
Minimum Linear Arrangement
of Series-Parallel Graphs

Martina Eikel, Christian Scheideler, and Alexander Setzer(B)

University of Paderborn, Paderborn, Germany
{martinah,scheideler,asetzer}@mail.upb.de

Abstract. We present a factor 14D2 approximation algorithm for the
minimum linear arrangement problem on series-parallel graphs, where
D is the maximum degree in the graph. Given a suitable decomposi-
tion of the graph, our algorithm runs in time O(|E|) and is very easy to
implement. Its divide-and-conquer approach allows for an effective par-
allelization. Note that a suitable decomposition can also be computed
in time O(|E| log |E|) (or even O(log |E| log∗ |E|) on an EREW PRAM
using O(|E|) processors).

For the proof of the approximation ratio, we use a sophisticated
charging method that uses techniques similar to amortized analysis in
advanced data structures.

On general graphs, the minimum linear arrangement problem is known
to be NP-hard. To the best of our knowledge, the minimum linear arrange-
ment problem on series-parallel graphs has not been studied before.

1 Introduction

The minimum linear arrangement problem is a well-known graph embedding
problem, in which an arbitrary graph is mapped onto the line topology, such that
the sum of the distances of nodes that share an edge is minimized. We consider
the class of series-parallel graphs, which arises naturally in the context of parallel
programs: modelling the execution of a parallel program yields a series-parallel
graph, where sources of parallel compositions represent fork points, and sinks
of parallel compositions represent join points (for the definition of a parallel
composition, see Subsect. 1.1). Note that in this context, series-parallel graphs
typically have a very low node degree: Since spawning child processes is costly,
one would usually not spawn too many of them at a time.

1.1 Problem Statement and Definitions

Throughout this work, we consider undirected graphs only. The following defin-
ition of the minimum linear arrangement problem is based on [22]:

This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Center “On-The-Fly Computing” (SFB 901) and
by the EU within FET project MULTIPLEX under contract no. 317532.

c© Springer International Publishing Switzerland 2015
E. Bampis and O. Svensson (Eds.): WAOA 2014, LNCS 8952, pp. 168–180, 2015.
DOI: 10.1007/978-3-319-18263-6 15

Minimum Linear Arrangement of Series-Parallel Graphs 169

Definition 1 (Linear Arrangement). Given a graph G = (V,E), let n = |V |.
A linear arrangement π of G is a one-to-one function

π : V → {1, . . . , n}.

For a node v ∈ V , π(v) is also called the position of v in π.

Definition 2 (Cost of a Linear Arrangement). Given a graph G = (V,E)
and a linear arrangement π of G, we denote the cost of π by

COSTπ(G) :=
∑

{u,v}∈E

|π(u) − π(v)|.

Definition 3 (Minimum Linear Arrangement Problem). Given a graph
G = (V,E) (the input graph), the minimum linear arrangement problem (minLA)
is to find a linear arrangement π that minimizes COSTπ(G).

Next we define the class of series-parallel graphs, (the following is based on [11]):

Two-terminal Graph (TTG). A two-terminal graph G = (V,E) is a graph
with node set V , edge set E, and two distinct nodes sG, tG ∈ V that are called
source and sink, respectively. sG and tG are also called the terminals of G.

Series Composition. The series composition SC of k ≥ 2 TTGs X1, . . . , Xk

is a TTG created from the disjoint union of X1, . . . , Xk with the following
characteristics: The sink tXi

of Xi is merged with the source sXi+1 of Xi+1

for 1 ≤ i < k. The source sX1 of X1 becomes the source sSC of SC and the
sink tXk

of Xk becomes the sink tSC of SC.
Parallel Composition. The parallel composition PC of k ≥ 2 two-terminal

graphs X1, . . . , Xk is a TTG created from the disjoint union of X1, . . . , Xk

with the following two characteristics: The sources sX1 , . . . , sXk
are merged

to create sPC and the sinks tX1 , . . . , tXk
are merged to create tPC .

Two-terminal Series-Parallel Graph (TTSPG). A two-terminal series-
parallel graph G with source sG and sink tG is a graph that may be con-
structed by a sequence of series and parallel compositions starting from a set
of copies of a single-edge two-terminal graph G′ = ({s, t}, {{s, t}}).

