23] may be used to derive an upper bound of k−1+1/k
on the integrality gap for the k-hypergraph b-matching problem, the bound is
non-constructive and does not give a polynomial-time algorithm. We show that
by considering an ordering of edges that was first studied by Chan and Lau [10],
we obtain a polynomial-time k − 1 + 1/k-approximation. This ordering is based
on vertices of small degree in an extreme point solution, which in turns allows
one to argue that there is an edge with large fractional value. The lemma below
shows that we can find a vertex of sufficiently small degree.

Let {Av,e}v,e be the 0-1 incidence matrix for our k-hypergraph: it has rows
for vertices and columns for edges, with at most k ones per column. When x∗ is
an extreme point solution to the matching LP {0 ≤ x ≤ 1 | Ax ≤ 1}, elementary
properties of polyhedra show that the incidence matrix of {e | 0 < x∗

e < 1} has
linearly independent columns. This makes the following lemma useful: it was
proven by Chan and Lau for the general case, while the bipartite case follows
from generalizing their arguments about the k-dimensional case.

Lemma 1. If the incidence vectors of ∅ 	= E′ ⊆ E are linearly independent,
then some vertex in (V,E′) has degree between 1 and k. In the bipartite case, the
upper bound can be strengthened to k − 1.

Proof. The first part is a counting argument. The incidence matrix retains its
rank if we delete the all-zero rows, leaving only those rows corresponding to the
set V ′ of vertices with nonzero degree. The number of such vertices must satisfy
|V ′| ≥ |E′| or else rank |E′| could not be achieved. Since each column has at
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most k unit entries, there are at most k|E′| unit entries in the whole matrix. So
averaging, some row has at most k|E′|/|V ′| ≤ k nonzeroes, and this gives the
desired vertex.

For bipartite hypergraphs, examine the situation in which equality holds.
This can only happen if |E′| = |V ′| and the matrix has exactly k ones per
row and per column. Let U be the subset of vertices so that every hyperedge
intersects U exactly once. So, each hyperedge intersects the complement of U
exactly k − 1 times. Therefore, the vector in R

V with (−k − 1) entries in U and
unit entries elsewhere is orthogonal to all rows, contradicting that the adjacency
matrix has full rank.

In order to talk about both the general and bipartite cases in a unified way,
define

ρ :=

{
k − 1 + 1

k in the general case, and
k − 1 in the bipartite case.

Additionally, define the degree bound

μ :=

{
k in the general case, and
k − 1 in the bipartite case.

3 Non-polynomial Time Algorithm for k-Hypergraph
Matching

We now give an alternate proof that k-hypergraph matching has integrality gap
of at most k+1− 1

k . The algorithm behind this proof does not run in polynomial
time. However, this section also introduces the notation and steps involved in
iterated packing, which we will extend in the next section to get our main result.

Lemma 2 [23]. In k-hypergraph matching, a packing step to bring x to x+ tχe,
where x + tχe is a feasible fractional solution, is possible if α ≥ k − (k − 1)t.

Proof. Let Qv, for each v ∈ e, be the set of solutions i for which xi + χe is not
feasible. We have λ(Qv) ≤ 1− t since x+ tχe is feasible2. We need room (disjoint
in the worst case) for all such Qv, plus an additional t to pack the new edge in
solutions that permit it, giving the bound k(1 − t) + t = k − (k − 1)t.

We can indeed get large coordinates using the following strengthening of Lemma 1.

Lemma 3. Any nonzero extreme point solution x to the k-hypergraph matching
polytope has some fractional coordinate at least 1/μ.

2 In detail, the solutions xi for i ∈ Qv have degree 1 at v, so by the definition of a
convex combination (Ax)v = λ(Qv), but (Ax)v ≤ 1 − t since, by feasibility, 1 ≥
A(x + tχe)v = (Ax)v + t.
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Proof. If xe = 1 for any coordinate then we are done, so suppose otherwise. We
know from elementary linear algebra that there is a set V ′′ of vertices and a set
E′′ of edges so that x is the unique solution to xe = 0,∀e /∈ E′′;x(δ(v)) = 1,∀v ∈
V ′′. Then the same counting argument as in Lemma 1 (resp. and the same linear
independence in the bipartite case) ensures that some v ∈ V ′′ is incident on at
most k (resp. k − 1) edges. Since it has x(δ(v)) = 1 the e ∈ δ(v) maximizing xe

satisfies the lemma.

