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Preface

The 12th Workshop on Approximation and Online Algorithms (WAOA 2014) focused
on the design and analysis of algorithms for online and computationally hard problems.
Both kinds of problems have a large number of applications from a variety of fields.
WAOA 2014 took place in Wrocław, Poland, during September 11–12, 2014. The
workshop was part of the ALGO 2014 event that also hosted ESA, ALGOSENSORS,
ATMOS, IPEC, MASSIVE, and WABI. The previous WAOA workshops were held in
Budapest (2003), Rome (2004), Palma de Mallorca (2005), Zurich (2006), Eilat (2007),
Karlsruhe (2008), Copenhagen (2009), Liverpool (2010), Saarbrücken (2011),
Ljubljana (2012), and Sophia Antipolis (2013). The proceedings of these previous
WAOA workshops have appeared as LNCS volumes.

Topics of interest for WAOA 2014 were: coloring and partitioning, competitive
analysis, network design, packing and covering, paradigms for design and analysis of
approximation and online algorithms, randomization techniques, real-world applica-
tions, and scheduling problems. In response to the call for papers, we received 49
submissions. Each submission was reviewed by at least three referees. The submissions
were mainly judged on originality, technical quality, and relevance to the topics of the
conference. Based on the reviews, the Program Committee selected 22 papers.

We are grateful to Aleksander Madry for his invited talk and to Monaldo Mastrolilli
for his tutorial. We would also like to thank Andrei Voronkov for providing the
EasyChair conference system, which was used to manage the electronic submissions,
the review process, and the electronic PC meeting. It made our task much easier. We
would also like to thank all the authors who submitted papers to WAOA 2014 as well
as the local organizers of ALGO 2014.

August 2014 Evripidis Bampis
Ola Svensson
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Improved Approximations for the Max
k-Colored Clustering Problem

Alexander Ageev1 and Alexander Kononov1,2(B)

1 Sobolev Institute of Mathematics, Novosibirsk, Russia
{ageev,alvenko}@math.nsc.ru

2 Novosibirsk State University, Novosibirsk, Russia

Abstract. In the Max k-Colored Clustering Problem we are given an
undirected graph G = (V, E). Each edge e of G has a nonnegative weight
w(e) and a color c(e) ∈ C = {1, 2, . . . , k}. It is required to assign a
color from C to each vertex of G so as to maximize the total weight
of edges whose both endpoints have the same color as the color of the
edge. Angel et al. [1] show that the problem is strongly NP-hard and
present a randomized constant-factor approximation algorithm for solv-
ing it. We improve this result in two directions. First, we give a more
careful analysis of the algorithm in [1], which significantly improves on its
approximation bound (0.25 instead of 1/e2 ≈ 0.135). Second, we present
a different algorithm with a better worst case performance guarantee of
7/23 ≈ 0.304. Both algorithms are based on using similar randomized
rounding schemes for a natural LP relaxation of the problem. They can
be derandomized in a standard way by computing conditional expecta-
tions for some estimate function.

Keywords: Clustering · Edge-colored graph · Linear relaxation · Ran-
domized rounding · Worst case behavior analysis

1 Introduction

We consider the Max k-Colored Clustering Problem introduced in [1].
In this problem we are given an undirected graph G = (V,E). Each edge e

of G has a nonnegative weight w(e) and a color c(e) ∈ C = {1, 2, . . . , k}. It is
required to assign a color from C to each vertex of G so as to maximize the total
weight of edges whose both endpoints have the same color as the color of the
edge.

Given a vertex coloring, we say that an edge of G is matched if both its
endpoints have the same color as the color of the edge. By using this term the
goal is to color the vertices of G in such a way that the total weight of the
matched vertices is maximized.

Note that in the case where each edge has its own color the problem coincides
with the edge packing problem which is equivalent to finding a maximum weight
perfect matching.

c© Springer International Publishing Switzerland 2015
E. Bampis and O. Svensson (Eds.): WAOA 2014, LNCS 8952, pp. 1–10, 2015.
DOI: 10.1007/978-3-319-18263-6 1



2 A. Ageev and A. Kononov

The model has similarities with the centralized version of the information-
sharing model introduced by Kleinberg and Ligett [3,6]. In their model, the edges
are not colored and two adjacent nodes share information only if they are colored
with the same color. As they mention, one interesting extension of their model
would be the incorporation of different categories of information. In the problem
considered in our paper every edge-color corresponds to a different information
category and two adjacent vertices share information if their color is the same
as the color of the edge that connects them. Max k-Colored Clustering Prob-
lem is also related to the classical correlation clustering problem [2,5]. Another
observation is that the Max k-colored clustering problem can be formulated as a
combinatorial allocation problem [4]. We can consider each color as a player and
each vertex as an item, where items have to be allocated to competing players
by a central authority, with the goal of maximizing the total utility provided
to the players. Every player (each color) has utility functions derived from the
different subsets of vertices. Feige and Vondrak [4] consider subadditive, frac-
tional subadditive and submodular functions. It is easy to see that in our case
the function is supermodular and therefore their method cannot be applied.

While the centralized version of the information-sharing problem of Kleinberg
and Ligget is easy to solve, Max k-colored clustering problem is strongly NP-
hard (Angel et al. [1]). Angel et al. [1] also present a randomized constant-factor
approximation for this problem with an expected approximation ratio bounded
by 1

e2 ≈ 0.135. We improve this result in two directions. First, we give a more
careful analysis of the algorithm in [1], which significantly improves on its approx-
imation bound (0.25 instead of 1/e2). Second, we present a different algorithm
based on the same ideas with a better approximation ratio of 7/23 ≈ 0.304.

As in [1], we formulate the problem as an integer linear program and develop
randomized rounding schemes for the linear programming relaxation. Notice here
that straitforward rounding schemes apparently do not lead to constant-factor
approximations for this problem.

In Sect. 2 we give a description of the first algorithm (RR-2) and develop
theoretical tools for analyzing the worst case behavior of both algorithms. The
key ingredients of these tools are Lemmas 4 and 5. Note that Algorithm RR-2
slightly differs from algorithm RR in [1] but as can be easily seen their analysis
and approximation bounds are just the same.

In Sect. 3 we describe the second algorithm and derive its approximation
bound using the theoretical background developed in the previous section.

Finally, in Sect. 4 we say a few words about the derandomization of the
developed algorithms and the integrality gap of the equivalent integer program.

2 A 0.25-Approximation Algorithm

For every vertex i of the graph and for every available color c ∈ {1, . . . , k} we
introduce a variable xic which is equal to one if i is colored with color c and
zero otherwise. Also, for every edge e = [i, j] we introduce a variable zij which
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is equal to one if both endpoints of e are colored with the same color as e and
zero otherwise. For any edge e ∈ E denote by c(e) its color. An edge is called
c-colored if it has color c.

By using this notation Max k-Colored Clustering Problem can be formulated
as the following integer program:

max
∑

e

weze (1)

subject to
ze ≤ xic(e) ∀e = [i, j] ∈ E (2)
ze ≤ xjc(e) ∀e = [i, j] ∈ E (3)

∑

c∈C
xic = 1, ∀i ∈ V (4)

xic, ze ≥ 0 ∀i ∈ V, c ∈ C, e ∈ E (5)
xic, ze ∈ {0, 1} ∀i ∈ V, c ∈ C, e ∈ E (6)

Denote by LP the linear relaxation (1)–(5) of this program. Our algorithm
starts with solving LP and then works in k iterations, by considering each color
c, 1 ≤ c ≤ k, independently from the others, and so the order in which the colors
are considered does not matter. When an edge is chosen, this means that both
its endpoints get the color of this edge. Since in general a vertex can be adjacent
to differently colored edges, it may get more than one colors. In this case we
choose randomly one of these colors. The algorithm is given below.

Algorithm 1. Algorithm RR-2
1: Solve the linear program LP, and let z∗

e be the values of variables ze.
2: for each color c do
3: Order, non decreasingly, the c-colored edges e1, . . . , el(c) according to their z∗

e

values.
4: Let us assume that we have z∗

e1 ≤ z∗
e2 ≤ · · · ≤ z∗

el(c)
.

5: Let r be a random value in [0, 1].
6: Choose the c-colored edges e with z∗

e > r
7: for each vertex v ∈ V do
8: if v gets l colors then
9: assign randomly one of them to v, each one with probability 1

l
.

Notice that the above algorithm differs from Algorithm RR presented in [1].
In the second FOR-cycle Algorithm RR removes vertices with more than two
colors and for each vertex with two colors randomly chooses one of them with
probability 1

2 . However, we derive the same worst-case performance guarantee
for both algorithms.

We now proceed to the worst-case analysis of Algorithm RR-2. Lemmas 1–3
are essentially Lemmas 1–3 in [1].
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Lemma 1. For any edge e, the probability that e is chosen in line 6 is z∗
e .

Notice that for a vertex v, it may be the case that none of its adjacent edges are
chosen. In that case, v gets no color. But in general, several of its adjacent edges
can be chosen, and the vertex v can get more than one colors. We denote by
Xvc (resp. X̄vc) the event that v gets (resp. does not get) color c after a random
choice on Step 6. We denote by Yvc (resp. Ȳvc) the event that v is colored by
color c in line 9.

Lemma 2. For every vertex v if there exists at least one c-colored edge incident
to v, then Pr(Xvc) = z∗

e′ where e′ is a c-colored edge having the maximal value
of z∗

e among all c-colored edges e incident to v.

Lemma 3. For every vertex v ∈ V
∑

c Pr(Xvc) ≤ 1.

As stated above, a vertex v can get more than one colors during the exe-
cution of the algorithm. However, in general this number will be small. Let
γ(v) =

∑
i∈C Pr(Xvi). The following lemma gives a lower bound for the proba-

bility that color c was assigned in lines 7–9 of the algorithm.

Lemma 4. Assume that a vertex v gets color c at step 6 of Algorithm RR-2 and
μ(v, c) = maxi∈C\{c} Pr(Xvi). Then for different values of μ and γ we have the
following results:

(a) Pr(Yvc) ≥ 1
2 ;

(b) if γ(v) ≤ 1
2 then Pr(Yvc) ≥ 3

4 ;
(c) if μ(v, c) ≤ 1

2 then Pr(Yvc) ≥ 7
12 .

Proof. For simplicity of notation we assume that a vertex v meets colors 1, . . . , t
and c in line 8 of Algorithm RR-2, i.e., l = t + 1. The probability that vertex v
is colored by color c depends on how many colors were assigned to vertex v at
step 6. The more additional colors were assigned, the less the probability that
vertex v is colored by color c. By the formula of total probability we have

Pr(Yvc) ≥
t∏

i=1

(1 − Pr(Xvi)) +
1
2

t∑

i=1

Pr(Xvi)
∏

i′ �=i

(1 − Pr(Xvi′))

+
1
3

t∑

i=1

∑

j �=i

Pr(Xvi)Pr(Xvj)
∏

i′ �=i,i′ �=j

(1 − Pr(Xvi′)). (7)

The first term is the probability that vertex v has no additional color at step 6.
The second term is the probability that vertex v is colored by color c under the
condition that vertex v gets one additional color at step 6. The third term is the
probability that vertex v is colored by color c under the condition that vertex v
gets two additional colors at step 6. We dropped all the remaining terms of the
formula because they are equal to zero in the worst case.

Denote the right part of (7) by fvc.
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We now show that the minimum of fvc as a function of the vector
X = (Xvi, i = 1, . . . , t) is attained at some vector X∗ each entry of whom
except at most two is equal to 0. To simplify computations we set χi = Pr(Xvi),
i = 1, . . . , t. Without loss of generality we may assume that χ1 ≥ χi for all
i = 2, . . . , t. We have

fvc =
t∏

i=1

(1 − χi) +
1
2

t∑

i=1

χi

∏

i′ �=i

(1 − χi′) +
1
3

t∑

i=1

∑

j �=i

χiχj

∏

i′ �=i,i′ �=j

(1 − χi′)

= (1 − χ1)(1 − χ2)
∏

j≥3

(1 − χj) +
1
2
(χ1(1 − χ2) + χ2(1 − χ1))

∏

j≥3

(1 − χj)

+
1
2
(1 − χ1)(1 − χ2)

∑

i≥3

χi

∏

j≥3,j �=i

(1 − χj) +
1
3
χ1χ2

∏

j≥3

(1 − χj)

+
1
3
(χ1(1 − χ2) + χ2(1 − χ1))

∑

i≥3

χi

∏

j≥3,j �=i

(1 − χj)

+
1
3
(1 − χ1)(1 − χ2)

t∑

i=3

∑

j≥3,j �=i

χiχj

∏

i′≥3,i′ �=i,i′ �=j

(1 − χi′).

By setting A =
∏

j≥3(1 − χj), B =
∑

i≥3 χi

∏
j≥3,j �=i(1 − χj), and

C =
∑t

i=3

∑
j≥3,j �=i χiχj

∏
i′≥3,i′ �=i,i′ �=j(1 − χi′) we get

fvc = (1 − χ1)(1 − χ2)A +
1
2
(χ1(1 − χ2) + χ2(1 − χ1))A +

1
2
(1 − χ1)(1 − χ2)B

+
1
3
χ1χ2A +

1
3
(χ1(1 − χ2) + χ2(1 − χ1))B +

1
3
(1 − χ1)(1 − χ2)C

= (1 − 1
2
χ1 − 1

2
χ2)A + (

1
2

− 1
6
χ1 − 1

6
χ2)B + (

1
3

− 1
3
χ1 − 1

3
χ2)C

+
1
6
χ1χ2(2A − B + 2C).

We now consider fvc as a function of two variables χ1 and χ2. Let χ1 +χ2 be
equal to some constant κ. Assume that χ1, χ2 > 0 and we increase χ1 by δ > 0
and decrease χ2 by the same number δ. Then the values of the first three terms
in the last expression for the function fvc do not change. If 2A − B + 2C > 0,
then the last term decreases and therefore the function fvc decreases as well.

Now we consider two cases.

Case 1 : χ1 ≥ 1/2. Let us show that 2A−B+2C ≥ 0. Taking into account C ≥ 0
we obtain

2A − B + 2C ≥ 2A − B ≥ 2
∏

j≥3

(1 − χj) −
∑

i≥3

χi

∏

j≥3,j �=i

(1 − χj)

=
∏

j≥3

(1 − χj)

⎛

⎝2 −
∑

i≥3

χi

1 − χi

⎞

⎠ ≥
∏

j≥3

(1 − χj)
(

2 −
∑

i≥3 χi

1 − χ1

)
.
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From (4), we have
∑

i≥3 χi ≤ 1 − χ1 − χ2. It follows that
∑

i≥3 χi

1−χ1
≤ 1 and

∏

j≥3

(1 − χj)
(

2 −
∑

i≥3 χi

1 − χ1

)
> 0.

Since A ≥ 0, B ≥ 0, and C ≥ 0 then the minimum of fvc is attained at
χ1 = κ and χ2 = 0. By repeating this argument we get that the minimum of fvc

is attained when all Xvi, i = 1, . . . , t except one of them are equal to 0. In this
case we have A = 1, B = 0, C = 0 and Pr(Yvc) ≥ 1 − 1

2γ(v). This inequality
immediately implies (a) and (b).

Case 2 : χ1 ≤ 1/2. We note that 1 − χi ≥ 1/2. It follows that

2A−B +2C ≥
∏

j≥3

(1−χj)

⎛

⎝2 −
∑

i≥3

χi

1 − χi

⎞

⎠ ≥
∏

j≥3

(1−χj)

⎛

⎝2 − 2
∑

i≥3

χi

⎞

⎠ ≥ 0.

Let 1/2 > χ1 ≥ χ2 > 0 and χ1 + χ2 = κ. Setting χ1 = min{1/2, κ} and
χ2 = κ − min{1/2, κ} we decrease the value of fvc.

By repeating this argument for any two nonnegative values χi and χj such
that 1/2 > χi ≥ χj > 0 we get that a lower bound for fvc is the value of this
function at χ1 = χ2 = 1/2 and χi = 0, i = 3, . . . , t. In this case we have A = 1,
B = 0, C = 0 and

Pr(Yvc) ≥ 1 − 1
2

· 1
2

− 1
2

· 1
2

+ 2 · 1
6

· 1
2

· 1
2

=
7
12

. ��

The following lemma is similar to Proposition 1 in [1]. We prove it by the same
method but our proof is a bit shorter and treats a more general case when the
number of colors is arbitrary.

Lemma 5. Suppose that edge e = [u, v] has a color c and it is chosen at step 6
of Algorithm RR-2. Denote by pe the probability that both extremities of e also
get the color c. Then, pe ≥ Pr(Yuc)Pr(Yvc).

Proof. To prove the lemma we consider a sequence of algorithms denoted by
Σ0, . . . , Σk where Σ0 is algorithm RR-2. The difference among these algorithms
comes from the way in which the vertices get a color. Let us fix a color x. We
consider two different procedures for assigning colors to the vertices. Procedure
1 assigns the colors in the same way as our algorithm does. Let us recall how
our algorithm works for just two vertices. Without loss of generality we assume
that there exists an edge e′ incident to u colored by c and an edge e′′ incident to
v colored by x. Moreover, we suppose e′ (resp. e′′) is the edge with the maximal
value of z∗

e′ (resp. z∗
e′′) among all x-colored edges incident to u (resp. v). Let

us assume that z∗
e′ ≤ z∗

e′′ . Let p be the probability that u gets color x in the
algorithm (we know that it is z∗

e′ from Lemma 2), and let q be the probability
that v gets color x assuming that u does not get color x. Using the procedure 1,
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we color both vertices u and v (with color x) with probability p, and we color
only vertex v with probability (1 − p)q. Procedure 2 colors the vertices with
color x independently. More precisely, we color vertex u with probability p, and
we color vertex v with probability (1 − p)q + p := y. In the algorithm Σ0, for
each color x, 1 ≤ x ≤ k we use Procedure 1 to assign colors to vertices. In the
algorithm Σi, 1 ≤ i ≤ k, for colors x such that 1 ≤ x ≤ i (resp. i+1 ≤ x ≤ k) we
use Procedure 2 (resp. Procedure 2) for assigning those colors to vertices. Thus,
in algorithm Σk, all colors are assigned to vertices using Procedure 2.

Let us consider two consecutive algorithms Σi and Σi+1. The algorithms Σi

and Σi+1 differ only in the way they assign color i + 1 to vertices. If there is no
(i+1)-colored edge incident to either u or v, then pe(Σi) = pe(Σi+1), i.e., these two
algorithms have the same behavior. Recall that we denote by Xvc (resp. Xvc) the
event that v gets (resp. does not get) color c. We have the following probabilities:

When Σ = Σi When Σ = Σi+1

PrΣ(Xu,i+1 ∧ Xv,i+1) 0 p(1 − y)

PrΣ(Xu,i+1 ∧ Xv,i+1) (1 − p)q (1 − p)y

PrΣ(Xu,i+1 ∧ Xv,i+1) (1 − p)(1 − q) (1 − p)(1 − y)

PrΣ(Xu,i+1 ∧ Xv,i+1) p py

Let C′ = C \ {c, i + 1}. Denote by Ai (resp. Bi) the event which corresponds
to the situation where vertex u (resp. v) gets i colors from the set C′. It is clear
that the probabilities of the event Ai ∧ Bj are the same for both algorithms Σi

and Σi+1, i.e., PrΣi
(Ai ∧ Bj) = PrΣi+1(Ai ∧ Bj).

For Σ ∈ {Σ0, . . . , Σk}, we have pe(Σ) =
∑

ij PrΣ(Ai ∧ Bj)φ(Σ), where

φ(Σ) =
1
ij

PrΣ(Xu,i+1 ∧ Xv,i+1) +
1

(i + 1)j
PrΣ(Xu,i+1 ∧ Xv,i+1)

+
1

i(j + 1)
PrΣ(Xu,i+1 ∧ Xv,i+1) +

1
(i + 1)(j + 1)

PrΣ(Xu,i+1 ∧ Xv,i+1).

We claim that φ(Σi) ≥ φ(Σi+1). Taking into account notation in the table
we have

φ(Σi) =
(1 − p)(1 − q)

ij
+

(1 − p)q
i(j + 1)

+
p

(i + 1)(j + 1)

=
ij + i(1 − y) + j(1 − p) + (1 − y)

(i + 1)(j + 1)ij

and

φ(Σi+1) =
(1 − p)(1 − y)

ij
+

p(1 − y)
(i + 1)j

+
(1 − p)y
i(j + 1)

+
py

(i + 1)(j + 1)

=
ij + i(1 − y) + j(1 − p) + (1 − p)(1 − y)

(i + 1)(j + 1)ij
.
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Since 1 − p ≤ 1 we obtain φ(Σi) ≥ φ(Σi+1) and a term-by-term comparison for
pe(Σ) implies the result of the lemma. ��
Lemmas 1, 4 and 5 imply the following result.

Theorem 1. The expected approximation ratio of Algorithm RR-2 is bounded
by 1

4 .

Proof. Let OPT denote the sum of the weights of the matched edges in an
optimal solution. Since the linear program LP is a linear relaxation, we have∑

e∈E wez
∗
e ≥ OPT. Consider an edge e ∈ E chosen at step 6. This occurs with

the probability z∗
e according to Lemma 1. Suppose that e = [u, v] has a color c.

By Lemma 5 the probability pe that both endpoints of e get the color c greater
than or equal to Pr(Xuc)Pr(Xvc). On the hand, Lemma 4(a) implies that each
edge is matched with probability z∗

e

4 . Thus the expected cost of the solution
returned by the algorithm is at least

∑

e∈E

wez
∗
e

4
≥ OPT

4
. ��

3 A 7/23-Approximation Algorithm

Proceeding from an optimal solution of LP we separate edges of E into big edges
and small edges. An edge e is called big if z∗

e > 1
2 or it is adjacent to edge e′ with

z∗
e′ > 1

2 and edges e and e′ have the same color; otherwise an edge e is small.
Lemma 3 implies that all adjacent big edges have the same color. We say that
a vertex v is heavy if it is incident to at least one big edge; otherwise we say
that vertex v is light. We say that a color c is a dominating color for a heavy
vertex v if vertex v is incident to a c-colored big edge. Now we partition the set
of edges into four sets. Denote by Z1 the set of big edges, by Z2 the set of small
edges whose both endpoints are light, by Z3 the set of small edges whose both
endpoints are heavy, and by Z4 the set of small edges with one endpoint heavy
and the other light. Let W (Zi) =

∑
e∈Zi

wez
∗
e for i = 1, . . . , 4. Then

W (Z1) + W (Z2) + W (Z3) + W (Z4) ≥ OPT.

Next we present two algorithms. The first algorithm put all big edges in the
solution and then add some small edges. The second algorithm ignore big edges
and find a solution for small edges. It is clear that both algorithms may give
arbitrarily bad solutions. However, we show that the best of these solution has a
performance bound better than that of algorithm RR-2.

Algorithm 2 matches all big edges and randomly choose edges from the set Z2.
Let e = [u, v] ∈ Z2. It follows that the vertices u and v are light, and z∗

e′ ≤ 1/2
for any incident edge e′. Let an edge e chosen at step 9 of algorithm 2. This occurs
with the probability z∗

e according to Lemma 1. Suppose that e = [u, v] has a color
c. By Lemma 5 the probability pe that both endpoints of e get the color c greater
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Algorithm 2. Algorithm “Big Edges”
1: Solve the linear program LP, and let z∗

e be the values of variables ze.
2: for each heavy vertex v do
3: Color vertex v by its dominating color.
4: Remove vertex v and all the edges incident to v.
5: for each color c do
6: Order, non decreasingly, the c-colored edges e1, . . . , el(c) according to their z∗

e

values.
7: Let us assume that we have z∗

e1 ≤ z∗
e2 ≤ · · · ≤ z∗

el(c)
.

8: Let r be a random value in [0, 1].
9: Choose the c-colored edges e with z∗

e > r.
10: for each vertex v ∈ V do
11: if v gets l colors then
12: assign randomly one of them to v, each one with probability 1

l
.

13: Output this assignment as ψ1.

than or equal to Pr(Xuc)Pr(Xvc). Since v and u are light we have μ(v, c) ≤ 1/2
and μ(u, c) ≤ 1/2. Lemma 4(c) implies that Pr(Yvc) ≥ 7

12 and Pr(Yuc) ≥ 7
12 .

Thus the expected cost W1 obtained by the algorithm is at least

W1 ≥ W (Z1) +
7
12

· 7
12

· W (Z2) ≥ W (Z1) +
49
144

W (Z2).

Algorithm 3. Algorithm “Small Edges”
1: Solve the linear program LP, and let z∗

e be the values of variables ze.
2: Remove all big edges.
3: for each color c do
4: Order, non decreasingly, the c-colored edges e1, . . . , el(c) according to their z∗

e

values.
5: Let us assume that we have z∗

e1 ≤ z∗
e2 ≤ · · · ≤ z∗

el(c)
.

6: Let r be a random value in [0, 1].
7: Choose the c-colored edges e with z∗

e > r
8: for each vertex v ∈ V do
9: if v gets l colors then

10: assign randomly one of them to v, each one with probability 1
l
.

11: Output this assignment as ψ2.

Algorithm 3 removes all big edges and randomly choose edges from the
set Z2

⋃
Z3

⋃
Z4. After removing big edges for each heavy vertex v we have

γ(v) ≤ 1/2. Suppose that e = [u, v] has a color c and v is heavy. Lemma 4(b)
implies that Pr(Yvc) ≥ 3

4 . Let W2 be the expected cost of the solution returned
by this algorithm. According to Lemma 4(b),(c) and Lemma 5 we have

W2 ≥ 7
12

· 7
12

· W (Z2) +
3
4

· 3
4

· W (Z3) +
7
12

· 3
4

· W (Z4)

≥ 49
144

W (Z2) +
9
16

W (Z3) +
7
16

W (Z4).
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Choosing the best of two solutions and taking into account the inequality

W (Z1) + W (Z2) + W (Z3) + W (Z4) ≥ OPT

we obtain that
max{W1,W2} ≥ 7

23
OPT,

which is achieved at W (Z1) = 7
23OPT, W (Z2) = 0, W (Z3) = 0, and W (Z4) =

16
23OPT. Eventually we have the following result.

Theorem 2. The best of the two solutions ψ1 and ψ2 has expected weight at
least 7

23OPT. ��

4 Final Remarks

In the paper, we present two randomized approximations algorithms for Max
k-Colored Clustering Problem.

First, we notice that both algorithms can be derandomized in a standard
way by computing conditional expectations for some estimate function (for the
method of conditional probabilities, see [7]).

Second, note that Theorem 2 provides a lower bound for the integrality
gap IG of the integer program (1)–(6): IG ≥ 7/23. On the other hand, a
trivial example of triangle with edge weights 1 and a unique color for each edge
provides an upper bound IG ≤ 2/3. Therefore there may well exist rounding
schemes providing better approximations than those presented in this paper,
which stimulates further work.
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Abstract. Online matching on a line involves matching an online stream
of items of various sizes to stored items of various sizes, with the objective
of minimizing the average discrepancy in size between matched items.
The best previously known upper and lower bounds on the optimal
deterministic competitive ratio are linear in the number of items, and
constant, respectively. We show that online matching on a line is essen-
tially equivalent to a particular search problem, that we call k-lost cows.
We then obtain the first deterministic sub-linearly competitive algorithm
for online matching on a line by giving such an algorithm for the k-lost
cows problem.

1 Introduction

The classic Online Metric Matching problem (OMM) is set in a metric space
(V, d), containing a set of servers S = {s1, s2, . . . , sn} ⊆ V . A set of requests
R = {r1, r2, . . . , rn} ⊆ V arrive one by one online. When a request ri arrives it
must irrevocably be matched to some previously unmatched server sj . The cost
of matching request ri to sj is d(ri, sj), and the objective is to minimize the
total (equivalently, average) cost of matching all requests. There is a determin-
istic (2n − 1)-competitive algorithm, and this competitive ratio is optimal for
deterministic algorithms [7,11].
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The Online Matching on a Line problem (OML) is a special case of OMM
where V is the real line and d(ri, sj) = |ri − sj |. The original motivation for
considering OML came from applications where there is an online stream of
items of various sizes, and the goal is to match each item as it arrives to a
stored item of approximately the same size; For example, matching skiers, as
they arrive in a ski rental shop, to skis of approximately their height. It is
acknowledged that OML is perhaps the most interesting instance of OMM (see,
e.g., [12]). Despite some efforts, there has been no progress in obtaining a better
deterministic upper bound for this special case, and thus the best known upper
bound on the competitive ratio for deterministic algorithms is inherited from
the upper bound for OMM, namely 2n − 1.

In the classical cow-path problem, also known as the Lost Cow problem (LC),
a short-sighted cow is standing at a fence (formally, the real line) that contains a
single gate at some unknown distance. The cow needs to traverse the fence until
she finds the gate (formally, the algorithm needs to specify a walk on the real line).
The objective is to minimize the distance traveled until the gate is found. There
is a 9-competitive algorithm for LC, and this is optimal for deterministic algo-
rithms [1]. Kalyanasundaram and Pruhs [8] observed that LC is a special case of
OML where there is an optimal matching with only one positive cost edge.

In 1996, [8] conjectured that the hardest instances for OML are LC instances,
and thus that there should be a 9-competitive algorithm for OML. In 2003,
[5] refuted this conjecture by giving a rather complicated adversarial strategy
that gives a lower bound of 9.001 on the competitive ratio of any determinis-
tic algorithm for OML. This is currently the best known lower bound on the
deterministic competitive ratio for OML.

1.1 Our Results

Upon further reflection, the lower bound in [5] can be intuitively understood as
giving a lower bound on the competitive ratio for a search problem involving two
lost cows (instead of one), and showing that the optimal deterministic competitive
ratio for OML is at least the optimal deterministic competitive ratio for this two
lost cows problem. This motivates us to ask the question of whether there is some
natural search problem that is equivalent to OML. As search problems seem easier
to reason about than online matching, we hypothesize that perhaps one can make
progress on online matching by attacking the equivalent search problem. We show
that the following search problem is essentially equivalent to OML:

k-Lost Cows (k-LC): k short-sighted cows arrive at a fence (formally, the real
line) at potentially different times. The fence contains k gates in unknown posi-
tions. At each point in time, the online algorithm can specify a particular cow
that has already arrived, and a direction, and then that cow will move one unit
in that direction.1 When a cow finds a gate, she will cross the fence, and this

1 Allowing the cows to instead move simultaneously would not affect our results.
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gate cannot be used by other cows. Each cow must cross the fence through a
gate. The objective is to minimize the total distance traveled by the k cows.

More precisely we show that:

– If there is a deterministic (resp., randomized) f(k)-competitive algorithm for
k-LC then there is a deterministic (resp., randomized) f(n)-competitive algo-
rithm for OML.

– If there is a deterministic (resp., randomized) f(p)-competitive algorithm for
OML, where the parameter p is the minimum number of positive cost edges
one can have in an optimal matching, then there is a deterministic (resp.,
randomized) f(k)-competitive algorithm for k-LC.

This shows that OML is essentially equivalent to a search problem involving
many lost cows, instead of one lost cow (modulo the difference in the parameters
n and p).

We give the first sublinearly-competitive, O
(
nlog2(3+ε)−1/ε

)
-competitive for

any ε > 0 to be more precise, deterministic online algorithm for OML, which we
obtain by first giving a deterministic O

(
klog2(3+ε)−1/ε

)
-competitive algorithm

for k-LC. Our algorithm for k-LC is a reasonably natural greedy algorithm, but
the resulting OML algorithm is not particularly intuitive. This provides mild
support for the hypothesis that it is easier to reason about online matching via
search rather than online matching directly. We also obtain a lower bound of
Ω

(
nlog2(3+ε)−1

)
for our algorithm, showing that this analysis is essentially tight.

1.2 Other Related Work

For OML, it had been conjectured [8] that the generalized Work Function Algo-
rithm (WFA) of [13] is O(1)-competitive, but this was disproved in [12], where
it was shown that the WFA has a competitive ratio of Ω(log n).

Randomized algorithms for OML have also been investigated. In 2006, [15]
gave the first randomized algorithm and analysis giving a competitive ratio
of o(n) for general metric spaces (and thus for the line). More precisely, [15]
obtained an O

(
log3 n

)
-competitive randomized algorithm using randomized

embeddings into trees [4]. Bansal et al. [2] refined the approach in [15] to obtain
an O

(
log2 n

)
-competitive randomized algorithm for general metrics. Finally, [6]

gave two different O(log n)-competitive randomized algorithms for the line met-
ric, one again using randomized embeddings, and one being the natural harmonic
algorithm. Kao et al. [10] gave a randomized algorithm for LC with competi-
tive ratio of approximately 4.5911, and proved a matching lower bound. Many
variants of searching problems such as the LC problem have been extensively
studied (e.g., [14]).

OMM also has been studied within the framework of resource augmentation,
where the online algorithm is given additional servers. Kalyanasundaram and
Pruhs [9] showed that a modified greedy algorithm is O(1)-competitive if the
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online algorithm gets twice as many servers. Chung et al. [3] showed that poly-
log competitiveness is achievable if the online algorithm gets an additive number
of additional servers.

Our algorithm for k-LC is similar to the natural offline greedy algorithm,
which repeatedly matches the two closest points. More precisely, if all the cows
arrived at the same time and ε was zero, then our algorithm for k-LC would
give the same matching as the offline greedy algorithm. Reingold and Tarjan
[16] showed that the approximation ratio of the offline greedy algorithm for
non-bipartite matching is essentially the same as the competitive ratio as our
algorithm for k-LC. The first step of the two analyses is the same, looking at the
cycles formed by the algorithm’s matching and the optimal matching, but they
diverge from there. A corollary of our analysis is that the natural offline greedy
algorithm is a Θ

(
nlog2 3−1

)
-approximation for bipartite matching.

2 Overview

In this section we present an informal overview of both our algorithms and
analyses for k-LC and OML.

In Sect. 3 we consider the problem of k-Lost Cows Without Arrivals (k-LCWA),
which is a restriction of k-LC in which each cow arrives at time t = 0. Our algo-
rithm for OML is based on simulating an algorithm for k-LC, which in turn is based
on simulating an algorithm for k-LCWA. Recall that the optimal deterministic
algorithm for 1-LC switches directions at increasing powers of 2 (i.e., switch direc-
tions at points −1, 2, −4, etc.). For k-LCWA, we consider the algorithm A where
each cow independently and in parallel uses this optimal single cow algorithm, but
switches directions at powers of 1+ ε instead of 2. One nice feature of A is that for
any ε ≤ 1, the cost for A will be within a factor of O(1/ε) of the cost of the final
matching M between cows’ starting positions and the corresponding gates that
the cows used in A. To analyze the cost of M we consider the union of M and the
optimal matching OPT. It is easy to see that these edges can be decomposed into a
set of disjoint cycles. We give directions to edges in M and OPT based on whether
a cow’s starting position is on the left or on the right of the matched gate. We then
prove some structural properties regarding the directions of edges in M and OPT.
We can then charge the cost of M ’s edges to the cost of OPT’s edges based on the
order in which A matches cows.

As an example, consider the base case of the first cow c that finds a gate in
this cycle, and let � denote the length of the edge corresponding to this matching.
Since c’s search is never biased more than 1+ε in either direction from its origin,
we know that the closest gate to c is at least distance �/(1 + ε) away. Also since
A has all cows walking in parallel and no other cow has found a gate, we know
that no other cow has a gate closer than �/(1 + ε). Using this argument we can
charge the cost of this edge to any edge in OPT. As we proceed inductively,
the inequalities become more complicated since we now may have to charge to
multiple edges in both M and OPT. To aid our analysis we define a weighted
binary tree for each cycle, with the property that the sum of the leaf costs
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is OPT’s cost, and the sum of the internal nodes is an upper bound on M ’s
cost. We show that if each tree is perfect (complete and balanced) then M is
O

(
klog2(3+ε)−1

)
-competitive. The last step is to show that perfect trees are the

worst case. Although this is somewhat intuitive, this is by far the most technical
aspect of the analysis, and involves showing that given an arbitrary tree, we can
make a sequence of transformations such that the resulting tree is perfect, and
at each step we do not decrease the competitive ratio.

In Sect. 4 we then show how to extend the algorithm for k-LCWA to an
algorithm for k-LC. Dealing with the online arrival of cows is a bit tricky since
the charging argument used in the analysis of the algorithm A for k-LCWA is
delicately based on the order in which cows find their gates. To cope with this,
we simulate the state that A would be in had all the cows arrived at time 0,
and use this state to change how the cows walk. More specifically, if a cow c
is walking in the k-LC setting and finds a gate occupied by some cow c′, the
algorithm determines which cow would have found this gate first in the no arrivals
case, and allows this cow to stay there, “kicking out” the other cow to continue
walking. It is then relatively straightforward to see that the matching produced
by the simulation is identical to the matching that A would have produced had
all the cows arrived at time 0.

In Sect. 5 we show how to reduce k-LC to OML, and OML to k-LC. To
convert an algorithm for k-LC into an algorithm for OML, one can release a
cow for every request r in the OML instance, and wait until this cow hits an
unoccupied server s. Then, by matching r to s, the matchings in the two settings
are equivalent, and the number of cows k will be equal to the number of servers n.
To convert an algorithm for OML into an algorithm for k-LC one can continually
issue requests at a cow’s current location until a request is matched with a server
corresponding to an unoccupied gate.

Due to space constraints, many of the proofs are deferred to the full version
of the paper.

3 Analysis of Parallel Cows Algorithm for k-Lost Cows
Without Arrivals

We now define the (1 + ε)-Parallel Cows algorithm for the k-LCWA problem.
The algorithm is to have every cow move according to the (1+ ε)-cow algorithm
independently and in parallel (i.e., simulate moving all cows at the same time
by choosing cows to move in a round-robin fashion, and have each cow make one
step to their left, then 1 + ε steps to the right of their starting location, etc.). In
particular,this means that every cow ignores every other cow or any used gates
that she finds. Throughout this section, we assume ε is some fixed parameter
and so remove reference to it when possible to lighten notation (e.g., Parallel
Cows algorithm is a shorthand for (1 + ε)-Parallel Cows algorithm).

In this section we analyze the Parallel Cows algorithm, and prove the follow-
ing theorem:

Theorem 1. For ε ≤ 1, the (1+ε)-Parallel Cows algorithm is O
(
klog2(3+ε)−1/ε

)
-

competitive for k-LCWA.
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In Subsect. 3.1 we prove that we can view the matchings of cows to gates found
by the Parallel Cows algorithm and OPT as a set of disjoint weighted cycles. We
show these cycles have special structure, which allows us to use weighted binary
trees to analyze the total cost of the Parallel Cows algorithm in relation to OPT,
where the leaves of a tree correspond to the edges in OPT and the internal nodes
correspond to edges in the Parallel Cows matching. In Subsect. 3.2 we analyze this
tree in the case when it is a perfect binary tree and all of OPT’s edges have the same
cost, which intuitively seems like worst case. In Subsect. 3.3 we prove that we do
indeed obtain the worst case matching for the Parallel Cows algorithm when the
cycle analysis yields a perfect binary tree. The competitive ratio for the Parallel
Cows algorithm then follows from observing that the walking costs are only O(1/ε)
times the matching costs.

3.1 Cycle Property

In this subsection we will show some useful properties about the combination of
the matchings produced by OPT and by the Parallel Cows algorithm, denoted
with A. In addition to building some intuition for the problem, these properties
will show that our analysis is tight.

We first define some notation. Let C = {c1, . . . , ck} ⊆ Z denote the set of
cow starting locations. We use ci to both refer to the cow as it is walking and
as the starting location, specifying when it is not clear from context. Let G =
{g1, . . . , gk} ⊆ Z denote the set of gate locations. When referring to a specific
algorithm, we use g(ci) : C → G to denote the gate that cow ci matches to. Con-
sider the graph with vertices V = C ∪ G. Let EOPT = {eOPT

1 , eOPT
2 , . . . , eOPT

k }
be OPT’s edges in the graph, where eOPT

i = (ci, g(ci)) and has weight |ci−g(ci)|.
We can similarly define EA for A. It is easy to see that the graph with vertices
V and edges EOPT ∪ EA is a disjoint union of cycles.

We now argue that there exists an optimal solution OPT where, loosely
speaking, edges eOPT do not cross, where by crossing we mean a pair of edges
(ei, ej) such that exactly one of the two endpoints of one edge lies between the
two endpoints of the other edge. Formally, we have the following lemma.

Lemma 1. There exists an optimal matching eOPT
1 , eOPT

2 , . . . , eOPT
k where for

each i, j ∈ {1, 2, . . . , k}, with i ≤ j, the following holds:

min {cj , g(cj)} ≤ min {ci, g(ci)} ⇒
either max {cj , g(cj)} ≤ min {ci, g(ci)}or max {cj , g(cj)} ≥ max {ci, g(ci)}.

Henceforth, we may assume that OPT does not have crossings.
It is easy to show that, by the definition of the algorithm, the same non-

crossing property holds for the Parallel Cows algorithm. Given an input instance,
consider both the solutions produced by OPT and by A. By leveraging the above
property, we can partition the arcs of the two solutions into single cycles, where
by cycle we mean a set of arcs from both A and OPT such that the undirected
graph induced by them is a cycle. Figure 1 depicts one such cycle.
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c1 g1 c2 g2 c3 g3 c4 g4 c5 g5 c6 g6

eOPT
1 eOPT

2 eOPT
3 eOPT

4 eOPT
5 eOPT

6

eA1 eA2 eA3 eA4 eA5

eA6

v0 v1 v2 v3

v4 v5

Fig. 1. A cycle and the corresponding MVST.

Finally, we will argue that any such cycle looks like the one in Fig. 1. We say
that two edges ei and ej are in the same direction if either (i) ci ≤ g(ci) and
cj ≤ g(cj) or (ii) ci ≥ g(ci) and cj ≥ g(cj), and the opposite direction if this is
not the case.

Lemma 2. Fix a cycle in the graph of A’s and OPT’s matchings. Let A’s edges
be eA

1 , eA
2 , . . . , eA

� and OPT’s edges be eOPT
1 , . . . , eOPT

� . Then eA
1 , . . . , eA

�−1 are all
in one direction and eA

� , eOPT
1 , . . . , eOPT

� are all in the opposite direction.

3.2 Perfect Tree Case

In this subsection, we show how to associate a cycle as described in the previous
section with a weighted binary tree, where the sum of the weights of the leaves
of the tree is the cost of the optimal matching in that cycle, and the sum of the
weights of the internal nodes of the tree provides an upper bound on the cost
of the matching found by the Parallel Cows algorithm. We additionally analyze
the cost of this tree when the tree is perfect.

Definition 1. A Full Weighted/ValuedBinaryTree (FWVBT) T is a full binary
tree, whose vertices are each associated with a weight and a value.

– The weight of T is defined as the sum of the values of all the vertices in T .
– The cost of T is defined as the sum of the values of all internal (non-leaf)

vertices of T .
– The total leaf value of T is defined as the sum of the values of all the leaves of T .
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Definition 2. A (1 + ε)-Minimum Value Subtree Tree ((1 + ε)-MVST) is an
FWVBT T with the following property: The value of a node i is equal to (1 +
ε)min (v1, v2), where v1 and v2 are the weights of the subtrees of i rooted at
the left and right child of i respectively (there is no constraint on the values of
leaves). A perfect (1+ ε)-MVST is a (1+ ε)-MVST where each leaf has the same
depth and the same value.

Since we assume ε is a fixed parameter, throughout we abbreviate (1+ ε)-MVST
by MVST.

Given a cycle as described in the previous section, one can associate it with
a MVST, as follows (see Fig. 1):

– Each edge eOPT
i of OPT corresponds to a vertex/leaf of value |ci−g(ci)|. Each

such leaf forms a distinct (connected) component.
– Consider the edges of A, except eA

� , in the order in which A adds them.
For each edge eA

i added, a vertex is introduced, and the two neighboring
connected components become its children in the tree. This merges the two
connected components into a single one. The value of this new vertex is set
to be (1 + ε)min (v1, v2), where v1 and v2 are the weights of the two subtrees
of the vertex.

– It can be easily verified that for each edge eA
i the total number of connected

components gets decreased by one, and that the tree is indeed binary and full.

We have the following lemma:

Lemma 3. With respect to this cycle and the corresponding MVST, the cost of
the optimal matching OPT is the total leaf value of the tree, while the cost of
A’s matching is upper bounded by the cost of the tree.

Let us now assume that the cycle produced by A has a length that is a power
of two, and that the above construction produces a perfect binary tree, where
each leaf has a value of 1. We prove the following lemma:

Lemma 4. AperfectMVSTwhere each leaf has a value of 1 has costΘ
(
klog2(3+ε)

)
.

Combined with Lemma 2, the above lemma also implies that the cost of the
matching returned by the algorithm for this particular class of cycles (the ones
corresponding to a perfect binary tree with leaf values of 1) is a Θ

(
nlog2(3+ε)−1

)
-

approximation with respect to the optimal matching. As we will see in the next
subsection, this particular class of cycles is actually the worst case.

3.3 Perfect Trees are the Worst Case

The result of this section is the following lemma:

Lemma 5. The cost of any MVST T is at most the cost of the smallest (in
terms of number of nodes) perfect MVST with size at least that of T and total
leaf value the same as T .
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To prove this, one can show that any MVST that has maximum cost for a fixed
tree with fixed total leaf value must have certain structure. One can then show
that a series of transformations can be performed on the tree such that the final
tree is a perfect MVST and that each transformation results in a new tree with
same or greater cost. The first transformation removes any nodes in the tree
with value 0, and the second transformation creates a balanced tree by replacing
leaves of maximum depth in the tree with leaves at a minimum possible depth
in the tree. The final transformation creates a perfect tree by adding leaves until
the tree is perfect.

3.4 Proof of Parallel Cows Competitiveness

We can now prove Theorem 1.

Proof (Theorem1). Fix some instance of k-LCWA where the value of the opti-
mal solution is OPT, and let A be the cost of the Parallel Cows algorithm on
this instance and MA be the cost of the matching found by the Parallel Cows
algorithm on this instance. Note that the cost of the optimal matching and the
cost of the optimal solution are the same. By Lemma 3, MA is the sum of the
costs of the MVSTs built on the cycles induced by the algorithm’s and optimal’s
matchings, while OPT is the sum of the leaves of those same MVSTs. Fix one
cycle, and let T be the MVST for that cycle. By Lemma 5, the cost of T can
be upper bounded by the cost of the minimum perfect MVST larger than T ,
while the cost of the optimal solution on that cycle remains fixed. Thus we have
by Lemma 4 that the cost of the algorithm’s matching on this cycle is at most
O

(
k
log2(3+ε)−1
c

)
times that of the optimal’s, where kc is the number of cows and

gates in the cycle. Thus MA is at most O
(
klog2(3+ε)−1OPT

)
.