Series-Parallel Graphs. A graph G is a series-parallel graph if, for some two
distinct nodes sG and tG in G, G can be regarded as a TTSPG with source
sG and sink tG.

Note that the series and parallel compositions are commonly defined over two
input graphs only. However, it is not hard to see that our definition of a series-
parallel graph is equivalent.

An example of a series-parallel graph is shown in Fig. 1.

1.2 Related Work

The minLA was first stated by Harper [18]. Garey, Johnson, and Stockmeyer
were the first to prove its NP-hardness on general graphs [16]. Ambühl, Mas-
trolilli, and Svensso showed that the minLA on general graphs does not have

170 M. Eikel et al.

a polynomial-time approximation scheme unless NP-complete problems can be
solved in randomized subexponential time [3]. To the best of our knowledge,
the two best polynomial-time approximation algorithms for the minLA on gen-
eral graphs are due to Charikar, Hajiaghayi, Karloff, and Rao [6], and Feige
and Lee [13]. Both algorithms yield an O(

√
log n log log n)-approximation of the

minLA. The latter algorithm is a combination of techniques of earlier works by
Rao and Richa [24], and Arora, Rao, and Vazirani [4]. For planar graphs (which
include the series-parallel graphs), Rao and Richa [24] also present a O(log log n)-
approximation algorithm. Note that even though, for high degree graphs, these
algorithms achieve a better approximation factor than the one we present in this
work, there are some key differences between these algorithms and ours: First
of all, the algorithm we present is a very simple divide-and-conquer algorithm
and its functioning can be understood easily. The aforementioned algorithms,
however, are much more complex and involve solving a linear or semidefinite
program. Furthermore, our algorithm achieves a runtime of only O(|E|) (if the
series-parallel graph is given in a suitable format - otherwise, a more complex
preprocessing is required that takes time O(|E| log |E|), but this can be paral-
lelized down to O(log |E| log∗ |E|)) making it suitable in situations where a low
runtime is more important than the approximation guarantee. Still, for low graph
degrees (which are reasonable to assume in certain applications), our algorithm
even improves the approximation factor of Rao and Richa.

For special classes of graphs, the NP-hardness has been shown for bipar-
tite graphs [12], interval graphs, and permutation graphs [8]. On the other
hand, polynomial-time optimal algorithms have been found for hypercubes [18],
trees [7], d-dimensional c-ary cliques [21], meshes [14], and chord graphs [25].
Note that many people claim that the minLA is optimally solvable on outer-
planar graphs, referring to [15]. However, the problem solved in [15] is different
from the minLA as we show in [26]. Note that the question whether the minLA
is NP-hard on series-parallel graphs is unsettled.

Applications of the minLA include the design of error-correcting codes [18],
machine job scheduling (e.g., [2]), VLSI layout (e.g., [1,9]), and graph drawing
(e.g., [27]). For an overview of heuristics for the minLA see the survey paper by
Petit [23].

The class of series-parallel graphs, first used by MacMahon [20], has been
studied extensively. It turns out that many problems that are NP-complete on
general graphs can be solved in linear time on series-parallel graphs. Among
these are the decision version of the dominating set problem [19], the minimum
vertex cover problem, the maximum outerplanar subgraph problem, and the
maximum matching problem [28]. Furthermore, since the class of series-parallel
graphs is a subclass of the class of planar graphs, any problem that is already
in P for that class of graphs can be solved optimally in polynomial time for
series-parallel graphs as well (such as the max-cut problem [17]).

Another problem regarding series-parallel graphs is to decide, given an input
graph G, whether it is series-parallel and, if so, to output the operations that
recursively constructed the series-parallel graph. The first step is referred to as

Minimum Linear Arrangement of Series-Parallel Graphs 171

series-parallel graph recognition while the second step is referred to as construct-
ing a decomposition tree. A parallel linear-time algorithm for this problem on
directed graphs was first presented by Valdes, Tarjan, and Lawler [29]. Later,
Eppstein [11] developed a parallel algorithm for undirected graphs using a so-
called nested ear decomposition. The concept of an S-decomposition used in our
analysis is technically similar to that concept, though we use a different notation
more suitable for our purposes. The algorithm we propose for approximating the
minLA on series-parallel graphs also relies on a decomposition tree. For instances
in which it is not given, the algorithm by Bodlaender and De Fluiter [5] can be
used, since it runs on undirected graphs and outputs so-called SP-tree , which
can be easily transformed into a format suitable for our algorithm.

