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Abstract. Ad exchanges are becoming an increasingly popular way to
sell advertisement slots on the internet. An ad exchange is basically a
spot market for ad impressions. A publisher who has already signed
contracts reserving advertisement impressions on his pages can choose
between assigning a new ad impression for a new page view to a con-
tracted advertiser or to sell it at an ad exchange. This leads to an online
revenue maximization problem for the publisher. Given a new impression
to sell decide whether (a) to assign it to a contracted advertiser and if so
to which one or (b) to sell it at the ad exchange and if so at which reserve
price. We make no assumptions about the distribution of the advertiser
valuations that participate in the ad exchange and show that there exists
a simple primal-dual based online algorithm, whose lower bound for the
revenue converges to RADX + RA(1 − 1/e), where RADX is the revenue
that the optimum algorithm achieves from the ad exchange and RA is
the revenue that the optimum algorithm achieves from the contracted
advertisers.

1 Introduction

The market for display ads on the internet is worth billions of dollars and
continues to rise. Not surprisingly, there are multiple ways of selling display
advertisements. Traditionally, publishers signed long-term contracts with their
advertisers, fixing the number of impressions, i.e. assigned ad slots views, as
well as their price. In the last few years, however, spot markets, so called Ad
Exchanges [8], have been developed, with Amazon, Ebay, and Yahoo (to just
name a few) all offering their own ad exchange. Thus, every time a user requests
to download a page from a publisher, the publisher needs to decide (a′) which of
the ad impressions on this page should be assigned to which contracted adver-
tiser, and (b′) which should be sold at the ad exchange and at which reserve
price1.

Ad exchanges are interesting for publishers as (1) basically an unlimited
number of ad impressions can be sold at ad exchanges, and (2) if the publish-
ers have additional information about the user, they might sell an impression
at a much higher price at the ad exchange than they could receive from their
contracted advertisers. As ad impressions that did not receive a bid at or above
1 The reserve price is the minimum required price at which an impression is sold at

an ad auction. If no offer is at or above the reserve price, the impression is not sold.
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the reserve price at the ad exchange can still be assigned to contracted advertis-
ers, a revenue-maximizing publisher can offer every ad impression first at an ad
exchange at a “high enough” reserve price and then afterwards assign the still
unsold impressions to contracted advertisers. The question for the advertiser
becomes, thus, (a’) what reserve price to choose, and (b’) to which advertisers
to assign the unsold impressions. We model this setting as an online problem and
achieve the following two results: If the revenue achievable by the ad exchange
for each ad impression is known, we give a constant competitive algorithm. Then
we show how to convert this algorithm into a second algorithm that works in the
setting where the revenue achievable from the ad exchange is not known. Assume
that the auction executed at the ad exchange fulfills the following property P :
If an ad impression is sold at the ad exchange, then the revenue achieved is
independent of the reserve price chosen by the publisher. Thus, the reserve price
influences only whether the ad impression is sold, not the price that is achieved.
For example, a first price auction with reserve prices fulfills this condition. If the
auction at the ad exchange fulfills this condition, then our second algorithm is
constant competitive when compared with the optimum offline algorithm.

When modeling contracted advertisers we use the model with free disposal
introduced in [4]: Each advertiser a comes with a number na and the revenue
that an algorithm receives from a consists of the na most valuable ad impressions
assigned to a. Additional impressions assigned to a do not generate any revenue.

More formally we define the following Online Ad Assignment Problem with
Free Disposal and an Ad Exchange. There is a set of contracted advertisers A and
an ad exchange α. Each advertiser a comes with a number na of ad impressions
such that a pays only for the na most valuable ad impressions assigned to a, or
for all assigned ad impressions if fewer than na are assigned to a. To simplify the
notation we set nα = ∞. Now a finite sequence S = S0, S1, . . . of sets Sl with
l = 0, 1, . . ., of ad impressions arrives in order. When Sl arrives, the weights wi,a

for each i ∈ Sl and a ∈ A ∪ {α} are revealed and the online algorithm has to
assign each i ∈ Sl before further sets Sl+1, Sl+2, etc. arrive. Let A : I → A∪{α}
be an assignment of impressions to advertisers. An assignment is valid if no two
impressions in the same set Sl are assigned to the same advertiser a ∈ A. Let
IA(a) be the set of na impressions with highest weight assigned to advertiser a
by A. Then the revenue R(A) of A is