Since each cow only stops when it finds an unused gate, the walking cost of
each cow in the Parallel Cows algorithm is the same as if that cow and the gate
it finds were the only ones present. Thus when ε ≤ 1 its walking cost is O(1/ε)
times its matching cost and we obtain that A = O

(
klog2(3+ε)−1OPT/ε

)
. 	


4 Extending the Algorithm for k-Lost Cows Without
Arrivals to k-Lost Cows

In this section we show how to extend the solution for the k-LCWA problem
to the k-LC problem. The basic idea is to maintain the state of our Parallel
Cows algorithm assuming all cows arrived at time 0. When a cow finds a gate
(occupied or unoccupied) we stop the cow and figure out who would match there
in the Parallel Cows algorithm. Based on this we update our state and continue
searching. We formalize this below.

While there is a cow c that is released and not matched to a gate, have c
walk as a (1 + ε)-biased cow. If during this walk c finds a gate g there are two
cases to consider. If g does not yet have a cow matched to it, then match c to g.
Otherwise, if there is some cow c′ currently matched to h, we calculate which
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cow would have reached location h first if both c and c′ were released at time
0. If c′ would reach this location first, then c continues her walk. If c would find
h first, then c “kicks” c′ out who continues his walk. Since we cannot actually
remove c′ from this gate once it is matched, we simply have c walk as c′, and
record that c is really matched to g.

The first observation is that the offline optimal matching does not change if
there are release times associated with the cows. So to show that this algorithm
has the same competitive ratio of the Parallel Cows algorithm, we only need to
show that the matching cost of this simulation is equal to the matching cost if
all cows were released at time 0. The result then follows from Theorem 1.

Lemma 6. Let I = (C,G) be an instance to the generalized cow problem with
release time ai for cow ci. The walking cost of the above simulation algorithm on
I is equal to the walking cost of the parallel cow algorithm on I with zero release
times.

Proof. Let M ⊂ C × G be the matching found by the Parallel Cows algorithm
on I with zero release times. For each c ∈ C, recall that g(c) ∈ G is the gate that
c matches to in M , that is (c, g(c)) ∈ M . We first show that if c ever reaches
the point g(c) in the simulation, then it will remain there for the rest of the
simulation, i.e., if c reaches its gate it will match there. To see this, assume by
contradiction that some cow c reaches g(c) but later leaves this location. Further,
assume c is the first cow to do this, and let c′ be the cow that causes c to leave
g(c). By definition of the simulation, this means that c′ would reach location
g(c) first in the parallel cows algorithm. However, since c′ does not match to
g(c), this means that c′ has already reached and left location g(c′) contradicting
that c was the first cow to leave its gate.

With this we can now prove the desired lemma, that the matching is indeed
the same. Let Ms ⊂ C × G denote the matching found by the simulation. Let
c1, c2, . . . , ck ∈ C such that ci is the i-th cow to find its gate in the parallel cows
algorithm. We show by induction that, for all i, (ci, g(ci)) ∈ Ms. For the base
case, note that since c1 is the first cow to find a gate in the parallel algorithm,
c1 will find g(c1) before any other gate in G. However by the above argument,
once c1 finds g(c1) it will match there in Ms. Now for the inductive hypothesis,
assume the first j − 1 cows match the same in M and Ms. Note that since cj

is the j-th cow to find its gate in the parallel algorithm, it sees at most j − 1
gates before reaching g(cj) in the parallel algorithm, and these all belong to
g(c1), g(c2), . . . , g(cj−1). However, by the inductive hypothesis, c1, c2, . . . , cj−1

will match there in Ms, so cj can not match to any of those. This means that cj

must reach g(cj) and by the above argument (cj , g(cj)) ∈ Ms. 	


5 Comparing k-Lost Cows and Online Matching
on a Line

In this section we explore the relationship between the k-LC and OML problems.
In particular we show that positive results in the k-LC setting carry over to
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positive results in the OML setting (assuming the competitive ratio is defined
in terms of the number of servers, n). We also show that lower bounds in the
k-LC setting carry over to lower bounds in the OML setting, however here the
competitive ratio for OML is defined in terms of the minimum number of positive
requests in an optimal matching.

Theorem 2. Let p be the minimum number of positive requests in an optimal
solution to OML. The following two implications hold.

1. If there is an f(p)-competitive algorithm for OML then there is an f(k)-
competitive algorithm for k-LC.

2. If there is an f(k)-competitive algorithm for k-LC then there is an f(n)-
competitive algorithm for OML.

Proof. For the first implication, assume that we have an f(p)-competitive algo-
rithm A for OML and let I = (C,G) be an instance to the k-LC problem.
To obtain an f(k)-competitive algorithm, we create an instance I ′ in the OML
problem with a server at every integer. When a cow arrives, at some location c
we have two requests for location c in I ′. It can easily be shown that A can be
converted to an algorithm where every request is matched with the left most or
right most server with no increase in cost. Assuming this, we now have c walk
to the server that A matches the second request with, which will either be one
unit to the left or right. While c has not yet found a gate, we continue to have
a request in I ′ at c’s current location, always having c walk to the server that is
used to match the latest request. Once c finds a gate, we stop requesting to c’s
location. We continue to do this until all cows have been matched.

First note that by construction the total walking cost of the cows is within
a constant factor of the matching cost of A. Further, we claim that there is an
optimal solution to I ′ with k positive requests. To see this assume by contradic-
tion that the minimum (in terms of positive requests) optimal matching to I ′

has more than k positive requests. Since there are k gates, at least one positive
request, say ri, must be matched to a non-gate location, say s(ri). However every
used server that is not a gate receives a request. So there is another request at
location s(ri), say rj , that is matched to some positive cost sever s(rj). Note that
the optimal solution that matches ri to s(rj) and rj as cost 0 does not increase
the cost of the matching and has one less positive request. This contradicts our
choice of OPT. This shows that there is an algorithm A that is f(k)-competitive
on I ′ and therefore the corresponding cow algorithm is f(k)-competitive on I.

To prove the second implication assume that we have an f(k)-competitive
algorithm for the k-LC problem and as input to the OML problem we are given
an input I consisting of a set of servers S. Whenever a request ri arrives, we
release a cow c at location ri and it begins to walk. Whenever c reaches a location
corresponding to a server s ∈ S that no previous request has been matched to
s we match ri to s and place a gate location at s so c stops walking. It is clear
that the cost of the matching is at most the total walking cost of the cows and
further the number of cows is equal to the number of servers. 	
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Theorem 3. There is an O
(
nlog2(3+ε)−1/ε

)
-competitive algorithm for OML.

Proof. By Theorem 1 and Lemma 6, we have an O
(
klog2(3+ε)−1/ε

)
-competitive

algorithm for k-LC. The result follows from Theorem 2. 	

We note that, in a manner similar to that presented in Sect. 4, it is possible to
extend the Parallel Cows algorithm for k-LCWA to OML directly and obtain an
O

(
plog2(3+ε)−1/ε

)
-competitive algorithm for OML.
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Abstract. Online Bin Stretching is a semi-online variant of bin
packing in which the algorithm has to use the same number of bins
as the optimal packing, but is allowed to slightly overpack the bins. The
goal is to minimize the amount of overpacking, i.e., the maximum size
packed into any bin.

We give an algorithm for Online Bin Stretching with a stretching
factor of 1.5 for any number of bins. We also show a specialized algorithm
for three bins with a stretching factor of 11/8 = 1.375.

1 Introduction

The most famous algorithmic problem dealing with online assignment is arguably
Online Bin Packing. In this problem, known since the 1970s, items of size
between 0 and 1 arrive in a sequence and the goal is to pack these items into
the least number of unit-sized bins, packing each item as soon as it arrives.

Online Bin Stretching, which has been introduced by Azar and Regev in
1998 [2], deals with a similar online scenario. Again, items of size between 0 and
1 arrive in a sequence, and the algorithm needs to pack them as soon as each
item arrives, but it has two advantages: (i) The packing algorithm knows m, the
number of bins that an optimal offline algorithm would use, and must also use
only at most m bins, and (ii) the packing algorithm can use bins of capacity R
for some R ≥ 1. The goal is to minimize the stretching factor R.

While formulated as a bin packing variant, Online Bin Stretching can
also be thought of as a semi-online scheduling problem, in which we schedule
jobs in an online manner on exactly m machines, before any execution starts.
We have a guarantee that the optimum offline algorithm could schedule all jobs
with makespan 1. Our task is to present an online algorithm with makespan of
the schedule being at most R.

History. Online Bin Stretching has been proposed by Azar and Regev [2].
The original lower bound of 4/3 for three bins has appeared even before that,
in [10], for two bins together with a matching algorithm. Azar and Regev extended
the same lower bound to any number of bins and gave an online algorithm with a
stretching factor 1.625.
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The problem has been revisited recently, with both lower bound improvements
and new efficient algorithms. On the algorithmic side, Kellerer and Kotov [9] have
achieved a stretching factor 11/7 ≈ 1.57 andGabay et al. [7] have achieved 26/17 ≈
1.53. In the casewith only three bins, the previously best algorithmwas due toAzar
and Regev [2], with a stretching factor of 1.4.

On the lower bound side, the lower bound 4/3 of [2] was surpassed only for
the case of three bins by Gabay et al. [6], who show a lower bound of 19/14,
using an extensive computer search.

Our Contributions. In Sect. 2, we present a new algorithm for Online Bin
Stretching with a stretching factor of 1.5. We build on the techniques of [7,9]
who designed two-phase algorithms where the first phase tries to fill some bins
close to R − 1 and achieve a fixed ratio between these bins and empty bins,
while the second phase uses the bins in blocks of fixed size and analyzes each
block separately. This technique, with some case analysis, seemed to be able to
lead to improved results approaching 1.5. To actually reach 1.5, we needed to
significantly improve the analysis using amortization techniques (represented by
a weight function in our presentation) to amortize among blocks and bins of
different types.

In Sect. 3, we focus on the case of three bins. For this case, there is a recent
lower bound of 19/14 ≈ 1.357 [6]. We present an algorithm for three bins of
capacity 11/8 = 1.375. This is the first improvement of the stretching factor 1.4 of
Azar and Regev [2] for three bins and significantly decreases the remaining gap.

Related Work. The NP-hard problem Bin Packing was originally proposed
by Ullman [11] and Johnson [8] in the 1970s. Since then it has seen major interest
and progress, see the survey of Coffman et al. [4] for many results on classical
Bin Packing and its variants. While our problem can be seen as a variant of Bin
Packing, note that the algorithms cannot open more bins than the optimum
and thus general results for Bin Packing do not translate to our setting.

As noted, Online Bin Stretching can be formulated as the online schedul-
ing on m identical machines with known optimal makespan. Such algorithms
were studied and are important in designing constant-competitive algorithms
without the additional knowledge, e.g., for scheduling in the more general model
of uniformly related machines [1,3,5].

Definitions and Notation. Our main problem, Online Bin Stretching,
can be described as follows:

Input: an integer m and a sequence of items I = i1, i2, . . . given online one
by one. Each item has a size s(i) ∈ [0, 1] and must be packed immediately and
irrevocably.

Parameter: The stretching factor R, a limit of the capacity of all bins.

Output: Partitioning (packing) of I into bins B1, . . . , Bm so that
∑

i∈Bj
s(i) ≤

R for all j = 1, . . . ,m.

Guarantee: there exists a packing of all items in I into m bins of capacity 1.
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Goal: Design an online algorithm with the stretching factor R as small as pos-
sible which packs all input sequences satisfying the guarantee.

For a bin B, we define the size of the bin s(B) =
∑

i∈B s(i). Unlike s(i), s(B)
can change during the course of the algorithm, as we pack more and more items
into the bin. To easily differentiate between items, bins and lists of bins, we use
lowercase letters for items (i, b, x), uppercase letters for bins (A, B, X), and
calligraphic letters for lists of bins (A, C, L).

In both sections of our paper, we rescale the item sizes and bin capacities for
simplicity. Therefore, in our setting, each item has an associated size s(i) ∈ [0, k],
where k ∈ N is also the capacity of the bins which the optimal offline algorithm
uses. The online algorithm for Online Bin Stretching uses bins of capacity
t ∈ N, t ≥ k. The resulting stretching factor is thus t/k.

We omit some proofs due to space restrictions. Full version is available at
http://arxiv.org/abs/1404.5569.

2 Upper Bound for an Arbitrary Number of Bins

We rescale the bin sizes so that the optimal bins have size 12 and the bins of the
algorithm have size 18.

We follow the general two-phase scheme of recent results [7,9] which we sketch
now. In the first phase of the algorithm we try to fill the bins so that their size
is at most 6, as this leaves space for an arbitrary item in each bin. Of course,
if items larger than 6 arrive, we need to pack them differently, namely in bins
of size at least 12, whenever possible. We stop the first phase when the number
of non-empty bins of size at most 6 is three times the number of empty bins.
In the second phase, we work in blocks of three non-empty bins and one empty.
The goal is to show that we are able to fill the bins so that the average size is
at least 12, which guarantees we are able to pack the total size of 12m which is
the upper bound on the size of all items.

The limitation of the previous results using this scheme was that the volume
achieved in a typical block of four bins is slightly less than four times the size
of the optimal bin, which then leads to bounds strictly above 3/2. This is also
the case in our algorithm: A typical block may contain in three bins items from
the first phase of size just above 4 plus one item of size 7 from the second phase,
while the last bin contains two items of size 7 from the second phase—a total
of 47 instead of desired 4 · 12. However, we notice that such a block contains
five items of size 7 which the optimum cannot fit into four bins. To take an
advantage of this, we cannot analyze each block separately. Instead, we need to
show that a bin with no item of size more than 6 typically has size at least 13
and amortize among the blocks of different types. Technically this is done using
a weight function w that takes into account both the total size of items and the
number of items larger than 6. This is the main new technical idea of our proof.

There are other complications. We need to guarantee that a typical bin of size
at most 6 has size at least 4 after the first phase. However, this is impossible to
guarantee if the items packed there have size between 3 and 4. Larger items are

http://arxiv.org/abs/1404.5569
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fine, as one per bin is sufficient, and the smaller ones are fine as well as we can
always fit at least two of them and this guarantees that we have only two bins
filled below 4. This motivates our classification of items: Only the regular items
of size in (0, 3] ∪ (4, 6] are packed in the bins filled up to size 6. The medium items
of size in (3, 4] are packed in their own bins (four or five per bin). Similarly, large
items of size in (6, 9] are packed in pairs in their own bins. Finally, the huge items
of size larger than 9 are handled similarly as in the previous papers: If possible,
they are packed with the regular items, otherwise each in their own bin.

The introduction of medium size items in turn implies that we need to revisit
the analysis of the first phase and also of the case when the first phase ends with
no empty bin. These parts of the proof are similar to the previous works, but
due to the new item type we need to carefully revisit it; it is now convenient
to introduce another weight function v that counts the items according to their
type. The analysis of the second phase when empty bins are present is more
complicated, as we need to take care of various degenerate cases, and it is also
here where the novel amortization is used.

Lower Bound. We note that this two-phase approach cannot give a better
stretching factor than 1.5. Consider the following instance. Send two items of
size 6 which are in the first phase packed separately into two bins. Then send
m−1 items of size 12 and one of them must be put into a bin with an item of size
6, i.e., one bin receives items of size 18, while all the items can be packed into
m bins of size 12. This instance and its modifications with more items of size 6
or slightly smaller items at the beginning thus show that decreasing the upper
bound below 1.5 would need a significantly different approach, as we would be
forced to pack these items in pairs. This also shows that the analysis of our
algorithm is tight.

Now we are ready to proceed with the formal statement of the algorithm and
proof.

Theorem 1. There exists an algorithm for Online Bin Stretching with a
stretching factor of 1.5 for an arbitrary number of bins.

We take an instance with an optimal packing into m bins of size 12 and, assuming
that our algorithm fails, we derive a contradiction. One way to get a contradiction
is to show that the size of all items is larger than 12m. We also use two other
bounds in the spirit of weight functions: weight w(i) and value v(i). The weight
w(i) is a slightly modified size to account for items of size larger than 6. The
value v(i) only counts the number of items with relatively large sizes. For our
calculations, it is convenient to normalize the functions so that they are at most
0 for optimal bins (see Lemma 1).

We classify the items and define their value v(i) as follows.

Type Huge Large Medium Regular

s(i) (9,12] (6,9] (3,4] (0,3]∪(4,6]

v(i) 3 2 1 0
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Fig. 1. A typical state of the algorithm after the first phase. The bin labels correspond
to the bin types of the first phase. The non-complete bins (other than G) are ordered
as in the list L at the beginning of the second phase with regular bins.

Definition 1. For a set of items A, we define the value v(A) = (
∑

i∈A v(i))−3
and we define weight w(A) as follows. Let k(A) be the number of large and huge
items in A. Then w(A) = s(A) + k(A) − 13. For a set of bins A we define
v(A) =

∑
A∈A v(A), w(A) =

∑
A∈A w(A) and k(A) =

∑
A∈A k(A).

Lemma 1. For any packing of a valid instance into m bins A of any size, we
have w(A) ≤ 0 and v(A) ≤ 0. ��
First Phase. During the first phase, our algorithm maintains the invariant that
only bins of the following types exist. See Fig. 1 for an illustration of the types
of the bins.

E Empty bins: bins that have no item.
G Complete bins: all bins A that have w(A) ≥ 0 and s(A) ≥ 12;
H Huge-item bins: all bins A that contain a huge item (plus possibly some

other items) and have s(A) < 12;
L One large-item bin: a bin containing only a single large item;
M One medium-item bin: a bin A with s(A) ≤ 13 and only medium items;
T One tiny bin: a bin with s(A) ≤ 3;
R Regular bins: all other bins with s(A) ∈ (3, 6];

First-phase algorithm:
Let e be the number of empty bins and r the number of regular bins. If
r ≥ 3e, stop the first phase.
Assign the current item i according to its item type, using the first possi-
ble option in the particular column. The first letter in a cell indicates the
required type of the bin before the assignment and the second column denotes
the type of the bin after the assignment. If there are two types listed, the
new bin type depends on the new size and weight of the bin.
Note: As an additional rule when packing regular items, the item is packed
in a regular or tiny bin only if the total size packed into this bin does not
exceed 6 afterwards.

Item type huge large medium regular
Option 1 R → G L → G M → G/M H → G/H
Option 2 T → H E → L E → M R → R
Option 3 E → H T → T/R
Option 4 E → T/R
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First we observe that the algorithm described in the box above is properly
defined. For every type of item, packing it into an empty bin is an option, and
the stopping criterion guarantees that the algorithm stops when no empty bin
is available. We now state properties of the algorithm; all are simple invariants
that follow from the description of the algorithm.

Lemma 2. At any time during the first phase the following holds:

(i) All bins used by the algorithm are of type E, G, H, L, M, T, or R.
(ii) All complete bins B have s(B) ≥ 12, v(B) ≥ 0, and w(B) ≥ 0.
(iii) If there is a huge-item bin, there is no regular and no tiny bin.
(iv) There is at most one large-item bin and at most one medium-item bin.
(v) There is at most one tiny bin T . If T exists, then for any regular bin,

s(T ) + s(R) > 6. There is at most one regular bin R with s(R) ≤ 4.
(vi) At the end of the first phase 3e ≤ r ≤ 3e + 3. ��
If the algorithm packs all items in the first phase, it stops. Otherwise according
to Lemma 2 (iii) we split the algorithm in two very different branches. If there
is no regular bin, follow the second phase with huge-item bins below. If there is
at least one regular bin, follow the second phase with regular bins.

Let G be the set of all complete bins; we do not use these bins in the second
phase. In addition to G and either huge-item bins, or the regular and empty bins,
there may exist at most three special bins denoted and ordered as follows: the
large-item bin L, the medium item bin M , and the tiny bin T .

Second Phase with Huge-Item Bins. Let the list of bins L contain first all
the huge-item bins, followed by the special bins L, M , in this order, if they exist.
There are no other non-empty bins by Lemma2 and no empty bins because we
have 3e ≤ r = 0. We use First Fit on L, without allowing new bins to be opened.
Suppose that we have an instance that has a packing into bins of capacity 12
and on which our algorithm fails. We may assume that the algorithm fails on
the last item f . By considering the total volume, there always exists a bin with
size at most 12. Thus s(f) > 6 and v(f) ≥ 2.

If during the second phase an item n with s(n) ≤ 6 is packed into the last bin
in L, we know that all other bins have size more than 12, thus all the remaining
items fit into the last bin. Otherwise we consider v(L). Any bin B ∈ G has
v(B) ≥ 0 by Lemma 2 (ii) and each huge-item bin gets nonnegative value too.
Also v(L) ≥ −1 if L exists. This shows that M must exist, since otherwise
v(L) + v(f) ≥ −1 + 2 ≥ 1, a contradiction.

M is the last bin of L and thus in this last case M contains only medium
items from the first phase and possibly large and/or huge items from the second
phase. We claim that v(M) + v(f) ≥ 2 using the fact that f does not fit into M
and M contains no item a with v(a) = 0: If f is huge we have s(M) > 6, thus M
must contain either two medium items or one medium item and one large or huge
item and v(M) ≥ −1. If f is large, we have s(M) > 9; thus M contains either
three medium items or one medium and one large or huge item and v(M) ≥ 0.
Thus we always have v(L) ≥ −1 + v(M) + v(f) ≥ 1, a contradiction.
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Second Phase with Regular Bins. Let E resp. R be the set of empty resp.
regular bins at the beginning of the second phase, and let e = |E|. Let λ ∈
{0, 1, 2, 3} be such that |R| = 3e + λ; Lemma 4 (vi) implies that it exists.

We order the bins that are not complete into a list L as follows. We group
the bins in E ∪ R into blocks of typically one empty and three regular bins as
follows. Denote the empty bins E1, E2, . . . , Ee. The regular bins are denoted by
Ri,j , i = 1, ..., e+1, j = 1, 2, 3. The ith block Bi consists of bins Ri,1, Ri,2, Ri,3, Ei

in this order. There are two exceptions: The last block Be+1 has no empty bin,
only exactly 3 regular bins. The first block contains only λ regular bins instead
of 3 and an empty bin. As the first regular bin we choose the one with size less
than 4, if there is such a bin. By Lemma2 (v) there exists at most one such bin
and all the remaining Ri,j have size at least 4. Denote the first regular bin by R̄
if R 
= ∅; note that R̄ is either the first bin in B1 or the first bin in B2 if λ = 0.

The list of bins L we use in the second phase contains first the special bins
and then all the blocks B1, . . . ,Be+1. Thus the list L is (some or all of the first
six bins may not exist):

L,M, T,R1,1, R1,2, R1,3, E1, R2,1, R2,2, R2,3, E2, . . . , Ee, Re+1,1, Re+1,2, Re+1,3.

Whenever we refer to the ordering of the bins, we mean the ordering in L. See
Fig. 1 for an illustration.

We use First Fit on the reversed list L for huge items (that is, we pack each
huge item to the last bin in L where it fits) and we use First Fit on L for all
other items.

Suppose that we have an instance that has a packing into bins of capacity
12 and on which our algorithm fails. We may assume that the algorithm fails on
the last item. Let us denote this item by f . Call the items that arrived in the
second phase new (including f), the items from the first phase are old. See Fig. 2
for an illustration of a typical final situation. Our overall strategy is to obtain a
contradiction by showing that

w(L) + w(f) > 0 .

In some cases, we instead argue that v(L) + v(f) > 0 or s(L) + s(f) > 12|L|.
Any of these is sufficient for a contradiction, as all bins in G have both volume
and weight nonnegative and size larger than 12. Note also that s(f) > 6 since
by considering the total volume, there always exists a bin with size at most 12.

Let H denote all the bins from L with a huge item, and let h = |H| mod 4.
First we show that the average size of bins in H is large and exclude some
degenerate cases.

Lemma 3. Let ρ be the total size of old items in R̄ if R̄ ∈ H, otherwise set
ρ = 4.

(i) The bins H are a final segment of the list and H � E ∪ R.
(ii) We have s(H) ≥ 12|H| + h + ρ − 4.
(iii) If H does not include R̄, then s(H) ≥ 12|H| + h ≥ 12|H|.
(iv) If H includes R̄, then s(H) ≥ 12|H| + h − 1 ≥ 12|H| − 1. ��
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Fig. 2. A typical state of the algorithm after the second phase with regular bins. The
gray (hatched) areas denote the old items (i.e., packed in the first phase), the red
(solid) regions and rectangles denote the new items (i.e., packed in the second phase).
The bins that are complete at the end of the first phase are not shown. The item f
on which the algorithm fails is shown as packed into the final bin F and exceeding the
capacity of the bin (Color figure online).

Let F , the final bin be the last bin in L before H, or the last bin if H = ∅; by
Lemma 3 we have F ∈ E ∪R. Now modify the packing so that f is put into F , f
is also considered a new item. Thus s(F ) > 18 and f as well as all the new items
packed in F or a bin before F satisfy the property that they do not fit into any
previous bin. Let C, the critical bin, be the first bin in L of size at most 12; such
a bin exists, as otherwise the total size is more than 12m.

We start by some easy observations. Only items of size at most 9 are packed
in bins before F , in F itself only the item f can be larger. All the new items
in the bins after C are large; f can be also huge. Each bin, possibly with the
exception of L and M , contains a new item, as it enters the phase with size
at most 6, and the algorithm failed. Each bin in E before F contains two new
items. The bin F always has two new items, one that did fit into it and f . More
observations are given in the next two lemmata.

Lemma 4. (i) Let B be any bin before F . Then s(B) > 9.
(ii) Let B,B′, B′′ be any three bins in this order before or equal to F and let

B′′ contain two new items. Then s(B) + s(B′) + s(B′′) > 36 + o, where o
is the size of old items in B′′.

(iii) Let B be arbitrary and B′ ∈ R after both B and C.
If B′ 
= R̄ then s(B) + s(B′) > 22, in particular s(B) > 11 or s(B′) > 11.
If B′ = R̄ then s(B) + s(B′) > 21. ��

Lemma 5. The critical bin C is before F , there are at least two bins between C
and F and C is not in the same block as F . ��
Now we partition L into several parts, see Fig. 2 for an illustration of these parts.
Let F = Bi∪H, where F ∈ Bi. Let D be the set of all bins after C and before F .
Let C be the set of all bins before and including C. Lemma 5 shows that the parts
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are non-overlapping. We analyze the weight of the parts separately, essentially
block by block. The proof is relatively straightforward if C is not special (and
thus also F 
∈ B1), which is the most important case driving our choices for w.
A typical block has nonnegative weight, we gain more weight in the block of F
which exactly compensates the loss of weight in C, which occurs mainly in C
itself.

Lemma 6. If F is not in the first block then w(F) > 5, else w(F) > 4. ��
Lemma 7. If C ∈ R then w(C) ≥ −6. If C ∈ E then w(C) ≥ −5. If C is a
special bin then w(C) ≥ −4. ��
Lemma 8. (i) For every block Bi ⊆ D we have w(Bi) ≥ 0.
(ii) If there is no special bin in D, then w(D) ≥ 0. If also C ∈ R then w(D) ≥ 1.

We are now ready to derive the final contradiction. If D does not contain a special
bin, we add the appropriate bounds from Lemmata 7, 8 and 6. If C ∈ R then F is
not in the first block and w(L) = w(C)+w(D)+w(F) > −6+1+5 = 0. If C ∈ E
then F is not in the first block and w(L) = w(C)+w(D)+w(F) > −5+0+5 = 0.
If C is the last special bin then w(L) = w(C) + w(D) + w(F) > −4 + 0 + 4 = 0.
In all subcases w(L) > 0, a contradiction.

If D does contain a special bin we need to analyze several cases depending
on the number of special bins and regular bins in B1.

In all of the cases we can derive a contradiction, which implies that our
algorithm cannot fail. This concludes the proof of Theorem 1. ��

3 Bin Stretching for Three Bins

We scale the input sizes by 16. The stretched bins in our setting therefore have
capacity 22 and the optimal offline algorithm can pack all items into three bins
of capacity 16 each. The three bins of our setting are named A, B, and C. We
prove the following theorem.

Theorem 2. There exists an algorithm that solves Online Bin Stretching
for three bins with stretching factor 1 + 3/8 = 1.375.

A natural idea is to try to pack first all items in a single bin, as long as possible.
In general, this is the strategy that we follow. However, somewhat surprisingly,
it turns out that from the very beginning we need to put items in two bins even
if the items as well as their total size are relatively small.

It is clear that we have to be very cautious about exceeding a load of 6. For
instance, if we put 7 items of size 1 in bin A, and 7 such items in B, then if two
items of size 16 arrive, the algorithm will have a load of at least 23 in some bin.
Similarly, we cannot assign too much to a single bin: putting 20 items of size 0.5
all in bin A gives a load of 22.5 somewhere if three items of size 12.5 arrive next.

On the other hand, it is useful to keep one bin empty for some time; many
problematic instances end with three large items such that one of them has to be
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placed in a bin that already has high load. Keeping one bin free ensures that such
items must have size more than 11 (on average), which limits the adversary’s
options, since all items must still fit into bins of size 16.

Deciding when exactly to start using the third bin and when to cross the
threshold of 6 for the first time was the biggest challenge in designing this algo-
rithm: both of these events should preferably be postponed as long as possible,
but obviously they come into conflict at some point.

Good Situations. Before stating the algorithm itself, we list several good situa-
tions (GS). These are configurations of the three bins which allow us to complete
the packing regardless of the following input. Obviously the identities of the bins
are not important here; for instance, in the first good situation, all that we need
is that any two bins together have items of size at least 26. We have used names
only for clarity of presentation and of the proofs.

Good Situation 1. Given a partial packing such that s(A) + s(B) ≥ 26 and
s(C) is arbitrary, there exists an online algorithm that packs all remaining items
into three bins of capacity 22.

Proof. Since the optimum can pack into three bins of size 16, the total size of
items in the instance is at most 3·16 = 48. If two bins have size s(A)+s(B) ≥ 26,
all the remaining items (including the ones already placed on C) have size at
most 22. Thus we can pack them all into bin C. ��
Good Situation 2. Given a partial packing such that s(A) ∈ [4, 6] and s(B)
and s(C) are arbitrary, there exists an online algorithm that packs all remaining
items into three bins of capacity 22.

Proof. Let A be the bin with size between 4 and 6 and B be one of the other bins
(choose arbitrarily). Put all the items greedily into B. When an item does not
fit, put it into A, where it fits, as originally s(A) is at most 6. Now the size of all
items in B plus the last item is at least 22. In addition, A has items of size at least
4 before the last item by the assumption. Together we have s(A) + s(B) ≥ 26,
allowing us to apply GS1. ��
Good Situation 3. Given a partial packing such that s(A) ∈ [15, 22] and either
(i) s(C) ≤ 6 and s(B) is arbitrary or (ii) s(B)+s(C) ≥ 22, there exists an online
algorithm that packs all remaining items into three bins of capacity 22.

Proof. If s(B) + s(C) ≥ 22, then max(s(B), s(C)) ≥ 11, so we are in GS1 on
bins A and B or on bins A and C. Else, if s(C) ≤ 6, we pack arriving items into
B. If s(B) ≥ 11, we apply GS1 on bins A and B. Thus we can assume s(B) < 11
and we cannot continue packing into B any further. This implies that an item
i arrives such that s(i) > 11. As s(C) ≤ 6, we pack i into it and apply GS1 on
bins A and C. ��
Good Situation 4. Given a partial packing such that s(A)+s(B) ≥ 15+ 1

2s(C),
s(B) < 4, and s(C) < 4, there exists an online algorithm that packs all remaining
items into three bins of capacity 22. ��
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Good Situation 5. Given a partial packing such that an item a with s(a) > 6
is packed into bin A, s(B) ∈ [3, 6], and C is empty, there exists an algorithm
that packs all remaining items into three bins of capacity 22. ��
Good Situation 6. If s(C) ≤ 6 ≤ s(B) and s(A) ≥ s(B) + 4 − s(C), there
exists an algorithm that packs all remaining items into 3 bins of capacity 22. ��
Good Situation 7. Suppose s(C) ≤ s(B) < 6 < s(A). If s(A) ≤ 9 + 1

2 (s(C) +
s(B)) and for some item x we have s(A)+x > 22, there exists an online algorithm
that packs all remaining items into three bins of capacity 22. ��
The Algorithm. We now proceed to describe the bin packing algorithm itself.
Its analysis is omitted due to space restrictions. The algorithm will often use a
special variant of First Fit, described as follows:

Definition 2. Let L = (X|k, Y |l, . . .) be a list of bins X,Y, . . . where each bin
X has an associated integral capacity k satisfying s(X) ≤ k. GSFFL (Good Sit-
uation First Fit) is an online algorithm for bin stretching that works as follows:

Algorithm GSFF(L): For each item i:
If it is possible to pack i into any bin (including bins not in L, and using
capacities of 22 for all bins) such that a good situation is reached, do so and
continue with the algorithm of the relevant good situation.
Otherwise, traverse the list L in order and pack i into the first bin X such
that X|k ∈ L and s(X) + s(i) ≤ k.

For example, GSFFA|4, B|22 checks whether either (A ∪ {j}, B,C), (A,B ∪
{j}, C) or (A,B,C ∪ {j}) is a partial packing of any good situation. If this is
not the case, the algorithm packs j into bin A provided that s(A) + s(j) ≤ 4. If
s(A) + s(j) > 4, the algorithm packs j into bin B with capacity 22. If j cannot
be placed into B, GSFFA|4, B|22 reports failure and another online algorithm
must be applied.

In the first phase, we pack items into two bins so that either an item of size 6
arrives relatively early in the input sequence, or we can reach a good situation.

Algorithm First Phase:

(1) GSFF(A|4, B|4). Rename the bins so that s(A) ≥ s(B).
(2) Let the item on which Step (1) failed be j. If s(j) > 6 place j into A,

and go to the Second Phase.
(3) Place j into B and rename the bins so that s(A) > s(B) ≥ s(C) = 0.
(4) GSFF(B|4, A|q, C|4) where q := 9 + 1

2 (s(B) + s(C)). As soon as C
receives its first item, rename the bins B and C so that s(B) ≥ s(C) and
continue. Note that also the value of q may change between packing of
different items.

We start the algorithm Second Phase only after Step (2) of First Phase
fails when an item j of size s(j) > 6 arrives. We have not entered GS5 before
placing j on A, and so we have s(A \ {j}) ≤ 3.
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Algorithm Second Phase:

(1) GSFF(A|q, B|4), where q := 6 + s(j).
(2) If the next item x fits into A, apply GSFF(A|22, B|22, C|22).
(3) Else: Place x into B. Let j′ be the smallest item of {j, x}.
(4) Reorder the bins A and B so that j′ ∈ A.
(5) GSFF(A|q, B|22), where q := 6 + s(j′).
(6) Place next item y into C. Let j′′ be the smallest item of {j′, y}.
(7) Reorder the bins A and C so that j′′ ∈ A.
(8) GSFF(A|q, B|22, C|22), where q := 6 + s(j′′).

Conclusions. With our algorithm for m = 3, the remaining gap is small. For
arbitrary m, we have seen at the beginning of Sect. 2 that a significantly new
approach would be needed for an algorithm with a better stretching factor than
1.5. Thus, after the previous incremental results, our algorithm is the final step
of this line of study. It is quite surprising that there are no lower bounds for
m > 3 larger than the easy bound of 4/3.
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Abstract. In the Colored Bin Packing problem a sequence of items of
sizes up to 1 arrives to be packed into bins of unit capacity. Each item
has one of c ≥ 2 colors and an additional constraint is that we cannot
pack two items of the same color next to each other in the same bin. The
objective is to minimize the number of bins.

In the important special case when all items have size zero, we char-
acterize the optimal value to be equal to color discrepancy. As our main
result, we give an (asymptotically) 1.5-competitive algorithm which is
optimal. In fact, the algorithm always uses at most �1.5 ·OPT� bins and
we show a matching lower bound of �1.5·OPT� for any value of OPT ≥ 2.
For items of arbitrary size we give a lower bound of 2.5 and an absolutely
3.5-competitive algorithm. We also show that classical algorithms First
Fit, Best Fit and Worst Fit are not constant competitive.

In the case of two colors—the Black and White Bin Packing problem—
we prove that all Any Fit algorithms have the absolute competitive ratio 3.
When the items have sizes of at most 1/d for a real d ≥ 2 we show that
the Worst Fit algorithm is absolutely (1 + d/(d − 1))-competitive.

1 Introduction

In the Online Black and White Bin Packing problem proposed by Balogh et al.
[1,2] as a generalization of classical bin packing, we are given a list of items of size
in [0, 1], each item being either black, or white. The items are coming one by one
and need to be packed into bins of unit capacity. The items in a bin are ordered by
their arrival time. The additional constraint to capacity is that the colors inside
the bins are alternating, i.e., no two items of the same color can be next to each
other in the same bin. The goal is to minimize the number of bins used.

Online Colored Bin Packing is a natural generalization of Black and White
Bin Packing in which items can have more than two colors. As before, the only
additional condition to unit capacity is that we cannot pack two items of the
same color next to each other in one bin.

Observe that optimal offline packings with and without reordering the items
differ in this model. The packings even differ by a non-constant factor: Let the
input sequence have n black items and then n white items, all of size zero. The
offline optimal number of bins with reordering is 1, but an offline packing without
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reordering (or an online packing) needs n bins, since the first n black items must
be packed into different bins. Hence we need to use the offline optimum without
reordering in the analysis of online colored bin packing algorithms.

There are several well-known and often used algorithms for classical Bin
Packing. We investigate the Any Fit family of algorithms (AF). These algorithms
pack an incoming item into some already open bin whenever it is possible with
respect to the size and color constraints. The choice of the open bin (if more are
available) depends on the algorithm. AF algorithms thus open a new bin with
an incoming item only when there is no other possibility. Among AF algorithms,
First Fit (FF) packs an incoming item into the first bin where it fits (in the
order by creation time), Best Fit (BF) chooses the bin with the highest level
where the item fits and Worst Fit (WF) packs the item into the bin with the
lowest level where it fits.

Next Fit (NF) is more restrictive than Any Fit algorithms, since it keeps
only a single open bin and puts an incoming item into it whenever the item fits,
otherwise the bin is closed and a new one is opened.

Previous Results. Balogh et al. [1,2] introduced the Black and White Bin
Packing problem. As the main result, they give an algorithm Pseudo with the
absolute competitive ratio exactly 3 in the general case and 1 + d/(d − 1) in the
parametric case, where the items have sizes of at most 1/d for a real d ≥ 2. They
also proved that there is no deterministic or randomized online algorithm whose
asymptotic competitiveness is below 1 + 1

2 ln 2 ≈ 1.721.
Concerning specific algorithms, they proved that Any Fit algorithms are

at most 5-competitive and even optimal for zero-size items. They show input
instances on which FF and BF create asymptotically 3 · OPT bins. For WF
there are sequences of items witnessing that it is at least 3-competitive and (1+
d/(d−1))-competitive in the parametric case for an integer d ≥ 2. Furthermore,
NF is not constant competitive.

The idea of the algorithm Pseudo, on which we build as well, is that we first
pack the items regardless of their size, i.e., treating their size as zero. This can be
done optimally for two colors, and the optimum equals the maximal discrepancy
in the sequence of colors (to be defined below). Then these bins are partitioned
by NF into bins of level at most 1.

In the offline setting, Balogh et al. [2] gave a 2.5-approximation algorithm
with O(n log n) time complexity and an asymptotic polynomial time approxi-
mation scheme, both when reordering is allowed.

Very recently and independent of us Dósa and Epstein [7] studied Colored
Bin Packing. They improved the lower bound for online Black and White Bin
Packing to 2 for deterministic algorithms, which holds for more colors as well.
For 3 colors and more they proved an asymptotic lower bound of 1.5 for zero-
size items. They designed a 4-competitive algorithm based on Pseudo and a
balancing algorithm for zero-size items. They also showed that BF, FF and WF
are not competitive at all (with non-zero sizes).

Our Results. We completely solve the case of Colored Bin Packing for zero-
size items. As we have seen, this case is important for constructing general
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algorithms. The offline optimum (without reordering) is actually not only lower
bounded by the color discrepancy, but equal to it for zero-size items (see Sect. 2).
For online algorithms, we give an (asymptotically) 1.5-competitive algorithm
which is optimal (see Sect. 3.2). In fact, the algorithm always uses at most �1.5 ·
OPT� bins and we show a matching lower bound of �1.5 ·OPT � for any value of
OPT ≥ 2 (see Sect. 3.1). This is significantly stronger than the asymptotic lower
bound of 1.5 of Dósa and Epstein [7], in particular it shows that the absolute
ratio of our algorithm is 5/3, and this is optimal.

For items of arbitrary size and three colors, we show a lower bound of 2.5,
which breaks the natural barrier of 2 (see Sect. 4.1). We use the optimal algo-
rithm for zero-size items and the algorithm Pseudo to design an (absolutely) 3.5-
competitive algorithm which is also (asymptotically) (1.5+d/(d−1))-competitive
in the parametric case, where the items have sizes of at most 1/d for a real d ≥ 2
(see Sect. 4.2). (Note that for d < 2 we have d/(d − 1) > 2 and the bound for
arbitrary items is better.)

We show that algorithms BF, FF and WF are not constant competitive, in
contrast to their 3-competitiveness for two colors. Their competitiveness cannot
be bounded by any function of the number of colors even for only three colors and
very small items. Instances showing that are omitted due to space limitations.

For Black and White Bin Packing (Sect. 5), we improve the upper bound on
the absolute competitive ratio of Any Fit algorithms in the general case to 3
which is tight for BF, FF and WF. For WF in the parametric case, we prove
that it is absolutely (1 + d/(d − 1))-competitive for a real d ≥ 2 which is tight
for an integral d. Therefore, WF has the same competitive ratio as the Pseudo
algorithm. The proofs of both results are also omitted.

In Sects. 2, 3 and 4 we provide as much intuition as we can, although we have
to omit some proofs of our results.

Related Work. In the classical Bin Packing problem, we are given items with
sizes in (0, 1] and the goal is to assign them into the minimum number of unit
capacity bins. The problem was proposed by Ullman [13] and by Johnson [10]
and it is known to be NP-hard. See the survey of Coffman et al. [5] for the many
results on classical Bin Packing and its many variants.

For the online problem, there is no online algorithm which is better than
248/161 ≈ 1.540-competitive [3]. The currently best algorithm is Harmonic++
by Seiden [12], approximately 1.589-competitive. Regarding AF algorithms, NF
is 2-competitive and both FF and BF have the absolute competitive ratio exactly
1.7 [8,9]. This is similar to Black and White Bin Packing in which FF and BF
have the absolute competitive ratio of 3 and the hard instances proving tightness
of the bound are the same for both algorithms.

In the context of Colored Bin Packing, we are interested in variants that
further restrict the allowed packings. Of particular interest is Bounded Space
Bin Packing where an algorithm can have only K ≥ 1 open bins in which it
is allowed to put incoming items. When a bin is closed an algorithm cannot
pack any further item in the bin or open it again. Such algorithms are called K-
bounded-space. The champion among these algorithms is K-Bounded Best Fit,
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i.e., Best Fit with at most K open bins, which is (asymptotically) 1.7-competitive
for all K ≥ 2 [6]. Lee and Lee [11] presented Harmonic(K) which is K-bounded-
space with the asymptotic ratio of 1.691 for K large enough. Lee and Lee also
proved that there is no bounded space algorithm with a better asymptotic ratio.

The Bounded Space Bin Packing is an especially interesting variant in our
context due to the fact that it matters whether we allow the optimum to reorder
the input instance or not. If we allow reordering for Bounded Space Bin Packing,
we get the same optimum as classical Bin Packing. In fact, all the bounds on
online algorithms in the previous paragraph hold if the optimum with reorder-
ing is considered, which is a stronger statement than comparing to the optimum
without reordering. This is a very different situation than for Colored Bin Pack-
ing, where no online algorithms can be competitive against the optimum with
reordering, as we have noted above.

The bounded space offline optimum without reordering was studied by
Chrobak et al. [4]. It turns out that the computational complexity is very dif-
ferent: There exists an offline (1.5 + ε)-approximation algorithm for 2-bounded-
space Bin Packing with polynomial running time for every constant ε > 0, but
exponential in ε. No polynomial time 2-bounded-space algorithm can have its
approximation ratio better than 5/4 (unless P = NP ). In the online setting it is
open whether there exists a better algorithm than 1.7-competitive K-Bounded
Best Fit when compared to the optimum without reordering; the current lower
bound is 3/2.

Motivation. Suppose that a television or a radio station maintains several chan-
nels and wants to assign a set of programs to them. The programs have types
like “documentary”, “thriller”, “sport”, on TV, or music genres on radio. To
have a fancy schedule of programs, the station does not want to broadcast two
programs of the same type one after the other. Colored Bin Packing can be used
to create such a schedule. Items here correspond to programs, colors to genres
and bins to channels. Moreover, the programs can appear online and have to be
scheduled immediately, e.g., when listeners send requests for music to a radio
station via the Internet.

Another application of Colored Bin Packing comes from software which ren-
ders user-generated content (for example from the Internet) and assigns it to
columns which are to be displayed. The content is in boxes of different colors
and we do not want two boxes of the same color to be adjacent in a column,
otherwise they would not be distinguishable for the user.

Moreover, Colored Bin Packing with all items of size zero corresponds to a
situation in which we are not interested in loads of bins (lengths of the schedule,
sizes of columns, etc.), but we just want some kind of diversity or colorfulness.

2 Preliminaries and Offline Optimum

Definitions and Notation. There are three settings of Colored Bin Packing:
In the offline setting we are given the items in advance and we can pack them in
an arbitrary order. In the restricted offline setting we also know sizes and colors
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of all items in advance, but they are given as a sequence and they need to be
packed in that order. In the online setting the items are coming one by one and
we do not know what comes next or even the total number of items. Moreover,
an online algorithm has to pack each incoming item immediately and it is not
allowed to change its decisions later.

We focus mostly on the online setting. To measure the effectiveness of online
algorithms for a particular instance L, we use the restricted offline optimum
denoted by OPT (L) or OPT when the instance L is obvious from the con-
text. Let ALG(L) denote the number of bins used by the algorithm ALG . The
algorithm is absolutely r-competitive if for any instance ALG(L) ≤ r · OPT (L)
and asymptotically r-competitive if for any instance ALG(L) ≤ r · OPT (L) +
o(OPT (L)); typically the additive term is just a constant. We say that an algo-
rithm has the (absolute or asymptotic) competitive ratio r if it is (absolutely or
asymptotically) r-competitive and it is not r′-competitive for r′ < r.

For Colored Bin Packing, let C be the set of all colors. For c ∈ C, the items
of color c are called c-items and bins with the top (last) item of color c are called
c-bins. By a non-c-item we mean an item of color c′ �= c and similarly a non-c-bin
is a bin of color c′ �= c. The level of a bin means the cumulative size of all items
in the bin.