1.3 Our Contribution

We describe a simple approximation algorithm for the minimum linear arrange-
ment problem on series-parallel graphs with an approximation ratio of 14D2,
where D is the degree of the graph, and a running time of O(|E|) if the series-
parallel graph is given in a suitable format. If the series-parallel graph is not
given in the required format, this format can be computed in time O(|E| log |E|)
(which can even be further parallelized down to O(log |E| log∗ |E|) on an EREW
PRAM using O(|E|) processors). However, for certain applications it is reason-
able to assume that the graph is given in the right format, e.g., when the series-
parallel graph is used to model the execution of a parallel program, the desired
representation can be constructed along with the model. The simplicity and the
structure of the algorithm allow for an efficient distributed implementation.

Moreover, our proof of the approximation ratio introduces a sophisticated
charging method following an approach that is known from the amortized analy-
sis of advanced data structures. This technique may be applied in other analyses
as well.

2 Preliminaries

The algorithm we present is defined recursively and is based on a decomposition of
the series-parallel graph into components. Therefore, prior to describing the algo-
rithm, we introduce several definitions needed to formalize this decomposition.

The following definition is similar to the one in [5].

Definition 4 (SP-tree, Minimal SP-tree). An SP-tree T of a series-parallel
graph G is a rooted tree with the following properties:

1. Each node in T corresponds to a two-terminal subgraph of G.
2. Each leaf is a so-called L-node labelled as L(k) and corresponds to a path with

k edges.
3. Each inner node is a so-called S-node or P -node, and the two-terminal sub-

graph G′ associated with an S-node (P -node) is the graph obtained by a series
(parallel) composition of the graphs associated with the children of G′, where

172 M. Eikel et al.

the order of the children defines the order in which the series composition is
applied (the order does not matter for a parallel composition).

4. The root node corresponds to G.

An SP-tree T of a series-parallel graph G is called minimal if the following
two conditions hold:

1. All children of an S-node are either P -nodes or L-nodes, but at least one is
a P -node.

2. All children of a P -node are either S-nodes or L-nodes.

It is easy to see that for any fixed series-parallel graph G, there exists a minimal
SP-tree for G.

We are now ready to introduce the following three important notions:

Definition 5 (Simple Node Sequence, Parallel Component, Series Com-
ponent). Let G be a series-parallel graph and T be a minimal SP-tree of G. The
sub-graph of G associated with a leaf L(k) of T for k ∈ N is called a simple node
sequence. The sub-graph of G associated with a P -node is called a parallel com-
ponent of G. The sub-graph of G associated with a S-node is called a series
component of G. Furthermore, any simple node sequence is called a series com-
ponent, too.

P

S

Fig. 1. Example of a simple series-parallel graph. P is a parallel component consisting
of two series components (more precisely, two simple node sequences with two edges
each). The thick edges belong to the subgraph induced by the series component S. It
consists of two single-edge simple node sequences (on the left and right end) and a
parallel component.

An illustration of the different types of components is given by Fig. 1. The defi-
nition of a minimal SP-tree implies the following: Each parallel component P is
the result of a parallel composition of two or more series components. Further-
more, each series component S is the result of a series composition of two or
more parallel components or simple node sequences, but not exclusively simple
node sequences. This leads to the following definition:

Definition 6 (Child Component). Let G be a series-parallel graph, let T be
a minimal SP-tree, and let X and Y be two nodes in T such that Y is a child of
X. Further, let Ci be the (series or parallel) component that is associated with
Y and let C be the (parallel or series) component C that is associated with X.
Then, Ci is called a child component of C, and we say: Ci ∈ C.

Minimum Linear Arrangement of Series-Parallel Graphs 173

For example, the two simple node sequences that induce the parallel component
P in Fig. 1 are child components of P . One implication of this definition is that
the terminals of a parallel component and its child components overlap.