Using this, we obtain an iterated packing algorithm for the k-hypergraph match-
ing problem, which is displayed as Algorithm 1. Note that this algorithm is
presented as a recursive top-down variant of iterated packing, while the basic
version in the previous section was presented as a bottom-up algorithm for ease
of exposition. Another more crucial deviation of this algorithm from the basic
iterated packing formula is that since our analysis requires an extreme point,
we must express each non-extreme solutions as convex combinations of extreme
points, and we use that:

A convex combination of α-convex combinations is an α-convex combination. (1)

In fact this is the reason the algorithm is not guaranteed to run in polyno-
mial time; however, the algorithm does terminate since the number of nonzero
coordinates of x decreases in each recursive call.

Algorithm 1. HM∗(V,E, x) // write x as ρ-convex comb. of 0-1 solutions
1: If x = 0 return the trivial ρ-convex combination λ1 = ρ, x1 = 0.
2: If x is not an extreme point solution to {x ∈ R

E
+ | Ax ≤ 1},

3: Write x as a convex combination of extreme point solutions.
4: Recurse on each extreme point and return their result combined via (1).
5: Pick e so that xe is maximized and let x′ be x except with x′

e set to zero.
6: Recurse: (xi, λi)i := HM∗(V, E, x′).
7: Packing step: pack xe of e into (xi, λi)i and return the result.

Proposition 2. Given any LP solution x, Algorithm 1 returns an expression of
x as a ρ-convex combination of integral solutions.

Proof. This follows from Lemmas 2 and 3, since if μ = k we have k−(k−1)/μ =
k − 1 + 1

k = ρ, and if μ = k − 1 we have k − (k − 1)/μ = k − 1 = ρ.

This completes the non-polynomial time iterated packing proof that the inte-
grality gap for matching is at most ρ. Next, we extend it to b-matching.

4 Iterated Packing and k-Hypergraph b-Matching

In this section, which contains the main new iterated packing technique, we
build on the ideas from the previous section. We begin with a non-constructive
iterated packing algorithm to show that the integrality gap for k-hypergraph
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b-matching is at most ρ. Then, we move to a constructive version via iterated
packing that runs in polynomial time.

By Observation 1, we assume unit capacities (simple b-matching). We will
use the following statement, whose proof is analogous to Lemma 3.

Lemma 4. Any nonzero extreme point solution x to the k-hypergraph b-matching
polytope has some fractional coordinate at least 1/μ.

The naive adaptation of iterated packing (Algorithm1) to b-matching would
involve writing the input as a convex combination of extreme point solutions
to {x ∈ [0, 1]E | Ax ≤ b}, working with α-convex combinations of integer 0-1
solutions to Ax ≤ b. However, this approach is unworkable. When we try to
mimic Lemma 2, as b gets larger, we cannot bound λ(Qv) by anything less than
1, giving an approximation ratio of k or worse.

To fix this problem, we will enforce two additional conditions. One of these
conditions, the main driver of the new proof, is that the strengthened degree
bound Axi ≤ �Ax must hold in every level of the recursion (rather than the
unworkable requirement that solutions merely respect the final target degrees).
The second condition is that the λ-mass of solutions meeting this strengthened
bound with equality cannot be more than 〈(Ax)v〉 (here 〈·〉 denotes the frac-
tional part), except in the degenerate case that (Ax)v is integral. Intuitively (i)
balances the number of edges packed at a vertex across the solutions xi, avoiding
the trouble that the naive approach would encounter in future iterations, while
(ii) helps achieve (i) inductively. A modified packing step is a packing step that,
given a solution (x, λ) satisfying both of these properties, produces another
(x′, λ′) satisfying both of these properties. Then the definition of the resulting
algorithm, Algorithm 2, is as follows.