Lower Bounds on the Restricted Offline Optimum. We use two lower
bounds on the number of bins in any packing. The first bound LB1 is the sum
of sizes of all items.

The second bound LB2 is the maximal color discrepancy inside the input
sequence. In Black and White Bin Packing, the color discrepancy introduced by
Balogh et al. [1] is simply the difference of the number of black and white items
in a segment of input sequence, maximized over all segments. It is easy to see
that it is a lower bound on the number of bins.

In the generalization of color discrepancy for more than two colors we count
the difference between c-items and non-c-items for all colors c and segments. It
is easy to see that this is a lower bound as well. Formally, let sc,i = 1 if the i-th
item from the input sequence has color c, and sc,i = −1 otherwise. We define

LB2 = max
c∈C

max
i,j

j∑

�=i

sc,� .

For Black and White Bin Packing, equivalently LB2 = maxi,j |∑j
�=i s�|, where

si = 1 if the i-th item is white, and si = −1 otherwise; the absolute value
replaces the maximization over colors.

In Black and White Bin Packing, when all the items are of size zero, all Any
Fit algorithms create a packing into the optimal number of bins [1]. For more
than two colors this is not true and in fact no deterministic online algorithm can
have a competitive ratio below 1.5. However, in the restricted offline setting a
packing into LB2 bins is still always possible, even though this fact is not obvi-
ous. This shows that the color discrepancy fully characterizes the combinatorial
aspect of the color restriction in Colored Bin Packing.
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Theorem 1. Let all items have size equal to zero. Then a packing into LB2 bins
is possible in the restricted offline setting, i.e., items can be packed into LB2 bins
without reordering.

3 Algorithms for Zero-Size Items

3.1 Lower Bound on Competitiveness of Any Online Algorithm

Theorem 2. For zero-size items of at least three colors, there is no deterministic
online algorithm with an asymptotic competitive ratio less than 1.5. Precisely,
for each n > 1 we can force any deterministic online algorithm to use at least
�1.5n� bins using three colors, while the optimal number of bins is n.

Proof. We show that if an algorithm uses less than �1.5n� bins, the adversary
can send some items and force the algorithm to increase the number of black bins
or to use at least �1.5n� bins, while the maximal discrepancy stays n. Applying
Theorem 1 we know that OPT = n, but the algorithm is forced to open �1.5n�
bins using finitely many items as the number of black bins is increasing. More-
over, the adversary uses only three colors throughout the whole proof, denoted
by black, white and red and abbreviated by b, w and r in formulas.

We introduce the current discrepancy of a color c which basically tells us how
many c-items have come recently and thus how many c-items may arrive without
increasing the overall discrepancy. Formally, we define the current discrepancy
after packing the k-th item as CDc,k = maxi≤k+1

∑k
�=i sc,�, i.e., the discrepancy

on an interval which ends with the last packed item (the k-th). Note that CDc,k

is at least zero as we can set i = k + 1. We omit the k index in CDc,k when it is
obvious from the context.

Initially the adversary sends n black items, then he continues by phases and
ends the process whenever the algorithm uses �1.5n� bins at the end of a phase.
When a phase starts, there are less than �1.5n� black bins and possibly some
other white or red bins. We also guarantee CDw = 0, CDr = 0, and CDb ≤ n.
Let Nb be the number of black bins when a phase starts. In each phase the
adversary forces the algorithm to use �1.5n� bins or to have more than Nb black
bins, while CDw = 0, CDr = 0, and CDb ≤ n at the end of each phase in which
Nb increases.

We now present how a phase works. Let new items be items from the current
phase and old items be items from previous phases. The adversary begins the
phase by sending n new items of colors alternating between white and red,
starting by white, so he sends �n/2� white items and 	n/2
 red items. After
these new items, the current discrepancy is one either for red if n is even, or for
white if n is odd, and it is zero for the other colors.

If some new item is not put on an old black item, the adversary sends n
black items. Since the new items are packed into less than n black bins (more
precisely, black at the beginning of the phase), the number of black bins increases.
Moreover, CDw = 0, CDr = 0, and CDb = n, hence the adversary finishes the
phase and continues with the next phase if there are less than �1.5n� bins.
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Otherwise all new red and white items are put on old black items. If n is
even, CDw = 0 and the adversary sends additional n white items. After that
there are at least 1.5n white bins, so the adversary reaches his goal.

If n is odd, CDw = 1 and the adversary can send only n − 1 white items
forcing �1.5n� − 1 white bins. This suffices to prove the result in the asymptotic
sense, but for the precise lower bound of �1.5n� for an odd n we need a somewhat
more complicated construction.

Therefore if all new red and white items are put on old black items and n is
odd, the adversary sends a black item e. If e does not go on a new white item, he
sends n white items forcing �n/2� + n white bins and it is done. Otherwise the
black item e is put on a new white item. White and red have 	n/2
 new items
on the top of bins, CDw = 0, and CDr = 0. The adversary sends another black
item f . Since red and white are equivalent colors (considering only new items),
w.l.o.g. f goes into a red bin or into newly opened bin.

Next he sends a white item g and a red item h. After packing g there are
�n/2� bins with a new white item on the top and at least one bin with a new
black item on the top. Moreover, after packing the red item h we have CDb = 0
and CDw = 0. So if h is not put on a new white item (i.e., it is put into a
black bin, a new bin or on an old white item), the adversary sends n white items
and the algorithm must use �1.5n� bins. Otherwise h is packed on a new white
item and the adversary sends n black items. The number of black bins increases,
because the adversary sent n + 2 new black items and at most n + 1 new non-
black items were put into a black bin (at most n items at the beginning of the
phase plus the item g). Since CDw = 0, CDr = 0, and CDb = n, the adversary
continues with the next phase. ��
The lower bound has additional properties that we use later in our lower bound
for items of arbitrary size. Most importantly, we have at least �1.5 · OPT� of
c-bins at the end (and possibly some additional bins of other colors).

Lemma 1. After packing the instance from Theorem2 by an online algorithm
there is a color c for which we have �1.5 · OPT� of c-bins and CDc = OPT,
while CDc′ = 0 for all other colors c′ �= c. Moreover, in each restricted offline
optimal packing of the instance all the bins have a c-item on the top.

Proof. Let n = OPT as in the previous proof. The adversary stops sending items
when he finishes the last phase. In the last phase either the number of black bins
increases to �1.5n�, or the adversary forces �1.5n� white or red bins by sending
n white or red items. In the former case the requirements of the lemma are
satisfied, because the proof guarantees CDw = 0 and CDr = 0 at the end of each
phase in which the number of black bins increases. Moreover CDb = n, since n
black items are sent just before the end of such phase. In the latter case, the last
n white items cause CDb = 0, CDr = 0, and CDw = n; the case of n red items
is symmetric.

Since an optimal packing uses n bins and the last n items are of the same
color (in each case of the construction), they must go into different bins. Hence
each bin of a restricted offline optimal packing has a c-item on the top. ��
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3.2 Optimal Algorithm for Zero-Size Items

The overall problem of FF, BF and WF is that they pack items regardless of the
colors of bins. We address the problem by balancing the colors of top items in
bins – we mostly put an incoming c-item into a bin of the most frequent other
color. When we have more choices of bins where to put an item we use First Fit.
We call this algorithm Balancing Any Fit (BAF).

We define BAF for items of size zero and show that it opens at most �1.5LB2 �
bins which is optimal in the worst case by Theorem2. Then we combine BAF
with the algorithm Pseudo by Balogh et al. [1] for items of arbitrary size and
prove that the resulting algorithm is absolutely 3.5-competitive.

After packing the k-th item from the sequence, let Dk be the maximal dis-
crepancy so far, i.e., the discrepancy on an interval before the (k + 1)-st item,
and let Nc,k be the number of c-bins after packing the k-th item. As in the proof
of Theorem 2, we define the current discrepancy as CDc,k = maxi≤k+1

∑k
�=i sc,�,

i.e., the discrepancy on an interval which ends with the last packed item (the
k-th). Note that CDc,k ≤ Dk and that CDc,k is at least zero as we can set
i = k + 1. The current discrepancy basically tells us how many c-items have
come recently and thus how many c-items may arrive without increasing the
overall discrepancy.

Let αc,k = Nc,k −�Dk/2� be the difference between the number of c-bins and
the half of the maximal discrepancy so far. Observe that �Dk/2� is the number
of bins which BAF may use in addition to OPT bins. We omit the index k in
Dk, Nc,k, CDc,k and αc,k when it is obvious from the context.

While processing the items, if D is the maximal discrepancy so far, the adver-
sary can send D − CDc of c-items without increasing the maximal discrepancy,
while forcing the algorithm to use Nc+D−CDc bins. Hence, to end with at most
�1.5D� bins we try to keep Nc − CDc ≤ �D/2� for all colors c. For simplicity,
we use an equivalent inequality of αc = Nc − �D/2� ≤ CDc. If we can keep the
inequality valid and it occurs that there is a color c with Nc > �1.5D�, we get
CDc ≥ Nc −�D/2� > �1.5D�− �D/2� = D which contradicts CDc ≤ D. Let the
main invariant for a color c be

αc = Nc −
⌈

D

2

⌉
≤ CDc. (1)

As CDc ≥ 0, keeping the invariant is easy for all colors with at most �D/2�
bins. Also when there is only one color c with Nc > �D/2�, we just put all
non-c-items into c-bins. Therefore, if a non-c-item comes, the number of c-bins
Nc decreases and the current discrepancy CDc decreases by at most one. (CDc

stays the same when it is zero.) Since both increase with an incoming c-item, we
are keeping our main invariant (1) for the color c.

Moreover, there are at most two colors with strictly more than �D/2� bins,
given that we have at most �1.5D� open bins. Thus we only have to deal with
two colors having Nc > �D/2�. We state the algorithm Balancing Any Fit for
items of size zero.
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Balancing Any Fit (BAF):

1. For an incoming c-item, if there are no bins or c-bins only, open a
new bin and put the item into it.

2. Otherwise, if there is at most one color with the number of bins
strictly more than �D/2�, put an incoming c-item into a bin of color
c′ = arg maxc′′ �=cNc′′ . If more colors have the same maximal number
of bins, choose color c′ arbitrarily among them, e.g., by First Fit.
Among c′-bins, choose again arbitrarily.

3. Suppose that there are two colors b and w such that Nb > �D/2�
and Nw > �D/2�. If c = w, put the item into a bin of color b. If
c = b, put the item into a bin of color w. Otherwise c �∈ {b,w}; if
Nb −�D/2� < CDb, put the item into a bin of color w, otherwise into
a bin of color b.

As we discussed, keeping the main invariant (1) is easy in the first and the
second case of the algorithm. Therefore we can conclude the following lemma.

Lemma 2. Suppose that the main invariant holds for all colors before packing
the t-th item and that there is at most one color c with Nc,t−1 > �Dt−1/2� before
the t-th item, i.e., the t-th item is packed using the first or the second case of the
algorithm. Then the main invariant holds for all colors also after packing the t-th
item.

Most of the proof of 1.5-competitiveness of BAF thus deals with two colors
having more than �D/2� bins. W.l.o.g. let these two colors be black and white
in the following and let us abbreviate them by b and w.

In the third case of the algorithm we have to choose either black or white
bin for items of other colors than black and white, but the current discrepancy
decreases for both black and white, while the number of bins stays the same for
the color which we do not choose. So if αb = CDb and αw = CDw, the adversary
can force the algorithm to open more than �1.5D� bins.

Therefore we need to prove that in the third case, i.e., when Nb > �D/2�
and Nw > �D/2�, at least one of inequalities αb ≤ CDb and αw ≤ CDw is strict.
This motivates the following secondary invariant:

2αb + 2αw ≤ CDb + CDw + 1 . (2)

If the secondary invariant holds, it is not hard to see that in the third case of the
algorithm the choice of the bin maintains the main invariant. The tricky part of
the proof is to prove the base case of the inductive proof of the secondary invariant.
We prove that it holds already at the moment when b and w become the two
strictly most frequent colors on top of the bins, i.e., Nb > Nc and Nw > Nc for
all other colors c. After that, maintaining both invariants is relatively easy.

Theorem 3. Balancing Any Fit is 1.5-competitive for items of size zero and an
arbitrary number of colors. Precisely, it uses at most �1.5 · OPT� bins.



44 M. Böhm et al.

4 Algorithms for Items of Arbitrary Size

4.1 Lower Bound on Competitiveness of Any Online Algorithm

We use the construction by Dósa and Epstein [7] proving the lower bound 2 for
two colors to get a lower bound 2.5 using three colors. We combine it with the
hard instance that shows the lower bound 1.5 for zero-size items.

Theorem 4. For items of at least three colors, there is no deterministic online
algorithm with an asymptotic competitive ratio less than 2.5.

Proof. Throughout the whole proof the adversary uses only three colors denoted
by black, white and red and abbreviated by b, w and r in formulas. Let n > 1 be
a large integer. The adversary starts with the hard instance for zero-size items
from the proof of Theorem 2 with the optimum equal to n. By Lemma 1 there
are at least �1.5n� bins of the same color, w.l.o.g. white. Let W be the set of
bins that are white after the first part of the instance (|W | ≥ �1.5n�). We also
know that CDw ≤ n, CDb = 0, and CDr = 0.

The second part of the instance is a slightly simplified construction by Dósa
and Epstein [7]. Their idea goes as follows: The adversary sends the instance in
phases, each starting with white and black small items. If the black item is put
into an already opened bin, we send a huge white item that can be only put on
said small black item. Therefore the algorithm has to put the huge white item
in a new bin, but an optimal offline algorithm puts the small black item into a
new bin and the huge white item on it. Otherwise, if the small black item is put
into a new bin, the phase is finished: The online algorithm opened a bin in the
phase, while an optimal offline algorithm does not need to. This way an online
algorithm is forced to behave oppositely to an optimal offline algorithm.

We formalize this idea by the following adversarial algorithm. Let ε = 1/(6n)
and δi = 1/(5i · 6n). The adversary uses the items of the following types:

– regular white items of size ε,
– regular black items of size δi for some i ≥ 1,
– special black items of size 3δi for some i ≥ 1,
– huge white items of size 1 − 2δi for some i ≥ 1.

Let i be the index of the current phase and let j be the number of huge white
items in the instance so far. The adversarial algorithm is as follows:

1. Let i = 0 and j = 0.
2. If j = n or if i = �2.5n�, then stop.
3. Let i = i + 1. Send

(
white

ε , black
δi

)
, i.e., a group consisting of a regular white

item and a regular black item.
4. If the regular black item goes to a new bin or to a bin with level zero, go to

the step 2 (continue with the next phase).
5. Let j = j + 1. Send

(
black
3δi

, white
1−2δi

, black
δi

)
. Then go to the step 2. ��
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4.2 3.5-Competitive Algorithm

We now show that there is a constant competitive online algorithm even for
items of sizes between 0 and 1. We combine algorithms Pseudo from [1] and our
algorithm BAF that is 1.5-competitive for zero-size items. The algorithm Pseudo
uses pseudo bins which are bins of unbounded capacity.

Pseudo-BAF:

1. First pack an incoming item into a pseudo bin using the algorithm
BAF (treat the item as a zero-size item).

2. In each pseudo bin, items are packed into unit capacity bins using
Next Fit.

Theorem 5. The algorithm Pseudo-BAF for Colored Bin Packing is absolutely
3.5-competitive. In the parametric case when items have size at most 1/d, for
a real d ≥ 2, it uses at most �(1.5+d/(d−1))OPT � bins. Moreover, the analysis
is asymptotically tight.

Proof. In the general case for items between 0 and 1 we know that two consec-
utive bins in one pseudo bin have total size strictly more than one, since no two
consecutive items of the same color are in a pseudo bin. In each pseudo bin we
match each bin with an odd index with the following bin with an even index,
therefore we match all bins except at most one in each pseudo bin. Moreover,
the total size of a pair of matched bins is more than one. Therefore the number
of matched bins is strictly less than 2 ·LB1 ≤ 2 ·OPT , i.e., at most 2 ·OPT − 1.
The number of not matched bins is at most the number of pseudo bins cre-
ated by the algorithm BAF which uses at most �1.5 · LB2 � ≤ �1.5 · OPT� ≤
1.5 ·OPT +0.5 bins. Summing both bounds, the algorithm Pseudo-BAF creates
at most 3.5 · OPT bins.

For the parametric case, inside each pseudo bin all real bins except the last
one have level strictly more than (d − 1)/d, so their number is strictly less than
d/(d − 1) · OPT . The number of pseudo bins is still bounded by �1.5 · OPT�,
thus the algorithm Pseudo opens at most �(1.5 + d/(d − 1))OPT� bins. ��

5 Black and White Bin Packing

For sequences with only two colors, we improve the upper bound on the absolute
competitive ratio of Any Fit algorithms from 5 to 3. Then we show that Worst Fit
performs even better for items with size of at most 1/d (for d ≥ 2) as it is (1 +
d/(d − 1))-competitive in this case. Both bounds are tight by the results of Balogh
et al. [1] (more precisely, the bound for WF is tight only for an integer d ≥ 2).

Theorem 6. Any algorithm in the Any Fit family is absolutely 3-competitive
for Black and White Bin Packing.

Theorem 7. Suppose that all items in the input sequence have sizes of at most
1/d, for a real d ≥ 2. Then Worst Fit is absolutely (1 + d/(d − 1))-competitive
for Black and White Bin Packing.
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Conclusions and Open Problems

The Colored Bin Packing for zero-size items is completely solved.
For items of arbitrary size, our online algorithm still leaves a gap between

our lower bound 2.5 and our upper bound of 3.5. The upper bounds are only 0.5
higher than for two colors (Black and White Bin Packing) where a gap between
2 and 3 remains for general items.

Classical algorithms FF, BF and WF, although they maintain a constant
approximation for two colors, start to behave badly when we introduce the third
color. For two colors, we now know their exact behavior. Surprisingly, even the
simple Worst Fit algorithm matches the performance of Pseudo, the online algo-
rithm with the best competitive ratio known so far. It is also an interesting
question whether it holds that Any Fit algorithms cannot be better than 3-
competitive for two colors.
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7. Dósa, G., Epstein, L.: Colorful bin packing. In: Ravi, R., Gørtz, I.L. (eds.) SWAT
2014. LNCS, vol. 8503, pp. 170–181. Springer, Heidelberg (2014)
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9. Dósa, G., Sgall, J.: Optimal analysis of best fit bin packing. In: Esparza, J.,
Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572,
pp. 429–441. Springer, Heidelberg (2014)

10. Johnson, D.: Near-optimal bin packing algorithms, project MAC. Massachusetts
Institute of Technology, Cambridge (1973)

11. Lee, C.C., Lee, D.T.: A simple on-line bin-packing algorithm. J. ACM 32, 562–572
(1985)

12. Seiden, S.S.: On the online bin packing problem. J. ACM 49, 640–671 (2002)
13. Ullman, J.: The performance of a memory allocation algorithm. Technical report

100 (1971)



Improved Bound for Online
Square-into-Square Packing

Brian Brubach(B)

Department of Computer Science, University of Maryland,
College Park, MD, USA
bbrubach@cs.umd.edu

Abstract. We show a new algorithm and improved bound for the online
square-into-square packing problem using a hybrid shelf-packing app-
roach. This 2-dimensional packing problem involves packing an online
sequence of squares into a unit square container without any two squares
overlapping. We seek the largest area α such that any set of squares with
total area at most α can be packed. We show an algorithm that packs
any online sequence of squares with total area α ≤ 2/5, improving upon
recent results of 11/32 [3] and 3/8 [8]. Our approach allows all squares
smaller than a chosen maximum height h to be packed into the same
fixed height shelf. We combine this with the introduction of variable
height shelves for squares of height larger than h. Some of these tech-
niques can be extended to the more general problems of rectangle packing
with rotation and bin packing.

Keywords: Packing · Online problems · Packing squares · Packing
rectangles

1 Introduction

In packing problems, we wish to place a set of objects into a container such
that no two objects overlap. These problems have been studied extensively and
have numerous applications. However, even common one-dimensional versions of
packing problems, such as the Knapsack problem, are NP-hard. For such difficult
problems, it is often important to know whether it is even feasible to pack a given
set into a particular container. In the two-dimensional case, it is worth noting
that merely checking whether a given set of squares can be packed into a unit
square was shown to be NP-hard by Leung et al. [4].

To address this fundamental feasibility question, the square-into-square pack-
ing problem asks, “What is the largest area α such that any set of squares with
total area α can be packed into a unit square without overlapping?” It is trivial
to show that an upper bound is α ≤ 1/2. Two squares of height 1/2 + ε cannot
be packed into a unit square container. In addition, Moon and Moser [1] showed
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in 1967 that the bound of 1/2 is tight in the offline case. Squares can be sorted
in decreasing order and packed left-to-right into horizontal “shelves” starting
along the bottom of the container. The height of each shelf is set by the largest
object in the shelf and when a shelf fills, a new one is opened directly above it.

In the online version of the problem, we have no knowledge of the full set of
squares to be packed. Squares are received one at a time and each must be packed
before seeing the next square. Once a square is packed, it cannot be moved.
Thus, the successful offline approach cannot be used as it requires sorting the
set. Although various techniques have been employed to achieve lower bounds
for the online case, the most recent work revisits the idea of shelves in a novel
way. The current best lower bound for the online version is α ≥ 11/32 by Fekete
and Hoffmann [3] in 2013. They took a dynamic, multi-directional shelf-packing
approach that allocates perpendicular shelves within other larger shelves.

1.1 Related Work

Offline Square Packing. Early related work involved packing a set of objects
into the smallest possible rectangle container. Moser [5] posed this question in
1966: “What is the smallest number A such that any family of objects with total
area at most 1 can be packed into a rectangle of area A?” Since then, there have
been many results for the offline packing of squares into rectangle containers.

In 1967, Moon and Moser [1] showed that any set of squares with total area 1
can be packed into a square of height

√
2. This established A ≤ 2 or in the terms

of our problem, α ≥ 1/2. This result was followed by several improvements on
the value of A using rectangular containers. The current best upper bound is
1.3999 by Hougardy [6] in 2011.

Online Square Packing. In 1997, Januszewski and Lassak [7] considered the
online variant in many dimensions. For two-dimensional square-into-square pack-
ing, their work showed a bound of α ≥ 5/16 by recursively dividing a unit square
container into rectangles of aspect ratio

√
2. In 2008, Han et al. [2] used a similar

approach to improve the lower bound to 1/3. Januszewski and Lassak [7] also
considered the general problem of packing d-dimensional cubes into a unit cube
and for for d ≥ 5, showed a tight bound of 2

(
1
2

)d. For d = 3 or 4, they showed
cubes of total volume 3/2(1/2)d could be packed.

Fekete and Hoffmann [3] provided a new approach in 2013 which uses multi-
directional shelves (horizontal and vertical) that are allocated dynamically within
other larger shelves. Using this technique, they were able to improve the lower
bound further to 11/32. More recently, the author of this paper improved the
bound to 3/8 in an unpublished paper [8]. That paper used a multi-directional
shelf approach similar to [3] as well as some new techniques which will be included
in this paper.

1.2 Our Contributions

We show a new lower bound of α ≥ 2/5 for online square-into-square packing,
improving upon the previous results. Our algorithm combines dynamic, multi-
directional fixed height shelves with variable height shelves. Fixed height shelves
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are assigned a height at the moment they are opened. Variable height shelves
are not assigned a height until they are filled, at which point their height is
considered to be the height of the tallest square in the shelf.

One of the key challenges in this problem is packing squares of greatly varying
heights. In particular, if squares differ in height by a factor greater than 2, it is
difficult to pack them together without creating a lot of wasted space. However,
our new approach to multi-directional fixed height shelves allows us to pack all
squares with height at most h (in our application h = 1/6) together into the
same fixed height shelves of height h with very little expense of wasted space.
Similarly, we show how to use variable height shelves to pack all squares with
height greater than h together.

We introduce new criteria for determining the dimensions of vertical shelves
which are dynamically allocated within the horizontal shelves. This allows us to
completely avoid the use of buffer regions such as those added to the ends of
shelves in [3] and minimize wasted space. Our use of variable shelves shared by
all larger squares handles many such squares and with fewer special cases. These
results may be of independent interest for other 2-dimensional packing prob-
lems. Our technique for multi-directional shelf packing can be used for rectangles
(if rotation is allowed) as well as squares.

Another interesting future direction for this work would be bin packing prob-
lems. Many algorithms for these problems take a natural approach of segregating
squares of different sizes into separate bins and maintaining several open bins,
each devoted to a different size class. Combining all or most sizes of squares or
rectangles into the same bin could be useful in versions of this problem with
special restrictions. For instance, there may be a cost associated with switching
back-and-forth between different bins or we may require a parallel algorithm in
which multiple bins are packed simultaneously.

Finally, we note that our ratio of lower to upper bounds
(

2/5
1/2

)
is the first

2-dimensional result which is tighter than the bounds shown in [7] for the 3 and
4-dimensional versions of this problem. This combined with the aforementioned
tight results for dimension at least 5, suggests that new improvements may be
possible in the 3 and 4-dimensional cases as well.

1.3 Outline

In Sect. 2, we discuss preliminaries including terminology and notation. In Sect. 3,
we present our algorithm for the online packing of squares into a unit square
container. In Sect. 4, we analyze our algorithm and show that it successfully
packs any online series of squares with total area at most 2/5.

2 Preliminaries

2.1 Terminology

We define a shelf S as a subrectangle in the container with height h and length
�. For variable height shelves, h is equal to the height of the largest square in the
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shelf. For fixed height shelves, the height is determined in advance along with a
packing ratio r, 0 < r < 1. The packing ratio is the ratio of the smallest possible
height to the largest possible height of squares that can be packed into S. Any
square packed into fixed shelf S must have height k, h ≥ k > hr.

When packing a shelf S, squares are added side-by-side to S. In our algorithm,
we also pack small vertical fixed shelves into larger horizontal fixed shelves.
These vertical shelves are also packed side-by-side with squares and other vertical
shelves as seen in Fig. 1.

Shelf Packing

hr

h

Fig. 1. Illustration of shelf packing with r = 1/2 for the horizontal shelf. Vertical
shelves are designated with a light gray background and have different packing ratios.

In addition, shelves may be considered open or closed. A shelf S is initially
considered open. As squares are added to S, we may receive a square Q with
height hQ, h ≥ hQ > hr, such that packing Q into S would exceed the length
of S. At this point, we say that S is closed. The new square Q is then packed
into some other shelf which is open. When analyzing shelves, we refer to the
used length lu of a shelf to describe the length of that shelf which is occupied by
squares or vertical shelves.

In the analysis, we will assign fractions of the input area to regions or shelves
within the container. Typically, the area assigned to a region represents squares
which have been packed into that region. However, area assigned to a region may
also come from a square packed into some other region subject to the following
commonsense rule: A single square may have parts of its area assigned to different
regions as long as the sum of those parts is at most the area of the square itself.

We use the term density to describe the ratio of the assigned area of a region
to the total area of that region. In this paper, we will often count the total area
packed into the container in the following way. Let there be a region R with
available area A. We show that most of R has been assigned area to a density
of 1/2 with the exception of some small portion of wasted space with area at
most W and a density of 0. We then calculate the total area assigned to R as
A/2 − W/2. We call this W/2 value the waste.
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2.2 Size Classes of Squares

We divide possible input squares into four classes based on height:

– Large: height > 1
3 (also < 2/3 due to our input having area at most 2/5)

– Medium: height ≤ 1
3 and > 1

6
– Small: height ≤ 1

6 and > 1
12

– Very Small: height ≤ 1
12

We also refer to small squares as class c0 and subdivide the very small squares
into subclasses ci, i ≥ 1. Squares in ci are packed into shelves with max height hi

and packing ratio ri. They have height ki, hi ≥ ki > hiri. We use the notation
cj+ to refer to all ci, i ≥ j.

In our algorithm, we assign ratios as follows: r0 = 0.5, r1 = 0.71, r2 = 0.65,
and r3+ = 0.58. To account for all small and very small squares with height ≤ 1

6 ,
we let h0 = 1

6 and for all i ≥ 1, we set hi = hi−1ri−1. In Sect. 4.2, we will show
that these ratios ensure closed vertical shelves for very small squares will have a
density greater than 0.5, which is the packing ratio for small squares.

3 Algorithm

For each square, we pack it according to a subroutine based on its size. Very
small squares are a special case. They are packed based on their subclass ci,
i ≥ 1. For each subclass, we maintain exactly one open vertical shelf at any
given time. When we receive a very small square, we attempt to add it to the
appropriate vertical shelf for its height class. If this new square does not fit, we
close that shelf and open a new one. The new vertical shelf itself is packed into
the container as if it is a small square. We will show in the analysis that these
new vertical shelves can be treated the same as small squares. As such, we only
discuss large, medium, and small squares in the description of our algorithm
(Fig. 2).

Small: We first alternate packing small squares from left-to-right into the top
and bottom shelves of the initial packing region. Each time, we choose the shelf
with the shortest used length. Eventually, these shelves will fill up. The first
square we receive which doesn’t fit into these shelves is packed into shelf M0 in
the main packing region. The second such square is packed into M1. This can
be seen in part (B) of Fig. 2.

After those first two small squares have been packed into the main region,
all future small squares are packed left-to-right into the main region according
to the following rule. We start packing in the shelf M1 up to threshold T1. Let
Mi be the current shelf and Tj be the current threshold. When we receive a
small square Q that would cause the used length of Mi to exceed threshold Tj ,
we pack Q into the shelf M(i+1) mod 4 and that shelf becomes the current shelf.
Each time we return to M0 we increment the threshold to Tj+1. Each threshold
Tj is at a distance of j/6 from the left side of the container.
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(A)
T1 T2 T3 T4 T5

M0

M1

M2

M3

(B)
T1 T2 T3 T4 T5

M0

M1

M2

M3

Initial
Packing
Region

Main
Packing
Region

(C)
T1 T2 T3 T4 T5

M0

M1

M2

M3

(D)
T1 T2 T3 T4 T5

M0

M1

M2

M3

Initial
Packing
Region

Main
Packing
Region

Fig. 2. Illustration of packing algorithm. The light gray rectangles represent vertical
shelves for very small squares packed into the shelves for small squares. The small shelves
in the main region are labeled M0 through M3 with thresholds labelled T1 through T5.
(A) shows a large square in the upper right corner, a medium square in the lower right,
and a set of small and very small squares in the lower left. (B) shows the first two “small”
squares added to the main region on the left as well as a medium square added to the
variable shelf on the right. (C) and (D) illustrate the continuation of packing into the
main region.

Medium: Medium squares are first packed from right-to-left into the initial
region. When we receive medium squares which don’t fit into this region, we
pack them into main packing region.

In the main region, medium squares will be packed together with large
squares in vertical variable shelves from top-to-bottom, starting in the upper
right corner. Each time we close one of these shelves, the new one is opened imme-
diately to the left of the previous shelf. We continue adding shelves from right-
to-left until the remainder of the input is small enough that no more medium or
large squares can be received.
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S S

Q
hr

h

hr

Fig. 3. Illustration of Lemma 1 and Corollary 2 for the case when r = 1/2. The upper
portion of the square Q is assigned to S, while the lower portion is assigned to S′.

Large: Except in one special case, large squares are packed together with
medium squares in the main region as described above. The special case is when
we receive a third large square (there can be at most three since the input is at
most 2/5). In this case, the third large square is packed into the initial region as
if it is a medium square.

4 Analysis

We will show that any input which cannot be packed by our algorithm must have
total area greater than 2/5. In Sect. 4.1, we cover basic shelf packing and how
we assign area to fixed shelves. In Sect. 4.2, we focus on vertical shelves, showing
why they can be treated as small squares (given a sacrifice of 0.235/12 waste
due to maintaining one open vertical shelf for each size class). In Sect. 4.3, we
bound the waste in the initial region under different circumstances. In Sect. 4.4,
we bound the density of variable shelves for medium/large squares and the waste
due to small shelves in the main region. In Sect. 4.5, we show that α ≥ 2/5 for
the online square-into-square packing problem.

4.1 Shelf Packing

In our analysis, it is important to determine the area assigned to open and
closed shelves. The foundation for many of our lemmas is a generalization of a
lemma due to Moon and Moser [1]. The results in this section and Sect. 4.2 can
be extended to the setting of rectangles with rotation at the expense of some
additional wasted space. We show this in the appendix.

Lemma 1. Let S be a shelf with height h, length � and ratio r, 0 < r < 1, that
is packed with a set P of squares with height ≤ h and > hr. Let Q be the first
square with height hQ, h ≥ hQ > hr, that does not fit into S. The total area of all
the squares packed into S plus the area of Q is greater than �hr − (hr)2 + hQhr.

Proof. See Appendix. ��
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Corollary 2. We can assign an area of �hr − (hr)2 to every closed shelf S.

Proof. See Appendix. ��

4.2 Small and Very Small Shelves

In this section, we show that vertical shelves for very small squares can be packed
into small shelves as if they are small squares. Formally, we extend Lemma 1
and Corollary 2 to small shelves containing closed vertical shelves and show that
we can bound the waste due to open vertical shelves. Refer to Sect. 2.2 for an
overview of how we subdivide the small and very small classes.

For Lemma 1, the used length of a shelf must have density equal to the pack-
ing ratio r. Since r0 = 1

2 , any used section of a small shelf with only c0 squares
satisfies this trivially. We need vertical shelves to supply the same guarantee.
Note that vertical shelves within small shelves have a length equal to h0 (the
height of small shelves), which is at least twice the height of any very small shelf.

Lemma 3. Let S be a shelf with height h, length � and packing ratio r, 0 < r <
1. If � ≥ 2h, we can choose a value for r, such that the area assigned to S is at
least �h

2 when S is closed.

Proof. See Appendix. ��
Summary of Heights, Ratios, and Packing Densities:

Height Ratio Packing Density

h0 = 1/6 r0 = 0.5 > 0.5

h1 ≈ 0.08333 r1 = 0.71 0.712 > 0.5

h2 ≈ 0.05917 r2 = 0.65 r − hr2

l
= 0.65 − 0.05917∗0.652

0.25
> 0.5

h3 ≈ 0.03846 r3+ = 0.58 r − hr2

l
> 0.58 − 0.03846∗0.582

0.25
> 0.5

For simplicity of analysis, we’ve assigned a ratio of 0.58 for all c3+. We can
do this because the packing density only increases with shorter heights as long as
the ratio and length remain the same. In short, for i ≥ 3, we have hi = hi−1ri−1,
ri = 0.58, and density greater than 0.5.

Lemma 4. The waste due to open vertical shelves in the entire container is at
most 0.235

12 and subtracting this number from the sum of all assigned areas allows
us to consider all vertical shelves closed.

Proof. See Appendix. ��
Lemma 5. Lemma 1 and Corollary 2 can be extended to small horizontal shelves
with vertical shelves packed into them at the expense of 0.235

12 waste subtracted
from the total area assigned to the whole container.

Proof. See Appendix. ��
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4.3 Waste in the Initial Packing Region

Our algorithm packs this region from left-to-right with small and very small
squares and right-to-left with medium squares and possibly one large square.
In this section, we define the empty length E of the initial packing region as
the distance between the rightmost small or very small square and the leftmost
medium or large square. In other words, the distance between these two groups.

While used portions of these shelves will have a density of 1/2, there may be
waste due to unevenly packed small shelves or the empty length. We start by
analyzing the waste due to unevenly packing the two small shelves in alternating
fashion. Then, we address the waste due to the empty length. Finally, we show
that this waste is reduced once we pack small squares into the main region.

Lemma 6. The waste due to unevenly packed small shelves is at most 1/72.

Proof. See Appendix. ��
Lemma 7. The waste due to empty length E is at most E/6.

Proof. See Appendix. ��
Lemma 8. After receiving two small squares which do not fit in the initial
region, the waste in the initial region is at most 1/72.

Proof. See Appendix. ��

4.4 The Main Packing Region

In this section, we first consider the section B in the main region which is
occupied by variable shelves for medium and large squares. Then, we consider
the area C occupied by fixed shelves for small and very small squares.

Lemma 9. Let B be the rectangular section in the main packing region contain-
ing all closed variable height shelves. Let B also include the open variable shelf if
that shelf contains one large square or at least two medium squares. The density
of B is at least 1/2.

Proof. See Appendix. ��
Lemma 10. Let C be the rectangular section in the main packing region con-
taining all small squares. If the small shelf with the longest used length is one of
the top two shelves (M2 or M3) the waste in C is at most 5/144. Otherwise, the
waste in C is at most 9/144. The remaining portion of C has a density of 1/2.

Proof. See Appendix. ��
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Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Fig. 4. Illustrations of each case in Theorem 11. Light gray sections have been assigned
enough area to have a density of 1/2. Dark gray squares represent medium squares in
Cases 2 and 5 and large squares in Case 6. The white sections are wasted space.

4.5 Improved Bound for Online Square-into-Square Packing

Theorem 11. Any set of squares with total area at most 2/5, which is received
in an online fashion, can be packed into a unit square container.

Proof. Assume for contradiction that the total area of the input is at most 2/5
and some square Q does not fit. We divide the proof into cases based on which
size classes of squares have been packed into the main region. As before, we use
the term small to refer to both small and very small squares.

In cases 1 and 2, the main region has small squares as well as medium and/or
large squares. In case 3, it has only small squares. In cases 4 and 5, it has medium
squares and may have large squares. In case 6, it has only large squares. We will
show that each case can only occur if the input is greater than 2/5.

Case 1: The main region contains small squares as well as medium and/or
large squares and the most recent variable height shelf contains at least one
large square or at least two medium squares.

Here, we consider the intersection of the most recent variable shelf and the
fixed height shelf with the longest used length. By Lemmas 9 and 10, the main
region has waste at most 9/144 due only to small shelves. By Lemmas 4 and 8,
the waste in the initial region is at most 0.235/12 + 1/72. Then the total area is

1/2 − 9/144 − 0.235/12 − 1/72 > 2/5

Case 2: The main region contains small squares as well as medium and/or large
squares and the most recent variable height shelf contains exactly one medium
square.

Again, we consider the intersection of the most recent variable shelf and the
fixed height shelf with the longest used length. Let S be the intersecting variable
shelf. By Lemma 9, the area to the right of S has no waste. Note that since S has
exactly one medium square, it must intersect one of the top two small shelves.
Then by Lemma 10, the area to the left of S has waste at most 5/144. We now
consider the waste in S itself. Let M with height hM be the medium square in S.
The waste due to S is (hM · 2/3)/2 − h2

M . As in the previous case, by Lemmas 4
and 8, the waste in the initial region is at most 0.235/12 + 1/72.

1/2 − 5/144 − 0.235/12 − 1/72 − (hM · 2/3)/2 + h2
M > 2/5
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Case 3: There are no medium or large squares in the main region.
As in previous cases, the initial region will account for an area of 1/6 −

0.235/12 − 1/72. In the main region, we can apply Corollary 2 to the bottom
three shelves and Lemma 1 to the topmost shelf. By design each time some
square closes a shelf, there is room for that square in the shelf above it until we
receive some square which would close the top shelf. Since Corollary 2 assigns
an area less than Lemma 1, we can apply it to all four shelves to account for a
total area of 4(�hr − (hr)2) = 4(1 · 1/6 · 1/2 − 1/122) = 1/3 − 1/36.

1/6 − 0.235/12 − 1/72 + 1/3 − 1/36 > 2/5

Case 4: The main region contains at least one medium square, may contain
large squares, and contains no small squares. The final variable shelf contains at
least one large square or at least two medium squares.

In this case, we consider an input which causes the variable shelves to extend
beyond the left edge of the container. By Lemma9, the area occupied by these
variable shelves (which includes the entire main region) has a density of 1/2.
However, unlike previous cases, there may be empty space in the initial region
of at most 1/3 since that is the height of the biggest possible medium square.
By Lemma 7, the waste due to that empty space is at most 1/3 · 1/6 = 1/18. So
the waste in the initial region is at most 0.235/12 + 1/72 + 1/18.

1/2 − 0.235/12 − 1/72 − 1/18 > 2/5

Case 5: The main region contains at least one medium square, may contain
large squares, and contains no small squares. The final variable shelf contains
exactly one medium square.

Again, we consider an input which causes the variable shelves to extend
beyond the left edge of the container. Let S be the open variable shelf containing
a single medium square M with height hM . By Lemma 9, the area to the right of
S has no waste. As before, the waste due to S is (hM ·2/3)/2−h2

M . Since M was
packed into the main region, the empty length in the initial region is at most hM .
Then by Lemma 7, the waste due to that empty space is at most hM ·1/6 = hM/6.
So the waste in the initial region is at most 0.235/12 + 1/72 + hM/6.

1/2 − 0.235/12 − 1/72 − hM/6 − (hM · 2/3)/2 + h2
M > 2/5

Case 6: Three large squares are received before any small or medium squares
are packed into the main region. This is the special case in which we need to
pack a large square into the initial region.

Let Q be the third large square with height hQ. Suppose there isn’t room
in the initial region for Q or some small/medium square received after Q. The
first two large squares represent an area of at least 2/9 and the area of Q is
hQ

2 > 1/9. As in case 3, the initial region can be assigned an area of at least
1/6 minus waste. The empty length can be at most hQ, otherwise Q would fit.

2/9 + hQ
2 + 1/6 − hQ/6 − 0.235/12 − 1/72 > 2/5 ��
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Abstract. We consider the Fault-Tolerant Facility Placement problem
(FTFP ), which is a generalization of the classical Uncapacitated Facility
Location problem (UFL). In the FTFP problem we have a set of clients
C and a set of facilities F . Each facility i ∈ F can be opened many times.
For each opening of facility i we pay fi ≥ 0. Our goal is to connect each
client j ∈ C with rj ≥ 1 open facilities in a way that minimizes the total
cost of open facilities and established connections.

In a series of recent papers FTFP was essentially reduced to Fault-
Tolerant Facility Location problem (FTFL) and then to UFL showing
it could be approximated with ratio 1.575. In this paper we show that
FTFP can actually be approximated even better. We consider approx-
imation ratio as a function of r = minj∈C rj (minimum requirement of
a client). With increasing r the approximation ratio of our algorithm λr

converges to one. Furthermore, for r > 1 the value of λr is less than
1.463 (hardness of approximation of UFL). We also show a lower bound
of 1.278 for the approximability of the FTFL for arbitrary r. Already
for r > 3 we obtain that FTFP can be approximated with ratio 1.275,
showing that under standard complexity theoretic assumptions FTFP
is strictly better approximable than FTFL.

1 Introduction

In the Fault-Tolerant Facility Placement problem, we are given a set F of loca-
tions where facilities may be opened (each i ∈ F costs fi > 0 and can be opened
many times) and a set C of clients. Each j ∈ C has connection requirement
rj > 0. Our goal is to open a subset of facilities (possibly many copies of some
facilities) and connect each client j with rj open facilities, such that the total
cost of connections and opened facilities is as small as possible. In this paper
we consider the metric version of the problem where the connections between
elements of the set C ∪ F satisfy the triangle inequality.

It is easy to see that the classical UFL problem is a special case of FTFP
with all rj = 1. On the other hand, if no facility can be open more than once,
then the problem becomes the Fault-Tolerant Facility Location problem (FTFL),
in which the demands cannot exceed the number of facilities.

B. Rybicki—Research supported by NCN 2012/07/N/ST6/03068 grant.
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Facility location problems are typically APX-hard and there exist constant
factor approximation algorithms assuming metric connection costs. Shmoys,
Tardos and Aardal [6] gave the first constant factor 3.16-approximation algo-
rithm for uncapacitated facility location problem based on LP-rounding. Later-
Chudak and Shmoys [16] obtained a (1+ 2

e )-approximation by marginal-preserving
randomized rounding of facility openings, which has became standard for facil-
ity location problems. The long line of results for UFL includes a primal-dual
algorithm JMS [2], which was then combined with a scaled version of [16] in
a work of Byrka and Aardal [5]. The currently best known ratio of 1.488 was
obtained by Shi Li [1] by further randomizing the algorithm from [5]. The best
known lower bound for UFL is 1.463, see the paper of Guha and Khuller [13].
Many techniques developed for UFL can be directly applied to FTFP which
was shown in [18].

First constant factor approximation algorithm for the closely related FTFL
problem was given by Guha, Meyerson and Munagala [14]. Next Swamy and
Shmoys improved the ratio to 2.076, see [12]. More recently Byrka, Srinivasan
and Swamy [11] improved the ratio to 1.725 using dependent rounding [10] and
laminar clustering. Moreover it is shown in [12] that JMS algorithm can be
adapted to FTFL with uniform requirements of clients.

FTFP was first studied by Xu and Shen [19] and next by Yan and Chrobak
who first obtained a 3.16-approximation algorithm [8], and later improved the
ratio to 1.575 [18].

1.1 Our Contribution

We extend the work of Yan and Chrobak [18] and propose an algorithm with
approximation ratio being a decreasing function of the minimal requirement
r = minj∈C rj . Our solution benefits from requirements of clients being bigger
than one. Instead of considering a client j ∈ C as rj distinct clients with unit
demand we derive benefits from this multiplicity and use Poisson distribution
to estimate the expected number of useful facilities which will be open in a
set of a particular volume. We consider both cases: uniform and non-uniform
requirements of clients, and obtain the following approximation ratios:

r 1 2 3 4 5 6 7 8 9 10

Non-uniform 1.515 1.439 1.338 1.275 1.234 1.207 1.187 1.171 1.159 1.149

Uniform 1.488 1.410 1.329 1.272 1.234 1.207 1.187 1.171 1.159 1.149

We also prove a lower bound of 1.278 on the approximability of Fault-Tolerant
Facility Location (where at most one facility may be opened in each location)
for arbitrarily large r > 1 (the previous lower bound for FTFL is equal to 1.463
[13] and holds only for r = 1).

Observation 1. Lower bound for FTFL, of value 1.278, is bigger than approx-
imation ratio λr for r ≥ 4. Moreover for r ≥ 2 FTFP is easier than UFL.
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Note that λr for r = 4 (in both uniform and non-uniform case) is bounded by
1.275, which is smaller than our lower bound for FTFL.

2 The LP Formulation

Consider the following standard LP relaxation of FTFP .

min
∑

i∈F

∑

j∈C

cijxij +
∑

i∈F

yifi (1)

∑

i∈F

xij ≥ rj ∀j∈C (2)

yi − xij ≥ 0 ∀i∈F,j∈C (3)
xij , yi ≥ 0 ∀i∈F,j∈C (4)

An optimal solution of the above LP is denoted by a pair (x∗, y∗). Using
these variables we express the total facility cost as F ∗ =

∑
i∈F fiy

∗
i and the

connection cost of each client j ∈ C as C∗
j =

∑
i∈F cijx

∗
ij . Summing over all

clients gives the total connection cost C∗ =
∑

j∈C C∗
j of the LP solution. The

cost of (x∗, y∗) denoted by LP ∗ = F ∗ + C∗ is a lower bound on the cost of an
optimal integral solution denoted by OPT .