For the rest of this work, we assume that for any fixed series-parallel graph
G, the simple node sequences, series components and parallel components of G
are uniquely defined by a fixed minimal SP-tree T . In the full version [10], we
describe an efficient method to compute a minimal SP-tree according to our
definition. It is basically an extension of an algorithm by Bodlaender and de
Fluiter [5].

3 The Series-Parallel Graph Arrangement Algorithm

The Series-Parallel Graph Arrangement Algorithm (SPGAA) is defined recur-
sively. In order to arrange the nodes of a series or parallel component C, the
SPGAA first determines the order of its child components recursively, and then
places the child components side by side in an order that depends on their size.
For any component C, when the algorithm has just arranged the nodes of C,
it holds that its source receives the leftmost position among all nodes of C and
that its sink receives the position directly to the right of the source. However,
later computations (in a higher recursion level) may re-arrange the terminals and
pull them apart. More specific details are given in the corresponding subsections
for the different types of components. Illustrations of all arrangements and all
different cases can be found in the full version [10].

3.1 Arrangement of a Simple Node Sequence

For any simple node sequence L, we label the nodes of L from left to right by
1 to k. That is, the source receives label 1 and the sink receives label k. The
arrangement of this sequence then is: 1, k, 2, k − 1, 3, k − 2, One can see that
this arrangement fulfills the property that the source is on the leftmost position
and that the sink is its right neighbor.

3.2 Arrangement of a Parallel Component

For any parallel component P with source u, sink v, and m ≥ 2 child compo-
nents S1, S2, . . . , Sm (note that any parallel component has at least two child
components), the SPGAA recursively determines the arrangement of the child
components. We denote the computed arrangement of Si excluding the two ter-
minal nodes (which would have been placed at the first two positions of the
arrangement, see Subsect. 3.3) by S−

i . W.l.o.g. let Sm be a biggest child compo-
nent (w.r.t. the number of nodes in it). Then, the algorithm places u at the first
position, v at the second position, the nodes of S−

1 to the right of that (in their
order), and the nodes of S−

i to the right of S−
i−1 for i ∈ {2, . . . , m}.

174 M. Eikel et al.

3.3 Arrangement of a Series Component

For any series component S with source u, sink v, and m ≥ 2 child components
P1, P2, . . . , Pm (note that any series component has at least two child compo-
nents, otherwise it would be a simple node sequence), the SPGAA first recur-
sively determines the arrangement of the child components. Second, it puts u
and v at the first two positions, in this order. The third step differs from the case
of a parallel component: To keep the cost of the arrangement low while ensuring
that a biggest child component Pa receives the rightmost position, the general
order of the child components is: P1, P2, . . . , Pa−1, Pm, Pm−1, . . . , Pa+2, Pa+1, Pa.
Here, the components from Pm to Pa+1 are flipped (the order of their nodes is
reversed). For m = a, the order is P1, P2, . . . , Pm and for a = 1, the components
are ordered in reverse (i.e., Pm, Pm−1, . . . , P1) (where all components except for
P1 are flipped).

However, since each two neighboring child components Pi and Pi+1 share a
(terminal) node, it must be decided which of the two components may “keep”
its node. The strategy here is as follows: Each component Pi (except for the first
component, whose source has received the leftmost position already) keeps its
source and lends its sink to Pi+1 (of which it is a source), except for Pm (whose
sink has been placed at the second position already). This may stretch existing
edges, which we will keep track of in the analysis.

An illustration of the arrangement for the case 1 < a < m can be found in
Fig. 2.

P1 P2 Pa−1 Pm Pm−1 Pa+2 Pa+1 Pa

Fig. 2. Order in which the SPGAA arranges a series component consisting of m child
components for 1 < a < m (where Pa is a biggest component). Dotted nodes indicate
the position at which a node would be placed according to the previous recursion level.
Dashed arrows indicate the change in position at the current recursion level.