Algorithm 2. HbM∗(V,E, x) // write x as ρ-convex comb. of special 0-1
solutions
1: If x = 0 return the trivial ρ-convex combination λ1 = ρ, x1 = 0. // as before
2: If x is not an extreme point solution to {y ∈ [0, 1]E | Ay ≤ �Ax�},
3: Write x as a convex combination of extreme point solutions. // as before
4: Recurse on each extreme point; return their combination via (1). // as before
5: Pick e so that xe is maximized; let x′ be x with x′

e set to zero. // as before
6: Recurse: (xi, λi)i := HbM∗(V, E, x′). // as before
7: Modified packing step: pack xe of e into (xi, λi)i and return the result.

We will prove by induction that the algorithm succeeds in finding packings
meeting both conditions.

Lemma 5. For any 0 ≤ x ≤ 1, HbM∗(V,E, x) returns an expression of x as a
ρ-convex combination of 0-1 xi that satisfies (i) Axi ≤ �Ax for each i, and (ii)
for every v such that (Ax)v is non-integral, λ({i | (Axi)v = �Axv}) ≤ 〈(Ax)v〉.
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For the proof, it is helpful to realize that we use (Ax)v interchangeably as x(δ(v)),
and that it represents the “degree” of x at v.

Proof. The base case and the non-extreme case are easy; while the extreme
points decomposing a non-extreme solution may have smaller values for �Ax,
this does not hurt us. So we only need to deal with the case that x is extreme
and nonzero, where e is chosen with xe ≥ 1/μ.

To prove that the modified packing step can always be carried out while
satisfying (i) and (ii), we again bound a set of unpackable solutions. Specifically,
our goal will be to define sets Qv for each v ∈ e such that any packing step that
avoids adding e to any of the solutions

⋃
v∈e Qv will satisfy (i) and (ii) for x, and

such that the sets Qv are λ-small enough that e always has room to be added.
For each v ∈ e, there are three cases, the main distinction being whether

�(Ax′)v = �(Ax)v. Note that these terms are either equal, or differ by one.

– Case (I), (Ax′)v = 0. This packing is trivial, set Qv = ∅.
– Case (II), �(Ax)v = �(Ax′)v 	= 0. Proving (ii) is vacuous when (Ax)v is inte-

gral, and otherwise it follows easily by induction since 〈(Ax)v〉 = 〈(Ax′)v〉+xe

and at most xe of λ-mass of solutions will have its degree increased at v. To
show (i) is satisfied inductively, just like in Sect. 3, define Qv to be the set
of i with (Axi)v = �(Ax)v; e can be added to any other xi without vio-
lating the degree constraint. The terms (Ax)v and (Ax′)v differ by xe and
have the same integer ceiling, so by induction on (ii), we have the bound
λ(Qv) ≤ 〈x′(δ(v))〉 ≤ 1 − xe showing that Qv is not too big. This bound will
be used later.

– Case (III), �(Ax)v = 1 + �(Ax′)v and (Ax′)v 	= 0. Then satisfying (i) at v is
easy (since all xi have degree at most �(Ax′)v at v) but we must design Qv

so that (ii) is satisfied after the packing step.
If (Ax)v is integral any packing works (we can take Qv = ∅), so assume the
opposite. Moreover, when (Ax′)v is integral, by (i) all solutions xi have degree
less than �(Ax)v at each v ∈ e, and since we are only packing xe = 〈(Ax)v〉
amount of e, (ii) is also satisfied by any possible packing.