We say that a solution is complete if for each client j ∈ C and each facility
i ∈ F we have x∗

ij ∈ {0, y∗
i }. Detailed description of a technique called facility

splitting, which yields complete solutions, can be found in [4]. The splitting
algorithm takes as input a solution of the LP and outputs a complete solution
of the same cost to a larger, but equivalent instance of the problem. For clarity
of a presentation, throughout the paper, we simply assume that all fractional
solutions are complete.

Definition 1. The volume of a set F ′ ⊆ F , denoted by vol(F ′) is the sum of
facility openings in this set, i.e., vol(F ′) =

∑
i∈F ′ yi.

One of the problems with input instances is possibly non-polynomial demand
of some clients. In [18] we can find an elegant reduction of such instance to
instances with requirements bounded by |F |. In Sect. 5 we give an algorithm
which generalizes this reduction. Our algorithm also reduces the input instance
to an instance with polynomial demands of clients, but we also care not to reduce
the requirements of clients too much.

3 Algorithm for FTFP

The following algorithm A(γ) is parametrized by a real constant γ ∈ (1, 3).
Our final Algorithm 1 is as follows: run algorithm A(γl) for each choice of

γl = 1+2 · n−l
n , where l = 1, 2, . . . n−1. Select the best of the obtained solutions.

Note that n − 1 is the number of different values of γ, each of them we use as
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Algorithm 1. A(γ)
1: formulate and solve the LP (1)-(4), get an optimal solution (x∗, y∗);
2: scale up facility opening by γ (ȳi = γ · y∗

i ), then recompute values of xij to obtain
a minimum cost solution (x̄, ȳ);

3: compute clustering for all clients;
4: round facility opening variables using dependent rounding;
5: connect each client j with rj closest open facilities;

a parameter of algorithm A(γ). In the computation of approximation ratios we
use n equal 1000, but we will describe our results for a general n.

Scaling facility opening is an idea from [5], it decreases average connection
cost of each client, but increases total cost of opening facilities and multiply
it by γ > 1. In FTFP we can open more than one facility in one location,
so scaling does not cause problems with opening more than one facility in one
place. The version of clustering which we use is very close to the one described in
[16]. To round facility opening variables we use the randomized algorithm from
[10], called dependent rounding. Each step of the algorithm A(γ) is carefully
described in the following sections.

3.1 Scaling

Let Fj denote the set of facilities with a positive flow from a client j ∈ C, i.e.,
facilities i with x∗

ij > 0 in the optimal LP solution.
Let γl > 1. Suppose that all facilities are sorted in an order of non-decreasing

distances from a client j ∈ C. Scaling all y∗ variables by γl divides the set
of facilities Fj into two disjoint subsets (we can assume that opening of each
facility is ε by facility splitting technique): the set of close facilities of a client j,
denoted by FCl

j , such that vol(FCl
j ) = rj ; and the distant facilities, denoted by

FDl
j = Fj \ FCl

j , note that vol(FDl
j ) = rj(γl − 1). Certainly for each i1 ∈ FCl

j

and i2 ∈ FDl
j we have ci1j ≤ ci2j .

By DCl
av(j),DDl

av (j) and Dav(j) we denote the average distances to close,
distant and all facilities in set Fj , respectively. More formally:

DCl
av(j) =

∑
i∈F

Cl
j

cij x̄ij

vol(FCl
j )

, DDl
av (j) =

∑
i∈F

Dl
j

cij x̄ij

vol(FDl
j )

By Dl
max(j) we denote the maximal distance to a facility in FCl

j , and by cl(j) we

denote the average distance to F l
j = FCl

j \F
Cl−1
j for n > l ≥ 1, Fn

j = Fj \F
Cn−1
j

and F 0
j = ∅. (see Fig. 1)

3.2 Clustering

Definition 2. The radius of a set F ′ for a client j, where F ′ ⊆ F and j ∈ C,
is maxi∈F ′ cij. Assume that vol(F ′) ≥ r. By B(j, F ′, r) we denote the subset of
F ′ of volume r which has the smallest radius.
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j F 1
j · · ·

Fn−1
j

Dn−1
max(j)

Fn
j

Fig. 1. Figure shows partition of facilities in set Fj .

Each client j ∈ C initially has a cluster proposition CP (j) = B(j, F, rj) = FC
j ,

whose radius is qj = DC
max(j). In the following algorithm the cluster proposi-

tion of a client j changes, but the radius never increases. The above described

Algorithm 2. Clustering
1: for all j ∈ C do
2: qj := DC

max(j)
3: end for
4: while there is a client with positive requirement do
5: select a client j ∈ C with rj > 0 that minimizes qj and set rj := 0
6: for all j′ ∈ N(j) = {j′′ ∈ C | CP (j) ∩ CP (j′′) �= ∅ ∧ rj′′ > 0} do
7: rj′ := max(0, rj′ − �vol(CP (j) ∩ CP (j′))	)
8: CP (j′) := B(j′, CP (j′) \ CP (j), rj′)
9: end for

10: create C(j) = {j} ∪ N(j) ∪ CP (j) and call j the center of cluster C(j);
11: end while

procedure is a variant of the method described in [16]. It is well known that
output of the procedure has two important properties. First: each facility is
clustered by at most one client. Second: the distance from a client to any of his
cluster centers is not too big.

Lemma 1. Distance from any client j ∈ C to any close facility of j′ ∈ C such
that j ∈ C(j′) is bounded by 3 · DC

max(j).

Proof. Suppose that j′ ∈ C and j ∈ CC(j′) = C(j′) ∩ C. From the fact that j ∈
CC(j′) follows that qj′ ≤ qj , which is equivalent with DC

max(j′) ≤ DC
max(j). The

definition of CP (·) assures that the distance from j (j′) to any facility in CP (j)
(CP (j′)) can be bounded by DC

max(j) (DC
max(j′)). Consider i′ ∈ CP (j)∩CP (j′)

and any i ∈ CP (j′). Distance from j to i is ci′j + ci′j′ + cij′ ≤ DC
max(j) + 2 ·

DC
max(j′) ≤ 3 · DC

max(j). 
�
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3.3 Facility Opening

A randomized procedure deciding whether a particular facility should be open
or not transforms the fractional ȳ into a random integral ŷ. We would like the
procedure to have the following properties, where CF (j) = C(j) ∩ F :

• Marginal distribution: Pr[ŷi = 1] = ȳi

• Sum-preservation:
∑

i∈CF (j) ŷi ∈ {�vol(CF (j)), �vol(CF (j))�}
• Negative correlation: ∀S ⊆ CF (j)∀b ∈ {0, 1}Pr[

∧

i∈S

(ŷi = b)] ≤
∏

i∈S

Pr[ŷi = b].

One method which gives an output with the above properties is the dependent
rounding (DR) from [10]. Each cluster can have many facilities open fractionally.
We first apply DR to each CF (j), where j is the center of a cluster. Then the
remaining fractional facility openings are rounded by DR in an arbitrary order.

4 Analysis

To bound the expected connection cost of an algorithm A(γ), we need to first
analyse the number of facilities which will be opened in a set of a particular
volume. Suppose that facilities are opened independently and that in the limit
case all facilities are opened very little in the fractional solution, then the number
of eventually open facilities from a set has the Poisson distribution. By the
negative correlation this distribution can be used to derive the following lower
bound on the number of useful opened facilities from the considered set.

Observation 2. The expected number of possible connections with set D of
volume Λ = vol(D), when the requirement is k, is h(Λ, k) ≥ ∑k−1

i=1 iPΛ(X =
i)+kPΛ(X ≥ k). Where PΛ(X = i) = Λie−Λ

i! is the probability of opening exactly
i facilities in a set of volume Λ, if opened independently (Poisson distribution).

Lemma 2. Suppose that γ = γk. Consider a client j ∈ C which is not a center
of any cluster. The expected connection cost of client j is at most

E[Cj ] ≤
n−1∑

l=1

cl(j) · ek,l
1 (j)
rj

+
ek
3(j)
rj

· 3Dk
max(j)

where ek,l
1 (j) is expected number of open facilities in set F l

j , in which opening
of each facility is scaled by γk; ek

3(j) is rj decreased by expected number of open
facilities in set Fj, in which opening of each facility is scaled by γk (or zero if
number of open facilities in Fj is bigger than rj).

Proof. The value of ek,l
1 (j) is the expected number of open facilities in the set

F l
j = FCl

j \ F
Cl−1
j , when all fractional openings of facilities are scaled up by

γk. Connection cost of a client j with an open facility in this set is cl(j). The
expected number of connections which j has to establish with close facilities of
his cluster centers is ek

3(j) - his requirement reduced by the number of facilities
opened in Fj . Lemma (1) bounds the distance to close facilities of cluster centers
of j. 
�
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4.1 Factor Revealing LP

Consider running an algorithm A(γl) for γl = 1+2 · n−l
n where l = 1, 2, . . . n−1.

Observe that the following linear program, called FRLP, covers all that execu-
tions. Value of the objective function is an upper bound on the approximation
ratio of the best of the obtained solutions.

max λr (5)

γkf +
n−1∑

l=1

cl · ek,l
1

r
+

ek
3

r
· 3 · ck+1 ≥ λr ∀k<n (6)

n∑

l=1

vol(F l) · cl = c (7)

0 ≤ ci ≤ ci+1 ≤ 1 ∀i<n (8)
f + c = 1 (9)

f, c ≥ 0 (10)

The above LP encodes the cost of solutions obtained in executions of an
algorithm A for different values of the scaling parameter γk for k = 1, 2, . . . n−1.
Adversary has the freedom to choose the distances from client j to groups of
facilities and the relation between values of f and c in the optimal solution, which
have to sum up to one, and (both) be non-negative. We consider all facilities in
the order of a non-decreasing distance from the client j, so the average distances
to consecutive groups of facilities have to be non-decreasing, see constraint (8).
We divide facilities into sets F l

j , for 1 ≤ l ≤ n. In each set F l
j the adversary

may choose the distance from client j to the open facility in F l
j , which is the

worst for our algorithm and equals cl(j). Equality (7) shows that the sum of
average distances, each weighted by the volume of facilities at such distance,
has to sum up to the total connection cost in the optimal solution. The crucial
inequality (6) encodes the expected cost of an algorithm A(γk) and it is used as
an upper bound for the approximation ratio. Client in inequality (6) is a client
with minimum requirement r, ek,l

1 = h(γk · vol(FCl , r)) − h(γk · vol(FCl−1), r) is
expected number of open facilities in set F l and ek

3 = r−h(γk ·r, r). Correctness
of this inequality follows from Lemmas (1), (2) and Dl

max ≤ cl+1. If r = 1 then
instead of Algorithm 1 we use method from [18]. To improve the approximation
ratio from 1.575 to 1.515 we run the algorithm from [18] for a number of values
of the scaling parameter γl = 1 + 2 · n−l

n , where l = 1, 2, . . . n − 1. It can be
analyzed by FRLP. The computed values of λr, for r = 1, 2, . . . 10, are in the
following table (Fig. 2):

r 1 2 3 4 5 6 7 8 9 10

λr 1.515 1.439 1.338 1.275 1.234 1.207 1.187 1.171 1.159 1.149



66 B. Rybicki and J. Byrka

Fig. 2. The profiles of distances in tight instances for Algorithm 1 for FTFP (in a
general, non-uniform case) for 1 ≤ r ≤ 5, extracted from the FRLP solutions. The
x-axis encodes the volume of a set of facilities closest to a client and the y-axis is the
distance to the farthest facility in this set.

4.2 Uniform Requirement

As it was shown in [12] the JMS algorithm can be modified to work with FTFL
with uniform requirements of clients, and the approximation ratio remains the
same. In consequence it also works for FTFP with uniform requirements of
clients. We can add one more constraint 1.11f + 1.78c ≥ λr to the FRLP in
Sect. 4.1 which encodes that we additionally run the (modified) JMS algorithm1.
Such FRLP for r = 1 is a dual of the LP from [1], probabilities of particular
algorithms in Shi Li paper are dual values of constraints in FRLP. As you can
see in the following table, adding the JMS algorithm makes difference only for
small values of r.

r 1 2 3 4 5 6 7 8 9 10

non-uniform 1.515 1.439 1.338 1.275 1.234 1.207 1.187 1.171 1.159 1.149

uniform 1.488 1.410 1.329 1.272 1.234 1.207 1.187 1.171 1.159 1.149

5 Factor λr Is a Decreasing Function of r

Lemma 3. Function f(r) = r−h((1+ε)r,r)
r converges to 0 when r �→ ∞.

1 An algorithm for UFL is called (a,b)-approximation if the cost of returned solution
is upper bounded by a · F ∗ + b · C∗, where F ∗ and C∗ are, respectively, the costs of
establishing connections and opening facilities in an optimal solution.
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Theorem 1. For each choice of ε > 0 there exists r0 such that for each r ≥ r0
inequality λr ≤ 1 + ε holds.

The above theorem easy follows from the following lemmas, because the approx-
imation ratio of Algorithm 1 is always upper bounded by the approximation
ratio of A(γ) for each choice of γ.

Consider an instance I and a client j ∈ C. Lemma (2) implies that the

expected connection cost of j in algorithm A(γ) is E[Cj ] ≤ ∑n
l=1 cl(j) · ek,l

1 (j)
rj

+
ek
3 (j)
rj

·3Dmax(j). Note that the inequality
∑n

l=1 cl(j) · ek,l
1 (j)
rj

≤ C∗
j holds, because

in the solution (x∗, y∗) client j fractionally uses the same facilities, but with
smaller opening values. Therefore, in the expectation he pays not less for con-
nection than in our scaled up solution. Notice that, for a particular choice of
γ = 1 + ε, the value of the expression 3(1 + 1

ε ) is a constant. From [10] we know
that the following inequality holds.

ek
3(j)
rj

· 3Dmax(j) ≤ f(r) · 3(1 +
1
ε
)C∗

j

Observation 3. For γ = 1 + ε the approximation factor for connection cost of
the solution produced by A(γ) depends only on f(r), where r is the minimum
requirement in the considered instance.

Li Yan showed [7] a result similar to the below lemma, but the result is weaker:
he shows that the limit is 1 only for a fixed number of facilities.

Lemma 4. For each ε > 0, γ = 1 + ε, there exists r0 such that for each r ≥ r0,
approximation ratio of an algorithm A(γ) is bounded by 1 + ε.

Proof. Lemma 3 and Observation 3 imply that for each choice of ε there exists
r0 such that for each instance with minimum requirement r ≥ r0 approximation
ratio of A(1 + ε) is bounded by 1 + ε. 
�

5.1 Dealing with Large Requirements rj

Yan and Chrobak proved the following theorem

Theorem 2 (from [18]). Suppose that there is a polynomial-time algorithm A
that, for any instance of FTFP with maximum demand bounded by |F |, com-
putes an integral solution that approximates the fractional optimum of this
instance within factor ρ > 1. Then there is a ρ-approximation algorithm A′

for FTFP .

The main result of this section is an extension of Theorem 2 which exploits
our Theorem 1. Consider an instance I for which the approximation ratio of
Algorithm 1 is almost one, see Theorem 1. As it was mentioned in Sect. 2
we can assume that the optimal solution (x∗, y∗) to the LP (1) - (4) for an
instance I is complete, so for each i ∈ F and j ∈ C we have x∗

ij ∈ {0, y∗
i }.
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From optimality of this solution, we can assume that
∑

i∈F x∗
ij = rj for all

j ∈ C. We split solution (x∗, y∗) into two parts (x∗, y∗) = (x̂, ŷ) + (ẋ, ẏ), where

ŷi = max{�y∗
i − r̄, 0}, x̂ij = max{�x∗

ij − r̄, 0} ∀j ∈ C, i ∈ F

ẏi = y∗
i − ŷi, ẋij = x∗

ij − x̂ij ∀j ∈ C, i ∈ F

where 1 ≤ r̄ ≤ minj∈C rj . Now we will construct two instances İ and Î of
FTFP with the same parameters as I, except requirements. Demand of each
client j is r̂j =

∑
i∈F x̂ij in the instance Î and ṙj =

∑
i∈F ẋij in İ.

Lemma 5. (i) (x̂, ŷ) is a feasible integral solution to instance Î
(ii) (ẋ, ẏ) is a feasible fractional solution to instance İ
(iii) (x̂, ŷ) and (ẋ, ẏ) are optimal solutions to Î and İ
(iv) ∀j∈C (r̄ + 1) · |F | ≥ ṙj ≥ r̄

Proof. (i) For a feasibility of (x̂, ŷ), we need to show that all constraints of
LP (1)–(4) are satisfied. For each j ∈ C we have that r̂j =

∑
i∈F x̂ij , so

(2) holds. Solution (x∗, y∗) is complete, so x∗
ij ∈ {0, y∗

i }. If x∗
ij = 0 then

x̄ij = 0 ≤ ȳi, otherwise x∗
ij = y∗

i > 0 in that case we have that x̂ij = ŷi. In
consequence constraint (3) is satisfied.

(ii) In the case of (ẋ, ẏ) also all inequalities hold. Constraint (2) is satisfied,
because ṙj =

∑
i∈F ẋij . Note that both ẋij and ẏi are non-negative. We

need to show that ẋij ≤ ẏi which is equivalent with y∗
i −max{�y∗

i − r̄, 0} ≥
x∗

ij − max{�x∗
ij − r̄, 0}. If x∗

ij = 0 then we have y∗
i ≥ max{�y∗

i − r̄, 0}
which holds. In the other case we have x∗

ij = y∗
i > 0. With that assumption

we trivially obtain the following equality y∗
i − max{�y∗

i − r̄, 0} = x∗
ij −

max{�x∗
ij − r̄, 0}.

(iii) Suppose that at least one of (x̂, ŷ) and (ẋ, ẏ) is not an optimal solution to
Î and İ, respectively. In that situation we are able to obtain solution to
instance I with a smaller cost than cost(x∗, y∗), which is a contradiction.

(iv) To prove ṙj ≤ (r̄ + 1) · |F | we have to show that the following inequality
holds, where F ′ = {i ∈ F | x∗

ij ≥ r̄ + 1}.

rj −
∑

i∈F ′
(x∗

ij − (r̄ + 1)) ≤ (r̄ + 1)|F | ⇐⇒
∑

i∈F\F ′
x∗

ij ≤ (r̄ + 1)|F \ F ′|

To finish the proof of the lemma we should prove the following inequalities

rj −
∑

i∈F

max{�x∗
ij − r̄, 0} ≥ rj −

∑

i∈F

max{x∗
ij − r̄, 0} ≥ r̄

Let F ′ = {i ∈ F |x∗
ij > r̄}. Using F ′ we can rewrite the above inequality as

rj −∑
i∈F ′(x∗

ij − r̄) ≥ r̄. Consider two cases: |F ′| = 0 and |F ′| ≥ 1. The first
is trivial because rj ≥ r̄ holds. In the second case rj − ∑

i∈F ′(x∗
ij − r̄) ≥

rj + r̄ − ∑
i∈F x∗

ij ≥ r̄, which trivially holds, because rj =
∑

i∈F x∗
ij . 
�
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Corollary 1. For an instance I, with requirement r, for which the approxima-
tion ratio of Algorithm 1 is λr, we can obtain two other instances: integral Î
and fractional İ. Instance İ has polynomial demands and a minimum require-
ment 1 ≤ r̄ ≤ minj∈C rj. The approximation ratio λ and a running time of
Algorithm 1 depends on value of r̄, which can be arbitrarily selected from [1, r].
Sum of the integral solution S and the optimal integral solution for Î, is a feasible
integral solution for I with the approximation ratio λ.

6 Lower Bound for FTFL

We give a reduction from the Set Cover problem. Consider an instance of Set
Cover defined as X = {x1, x2, . . . xn}, and S = {S1, S2, . . . Sm} such that Si ⊆ X
for each i ∈ {1, 2, . . . m}. We would like to find a cover C ⊆ S such that |C| = k
is minimized. In our reduction we assume that we know k (we can run algorithm
for each value of 1 ≤ k ≤ m).

Theorem 3. If for any r > 1 there is a polynomial time algorithm with an
approximation factor smaller than 1.278 for the Fault-Tolerant Facility Location
problem for instances with minimal requirement r, then NP = P .

The main idea of the proof, which you can find in the full version of the paper
[15], is the same as in [13]. We use an algorithm for FTFL to obtain partial
covers for the Set Cover instance (X,S). We show that the partial cover cannot
be too big in each step, because then it would contradict the Dinur and Steuer
result [3]. They proved that approximation algorithm for the Set Cover with
ratio c · ln|X| where c < 1, implies that NP = P (Fig. 3).

Fig. 3. The figure shows three quantities as a function of r = 1, 2, . . . 10: the lower
bound for FTFL, approximation ratio (in the general, non-uniform case) of our algo-
rithm for FTFP , and a lower bound on the integrality gap of the LP (1)–(4). The
integrality gap results are also true for the standard LP for FTFL, for details see the
full version of the paper [15]
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7 Open Problems

Is it possible to apply techniques similar to presented in this paper to FTFL? Is
FTFL getting any easier with increasing value of r? It would also be interesting
to derive a lower bound on the approximability of FTFP as a function of r > 1.
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Abstract. In this paper we consider natural generalizations of the facil-
ity location problem and the joint replenishment problem in which the
opening cost of facilities and the ordering cost over the planning hori-
zon is characterized by a submodular set function in the oracle model.
Specifically, we can access the function only through a blackbox that
returns the value of the function for a given set. We prove information
theoretic lower bounds that these two problems cannot be approximated
by any polynomial-time algorithm better than a ratio of O(

√
n/ log2 n).

Moreover, we give O(
√

n · log n)-approximation algorithms for the two
problems.

1 Introduction

A submodular set function f : F → R is a function that satisfies the constraint
f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ) for any subsets S, T ⊆ F . In the past
decades, a vast amount of research has been done on optimization problems
involving submodular functions. In this paper, we study two variations of the
facility location problem and the joint replenishment problem.

1.1 Facility Location Problem with Submodular Opening Costs

The facility location problem with submodular opening costs (FLS problem) we
study is the following model: Given a set of facilities F and a set of clients D,
a subset R ⊆ F of facilities can be opened with an opening cost of f(R), where
f : 2F → R+ is a nonnegative monotone submodular function. Each client j ∈ D
can be connected to an opened facility i ∈ F with a connection cost of cij . We
assume the set of connection costs {cij}i∈F,j∈D is metric. The goal is to find
a set of facilities to open such that every client is connected to some opened
facility and the total cost is minimized.

Over the past decade, a tremendous amount of research has been done on the
facility location problem. Since the first constant factor approximation algorithm
by Shmoys et al. [1], many approximation algorithms were developed using various
techniques, including LP rounding algorithms, randomized rounding algorithms,
c© Springer International Publishing Switzerland 2015
E. Bampis and O. Svensson (Eds.): WAOA 2014, LNCS 8952, pp. 71–82, 2015.
DOI: 10.1007/978-3-319-18263-6 7
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primal-dual schema, local search and greedy algorithms (see [2–7]). To the best
of our knowledge, the best approximation algorithm known is due to Li [8] and
it has an approximation ratio of 1.488. On the hardness side, Guha and Khuller
[9] proved that the problem cannot be approximated better than a factor of 1.463
unless NP ⊆ DTIME(nO(log log n)).

There is other work on the facility location problem that involve submodular
functions. Svitkina and Tardos [10] studied a variant in which the facility opening
costs are specified by submodular functions gi : 2D → R for each facility i ∈ F .
If a subset of clients D(i) ⊆ D is connected to facility i, then the opening cost
for facility i is gi(D(i)). They give an O(log n)-approximation algorithm for this
problem, and a constant factor approximation algorithm for the case where the
cost functions {gi}i∈F are restricted to be hierarchical functions. Hayrapetyan
et al. [11] develop a constant factor approximation algorithm for a variant of the
facility location problem in which a subset of clients D′ ⊆ D is not connected
to opened facilities at a cost of h(D′), where the penalty function h : 2D →
R≥0 is a submodular function. Chudak and Nagano [12] give an approximation
algorithm for this problem using the Lovász extension and non-smooth convex
minimization techniques and Du et al. [13] give a primal-dual algorithm.

1.2 Joint Replenishment Problem with Submodular Ordering Costs

We now define the joint replenishment problem with submodular ordering costs
(JRS problem). Given a planning horizon T = {1, 2, . . . , T} and a set of types of
items S, for each time period t in the planning horizon, there are demands
{di,t}i∈S to be fulfilled by orders of item i ∈ S from periods no later than t.
Items ordered in period t are allowed fulfill demands of a later period t′ at
a holding cost of ht,t′ per unit. Furthermore, we assume the holding costs to
be linear, namely ht,t′ =

∑t′−1
r=t hr,r+1. The ordering cost is a submodular set

function f : 2T → R+; specifically if R ⊆ T is the set of periods in which orders
are placed, then the ordering cost is f(R).

The classical joint replenishment problem is one of the most studied models
in the operations research literature and it captures the trade–off between hold-
ing costs and ordering costs. In our setting, the ordering cost only depends on
whether or not orders are placed on each period, but not how many items are
ordered. Other work that incorporates submodular ordering costs in the joint
replenishment problems include [14], in which the authors studied a different
model where the ordering cost for each period is a submodular function of the
types of items that are ordered.

1.3 Our Results

In this paper, we show that no polynomial-time algorithm can approximate FLS
problem and JRS problem better than a factor of O(

√
n/ log2 n) in the ora-

cle model. Inspired by the work of Svitkina and Fleischer [15] and Iwata and
Nagano [16], we construct two families of instances that are hard to distinguish
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in polynomial time, yet their optimal values differ by a ratio of O(
√

n/ log2 n).
Additionally, we give O(

√
n · log n)-approximation algorithms for both problems

by utilizing a fundamental result on approximating monotone submodular func-
tions by Goemans et al. [17]. Their algorithm is based on ellipsoidal approxima-
tions to a convex body and it makes only polynomially many oracle queries to
derive an approximation of a monotone submodular function. In our approximate
algorithm for the facility location problem with submodular opening costs, we
substitute the submodular opening cost function f : 2F → R≥0 by the O(

√
n ·

log n)-approximation of the function computed by the algorithm of Goemans
et al. [17], then approximately solve the resulting problem.

The rest of the paper proceeds as follows. In Sect. 2, we prove the hardness
result. Then we design and analyze O(

√
n · log n)-approximation algorithms for

the problems in Sect. 3. In Sect. 4, we conclude and discuss future research.

2 Lower Bounds

In this section, we show that the FLS and JRS problems cannot be approximated
better than a factor of O(

√
n/ log2 n) in polynomial time in the oracle model.

The proofs for FLS and JRS problems follow the same approach. We design two
instances of the problem that are hard to distinguish in polynomial time while
their optimal values are far apart. We elaborate the proof for the FLS problem
first, and then make an analogous proof for the JRS problem.

2.1 FLS Problem

In order to design two instances of the FLS problem polynomial-time indistin-
guishable, we shall defined the instances as follows.

For the FLS problem, let the two instances have the same set of facilities F
and the same set of clients D. We denote n = |F | and m = |D|. Let f1, f2 : 2F →
R≥0 denote the submodular opening costs for the two instances. Furthermore,
we let each client have at least 	 n

m
 co-located facilities. Moreover, any two
clients are located far away such that it is always suboptimal to connect a client
j ∈ D to a facility i ∈ F that is not co-located to j. Formally, let the set of
facilities F be the union of m disjoint subsets of facilities {Fl}m

l=1 such that
	 n

m
 ≤ |Fl| ≤ � n
m and the facilities in Fl are co-located with the same client.

We let the connection cost of any client and facility that are not co-located be
O(n). Figure 1 shows how we locate the facilities and clients.

Construction of f1 and f2. Following the approach of Iwata and Nagano [16],
we construct the two submodular functions as follows:

f1(T ) = min{μ, |T |} for T ⊆ F,

f2(T ) = min{μ, |T\R| + min{72 log2 n, |T ∩ R|}} for T ⊆ F,

where parameter μ and subset R ⊆ F are to be determined. It is not hard to
check that both f1 and f2 are submodular functions and that f2(T ) ≤ f1(T ) for
all T ⊆ F .
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F1

F2

F3

F4

O(n)

Fig. 1. A demonstration of facility and client locations, where • denotes a facility and
� denotes a client.

Let p ∈ [0, 1]. The set R ⊆ F is randomly generated in the following way.
For every i ∈ F , include i in R with probability p independently. Let parameter
μ be the expected size of the set R. Then it follows that

μ := E[|R|] = pn.

The probability that Fl does not contain any facility in R is P [Fl ∩ R = ∅] =
(1 − p)|Fl| for all l ∈ {1, . . . , m}. Then the probability that every set Fl contains
at least one facility in R can be lower–bounded as follows

P

[
m⋂

l=1

(Fl ∩ R �= ∅)

]
= 1 − P

[
m⋃

l=1

(Fl ∩ R = ∅)

]

≥ 1 −
m∑

l=1

(1 − p)|Fl|

≥ 1 −
m∑

l=1

(1 − p)� n
m �

≥ 1 − me−p� n
m �.

The next lemma follows easily.

Lemma 1. If p ≥ ln(2m)
(⌊

n
m

⌋)−1, then P [
⋂m

l=1(Fl ∩ R �= ∅)] ≥ 1
2 .

Let us introduce the following probabilistic result.

Lemma 2 (Chernoff Bounds, Lemma 15 [16]). Let {xi}k
i=1 be independently

and identically distributed Bernoulli random variables with P [xi = 1] = p and
P [xi = 0] = 1 − p for i = 1, . . . , k. Then,

P

[
k∑

i=1

xi ≥ α

]
≤ k−α

holds for any α ≥ 8kp.
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Let us now give a lemma which is the key to our result.

Lemma 3. For any fixed set X ⊂ F , for p = log n/
√

n, the probability that
f1(X) �= f2(X) is at most n−ω(1).

Proof. Note that p = log n/
√

n implies that μ =
√

n log n. Let us first con-
sider the case where |X| ≥ 9μ. If |R| ≤ 8μ, then |X\R| ≥ μ, which implies
f1(X) = f2(X). Thus we only need to upper bound P [|R| ≥ 8μ]. By Lemma 2,
P [|R| ≥ 8μ] ≤ n−8μ = n−ω(1). For the case where |X| ≤ 9μ,

P
[
f1(X) �= f2(X)

∣∣ |X| ≤ 9μ
] ≤ P

[|X ∩ R| ≥ 72 log2 n
]

= P [|X ∩ R| ≥ 8(9μ)p]
≤ (9μ)−72μp

= n−ω(1),

where the second inequality is also obtained by applying Lemma 2. ��
We then obtain the following theorem.

Theorem 1. Suppose that each set in {Fl}m
l=1 has at least 1 facility in R. Let

p = log n/
√

n and m = 	√n log n
log 2n
, and let T ′ denote the set that contains

exactly one facility from each set R∩Fl for l = 1, . . . ,m. Then, f1(T ′) = Ω(
√

n)
and f2(T ′) = O(log2 n).

Proof. If Fl ∩ R �= ∅ for all l = 1, . . . ,m, then the set T ′ so–defined contains m
elements and T ′ ⊆ R. By definition, f1(T ′) = min{√

n · log n,m} = Ω(
√

n) and
f2(T ′) = 72 log2 n. ��
By a similar argument as in Theorem 3.4 of [15], we can show that no polynomial-
time algorithm can approximate the facility location problem with submodular
opening costs better than O(

√
n/ log2 n) in the oracle model. We now give the

main result.

Theorem 2. In the oracle model, no algorithm that uses at most a polynomial
number of oracle calls can approximate the facility location problem with sub-
modular opening costs within a factor of o(

√
n/ log2 n), where n is the number

of facilities.

Proof. From Lemma 3, any algorithm that makes a polynomial number of calls
to the value oracle has probability at most n−ω(1) of distinguishing f1 and f2.
By Theorem 1 and Lemma 1, with probability 1

2 there is a set T ′ ⊆ F such
that for each client there is a co-located facility in T ′ and |T ′| = m. The set
T ′ so-defined satisfies that f1(T ′) = Ω(

√
n) and f2(T ′) = 72 log2 n. We let

the connection cost between any two clients be large enough, say O(n), for
both instances. Therefore, any solution that pays any connection cost would
be suboptimal for both instances. Notice that if we choose T ′ to be the set of
facilities to open for both instances, then the total cost for the instance with
opening cost function f2 is at most 72 log2 n, however for the other instance,
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the total cost is at least Ω(
√

n). To conclude, no algorithm can distinguish the
two instances with a polynomial number of calls to the value oracle, and thus
no algorithm can approximate the problem better than a factor O(

√
n/ log2 n)

with a polynomial number of calls to the value oracle. ��

2.2 JRS Problem

We now state the lower bounds on approximating the JRS problem.

Theorem 3. In the oracle model, no algorithm that uses at most a polyno-
mial number of oracle calls can approximate JRS problem within a factor of
o(

√
n/ log2 n), where n is the size of the planning horizon.

Sketch of proof. The construction of the proof is analogous to that of Theorem 2
for FLS problem. Let n = |T | and let m be the number of demands throughout
the planning horizon. We consider the case where we have only one item type.
Let the potential orders and the demands be as shown in Fig. 2. Specifically, we
split the planning horizon into m segments, each of which has 	 n

m
 or � n
m time

periods followed by a unit demand. Let Fi denote a set of 	 n
m
 or � n

m consec-
utive periods which form a segment in the planning horizon, for i = 1, . . . , m.
For periods within some Fi, there is no holding cost. For two periods that are not
in the same Fi, let the holding cost be Ω(n). Then we construct two submodular
functions f1 and f2 as in Sect. 3.1, except they are defined for subset R ⊆ T
instead. Hence if we choose m = �√n log n

log 2n and p = log n√
n

then in expectation

the optimal costs of the two instances are Ω(n) and O(log2 n). On the other
hand, from Lemma 3, the probability for distinguishing the two instances is as
low as n−ω(n). We complete the proof by following the same argument as in the
proof of Theorem 2.

F1

Ω(n)

F2

Ω(n)

F3

Fig. 2. A demonstration of potential orders and demands, where • denotes potential
order and � denotes a demand. The Ω(n) in distance between a demand and the next
potential order indicate an Ω(n) holding cost.

3 O(
√
n · logn)-Approximation Algorithms

In this section we present a unified approach to generate O(
√

n · log n)-
approximation algorithms for both the FLS and JRS problems. Without loss
of generality, we assume the instances have the property that min{cij �= 0 : i ∈
F, j ∈ D} = 1 and min{ht,t′ �= 0 : t, t′ ∈ T , t ≤ t′} = 1.
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Our algorithms utilize a recent result by Goemans et al. [17]. In their paper,
the authors show that for any monotone submodular function f : 2F → R

where |F | = n, there is a polynomial time algorithm that finds a set of numbers
{pi}i∈F such that the function f̂(S) =

√∑
i∈S pi approximates f in the sense

that f(S) ≤ f̂(S) ≤ O(
√

n · log n) · f(S) for all sets S ⊆ F . To approximate FLS
(or JRS) problem, we consider substituting the opening cost function (or the
ordering cost function) f by its approximation f̂ . Formally, we consider the
following problems (FLAS) and (JRAS):

(FLAS) the facility location problem with opening cost function f̂ and connec-
tion costs {cij}i∈F,j∈D;

(JRAS) the joint replenishment problem with ordering cost function f̂ and hold-
ing costs {ht,t′}t,t′∈T .

Notice that f(S) ≤ f̂(S) ≤ O(
√

n · log n)f(S) implies that any constant factor
approximation algorithm to (FLAS) (or (JRAS)) with opening cost function (or
ordering cost function) f̂ is an approximation algorithm to the original instance.
Now we elaborate the approximation algorithm to FLS problem via approximat-
ing (FLAS), and then apply the same framework to JRS problem.

3.1 Approximation Algorithm for the FLS Problem

We first define a family of problems (FLu) as the classic facility location problems
with opening cost {pi}i∈F and connection costs {u · ci,j}i∈F, j∈D for positive
parameter u. Here {pi}i∈F is the output from the aforementioned approximation
algorithm in Goemans et al. [17]. Problem (FLu) is the classic facility location
problem for which constant–factor approximation algorithms are known.

Our algorithm calls a constant–factor approximation algorithm for the facility
location problem to solve (FLu) for a set of values of u, and chooses the one
that minimizes f̂(S) +

∑
i∈F,j∈D cijxij . Let (x∗, y∗) denote the optimal solution

for (FLAS) and define u∗ =
∑

i∈F piy
∗
i∑

i∈F

∑
j∈D cijx∗

ij
if

∑
i∈F

∑
j∈D cijx

∗
ij �= 0. Let

(x(u), y(u)) denote any α-approximate solution for problem (FLu). Then

(∑

i∈F

piy
(u)
i + u ·

∑

i∈F

∑

j∈D

cijx
(u)
ij

) ≤ α
(∑

i∈F

piy
∗
i + u ·

∑

i∈F

∑

j∈D

cijx
∗
ij

)
. (1)

The following Lemma states that if u∗ lies between u and θu for some u and
some real number θ > 1, then the approximate solution to (FLu) is also an
approximate solution to (FLAS).

Lemma 4. If 0 < u ≤ u∗ ≤ θu for some positive number θ, then
√∑

i∈F

piy
(u)
i +

∑

i∈F

∑

j∈D

cijx
(u)
ij ≤ max{α(θ+1),

√
2α}(√∑

i∈F

piy∗
i +

∑

i∈F

∑

j∈D

cijx
∗
ij

)
.
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The proof of Lemma 4 is omitted due to the page limit. In the next lemma,
we prove that if u∗ ≥ max{1, 2
log(

√∑
i∈F pi)�} or

∑
i∈F

∑
j∈D cijx

∗
ij = 0, the

approximate solution for (FL
2�log(√∑i∈F pi)�) also approximates (FLAS), and if

u∗ ≤ 1 then the approximate solution for (FL1) approximates (FLAS). This
result, together with Lemma 4, implies that we can enumerate the value of u

from the set {1, 2, 4, . . . , 2
log(
√∑

i∈F pi)�} and solve (FLu) approximately so as
to have an approximate solution to (FLAS).

Lemma 5. Let u = max{1, 2
log(
√∑

i∈F pi)�}. The following statements are true:

(i). If u∗ ≥ u, then
√∑

i∈F

piy
(u)
i +

∑

i∈F

∑

j∈D

cijx
(u)
ij ≤ (√

2α + 2α
)(√∑

i∈F

piy∗
i +

∑

i∈F

∑

j∈D

cijx
∗
ij

)
;

(ii). if
∑

i∈F

∑
j∈D cijx

∗
ij = 0, then

√∑

i∈F

piy
(u)
i +

∑

i∈F

∑

j∈D

cijx
(u)
ij ≤ (√

α + α
)(√∑

i∈F

piy∗
i +

∑

i∈F

∑

j∈D

cijx
∗
ij

)
;

(iii). if u∗ ≤ 1, then
√∑

i∈F

piy
(1)
i +

∑

i∈F

∑

j∈D

cijx
(1)
ij ≤ (2α +

√
2α)

(√∑

i∈F

piy∗
i +

∑

i∈F

∑

j∈D

cijx
∗
ij

)
.

Proof. (i). If ∞ > u∗ ≥ u, we have that
∑

i∈F

piy
(u)
i + u ·

∑

i∈F

∑

j∈D

cijx
(u)
ij ≤ α

(∑

i∈F

piy
∗
i + u ·

∑

i∈F

∑

j∈D

cijx
∗
ij

)

≤ α
(∑

i∈F

piy
∗
i + u∗ ·

∑

i∈F

∑

j∈D

cijx
∗
ij

)

= 2α
∑

i∈F

piy
∗
i .

Then it follows that
√∑

i∈F

piy
(u)
i +

∑

i∈F

∑

j∈D

cijx
(u)
ij ≤

√
2α

∑

i∈F

piy∗
i +

2α

u
·
∑

i∈F

piy
∗
i

≤
√

2α
∑

i∈F

piy∗
i + 2α

√∑

i∈F

piy∗
i

≤ (√
2α + 2α

)√∑

i∈F

piy∗
i

≤ (√
2α + 2α

)(√∑

i∈F

piy∗
i +

∑

i∈F

∑

j∈D

cijx
∗
ij

)
.
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(ii). If
∑

i∈F

∑
j∈D cijx

∗
ij = 0, then

∑

i∈F

piy
(u)
i +u ·

∑

i∈F

∑

j∈D

cijx
(u)
ij ≤ α

(∑

i∈F

piy
∗
i +u ·

∑

i∈F

∑

j∈D

cijx
∗
ij

)
= α

∑

i∈F

piy
∗
i .

By a similar argument as in the proof of (i), we have that
√∑

i∈F

piy
(u)
i +

∑

i∈F

∑

j∈D

cijx
(u)
ij ≤ (√

α + α
)(√∑

i∈F

piy∗
i +

∑

i∈F

∑

j∈D

cijx
∗
ij

)
.

(iii). If u∗ ≤ 1, by the assumption that min{cij �= 0 : i ∈ F, j ∈ D}, we must
have

∑
i∈F

∑
j∈D cijx

∗
ij ≥ 1. Then

∑

i∈F

piy
(1)
i +

∑

i∈F

∑

j∈D

cijx
(1)
ij ≤ α

(∑

i∈F

piy
∗
i +
∑

i∈F

∑

j∈D

cijx
∗
ij

)
= α(1 + u∗) ·

∑

i∈F

∑

j∈D

cijx
∗
ij .

Therefore
√∑

i∈F

piy
(1)
i +

∑

i∈F

∑

j∈D

cijx
(1)
ij ≤ (√

α (1 + u∗) + α (1 + u∗)
) ∑

i∈F

∑

j∈D

cijx
∗
ij

≤ (2α +
√

2α)
(√∑

i∈F

piy∗
i +

∑

i∈F

∑

j∈D

cijx
∗
ij

)
.

��
Now we give the approximation algorithm for the FLS problem in Algorithm 1.

Algorithm 1. Approximation algorithm for the FLS problem
Compute {pi}i∈F by the procedure from [17]

for u = 1, 2, 22, . . . , 2�log(
√∑

i∈F pi)� do
Compute an α-approximation solution (x(u), y(u)) for (FLu)

end for
minimize

√∑
i∈F piyi +

∑
i∈F

∑
j∈D cijxij over {(x(u), y(u)) : u =

1, 2, 22 . . . , 2�log(
√∑

i∈F pi)�} and output the minimizer

Theorem 4. Givenapolynomial time subroutine that computes anα-approximate
for (FLu) for some constant α, Algorithm 1 returns a constant factor approxi-
mate solution to (FLAS), and hence an O(

√
n · log n)-approximate solution for

the facility location problem with submodular opening costs in polynomial time.

Proof. We first prove that Algorithm 1 returns a constant factor approximate
solution to (FLAS). If (x∗, y∗) satisfies

∑
i∈F

∑
j∈D cijx

∗
ij = 0, then by Lemma 5,

(x(1), y(1)) is a constant factor approximate solution to (FLAS). Notice that the
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solution that Algorithm 1 returns is at least as good as (x(1), y(1)), hence the
output is a constant factor approximate solution to (FLAS). Similarly, if u∗ is
well–defined and u∗ ≥ max{1, 2
log(

√∑
i∈F pi)�}, or u∗ ≤ 1, then by Lemma 5,

(x(
log(
√∑

i∈F pi)�), y(
log(
√∑

i∈F pi)�)) is a constant factor approximate solution
to (FLAS). If u∗ ∈ [1, 2
log(

√∑
i∈F pi)�], then there must be some u that the

algorithm visits such that u ≤ u∗ ≤ 2u. By Lemma 4, (x(u), y(u)) is a constant
factor approximate solution to (FLAS). Combining the above cases, Algorithm 1
returns a constant factor approximate solution to (FLAS). Recall that any con-
stant factor approximate solution to (FLAS) is an O(

√
n · log n)-approximate

solution to the facility location problem with submodular opening costs, hence
Algorithm 1 returns an O(

√
n·log n)-approximate solution to the facility location

problem with submodular opening costs.
Regarding the running time, notice that the algorithm calls a polynomial

time subroutine to approximate (FLu) for log(
√∑

i∈F pi) + 1 times, which is
still polynomial in the size of the input given that {pi}i∈F are the output of an
polynomial time algorithm given by [17]. Therefore, Algorithm 1 is a polynomial-
time algorithm. ��

3.2 Approximation Algorithm to JRS Problem

As in the previous section, we consider a family of classic joint replenishment
problems (JRu), which has ordering cost

∑
t∈T ptyt and holding cost u · ∑

i∈S∑
t∈T

∑
t′:t≤t′ ht,t′xi,t,t′ where (x, y) is a feasible assignment to fulfill all demands

{di,t}i∈S,t∈T . Let (x∗, y∗) be the optimal solution to (JRAS) and define u∗ =
∑

t∈T pty
∗
t

u·∑i∈S

∑
t∈T

∑
t′:t≤t′ ht,t′x∗

i,t,t′
. Then we can prove results analogous to Lemmas 4

and 5. Therefore, by calling a constant–factor approximation algorithm, say the
one in [18], to solve (JRu) for u = {1, 2, 22, . . . , 2
log(

√∑
t∈T pt)�}, we can have an

approximation algorithm analogous to Algorithm 1. To be specific, the algorithm
first computes the set of values {pt}t∈T by the procedure from [17], then finds
approximate solution (x(u), y(u)) for (JRu) by the algorithm from [18] for u =
{1, 2, 22, . . . , 2
log(

√∑
t∈T pt)�}. Finally, the algorithm outputs the minimizer of√∑

t∈T ptyt +
∑

i∈S

∑
t∈T

∑
t′:t≤t′ u · ht,t′xi,t,t′ over the approximate solutions

(x(u), y(u))’s. By arguments similar to those of Theorem 4, one can see that the
algorithm halts in polynomial time and it returns a O(

√
n · log n)-approximate

solution to JRS problem.

4 Conclusion

In this paper, we prove that the facility location problem with submodular open-
ing costs and the joint replenishment problem with submodular ordering costs
cannot be approximated better than a factor of O(

√
n/ log n) and give an approx-

imation algorithms that match the lower bound with only polylogarithmic loss.
In our algorithms, we first substitute the submodular opening cost function or
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the submodular ordering cost function by an approximation of it, then solve
the approximated problem by doing a line search over the range of the ratio
between the opening cost and the connection cost or between the ordering cost
and holding cost. It is natural to ask the question that whether we can develop
approximation algorithms for these problems by following any of the classic
schema for the facility location problem, such as the primal-dual schema.
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Abstract. We consider the problem of online graph multi-coloring with
advice. Multi-coloring is often used to model frequency allocation in cel-
lular networks. We give several nearly tight upper and lower bounds for
the most standard topologies of cellular networks, paths and hexagonal
graphs. For the path, negative results trivially carry over to bipartite
graphs, and our positive results are also valid for bipartite graphs. The
advice given represents information that is likely to be available, studying
for instance the data from earlier similar periods of time.