∑
a∈A∪{α}

∑
i∈IA(a) wi,a. The goal of the

algorithm is to produce a valid assignment A with maximum revenue R(A). The
competitive ratio of an online algorithm is the minimum over all sequences S of
the ratio of the revenue achieved by the online algorithm on S and the revenue
achieved by the optimal offline algorithm on S, where the latter algorithm is
given all of S before it makes the first decision.

Feldman et al. [4] studied a special case of our problem, namely the set-
ting without an ad exchange and where each set Sl has size one, i.e. where the
impressions arrive consecutively. For that setting they gave a primal-dual based
0.5 competitive algorithm whose competitive ratio converges to (1 − 1/e) ratio
when all the na values go to infinity. More precisely let nA = mina∈A na. Then
their algorithm is 1 − ( nA

nA+1 )nA -competitive. They also showed that this ratio
is tight when considering deterministic algorithms [4]. Let Ra for an advertiser
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a ∈ A ∪ {α} be the revenue that the optimal algorithm receives from a. We
extend their results in several ways. (1) We consider a setting with one adver-
tiser, called ad exchange, that has infinite capacity2. Moreover, we allow multi-
ple ad slots on a page, with the condition that no two can be assigned to the
same advertiser, i.e. for us |Sl| can be larger than 1. (2) The revenue of our
algorithm depends directly on the na value, not on nA. More precisely, if no ad
exchange exists, our algorithm receives a revenue of at least

∑
a(1−( na

na+1 )na)Ra.
When an ad exchange is added, our algorithm achieves a revenue of at least
Rα +

∑
a(1 − ( na

na+1 )na)Ra. (3) We show how to modify our algorithm for the
setting where wi,α is unknown for all i. In this setting our algorithm computes
a reserve price and sends every impression first to the ad exchange. The reserve
price is set such that if the auction executed at the ad exchange fulfills property
P then the above revenue bounds continue to hold, i.e. it achieves a revenue of
at least Rα +

∑
a(1 − ( na

na+1 )na)Ra.

Techniques. Our algorithm is a modification of the standard primal-dual algo-
rithms in [4] but it is itself not a standard primal-dual algorithms as it does
not construct a feasible primal and dual solution to a single LP. Instead in the
analysis we use several primal and dual LPs, one for each advertiser a and use
the dual solutions to upper bound Ra. However, the corresponding primal fea-
sible solution is not directly related to the revenue the algorithm achieves from
a. Instead, the solution constructed by the algorithm is a feasible solution for a
primal program that is the combination of all individual LPs. This property is
strong enough to give the claimed bounds. The crucial new ideas in our algo-
rithms are (i) the observation that when deciding to whom an ad slot is assigned
the publisher should be biased towards advertiser with large na and in particular
towards the ad exchange and (ii) that based on the structure of the algorithm
it can be easily modified to compute an reserve price for the auction in the ad
exchange if the wi,α values are unknown.

Further Related Work. We briefly sketch prior work on the question whether
the publisher should assign an impression to a contracted advertiser or an ad
exchange. In [2] a scenario is studied, where the wi,a follow a joint distribution
and no disposal is allowed. Gosh et al. [5] assume that for each impression i the
wi,α values follow a known distribution and the contracted advertisers have a
quality value depending on wi,α. They study the trade-off between the quality of
the impressions assigned to the advertisers and revenue from the ad exchange.
The work in [1], like our work, does not make Bayesian assumptions but studies
online algorithms in the worst case setting. The main difference is that there the
contracted advertisers also arrive online and that there is no free disposal.