Hence, assume both (Ax′)v and (Ax)v are non-integral. If we pack e arbi-
trarily, the total weight of new solutions with degree �(Ax)v at v could be too
large to satisfy (ii). Therefore, we will define Qv to exclude some subset of the
solutions Q′

v := {i | (Axi)v = �(Ax′)v} that could rise to have this degree.
We have λ(Q′

v) ≤ 〈(Ax′)v〉 from (ii) inductively. We now define Qv to be
some subset of Q′

v with λ(Qv) = 1−xe. This is not possible if λ(Q′
v) < 1−xe

but in this case we just define Qv := Q′
v. Also, even if no subset of Q′

v has
λ-value exactly 1 − xe we can split3 a term of the ρ-convex decomposition
to achieve this. The point of this Qv is that, using (ii) inductively, the post-
packing total λ-value of the solutions with degree �(Ax)v at v will be at most
λ(Q′

v \ Qv) ≤ 〈(Ax′)v〉 − (1 − xe) = 〈(Ax)v〉; the latter equality holds since
(Ax)v = (Ax′)v + xe and by the hypotheses of this case. So these Qv allow us
to inductively satisfy (i) and (ii), on top of which λ(Qv) ≤ 1 − xe.

3 Splitting means to replace the term (xi, λi) with two terms (xi, p), (xi, λi − p) with
distributed λ-mass on the same integer solution xi.
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In all cases, λ(Qv) ≤ 1 − xe. Analogous to Lemma 2 there is enough room to
complete the packing step so long as ρ ≥ xe+λ(

⋃
v∈e Qv). By a union bound this

would be implied by ρ ≥ xe + k(1 − xe). This gives the same analysis as before
(Proposition 2) in terms of our bounds on xe and ρ, so the modified packing step
succeeds and we are done.

4.1 Polynomial-Time Iterated Packing for k-Hypergraph
b-Matching

Finally, we give our main algorithm. It uses modified packing steps and always
maintains a ρ-convex combination satisfying the conditions of Lemma5. As
usual, the core algorithm HbM (Algorithm 3) operates on solutions where the
incidence matrix A is of full column rank.

Algorithm 3. HbM(V,E, x) // write x as ρ-convex comb. of 0-1 solutions
Require: A has its columns linearly independent
1: If x = 0 return the trivial ρ-convex combination λ1 = ρ, x1 = 0.
2: Pick a vertex v̂ with minimum nonzero degree.
3: Pick e ∈ δ(v̂) such that xe is maximized.
4: Recurse: (xi, λi)i := HbM(V, E \ {e}, x|E\{e}).
5: Extend each xi back to R

E by setting the e-coordinates to 0.
6: Modified packing step: pack xe of e into (xi, λi)i and return the result.

Lemma 6. If 0 < x < 1 and the columns of the incidence matrix A are lin-
early independent, HbM expresses x as a ρ-convex combination of 0-1 solutions
satisfying the same properties as Lemma5.

Proof. The proof is very similar to proof of Lemma5 (except we have linear
independence instead of extremeness) and we therefore re-use its notation and
some of the observations therein. Our goal is to show that each modified packing
step succeeds. Write Q for

⋃
v∈e Qv. For the modified packing step to succeed

we need λ(Q) + xe ≤ ρ as before. We will use that λ(Qv) ≤ (1 − xe) for each v,
which holds as in Lemma 5.

The first case we will handle is |e| < k. In this case, λ(Q)+xe ≤ |e|(1−xe)+
xe ≤ (k − 1)(1 − xe) + xe ≤ k − 1 ≤ ρ, as needed. So we assume |e| = k.

Since Lemma 1 applies to our setting, the degree of v̂ is at most μ. The next
case we will handle is xe ≥ 1/μ. In this case, λ(Q) + xe ≤ k(1 − xe) + xe =
k − (k − 1)xe ≤ k − (k − 1)/μ = ρ (like the proof of Proposition 2). So we may
assume xe < 1/μ.

Likewise, by the definition of μ, we may assume x(δ(v̂)) < 1, since otherwise
we fall in to the previous case by our choice of e.

Since x(δ(v̂)) < 1, we can get an exact expression for Qv̂ more specific than
that given in the proof of Lemma5. All solutions xi in the ρ-convex combination
have degree 0 or 1 at v, and the latter are the ones in Qv̂ (blocking e at v̂), and
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so λ(Qv̂) = (Ax′)v̂ = (Ax)v̂ − xe = x(δ(v̂)) − xe. This complements the upper
bounds λ(Qv) ≤ 1 − xe that hold for all other v ∈ e with v 	= v̂. This lets us
bound the amount of room needed for the modified packing step:

xe + λ(Q) ≤ xe + x(δ(v̂)) − xe + (k − 1)(1 − xe)
≤ μxe + (k − 1)(1 − xe) = k − 1 + (μ − k + 1)xe

≤ k − 1 + (μ − k + 1)/μ = k − (k − 1)/μ = ρ

where the middle inequality used x(δ(v̂)) ≤ μxe and the last used xe < 1
μ .