1 Introduction

We consider the problem of graph multi-coloring, where each node may receive
multiple requests. Whenever a node is requested, a color must be assigned to
the node, and this color must be different from any color previously assigned to
that node or to any of its neighbors. The goal is to use as few colors as possible.
In the online version, the requests arrive one by one, and each request must be
colored without any information about possible future requests. The underlying
graph is known to the online algorithm in advance.

The problem is motivated by frequency allocation in cellular networks. These
networks are formed by a number of base transceiver stations, each of which
covers what is referred to as a cell. Due to possible interference, neighboring
cells cannot use the same frequencies. In this paper, we use classic terminology
and refer to these cells as nodes in a graph where nodes are connected by an
edge if they correspond to neighboring cells in the network. Frequencies can then
be modeled as colors. Multiple requests for frequencies can occur in one cell and
overall bandwidth is a critical resource.

Two basic models dominate in the discussion of cellular networks, the high-
way and the city model. The former is modeled by linear cellular networks,
corresponding to paths, and the latter by hexagonal graphs. We consider the
problem of multi-coloring such graphs.

If A is a multi-coloring algorithm, we let A(I) denote the number of colors
used by A on the input sequence I. When I is clear from the context, we simply
write A instead of A(I). The quality of an online algorithm is often given in
terms of the competitive ratio [28,37]. An online multi-coloring algorithm is
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Foundation.
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c-competitive if there exists a constant α such that for all input sequences I,
A(I) ≤ c Opt(I) + α. The (asymptotic) competitive ratio of A is the infimum
over all such c. Results that can be established using α = 0 are referred to as
strict (or absolute). Often, it is a little unclear when one refers to an optimal
online algorithm, whether this means that the solution produced is as good as the
one produced offline or that no better online algorithm can exist. For that reason,
we may use the term strictly 1-competitive to emphasize that an algorithm is as
good as an optimal offline algorithm, and optimal to mean that no better online
algorithm exists under the given conditions. Throughout, we let n denote the
number of requests in a given input sequence.

For practical applications, the assumption that absolutely nothing is known
about the future is often unrealistic. A way of relaxing this very strict and
somewhat unnatural assumption is to give the algorithm some advice. A recent
trend in the analysis of online algorithms has been to consider advice, formalized
under the notion of advice complexity, starting in [20].

This realization that input is not arbitrary (uniformly random, for instance)
is not new, and work focused on locality of reference in input data has tried
to capture this. Early work includes access graph results, starting in [8], and
with references to additional related work in [10], but also more distributional
models, such as [1], have been developed. In [12] an entirely different concept
of accommodating sequences was introduced and further developed in [9,13].
The idea is that for many problems requiring resources, there is a close connec-
tion between the resources available and the resources required for an optimal
offline algorithm, as when capacity of transportation systems are matched with
expected demand. This leans itself closely up against many of the results that
we report here, where the advice needed to do better is often some information
regarding the resources required by an optimal offline algorithm.

Thus, the results in this paper could have practical applications. The results
establish which type of information is useful, how algorithms should be designed
to exploit this information, and what the limits are for what can be obtained.

Returning to the advice complexity modeling, some problems need very little
advice. On the other hand, complete information about the input or the desired
output is a trivial upper bound on the amount of advice needed to be optimal.
The first approach to formalizing the concept of advice measured the number
of bits per request [20]. This model is well suited for some problems where
information is tightly coupled with requests and the number of bits needed per
request is constant. However, for most problems, we prefer the model where
we simply measure the total advice needed throughout the execution of the
algorithm. As also discussed in [5,25], this model avoids some modeling issues
present in the “per request” modeling, and at the same time makes it possible to
derive sublinear advice requirements. Thus, we use the advice model from [25],
where the online algorithm has access to an infinite advice tape, written by
an offline oracle with infinite computation power. In other words, the online
algorithm can ask for the answer to any question and read the answer from
the tape. Competitiveness is defined and measured as usual, and the advice
complexity is simply the number of bits read from the tape, i.e., the maximum
index of the bits read from the advice tape.
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As the advice tape is infinite, we need to specify how many bits of advice
the algorithm should read and if this knowledge is not implicitly available, it
has to be given explicitly in the advice string. For instance, if we want Opt
as advice (the number of colors an optimal offline algorithm uses on a given
sequence, for instance), then we cannot merely read �log(Opt + 1)� (all logs in
this paper are base 2) bits, since this would require knowing something about
the value of Opt. One can use a self-delimiting encoding as introduced in [22].
We use the variant from [11], defined as follows: The value of a non-negative
integer X is encoded by a bit sequence, partitioned into three consecutive parts.
The last part is X written in binary. The middle part gives the number of bits
in the last part, written in binary. The first part gives the number of bits in
the middle part, written in unary and terminated with a zero. These three parts
require �log(�log(X + 1)� + 1)� + 1, �log(�log(X + 1)� + 1)�, and �log(X + 1)�
bits, respectively, adding a lower-order term to the number of bits of information
required by an algorithm. We define enc(x) to be the minimum number of bits
necessary to encode a number x, and note that the encoding above is a (good)
upper bound on enc(x).

We now discuss previous work on multi-coloring and then state our results.
When working with online algorithms, decisions are generally irrevocable, i.e.,
once a color is assigned to a node, this decision is final. However, in some applica-
tions, local changes of colors may be allowed (reassignment of frequencies). This
is called recoloring. An algorithm is d-recoloring if, in the process of treating a
request, it may recolor up to a distance d away from the node of the request.

For multi-coloring a path, the algorithm 4-Bucket is 4
3 -competitive [19],

and this is optimal [15]. Even with 0-recoloring allowed (that is, colors at the
requested node may be changed), 4-Bucket is optimal [16]. Furthermore, if
1-recoloring is allowed, the algorithm GreedyOpt is strictly 1-competitive [16].

For multi-coloring bipartite graphs, the optimal asymptotic competitive ratio
lies between 10

7 ≈ 1.428 and 18−√
5

11 ≈ 1.433 [18].
In [14], it was shown that, for hexagonal graphs, no online algorithm can

be better than 3
2 -competitive or have a better strict competitive ratio than 2.

They also gave an algorithm, Hybrid, with an asymptotic competitive ratio of
approximately 1.9 on hexagonal graphs. On k-colorable graphs, it is strictly k+1

2 -
competitive, and hence, it has an optimal strict competitive ratio on hexagonal
graphs. Recoloring was studied in [27]: No d-recoloring algorithm for hexagonal
graphs has an asymptotic competitive ratio better than 1+ 1

4(d+1) . For d = 0, the
lower bound was improved to 9

7 . In [38], a 4
3 -competitive 2-recoloring algorithm

is given. The best known 1-recoloring algorithm for hexagonal graphs is 33
24 -

competitive [39]. For the offline problem of multi-coloring hexagonal graphs, no
polynomial time algorithm can obtain an absolute approximation ratio better
than 4

3 [32,34,35], unless P = NP.
Many other problems have been considered in the advice model, see e.g.,

[2,4–7,20,21,23,29,30]; also variants of graph coloring different from ours [3,24,
31,36].
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Table 1. Overview of our results. Recall that n denotes the number of requests in
the input sequence. We mark the ratios that are strict by “s” and the ones that are
asymptotic by “a”. Note that a strict lower bound can be larger than an asymptotic
upper bound. For each bound, we indicate the number of the theorem proving the
result. For readability, many of the bounds stated are weaker than those proven in
the paper. Moreover, the upper bounds for the path hold for any bipartite graph. The
result of Theorem 3 in the third row of the table is valid only for neighborhood-based
algorithms, as defined just before Theorem 3 in Sect. 2.

Ratio Lower bound Type Result Upper bound Type Result

Path 1 logn − 2 s Theorem 1 logn + O(log log n) s Theorem 4

1 + 1
2b

b − 2 a Theorem 2 b + 1 + O(log log n) s Theorem5

< 4
3

ω(1) a Theorem 3

Hex 1 (n + 1) �logn� s Theorem 8

< 5
4

Ω(n) a Theorem 7
4
3

n + 2|V | a Theorem 10
3
2

⌊
n−1
3

⌋
s Theorem 6 logn + O(log log n) a Theorem 9

An overview of our results is given in Table 1. For the path, these results are
nearly tight, even with upper bounds that also apply to bipartite graphs. For
hexagonal graphs, note that with a linear number of advice bits, it is possible
to be 4

3 -competitive, and the lower bound for being better than 5
4 -competitive

is close to linear. The advice given to the algorithms is essentially (an approxi-
mation of) Opt or the maximum number of requests given to any clique in the
graph. For the underlying problem of frequency allocation, guessing these values
based on previous data may not be unrealistic.

Due to space restrictions, some proofs have been removed or shortened. These
can be found in the full version [17].

2 The Path

As explained earlier, we establish all lower bounds for paths, and since a path
is bipartite, all these negative results carry over to bipartite graphs. Similarly,
all our (constructive) upper bounds are given for bipartite graphs and therefore
also apply to paths. We start with three lower bound results.

Theorem 1. Any strictly 1-competitive online algorithm for multi-coloring paths
of at least 10 nodes has advice complexity at least

⌈
log(

⌊
n
4

⌋
+ 1)

⌉
.

Proof. We let m =
⌊

n
4

⌋
and define a set S of m + 1 sequences, all having the

same prefix of length 2m. The set S will have the following property: for no two
sequences in S can their prefixes be colored in the same way while ending up
using the optimal number of colors on the complete sequence. Starting from one
end of the path, we denote the nodes v1, v2, . . . .

We define the set S to consist of the sequences I0, I1, . . . , Im, where Ii is
defined in the following way. First m requests are given to each of the nodes v1
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and v4. Then i requests to each of v2 and v3. To give all sequences the same
length, the sequence ends with �n − 2m − 2i� requests distributed as evenly
as possible among v6, v8, and v10. Since ��n − 2m − 2i� /3� ≤ m, the optimal
number of colors will not be influenced by this part of the sequence.

Note that Opt(Ii) = m + i. In order not to use more than Opt(Ii) colors
for Ii, exactly i of the colors assigned to v4 have to be different from the colors
assigned to v1. The prefixes of length 2m in S are identical, so all information
to distinguish between the different sequences must be given as advice. The
cardinality of S is m+1. To specify one out of m+1 possible actions, �log(m + 1)�
bits are necessary. ��
For algorithms that are 9

8 -competitive or better, we give the following lower
bound.

Theorem 2. Consider multi-coloring paths of at least 10 nodes. For any b ≥ 3
and any (1 + 1

2b
)-competitive algorithm, A, there exists an N ∈ N such that A

has advice complexity at least b − 2 on sequences of length at least N .

Proof. For any (1 + 1
2b

)-competitive algorithm, A, there exists an α ≥ 1 such
that A(I) ≤ (1+ 1

2b
)Opt(I)+α, for any input sequence I. We consider sequences

of length n ≥ 22b+2α + 3.
Let m =

⌊
n
4

⌋
and consider the same set of sequences as in the proof of

Theorem 1. Recall that Opt(Ii) = m + i. For the sequence Ii, let xi denote the
number of colors that A uses on v4 but not on v1. Then, A uses m + xi colors
in total for v1 and v4. On v3, it can use at most xi of the colors used at v1, so
the total number of colors used at v1, v2, and v3 is at least m + 2i − xi. Thus,
A(Ii) ≥ max {m + xi,m + 2i − xi}.

We will prove that there are p ≥ 2b−2 sequences Ii1 , Ii2 , . . . , Iip such that,
for any pair ij 
= ik, we have xij 
= xjk , or otherwise A would not be (1 + 1

2b
)-

competitive. This will immediately imply that A must use at least b−2 advice bits.
Let ε = 1

2b
+ 1

22b
. From A(Ii) ≤ (1+ 1

2b
)Opt(Ii)+α and m ≥ 22bα, we obtain

the inequalities

m + xi ≤ (1 + ε)(m + i) and m + 2i − xi ≤ (1 + ε)(m + i)

which reduce to
xi ≤ εm + (1 + ε)i (1)

and
i ≤ xi + εm

1 − ε
(2)

Hence, by (1), x0 ≤ εm. Thus, by (2), we can have xi = x0 only if i ≤ 2εm
1−ε .

Therefore, we let i1 = 0 and i2 = � 2εm
1−ε + 1�. In general, we ensure xij 
= xij+1

by letting ij+1 = �xij
+εm

1−ε + 1�. Thus,

ij+1 ≤ xij + εm

1 − ε
+ 1 ≤ 1 + ε

1 − ε
· ij +

2εm

1 − ε
+ 1,
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where the second inequality follows from (1). Solving this recurrence relation,
we get

ij+1 ≤
(

1 + ε

1 − ε

)j

i1 +
j−1∑

k=0

(
1 + ε

1 − ε

)k (
2εm

1 − ε
+ 1

)
=

(
1+ε
1−ε

)j

− 1

2ε
(2εm + 1 − ε)

We let p equal the largest j for which ij ≤ m. Through arithmetic manipulations
using the various bounds established above, one can show that p ≥ 2b−2. ��
For the following theorem, we define the class of neighborhood-based algorithms:
A multi-coloring algorithm, A, is called neighborhood-based, if there exists a
constant d such that, when assigning a color to a request to a node v, A bases
its decision only on requests to nodes a distance of at most d away from v. Note
that, in particular, a neighborhood-based algorithm cannot base its decision on
the current value of Opt.

Using the family of request sequences from the proofs of Theorems 1 and 2,
it is fairly easy to establish a lower bound of ω(1) on the advice complexity for
neighborhood-based algorithms that are better than 4

3 -competitive:

Theorem 3. No neighborhood-based online algorithm for multi-coloring paths
with advice complexity O(1) can be better than 4

3 -competitive.

We now turn to upper bounds. For multi-coloring a path, there is a strictly 1-
competitive 1-recoloring algorithm, GreedyOpt [16]. GreedyOpt divides the
nodes into two sets, upper and lower, such that every second node belongs to
upper and the remaining nodes belong to lower. The following invariant is main-
tained: After each request, each node in lower uses consecutive colors starting
with color 1 and each node in upper uses consecutive colors ending with a color
no larger than the optimal number of colors for the request sequence seen so far.

The algorithm for paths from [16] is easily generalized to work on bipartite
graphs, letting the nodes of one partition, L, belong to lower and the nodes of the
other partition, U , belong to upper. Recoloring is only needed if the number of
colors used by an optimal offline algorithm is not known. Hence, using enc(Opt)
advice bits, an online algorithm can be strictly 1-competitive, even if recoloring
is not allowed. For the resulting algorithm, GreedyOptAdvice, we prove the
following.

Theorem 4. Algorithm GreedyOptAdvice is correct, strictly 1-competitive,
and has advice complexity enc(Opt).

We now turn to nonoptimal variants of GreedyOptAdvice using fewer than
enc(Opt) advice bits. We show how to obtain a particular competitive ratio
of 1 + 1

2b
, using b + 1 + O(log logOpt) bits of advice. Thus, essentially, we are

approaching optimality exponentially fast in the number of bits of advice.

Theorem 5. For any integer b ≥ 1, there exists a strictly (1+ 1
2b−1 )-competitive

online algorithm for multi-coloring bipartite graphs with advice complexity b +
enc(a), where a + b is the total number of bits in the value Opt.
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Proof. As advice, the algorithm asks for the b high order bits of the value Opt,
as well as the number a = �log(Opt + 1)�−b of low order bits, but not the value
of these bits. The algorithm knows b and can just read the first b bits, while a
needs to be encoded. Thus, b + enc(a) bits are sufficient to encode the advice.

If Opt contains fewer than b bits, this is detected by a being zero. In this
case, some of the b bits may be leading zeros. By Theorem 4, we can then be
strictly 1-competitive. Now, assume this is not the case, and let Optb =

⌊
Opt
2a

⌋

denote the value represented by the b high order bits. The algorithm computes
m = 2aOptb + 2a − 1 and runs GreedyOptAdvice with this m. Since Opt ≤
m ≤ Opt+2a −1, the algorithm is correct and uses at most Opt+2a −1 colors.

For any number x ≥ 1, consisting of c bits, with the most significant bit being
one, 2c ≤ 2x. Thus, 2b+a ≤ 2Opt, so 2a ≤ 2Opt

2b
. This means that the number of

colors used by GreedyOptAdvice is less than Opt + 2Opt
2b

= (1 + 1
2b−1 )Opt,

so the algorithm is strictly (1 + 1
2b−1 )-competitive. ��

Corollary 1. For any ε > 0, there exists a strictly (1+ε)-competitive determin-
istic online algorithm for multi-coloring bipartite graphs with advice complexity
O(log logOpt).

Proof. Except for the term b, the advice stated in Theorem 5 is O(log logOpt)
and Opt ≤ n. Thus, we just need to bound b. For a given ε, choose b large
enough such that 1

2b−1 ≤ ε. Using this value for b in Theorem 5, we obtain an
algorithm with a strict competitive ratio of at most 1 + 1

2b−1 ≤ 1 + ε. Since, for
any given ε, b is a constant, the total amount of advice is O(log logOpt). ��
The Multi-Coloring problem is also considered in the context of request cancel-
lations, i.e., a color already given to a node disappears again. We remark that
just by allowing 0-recoloring, where requests at the node where the cancellation
takes place may be recolored, we can extend the algorithm GreedyOptAdvice,
using the same advice, to a strictly 1-competitive algorithm.

3 Hexagonal Graphs

A hexagonal graph is a graph that can be obtained by placing (at most) one node
in each cell of a hexagonal grid (such as the one sketched in Fig. 1) and adding
an edge between any pair of nodes placed in neighboring cells. Note that any
hexagonal graph can be 3-colored. This is easily seen, since it is possible to use
the three colors cyclically on the cells of each row of the underlying hexagonal
grid, such that no two neighboring cells receive the same color.

As in the previous section, we first focus on lower bound results.

Theorem 6. Any online algorithm for multi-coloring hexagonal graphs with a
strict competitive ratio strictly smaller than 3

2 has advice complexity at least⌊
n−1
3

⌋
.
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O0 S1 O1 S3 O2 S2k−1 Ok

D1 D2

D3 D4

D2k−1 D2k

S2

S4

S2k

R. . .

Fig. 1. Hexagonal lower bound construction.

Proof. First, we explain a small part of the construction that we will use in
many copies. We consider two sequences with the same prefix of length 2. Both
sequences can be colored with two colors, but this requires coloring the two pre-
fixes of length two differently. Consider the left-most part of Fig. 1 (surrounded
by thick lines) consisting of the “double” nodes D1 and D2, the “outer” nodes
O0 and O1 and the “single” nodes S1, and S2. These nodes form the same type
of configuration as the nodes D3, D4, O1, O2, S3, and S4.

First the nodes O0 and O1 get one request each. Then, either D1 and D2

or S1 and S2 receive one request each. The node S2 is used to get up to the
same sequence length in all cases. In order not to use more than two colors,
the outer nodes have to use different colors if we later give requests to the two
D-nodes. Similarly, the O-nodes should have the same color if we later give a
request to the S-node in between them. Since the prefix of length two is 〈O0, O1〉
for both sequences, all information for an algorithm to distinguish between the
two sequences must be given as advice.

We can repeat this graph pattern
⌊

n−1
3

⌋
times, as illustrated in Fig. 1 with

k =
⌊

n−1
3

⌋
, giving the requests to all O-nodes first. This results in a sequence

set of size 2�n−1
3 �, implying the result. ��

Theorem 7. Any online algorithm for multi-coloring hexagonal graphs with
competitive ratio strictly smaller than 5

4 has advice complexity Ω(n).

Proof. We use the basic construction from Theorem 6. Assume p requests are
given to one of the components like this:

First, we give p
4 requests to each of O0 and O1. Let q, 0 ≤ q ≤ p

4 , denote the
number of colors used at both nodes. Then following up by giving p

4 requests to
each S-node results in a minimum of 3p

4 −q colors used, while giving the requests
to the D-nodes instead results in a minimum of p

2 + q colors.
Note that Opt = p

2 , independent of in which of the two ways the sequence is
continued. Thus, for any ε > 0, any (54 −ε)-competitive algorithm must choose q

such that, for some constant α, 3p
4 −q ≤ (

5
4 − ε

)
p
2 +α and p

2 +q ≤ (
5
4 − ε

)
p
2 +α.

Adding these two inequalities, we obtain 5p
4 ≤ ( 54 − ε)p + 2α which is equivalent

to εp ≤ 2α. Thus, if p is non-constant, no (54 − ε)-competitive algorithm can use
the same value of q for both sequences.
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Now assume for the sake of contradiction that for some advice of g(n) ∈ o(n)
bits, we can obtain a ratio of 5

4 − ε. Let f(n) = 1
2

n
g(n) . Since g(n) ∈ o(n),

f(n) ∈ ω(1). The idea is now to repeat the construction as in the proof of
Theorem 6 and give f(n) requests to each construction (f(n) has the role of p
in the above). Since a pair of neighboring constructions share f(n)/4 requests,
this results in n−f(n)/4

3f(n)/4 = 4n−f(n)
3f(n) ≥ n

f(n) constructions. We assume without loss
of generality that all our divisions result in integers.

In order to be (54 − ε)-competitive, an online algorithm must, for each two
neighboring O-nodes, choose between at least two different values of q. These
are independent decisions, and the ratio only ends up strictly better than 5

4 if
the algorithm decides correctly in every subconstruction. Thus, it needs at least

n
f(n) bits of advice. However, n

f(n) = n
1
2

n
g(n)

= 2g(n) > g(n), a contradiction. ��

For upper bounds, we first have the following trivial upper bound on the advice
necessary to be optimal, independent of the graph topology:

Theorem 8. There is a strictly 1-competitive online multi-coloring algorithm
with advice complexity (n + 1) �logOpt�.
In the following, we will show how two known approximation algorithms can be
converted to online algorithms with advice. In the description of the algorithms,
we let the weight of a clique denote the total number of requests to the nodes of
the clique. Note that the only maximal cliques in a hexagonal graph are isolated
nodes, edges, or triangles. We let ω denote the maximum weight of any clique
in the graph.1

A 3
2 -competitive algorithm called the Fixed Preference Allocation algorithm,

FPA, was proposed in [26]. In [33], the strategy was simplified and it was noted
that the algorithm can be converted to a 1-recoloring online algorithm. We
describe the simplified offline algorithm below.

The algorithm uses three color classes, R, G, and B. The color classes repre-
sent a partitioning of the nodes in the graph so that no two neighbors are in the
same partition. Each of the three color classes has its own set of

⌈
ω
2

⌉
colors, and

each node in a given color class uses the colors of its color class, starting with
the smallest. This set of colors is also referred to as the node’s private colors.
If more than

⌈
ω
2

⌉
requests are given to a node, then it borrows colors from the

private colors of one of its neighbors, taking the highest available color. R nodes
can borrow colors from G nodes, G from B, and B from R. Since

⌈
ω
2

⌉ ≤ ⌈
Opt
2

⌉
,

we can give
⌈

ω
2

⌉
as advice and obtain the following:

Theorem 9. There is a 3
2 -competitive online algorithm for multi-coloring hexag-

onal graphs with advice complexity enc(
⌈
Opt
2

⌉
).

In [32], an algorithm with an approximation ratio of 4
3 was introduced. This

algorithm uses color classes in the same way as FPA, except that the private
1 The Greek letter ω is traditionally used here, so we will also do that. Since there is

no argument, this should not give rise to confusion with the ω(f), stemming from
asymptotic notation.
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color sets contain only
⌊

ω+1
3

⌋
colors each. In describing the algorithm, we use

the following notation. For any node v, we let nv denote the number of requests
to v. Furthermore, bv denotes the maximum number of colors that v can borrow,
i.e., bv = max{0,

⌊
ω+1
3

⌋ − n′
v}, where n′

v is the maximum number of requests to
any of the neighboring nodes in the color class that v can borrow from.

The algorithm can be seen as working in up to three phases: In the first
phase, the algorithm colors min{nv,

⌊
ω+1
3

⌋} requests to each node, v, using the
node’s private colors. In the second phase, each node v with more than

⌊
ω+1
3

⌋

requests borrows min{nv − ⌊
ω+1
3

⌋
, bv} colors. Let G2 be the graph induced by

nodes that still have uncolored requests after Phase 2. In [32] it is proven that
G2 is bipartite and that any pair of neighbors in G2 has a total of at most
ω − 2

⌊
ω+1
3

⌋ ≤ ⌊
ω+1
3

⌋
+ 1 uncolored requests after Phase 2. Thus, in the third

phase, the remaining requests can be colored with GreedyOpt (see the path
section) using

⌊
ω+1
3

⌋
+ 1 additional colors.

We now show how an online algorithm, given the right advice, can behave
like the offline 4

3 -approximation algorithm. Note that the three phases of the
offline 4

3 -approximation algorithm are characterized by the coloring strategy
(using the node’s own private colors, borrowing private colors from neighbors,
or coloring a bipartite graph). However, when requests arrive online, the nodes
may not go from one phase to the next simultaneously.

Theorem 10. There is a 4
3 -competitive online algorithm formulti-coloring hexag-

onal graphs with advice complexity at most n + 2|V |.
Proof. Initially, each node is in Phase 1. On a request, the algorithm reads an
advice bit and if it is zero, the next color from its private colors is used. If, instead,
a one is read, this is treated as a stop bit for Phase 1, and this particular node
enters Phase 2.

The algorithm starts with empty private color sets, and adds one color to
each set whenever necessary, i.e., whenever a Phase 1 node that has already used
all its private colors receives an additional request (this includes the first request
to the node). As soon as a node leaves Phase 1, the algorithm knows that this
node received

⌊
ω+1
3

⌋
requests, which is then the final size of each private color

set. Knowing the size of the private color sets, the algorithm can calculate the
maximum color for the complete coloring of the graph as m = 4

⌊
ω+1
3

⌋
+ 1.

In Phase 2, every zero indicates that the algorithm should borrow a color.
When another stop bit is received (which could be after no zeros at all if the
borrowing phase is empty), it moves to Phase 3. In Phase 3, it reads one bit to
decide which partition, upper or lower, of the bipartite graph it is in, and does
not need more information after that, since it simply uses the colors 3

⌊
ω+1
3

⌋
+

1, . . . ,m, either top-down or bottom-up.
If we allow the algorithm one bit per request, it needs at most two more bits

per node, since the stop bits are the only bits that do not immediately tell the
algorithm which action to take. Thus, n + 2|V | bits of advice suffice. ��
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25. Hromkovič, J., Královič, R., Královič, R.: Information complexity of online prob-
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Abstract. Let R be a finite set of terminals in a metric space (M, d).
We consider finding a minimum size set S ⊆ M of additional points such
that the unit-disc graph G[R ∪ S] of R ∪ S satisfies some connectivity
properties. In the Steiner Tree with Minimum Number of Steiner Points
(ST-MSP) problem G[R ∪ S] should be connected. In the more general
Steiner Forest with Minimum Number of Steiner Points (SF-MSP) problem
we are given a set D ⊆ R × R of demand pairs and G[R ∪ S] should
contains a uv-path for every uv ∈ D. Let Δ be the maximum number of
points in a unit ball such that the distance between any two of them is
larger than 1. It is known that Δ = 5 in R

2. The previous known approx-
imation ratio for ST-MSP was �(Δ+1)/2�+1+ε in an arbitrary normed
space [15], and 2.5+ ε in the Euclidean space R

2 [5]. Our approximation
ratio for ST-MSP is 1+ln(Δ−1)+ε in an arbitrary normed space, which
in R

2 reduces to 1+ln 4+ε < 2.3863+ε. For SF-MSP we give a simple Δ-
approximation algorithm, improving the folklore ratio 2(Δ − 1). Finally,
we generalize and simplify the Δ-approximation of Calinescu [3] for the
2-Connectivity-MSP problem, where G[R ∪ S] should be 2-connected.

Keywords: Wireless network · Unit-disc graph · Steiner tree · Steiner
forest · 2-connectivity · Approximation algorithms

1 Introduction

In the Survivable Network problem we are given a graph G = (V,E) with edge-
costs (or node-costs) and a set R of terminals, and seek a minimum-cost subgraph
H of G that satisfies some prescribed connectivity requirements between the
terminals. A fundamental problem of this type is the Steiner Tree problem, where
every pair of terminals should be connected in H. In the Steiner Forest problem,
we are given a set D of demand pairs from R, and H should contains a uv-path for
every uv ∈ D. Steiner Tree is a particular case of Steiner Forest, when the graph
(D,R) formed by the demand pairs is connected; if also R = V , then we get
the Minimum Spanning Tree problem. In the k-Connectivity problem, R should be
k-connected in H, namely, H should contain k internally-disjoint paths between
any pair of nodes in R; if also R = V , then we get the k-Connected Subgraph
problem. Note that for k = 1, 2, whenever only inclusion minimal solution graphs
H that contain R are considered, the condition “R is k-connected in H” is
equivalent to the condition “H is k-connected”; this is not so for k ≥ 3.
c© Springer International Publishing Switzerland 2015
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In wireless networks, the range and the location of the transmitters deter-
mines the resulting communication network. We consider adding a minimum
number of transmitters such that the communication network satisfies some con-
nectivity properties. If the range of the transmitters is fixed, our goal is to add
a minimum number of transmitters, and we get the following type of problems.

Definition 1. Let (M,d) be a metric space and let V ⊆ M . The unit-disk graph
of V , denoted by G[V ], has node set V and edge set {uv : u, v ∈ V, d(u, v) ≤ 1}.
In Survivable Network with Minimum Number of Steiner Points (SN-MSP) problems
we are given a set R of terminals in a metric space (M,d), and seek a minimum
size set S ⊆ M of additional points such that G[R ∪ S] satisfies some prescribed
connectivity requirements between the terminals. In this setting, Steiner Tree is
transformed into the following problem.

Steiner Tree with Minimum Number of Steiner Points (ST-MSP)
Instance: A finite set R ⊆ M of terminals in a metric space (M,d).
Objective: Find a minimum size set S ⊆ M of additional points such
that G[R ∪ S] is connected.

In the Steiner Forest with Minimum Number of Steiner Points (SF-MSP) prob-
lem, we are given a set D of demand pairs from R, and G[R∪S] should contains
a uv-path for every uv ∈ D. In the k-Connectivity-MSP G[R ∪ S] should contain
k internally-disjoint uv-paths for any u, v ∈ R. Note that 1-Connectivity-MSP is
the ST-MSP problem, while 2-Connectivity-MSP is equivalent to the problem of
finding a minimum size S ⊆ M such that G[R ∪ S] is 2-connected.

As in previous work, we will assume that our metric space is induced by some
normed space, allow to place several points at the same location, and assume
that the maximum distance between terminals is polynomial in their number.

The Steiner Tree problem was studied extensively (c.f. [2,17,18] and the ref-
erences therein) and the currently best approximation ratio for it is ln 4 + ε [2].
Steiner Forest and 2-Connectivity admit ratio 2, c.f. [8] and [12].

We survey some literature on SN-MSP problems. ST-MSP is NP-hard even
in R

2, and arises in various wireless network design problems, c.f. [1,3–5,10,11,
14,15] for only a sample of papers in the area, where it is studied both in R

2 and
in general metric spaces. In the latter case, the approximation ratio is usually
expressed in terms of the following parameter. Let Δ be the maximum number
of “independent” points in the unit ball, such that the distance between any two
of them is larger than 1. It is known [16] that Δ equals the maximum degree of
a minimum-degree Minimum Spanning Tree in the normed space. For Euclidean
distances we have Δ = 5 in R

2 and Δ = 11 in R
3, and in R

� Δ is at most the
Hadwiger number [16]; hence Δ ≤ 20.401�(1+o(1)), by [9].

In finite metric spaces, ST-MSP is equivalent to the variant of the Node-
Weighted Steiner Tree problem when terminals have costs 0 and other nodes
have cost 1. Klein and Ravi [13] proved that this variant is Set-Cover hard to
approximate, and gave an O(ln |R|)-approximation algorithm for general weights.
Hence up to constants, even for finite metric spaces, the ratio O(ln |R|) of [13]
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is the best possible unless P = NP. Note however, that this does not exclude
constant ratios for metric/normed spaces with small Δ, e.g., Δ = 5 in R

2.
Most algorithms forSN-MSPproblems applied the following reductionmethod,

by solving the corresponding Survivable Network instance obtained as follows.

Definition 2. Given a finite set R of points in a metric space (M,d) and an
integer k ≥ 1, the (multi)graph GR has node set R and k parallel edges between
every pair of nodes. The costs of the k edges between u, v are defined as follows.
Let d̂uv = max{�d(u, v)� − 1, 0}. If d̂uv > 0, then all the k edges have cost d̂uv.
If d̂uv = 0, then one edge has cost 0 and the others have cost 1.

It is easy to see that any solution of cost C to the corresponding Survivable Net-
work instance defines a solution S of size C to the original SN-MSP instance,
where every node in S has degree exactly 2; such a solution is called a bead
solution. Conversely, any bead solution S can be converted into a solution to the
Survivable Network instance (in a normed space) of cost at most |S| (c.f. [3,10]).
Due to this bijective correspondence, we simply define a bead solution as a
solution to the corresponding Survivable Network instance, and denote the opti-
mal value of a bead solution to an instance I by τ = τ(I). If the Survivable
Network instance admits a ρ-approximation algorithm, and if for the given SN-
MSP instance there exists a bead solution S of size ≤ αopt, then we get a
ρα-approximation algorithm for the SN-MSP instance. Equivalently, for a class
I of SN-MSP instances, define a parameter α by α = α(I) = supI∈I

τ(I)
opt(I) . Then

approximation ratio ρ for Survivable Network instances that correspond to class
I implies approximation ratio αρ for SN-MSP instances in class I.

Măndoiu and Zelikovsky [14] showed that α = Δ − 1 for ST-MSP. Since the
SN instance that corresponds to ST-MSP is the MST problem that can be solved
in polynomial time, this gives a (Δ − 1)-approximation algorithm for ST-MSP.

A common method to attack various Steiner Tree problems is by a reduction
to the Minimum Connected Spanning Subhypergraph problem. This method was
initiated by Zelikovsky [17], and improved in a long series of papers culminating
in the paper of Byrka et al. [2]. For ST-MSP in R

2, Chen et al. [5] applied it to
get the currently best known ratio 2.5 + ε. In arbitrary normed spaces, the ratio
Δ − 1 of [14] was improved to 	(Δ + 1)/2
 + 1 + ε in [15] also using the same
method. In this work we use the so called “Relative Greedy Heuristic” due to
Zelikovsky [18], and obtain the following result.

Theorem 1. ST-MSP with constant Δ admits an approximation scheme with
ratio 1 + ln(Δ − 1) + ε. In particular, in R

2 the ratio is 1 + ln 4 + ε < 2.3863 + ε.

We note that previous works, as well as Theorem 1, assume that ST-MSP
instances with a constant number of terminals can be solved in polynomial time.
This condition holds in R

2 if the maximum distance between terminals is poly-
nomial in the number of terminals, see [4, Lemma 11] and the discussion there.
If such instances can be approximated within a factor of β, then an additional
factor of β is invoked in the ratio of Theorem 1.
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In the proof of Theorem 1, most of our effort is spent on bounding the
parameter αk (so called “Steiner ratio”) for ST-MSP (see Theorem 3), which is
the loss in the approximation ratio as a result of reducing the problem to the
Minimum Connected Spanning Subhypergraph problem in a hypergraph of rank
k (see Theorem 3). Bounds on αk have also been computed for several other
“Steiner problems”, including ST-MSP. However, none of the previous papers
succeeded to reveal the somewhat irregular behavior of αk in the case of ST-
MSP. The key difficulty lies in the fact that αk has a “good” behavior only when
k = Ω(Δ). This is the reason why in Theorem 1 we require that Δ is a constant,
to ensure that our algorithm can be implemented in polynomial time.

We now consider SF-MSP and k-Connectivity-MSP problems. The result in [14]
implies that α = Δ−1 for SF-MSP. Combined with the known 2-approximation
for Steiner Forest, this gives ratio 2(Δ − 1) for SF-MSP. Kashyap et al. [11] con-
sidered 2-Connectivity-MSP. Their algorithm constructs a 2-Connectivity instance
as in Definition 2 and then converts its solution into a bead solution to the 2-
Connectivity-MSP instance. Although they analyzed a performance of specific
2-approximation algorithm – the algorithm of Khuller and Raghavachari [12] for
2-Connectivity, they essentially proved that α = Δ in this case, which implies
ratio 2Δ. The analysis of this specific algorithm was recently improved by
Calinescu [3], showing that its tight performance is Δ.

We now discuss k-Connectivity-MSP with k ≥ 3. Bredin et al. [1] considered
in R

2 a related problem of adding a minimum size S such that G[R ∪ S] is
k-connected (note that in k-Connectivity-MSP we require k-connectivity only
between terminals). For this problem in R

2, they gave an O(k5)-approximation
algorithm, but essentially they implicitly proved that for this class of problems
α = O(Δk3). Recently, it was shown in [10] that α = Θ(Δk2) for a much more
general class of Survivable Network problems in any normed space.

Let τ∗ = τ∗(I) denote the optimal value of a fractional bead solution of
an SN-MSP instance I, namely, τ∗ is the optimum value of a standard cut-LP
relaxation for the corresponding Survivable Network instance (see Sect. 4). We
observe that if the algorithm we use for the Survivable Network instance computes
a solution of cost at most ρτ∗, then the relevant parameter is the following.

Definition 3. For a class I of SN-MSP instances, letα∗ = α∗(I) = supI∈I
τ∗(I)
opt(I) .

Theorem 2. For any feasible solution S to SF-MSP there exists a half-integral
bead solution of value at most Δ|S|/2; thus α∗ = Δ/2 for SF-MSP. Consequently,
if Steiner Forest admits a polynomial time algorithm that computes a solution of
cost at most ρτ∗, then SF-MSP admits approximation ratio ρ ·Δ/2; thus SF-MSP
admits a Δ-approximation algorithm. The same holds for 2-Connectivity-MSP.

The idea behind Theorem 2 is as follows. From previous work [3,16] we get that
for any solution S, G[R ∪ S] contains a solution G in which the nodes in S have
degree at most Δ. Our main innovation is comparing the optimal solution with
a fractional (in fact, half-integral) bead solution, rather than an actual bead
solution. For 2-Connectivity-MSP this idea appeared implicitly in the paper of
Calinescu [3], but our explicit approach is much simpler and more general.
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2 Proof of Theorem 1

We consider a generic problem defined in [15], that includes both ST-MSP and
the classic Steiner Tree problem.

Generic Steiner Tree
Instance: A (possibly infinite) graph G = (V,E), a finite set R ⊆ V of
terminals, and a monotone subadditive cost function c on subgraphs of G.
Objective: Find a minimum-cost connected finite subtree T of G contain-
ing R.

Definition 4. For an instance of Generic Steiner Tree and 2 ≤ k ≤ |R|, the
hypergraph Hk = (R, Ek) has hyperedge set Ek = {A ⊆ R : 2 ≤ |A| ≤ k}. The
cost c∗(A) of A ∈ Ek is the cost of an optimal solution TA to the Generic Steiner
Tree instance with terminal set A.

The construction in Definition 4 converts a Generic Steiner Tree instance into
a Minimum Connected Spanning Subhypergraph instance in a hypergraph Hk of
rank k. Any solution of cost C to this instance correspond to a solution of value
at most C to Generic Steiner Tree instance, by the subadditivity and monotonicity
of the cost function in the Generic Steiner Tree problem. This reduction invokes
a fee in the approximation ratio, given in the following definition.

Definition 5. Given an instance I of Generic Steiner Tree let τk(I) denote the
minimum cost of a connected spanning sub-hypergraph of Hk. The k-ratio for a
class I of Generic Steiner Tree instances is defined by αk = supI∈I

τk(I)
opt(I) .

Note that for I being the class of ST-MSP instances, α2 is the parameter α
defined in the introduction, and that by [14] we have α2 = α = Δ − 1. We have
αk = 1 for instances with |R| = k, and in general αk is monotone decreasing and
approaching 1 when k becomes larger.

Particular cases of the following statement can be found in several papers.
We failed to find the general version in the literature, and thus provide a proof
for completeness of exposition.

Lemma 1. There exists a polynomial time algorithm that given a hypergraph
H = (R, E) with hyper-edge cost {c(A) : A ∈ E} and a spanning tree T ∗ of
(edges of size 2 of) H computes a spanning connected sub-hypergraph T of H
of cost at most τ

(
1 + ln c(T ∗)

τ

)
, where τ is the minimum-cost of a connected

spanning sub-hypergraph of H.

Proof. Given a tree T = (R,F ) let us say that A ⊆ R overlaps F ′ ⊆ F if the
graph obtained from T\F ′ by shrinking A into a single node is a tree. Given
edge cost {c(e) : e ∈ F} let F (A) be a maximum cost edge set overlapped by A.

Note that F\F (A) is an edge set of a minimum cost spanning tree in the graph
obtained from T by shrinking A into a single node; hence for given A, F (A) can
be computed in polynomial time. Consider the following algorithm.
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Algorithm 1. Local Replacement Algorithm

1 Input: A hypergraph H = (R, E) with hyper-edge cost {c(A) : A ∈ E},
and a spanning tree T ∗ = (R,F ∗) of (edges of size 2 of) H.

2 Initialization: J ← ∅, F ← F ∗, T ← (R,F ).
3 while c(F ) > 0 do
4 Find A ∈ E with c(F (A))

c(A) maximum.
5 if c(F (A)) > c(A) then
6 Update T,H: remove F (A) and shrink A into a single node.

F ← F\F (A) and J ← J ∪ {A}.
7 Else STOP and return T = (R,F ∪ J ).

8 return T = (R,F ∪ J )

The following statement appeared in [17] (see also [2]); we provide a proof
for completeness of exposition.

Claim. Let T = (R,F ) be a tree with edge costs {c(e) : e ∈ F} and let (R, E) be
a connected hypergraph. Then

∑
A∈E c(F (A)) ≥ c(F ). Thus there exists A ∈ E

such that
c(F (A))

c(A)
≥ c(F )

c(E)
.

Proof. For a node v ∈ A, let Cv be the connected component in T\F (A) that
contains v. For an edge e ∈ F (A) that connects two components Cu, Cv, let
y(e) = uv be the replacement edge of e, of cost c(y(e)) = c(e). The graph
T ∪{y(e)} contains a single cycle and y(e) is the heaviest edge in this cycle, since
otherwise F (A) is not minimal. For a hyperedge A ∈ E let y(A) = ∪e∈F (A)y(e)
be the replacement set of A, and let y(E) = ∪A∈Ey(A). It is easy to see that y(A)
spans A, and y(E) spans R. Consider a MST on T ∪ y(E). By the cycle property
of a MST, no edge from y(E) would participate in that MST, so c(T ) ≤ c(y(E)).
Finally, c(y(E)) =

∑
A∈E y(A) =

∑
A∈E c(F (A)), and the claim follows. �

At every iteration |F | decreases by at least 1, hence the algorithm runs in poly-
nomial time, and clearly it computes a feasible solution. We prove the approxi-
mation ratio. Let Fi and Ji be the set stored in F and J , respectively, at the
beginning of iteration i + 1, and let Ai be the hyperedge picked at iteration i.
Denote fi = c(Fi) and si = c(Ai), and recall that τ denotes the minimum cost of
a connected spanning sub-hypergraph of H. At iteration i we remove Fi−1(Ai)
from Fi−1 after verifying that c(Fi−1(Ai)) > c(Ai) = si. Hence

fi ≤ fi−1 − max{c(Fi−1(Ai)), c(Ai)} = fi−1 − si · max
{

c(Fi−1(Ai))
c(Ai)

, 1
}

By the claim above, c(Fi−1(Ai))
c(Ai)

≥ fi−1
τ . Thus we have

fi ≤ fi−1 − si · max{fi−1/τ, 1} . (1)
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The algorithm stops if either c(Fq) = 0 or c(F (A)) ≤ c(A) at iteration q + 1. In
the latter case, 1 ≥ c(Fq)/τ follows by the claim above. In both cases, we have
that there exists an index q such that fq−1 > τ ≥ fq holds. Now we use the
following statement from [6].

Claim. Let τ > 0 and f0, . . . , fq and s1, . . . , sq be sequences of positive reals
satisfying f0 > τ ≥ fq, such that (1) holds. Then fq +

∑q
i=1 si ≤ τ(1+ln(f0/τ)).

Let q be an index such that fq−1 > τ ≥ fq holds. We may assume that f0 =
c(F ∗) > τ > 0. Note that c(Jq) =

∑q
i=1 si and that c(Fi) + c(Ji) ≤ c(Fi−1) +

c(Ji−1) for any i. Hence from the claim above we conclude that

c(T ) ≤ c(Fq) + c(Jq) = fq +
q∑

i=1

si ≤ τ(1 + ln(f0/τ)) = τ

(
1 + ln

c(T ∗)
τ

)
.

�
Corollary 1. For any constant k, Generic Steiner Tree admits an approximation
ratio αk (1 + lnα2), provided that for any A ∈ Ek, the instance with the terminal
set A can be solved in polynomial time.

Proof. By the assumptions, the hypergraph Hk, and the costs c∗(A) with the cor-
responding trees TA for A ∈ Ek, can be computed in polynomial time. We can
also compute in polynomial time an optimal spanning tree T ∗ in H2; note that
c(T ∗) ≤ α2 · opt. Then we apply the algorithm in Lemma 1 to compute a sub-
hypergraph T of Hk of c∗-cost at most τ

(
1 + ln c(T ∗)

τ

)
. Let opt denote the optimal

solution value for the Generic Steiner Tree instance. Note that opt ≤ τ ≤ αkopt.
Let T = ∪A∈T TA. Since T is a connected hypergraph, T is a feasible solution to
the Generic Steiner Tree instance. We have c(T ) ≤ ∑

A∈T c(TA) = c∗(T ), by the
monotonicity and the subadditivity of the c-costs. Thus we have:

c(T ) ≤ c∗(T ) ≤ τ

(
1 + ln

c(T ∗)
τ

)
= τ

(
1 + ln

c(T ∗)/opt
τ/opt

)
≤ αkopt (1 + lnα2) .

�
Du and Zhang [7] showed that for the classic Steiner Tree problem, αk ≤ 1 +
1/	lg k
, where lg k = log2 k. In Sect. 3 we prove the following.

Theorem 3. For ST-MSP, αk ≤ 1 + 2
�lg�k/(Δ−1)�� for any integer k ≥ 2Δ − 2.