4 Analysis

In this section, we prove the approximation ratio of 14 ·D2 for the Series-Parallel
Graph Arrangement Algorithm described in Sect. 3. As a first step, we provide
lower bounds on the amortized cost in an optimal arrangement for each kind
of component. The amortized cost of a component is the sum of two values:
First, the exclusive cost of this component (cost of the current component minus
the individual cost of all child components). Second, some cost that has been
accounted for in a lower recursion level. This cost is chosen such that the sum of
all amortized costs does not contain this cost more than three times. We use these
bounds to establish a lower bound on the total cost of an optimal solution. The

Minimum Linear Arrangement of Series-Parallel Graphs 175

details are described in Subsect. 4.2. As a second step, we state upper bounds on
the exclusive costs generated at each recursion step of the SPGAA in order to
determine an upper bound on the total cost in Subsect. 4.3. Last, we use both
the lower bound as well as the upper bound to relate the cost of an optimal
arrangement to that of an arrangement computed by the SPGAA. This is done
in Subsect. 4.4. In addition to providing the approximation ratio of the SPGAA,
we establish a polynomial runtime bound of our algorithm in Subsect. 4.5. Note
that all the proofs in this section can be found in the full version [10].

4.1 Prerequisites

For the analysis, we need several notions, which we now introduce.

Definition 7 (Length of an Edge). Given a graph G = (V,E) and a lin-
ear arrangement π of G, let u, v ∈ E. The length of (u,v) in π, denoted by
lengthπ(u, v) is defined as:

lengthπ(u, v) = |π(u) − π(v)|.

Definition 8. Given a linear arrangement π of a series-parallel graph G =
(V,E) and a (series or parallel) component C in G, we define:

Restricted Arrangement. The arrangement π cted to C, denoted by π(C) is
obtained by removing all nodes from π that do not belong to C, as well as their
incident edges, i.e., π(C) maps the nodes from C to {1, . . . , |C|}.

Restricted Length of an Edge. For any edge (u, v) that belongs to C, the
length of (u,v) restricted to C, denoted by lengthπ(C)(u,v), is the distance
between u and v in π(C).

Restricted Cost of an Arrangement. Let EC be the set of all edges from
G whose both endpoints are in C. The cost of C restricted to C, denoted by
R-COSTπ(C), is defined as:

R-COSTπ(C) :=
∑

(u,v)∈EC

lengthπ(C)(u, v).

Definition 9 (Exclusive Cost of a Series/Parallel Component). Given
a linear arrangement π of a series-parallel graph G and a (series or parallel)
component C in G containing m ≥ 0 child components C1, . . . , Cm, the exclusive
cost of C in π, denoted by E-COSTπ(C), is defined as

E-COSTπ(C) := R-COSTπ(C) −
m∑

i=1

R-COSTπ(Ci).

Note that the exclusive cost of a simple node sequence S is equal to the restricted
cost of S.

We can make the following observation regarding the relationship between
the exclusive costs of the components and the total cost:

176 M. Eikel et al.

Observation 1. Let G be a series-parallel graph and let π be a linear arrange-
ment of G. Further, let C be the set of all (series or parallel) components in G.
It holds: ∑

C∈C
E-COSTπ(C) = COSTπ(G).

In the analysis of the SPGAA, we need to find at least one path from sP to
tP through P for each parallel component P such that any two such paths
are edge-disjoint for two different parallel components. Therefore, we introduce
the following notion of an S-decomposition , which yields these paths and is
recursively defined as follows:

Definition 10 (A-path, S-path, S-decomposition). Let P be an “inner-
most” parallel component in a series-parallel graph G (i.e., one whose child
components are simple node sequences only) with source s, sink t, and k child
components. Select an arbitrary simple path from s to t through P (i.e., select
one of the simple node sequences). This path is called the auxiliary path or sim-
ply A-path of P . The remaining paths from s to t through P are called the
selected paths or simply S-paths of P .

Recursively, for an arbitrary parallel component P , with source s, sink t, and
m ≥ 2 child components S1, . . . , Sm, for each child component Si, 1 ≤ i ≤ m,
select a simple path Qi from s to t through Si in the following way: If Si is
a simple node sequence, Qi is the whole sequence. Otherwise, Si is a series
component, which consists of k ≥ 0 simple node sequences and l ≥ 1 parallel
components (note that k + l ≥ 2). Denote these child components by P1, . . . Pk+l

in the order in which they appear in Si. Construct the path Qi step by step:
Start with P1 and add P1 completely to Qi if P1 is a simple node sequence. If,
however, P1 is a parallel component, select the A-path of P1 and extend Qi by
it. Continue in the same manner up to Pk+l. After this, the whole path Qi is
constructed. Q1 is called the A-path of P and the remaining paths Q2, . . . , Qm

are called the S-paths of P .
The selection of S-paths (and A-paths accordingly) for all parallel components

of G is called an S-decomposition of G.