To complete the proofs of Theorems 1 and 2, we yet again use the approach of
starting with an extreme point solution and fixing its integer part (like Obser-
vation 1), recursing only on the residual b-matching problem, which has linearly
independent rows and 0 < x < 1.

5 Application: Bounded-Color k-Hypergraph b-Matching

We observe that improved approximations for the bounded-color k-hypergraph
b-matching problem, which is defined above Corollary 1, follow directly from our
results. The specialization of this problem for the case of matchings in graphs
was very recently introduced by Stamoulis [27], who gave a 2-approximation
(note that Stamoulis had considered only matchings and not b-matchings). This
independent result also leverages a variant of iterated packing. We give a k-
approximation for the general case of bounded-color k-hypergraph b-matching,
and thus extend the above result to hypergraphs as well as b-matchings.

Stamoulis observed that bounded-color matching is a special case of 3-
hypergraph b-matching: for each color class Ei, add a new vertex ci with capac-
ity wi. Now replace each edge {u, v} with a hyperedge {ci, u, v}. This precisely
models the bounded-color matching problem. An analogous reduction shows that
bounded-color k-hypergraph b-matching is a special case of standard (k + 1)-
hypergraph b-matching. To obtain our approximation, we simply observe that
these special instances are bipartite, as the set U consisting of all the ci vertices
intersects every hyperedge exactly once. This gives us a k-approximation since
the instance under consideration is a (k + 1)-hypergraph.

6 Application: Allocations

We will take advantage of the Lavi-Swamy framework [21], which is a fractional
version of the well-known Vickrey-Clarke-Groves (VCG) mechanism. We cannot
directly use VCG in this setting, because one of the steps in VCG is to compute
the allocation which maximizes the total utility of all players, and this problem
is NP-complete in our setting for t ≥ 2, by a reduction from 3-dimensional
matching. The main result of Lavi and Swamy is that once we have an LP-
relative ρ-approximation algorithm with respect to the natural LP, we can get
a truthful-in-expectation mechanism, which also maximizes the expected overall
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utility within a factor of ρ. Minimizing this factor means we are coming closer
to a VCG-like mechanism, whereas allocating everyone the empty set is truthful
but a bad approximation.

First we define the natural LP relaxation for the allocation problem. Let xi
S

be a fractional indicator variable indicating whether player i will win exactly the
set S of items. Then the LP requires that each player wins one set of items, and
that each item is allocated at most once, fractionally. Write vi

S as the valuation
of player i for set S. Altogether the fractional allocation LP is:

max
∑

i,S

xi
Sv

i
S : 0 ≤ x ≤ 1; ∀i ∈ [n] :

∑

S

xi
S = 1; ∀s ∈ [m] :

∑

i

∑

S:s∈S

xi
S ≤ 1. (A)

We assume the input to the mechanism is an explicit list from each bidder,
consisting of their valuation for each set upon which they wish to put a positive
bid. The number of variables and constraints in the LP is polynomial in the
number of such bids. Although for constant k, any reasonable bid language or
oracle can be used, since the number of sets of size < k is polynomial and we
can convert everything to an explicit list.

Definition 3. An ρ-approximate truthful-in-expectation mechanism for the allo-
cation problem is a randomized algorithm of the following form. It takes the val-
ues v as inputs; its outputs are a valid allocation of items to players together
with prices pi charged to each player i. It has the following two properties. First,
where S(i) denotes the set of items allocated to player i, we have

∑
i vi

S(i) is
at least

∑
i vi

T (i)/ρ for every valid allocation T . Second, for every fixed v−i, a
player who gives insincere valuations v̂i as their input, resulting in random vari-
ables p̂, Ŝ compared to the original ones p, S, does not increase their expected net
utility:

E[vi
̂S(i)

− p̂i] ≤ E[vi
S(i) − pi].