Note that for an instance I of ST-MSP with Δ independent points on the unit
ball we have τk(I) = Δ

k and opt(I) = 1, which implies αk ≥ τk(I)
opt(I) = Δ

k . Hence
k > Δ/2 is necessary if we want αk < 2.

From Corollary 1 and Theorem 3 we conclude that for any constant k ≥
2Δ − 2, it is possible to compute in polynomial time a solution to an ST-MSP
instance of size at most αk (1 + ln(Δ − 1)) opt, where αk is as in Theorem 3.
For the metric space R

2, and given a constant ε > 0 let k = 2Θ(1/ε). Then by
Theorem 3, αk ≤ 1+ ε/ (1 + ln 4), and the approximation ratio of our algorithm
is 1 + ln 4 + ε. This completes the proof of Theorem 1.
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3 Proof of Theorem 3

For a tree T = (V, F ) and A ⊆ V let TA = (VA, FA) be the inclusion minimal
subtree of T that contains A. To prove Theorem 3 we prove the following.

Lemma 2. Let T = (V, F ) be a tree of maximum degree Δ ≥ 2, let R ⊆ V , and
let S = V \R. Then for any integer k ≥ 2Δ−2 there exists a connected hypergraph
H = (R, E) of rank ≤ k such that

∑
A∈E |VA ∩ S| ≤

(
1 + 2

�lg�k/(Δ−1)��
)

|S|.

To prove Lemma 2 we prove the following.

Lemma 3. Let T = (V, F ) be a tree with edge costs {c(e) ≥ 1 : e ∈ F} and
let R ⊆ V . Then for any integer p ≥ 2 there exists a connected hypergraph
H = (R, E) of rank ≤ p such that

∑
A∈E c(FA) + |E| − 1 ≤

(
1 + 2

�lg p�
)

c(T ).

Lemma 3 will be proved later. Now we show that it implies Lemma 2. An R-
component of T is a maximal inclusion subtree of T such that all its leaves are
in R but none of its internal nodes is in R. It is easy to see that it is sufficient
to prove Lemma 2 for each R-component separately, hence we may assume that
R is the set of leaves of T .

If T is a star, then since k ≥ 2Δ − 2 ≥ Δ, we let E to consist of a single
hyperedge A = R. Then |VA ∩ S| = 1 = |S|, and Lemma 2 holds in this case.

Henceforth assume that T is not a star. For v ∈ S let R(v) be the set of
neighbors of v in R, and note that |R(v)| ≤ Δ − 1. Let T ′ = (V ′, F ′) = T\R
and let R′ = {v ∈ S : R(v) �= ∅}. Applying Lemma 3 on T ′ with unit edge-costs
and R′, we obtain that for p = 	k/(Δ − 1)
 there exists a connected hypergraph
H′ = (R′, E ′) of rank ≤ p such that

∑
A′∈E′ |F ′

A′ | + |E ′| − 1 ≤
(
1 + 2

�lg p�
)

|F ′|.
Note that |F ′| = |V ′| − 1 and that |V ′

A′ | = |F ′
A′ | − 1 for every A′ ∈ E ′. Hence

∑

A′∈E′
|V ′

A′ | − 1 ≤
(

1 +
2

	lg p

)

(|V ′| − 1) ≤
(

1 +
2

	lg p

)

|V ′| − 1 .

For A′ ∈ E ′ let A = ∪v∈A′R(v); then |A| ≤ p(Δ − 1). Let E = {A : A′ ∈ E ′}.
Then H = (R, E) is a connected hypergraph of rank ≤ p(Δ − 1) ≤ k, and

∑

A∈E
|VA ∩ S| =

∑

A′∈E′
|V ′

A′ | ≤
(

1 +
2

	lg p

)

|V ′| =
(

1 +
2

	lg	k/(Δ − 1)


)

|S| .

In the rest of this section we prove Lemma 3, by extending the proof of Du
and Zhang [7] of an existence of a connected hypergraph H = (R, E) of rank ≤ p

such that
∑

A∈E c(FA) ≤
(
1 + 1

�lg p�
)

c(T ). We have an extra term of |E| − 1,

and we show that this term can be bounded by c(T )
�lg p� .

We start by transforming the tree into a (rooted) binary tree T with edge-
costs, which node set is partitioned into a set R of terminals and a set S of
non-terminals, such that the following properties hold:
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(A) R is the set of leaves of T .
(B) The cost of any edge of T is either 0 or is at least 1, and among the edges

that connect a node in S = V \R to its children, at most one has cost 0.
(C) T is a full binary tree, namely, every v ∈ S has exactly 2 children.

To obtain such a tree, root T at an arbitrary non-leaf node ŝ ∈ S = V \R, and
apply the following standard reductions.

1. While T has a leaf in S, remove this leaf; hence every leaf of T is in R. Then,
for every v ∈ R that is not a leaf, add to T a new node v′ and an edge vv′ of
cost 0, add v′ to R, and move v from R to S. After this step, properties (A)
and (B) hold.

2. While there is v ∈ S that has one child, replace the path P of length 2 that
contains v by a single edge of cost c(P ), and exclude v from S. After this
step, every v ∈ S has at least 2 children.

3. While there is v ∈ S that has more than 2 children, do the following. Let u
be a child of v such that the cost of the edge vu is at least 1. Add a new node
v′ and the edge vv′ of cost 0, and for every child of u′ of v distinct from u
replace the edge vu′ by the edge vu′. After this step, all the three properties
(A), (B), and (C) hold.

Consequently, to prove Lemma 3, it is sufficient to prove the following.

Lemma 4. Let T = (V, F ) be a tree with edge costs c(e) and leaf set R, satisfying
(A),(B),(C), Then for any integer p ≥ 2 there exists a connected hypergraph
H = (R, E) of rank ≤ p such that

∑
A∈E c(FA) + |E| − 1 ≤

(
1 + 2

�lg p�
)

c(T ).

Let T = (V, F ) be a rooted tree with leaf set R and let S = V \R. For two nodes
u, v of T let PT (u, v) denote the unique path in T between u and v.

Definition 6. We say that T is proper if every node in S has at least 2 children.
We say that a mapping f : S → R is T -proper if:
(i) For every u ∈ S, f(u) is a descendant of u.
(ii) The paths {PT (u, f(u)) : u ∈ S} are edge disjoint.
Given a subtree T ′ of T with leaf set L′ and a proper mapping f , the set of
terminal connecting paths of T ′ is {PT (u, f(u)) : u ∈ L′\R}. Let T̂ ′ denote the
tree obtained from T ′ by adding to T ′ all the terminal connecting paths.

Du and Zhang [7] proved that any proper tree T admits a proper mapping. We
prove the following.

Lemma 5. Let T = (V, F ) be a proper tree and let F1 ⊆ F be such that any
u ∈ S has a child connected to u by an edge in F1. Then there exists a T -proper
mapping f such that for every u ∈ S, the path PT (u, f(u)) contains at least one
edge in F1.

Proof. The proof is by induction on the height of the tree. Let T be a tree as in
the lemma of height h. If h = 1, then T has one internal node (the root), say u,
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and we set f(u) to be the node that is connected to u by an edge in F1. Suppose
that the statement is true for trees with height h − 1 ≥ 1, and we prove it for
trees of height h. Let T ′ be obtained from T by removing nodes of distance h
from the root. By the induction hypothesis, for T ′ there exists a mapping f ′ as
in the lemma. Let u be an internal node of T . Consider two cases.

Suppose that u is an internal node of T ′. If f ′(u) is a leaf of T , then define
f(u) = f ′(u). If f ′(u) is an internal of T , then f ′(u) is a leaf of T ′, and all its
children in T are leaves. Then we set f(u) to be a child of f ′(u) that is connected
to f ′(u) by an edge in F1.

Suppose that u is a leaf of T ′. Then the children of u in T are leaves, and we
set f(u) to be a child of u that is connected to u by an edge in F1.

It is easy to verify that the obtained mapping f meets the requirements. �
The following statement is implicitly proved by Du and Zhang [7].

Lemma 6 ([7]). Let T be a proper binary tree with non-negative edge costs and
let f be a proper mapping. Then for any integer p ≥ 2 there exists an edge-
disjoint partition T of T into subtrees such that the following holds:

(i) The hypergraph with node set R and hyperedge set E = {T̂ ′ ∩ R : T ′ ∈ T } is
connected and has rank at most p.

(ii) The total number of terminal connecting paths of all subtrees in T is at least
|T | − 1, and their total cost is at most c(T )/	lg p
.

We now finish the proof of Lemma 4, and thus also of Lemma 3. Let F1 = {e ∈
F : c(e) ≥ 1} and let f be a proper mapping as in Lemma 5. Let T be a partition
as in Lemma 6, and let E be as in Lemma 6(i), so the hypergraph H = (R, E) is
connected and has rank at most p. By Lemma 6(ii), the total number of terminal
connecting paths of all subtrees is at least |T | − 1 = |E| − 1, while their total
cost is at most c(T )/	lg p
. Every terminal connecting path contains an edge
from F1, by Lemma 5, and thus has cost at least 1. Hence the total cost of all
terminal connecting paths is at least |E| − 1. Consequently

|E| − 1 ≤ c(T )
	lg p
 .

For A = T̂ ′ ∩ R ∈ E let P (T ′) denote the union of the edge sets of the terminal
connecting paths of T ′. Then c(FA) ≤ c(T̂ ′) = c(T ) + c(P (T ′)), hence

∑

A∈E
c(FA) ≤

∑

T ′∈T
[c(T ′)+c(P (T ′))] =

∑

T ′∈T
c(T ′)+

∑

T ′∈T
c(P (T ′)) ≤ c(T )+

c(T )
	lg p
 .

Summarizing, we have

∑

A∈E
c(FA) + |E| − 1 ≤ c(T ) +

c(T )
	lg p
 +

c(T )
	lg p
 =

(
1 +

2
	lg p


)
c(T ) .

The proof of Lemma 4, and thus also of Lemma 3 and Theorem 3 is now complete.
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4 Proof-sketch of Theorem 2

Definition 7. For a subset C of nodes of a (multi-)graph G = (V,E) let us use
the following notation: ΓG(C) is the set of neighbors of C in G; δG(C) = δE(C)
is the set of edges in E with exactly one endnode in C; E(C) is the set of edges
in E with both endnodes in C. Given R ⊆ V , an R-component of G is a subgraph
of G with node set C∪ΓG(C) and edge set E(C)∪δG(C), where C is a connected
component of G\R.

The following important property of feasible solutions was proved for SF-MSP
by Robins and Salowe [16] and for 2-Connectivity-MSP by Calinescu [3].

Lemma 7 ([3,16]). LetS be an inclusionminimal feasible solution for an instance
of SF-MSP or 2-Connectivity-MSP. Then G[R ∪ S] contains a subgraph G that
satisfies the requirements such that every R-component of G is a tree and such
that degG(v) ≤ Δ for every v ∈ S.

Lemma 8. Suppose that G[R ∪ S] contains a tree T with leaf set R. Let S′ be
obtained from S by replacing each v ∈ S by degT (v) copies of v. Then G[R ∪ S′]
contains a simple cycle on R ∪ S′, called a DFS cycle of T .

Proof. Traverse the tree T in a DFS order; each time a node v ∈ S is visited,
choose a different copy of v. �
Given a Steiner Forest instance, we say that a set A ⊂ V is deficient if |A ∩
{u, v}| = 1 for some uv ∈ D. It is easy to see that H is a feasible solution to
a Steiner Forest instance iff δH(A) ≥ 1 for every deficient set A. To formulate
a similar condition for 2-Connectivity we need a definition of a biset, which is
an ordered pair of sets A = (A,A+) such that A ⊆ A+; Γ (A) = A+\A is the
boundary of A. Let δE(A) denote the set of edges in E with one end in A and
the other in V \A+. It is known that H is a feasible solution to 2-Connectivity
iff x(δE(A)) ≥ 2 − |Γ (A)| for every biset A. The cut-LP relaxations for Steiner
Forest and 2-Connectivity minimize

∑
e∈E cexe over the polytopes ΠSF and Π2C,

respectively, defined by:

ΠSF = {x ∈ R
E : x(δE(A)) ≥ 1 ∀ deficient set A, xe ≥ 0}

Π2C = {x ∈ R
E : x(δE(A)) ≥ 2 − |Γ (A)| ∀ biset A, 0 ≤ xe ≤ 1}

We will say that a graph with edge capacities xe is a fractional bead solution for
SF-MSP or for 2-Connectivity-MSP, if the characteristic vector of the edge-set of
the graph belongs to ΠSF or to Π2C, respectively.

Lemma 9. Let G be as in Lemma 7. Then replacing each connected component
C of G\R by a DFS cycle on ΓG(C) of capacity 1/2 results in a fractional half-
integral bead solution for SF-MSP or 2-Connectivity-MSP, respectively.

Proof. For SF-MSP the statement is obvious, while for 2-Connectivity-MSP, due
to space limitation, the proof will be provided in the full version. �
Theorem 2 easily follows from Lemmas 7, 8, and 9.
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5 Conclusions

Our main results are a (1 + ln(Δ − 1) + ε)-approximation scheme for ST-MSP,
and a Δ-approximation algorithm for SF-MSP. For ST-MSP in R

2 this improves
the ratio 2.5 + ε of [5]. For SF-MSP this improves the folklore ratio 2(Δ − 1)
that follows from the work of [14]. We believe that the methods presented in
this paper will lead to improved approximation algorithms for related problems.
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1 Département d’Informatique, UMR CNRS 8548, École Normale Supérieure,
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Abstract. We improve complexity bounds for energy-efficient non-pree-
mptive scheduling problems for both the single processor and multi-
processor cases. As energy conservation has become a major concern,
traditional scheduling problems have been revisited in the past few years
to take into account the energy consumption [1]. We consider the speed
scaling setting introduced by Yao et al. [20] where a set of jobs, each with
a release date, deadline and work volume, are to be scheduled on a set of
identical processors. The processors may change speed as a function of
time and the energy they consume is the αth power of their speed inte-
grated over time. The objective is then to find a feasible non-preemptive
schedule which minimizes the total energy used.

We show that for an arbitrarily number of processors and jobs with
equal work volumes there is a 2(1 + ε)(5(1 + ε))α−1B̃α = Oα(1) approx-
imation algorithm, where B̃α is the generalized Bell number. This is the
first constant factor algorithm for the multi-processor case, and this also
extends to arbitrary processor-dependent work volumes, up to losing a
factor of ( (1+r)r

2
)α in the approximation, where r is the maximum ratio

between two work volumes. For the single processor case, we introduce a
new linear programming formulation of speed scaling, using a new con-
straint capturing non-preemption, and prove that its integrality gap is
at most 12α−1. With our new constraint we improve on the previously
known unbounded integrality gap of at least Ω(nα−1). Finally, we deal
with the inapproximabilty of speed scaling and we prove that the multi-
processor case is APX-hard, even in the special case where all release
dates and deadlines are equal and r is 4.

1 Introduction

While traditional scheduling problems aim to process jobs as quickly as possi-
ble given a variety of side constraints, energy-efficient scheduling aims to also

I. Milis—Partially supported by the project THALES-ALGONOW co-financed by
the European Union (European Social Fund - ESF) and Greek national funds,
through the Operational Program “Education and Lifelong Learning”.

c© Springer International Publishing Switzerland 2015
E. Bampis and O. Svensson (Eds.): WAOA 2014, LNCS 8952, pp. 107–118, 2015.
DOI: 10.1007/978-3-319-18263-6 10



108 V. Cohen-Addad et al.

minimize the energy consumed by the system, typically by changing processor’s
frequency to scale its speed dynamically, slowing it down at times to conserve
energy. Thus, standard scheduling problems must now be revisited to take energy
into account, and this has been part of the agenda of the scheduling community
for the past few years (see the survey [1] and the references therein).

In minimum energy scheduling problems, introduced by Yao et al. [20], we
wish to execute jobs on a single (or a set of) processor(s) so that all jobs complete
between their release date and deadline in a way that minimizes the energy
consumed. Now, each job has to execute a work volume w and as the processors
may change their speed, a job may be completed faster (or slower) than the time
w it needs to execute at speed 1. It is observed that a processor running at speed
s consumes power at the rate sα, for a constant α > 1 (typical values of α are
less than 3) and so a processor running at speeds s(t) during an interval I would
consume energy

∫
t∈I

s(t)αdt.

Problem Definition. In this paper we examine a minimum energy scheduling
problem, which in its simplest non preemptive form can be stated as follows:

Non preemptive minimum energy scheduling (α)

Input: A set of m processors P = {p1, p2, . . . , pm}; a set of n jobs J = {1, . . . , n},
with a life interval Lj = [rj , dj ] and a work volume wj for each j ∈ J .

Output:An assignment S of an execution interval [sj , ej ] ⊆ [rj , dj ] for each job
j such that no m + 1 execution intervals have a common intersection.

Objective: Minimize E(S) =
∑

j

(ej − sj)
(

wj

ej − sj

)α

An assignment S of execution intervals for all jobs is called a schedule. Equiv-
alently, we could ask an algorithm to also output an assignment of each job to a
processor in P but this assignment is obtained greedily from the output above.
By convexity of s → sα, it is more efficient to run a processor at constant speed
for the same job. Hence, the energy consumed by a job j with execution interval
I is E(S, j) = |I| · (wj/|I|)α, and we can think of wj/|I| as the speed given to
job j. Clearly, E(S) =

∑
j E(S, j).

For a job j with life interval [rj , dj ], we say rj is the release date of j and dj

is the deadline of j. Hence j must be executed between rj and dj . We say that
j is alive at time t if t ∈ Lj . In the preemptive case, we are allowed to stop a
job, execute some other job and restart the first job later on. Equivalently, we
can think of breaking each job j into as many pieces as we want, that all have
the same life interval as j, their total work volume is the work volume of j and
they are executed non-preemptively. In the migratory version of the problem,
stopped jobs can even continue their execution on a different processor.

Related Work. The single processor preemptive problem is polynomial: Yao
et al. [20] proposed an elegant greedy algorithm whose optimality was proved
by Bansal et al. [11]. On the other hand, the single processor non-preemptive
problem is NP-hard (Antoniadis and Huang [5]), even for instances where for
any pair of jobs such that rj ≤ rj′ , it holds that dj ≥ dj′ ; they also proposed a
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(25α−4)-approximation algorithm for general instances. Moreover, a (1+ wmax
wmin

)α-
approximation algorithm for general instances of this problem was proposed
in [7], while [8] introduced a 2α−1(1 + ε)αB̃α-approximation which is better for

small values of α, where B̃α =
∞∑

k=0

kα−1e−1

k! <
(

e−0.6+εα
ln(α+1)

)α

, is the generalized

version of the Bell number introduced by [8], for any α ∈ R
+.

The homogeneous multiprocessor preemptive problem remains polynomial
when migration of jobs is allowed [2,4]. However, [3] proved that the non-
migratory variant of this problem, even for jobs with common release dates and
deadlines, is NP-Hard and gave a PTAS for such instances. Greiner
et al. [14] proposed a transformation of an optimal solution to general migra-
tory instances to a B�α�-approximate solution for non-migratory problem. For
the homogeneous multiprocessor non-preemptive problem Bampis et al. [7] pro-
posed a mα−1(n1/m)α−1-approximation algorithm.

Bampis et al. [8] studied the heterogeneous multiprocessor preemptive prob-
lem where every processor i has a different speed-to power function, sα(pi), and
both the life interval and the work of jobs are processor dependent. For the
migratory variant they proposed a polynomial in 1

ε algorithm returning a solu-
tion within an additive factor of ε far from the optimal solution, and for non-
migratory variant an (((1 + ε

1−ε )(1 + 2
n−2 ))αB̃α)-approximation algorithm.

In Table 1 we summarize the results mentioned above and our contribution
(in bold). There are also results for special cases of the energy minimization
problems when jobs have life intervals of a specific structure (common, agreeable,
laminar, purely laminar) or/and equal work volumes [3,5,7,15,20]. Some of the
works mentioned above [2,3,11,20] as well as [9,10] study online algorithms for
energy minimization problems in the speed scaling setting on a single processor
or homogeneous multiprocessors.

Our Results. In Sect. 2, we give a 2(1+ε)(5(1+ε))α−1B̃α = Oα(1)-approxima-
tion to the Non preemptive minimum energy scheduling (α) problem
when all work volumes are equal. This is the first constant factor approxi-
mation algorithm for this problem. Our algorithm extends to the case where
job volume differ: it provides a (52 )α−1B̃α((1 + ε)(1 + wmax

wmin
))α-approximation

to the Non preemptive minimum energy scheduling (α) problem where
wmax = maxi wi and wmin = mini wi (Theorem 2.1). This is the first multiproces-
sor algorithm with an approximation factor independent of n and m, improving
on the previous approximation of mα−1(n1/m)α−1 [7]. Up to an additional factor
of (wmax/wmin)α, our algorithm further extends to the case where the work of
jobs wij depends on the processor i on which j is executed.

In Sect. 3, we prove (Theorem 3.1) that a natural LP relaxation for Non
preemptive minimum energy scheduling (α) on a single processor has inte-
grality gap at most 12α−1. Our LP relaxation is obtained from the compact LP
relaxation in the preemptive setting of [8] (equivalent to their configuration LP)
by adding a constraint capturing non-preemption. In general, when faced with
hard optimization problems with weak linear programming relaxations, it is a
basic approach to find additional constraints that will reduce the integrality gap.
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Table 1. Known and our (in bold) results for minimum energy scheduling prob-
lems. Problems are denoted by extending the standard three-field notation of Graham
et al. [13]. P denotes a homogeneous multiprocessor where all processors obey the same
speed-to-power function sα, while R is used to denote a heterogeneous multiprocessor
where each processor has its own speed-to-power function sα(pi). For both environ-
ments the work volume of each job may depend on the processor it is executed and
this is indicated by including wij in the second field.

Problem Complexity Approximation ratio

1|rj , dj ,pmtn|E Polynomial [20]

1|rj , dj |E NP-Hard [5] 25α−4 [5]

2α−1(1 + ε)αB̃α [8]

(12(1 + ε))α−1

[Theorem 3.1]

P |rj , dj ,pmtn,mig|E Polynomial [2,4]

P |rj = 0, dj = 1, pmtn, no-mig|E NP-Hard [3] PTAS [3]

P |rj , dj ,pmtn, no-mig|E NP-Hard B�α� [14]

P |rj , dj |E NP-Hard mα(n1/m)α−1 [7]

( 5
2
)α−1B̃α((1 + ε)(1 + wmax

wmin
))α

[Theorem 2.1]

P |rj = 0, dj = 1, wi,j ,pmtn,no-mig|E APX-hard

[Theorem 4.1]

R|rij , dij , wij ,pmtn,mig|E Polynomial( 1
ε
) [8] OPT + ε [8]

R|rij , dij , wij ,pmtn,no-mig|E NP-Hard (1 + ε)αB̃α [8]

Our constraint closes the previously unbounded integrality gap (Lemma3.3).
This results in the first LP relaxation with a gap independent of n and the work
wj of the jobs for this problem.

In Sect. 4, we deal with the inapproximabilty of speed scaling problems and
we prove (Theorem 4.1) that the multiprocessor problem is APX-hard even for
jobs with common life intervals and work volumes in {1, 3, 4}. This is the first
APX-hardness result for an energy minimization problem.

Due to space limitations the proofs of the lemmas and some theorems will
be given in the full version of the paper [12].

Preliminaries. We define an independent set of jobs as a set of jobs whose life
intervals do not mutually intersect. Moreover, an independent set of jobs is good
if the life interval of no job falls between the deadlines of two consecutive jobs
of this independent set.

Proposition 1.1. [5] Let S and S′ be two schedules such that job j is executed
during intervals I and I ′ respectively. Then E(S′, j) = (|I|/|I ′|)α−1E(S, j).

2 Multiprocessor Scheduling

In this section we present an approximation algorithm for Non-preemptive
minimum energy scheduling (α) problem and show the following theorem:
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Theorem 2.1. There exists a polynomial-time approximation algorithm for
Non-preemptive minimum energy scheduling (α), with approximation fac-
tor ((52 )α−1B̃α((1 + ε)(1 + wmax

wmin
))α). When all jobs have the same work volume,

this factor becomes 2(1 + ε)(5(1 + ε))α−1B̃α.

Our algorithm uses a reduction to (a special case of) the non-migratory variant of
Preemptive fully heterogeneous minimum energy scheduling problem,
studied by Bampis et al. [8]. In this problem, every processor i has a different
speed-to power function, sα(pi), and both the life interval and the work of jobs
are processor dependent.

Theorem 2.2. [8] There is an approximation algorithm for the Preemptive
fully heterogeneous minimum energy scheduling problem without migra-
tion with approximation ratio (1 + ε)αB̃α.

Overview. The algorithm proceeds as follows: we consider the life intervals of
all the jobs, greedily find m maximal independent sets, and assign the jobs of the
ith independent set Ji to processor pi. Then we partition time on pi according
to the deadlines of the jobs in Ji, and restrict ourselves to schedules such that no
execution interval on pi overlaps such a deadline. We solve the resulting restricted
problem using the algorithm from Bampis et al.’s [8] to obtain a feasible schedule.
To analyze its cost, we first show that an optimal solution can be transformed
into a solution satisfying our additional constraints and without increasing the
cost by too much. We start with an optimal solution and attempt, for each job
j in the i-th independent set, to move j to processor pi and execute it in the
middle fifth of its life interval. Its execution interval is then shrunk by a factor
of at most 5 and, by Proposition 1.1, its energy consumption is increased by a
factor of at most 5α−1. If we are unable to do so for some j, it is because of some
other job j′ on processor pi with a significant overlap with j, and we execute
both j and j′ during the time of overlap. To guarantee that no execution interval
on pi crosses one of our selected deadlines, we argue that each execution interval
crosses at most one such deadline and further modify the schedule, restricting
the execution interval to one of the two sides of the deadline, up to shrinking
its execution interval by a factor of 2. Finally, the algorithm of Bampis et al. [8]
provides an approximation to our constrained problem.

Algorithm and Analysis. To give a detailed description of our algorithm, let
Ji and Ji,l denote subsets of jobs, ∀i, l, and Ik

i denote time interval, ∀i, k.
Algorithm 1

1. R ← J
2. For i = 1 to m:

(a) Ji ← ∅, k ← 0 and ti0 ← 0.
(b) While ∃j ∈ R such that {j} ∪ Ji is an independent set
(c) Find such a j with dj minimum and let Ji ← Ji∪{j} and R ← R\{j}.
(d) k ← k + 1 and tik ← dj .
(e) tik+1 ← +∞
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3. For every processor pi, for k = 1 to |Ji| + 1, let Ii
k = [tik−1, t

i
k].

4. Create an instance of Problem preemptive fully heterogeneous mini-
mum energy scheduling as follows:
(a) For every processor pi, for every interval Ii

l , create a heterogeneous proces-
sor (i, l) with αi,l = α.

(b) The new instance has the same set of jobs. For every job j ∈ J which
is alive during part or all of some Ii

l , set release date r(i,l)j = max(rj −
til−1, 0), deadline d(i,l)j = min(dj − til−1, t

i
l − til−1), work w(i,l)j = wj

5. Solve the created problem using the algorithm from [8].
Let Ji,l be the set of jobs scheduled (preemptively) on heterogeneous processor
(i, l).

6. For each (i, l), reorder the execution intervals inside Ii
l so that the jobs of Ji,l

are executed by order of non-decreasing deadline.

For the analysis of Algorithm 1, we first give the following Lemma which
has a crucial role in the analysis of the approximation ratio.

Lemma 2.3. Let {J1, ...,Jm} be a subpartition of J such that each Ji is an
independent set of jobs, and S be a schedule of J . Then there exists a schedule
S′ such that for every i all the jobs of Ji are executed on processor pi, and whose
cost satisfies E(S′) ≤ (5/2)α−1(1 + wmax

wmin
)αE(S).

We next show that we can force every job that is executed on processor pi to be
scheduled during a subinterval of some [ti�−1, t

i
�].

Lemma 2.4. Let {J1, ...,Jm} be the subpartition of J found by Algorithm 1
and I be the set of all time intervals found at its Step 3. Let S′ be a schedule
such that for every i all the jobs of Ji are executed on processor pi. There exists
a schedule S′′ such that for each processor pi and for each job j that is executed
on pi in S′, in S′′ j is executed on pi and the execution interval of j is included
in some Ii

l ; moreover, for any j, E(S′′, j) ≤ 2α−1E(S′, j).

Looking at Lemma 2.3, we notice that the jobs whose cost has changed between
S and S′ are, in S′, now executed on pi during the life interval of an element
of Ji. Looking at Lemma 2.4, we notice that the jobs whose cost has changed
between S′ and S′′ are, in S′, executed on pi in an interval that overlaps one of
the ti�. Thus for every j we have E(S, j) = E(S′, j) or E(S′, j) = E(S′′, j). Hence
the cost of a job after the two transformations from S to S′ to S′′ increases by
a factor of at most:

E(S′′)
E(S)

≤ max

((
5
2

)α−1

·
(

1 +
wmax

wmin

)α

, 2α−1

)
=

(
5
2

)α−1

·
(

1 +
wmax

wmin

)α

.

Finally, observe that the last step of Algorithm 1 transforms the schedule
into a non-preemptive schedule that is feasible and has the same cost. Putting
Lemmas 2.3, 2.4 and Theorem 2.2 together, we obtain an approximation ratio of

(
5
2

)α−1

·
(

(1 + ε)
(

1 +
wmax

wmin

))α

· B̃α.
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By an easy reduction, Theorem 2.1 extends to the case where the work vol-
ume of each job, wij , depends on the processor pi on which job j is executed,
up to losing an additional factor of (wmax/wmin)α in the approximation ratio.
Remark, also, that Algorithm 1 creates an instance of the preemptive fully
heterogeneous minimum energy scheduling problem where all the proces-
sors have the same α. However, no better approximation ratio is known for this
special case.

3 Single Processor Scheduling

In this section, we present a new LP relaxation for Non preemptive minimum
energy scheduling (α) on a single processor.

Theorem 3.1. The linear program LP1 has integrality gap at most 12α−1.

Linear Programming Formulation. For each job j and execution interval I,
variables xI,j indicates whether j is assigned to I in the schedule. Lemma 3.2, due
to Huang and Ott [15], allows us to restrict our attention to execution intervals
that begin and end in some polynomial size set T of times. Let I denote the
set of all the intervals with both endpoints at a landmark. Since j must be
scheduled,

∑
I xI,j = 1. Since at any time t, at most one job is being processed,∑

j

∑
I�t xI,j ≤ 1.

Lemma 3.2 (Discretization of Time). [15] Let r1, . . . , r2n be the release
dates and deadlines of jobs. For each 1 ≤ i < 2n, create n2(1 + 1

ε ) − 1 equally-
spaced “landmarks” in the interval [ri, ri+1]. Let S be a solution of minimal
cost such that for each job j and each consecutive landmarks ti, ti+1, either job
j is executed during the whole interval [ti, ti+1] or not at all. Then E(S) ≤
(1 + ε)α−1OPT.

Linear program LP1

minimize E(x) =
∑

j∈J

∑

I∈I
xI,j

(
wj

|I|
)α

subject to:

job constraint
∑

I∈I
xI,j ≥ 1 ∀j ∈ J (1)

processor constraint
∑

j∈J

∑

I∈I
t∈I

xI,j ≤ 1 ∀ landmark t (2)

non-preemption
∑

I′∈I
I′∩I 
=∅

xI′,j +
∑

I′′∈I
I⊆I′′,j′∈J

xI′′,j′ ≤ 1 ∀I ∈ I,∀j ∈ J (3)

xI,j ≥ 0 ∀j ∈ J,∀I ∈ I(j) (4)
xI,j = 0 ∀I /∈ I(j) (5)
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Our linear program contains an additional new constraint (3) “capturing”
non-preemption - it is only valid for non preemptive schedules: if job j is sched-
uled during interval I or a subinterval of I, then no other job can be scheduled
during an interval that contains I. This constraint is necessary: without it, the
integrality gap is unbounded. To show that the gap without constraint (3) may
be large, we first note that for an instance of Minimum energy scheduling
(α) on a single processor, the ratio between the minimum energy needed when
preemption is not allowed and when preemption is allowed can be as last as
Ω(nα−1) [7]. Call this ratio the price of non-preemption. Figure 1 depicts an
instance where this ratio is Ω(nα−1). As a consequence of our constant bound
on LP1, the gap without constraint (3) is therefore at least as large.

Lemma 3.3. Without constraint (3), LP1 has integrality gap at least Ω(nα−1).

Fig. 1. An instance on which LP1 has an integrality gap of at least Ω(nα−1). The
figure shows the life intervals of the n + 1 jobs and, above them, their work volume.

The remainder of this section is devoted to proving Theorem 3.1.

Overview. We show that any fractional solution can be transformed into an
integral solution without increasing the value of the solution by too much, in
three steps. We first divide the time into zones and transform the fractional
solution so all (non-zero) fractional execution intervals are inside a zone. Then,
each zone is divided into nested subzones and we further transform our fractional
solution so that all fractional execution intervals are inside a subzone and the
life interval of the corresponding job contains that subzone. Finally, we build a
weighted bipartite graph from the transformed fractional solution whose edges
represent the possible allocation of execution intervals to subzones. Similarly
to [19], we find an integral (weighted) matching in this graph and translate this
solution to an integral schedule. We then show that the cost of the integral solu-
tion we built is at most 12α−1 times the cost of the original fractional solution.

Building an Integral Solution from a Fractional Solution. We now detail
our transformation of the fractional solution. It consists of three steps. The first
step is derived from Antoniadis and Huang’s algorithm [5].

Splitting Execution Intervals on Deadlines. Our first transformation turns
a fractional solution into a fractional solution where xI,j is 0 for any execution
interval I that contains any points in a set of deadlines we pick. The deadlines
we pick are the deadlines of a good independent set.

The constraint (3) is crucial for proving the next Lemma.
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Lemma 3.4. Let LP1 be the LP obtained from an instance of Non preemp-
tive minimum energy scheduling (α) and J be any good independent set
for this instance. In polynomial time, we can transform any fractional solution
x to LP1 to a fractional solution y of value at most 2α−1E(x) where yI,j = 0
if I crosses a deadlines of J .

Further Splits. We now proceed to our second transformation where we further
split the execution intervals of a fractional solution. Now that all execution
intervals (in the support of x) lie between two consecutive deadlines (which
we now call a “zone”), we can further partition each zone so the first half is
dedicated to jobs whose life interval ends in that zone and the second half is
dedicated to the others (namely, jobs whose life interval starts in that zone and
jobs whose life interval contains the zone).

Lemma 3.5. Let LP1 be the LP obtained from an instance of Non preemp-
tive minimum energy scheduling (α) and J be any good independent set
for this instance. In polynomial time, we can transform any fractional solution
y where yI,j = 0 if I crosses a deadlines of J to LP1 to a fractional solution z
of value at most 2α−1 times the value of y where zI,j > 0 implies

1. I ⊆ [ds, ds + 1
2k (de − ds)] ⊆ Lj for some consecutive deadlines ds, de of I and

k ≥ 1, or
2. I ⊆ [de − 1

2k (de − ds), de] ⊆ Lj for some consecutive deadlines ds, de of I and
k ≥ 1.

We let Z consists of all intervals of the form [ds, ds+ 1
2k (de−ds)] and [de− 1

2k (de−
ds), de] for consecutive deadlines ds, de of I. Though they do not partition the
timeline, we still refer to Z as subzones.

Building a Weighted Bipartite Matching. As a result of Lemma 3.5, for
each zI,j > 0, I is contained in some subzone Z and furthermore, the life inter-
val of j contains Z so we can freely shift I to another interval (of the same
length) inside Z. Thus, we will only remember the length of the fractional exe-
cution intervals and the subzone Z in which they belong. I.e., we think of z as
a fractional assignment of lengths ci for each job to Z.

Lemma 3.6. If for each subzone Z, the lengths ci assigned to Z and all subzones
included in Z is at most |Z| then there is a feasible schedule where each job is
given their assigned length in Z.

We now desire an integral assignment of lengths to each Z where the total of all
lengths assigned to Z does not exceed |Z|. Note that this constraint is satisfied
by the fractional solution derived from z (as z satisfies constraint (2)).

To obtain such an integral assignment from our fractional assignment derived
from z, we build a weighted bipartite graph G(z) where assignments correspond
to matchings and the weight of a matching correspond to the energy cost (of the
matching interpreted as a schedule). We will then obtain an integral matching
from the derived fractional matching (whose weight is exactly E(z)).
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We now describe G(z) with bipartition (A,B) and weight w(e) for each edge
e ∈ E(G). We also keep a length �(e) for each edge e which will be used in the
very last step of our proof (but in no way affects the weighted bipartite matching
we look for).

– A contains one vertex for each job. I.e., A = {aj | j ∈ J}
– B consists of vertices for subzones. However, B may contain more than one

vertex for each subzone Z. In fact, the number of subzones it contains is the
ceiling of the sum of fractional value of all lengths assigned to Z. I.e.,

B =

⎧
⎨

⎩bZ,i | Z ∈ Z, i ∈ 1, . . . ,

⎡

⎢⎢⎢

∑

j∈J

∑

I⊆Z

xI,j

⎤

⎥⎥⎥

⎫
⎬

⎭

– The edges are constructed as follows. Start with all edges ajbZ,i for all i if
xI,j > 0 for some I ⊆ Z. We now delete some edges to obtain the edges of
G(z) and assign weights and lengths of the remaining edges.
Sort the lengths assigned to Z by z in decreasing order of length. For each
such length ck for job j of fractional value zI,j , set w(ajbZ,i) to wα

j

cα−1
k

where
i is the ceiling of the partial sum of all jobs previously considered for Z

(i.e., i = ∑k−1
q=1 cq�). Set �(ajbZ,i) to ck. Also set w(ajbZ,i+1) to wα

j

cα−1
k

and

�(ajbZ,i+1) to ck if adding j to the ceiling of the partial sum increases it by
1. Delete all other edges of the form w(ajbZ,t).

z naturally gives the following fractional matching M(z) of G(z) with total
weight E(z): we pick each edge with weight exactly zk (or zk split into two as
follows if adding zk increased the ceiling of the partial sum by 1. Whatever we
need to add to the partial sum to make it an integer is the fraction we choose
of the first edge, and the rest of zk for the second edge).

To complete the description of our final transformation, we use and the fol-
lowing lemma.

Lemma 3.7. Let G(z) be the bipartite graph built from a transformed fractional
solution z. For any matching M saturating A of G(z), we can obtain a schedule
whose energy consumption is at most 3α−1 times the weight of M .

To prove the integrality gap of LP1, we simply need to apply each Lemma in
this section in turn.

Given an optimal fractional solution x to LP1, find a good independent set
J (to the instance which generate the LP) and apply Lemma 3.4 to x and I to
obtain a fractional solution y of value at most 2α−1E(x) where no execution
interval crosses a deadline in J .

Then apply Lemma 3.5 to y to obtain z of value at most 2α−1E(y) ≤
4α−1E(x) where for any non-zero zI,j , I is contained in a “subzone” of the
form [ds, ds + 1

2k (de −ds)] or [de − 1
2k (de −ds), de] for some consecutive deadlines

ds, de and k ≥ 1 and furthermore Lj contains this subzone.
Now build G(z) and interpret z as a fractional matching in G(z). It is known

that in a weighted bipartite graph, there exists an (integral) matching of same
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weight as any fractional matching [18,19]. Thus, G(z) has a matching M of same
weight as this fractional matching and by Lemma3.7, we can build a schedule
from M whose energy consumption is at most 3α−1E(z) ≤ 12α−1E(x).

Such a schedule is of course a solution to LP1 of same value, thus completing
the proof.

Algorithm Summary. We can summarize our algorithm for transforming any
fractional solution x to an integral solution.

Algorithm 2

1. Apply the transformation of Lemma3.4 and then Lemma 3.5 to the fractional
solution to obtain a new fractional solution z.

2. Construct the weighted bipartite graph G(z) = (A,B).
3. Find a minimum weight matching M that matches every node in A.
4. For each edge e = (aj , bZ,i) ∈ M , schedule job j in the subzone Z with an

interval of length �(e)
3 . Use an earliest deadline first schedule for all jobs in Z

if Z is in the first half of a zone and a latest release date first schedule if Z is
in the second half of a zone.

As a corollary to Theorem 3.1, we obtain the following theorem for non-
preemptive scheduling on a single processor.

Theorem 3.8. There exists a polynomial-time algorithm which computes a
(12(1 + ε))α−1-approximation to the Non preemptive minimum energy
scheduling (α) problem on a single processor

Compared to the previous best approximations of min{2α−1B̃α, 25α−4} [5,8],
this is always better than 25α−4 and better than 2α−1B̃α for any α ≥ 25.

4 Hardness of Approximation

In this section, we sketch the proof of APX-hardness for a variant of Non pre-
emptive minimum energy scheduling (α) (see [12] for detailed definitions
and proofs). In this Minimum energy scheduling with processor depen-
dent works (α) problem, jobs have work volumes wij depending on which
processor they are scheduled on. Our reduction is from Maximum Bounded
3-Dimensional Matching; this is the usual 3-Dimensional Matching prob-
lem where every element of the ground set appears in at least 1 and at most 3
sets (triples), known to be APX-hard [17] even for instances where the optimal
solution has size equal to the cardinality of the ground sets.

Our construction draws some ideas from Azar et al. [6] and Lenstra et al. [16].
We define polynomial time computable mappings between instances of these
two problems. Our mapping builds instances of Minimum energy scheduling
with processor dependent works (α) where all jobs have common release
dates and deadlines, and are therefore agreeable. Moreover, all work wij are 1, 3
or 4 so, our result shows the problem with constant ratio for which we gave an
approximation algorithm in the Sect. 2 is already APX-Hard.
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Specifically, our instance has one job for each element of the ground set and
one machine for each triple T where jobs for members of T can be scheduled
cheaply. We add some “dummy jobs” and “dummy machines” to help us bound
the cost of elements we think of as unmatched. Our reduction proves.

Theorem 4.1. Minimum energy scheduling with processor dependent
works is APX-Hard.

References

1. Albers, S.: Energy-efficient algorithms. Commun. ACM 53(5), 86–96 (2010)
2. Albers, S., Antoniadis, A., Greiner, G.: On multi-processor speed scaling with

migration: extended abstract. In: SPAA 2011, pp. 279–288 (2011)
3. Albers, S., Müller, F., Schmelzer, S.: Speed scaling on parallel processors. In: SPAA

2007, pp. 289–298 (2007)
4. Angel, E., Bampis, E., Kacem, F., Letsios, D.: Speed scaling on parallel processors

with migration. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-
Par 2012. LNCS, vol. 7484, pp. 128–140. Springer, Heidelberg (2012)

5. Antoniadis, A., Huang, C.-C.: Non-preemptive speed scaling. J. Sched. 16(4), 385–
394 (2013)

6. Azar, Y., Epstein, L., Richter, Y., Woeginger, G.J.: All-norm approximation algo-
rithms. J. Algorithms 52(2), 120–133 (2004)

7. Bampis, E., Kononov, A., Letsios, D., Lucarelli, G., Nemparis, I.: From preemp-
tive to non-preemptive speed-scaling scheduling. In: Du, D.-Z., Zhang, G. (eds.)
COCOON 2013. LNCS, vol. 7936, pp. 134–146. Springer, Heidelberg (2013)

8. Bampis, E., Kononov, A., Letsios, D., Lucarelli, G., Sviridenko, M.: Energy efficient
scheduling and routing via randomized rounding. In: FSTTCS, pp. 449–460 (2013)

9. Bansal, N., Bunde, D.P., Chan, H.-L., Pruhs, K.: Average rate speed scaling. Algo-
rithmica 60(4), 877–889 (2011)

10. Bansal, N., Chan, H.-L., Katz, D., Pruhs, K.: Improved bounds for speed scaling
in devices obeying the cube-root rule. Theory Comput. 8(1), 209–229 (2012)

11. Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and temper-
ature. J. ACM 54(1), 3:1–3:39 (2007)

12. Cohen-Addad, V., Li, Z., Mathieu, C., Milis. I.: Energy-efficient algorithms for
non-preemptive speed-scaling. CoRR (2014)

13. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization
and approximation in deterministic sequencing and scheduling: a survey. Ann.
Discrete Math. 5, 287–326 (1979)

14. Greiner, G., Nonner, T., Souza, A.: The bell is ringing in speed-scaled multiproces-
sor scheduling. Theory Comput. Syst. 1–21 (2013)

15. Huang, C.-C., Ott, S.: New results for non-preemptive speed scaling. Research
report, Max-Planck-Institut für Informatik (2013)

16. Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling
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Gatineau, QC, Canada

Jurek.Czyzowicz@uqo.ca
2 School of Computer Science, Carleton University, Ottawa, Canada

kranakis@scs.carleton.ca
3 Department of Mathematics and Computer Science, Wesleyan University,

Middletown, CT, USA
dkrizanc@wesleyan.edu

4 Department of Computer Science and Software Engineering, Concordia University,
Montreal, QC, Canada

{lata,opatrny}@cs.concordia.ca

Abstract. Cooperation between mobile robots and wireless sensor net-
works is a line of research that is currently attracting a lot of attention.
In this context, we study the following problem of barrier coverage by
stationary wireless sensors that are assisted by a mobile robot with the
capacity to move sensors. Assume that n sensors are initially arbitrar-
ily distributed on a line segment barrier. Each sensor is said to cover
the portion of the barrier that intersects with its sensing area. Owing to
incorrect initial position, or the death of some of the sensors, the barrier
is not completely covered by the sensors. We employ a mobile robot to
move the sensors to final positions on the barrier such that barrier cov-
erage is guaranteed. We seek algorithms that minimize the length of the
robot’s trajectory, since this allows the restoration of barrier coverage as
soon as possible. We give an optimal linear-time offline algorithm that
gives a minimum-length trajectory for a robot that starts at one end
of the barrier and achieves the restoration of barrier coverage. We also
study two different online models: one in which the online robot does
not know the length of the barrier in advance, and the other in which
the online robot knows it in advance. For the case when the online robot
does not know the length of the barrier, we prove a tight bound of 3/2
on the competitive ratio, and we give a tight lower bound of 5/4 on the
competitive ratio in the other case. Thus for each case we give an optimal
online algorithm.

1 Introduction

Mobile robots and wireless sensor networks are related areas of research that
have largely been studied by different communities of researchers. Recently,
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there has been increasing interest in the possibilities uncovered by utilizing both
technologies [14]: what if mobile robots and wireless sensors could cooperate to
solve problems and perform tasks? Environments where autonomous networked
entities such as robots and sensors cooperate to achieve a common goal are
sometimes called mixed-mode environments and have been the subject of several
recent research events, e.g., [10,18].