An example of an S-decomposition can be found in the full version [10].
Intuitively, an auxiliary path of a parallel component Pj is a path through

the whole component which is reserved to be used in higher recursion levels (to
eventually become part of an S-path there). Any edges of an S-path are not used
for any S-path or A-path in any higher recursion level.

The main contribution of the S-decomposition is that it gives a mapping from
parallel components to paths through the respective components (the S-paths)
such that all these paths are edge-disjoint. More formally:

Lemma 1. For each series-parallel graph G, there exists an S-decomposition
SD. Besides, in any S-decomposition, each edge belongs to at most one S-path
in SD.

Provided with the definition of an S-decomposition, we are ready to define the
amortized cost as follows:

Minimum Linear Arrangement of Series-Parallel Graphs 177

Definition 11 (Amortized Cost). Let πOPT be an (optimal) linear arrange-
ment of a series-parallel graph G, let SD be an S-decomposition of G, and let S
be a series component in G. Further, let ES be the set that contains all edges of
simple node sequences that are child components of S and all edges of S-paths of
the child components of S that are parallel components. The amortized cost of
S, denoted by A-COSTπOPT

(S), is defined as:

A-COSTπOPT
(S) := E-COSTπOPT

(S) +
∑

{x,y}∈ES

lengthπOPT (S)(x, y).

For any parallel component P in a series-parallel graph G and any optimal linear
arrangement πOPT ,

A-COSTπOPT
(P) := E-COSTπOPT

(P).

Note that the addend in the amortized cost for simple node sequences is zero
(as the set ES is empty in this case).

This definition will be helpful for the analysis of the minimum cost of an
optimal arrangement. The amortized cost adds a certain value to the exclusive
cost of a (series or parallel) component C, with the following property:

Lemma 2. Let G = (V,E) be a series-parallel graph, and πOPT be an (optimal)
linear arrangement for G. Further, let C be the set of all (series or parallel)
components of G. It holds:

∑

C∈C
A-COSTπOPT

(C) ≤ 3 ·
∑

C∈C
E-COSTπOPT

(C).

For the analysis of an optimal arrangement, we also need the following notation:

Definition 12 (ΔC). Given an (optimal) linear arrangement πOPT of a series-
parallel graph G, and a (series or parallel) component C in G, consider πOPT

restricted to C. We denote the smallest number of nodes to the left or to the right
(depending on which number is smaller) of a terminal node of C in πOPT (C)
by ΔC .

It is convenient to define:

Definition 13 (Cardinality of a Component). For any series-parallel graph
G and any (series or parallel) component C in G: |C| is the number of nodes in
C, |C�| is the number of all nodes in C without the sink of C, and |C−| is the
number of nodes in C without the two terminal nodes of C.

4.2 A Lower Bound on the Total Cost of Optimal Solutions

In this subsection, we give lower bounds on the amortized costs of an optimal
arrangement for simple node sequences, parallel components, and series compo-
nents. In the end, we consolidate the results and state a general lower bound
on the total cost of an optimal arrangement. For the proofs, we refer to the full
version [10].

First of all, the following is a simple result about simple node sequences:

178 M. Eikel et al.

Lemma 3. For any simple node sequence L in a series-parallel graph G in an
optimal arrangement πOPT , it holds:

A-COSTπOPT
(L) ≥ |L| − 1 + ΔL.

We now provide a lower bound on the amortized cost of series components:
Lemma 4. For any series component S in a series-parallel graph G with m ≥ 2
child components P1, . . . , Pm in an optimal arrangement πOPT , it holds:

A-COSTπOPT
(S) ≥ 1

2

(
m∑

i=1

|P�
i | − maxi|P�

i |
)

+ 1 +
m∑

i=1

ΔPi
− ΔS .