Moreover, 0 ≤ E[pi] ≤ E[vi
S(i)] for all i.

Theorem 4 (Lavi-Swamy [21]). Given a polynomial-time LP-relative ρ-
approximation algorithm for an allocation problem, we can obtain a polynomial-
time ρ-approximate truthful-in-expectation mechanism.

However, the allocation problem here is precisely bipartite k-hypergraph match-
ing: for each bidder and each set of items they could win, create a set out of
them all together, and this set has size at most 1 + k − 1 = k; and each such
hyperedge contains exactly one bidder, so the hypergraph is indeed bipartite.
So our bipartite extension of the Chan-Lau theorem (Sect. 2) applies and we
are done. The LP-relative property is essential; the non-LP relative local search
approach from [13] cannot be used with [21].

7 Local Ratio and k-Hypergraph Demand Matching

We recommend [4,6,7] for background on the local ratio method, including its
relationship with the primal-dual method. The heart of the local ratio approach
is the following lemma:
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Lemma 7 (Local Ratio Lemma). Let xOPT be the (unknown) optimal inte-
gral solution. If wi · xLR ≥ wi · xOPT for all i, and w =

∑
i wi, then w · xLR ≥

w · xOPT , i.e. xLR is α-approximately optimal.

Compared with fractional local ratio, we do not start by solving an LP, which
is faster. But, we cannot use x∗ to guide the algorithm — we have to ensure
an oblivious approximation guarantee that holds against the unknown optimal
solution.

In this section we briefly outline a reinterpretation of the 2k-approximation for
k-hypergraph demand matching from [23] as a local ratio algorithm. Compared
with [23], the new algorithm will be both simpler and faster (as we solve no LPs).
The inspiration for this simplified algorithm is a connection between local ratio
algorithm and iterated packing elucidated by Bar-Yehuda et al. [5, p. 12].

As before, let A be the incidence matrix, and let A[d] be the same matrix but
with the column for each e having its entries multiplied by de. Then an ILP for-
mulation for the hypergraph demand matching problem is to find an integral x
maximizing wx subject to A[d]x ≤ b and c ≥ x ≥ 0. We will assume that de ≤ bv

whenever v ∈ e. This is without loss of generality for the purposes of approx-
imation, while for bounding the integrality gap this no-clipping assumption is
needed to even get a constant upper bound (even if k = 1, a.k.a. knapsack).

We use the same basic ideas used in [23] but arranged differently. The crux in
our case is to show that for every instance, there is a hyperedge e and a weight
function satisfying that any feasible solution is either 2k-approximately optimal
or has room for e to be added. With this (Lemma8) and using the local ratio
lemma, we can show that Algorithm 4 is a 2k-approximation algorithm.

Lemma 8. Let e be the hyperedge so that de is minimal. Define a weight function
ŵ on all hyperedges by ŵe = 1, and for all other f ,

ŵf :=
∑

v∈e∩f

df

max{bv − de, de} . (2)

Then (i) every feasible solution (whether or not it contains e) has value at most
2k under ŵ, (ii) ŵe ≥ 1, and (iii) any feasible subset of E\{e} to which e cannot
be added has weight at least 1 under ŵ.

Algorithm 4. HDM(V,E, d, b, w) // for hypergraph demand matching
1: Pick e ∈ E such that de is minimum, or return ∅ if E = ∅.
2: Define a new weight function ŵ ∈ R

E via ŵe = 1 and (2) for f �= e.
3: Let weŵ be its scalar multiple by we, and w′ := w − weŵ. // note w′

e = 0
4: Define E′ := {e ∈ E | w′

e > 0}. // note e �∈ E′

5: Recurse: F ′ := HDM(V, E′, d, b, w′|E′).
6: If F ′ ∪ {e} is feasible define F := F ′ ∪ {e}, else define F := F ′.
7: Return F .
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