Finally, Devanur et al. [3] extend [4] to the scenario with multiple ad slots on
a page and constraints on ads being assigned together, but they neither consider
ad-exchanges nor consider the different capacities na in the competitive ratio.

Structure of the Paper. In Sect. 2 we discuss why the algorithm from [4] is not satis-
fying in our setting and present a simple online algorithm for the 1-slot case, which
2 It is straightforward to extend the algorithm and its analysis to multiple ad exchanges.
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we improve in Sect. 3 to achieve a revenue of at least Rα +
∑

a(1 − ( na

na+1 )na)Ra.
In Sect. 4 we generalize this algorithm to the multi-slot setting. Finally, in Sect. 5
we show how to adapt it if the wi,α values are unknown.

2 A Simple 1-Slot Online Algorithm

In Sects. 2 and 3 we consider algorithms for the 1-slot setting, i.e., where each
Sl just contains a single impression i. Given an instance of such an online ad
assignment problem we can build an equivalent instance where all capacities
na = 1. Simply replace each advertiser a by na copies a1, . . . ana

with the capac-
ities 1 and for each impression i set wi,ap

= wi,a for all 1 ≤ p ≤ na. Thus in
this section we assume na = 1 for each a ∈ A. Then we formulate the offline
problem as an integer linear program (ILP), where the variable xi,a is set to 1
if i is assigned to advertiser a and to 0, otherwise.

Primal: max
∑

i,a∈A∪{α}
wi,a xi,a

∑

a∈A∪{α}
xi,a ≤ 1 ∀i

∑

i

xi,a ≤ 1 ∀a ∈ A

The first type of constraints ensures that each impression is assigned to at most
one advertiser, while the second type of constraints ensures that each a ∈ A is
assigned at most one impression. It has the following dual LP.

Dual:min
∑

i

zi +
∑

a∈A

βa

zi + βa ≥ wi,a ∀i,∀a ∈ A

zi ≥ wi,α ∀i

For notational convenience we assume an additional variable βα which remains
0 for the whole algorithm. We next consider a straight forward generalization
of the online algorithm in [4], called Algorithm 1, to our setting. This algorithm
constructs a feasible integral solution for the Primal LP, corresponding to an ad
assignment, and a feasible solution for the dual LP that is used to bound the
revenue of the optimal assignment.

Algorithm 1

1. Initialize βa = 0, βα = 0
2. When impression i arrives

(a) Compute j = argmax
a∈A∪{α}

{wi,a − βa}.

(b) if j = α then set xi,α = 1 and zi = wi,α.
(c) if j ∈ A then set xi,j = 1, ∀ i′ �= i : xi′,j = 0, zi = wi,j − βj and βj = wi,j .
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Algorithm 1 constructs feasible solutions for both the Primal and the Dual:
when impression i is assigned to advertiser j then xi,j is set to 1, βj is set
to wi,j , and zi is set to maxa∈A∪{α}{wi,a − βa}. Note that the loss in revenue
of Algorithm 1 compared to the optimal assignment exclusively comes from the
impression assigned to advertisers in A. However, the above algorithm does not
guarantee that impressions are sent to ad exchange when the optimal algorithm
does. Thus the optimal offline assignment might send many impressions to the
ad exchange, while the online assignment of the above algorithm does not and
thus might only be an 1/2 approximation. Such a situation is given in Example 1.

Example 1. Consider A = {a} with na = 1 and impressions 1 ≤ i ≤ n with
wi,α = 1 − ε and wi,a = i. Then the revenue R(A) of Algorithm 1 after n
impressions is n, while the optimal assignment achieves n+(n−1)(1− ε), where
(n − 1)(1 − ε) is achieved by the ad exchange. For ε → 0 and n → ∞ the ratio
R(A)/R(OPT ) is 1/2 although half of the revenue in the optimal assignment
OPT comes from the ad exchange.

Thus the algorithm from [4] is only 1/2-competitive, even when an ad exchange,
i.e., an advertiser with infinite capacity, is added.