For the amortized cost of parallel components, we have the following result:
Lemma 5. For any parallel component P in a series-parallel graph G with m ≥
2 child components S1, . . . , Sm, in an optimal arrangement πOPT , it holds:

A-COSTπOPT
(P) ≥ 1

2

(
m∑

i=1

|S−
i | − maxi|S−

i |
)

+
m∑

i=1

ΔSi
− ΔP .

These three lower bounds for the different types of components in any series-
parallel graph can be combined into a single lower bound:
Corollary 1. Let G = (V,E) be an arbitrary series-parallel graph and πOPT

an optimal arrangement of G. Further, denote the total cost of πOPT by
COSTπOPT

(G), the set of simple node sequences in G by LG, the set of par-
allel components by PG, the set of series components by SG. Then, it holds:

7 · COSTπOPT
(G) ≥

∑

L∈LG

2 · (|L| − 1) +
∑

P∈PG

(
∑

Si∈P

|S−
i | − maxSi∈P |S−

i |
)

+
∑

S∈SG

(
∑

Pi∈S

|P�
i | − maxPi∈S |P�

i |
)

.

4.3 An Upper Bound on the Total Cost of SPGAA Arrangements

For the approximation ratio of the SPGAA, we also need to find an upper bound
on the cost of arrangements computed by the SPGAA. One can show the fol-
lowing result:

Lemma 6. Let G = (V,E) be an arbitrary series-parallel graph and let πALG

be an arrangement of G computed by the SPGAA. Furthermore, denote the total
cost of πALG by COSTπALG

(G), the set of simple node sequences in G by LG,
the set of parallel components by PG, the set of series components by SG. Then,
it holds:

COSTπALG
(G) ≤

∑

L∈LG

2 · (|L| − 1) +
∑

P∈PG

2D2 ·
(

∑

Si∈P

|S−
i | − maxSi∈P |S−

i |
)

+
∑

S∈SG

2D ·
(

∑

Pi∈S

|P�
i | − maxPi∈S |P�

i |
)

.

Minimum Linear Arrangement of Series-Parallel Graphs 179

4.4 The Approximation Ratio of 14 · D2

Finally, based on the groundwork of the previous subsections, proving the main
theorem of this chapter is straightforward.

Theorem 2. For a series-parallel graph G, let πALG be the linear arrangement
of G computed by the SPGAA, and let πOPT be an optimal linear arrangement
of G. It holds:

COSTπALG
(G) ≤ 14 · D2 · COSTπOPT

(G).

4.5 Runtime

Regarding the runtime of the SPGAA, one can show the following result:

Theorem 3. On a series-parallel graph G = (V,E), the SPGAA has a runtime
of O(|E|) if a minimal SP-tree of G is given as an input, and a runtime of
O(|E| log |E|) otherwise.

References

1. Adolphson, D., Hu, T.C.: Optimal linear ordering. SIAM J. Appl. Math. 25(3),
403–423 (1973)

2. Adolphson, D.L.: Single machine job sequencing with precedence constraints. SIAM
J. Comput. 6(1), 40–54 (1977)

3. Ambühl, C., Mastrolilli, M., Svensson, O.: Inapproximability results for sparsest
cut, optimal linear arrangement, and precedence constrained scheduling. In: Pro-
ceedings of FOCS, pp. 329–337. IEEE Computer Society (2007)

4. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph
partitioning. J. ACM 56(2), 5 (2009)

5. Bodlaender, H.L., de Fluiter, B.: Parallel algorithms for series parallel graphs.
In: Diaz, J., Serna, M. (eds.) ESA 1996. LNCS, vol. 1136, pp. 277–289. Springer,
Heidelberg (1996)

6. Charikar, M., Hajiaghayi, M.T., Karloff, H., Rao, S.: L22 spreading metrics for
vertex ordering problems. In: Proceedings of SODA, pp. 1018–1027. Society for
Industrial and Applied Mathematics, Philadelphia (2006)

7. Chung, F.R.K.: Labelings of graphs. In: Beineke, L., Wilson, R. (eds.) Selected
Topics in Graph Theory, vol. 3, pp. 151–168. Academic Press, New York (1988)