In this paper, we study a related mixed-mode problem for barrier coverage.
Assume n stationary sensors have initial positions on a line segment barrier.
Owing to incorrect initial placement, or the death of some sensors due to battery
failure or a disaster, the barrier is not completely covered by the sensors. An
illustration is given in Fig. 1(a), where the segment of the barrier covered by a
sensor is represented as a box.

The task of the mobile robot is to walk along the barrier segment, pick up
and move sensors to final positions such that barrier coverage is restored, i.e., in
their final positions, the sensors collectively cover the entire line segment barrier
as in Fig. 1(b). Note that the final positions that achieve barrier coverage are
not unique. Since sensors may need to be moved in different directions, i.e. left

s 1
s 2 s4 s6

s 1
s 2

s6s4

robot

robot

robot

6.3 3.4 L=7.87.30 0.3 2.6 2.7 5.2

s7,8

0 1 2 3 4 5 6 7

(a)

0 L

s8
(b)

0 L

trajectory

1.5 3.6 7.5 7.3

(c)

0 L

trajectory

1.5 3.6 7.5 7.32.7 3.5

(d)

s 3 s 5
s 7

Fig. 1. Robot-assisted restoration of barrier coverage problem with sensor range equal
to 0.5: (a) the initial configuration on segment [0, L] with gaps in coverage, (b) a
possible solution, (c) and (d) give examples of two trajectories of different length that
could be followed by the robot to obtain the final configuration in (b).
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or right, to assure coverage, the robot may sometimes need to turn or change
direction in order to restore coverage. The robot may decide to resolve the gap
as soon as possible, as late as possible, or some time in between. The robot thus
follows a certain trajectory, which can be specified by the starting point, and
a sequence of points where the robot alternately turns left and right before it
reaches its termination point. Given the initial configuration of Fig. 1(a), two of
the possible trajectories that achieve the same final positions of sensors are shown
in Figs. 1(c) and (d). The time needed to restore barrier coverage is clearly related
to the length of the robot’s trajectory, which in turn depends on the knowledge it
has of the initial positions of sensors. The problem we are interested in is finding
an optimal trajectory for the mobile robot in order to achieve barrier coverage
as fast as possible.

Sensor Relocation Model. In the sequel we define the capabilities of the
sensors and the robot, as well as the trajectory of the robot.

Sensors. Assume that n sensors s1, s2, . . . , sn are distributed on the line segment
[0, L] of length L with endpoints 0 and L in locations x1 ≤ x2 ≤ . . . ≤ xn. The
range of all sensors is assumed to be identical, and is equal to a positive real
number r > 0. Thus sensor si in position xi defines a closed interval [xi−r, xi+r]
of length 2r centered at the current position xi of the sensor, in which it can
detect an intruding object or an event of interest. See Fig. 1(a) for an illustration
of a problem instance. We say that the sensor covers the closed interval [xi −
r, xi + r]. We assume that the total range of the sensors is sufficient to cover the
entire line segment [0, L], i.e., 2rn ≥ L. We define a gap to be a closed subinterval
G of [0, L] such that no point in G is within the range of a sensor. Clearly, an
initial placement of the sensors may have gaps. The sensors provide complete
coverage of [0, L] if they leave no gaps.

Robot. There is a mobile robot that can move the sensors to positions that guar-
antee coverage of the entire line segment. We assume that the robot can pick,
carry, move and drop/deposit sensors from any initial position to any desired
position on the line segment. There is no constraint on the direction and num-
ber of turns it can take (left or right) so as to pick and/or drop sensors, and no
restriction on where in the line segment it can drop the sensors. We study the
case when sensors are small enough and thus the robot can potentially carry all
the sensors it needs at the same time.

Robot Trajectory and Length. Our goal is to provide offline and online algorithms
so as to minimize the time taken to restore barrier coverage. Assuming constant
speed, we measure this by the distance travelled by the robot from its starting
position to complete the task of moving sensors to positions which guarantee
complete coverage of the barrier. We assume that the mobile robot starts at
position 0 and moves to the right. At some point it can turn and move left,
then again turn and move right and so on. Thus its trajectory can be specified
as a sequence of points on the barrier: [t0 = 0, t1, t2, . . . , tm], where the points
t1, t3, . . . are the points where the robot turns left, the points t2, t4, . . . are the
points where the robot turns right, and finally, the point tm is the termination
point of the trajectory. Therefore, ti > ti−1 for all odd i while ti < ti−1 for
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all even i where 0 < i ≤ m, and the robot’s trajectory is the sequence of line
segments [0, t1], [t1, t2], · · · , [tm−1, tm]. The length of the trajectory is defined as
Σm

i=1|ti − ti−1|.
We seek algorithms that calculate an optimal trajectory for the mobile robot

that ensure barrier coverage, i.e. a trajectory of smallest possible length.
A mobile robot using an offline algorithm to calculate its trajectory is assumed
to know all the initial positions of sensors before starting its trajectory. On the
other hand, a robot using an online algorithm knows about sensors only in the
parts of the barrier segment where it has already travelled. Specifically, an online
robot discovers the presence or absence of a sensor at position x only when reach-
ing x. Therefore, at the start of the algorithm, such a robot has no knowledge
about any of the sensors’ positions. It can of course remember any sensors that
it has seen previously.

Related Work. Barrier coverage using wireless sensors has been the subject of
intensive research in the last decade [1,16,19]. Some papers assumed randomized
deployment of sensors on the barrier and analyzed the probability of barrier cov-
erage. Other papers have studied the case of relocatable sensors [21,22], which
start at arbitrary positions and can move to final positions that achieve bar-
rier coverage. Centralized algorithms for minimizing the maximum and average
movement of sensors were studied in [5–7] respectively. Multiple barriers were
studied in [2], and distributed algorithms for barrier coverage were given for the
first time in [11].

Charikar et al. [4] consider the k-delivery TSP problem for transporting effi-
ciently n identical objects, placed at arbitrary initial locations, to n target loca-
tions with a vehicle that can carry at most k objects at a time. Chalopin et al. [3]
provide hardness results, exact, approximation, and resource-augmented algo-
rithms for the problem of whether there is a schedule of agents’ movements
that collaboratively deliver data from specified sources of a network to a central
repository. Our problem differs both in being uncapacitated, and in the fact that
the locations of the sources and targets are not known in advance.

Online vehicle routing problems and the online travelling salesman problem
have been studied previously; see [12] for a survey. Our problem and our concep-
tion of online are quite different: the locations the robot needs to deposit sensors
are not pre-determined, and we assume an online robot discovers the positions
of sensors as it moves along the barrier.

Cooperation between mobile robots and wireless sensors is a relatively new
research area and has been explored in several research events in the last cou-
ple of years [10,14,17,18]. The authors of [9,20] use information obtained from
wireless sensors for the problem of localization of a mobile robot. In [13], mobile
robots and stationary sensors cooperate in a target tracking problem: stationary
sensors track moving sensors in their sensor range, while mobile robots explore
regions not covered by the fixed sensors. A common evaluation platform for
mixed-mode environments incorporating both mobile robots and wireless sensor
networks is described in [15].

Our Results. We give a linear time offline algorithm that computes an optimal
trajectory for a robot starting at an endpoint of the barrier to restore barrier
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coverage. For the online case, we show that when the robot does not know
the length of the barrier and recognizes the end of it only when reaching it,
any algorithm must have a competitive ratio of at least 3/2. We give a simple
algorithm that matches this bound. When the robot does know the length of
the barrier, we show a lower bound of 5/4 on the competitive ratio of any online
algorithm for the problem. We then give an adaptive online algorithm whose
competitive ratio matches this lower bound.
Due to the page limit, most of the proofs are omitted, they can be found in an
extended version of the paper [8].

2 Optimal Offline Algorithm

In our offline algorithm we assume that the robot has global knowledge of the
positions of sensors on the line segment, and that during the course of its move-
ment, can pick up and carry as many sensors as necessary and deposit them as
required. All sensors have identical range denoted by r, and the robot starts at
the endpoint 0 of the interval [0, L], and the number of given sensors is sufficient
to cover the given interval.

Obviously, when the barrier does not contain any gap, the trajectory is empty
and we consider below instances containing gaps. We begin by establishing the
properties of optimal non-empty trajectories of the robot, which are crucial to
the development of the algorithm. We say that a solution is order-preserving if
the final order of the position of the sensors is the same as their initial positions.
Secondly, a solution is called fully stretched if the robot places all sensors in
attached positions, i.e., two consecutive sensors encountered by the robot are
placed at distance 2r and the first sensor is at distance r from 0, except possibly
the sensors at or after the termination point tm as in the example in Fig. 1(b).

Lemma 1. (Order-preserving fully stretched solution) There exists an optimal
trajectory for the robot that produces an order-preserving fully-stretched solution.

Lemma 2. (Three Visits Lemma) The trajectory of an optimal algorithm does
not contain the same point of the line segment more than three times. Further-
more, the last point of the trajectory can occur in the trajectory at most twice.

Observe that the above lemmas applies to both offline and online algorithms.
Furthermore, once a trajectory is specified, the robot can produce an order-
preserving fully stretched solution as discussed below, so it suffices to specify
the trajectory of the robot.

Given an optimal trajectory [t0, t1, t2, t3 . . . , tm−1, tm], the robot makes a left
turn at t1, t3, . . . and right turns at t2, t4, . . .. Therefore, the segments [t2, t1], [t4, t3],
. . . , [t2i, t2i−1], . . . of [0, L] are traversed by the robot three times, 1 ≤ i ≤
(m − 1)/2, and if m is even, then the segment [tm, tm − 1], is traversed twice. Fur-
thermore, all these segments are pairwise disjoint, except possibly for the endpoints
of the segments. We call the part of the trajectory [t2i, t2i−1], 1 ≤ i ≤ (m − 1)/2,
traversed by the robot three times, a triple, t2i−1 is called its left turning point and
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t2i is called its right turning point. If m is even, then the segment [tm, tm−1] is called
a double and tm−1 is called its left turning point. Any line segment in the trajectory
that is traversed exactly once by the robot is called a straight line segment (see
Fig. 2). When following a straight line segment the robot necessarily has sufficient
supply of sensors and deposits them in attached positions. When following a seg-
ment of a triple or a double for the first time, the robot picks all sensors found there
and deposits then in attached positions when going back over the segment (see the
proof of Lemma 2). Clearly, if two consecutive triples, or a triple and a double share
an endpoint, these two moves can be merged into a single triple, or a double. This
observation and the preceding lemmas imply the following corollary.

Corollary 1. There is an optimal order-preserving and fully stretched trajec-
tory of the robot that produces a complete coverage of [0, L] which consists of k
consecutive triples and straight line segments for some k ≥ 0, and ends with a
straight line segment or a double (see Fig. 2).

(a)

(b)

t t t t t t

t t t t t t t

2 1 4 3 m

2 1 4 3 m

0 L

0 L

m−1

m−1 m−2

Fig. 2. Two possible shapes of an optimal trajectory.

To construct an optimal trajectory of the robot we need to determine, from
the given input instance, the ends of the triples and a double. The following
definition of coverage balance is used to determine them.

Definition 1. The coverage balance of sensor si at location xi is defined to
be Ci = (2ri − r) − xi, i.e., the difference between the total length that can be
covered by sensors s1, s2, . . . , si up to the center of si, and the distance of si to
the beginning of the interval.

Consider the example in Fig. 1. The coverage balance of sensors listed from
left to right are 0.2,−1.1,−0.2,−0.1, 0.2, 0.3,−0.8 and 0.2. Notice that in the
two examples of trajectories in this figure each left turn is done at a sensor
with negative coverage balance. However, doing a left turn at every sensor with
negative coverage balance would be wrong, because it could violate the three
visits lemma. Similarly, doing a triple involving many consecutive sensors with
negative coverage balance can be sub-optimal as well, as seen in the trajectory
of Fig. 1(c). The following lemma specifies all potential left turning points.
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Lemma 3. Let ([t0, t1, t2, t3 . . . , tm−1, tm]) be an optimal trajectory which min-
imizes the number of triples.

1. Every sensor with negative coverage balance is shifted left, and thus its location
is in a triple or the double segment.

2. No triple segment contains the location of a sensor with nonnegative coverage
balance.

3. In a double segment the rightmost sensor has negative coverage balance.
4. For every triple [t2i, t2i−1], the left-turning point t2i−1 is a location of a sensor

xj for some integer j such that either −2r < Cj < 0, or both, −2r = Cj and
xj = xj+1, and the coverage balance of every other sensor located in the
interval [t2i, t2i−1] is less than or equal to −2r.

5. Let k be the smallest integer such that all gaps in [0, L] are to the left of 2rk.
Then sk is the last sensor to be moved. Let c = xk if Ck < 0, else c = xk+Ck.
If the trajectory does not end with a double then Ck ≥ 0, m is odd, and the
termination point tm = c. Otherwise the trajectory ends with a double, and
tm−1 = c, i.e., the left-turning point of the double is c.

Thus, by the preceding lemma, the potential left turning points in the example
in Fig. 1 are the initial locations of sensors s3, s4, and s7, but not s2.

Definition 2. Let m be the number of sensors whose coverage balance is either
−2r < Cj < 0, or −2r = Cj and xj = xj+1. The list A of indices of sensors of
potential triple delimiters is a list of pairs A = [(b1, a1), (b2, a2), · · · , (bm, am)]
of sensor indices such that

1. a1 < a2 < · · · < am are the indices of all sensors such that either −2r <
Cj < 0, or −2r = Cj and xj = xj+1

2. b1 is the smallest index of a sensor with negative coverage balance, and for
1 < i ≤ m the value of bi is the smallest index larger than ai−1 with negative
coverage balance.

Lemma 4. Let A be the list of indices of sensors of potential triple delimiters,
m be the number of pairs in A, and c be defined as in Lemma 3. There is an
optimal, order preserving, fully-stretched trajectory such that for some integer j,
0 ≤ j ≤ m,

1. the trajectory contains j triples [xbi + Cbi , xai
], 1 ≤ i ≤ j,

2. If j < m then the trajectory ends with a double, [xbj+1 + Cbj+1 , c], otherwise
the trajectory ends with a straight line and its termination point is c.

The main idea of our offline algorithm is to calculate the list A of potential triple
delimiters as defined in Definition 2. Let Tj be a trajectory that uses triples on
the first j pairs of A, 0 ≤ j ≤ m, and one double if j < m. We define the
overhead oj of a trajectory Tj to be the difference between the length of Tj and
the straight line trajectory. Clearly,
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oj =
{

c − xbj+1 − Cbj+1 +
∑j

i=1 2(xai
− xbi − Cbi) for 1 < j < m,∑m

i=1 2(xai
− xbi − Cbi) for j = m

The algorithm calculates the overhead of Tj trajectories for 1 ≤ j ≤ m and
chooses the trajectory with the minimum overhead. By Lemma 4, the trajectory
with the minimum overhead is optimal. Thus a robot finds the coordinates of
an optimal trajectory by executing the offline algorithm below.

Offline Algorithm

Input: the length L of the segment, the number n of sensors,

their initial locations x1 ≤ x2 ≤ . . . ≤ xn, and their range r;

Output: the trajectory points for the robot.

1 Scan x1, x2, . . . , xn for gaps;

2 if gaps exist then

2.1Compute the smallest integer k such that all gaps are to the left of xk;

2.2Compute the sequence Ci = (2ri − r) − xi, 1 ≤ i ≤ k;

2.3if Ck < 0 then c ← xk; else c ← xk + Ck;

// c is the potential left-turning point of a double.

2.4Scan the sequence C1, C2, . . . , Ck and

compute list < A,B >= [(b1, a1), (b2, a2), · · · , (bm, am)];

// potential triple delimiters

2.5 oj ← (c − xbj+1 − Cbj+1) +
∑j

i=1 2(xai − xbi − Cbi), 1 ≤ j ≤ m − 1;

// Tj overhead

2.6 om ←∑m
i=1 2(xai − xbi − Cbi); // Tm overhead

2.7 Compute min{o1, o2, . . . , om}; and its index k;

2.8 Output xa1 , xb1 + Cb1 , xa2 , xb2 + Cb2 , . . . , xak , xb2 + Cb2 ;

//the sequence of left/right turning points of the optimal trajectory,

2.9 If k < m then Output there is a double from c to xbk+1 + Cbk+1 ;

else the trajectory ends at c;

else [0, L] is initially completely covered, robot does nothing;

Since algorithm Offline calculates the overheads of all trajectories that satisfy
Lemma 4 and picks the one with the smallest overhead, the Corollary 1 and
Lemma 4 imply that the selected trajectory is optimal. Clearly, all calculations
in each step are of O(n) complexity. Thus we have the following theorem.

Theorem 1. Assume we are given n sensors in the line segment [0, L] and a
robot with starting position 0. Algorithm Offline computes an optimal trajectory
for the robot to follow in O(n) time.

3 Optimal Online Algorithms

We now consider online algorithms for restoration of barrier coverage by a robot.
For the online algorithm we assume that the robot starts at position 0, it can
move along the given line segment, but the robot does not know the positions
of sensors until it comes upon them. As usual, we define the competitive ratio
of an online algorithm as the length of the trajectory of the online algorithm
divided by the length of the trajectory of the optimal offline algorithm.
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At the outset, observe that on the input instance where the sensors are
placed in such a way that there is no gap in the barrier coverage, the offline
algorithm produces a trajectory of length 0, while the online algorithm must
traverse the entire barrier segment to ensure that the barrier is covered. Thus
no online algorithm can have a bounded competitive ratio. To provide a more
meaningful comparison of online with offline algorithms, we only consider below
input instances where there is a gap in coverage at the very end of the barrier,
that is, the point L is uncovered. On such instances, all valid robot trajectories
must have length at least L − r. We also consider the possibility that L, the
length of the barrier, is not known to the robot and the robot will find it out only
when reaching the end of the barrier. Since the performance of online algorithms
depends on the knowledge of L, we consider the two possibilities separately. We
use below the notion of potential left and right turning points as defined in the
previous section.

When the value of L is unknown to the robot we show the following result.

Theorem 2. Assume that the robot does not know the length L of the barrier
[0, L]. For any 0 < ε � 1, the competitive ratio of any online algorithm is at
least 3

2 − ε. Furthermore, there is an online algorithm with competitive ratio at
most 3

2 .

Proof. Assume there is an online algorithm A with competitive ratio 3/2 − ε
for some ε > 0. We give an adversary argument. Start with an input that has
no sensors until position x = 2ir where there are i > 0 sensors for some i
to be specified later. Clearly there are just enough sensors at x to cover the
segment [0, x]. Following this, the adversary starts placing sensors in attached
position starting at position x + 2r. The robot has to make a turn at some
point y ≥ x to cover the gap in coverage before x. If it does not make a turn
before 6x, the adversary can set L = 6x, and the robot must do a double to
the beginning, see Fig. 3 (a). The trajectory produced by A has length at least
2L − r = 12x − r, while the offline algorithm covers the gap before x with
a triple from x using a trajectory of at most 3x − 2r + 5x = 8x − 2r. This
gives the competitive ratio of at least (12x − r)/(8x − 2r) > 3/2. If the robot
turns at any point y such that x ≤ y < 6x, then the adversary concludes the
barrier at L = y + r + δ, see Fig. 3 (b). Clearly, the trajectory produced by
A has length at least 3y − r + δ while the offline algorithm uses a trajectory
of at most 2y + 2δ. Thus the competitive ratio of the algorithm is at least
(3y−r+δ)/(2y+2δ) ≥ 3/2−(r+2δ)/(2x+2δ) ≥ 3/2−(r+2δ)/(2ir+2δ) ≥ 3/2−ε
for sufficiently large i.

To prove the second part of the theorem observe that the algorithm that
solves any gap in coverage with a triple from any potential left turning point has
competitive ratio at most 3/2. ��
In the remainder of the section, we assume that L, the length of the barrier
segment, is known to the online algorithm. We first prove a lower bound on the
competitive ratio of any online algorithm for the problem.
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Fig. 3. Competitive ratio for the case when the robot does not know L. In (a) the
robot turns at L or y ≥ 6x, in (b) the robot turns at y < 6x.

Theorem 3. Assume that the online robot knows the length L of the barrier
[0, L]. For any 0 < ε � 1, the competitive ratio of any online algorithm is at
least 5

4 − ε.

The optimal offline algorithm suggests that if the online robot stops doing triples
too soon, it may be beaten by an algorithm that does perhaps just one more
triple which avoids the double at the end. However if it keeps doing triples
for too long, it may be beaten by an algorithm that does fewer triples. It is
natural to ask whether there an optimal fraction of the segment such that the
online robot can decide in advance to do triples only until then. We say that an
online algorithm has a fixed switching point z if it covers each gap before z with
a triple, and all gaps after z with the final double. Therefore, the online robot
turns left at most once after z, and if it does, it turns at position L− r to do the
final double. We show below a tight bound on the competitive ratio of an online
algorithm with a fixed switching point.

Theorem 4. Assume that the robot knows the length L of the barrier [0, L].

1. For any 0 < ε � 1, the competitive ratio of any online algorithm with a fixed
switching point is at least 4

3 − ε.
2. There is an online algorithm with fixed switching point with competitive ratio

at most 4
3 .

Thus, by deciding in advance a switching point at which to stop doing triples,
it is impossible to derive an online algorithm that matches the lower bound of
Theorem 3. We now specify AdaptiveOnline, an online algorithm for a robot
which, when starting at location 0, relocates sensors on the segment [0, L] to
achieve complete barrier coverage. We calculate an upper bound on the compet-
itive ratio of this online algorithm and prove that it asymptotically matches the
lower bound of 5/4 from Theorem 3. Clearly, an online algorithm can calculate
the coverage balance of any sensor it encounters. We now describe two functions
for the online robot used in the algorithm. The first function is called walk-in-
surplus and is defined as follows: When at a potential left-turning point (or the
start of the barrier) the robot moves right picking up sensors having a positive
coverage balance and deposits them 2r apart (as the optimal offline algorithm
constructing a fully-stretched solution would do), until reaching a point x such
that the last sensor it dropped was at location x − 2r, and no sensors were
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encountered in the interval [x − 2r, x]. Observe that at such a position x, the
robot knows that x is a potential right-turning point. The function then returns
the value x. The second function is called walk-in-deficit: When first time at a
potential right-turning point, robot moves right picking up sensors with nega-
tive coverage balance on its way until it reaches a sensor with negative coverage
balance greater than −2r, or balance exactly −2r and collocated with the next
sensor. Thus, this is a potential left turning point y; the function then returns
the value y. The functions a triple, and a double behave the same way as in the
offline algorithm. The main challenge for the online algorithm is to determine,
when it reaches a potential left turning point, whether to do a triple at this
point, or to switch to solving the remaining segment as part of the final double.

We specify our adaptive online algorithm as a recursive procedure Adap-
tiveOnline(t,L,r) in which [t, L] is the subinterval on which the robot has not
yet travelled, and barrier coverage remains to be achieved, and r is the range of
sensors. To calculate the coverage of [0, L] we execute AdaptiveOnline(0,L,r).
We assume that there is a gap at position 0; if not, we simply execute the walk-
in-surplus function until reaching a potential right turning-point x and then call
AdaptiveOnline on the segment [x − r, L]. It is clear that the initial part of
the trajectory executed until x is optimal, and cannot increase the competitive
ratio on the entire input. We give the pseudocode for the algorithm below.

Algorithm. AdaptiveOnline (t, L, r);
Input: t, L, the subinterval being solved, with a gap at t and r is the range of sensors
Output: the moves of the robot;
Variables:: x; // the current position

T ; // current trajectory length
γi; // ratio trajectory/distance at left-turning point in iteration i
βi; // ratio trajectory/distance at right-turning point in iteration i

functions: walk-in-surplus, walk in deficit, triple and double
x ← t + r; T ← 0; i ← 0; // initialization of variables
repeat

i ← i + 1; // iteration of loop
bi ← x; // potential right-turning point
βi ← (T + r)/bi // ratio at start of possible triple
ai ← walk-in-deficit; // potential left-turning point
T ← T + r + 3(ai − bi); // trajectory if triple is done
γi ← T/ai; // ratio at end of possible triple
if γiai − ai > L − t break // exit the loop
else

do a triple on segment [bi, ai],
x ←walk-in-surplus; // gap starting at x − r
T ← T + (x − r − ai); //update trajectory until start of gap
If x < L and T/(x − r) ≤ 2.5 then AdaptiveOnLine(x-r,L,r);

until x = L;
if (L not reached) then

do a double (to L − r and back to bi);
T ← T + (L − ai) − (ai − bi);

The key idea is as follows: First, the online robot keeps track of the ratio between
its trajectory so far versus the distance it has covered. If it discovers that this
ratio is less than 5/2, then it “forgets about” the segment covered so far (it will be
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shown that it has achieved a competitive ratio of at most 5/4 for this part), and
restarts its computations. The ratio between its trajectory and distance travelled
so far is computed only at potential left and right turning points. Secondly, when
it reaches a potential left-turning point, the online robot calculates the cost of
the triple: the difference between its trajectory if it executes the triple and the
distance covered so far. If this difference is too high, it decides to stop doing
triples, and finish by doing a double.

Observe that before making a recursive call, at least one gap is covered by
the robot. Since the number of gaps is finite, the algorithm terminates. It is also
clear that AdaptiveOnLine constructs a trajectory that results in barrier cov-
erage. It remains only to analyze the competitive ratio of the trajectory length.
Let TA(I) and To(I) be the lengths of the trajectories of the algorithm Adap-
tiveOnline and the optimal offline algorithm on an input instance I respectively.
We prove a bound of 5/4 on maxI{TA(I)/To(I)}, thereby matching the lower
bound of Theorem 3.

Fix an input instance I. Observe that the algorithm AdaptiveOnline par-
titions the segment [0, L] into sub-segments that are solved in each recursive
call of the algorithm. We call each of these sub-segments an epoch; let n be the
number of epochs, such that while traversing epoch j, there is no recursive call.
Let Tj be the length of the the trajectory of the online robot in epoch j, and let
Oj be the length of the trajectory of the optimal offline robot in the same epoch.
Every epoch starts with a gap, and in every epoch except possibly the last, the
mobile robot does triples from the first encountered left-turning point to cover
gaps. It can be shown that in each epoch the competitive ratio is at most 5/4.
Thus we get the following theorem.

Theorem 5. AdaptiveOnline is an online algorithm for barrier coverage of
a line segment of known length and has competitive ratio at most 5/4, and is
therefore optimal.
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Abstract. Numerous approximation algorithms for unit disk graphs
have been proposed in the literature, exhibiting sharp trade-offs between
running times and approximation ratios. We propose a method to obtain
linear-time approximation algorithms for unit disk graph problems. Our
method yields linear-time (4 + ε)-approximations to the maximum-weight
independent set and the minimum dominating set, bringing dramatic
performance improvements when compared to previous algorithms that
achieve the same approximation factors. Furthermore, we present an
alternative linear-time approximation scheme for the minimum vertex
cover, which could be obtained by an indirect application of our method.

1 Introduction

A unit disk graph is the intersection graph of n unit disks in the plane. Unit disk
graphs are often represented using the coordinates of the disk centers instead
of explicit adjacency information. In this geometric setting, two vertices are
adjacent if the corresponding points (the disk centers) are within Euclidean
distance at most 2 from one another.

Owing to their applicability in wireless networks [10,13], numerous approx-
imation algorithms for unit disk graphs have been proposed in the literature.
Such approximations are either graph-based algorithms, when they receive as
input solely the adjacency representation of the graph, or geometric algorithms,
when the input consists of a geometric representation of the graph. While the m
edges of a graph can be obtained from the vertices’ coordinates in O(n+m) time
under the real-RAM model with floor function and constant-time hashing [3],
obtaining a geometric representation of a given unit disk graph is NP-hard [4].

Linear- and near-linear-time approximation algorithms are an active topic of
research, even for problems that can be solved exactly in polynomial time, such
as maximum flow and matching (see [5] for references). We note that, when the
goal is to design O(n)-time algorithms, the geometric representation is required,
since the number m of edges in a unit disk graph can be as high as Θ(n2).

The shifting strategy [7] gave rise to geometric PTASs for several problems for
unit disk graphs [8]. Essentially, the shifting strategy reduces the original prob-
lem to a set of subproblems of constant diameter. Such reduction takes O(n)
c© Springer International Publishing Switzerland 2015
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Linear-Time Approximation Algorithms for Unit Disk Graphs 133

time and yields a (1+ ε)-approximation to the original problem, given the exact
solutions to the subproblems. However, the running times of the PTASs are poly-
nomials of high degree because each subproblem is solved exactly by exploiting
the fact that the point set has constant diameter. Graph-based PTASs for these
problems are also known [13]. While they do not use the shifting strategy, their
running times are even higher than those of their geometric counterparts.

The minimum dominating set problem (MDSP) admits some PTASs [8,13],
the fastest of which is geometric and provides a 4-approximation in roughly
O(n10) time. Such high running times have motivated the study of faster constant-
factor approximation algorithms. Examples of graph-based algorithms include a
44/9-approximation that runs in O(n + m) time and a 43/9-approximation that
runs in O(n2m) time [5]. Among the geometric algorithms, we cite the original 5-
approximation, which can be implemented in O(n) time if the floor function and
constant-time hashing are available [10]; a 44/9-approximation that uses local
improvements and runs in O(n log n) time [5]; a 4-approximation that uses grids
and runs in O(n8 log n) time [6]; and a recent 4-approximation that uses hexag-
onal grids and runs in O(n6 log n) time [9].

The maximum-weight independent set problem (MWISP) also admits some
PTASs, the fastest of which attains a (1+ε)-approximation in O(n4�2/ε

√
3�) time

[8,12,13]. A 5-approximation can be obtained in O(n log n) time by a greedy
approach that considers the vertices in decreasing order of weights. In contrast,
for the unweighted version, a greedy approach that considers the vertices from
left to right [10] can be implemented to give a 3-approximation in O(n) time
with floor function and constant-time hashing.

Some efficient PTASs for unit disk graph problems are also known, as the
one given in [11] for the minimum vertex cover problem (MVCP).

Our results. We introduce a method to obtain linear-time approximation algo-
rithms for problems on unit disk graphs and other geometric intersection graphs
(Sect. 2). Our method is based on approximating the input point set, which can
be arbitrarily dense, by a sparse set of points, that is, a set of points such that
any sufficiently small square contains at most a constant number of points.

To convert the general idea into efficient algorithms, we need to investigate
the fundamental question of how well a sparse point set—generated using only
local information—can approximate a denser one for each considered problem.
Although our algorithms share the same basic idea, their analyses differ signif-
icantly. For example, the MWISP analysis applies the Four-Color Theorem for
planar graphs [2], while the MDSP analysis applies packing arguments.

By using our method, we obtained linear-time (4 + ε)-approximation algo-
rithms for the MWISP (Sect. 3) and the MDSP (Sect. 4). The proposed algo-
rithms provide significant improvements when compared not only to existing
linear-time algorithms, but also to sub-quartic-time algorithms (see Table 1 in
Sect. 6). We have also included (Sect. 5) a linear-time (1 + ε)-approximation
obtained independently for the MVCP, illustrating an indirect application of
our method. Open problems and lower bounds to the approximation ratios of
our algorithms are also discussed in Sect. 6.
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2 Our Method

The shifting strategy [7] is the main idea behind the existing geometric PTASs
for problems on unit disk graphs such as the minimum dominating set, maximum
independent set, and minimum vertex cover [8]. Generally, the shifting strategy
reduces the original problem with n points to a set of subproblems whose inputs
have constant diameter and the sum of the input sizes is O(n). Such reduction is
based on partitioning the points according to a number of iteratively shifted grids
and takes O(n) time (by using the floor function and constant-time hashing).
Exploiting the inputs’ constant diameter, each subproblem is solved exactly in
polynomial time. The solutions to the subproblems are then combined appropri-
ately (normally in O(n) time) to yield feasible solutions to the original problem,
the best of which is returned. The high complexities of these geometric PTASs
are due to the exact algorithms that are employed to solve each subproblem.

We propose a method that is based on the shifting strategy. It presents,
however, a crucial difference. Rather than obtaining exact, costly solutions for
the subproblems, we solve each subproblem approximately. To do that, we employ
the coresets paradigm [1], where only a subset with a constant number of input
points is considered. For a problem whose input is a set P of n points, our
method can be briefly described as follows:
1. Apply the shifting strategy to construct a set of r subproblems with inputs

P1, . . . , Pr such that
∑r

i=1 |Pi| = O(n) and diam(Pi) = O(1) for all i.
2. For each subproblem instance Pi, obtain a coreset Qi ⊆ Pi with |Qi| = O(1),

such that the optimal solution for instance Qi is an α-approximation to the
optimal solution for instance Pi.

3. Solve the problem exactly for each Qi.
4. Combine the solutions into an (α+ε)-approximation for the original problem.

Coresets for different problems must be devised appropriately. For the
MWISP, we create a grid with cells of diameter 0.29 and consider only one
point of maximum weight inside each cell. For the MDSP, we create a grid with
cells of diameter 0.24 and consider only the (at most four) points, inside each
cell, with minimum or maximum coordinate in either dimension (breaking ties
arbitrarily). Finally, we solve the MVCP by breaking each subproblem into two
cases. In the first one, the number of input points is already bounded by a
constant. In the second one, we use the same coreset as in the MWISP.

We assume a real-RAM computation model with floor function and constant-
time hashing (as in [3]), so we can partition the input points into grid cells
efficiently, yielding an overall O(n) running time for our method. Without these
operations, the running time of our algorithms becomes O(n log n). We also
assume that ε is constant. Otherwise, the running time becomes 2O(1/ε2)n for
the WIS and the DS on UDGs, and 2O(1/ε3)n for the VC.

3 Maximum-Weight Independent Set

In this section, we show how to obtain a linear-time (4 + ε)-approximation to
the MWISP. We start by presenting a 4-approximation for point sets of constant
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diameter, and then we use the shifting strategy to obtain the desired (4 + ε)-
approximation.

Given a point p and a set S of points, let w(p) denote the weight of p, and let
w(S) =

∑
p∈S w(p). We say two or more points are independent if their minimum

distance is strictly greater than 2.

Theorem 1. Given a set P of n points with real weights as input, with diam(P ) =
O(1), the MWISP can be 4-approximated in O(n) time in the real-RAM.

Proof. Our algorithm proceeds as follows. First, we find the points of P with
minimum or maximum coordinates in either dimension. That defines a bounding
box of constant size for P . Within this bounding box, we create a grid with cells
of diameter γ = 0.29 (any value γ < (2 − √

2)/2 suffices). Note that the number
of grid cells is constant, and therefore the points of P can be partitioned among
the grid cells in O(n) time (even without using the floor function or hashing).
Then, we build the subset Q ⊆ P as follows. For each non-empty grid cell C, we
add to Q a point of maximum weight in P ∩ C. Afterwards, we determine the
maximum-weight independent set I∗ of Q. Since |Q| = O(1), this can be done
in constant time. We return the solution I∗.

Next, we show that I∗ is indeed a 4-approximation. We argue that, given an
independent set I ⊆ P , there is an independent set I ′ ⊆ Q with 4 w(I ′) ≥ w(I).
Given a point p ∈ P , let q(p) denote the point from Q that is contained in the
same grid cell as p. Consider the set S = {q(p) : p ∈ I}. Note that w(q(p)) ≥ w(p)
and w(S) ≥ w(I). The set S may not be independent, but since I is independent,
the minimum distance in S is at least 2 − 2γ = 1.42 >

√
2. We claim that the

unit disk graph formed by S is a planar graph. To prove the claim, we show that
a planar drawing can be obtained by connecting the points of S within distance
at most 2 by straight line segments. Given a pair of points p1, p2 with distance
‖p1p2‖ ≤ 2, the Pythagorean Theorem shows that a unit disk centered within
distance greater than

√
2 from both p1 and p2 cannot intersect the segment p1p2.

By the Four-Color Theorem [2], S admits a partition into four independent sets
S1, . . . , S4. The set I ′ of maximum weight among S1, . . . , S4 must have weight
at least w(I)/4.1

Since I∗ is the maximum-weight independent set of Q, we have that I∗ is a
4-approximation for the MWISP. 	

The following theorem uses the shifting strategy to obtain a (4 + ε)-
approximation for point sets of arbitrary diameter. The proof uses the ideas
from [8], presented in a different manner and including details about an efficient
implementation of the strategy.

Theorem 2. Given a set P of n points in the plane as input, the MWISP can be
(4 + ε)-approximated in O(n) time on a real-RAM with constant-time hashing and
the floor function. Without these operations, it can be done in O(n log n) time.

1 Note that the Four-Color Theorem is only used in the argument, and no coloring is
ever computed by the algorithm.
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Fig. 1. Cell contraction on a grid rooted at (2, 4) with k = 5

Proof. Let k be the smallest integer such that
(

k − 2
k

)2

≥ 4
4 + ε

. (1)

Throughout this proof, we consider grids with square cells of side 2k. We say a
grid is rooted at a point (x, y) if there is a grid cell with corner at (x, y). Given
a cell C, the square region C− ⊂ C, called the contraction of C, is formed by
removing from C the points within distance at most 2 from the boundary of C.
Figure 1 illustrates these concepts.

The algorithm proceeds as follows. For i, j from 0 to k − 1, we create a grid
with cells of side 2k rooted at (2i, 2j). For each cell C in the grid, we run the
MWISP 4-approximation algorithm from Theorem 1 with point set P ∩ C−,
obtaining a solution Ii,j(C). Then, the independent set Ii,j is constructed as
the union of the independent sets Ii,j(C) for all grid cells C. We return the
maximum-weight set Ii,j that is found, call it I∗.

To implement the algorithm efficiently, we create a subgrid of subcells of side
2, assigning each point to the subcell that contains it. In order to partition the n
points into subcells, we use the floor function and constant-time hashing, taking
O(n) time. If these operations are not available, we determine the connected
components of the graph (using the Delaunay triangulation, for example) and
for each component we partition the points into subcells by sorting them by x
coordinate, separating them into columns, and then sorting the points inside
each column by y coordinate. The non-empty subcells are stored in a balanced
binary search tree. This process takes O(n log n) time due to sorting, Delaunay
triangulation, and binary search tree operations. Given the partitioning of the
point set into subcells, each input to the MWISP algorithm can be constructed
as the union of a constant number of subcells. Finally, the total size of the
constant-diameter MWISP instances is O(n), since each point from the original
point sets appears in a constant number—a function of the fixed ε—of such
instances.

To prove that the returned solution I∗ is indeed a (4 + ε)-approximation,
we use a probabilistic argument. Let i, j be picked uniformly at random from
0, . . . , k − 1 and let OPT denote the optimal solution. For every cell C, we have

w(Ii,j(C)) ≥ w(OPT ∩ C−)
4

.
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Consequently, by summing over all grid cells,

w(Ii,j) =
∑

C

w(Ii,j(C)) ≥ 1
4

∑

C

w(OPT ∩ C−).

We now bound E[w(Ii,j)]. Let ρ(p) denote the probability that a given point
p is contained in some contracted cell. Since w(p) does not depend on the choice
of i, j, we can write

4 E[w(Ii,j)] ≥ E

[
∑

C

w
(
OPT ∩ C−)

]
=

∑

p∈OPT

ρ(p)w(p).

Note that, for all p ∈ P , ρ(p) corresponds to the ratio between the areas of C−

and C, namely

ρ(p) =
area(C−)
area(C)

=
(

k − 2
k

)2

.

Therefore, by using inequality (1), we obtain

E[w(Ii,j)] ≥ 1
4

(
k − 2

k

)2 ∑

p∈OPT

w(p) ≥ 1
4

(
4

4 + ε

)
w(OPT ) =

1
4 + ε

w(OPT ).

Since I∗ has maximum weight among the independent sets Ii,j , it follows
that w(I∗) is at least as large as their average weight. Therefore, I∗ satisfies

w(I∗) ≥ E[w(Ii,j)] ≥ 1
4 + ε

w(OPT ),

closing the proof. 	


4 Minimum Dominating Set

In this section, we show how to obtain a linear-time (4 + ε)-approximation to the
MDSP (in fact, a generalization of it). We start by presenting a 4-approximation
for point sets of constant diameter, and then we use the shifting strategy to
obtain the desired (4 + ε)-approximation. We say that a point p dominates a
point q if ‖pq‖ ≤ 2. Given two sets of points D and P ′, we say that D is a
P’-dominating set if every point in P ′ is dominated by some point in D.

We now define a more general version of the MDSP, which we refer to as
the minimum partial dominating set problem (MPDSP). Such a generalization
is necessary to properly apply the shifting strategy. In the MPDSP, we are given
a set P of n points and also a subset P ′ ⊆ P . The goal is to find the smallest
P ′-dominating subset D ⊆ P .

In order to analyze our algorithm, we prove a geometric lemma that shows
that the set-theoretic difference between a unit circle and two unit disks that
are sufficiently close to it and form a sufficiently big angle consists of one or two
“small” arcs. Given a point p, let ©p denote the unit disk centered at p, and
∂©p denote its boundary circle.
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Fig. 2. Proof of Lemma 3

Lemma 3. Given δ > 0 and three points p, q1, q2 ∈ R
2 with (i) ‖pq1‖ ≤ δ,

(ii) ‖pq2‖ ≤ δ, and (iii) the smallest angle ∠q1pq2 is greater than or equal to
π/2, we have that:

(1) the portion T = (∂©p) \ (©q1 ∪ ©q2) of the boundary ∂©p consists of one
or two circular arcs;

(2) if T consists of one circular arc, then the arc length is less than or equal to
π/2 + 2 arcsin(δ/2); and

(3) if T consists of two circular arcs, then each arc length is less than 2 arcsin δ.

Proof. Statement (1) is clearly true. We start by proving statement (2). The
arc length ‖T‖ is maximized as the angle ∠q1pq2 decreases while the distances
‖pq1‖, ‖pq2‖ are kept constant, therefore it suffices to consider the case when
∠q1pq2 = π/2. The arc T centered at p can be decomposed into three arcs by rays
in directions q1p and q2p, as shown in Fig. 2(a). The central arc measures π/2,
while each of the other two arcs measures arcsin(δ/2), proving statement (2).

Next, we prove statement (3). Let T1, T2 denote the two arcs that form T
with ‖T1‖ ≥ ‖T2‖. The arc length ‖T1‖ is maximized in the limit when ‖T2‖ = 0,
as shown in Fig. 2(b). The rays connecting q1 and q2 to the two extremes of T1

are parallel, and therefore ‖T1‖ < 2 arcsin δ. 	

We are now able to prove the following theorem, which presents our 4-
approximation algorithm for point sets of constant diameter.

Theorem 4. Given two sets of points P and P ′ as input, with P ′ ⊆ P , |P | = n,
and diam(P ) = O(1), the MPDSP can be 4-approximated in O(n) time in the
real-RAM.

Proof. First, we determine a bounding box of constant size for P , as we did in
the algorithm for the MWISP. Within this bounding box, we create a grid with
cells of diameter γ = 0.24 (any positive γ satisfying

√

8 − 8 cos
( π

2 + 2arcsin(γ
2 )

2

)
+ γ < 2
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suffices). Note that the number of grid cells is constant, and therefore the points
of P can be partitioned among the grid cells in O(n) time (even without using
the floor function or hashing). Then, we build the subset Q ⊆ P as follows.
For each non-empty grid cell, we add to Q the (at most four) extreme points
inside the cell, i.e., those presenting minimum or maximum coordinate in either
dimension. Ties are broken arbitrarily. Since there is a constant number of grid
cells and we include in Q at most four points per cell, we have |Q| = O(1).
Afterwards, we determine the smallest P ′-dominating subset D∗ ⊆ Q. To do
that, we examine the subsets of Q, from smallest to largest, verifying if all points
of P ′ are dominated, until we find the dominating set D∗, which is returned as the
approximate solution. Since Q has a constant number of points, this procedure
takes O(n) time.

Now we show that the returned solution D∗ is indeed a 4-approximation.
We argue that, given a P ′-dominating set D ⊆ P , there is a P ′-dominating set
D′ ⊆ Q with |D′| ≤ 4 |D|. To build the set D′ from D, we proceed as follows. For
each point p ∈ D, if p ∈ Q, we add p to D′. Otherwise, since the set Q contains
points of extreme coordinates in both x and y axes, in the cell of p, there are two
points q1, q2 ∈ Q such that (i) ‖pq1‖ ≤ γ, (ii) ‖pq2‖ ≤ γ, and (iii) the smallest
angle ∠q1pq2 is at least π/2. We add these two points q1, q2 to D′.

By Lemma 3, the portion T = (∂©p) \ (©q1 ∪ ©q2) of ∂©p consists of one
or two circular arcs. We first consider the case where T consists of one circular
arc. Let R be the set of points from P ′ which are dominated by p, but not by q1
or q2. If R is empty, then no extra point needs to be added to D′. Otherwise, the
line 
 which contains p and bisects T separates R into two (possibly empty) sets
R1, R2. If R1 �= ∅, let p3 be an arbitrary point of R1. Since Q contains a point
in the same cell as p3, there is a point q3 with ‖p3q3‖ ≤ γ. We add the point q3
to D′. Analogously, if R2 �= ∅, let p4 be an arbitrary point of R2 and let q4 ∈ Q
be a point with ‖p4q4‖ ≤ γ. We add the point q4 to D′.

We now show that the four points q1, q2, q3, q4 ∈ Q dominate all points
dominated by p. Consider a point v that is dominated by p but not by q1 or
q2. The point v must be inside the circular crown sector depicted in Fig. 3(a)
and described as follows. Because v is dominated by p, we have ‖pv‖ ≤ 2. By
Lemma 3, the arc length ‖T‖ < 1.82. Also, ‖pv‖ > 1, because otherwise the unit
circles centered at p and v would intersect forming an arc of length at least 2π/3,
which is greater than ‖T‖, in which case v is dominated by q1 or q2. Finally,
since v is closer to p than it is to q1 or q2, it follows that v must be between the
lines that connect p to the endpoints of T . This circular crown sector is bisected
by the line 
. Using the law of cosines, we calculate the diameter of each circular
crown sector as d =

√
8 − 8 cos(‖T‖/2) < 1.76. Therefore, for any point v inside

the circular crown sector, the point q3 (or q4, analogously) that is within distance
at most γ from a point inside the same sector dominates v, as ‖vq3‖ ≤ d+γ < 2.

Finally, if T consists of two circular arcs T1, T2 centered in p, then we start
by adding those same points q1, q2 to D′, as if T consisted of only one arc.
Then, if necessary, we add new points q3, q4 to D′ as follows. The points that are
dominated by p but not by q1 or q2 must be within distance 1 of either T1 or T2.
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Fig. 3. Proof of Theorem 4

Let p3, p4 be arbitrary points that are within distance 1 of T1 or T2, respectively,
but are not dominated by q1 or q2. If such points p3, p4 exist, then there are two
points q3, q4 in Q that are within distance at most γ from respectively p3, p4. By
Lemma 3, the largest arc among T1, T2 measures at most 0.49. The proof that
all points dominated by p are dominated by q1, q2, q3, or q4 is analogous to the
case where T consists of a single arc, using the circular crown sector illustrated
in Fig. 3(b).