Given an ad assignment A let Rα(A) denote the revenue the assignment gets
from impressions assigned to the ad exchange and let RA(A) denote the revenue
the assignment gets from impressions assigned to contracted advertisers. Thus we
have R(A) = Rα(A) + RA(A). Additionally, we use OPT to denote the optimal
assignment. We present next Algorithm 2, an online algorithm that receives as
revenue at least Rα(OPT ) + (1/2)Ra(OPT ), which is already an improvement
over Algorithm 1. It is based on the observation that assigning an impression that
should be sent to the ad exchange to an advertiser in A is worse than sending an
impression that should go to an advertiser in A to the ad exchange. Thus, the
algorithm is biased towards the ad exchange. Specifically the algorithm assigns
an impression to an advertiser a ∈ A only if it gives at least double the revenue
on a than on α.

Theorem 1. Let A be the ad assignment computed by Algorithm2 then R(A) ≥
Rα(OPT ) + 1/2 · RA(OPT ).

Proof. Let IA
OPT , resp. Iα

OPT , be the impressions assigned to A, resp. α, by the
optimal (offline) assignment OPT. We give an LP PA for the advertisers A and
impressions IA

OPT and its dual DA such that any feasible solution for DA gives
an upper bound dA for RA(OPT ).

Algorithm 2

1. Initialize βa = 0 for all a ∈ A ∪ {α}
2. When impression i arrives

(a) Compute j = argmax
a∈A

{wi,a − βa}.

(b) if {wi,j − βj} > 2 · wi,α then assign i to j and set βj = wi,j .
(c) if {wi,j − βj} ≤ 2 · wi,α then assign i to α.
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Primal PA: max
∑

i∈IA
OP T ,a∈A

wi,a xi,a

∑

a∈A

xi,a ≤ 1 ∀i∈IA
OPT

∑

i∈IA
OP T

xi,a ≤ 1 ∀a∈A

Dual DA: min
∑

i∈IA
OP T

zi +
∑

a∈A

βa

zi + βa ≥ wi,a ∀i∈IA
OPT ∀a∈A

Note that the summation in PA and the constraints in DA are only over impres-
sions in IA

OPT . The objective value of the optimal solution of DA, is an upper
bound for the objective of PA, and thus also for RA(OPT ). However, there is no
direct relationship between RA(A) and the objective of PA for A, as A might
also assign impressions from Iα

OPT to A.
To upper bound RA(OPT ) we construct a feasible solution for DA. We do

this in a iterative fashion, that is whenever Algorithm2 assigns an impression
i ∈ IA

OPT we update the feasible solution for DA as follows: (i) For the βa

variables we use the values currently set by the Algorithm 2; (ii) For the variable
zi we set zi = wi,j − βo

j , where βo
a is the value of βa before i is assigned. As

wi,j − βo
j = maxa∈A{wi,a − βa}, all the constraints for i are satisfied. Hence,

doing this for all i ∈ IA
OPT gives a feasible solution for DA and its objective dA

fulfills dA ≥ RA(OPT ).
Let ΔdA(i) be the increase of the objective dA when the algorithm assigns

impression i, i.e., the change in dA caused by the change in the β-values and the
assignment of the zi value. For notational convenience we also define Δdα(i) =
wi,α if i ∈ Iα

OPT and Δdα(i) = 0 otherwise. Furthermore, let ΔR(A, i) be the
increase in revenue of the algorithm when it assigns i. Note that

∑
i∈I ΔdA(i) =

dA,
∑

i∈I Δdα(i) = Rα(OPT ) and
∑

i∈I ΔR(A, i) = R(A).
We need to show that R(A) ≥ Rα(OPT ) + 1/2 · dA. For this it suffices to

show that for each i ∈ I it holds that

ΔR(A, i) ≥ Δdα(i) + 1/2 · ΔdA(i).