8. Cohen, J., Fomin, F.V., Heggernes, P., Kratsch, D., Kucherov, G.: Optimal linear
arrangement of interval graphs. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006.
LNCS, vol. 4162, pp. 267–279. Springer, Heidelberg (2006)

9. Dı́az, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Comput.
Surv. 34(3), 313–356 (2002)

10. Eikel, M., Scheideler, C., Setzer, A.: Minimum linear arrangement of series-parallel
graphs (full paper). ArXiv e-prints, October 2014

11. Eppstein, D.: Parallel recognition of series-parallel graphs. Inf. Comput. 98(1),
41–55 (1992)

12. Even, S., Shiloach, Y.: NP-completeness of several arrangement problems. Depart-
ment of Computer Science, Technion, Haifa, Israel, Technical Report 43 (1975)

180 M. Eikel et al.

13. Feige, U., Lee, J.R.: An improved approximation ratio for the minimum linear
arrangement problem. Inf. Process. Lett. 101(1), 26–29 (2007)

14. Fishburn, P., Tetali, P., Winkler, P.: Optimal linear arrangement of a rectangular
grid. Discret. Math. 213(1–3), 123–139 (2000)

15. Frederickson, G.N., Hambrusch, S.E.: Planar linear arrangements of outerplanar
graphs. IEEE Trans. Circ. Syst. 35(3), 323–333 (1988)

16. Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete graph prob-
lems. Theoret. Comput. Sci. 1(3), 237–267 (1976)

17. Hadlock, F.: Finding a maximum cut of a planar graph in polynomial time. SIAM
J. Comput. 4(3), 221–225 (1975)

18. Harper, L.H.: Optimal assignments of numbers to vertices. J. SIAM 12(1), 131–135
(1964)

19. Kikuno, T., Yoshida, N., Kakuda, Y.: A linear algorithm for the domination num-
ber of a series-parallel graph. Discret. Appl. Math. 5(3), 299–311 (1983)

20. Macmahon, P.A.: The combination of resistances. Electrician 28, 601–602 (1892)
21. Nakano, K.: Linear layouts of generalized hypercubes. In: van Leeuwen, J. (ed.)

WG 1993. LNCS, vol. 790, pp. 364–375. Springer, Heidelberg (1994)
22. Petit, J.: Experiments on the minimum linear arrangement problem. J. Exp. Algo-

rithmics 8, 2–3 (2003)
23. Petit, J.: Addenda to the survey of layout problems. Bull. EATCS 3(105), 177–201

(2013)
24. Rao, S., Richa, A.W.: New approximation techniques for some ordering problems.

In: Proceedings of SODA, pp. 211–218. Society for Industrial and Applied Mathe-
matics, Philadelphia (1998)

25. Rostami, H., Habibi, J.: Minimum linear arrangement of chord graphs. Appl. Math.
Comput. 203(1), 358–367 (2008)

26. Setzer, A.: The planar minimum linear arrangement problem is different from the
minimum linear arrangement problem. ArXiv e-prints, September 2014

27. Shahrokhi, F., Sýkora, O., Székely, L., Vrto, I.: On bipartite drawings and the
linear arrangement problem. SIAM J. Comput. 30(6), 1773–1789 (2001)

28. Takamizawa, K., Nishizeki, T., Saito, N.: Linear-time computability of combinato-
rial problems on series-parallel graphs. J. ACM 29(3), 623–641 (1982)

29. Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series parallel digraphs.
In: Proceedings of STOC, pp. 1–12. ACM, New York (1979)

	Minimum Linear Arrangement of Series-Parallel Graphs
	1 Introduction
	1.1 Problem Statement and Definitions
	1.2 Related Work
	1.3 Our Contribution

	2 Preliminaries
	3 The Series-Parallel Graph Arrangement Algorithm
	3.1 Arrangement of a Simple Node Sequence
	3.2 Arrangement of a Parallel Component
	3.3 Arrangement of a Series Component

	4 Analysis
	4.1 Prerequisites
	4.2 A Lower Bound on the Total Cost of Optimal Solutions
	4.3 An Upper Bound on the Total Cost of SPGAA Arrangements
	4.4 The Approximation Ratio of 14 D2
	4.5 Runtime

	References