To prove this let βn
a , resp. βo

a, to denote the value of βa after, resp. before i
is assigned. We distinguish the cases (i) i ∈ IA

OPT and (ii) i ∈ Iα
OPT and use the

fact that βa is such that βa = 0 if no impression was assigned to a and otherwise
βa = wi′,a, where i′ is the impression currently assigned to a

(i) First consider the case i ∈ IA
OPT , which implies Δdα(i) = 0. Thus, we

have to show that ΔR(A, i) ≥ 1/2 · ΔdA(i).

1. If Algorithm 2 assigns i to an j ∈ A recall that we set zi = wi,j − βo
j and

the algorithm sets βn
j = wi,j . Thus ΔdA(i) = 2 · (wi,j − βo

j ) and ΔR(A, i)
is given by wi,j minus the value of the impression we have to drop (if any),
given by β0

a. As this values is stored in βo
j we get ΔR(A, i) = wi,j − βo

j and
thus ΔR(A, i) ≥ 1/2 · ΔdA(i).

2. If Algorithm 2 assigns i to α (although the OPT does not), we know from
Step 2c that {wi,j − βj} ≤ 2wi,α, where j = argmax

a∈A
{wi,a − βa}. As we set
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zi = wi,j − βo
j and the algorithm keeps all βa unchanged we get ΔdA(i) =

wi,j − βo
j and as we assign i to α we have ΔR(A, i) = wi,α. Thus ΔR(A, i)=

wi,α ≥ 1/2 {wi,j − βj}=1/2ΔdA(i).

Thus, for i ∈ IA
OPT it holds that ΔR(A, i) ≥ 1/2·ΔdA(i) = Δdα(i)+1/2·ΔdA(i).

(ii) Now consider i ∈ Iα
OPT , which implies Δdα(i) = wi,α. Recall that no

z-values are involved in this case. We show that ΔR(A, i) ≥ wi,α +1/2 ·ΔdA(i).

1. If Algorithm 2 assigns i to the ad exchange then the βa are not changed.
Thus ΔdA(i) = 0 and ΔR(A, i) is simply wi,α. Hence, ΔR(A, i) ≥ wi,α +
1/2 · ΔdA(i).

2. If Algorithm 2 assigns i to an a ∈ A we have {wi,a − βo
a} > 2wi,α and the

algorithm sets βn
a = wi,a. Thus ΔdA(i) = wi,a − βo

a. Furthermore, ΔR(A, i)
is given by wi,a minus the value of the impression we have to drop (if any),
given by β0

a. Thus ΔR(A, i) = (wi,a − βo
a) = (wi,a − βo

a)/2 + (wi,a − βo
a)/2 ≥

wi,α + 1/2 · ΔdA(i).

Thus, for i ∈ Iα
OPT it holds that ΔR(A, i) ≥ wi,α +1/2 ·ΔdA(i) = Δdα(i)+1/2 ·

ΔdA(i). Combined we obtain that

R(A)=
∑

i∈I

ΔR(A, i) ≥
∑

i∈I

(

Δdα(i)+
ΔdA(i)

2

)

≥ Rα(OPT )+
RA(OPT )

2
.

	


3 An Online 1-Slot Algorithm Exploiting High Capacities

In this section we generalize the result from Sect. 2 to the setting where each
advertiser a ∈ A has an individual limit na for the number of ad impressions he
is willing to pay for and we present Algorithm3 that achieves an improvement
in revenue for advertisers a with large na.
In Algorithm 3 we consider variables βa which, for a ∈ A, are always set s.t.

βa =
1

na(ena
− 1)

na∑

j=1

wj

(

1 +
1
na

)j−1

(1)

where the wj ’s are the weights of the impressions assigned to a in non-increasing
order and ena

= (1+1/na)na . That is, βa stores a weighted mean of the na most
valuable impressions assigned to a. Again we keep βα =0 in the whole algorithm.
Next we consider how assigning a new impression to a affects βa.

Lemma 1 ([4]). Consider a new impression i being assigned to advertiser a. Let
βo

a, resp. β
n
a denote the value of βa before, resp. after i was assigned and v the value

of the impression dropped from βa (0 if no impression is dropped), then

βn
a − βo

a ≤ βo
a

na
− v · ena

na(ena
− 1)

+
wi,a

na(ena
− 1)

.
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Algorithm 3

1. Initialize βa = 0 for all a ∈ A ∪ {α}
2. When impression i arrives

(a) Compute x = argmax
a∈A∪{α}

{ca · (wi,a − βa)}
(b) assign i to x and update βx according to (1)

where weights ca are defined as ca =

{
1 − 1

ena
a ∈ A

1 a = α

Notice that in Algorithm3 for each a ∈ A we have that 1/2 ≤ ca < 1 − 1/e.
We use Ra(A) for a ∈ A∪{α} to denote the revenue the assignment A gets from
advertiser a. Thus, R(A) =

∑
a∈A∪{α} Ra(A).

Theorem 2. Let A be the assignment computed by Algorithm3 then R(A) ≥∑
a∈A∪{α} ca · Ra(OPT ).

Theorem 2 will be a direct consequence of Theorem 3.
Finally let us briefly discuss whether the constants ca are chosen optimally.

From a result in [6] on online algorithms for b-matchings it follows immediately
that the constants ca in Theorem 2 are optimal for deterministic algorithms.
Moreover, in [7] it is shown that even randomized algorithms cannot achieve a
better competitive ratio than (1−1/e)3. So for large values of na even randomized
algorithms cannot improve over Algorithm3.

4 A Multi-slot Online Algorithm

In practice publishers often have several ad slots at a single page and want to
avoid to show multiple ads from the same advertiser on the same page to avoid
annoying their users. This can be modeled as follows: A sequence S = S0, S1, . . .
of sets of impressions arrive in an online manner. Each set S has be assigned (a)
before any future sets have arrived, and (b) such that non two impressions in S
are assigned to the same advertiser in A. Note that we allow multiple impressions
from S to be assigned to the ad exchange as we expect the ad exchange to
return different advertisers for them. Let the set of all impressions I =

∑
S∈S S.

With Algorithm 4 we present an online algorithm for this setting with the same
competitive ratio as Algorithm 3. Note, however, that, unlike Algorithm3, it
is compared to the optimal offline solution that respects the above restriction.
More formally, we call a function a : S → A ∪ {α} assigning impressions S to
advertisers valid if there are no i, i′ ∈ S, i �= i′, a ∈ A such that a(i) = a(i′) = a.
Our Algorithm 4 generates a valid assignment and is compared to the revenue of
the valid assignment generated by the optimal offline algorithm. Notice that the
computation of argmax in Algorithm4 is a weighted bipartite matching problem
and thus can be computed efficiently.
3 In [7] the authors study the Adwords problem but in [4] it is argued that the given

example can be also be interpreted as Online Ad Assignment problem.
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Algorithm 4

1. Initialize βa = 0 for all a ∈ A ∪ {α}
2. When impressions S = {i1, . . . , il} arrive

(a) Compute b = argmax
valid a

{∑
i∈S

ca(i) · (wi,a(i) − βa(i))

}

(b) assign each i to b(i) and, if b(i) ∈ A, update βb(i) according to (1).

where weights ca are defined as ca =

{
1 − 1

ena
a ∈ A

1 a = α

Recall that Ra(OPT ) for a ∈ A ∪ {α} is the revenue that an optimal assign-
ment generates from advertiser a. We show the following performance bound.

Theorem 3. Let A be the assignment computed by Algorithm4 and OPT the
optimal multi-slot ad assignment, then R(A) ≥ ∑

a∈A∪{α} ca · Ra(OPT ).

Proof. We proceed as follows: First we give a linear program Pa and its dual
Da for each a ∈ A such that the final objective value of any feasible solution
of Da is an upper bound of Ra(OPT ). Note, however, that there is no direct
relationship between the final objective values of the Pa’s and the revenue of
the algorithm. However, we are able to construct a feasible solution for each Da

with objective value da such that the revenue R(A) of the algorithm is at least∑
a∈A∪α ca ·da. Together with the observation that da ≥ Ra(OPT ) and a bound

dα on Rα(OPT ) this proves the theorem.
Let Ia

OPT be the impressions assigned to a ∈ A∪{α} by the optimal (offline)
assignment OPT. We use the following LPs for each a ∈ A.

Primal Pa: max
∑

i∈Ia
OP T

wi,a xi,a

xi,a ≤ 1 ∀i ∈ Ia
OPT

∑

i∈Ia
OP T

xi,a ≤ na

Dual Da: min
∑

i∈Ia
OP T

zi + naβa

zi + βa ≥ wi,a ∀i ∈ Ia
OPT

Note that the summation in the primal and the constraints in the Dual are only
over the impressions in Ia

OPT , i.e., the impressions assigned by OPT to a. The
objective value of the optimal solution for Da is an upper bound for the objective
of Pa, and thus also for Ra(OPT ). This implies that any feasible solution of Da,
also the one we construct next, gives an upper bound for Ra(OPT ). As there
might be impressions assigned to a by the algorithm that do not belong to Ia

OPT ,
the objective value of Pa is, however, not necessarily related to Ra(A).

Next we give a feasible solution for Da for all a ∈ A, using the βa values as
currently set by the algorithm. More specifically, let a be the assignment of the
impressions in S by the optimal solution. For each i ∈ I, we set zi = wi,a(i)−βa(i)
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exactly when the algorithm assigns i. Note that this results in a feasible dual
solution for all a as each i belongs to exactly one set I

a(i)
OPT and zi is chosen

exactly so as to make the solution of Da(i) feasible, together with the current
βa(i) values. As βa(i) only increases in the course of the algorithm the solution
remains feasible at the end of the algorithm. Let da be the value of this feasible
solution for Da for some a ∈ A. By the above observation da ≥ Ra(OPT ).

For all a ∈ A let Δda(S) be the increase of the objective value da when the
algorithms assigns S, i.e., the change in da caused by the change in the βa-values
and the assignment of the zi-values for all i ∈ S. Note that

∑
S∈S Δda(S) = da

and, thus, Ra(OPT ) ≤ ∑
S Δda(S). For convenience we also define Δdα(S) =∑

i∈S∩Iα
OP T

wi,α. Furthermore, let ΔR(A, S) be the increase in revenue of the
algorithm when it assigns S. Thus R(A) =

∑
S∈S ΔR(A, S).

We are left with showing that R(A) ≥ ∑
a∈A∪α ca ·da. To prove that R(A) =

∑
S∈S ΔR(A, S) ≥ ∑

a∈A∪α ca · da =
∑

S∈S
( ∑

a∈A∪α ca · Δda(S)
)

it suffices to
show that for each S ∈ S it holds that

ΔR(A, S) ≥
∑

a∈A∪α

ca · Δda(S).

We show this next. To simplify the notation let Δd(S) =
∑

a∈A∪α ca · Δda(S).
First consider ΔR(A, S): For a ∈ A let va be the value of the na-th valuable

impression assigned to a (the impression we would “drop” by assigning a new
one), and let vα = 0. If i is assigned to α then the gain in revenue is wi,b(i)

which equals wi,b(i) − vb(i). If i is assigned to a ∈ A then the gain in revenue is
the difference between the revenue of the new impression and the impression we
have to drop, i.e., wi,b(i) − vb(i). Thus for S altogether it holds

ΔR(A, S) =
∑

i∈S

(wi,b(i) − vb(i))

Now consider Δd(S): Recall that a is the assignment of the optimal solution for
the impressions S and let b be the assignment from Algorithm 4. For all a ∈ A
let βo

a, βn
a denote the value of βa right before, resp. right after this assignment.

Recall that for a = α, it holds that βa = 0 throughout the algorithm. Now
note that

Δd(S) =
∑

i∈S

(
ca(i) · (wi,a(i) − βo

a(i)) + cb(i) · nb(i) · (βn
b(i) − βo

b(i))
)

,

where the first term comes from the new variables zi which we set to wi,a(i)−βo
a(i)

(to make Da(i) feasible), and the second term comes from the updates of βa. By
the choice of b in the algorithm we get

Δd(S) ≤
∑

i∈S

(
cb(i) · (wi,b(i) − βo

b(i)) + cb(i) · nb(i) · (βn
b(i) − βo

b(i))
)

=
∑

i∈S

cb(i) ·
(
(wi,b(i) − βo

b(i)) + nb(i) · (βn
b(i) − βo

b(i))
)

.
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Next we bound the contribution of each i ∈ S separately by analyzing two cases:

– If b(i) = α then we know that βo
b(i) = βn

b(i) = vb(i) = 0 and cb(i) = 1. Thus

cb(i) ·
(
(wi,b(i) − βo

b(i)) + cb(i) · nb(i) · (βn
b(i) − βo

b(i))
)

= (wi,b(i) − vb(i)).

– If b(i) ∈ A then we can apply Lemma 1 to bound (βn
b(i) − βo

b(i)) as follows

cb(i) ·
(
(wi,b(i) − βo

b(i)) + nb(i) · (βn
b(i) − βo

b(i))
)

≤ cb(i) ·
(

(wi,b(i) − βo
b(i)) + βo

b(i) − vb(i) · enb(i)

enb(i) − 1
+

wi,b(i)

enb(i) − 1

)

= cb(i) ·
(

wi,b(i) · enb(i)

enb(i) − 1
− vb(i) · enb(i)

enb(i) − 1

)

= (wi,b(i) − vb(i))

In the last step we used that ca = 1 − 1/ena
for a ∈ A. By the above we obtain

Δd(S) ≤
∑

i∈S

(wi,b(i) − vb(i)) = ΔR(A, S).

Now consider that the set of impression is given by a series (Sj)0≤j≤n of pairwise
disjoint sets of impressions that show up simultaneously. By using the fact that
the gain in the revenue, resp. the gain in the upper bound for the sum, for the
sets Sj sum up to the total revenue of A, resp. an upper bound for OPT we get:

R(A)=
n∑

j=0

ΔR(A, Sj)≥
n∑

j=0

Δd(Sj)=
n∑

j=0

∑

a∈A∪{α}
ca Δda(Sj)≥

∑

a∈A∪{α}
ca Ra(OPT )

	


5 An Algorithm for Computing Reserve Prices

In our model we assumed the publisher knows exactly how much revenue he
can get from the ad exchange, i.e., the wi,α values are given for all i ∈ I. The
critical reader may interpose that this is not the fact in the real world or in the
ad exchange model proposed in [8]. Instead whenever sending an impression to
the ad exchange an auction is run. However, the publisher can set a reserve price
and if all the bids are below the reserve price then he can still assign it to one
of the contracted advertisers.

One nice property of Algorithms 2 and 3 is that they allow to compute the
minimal price we have to extract from the ad exchange such that it is better
to assign an impression to the ad exchange than to a contracted advertiser.
This price is given by maxa∈A {ca · (wi,a − βa)}. It follows that this price is also
a natural choice for the reserve price. Assume the auction executed at the ad
exchange fulfills the following property (P): If an ad impression is sold at the ad
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exchange, then the revenue achieved is independent of the reserve price chosen by
the publisher. Thus, the reserve price influences only whether the ad impression
is sold, not the price that is achieved. Then Theorem 3 applies, i.e., the revenue
of the algorithm is at least

∑
a∈A∪{α} ca · Ra(OPT ), even though the algorithm

is not given the wi,α values and it is compared to an optimal algorithm that
does. The reason is that the algorithm makes exactly the same decisions and
receives exactly the same revenue as Algorithm 3 that is given the wi,α values.

Theorem 4. Let A be the assignment computed by the Algorithm described
above, i.e., without knowledge of the wi,α values. If the auction at the ad exchange
fulfills property P, then R(A) ≥ ∑

a∈A∪{α} ca · Ra(OPT ).
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