Since D∗ is minimum among all subsets of Q that are P ′-dominating sets,
D∗ is a 4-approximation for the MPDSP. 	

The following theorem uses the shifting strategy [8] to obtain a (4 + ε)-
approximation for point sets of arbitrary diameter.

Theorem 5. Given two sets of points P and P ′ as input, with P ′ ⊆ P and
|P | = n, the MPDSP can be (4 + ε)-approximated in O(n) time on a real-RAM
with constant-time hashing and the floor function. Without these operations, it
can be done in O(n log n) time.

Proof. Let k be the smallest integer such that
(

k + 2
k

)2

≤ 1 +
ε

4
.

We consider grids with square cells of side 2k. We say a grid is rooted at a point
(x, y) if there is a grid cell with corner at (x, y). Given a cell C, the square
region C+, called the expansion of C, is formed by C and all points within L∞
distance at most 2 from C.

The algorithm proceeds as follows. For i, j from 0 to k − 1, we create a
grid with cells of side 2k rooted at (2i, 2j) and, for each cell C in the grid, we
use Theorem 4 to 4-approximate the MPDSP with point sets P ∩ C+, P ′ ∩ C,
obtaining a solution Di,j(C). The dominating set Di,j is constructed as the
union of the dominating sets Di,j(C) for all grid cells C. We return the smallest
dominating set Di,j that is found, call it D∗. The remainder of the proof is
similar to the proof of Theorem 2 and is omitted due to space limitations. 	

The MDSP is the special case of the MPDSP in which P ′ = P , and thus it can
be (4 + ε)-approximated in linear time by the same algorithm.
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5 Minimum Vertex Cover

In this section, we show how to obtain a linear-time approximation scheme to
the MVCP. We start by presenting an approximation scheme for point sets of
constant diameter, and then we use the shifting strategy to generalize the result
to arbitrary diameter. Differently than in the previous two problems, the size
of a minimum vertex cover for a point set of constant diameter is not upper
bounded by a constant. Therefore, strictly speaking, a coreset for the problem
does not exist. Nevertheless, it is possible to use coresets to approach the problem
indirectly.

Given a graph G = (V,E) with n vertices, it is well known that I is an
independent set if and only if V \ I is a vertex cover. While a maximum inde-
pendent set corresponds to a minimum vertex cover, a constant approximation
to the maximum independent set does not necessarily correspond to a constant
approximation to the minimum vertex cover. However, in certain cases, an even
stronger correspondence holds, as we show in the following proof.

Theorem 6. Given a set P of n points as input, with diam(P ) = O(1), the
MVCP can be (1 + ε)-approximated in O(n) time in the real-RAM, for constant
ε > 0.

Proof. Our algorithm considers two cases, depending on the value of n. If

n <

(
1 +

3
4ε

)
(diam(P ) + 2)2

4
,

then n is constant, and we can solve the MVCP optimally in constant time.
Otherwise, we use Theorem 1 to obtain a 4-approximation I to the maxi-

mum independent set. We now show that V = P \ I is a (1 + ε)-approximation
to the minimum vertex cover. Let IOPT , VOPT respectively be the maximum
independent set and the minimum vertex cover. Note that |V | = n − |I| and
|VOPT | = n− |IOPT |. By a simple packing argument, dividing the area of a disk
of diameter diam(P ) + 2 by the area of a unit disk,

|IOPT | ≤ (diam(P ) + 2)2

4
,

and consequently

n ≥
(

1 +
3
4ε

)
|IOPT | =

(
1 +

3
4ε

)
(n − |VOPT |).

Manipulating the previous inequality, we obtain

n ≤ 4ε + 3
3

|VOPT |. (2)

Since I is a 4-approximation to IOPT ,

|V | = n − |I| ≤ n − |IOPT |
4

=
4n − |IOPT |

4
=

3n + |VOPT |
4

. (3)

Combining (2) and (3), we can write |V | ≤ (1 + ε)|VOPT |, as desired. 	
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Table 1. Comparison of new and previous approximation algorithms

Previous/new results MWISP MDSP MVCP

Previous approximation ratio in o(n4) time 5 [10] 4.889 [5] 1 + ε [11]

Our approximation ratio in O(n) time 4 + ε 4 + ε 1 + ε

Previous time for the same approximation O(n4) [12] O(n6 log n) [9] O(n) [11]

(a) (b)

4-approximation

Optimal solution

Remaining disks
1
2

1
2

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
41

4

Fig. 4. (a) Example where the approximation ratio for the MDSP is exactly 4 (b) Coin
graph used in the example where the approximation ratio for the MWISP is 3.25

Using the shifting strategy we obtain the following result. The proof is similar
to that of Theorem 2 and is omitted due to space limitations.

Theorem 7. Given a set P of n points in the plane as input, the MVCP can be
(1 + ε)-approximated in O(n) time on a real-RAM with constant-time hashing
and the floor function, for constant ε > 0. Without these operations, it can be
done in O(n log n) time.

6 Conclusion

We introduced a method to obtain linear-time approximation algorithms for
problems on unit-disk graphs and other geometric intersection graphs. The cen-
tral idea of the method is a technique to obtain approximate solutions when the
inputs are point sets of constant diameter. For the MWISP and the MDSP, the
proposed algorithms provide improved approximation factors when compared
not only to existing linear-time algorithms, but also to sub-quartic-time algo-
rithms, as shown in Table 1.

While the approximation ratio for the MWISP and the MDSP is 4 (for con-
stant diameter inputs), we only know that the analysis is tight for the MDSP.
Figure 4(a) shows an MDSP instance where our algorithm does not achieve an
approximation ratio better than 4, even if we reduce the grid size and search for
extreme points in a larger number of directions. In contrast, for the MWISP, the
best lower bound we are aware of is 3.25, as shown in the following example. Let
P1 be the weighted point set from Fig. 4(b), where all adjacent vertices are at
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distance exactly 2. Create another set P2 by multiplying the coordinates of the
points in P1 by 1 + ε, while multiplying their weights by 1 − ε, for arbitrarily
small ε > 0. The set P2 forms an independent set of weight just smaller than
3.25, while the maximum independent set in P1 has weight 1. Since each vertex
in P2 has a smaller weight and is arbitrarily close to a vertex of P1, the vertices
of P2 will be disregarded by the algorithm for the input instance P1 ∪ P2.

Several open problems remain. Can we obtain an approximation ratio better
than 4 in (close to) linear time for the MWISP, or at least for its unweighted
version? Can the linear-time approximation scheme for the MVCP be generalized
for the weighted version? Are the point coordinates really necessary, or is it
possible to devise similar graph-based algorithms? Also, can we use our method
to obtain better linear-time approximations to related problems on unit disk
graphs such as finding the minimum-weight dominating set or the minimum
connected dominating set?
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Abstract. We consider theMinimumFeasibleTileset problem: Given
a set of symbols and subsets of these symbols (scenarios), find a smallest
possible number of pairs of symbols (tiles) such that each scenario can
be formed by selecting at most one symbol from each tile. We show that
this problem is NP-complete even if each scenario contains at most three
symbols. Our main result is a 4/3-approximation algorithm for the general
case. In addition, we show that the Minimum Feasible Tileset problem
is fixed-parameter tractable both when parameterized with the number of
scenarios and with the number of symbols.

1 Introduction

Consider the general assignment problem where several devices (e.g., workers,
robots, microchips, . . . ) each can be used in one of k functions/modes (e.g.,
employing different skills, tools, instruction sets, . . . ) at a time. Given a set of
scenarios, the goal is to assign k different functions to each device, such that,
for each scenario, all functions requested by the scenario are available simulta-
neously. In this paper, we initiate the study of this problem for k = 2 and the
case that each function is requested at most once by each scenario. Formally,
we study the following problem (we use “tile” instead of “device” to intuitively
capture the fact that a device/tile has two modes/sides).

Minimum Feasible Tileset
Input: A universe of symbols F , scenarios S ⊆ 2F \ {F}, and � ∈ N.
Problem: Is there a tileset T of at most � tiles T ∈ (

F
2

)
that is feasible

for all scenarios in S?

In the above, we refer to (multi-)sets of tiles as tilesets. A tileset T is feasible
for scenario S, if we can produce all symbols in S by taking at most one symbol
from each tile in T . Formally, a tileset T is feasible for a scenario S ⊂ F if there
is a mapping φ : T → F , such that φ(T ) ∈ T for all T ∈ T , and S ⊆ φ[T ] :=
{φ(T ) | T ∈ T }. By definition, no scenario contains all symbols of F . Note that
such a scenario would require |F | tiles, making the problem trivial. Similarly, we
may assume that all symbols in F appear in at least one scenario, otherwise we
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can simply remove each symbol that does not occur in any scenario. Finally, the
requirement that tiles contain no less than two symbols can be met by arbitrarily
assigning a second symbol to all tiles of cardinality one.

Apart from practical motivations Minimum Feasible Tileset is appealing
from a structural point of view. In this work we exhibit equivalent definitions for
the problem which are interesting in their own right. At first glance, Minimum
Feasible Tileset is a covering problem since we must cover all scenarios using
tiles that can each cover one of their two symbols in each scenario. It turns out
that the problem can also be phrased as a packing/partitioning problem, but
with an objective function different from the classical one in terms of number of
packed objects or sets (see Sect. 3). In addition, having tiles be symbol sets of size
two suggests a graph interpretation where we are asked to find a minimum set of
edges such that for each scenario there is an orientation where each vertex has
indegree at least one. We favor the tileset formulation, since it most naturally
generalizes to the original assignment problem with tiles of larger sizes and
scenarios which contain multiple copies of the same symbols. Also, the Minimum
Feasible Tileset interpretation appears suitable for studying the effect of
parameters, such as the number of symbols/scenarios, on the complexity.

Results and Outline. We analyze the structure of the graph that has the tiles of
a minimum cardinality tileset as its edges, and show that this graph is always
(wlog.) a forest. In fact, only the component structure of this forest matters:
We may replace trees by arbitrary trees spanning the same components without
affecting the feasibility of the corresponding tileset (Sect. 2). This lets us view
Minimum Feasible Tileset as a partitioning problem, which in turn allows us
to prove NP-completeness even when scenarios have size at most three (Sect. 3).
As our main result, we complement the hardness with a 4/3-approximation algo-
rithm (for scenarios of arbitrary sizes) inspired by the component structure of the
optimum solution (Sect. 4). Finally, we show that the problem is fixed-parameter
tractable with respect to the number of scenarios (Sect. 5) and the number of
symbols (Sect. 6), respectively. Due to space constraints, we defer proofs for
results marked by � to a full version of the paper.

Related Work. The problem most closely related to Minimum Feasible Tile-
set is arguably Set Packing, as 3-Set Packing appears as a subproblem in
our approximation algorithm and also as the source problem for our NP-hardness
reduction. Set Packing has been extensively studied for both approximabil-
ity and parameterized complexity (see, e.g., [1,5,19] and [6,17] for some recent
results). The main difference between the two problems is that Set Packing
is a maximization problem whereas Minimum Feasible Tileset seeks to min-
imize the size of a feasible tileset—a measure that is only indirectly related to
the number of sets (scenarios). In particular, Set Packing becomes trivial for
a bounded number of sets, whereas for Minimum Feasible Tileset we get a
nontrivial polynomial-time algorithm via integer linear programming.

As mentioned above, the Minimum Feasible Tileset problem can equiv-
alently be seen as designing an edge-minimal graph on the set of symbols such
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that, for each scenario, the edges (tiles) can be oriented in such a way that all
symbols in the scenario have indegree at least one. The question whether a given
graph admits an orientation with certain properties has been studied in various
settings. For example, Biedl et al. [2] proposed an approximation algorithm for
finding a balanced acyclic orientation. Another natural constraint on an orien-
tation that has been studied is to prescribe degrees for each vertex [8,10,14].

More abstractly, we are looking for a graph on the set of symbols that fulfills
a certain constraint for each scenario. The case where the subgraph induced by
each scenario has to be connected is well-studied [3,4,9,13,15]. In particular,
it is NP-hard to find the minimum number of edges needed [9] and to decide
whether a planar solution [3,15] or a solution of treewidth at most three [13]
exists.

2 Graph Structure of Tilesets

The tiles in a tileset T over a universe of symbols F can be viewed as the edges
of the undirected (multi-) graph G(T ) := (F, T ). In this section, we establish
that there always exist optimal tilesets with a simple graph structure. This is
made formal in the following lemma which will be useful in later sections.

Lemma 1 (�). Let F be a universe of symbols, S a family of scenarios over F ,
and T a tileset feasible for S. There is a tileset T ′ ⊆ (

F
2

)
feasible for S such that

|T ′| ≤ |T | and G(T ′) is a forest.

Note that each connected component of G(T ′) has size at least two because each
symbol occurs in at least one scenario and hence is incident with at least one
edge. We show that only the partition of the symbols induced by the component
structure of a tileset matters, but not the exact topology of each of the trees.

Theorem 1 (�). Let S be a family of scenarios and T be a tileset over sym-
bols F . If G(T ) is a forest, then T is feasible for S if and only if no connected
component C of G(T ) is fully contained in any scenario S ∈ S, i.e., C � S for
all scenarios S ∈ S and all connected components C of G(T ).

3 NP-Completeness of Minimum Feasible Tileset

In this section we establish the following completeness result.

Theorem 2. Minimum Feasible Tileset is NP-complete, even if each sce-
nario has size at most three.

Let us check that Minimum Feasible Tileset is contained in NP: A feasible
tileset can be encoded using polynomially many bits with respect to |F |. Veri-
fying feasibility comes down to solving one bipartite matching problem for each
scenario on an auxiliary graph that has an edge between each symbol in the
scenario and every tile containing that symbol, which is possible in polynomial
time.

It remains to prove NP-hardness. For this, we first give a reduction from the
following partition problem, and later prove this problem to be NP-hard.
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Fine Constrained Partition
Input: A universe U , constraints V ⊆ 2U \ {U}, and p ∈ N.
Problem: Is there a partition P of U , |P| ≥ p, such that P �⊆ V for all
parts P ∈ P and all V ∈ V?

Lemma 2. Minimum Feasible Tileset and Fine Constrained Partition
are equivalent if we identify scenarios and constraints.

Proof. We claim that an instance (F,S, �) of Minimum Feasible Tileset
admits a solution if and only if the instance (F,S, |F |−�) of Fine Constrained
Partition admits a solution.

“⇒”: By Lemma 1 there is a feasible tileset T ′ for S of cardinality at most �
such that G(T ′) is a forest. The connected components C1, . . . , Ck of G(T ′) induce
a partition that is a solution for the Fine Constrained Partition instance: By
Theorem 1 we indeed have Ci � S for all connected components Ci, i ∈ [k], and
scenarios S ∈ S. Furthermore, since there are at most � edges in G(T ′) and each
connected component is a tree, we have � ≥ ∑k

i=1 |Ci| − 1 = |F | − k. Hence, our
partition has at least k ≥ |F | − � parts.

“⇐”: Let P = {P1, . . . , Pp} be a solution for the Fine Constrained Par-
tition instance. We construct a tileset T by setting G(T )[Pi] to an arbitrary
spanning tree for each i ∈ [p]. Since Pi � S for each S ∈ S and each i ∈ [p],
by Theorem 1, T is feasible for S. The number of tiles in T is

∑p
i=1 |Pi| − 1 =

|F | − p ≤ |F | − (|F | − �) = �, as required. �

Note that the corresponding optimization problems are dual to each other in
the sense that one is to minimize � and the other to maximize |F | − �. We are
now ready to give a reduction to Fine Constrained Partition from Exact
Cover by 3-Sets, which is well known to be NP-hard [12], hence, completing
the proof of Theorem 2.

Exact Cover by 3-Sets
Input: A universe X and a family C of three-element sets C ∈ (

X
3

)
.

Problem: Is there an exact cover for X, i.e., a partition of X into a
family C′ ⊆ C of disjoint sets?

Lemma 3. There is a polynomial-time reduction from Exact Cover by 3-
Sets to Fine Constrained Partition with constraints of size at most three.

Proof. Let an instance (X, C) of Exact Cover by 3-Sets be given. Without
loss of generality, we may assume that |X| = 3q for some integer q, as otherwise
no exact cover exists. We construct an instance of Fine Constrained Par-
tition with universe X asking for a partition of size at least q. First, we add
constraints V2 =

(
X
2

)
that exclude every two-element subset of X from all solu-

tion partitions. Since every solution partition needs to contain at least q parts
and |X| = 3q, each such partition consists of sets of size exactly three. Next,
we exclude partitions that contain sets outside of C by simply adding the con-
straints VC̄ =

(
X
3

)\C. This concludes the construction of the Fine Constrained
Partition instance (X,V2 ∪ VC̄ , q). Clearly, this takes polynomial time.
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Now, if there is a partition P with at least q parts for the Fine Constrained
Partition instance, by the above, we know that each of its parts is a set in C.
Hence P is an exact cover of X for family C. Conversely, let C′ ⊆ C be an exact
cover for X. Then |C′| ≥ q and for all C ∈ C′ and V ∈ V2 ∪ VC̄ we have C � V ,
because C has size three and is not from VC̄ . Hence also the Fine Constrained
Partition instance has a solution. �

4 A 4/3-Approximation for Minimum Feasible Tileset

In this section, we propose an approximation algorithm for Minimum Feasible
Tileset with unbounded scenario size. Motivated by the structural insights of
Sect. 2, we construct a tileset that induces a forest in the corresponding graph,
with the property that none of its components are contained in a single scenario.
Since a component of size k requires k − 1 tiles, we additionally aim for small
components in order to keep the resulting tileset small.

We first take as many components of size two as possible among all disjoint
sets of two symbols that are not both contained in the same scenario. This can
easily be achieved by computing a maximum matching in the graph that has
an edge for each candidate component. Similarly, among all remaining symbols,
we try to form many (disjoint) components of size three, without creating com-
ponents that are contained in a single scenario. For this, we employ a simple
greedy strategy, that repeatedly takes any possible component until no possible
candidates remain. (While there are better packing strategies available for sets
of size three, we will see that improving the packing strategy alone does not
improve our approximation ratio.) Finally, for each leftover symbol we add an
individual tile (pairing that symbol in such a way as to prevent cycles).

We give a more formal listing in AlgorithmA. We use F̄i(F ′) = {C ∈ (
F ′

i

) |
∀S ∈ S : C � S} to denote the family of all sets of symbols in F ′ that are of
size i and not fully contained in a single scenario. In the following, we identify
connected components with their sets of vertices.

Algorithm A. 4/3-approximation for minimum feasible tilesets
Input: A set F of symbols and a set S of scenarios, where S ⊆ 2F \ {F}.
Output: A set of tiles T .
T2 ← maximum matching in graph G(F̄2(F )).

P ← greedy set packing of F̄3(F \⋃t∈T2
t).

T3 ← ⋃{f1,f2,f3}∈P{{f1, f2}, {f2, f3}}.

if T2 ∪ T3 �= ∅ then take froot ∈ ⋃t∈T2∪T3
t

else take froot ∈ F .

T1 ← {{f, froot} | f ∈ F \⋃t∈T2∪T3
t , f �= froot}.

return T = T1 ∪ T2 ∪ T3.
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Theorem 3. AlgorithmA computes a 4/3-approximation for Minimum Feasi-
ble Tileset.

Proof. We first argue that the set of tiles T = T1 ∪ T2 ∪ T3 computed by
Algorithm A is feasible for S. First observe that G(T ) is a forest. This is true,
because G(T2 ∪ T3) consists of trees of sizes 2 and 3, G(T1) is a star, and
T1 ∩ (T2 ∪ T3) contains at most one node (froot). Using Theorem 1 it only
remains to show that no connected component C of G(T ) is contained in any
scenario S ∈ S, i.e. C ∩ S � C. By definition of AlgorithmA this is true for all
connected components of the graph G(T2 ∪T3). If T2 ∪T3 �= ∅, then each compo-
nent of G(T ) is a superset of a component of G(T2∪T3), and is thus not contained
in any scenario. If T2 ∪T3 is empty, then G(T ) = G(T1) consists of a single com-
ponent that is not contained in any scenario, since, by definition, F /∈ S. Thus
T is feasible for S.

We now bound the size of T with respect to a minimum cardinality tileset T �.
To do this we distribute virtual currency (gold) to the symbols in F , such that
the total gold distributed is 4/3 times the size of T �. We later use this gold to
pay one unit of gold to certain symbols that these can in turn use to provide
for (at most) one tile of T that involves this symbol. To complete the proof, we
establish that each tile of T is provided for by one of its two symbols.

Let G� := G(T �) be the graph induced by T � and F̄ �
i be the set of con-

nected components of size i ∈ {2, . . . , |F |} in G�. By Lemma 1, we may assume
that G� is a forest. Furthermore, because each symbol appears in at least one
scenario, graph G� does not contain components of size 1. Since the symbols in
a component of size i > 1 are part of exactly i− 1 tiles in T �, we may distribute
all available gold by giving 4/3 · i−1

i gold to each symbol in a component of F̄ �
i ,

for all i ∈ {2, . . . , |F |}. This gold is used to pay symbols in what follows. We
call a symbol s ∈ F sufficiently paid if one of the following holds: (i) s is paid,
(ii) s appears in a tile T ∈ T2 and the other symbol of T is paid, or (iii) s appears
in a tile T ∈ T3 and the other two symbols in the same component of G(T3) are
paid. Below, we show how to sufficiently pay all symbols. This completes the
proof, since then all tiles in T1 ∪T2 ∪T3 can be provided for (note that then each
tile in T1 contains its own paid symbol). We call a component of G� sufficiently
paid, if all its symbols are sufficiently paid. Let F �

≥4 := F \ ⋃
C∈F̄ �

2 ∪F̄ �
3

C be the
set of all symbols not in components of size two or three in G�. In paying the
symbols we will maintain the invariant that each element of F̄ �

2 ∪ F̄ �
3 ∪ F �

≥4 is
either sufficiently paid, or it still holds its gold (all its symbols still hold their
gold, respectively).

We define a graph H = (V,E) that has the components in F̄ �
2 ∪ F̄ �

3 as its
vertices, as well as the symbols that are not part of these components, i.e., V =
F̄ �
2 ∪ F̄ �

3 ∪F �
≥4. In this way, each vertex of H represents up to three symbols. For

each tile T ∈ T2 we introduce an edge connecting the vertices of H representing
the two symbols of T , possibly introducing self-loops. Since T2 is a matching,
and since the vertices in H represent at most three symbols each, all vertices
in H have degree at most 3. We partition the edges of H into paths, cycles, and
self-loops, and show for each how to use the gold remaining at its vertices to pay
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all symbols in the components of G� that are intersected by the path/cycle/self-
loop. We will ensure that every symbol (except possibly froot) on a tile in T1 is
paid. Since each symbol on a tile of T2 appears only exactly on this and no other
tile of T2 ∪ T3, it is thus sufficient to pay only one of the two symbols on each
tile of T2.

Let P be the set of all paths in H connecting (different) vertices of degree 1
or 3 with internal nodes of degree 2. Consider the paths in P one by one. We
use the gold available along path P ∈ P of length k as follows. Let N2, N3 be
the number of internal nodes of P that represent 2 and 3 symbols, respectively.
Note that P has no inner nodes that represent a single symbol, since T2 is a
matching, and hence k = 1 + N2 + N3. Also, P is the only path visiting these
inner nodes and hence they all still hold their gold. Let N end

1 , N end
2 , N end

3 ≤ 2
be the number of endpoints of P that still hold gold and represent 1, 2, and 3
symbols, respectively. Similarly, let N end

0 be the number of endpoints without
gold. By our invariant, the symbols or components represented by the endpoints
without gold left have already been sufficiently paid before. We make sure that all
other nodes along P are sufficiently paid. We do this by, for all tiles that form the
path P , paying one of the two corresponding symbols, and, in addition, paying
every further symbol represented by nodes along P . Note that this preserves the
invariant. The total cost is

C− = k+N end
2 +2N end

3 +N3−N end
0 = 1+N end

2 +2N end
3 +N2+2N3−N end

0 . (1)

Using that each endpoint of P that contributes to N end
1 represents a symbol that

is part of a component in G� of size i ≥ 4, we get that the gold available at this
symbol is at least 4

3 · i−1
i ≥ 1. Hence, the gold available to us is at least

C+ =
4
3
(N end

2 + 2N end
3 + N2 + 2N3 +

3
4
N end

1 ). (2)

Since N end
0 + N end

1 + N end
2 + N end

3 = 2, we get

C+ − C− = 1 − 2
3
N end

2 − 1
3
N end

3 +
1
3
N2 +

2
3
N3.

Hence, we have C+ ≥ C−, unless N end
2 = 2 and N end

0 = N end
1 = N end

3 = N2 =
N3 = 0, i.e. P is of length one, connecting two tiles p1, p2 ∈ F̄ �

2 by an edge which
corresponds to a tile t ∈ T2. To see that this case cannot occur, observe that,
first, p1 and p2 are of degree 1 in H. Second, since T � is feasible, no component of
G� is contained in a single scenario (Theorem 1), and thus p1, p2 ∈ F̄ �

2 ⊆ F̄2(F ).
This is a contradiction to T2 being a maximum matching in graph G(F̄2(F )), as
the matching can be augmented by removing t and adding p1 and p2.

Similarly to the above, we can consider all cycles in H with at most one node
of degree 3 one by one. (Note that cycles with at least two nodes of degree 3
contain a path as before.) If a cycle of length k does not contain a node of
degree 3, or the node of degree 3 is not yet sufficiently paid (and thus still holds
its gold), the cost for the cycle and its available gold are

C− = k + N3 = N2 + 2N3 =
3
4
C+ < C+,
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Fig. 1. Possible intersections of components of G(T3) (arcs) and G� (ellipses). Shaded
components have been sufficiently paid previously. Configurations are labeled by the
available gold C+ and the required gold C−. Symmetrical configurations are omitted.

where N2, N3 are the numbers of nodes of P that represent 2 and 3 symbols,
respectively. If the node of degree 3 has no gold left, then it has already been
sufficiently paid and C− = N2+2N3−3 < 3

4C+. In either case, the available gold
allows to sufficiently pay all nodes along the cycle. Finally, each self-loop in H
connects two symbols in the same component C of size 2 or 3 in G�. If |C| = 2,
the gold available among the two symbols is C+ = 4

3 , while we require only
C− = 1 unit of gold. If |C| = 3, we have C+ = 8

3 and C− = 2.
After processing all paths, cycles, and self-loops all nodes of H intersecting

a tile of T2 are sufficiently paid. In particular, since T2 is a maximum matching,
all components in F̄ �

2 are sufficiently paid. In the next step we ensure that all
components of F̄ �

3 are sufficiently paid. By construction, every element of F̄ �
3 ,

that is not sufficiently paid yet, intersects at least one tile of T3. We can thus
consider the components of G(T3) one by one and make sure to sufficiently pay
each element of F̄ �

3 that intersects the considered component of G(T3).
Consider a component of G(T3) involving the three symbols f1, f2, f3 (cf. Fig. 1

in the following). Let C3 ⊆ F̄ �
3 be the set of components of size 3 in G� that involve

at least one of these symbols and have not yet been sufficiently paid (i.e., still hold
their gold). Further, let Nn be the number of symbols among {f1, f2, f3}∩F �

≥4 that
are not yet sufficiently paid. Since all components in F̄ �

2 are sufficiently paid, the
gold we have available is at least C+ ≥ 4

3 (2|C3| + 3
4Nn). We ensure that (at least)

two symbols among f1, f2, f3 are paid, as well as all other symbols appearing in C3.
In this way, each component in C3 is sufficiently paid. Note that this preserves our
invariant that each element of F̄ �

2 ∪F̄ �
3 ∪F �

≥4 is either sufficiently paid, or still holds
its gold. The cost for paying the symbols f1, f2, f3 is at most 2. Since in addition
to f1, f2, f3 there are 3|C3|+Nn−3 symbols needing pay in

⋃
C∈C3

C∪{f1, f2, f3},
and because |C3| ≤ 3, the total cost is

C− ≤ 3|C3| + Nn − 1 ≤ 8
3
|C3| + Nn ≤ C+.
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At this point, we have sufficiently paid all components in F̄ �
2 ∪ F̄ �

3 using gold
only from these components. This means that all remaining symbols that are
not sufficiently paid yet have at least 4

3 · 4−1
4 = 1 gold available, which we can

use to pay these symbols themselves. Now all elements of F̄ �
2 ∪ F̄ �

3 ∪ F �
≥4 have

been sufficiently paid and the proof is complete. �

Our analysis of AlgorithmA is tight in three different spots: (i) A path of length
1 in the graph H defined above that visits a component of size 2 and a component
of size 3 of the optimum solution T may lead to 4 tiles in our solution compared
to the 3 tiles required in the optimum solution, i.e., Eqs. (1) and (2) coincide
if N end

2 = N end
3 = 1 and all other terms vanish. (ii) The first intersection of a

component of G(T3) with components of G� illustrated in Fig. 1 may lead to 8
tiles in our solution compared to the 6 tiles required in the optimum solution. (iii)
Each symbol of a component of size 4 in G� might result in a single tile for this
symbol only, in which case the optimum solution requires 3 tiles for the symbols
of the component, while our solution requires 4 tiles. To improve AlgorithmA we
have to address each of these three bottlenecks. For (i), we either would have to
alter the matching T2 to prevent the described situation, or combine the analysis
to account for the loss in other places. The aspect (ii) can easily be prevented
by employing a more sophisticated set packing algorithm (e.g., the (4/3 + ε)-
approximation of Cygan [5]). Finally, to avoid (iii), we would need to pack sets
of size 4 similarly to our packing of sets of size 3. In addition to requiring one
more level of analysis, this would also complicate the other levels, as we would
have to include sets of size 4 in our reasoning there.

5 Bounded Number of Scenarios

We prove that Minimum Feasible Tileset can be solved in polynomial time
when the number |S| of scenarios is bounded. More precisely, we provide an
algorithm that solves any instance (F,S, k) in time f(|S|)|(F,S, k)|c, i.e., in time
O(|(F,S, k)|c) for bounded values of |S|. In other words, Minimum Feasible
Tileset is fixed-parameter tractable with respect to the number of scenarios.

Our algorithm works by first translating the input instance (F,S, �) into an
integer linear program (ILP) in such a way that the ILP is feasible (i.e., contains
at least one integer point) if and only if (F,S, �) admits a feasible tileset with at
most � tiles. The ILP uses O(|S||S|) variables. Lenstra [18] proved that deciding
feasibility of any ILP is fixed-parameter tractable with respect to the number p
of variables; the currently fastest algorithm has O∗(pO(p)) running time and was
obtained by Frank and Tardos [11], modifying an algorithm by Kannan [16].
Using this, we can prove the following result.

Theorem 4 (�). Minimum Feasible Tileset on instances with at most k

scenarios can be solved in time O∗(kO(kk+1)).
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6 Bounded Number of Symbols

We analyze the influence of the number of symbols |F | on the complexity of
solving an instance (F,S, �) of Minimum Feasible Tileset. It is easy to see
that the problem becomes solvable in polynomial time when F is bounded: The
instance is trivial if � ≥ |F | since, in that case, we can afford to dedicate a sepa-
rate tile for each symbol. Otherwise, there are only O(|F |2�) ⊆ O(|F |2|F |) ways
to fix � tiles. As mentioned in Sect. 3, each candidate tileset can be verified by
solving a bipartite matching problem for each scenario, on a graph that has an
edge between each symbol in the scenario and every tile containing that sym-
bol. This yields an overall runtime of O∗(|F |2|F |), and, hence, fixed-parameter
tractability in |F |. Using structural insights of Sect. 2 we are able to improve on
this naive running time.

Theorem 5 (�). Instances (F,S, �) of Minimum Feasible Tileset can be
solved in time O∗(3|F |).

Note that, as every symbol occurs in a scenario, � ≥ |F |/2. Hence, Theorem 5
gives a fixed-parameter algorithm also for parameter �.

After this fixed-parameter tractability result, and taking into account the
trivial bound of 2|F | for the number of scenarios (giving a worst-case size of
instances of O(2|F ||F |)), it is natural to ask whether polynomial-time preprocess-
ing can simplify input instances to size polynomial in |F |. We show that this is
impossible unless NP ⊆ coNP/poly (and the polynomial hierarchy collapses).
More generally, we prove that for the restricted case d-Minimum Feasible
Tileset, where scenarios have size at most d, no polynomial-time algorithm
can achieve a size of O(kd−ε). Note that this restricted case has an essentially
matching upper bound of |S| < (|F | + 1)d = O(|F |d).1 As a consequence there
is no reduction to size polynomial in |F | for the general Minimum Feasible
Tileset problem: Any size O(kc) preprocessing for Minimum Feasible Tile-
set could be used for d-Minimum Feasible Tileset, for any d > c, and violate
the lower bound.

Theorem 6. Let d ≥ 3 and ε be a positive real. There is no polynomial-time
algorithm that reduces every instance of d-Minimum Feasible Tileset to an
equivalent instance (possibly of a different problem) of size O(|F |d−ε), unless
NP ⊆ coNP/poly.

To prove Theorem 6 we employ a similar result by Dell and Marx [6] for Exact
Cover by d-Sets, which is defined as follows.2

Exact Cover by d-Sets
Input: A universe X and a family C of d-element sets C ∈ (

X
d

)
.

Problem: Is there an exact d-set cover for X, i.e., a partition of X into
a family C′ ⊆ C of disjoint sets?

1 A compression to O(|F |d) size can be achieved by specifying one bit for each possible
scenario in S and setting it to one if the scenario is present and zero otherwise.

2 Dell and Marx called this problem Perfect d-Set Matching.
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Note that the original result by Dell and Marx [6] is given in terms of the
size k of an exact d-set cover. Clearly, k = |U |

d and, thus, we have O(kd−ε) =
O(|U |d−ε) and may instead phrase the result in terms of |U |. Furthermore, their
result builds on work by Dell and van Melkebeek [7] and, thus, extends to any
polynomial time algorithms (rather than just kernels) whose output instances
can be with respect to a different problem. We give the following paraphrased
version of the result.

Theorem 7 (Dell and Marx [6]). Let d ≥ 3 and ε be a positive real. There
is no polynomial-time algorithm that reduces every instance (U,H) of Exact
Cover by d-Sets to an equivalent instance of size O(|U |d−ε) (possibly with
respect to a different problem), unless NP ⊆ coNP/poly.

The following lemma, together with Theorem 7, directly implies Theorem 6.

Lemma 4 (�). There is a polynomial-time reduction from Exact Cover by
d-Sets to Minimum Feasible Tileset such that instances (X, C) are mapped
to instances (F,S, �) with F = X and scenario size at most d.

We now consider a more general setting: In the Generalized Minimum Fea-
sible Tileset problem we are also given a set of symbols and a set of scenarios,
but here each scenario may be a multi-set of symbols (or, equivalently, each sce-
nario is a function S : F → N indicating the number of copies of each symbol f
needed for S). We prove that Generalized Minimum Feasible Tileset can
be solved in time O∗(|F |O(|F |2)). Note that for this problem the solution size �
may be much larger than |F | and similarly the number of scenarios cannot in
general be bounded in |F |.
Theorem 8 (�). Generalized Minimum Feasible Tileset can be solved in
time O∗(|F |O(|F |2)), i.e., it is fixed-parameter tractable with respect to |F |.

7 Conclusion

We initiated the study of the Minimum Feasible Tileset problem and exposed
an interesting combinatorial structure. We proved the problem to beNP-complete
even in the restricted case with scenarios of size at most three. On the positive
side, we showed that the Minimum Feasible Tileset problem admits a 4/3-
approximation algorithm and that it is fixed-parameter tractable with respect to
the number of scenarios and number of symbols. The latter algorithm works also
for the GeneralizedMinimum Feasible Tileset problem where each scenario
can contain multiple copies of a symbol and we believe that it can be further gen-
eralized to work also for the original assignment problem where also tiles of larger
(but constant) size are allowed. It would be interesting to see whether our other
positive results transfer to this more general setting. We note that our approxi-
mation algorithm relies heavily on the structural observations from Sect. 2 which
do not seem to generalize well. Our integer linear program for a fixed number of
scenarios does not seem easily adaptable either.
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Abstract. Ad exchanges are becoming an increasingly popular way to
sell advertisement slots on the internet. An ad exchange is basically a
spot market for ad impressions. A publisher who has already signed
contracts reserving advertisement impressions on his pages can choose
between assigning a new ad impression for a new page view to a con-
tracted advertiser or to sell it at an ad exchange. This leads to an online
revenue maximization problem for the publisher. Given a new impression
to sell decide whether (a) to assign it to a contracted advertiser and if so
to which one or (b) to sell it at the ad exchange and if so at which reserve
price. We make no assumptions about the distribution of the advertiser
valuations that participate in the ad exchange and show that there exists
a simple primal-dual based online algorithm, whose lower bound for the
revenue converges to RADX + RA(1 − 1/e), where RADX is the revenue
that the optimum algorithm achieves from the ad exchange and RA is
the revenue that the optimum algorithm achieves from the contracted
advertisers.

1 Introduction

The market for display ads on the internet is worth billions of dollars and
continues to rise. Not surprisingly, there are multiple ways of selling display
advertisements. Traditionally, publishers signed long-term contracts with their
advertisers, fixing the number of impressions, i.e. assigned ad slots views, as
well as their price. In the last few years, however, spot markets, so called Ad
Exchanges [8], have been developed, with Amazon, Ebay, and Yahoo (to just
name a few) all offering their own ad exchange. Thus, every time a user requests
to download a page from a publisher, the publisher needs to decide (a′) which of
the ad impressions on this page should be assigned to which contracted adver-
tiser, and (b′) which should be sold at the ad exchange and at which reserve
price1.

Ad exchanges are interesting for publishers as (1) basically an unlimited
number of ad impressions can be sold at ad exchanges, and (2) if the publish-
ers have additional information about the user, they might sell an impression
at a much higher price at the ad exchange than they could receive from their
contracted advertisers. As ad impressions that did not receive a bid at or above
1 The reserve price is the minimum required price at which an impression is sold at

an ad auction. If no offer is at or above the reserve price, the impression is not sold.

c© Springer International Publishing Switzerland 2015
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the reserve price at the ad exchange can still be assigned to contracted advertis-
ers, a revenue-maximizing publisher can offer every ad impression first at an ad
exchange at a “high enough” reserve price and then afterwards assign the still
unsold impressions to contracted advertisers. The question for the advertiser
becomes, thus, (a’) what reserve price to choose, and (b’) to which advertisers
to assign the unsold impressions. We model this setting as an online problem and
achieve the following two results: If the revenue achievable by the ad exchange
for each ad impression is known, we give a constant competitive algorithm. Then
we show how to convert this algorithm into a second algorithm that works in the
setting where the revenue achievable from the ad exchange is not known. Assume
that the auction executed at the ad exchange fulfills the following property P :
If an ad impression is sold at the ad exchange, then the revenue achieved is
independent of the reserve price chosen by the publisher. Thus, the reserve price
influences only whether the ad impression is sold, not the price that is achieved.
For example, a first price auction with reserve prices fulfills this condition. If the
auction at the ad exchange fulfills this condition, then our second algorithm is
constant competitive when compared with the optimum offline algorithm.

When modeling contracted advertisers we use the model with free disposal
introduced in [4]: Each advertiser a comes with a number na and the revenue
that an algorithm receives from a consists of the na most valuable ad impressions
assigned to a. Additional impressions assigned to a do not generate any revenue.

More formally we define the following Online Ad Assignment Problem with
Free Disposal and an Ad Exchange. There is a set of contracted advertisers A and
an ad exchange α. Each advertiser a comes with a number na of ad impressions
such that a pays only for the na most valuable ad impressions assigned to a, or
for all assigned ad impressions if fewer than na are assigned to a. To simplify the
notation we set nα = ∞. Now a finite sequence S = S0, S1, . . . of sets Sl with
l = 0, 1, . . ., of ad impressions arrives in order. When Sl arrives, the weights wi,a

for each i ∈ Sl and a ∈ A ∪ {α} are revealed and the online algorithm has to
assign each i ∈ Sl before further sets Sl+1, Sl+2, etc. arrive. Let A : I → A∪{α}
be an assignment of impressions to advertisers. An assignment is valid if no two
impressions in the same set Sl are assigned to the same advertiser a ∈ A. Let
IA(a) be the set of na impressions with highest weight assigned to advertiser a
by A. Then the revenue R(A) of A is

∑
a∈A∪{α}

∑
i∈IA(a) wi,a. The goal of the

algorithm is to produce a valid assignment A with maximum revenue R(A). The
competitive ratio of an online algorithm is the minimum over all sequences S of
the ratio of the revenue achieved by the online algorithm on S and the revenue
achieved by the optimal offline algorithm on S, where the latter algorithm is
given all of S before it makes the first decision.

Feldman et al. [4] studied a special case of our problem, namely the set-
ting without an ad exchange and where each set Sl has size one, i.e. where the
impressions arrive consecutively. For that setting they gave a primal-dual based
0.5 competitive algorithm whose competitive ratio converges to (1 − 1/e) ratio
when all the na values go to infinity. More precisely let nA = mina∈A na. Then
their algorithm is 1 − ( nA

nA+1 )nA -competitive. They also showed that this ratio
is tight when considering deterministic algorithms [4]. Let Ra for an advertiser
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a ∈ A ∪ {α} be the revenue that the optimal algorithm receives from a. We
extend their results in several ways. (1) We consider a setting with one adver-
tiser, called ad exchange, that has infinite capacity2. Moreover, we allow multi-
ple ad slots on a page, with the condition that no two can be assigned to the
same advertiser, i.e. for us |Sl| can be larger than 1. (2) The revenue of our
algorithm depends directly on the na value, not on nA. More precisely, if no ad
exchange exists, our algorithm receives a revenue of at least

∑
a(1−( na

na+1 )na)Ra.
When an ad exchange is added, our algorithm achieves a revenue of at least
Rα +

∑
a(1 − ( na

na+1 )na)Ra. (3) We show how to modify our algorithm for the
setting where wi,α is unknown for all i. In this setting our algorithm computes
a reserve price and sends every impression first to the ad exchange. The reserve
price is set such that if the auction executed at the ad exchange fulfills property
P then the above revenue bounds continue to hold, i.e. it achieves a revenue of
at least Rα +

∑
a(1 − ( na

na+1 )na)Ra.

Techniques. Our algorithm is a modification of the standard primal-dual algo-
rithms in [4] but it is itself not a standard primal-dual algorithms as it does
not construct a feasible primal and dual solution to a single LP. Instead in the
analysis we use several primal and dual LPs, one for each advertiser a and use
the dual solutions to upper bound Ra. However, the corresponding primal fea-
sible solution is not directly related to the revenue the algorithm achieves from
a. Instead, the solution constructed by the algorithm is a feasible solution for a
primal program that is the combination of all individual LPs. This property is
strong enough to give the claimed bounds. The crucial new ideas in our algo-
rithms are (i) the observation that when deciding to whom an ad slot is assigned
the publisher should be biased towards advertiser with large na and in particular
towards the ad exchange and (ii) that based on the structure of the algorithm
it can be easily modified to compute an reserve price for the auction in the ad
exchange if the wi,α values are unknown.

Further Related Work. We briefly sketch prior work on the question whether
the publisher should assign an impression to a contracted advertiser or an ad
exchange. In [2] a scenario is studied, where the wi,a follow a joint distribution
and no disposal is allowed. Gosh et al. [5] assume that for each impression i the
wi,α values follow a known distribution and the contracted advertisers have a
quality value depending on wi,α. They study the trade-off between the quality of
the impressions assigned to the advertisers and revenue from the ad exchange.
The work in [1], like our work, does not make Bayesian assumptions but studies
online algorithms in the worst case setting. The main difference is that there the
contracted advertisers also arrive online and that there is no free disposal.

Finally, Devanur et al. [3] extend [4] to the scenario with multiple ad slots on
a page and constraints on ads being assigned together, but they neither consider
ad-exchanges nor consider the different capacities na in the competitive ratio.

Structure of the Paper. In Sect. 2 we discuss why the algorithm from [4] is not satis-
fying in our setting and present a simple online algorithm for the 1-slot case, which
2 It is straightforward to extend the algorithm and its analysis to multiple ad exchanges.
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we improve in Sect. 3 to achieve a revenue of at least Rα +
∑

a(1 − ( na

na+1 )na)Ra.
In Sect. 4 we generalize this algorithm to the multi-slot setting. Finally, in Sect. 5
we show how to adapt it if the wi,α values are unknown.

2 A Simple 1-Slot Online Algorithm

In Sects. 2 and 3 we consider algorithms for the 1-slot setting, i.e., where each
Sl just contains a single impression i. Given an instance of such an online ad
assignment problem we can build an equivalent instance where all capacities
na = 1. Simply replace each advertiser a by na copies a1, . . . ana

with the capac-
ities 1 and for each impression i set wi,ap

= wi,a for all 1 ≤ p ≤ na. Thus in
this section we assume na = 1 for each a ∈ A. Then we formulate the offline
problem as an integer linear program (ILP), where the variable xi,a is set to 1
if i is assigned to advertiser a and to 0, otherwise.

Primal: max
∑

i,a∈A∪{α}
wi,a xi,a

∑

a∈A∪{α}
xi,a ≤ 1 ∀i

∑

i

xi,a ≤ 1 ∀a ∈ A

The first type of constraints ensures that each impression is assigned to at most
one advertiser, while the second type of constraints ensures that each a ∈ A is
assigned at most one impression. It has the following dual LP.

Dual:min
∑

i

zi +
∑

a∈A

βa

zi + βa ≥ wi,a ∀i,∀a ∈ A

zi ≥ wi,α ∀i

For notational convenience we assume an additional variable βα which remains
0 for the whole algorithm. We next consider a straight forward generalization
of the online algorithm in [4], called Algorithm 1, to our setting. This algorithm
constructs a feasible integral solution for the Primal LP, corresponding to an ad
assignment, and a feasible solution for the dual LP that is used to bound the
revenue of the optimal assignment.

Algorithm 1

1. Initialize βa = 0, βα = 0
2. When impression i arrives

(a) Compute j = argmax
a∈A∪{α}

{wi,a − βa}.

(b) if j = α then set xi,α = 1 and zi = wi,α.
(c) if j ∈ A then set xi,j = 1, ∀ i′ �= i : xi′,j = 0, zi = wi,j − βj and βj = wi,j .
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Algorithm 1 constructs feasible solutions for both the Primal and the Dual:
when impression i is assigned to advertiser j then xi,j is set to 1, βj is set
to wi,j , and zi is set to maxa∈A∪{α}{wi,a − βa}. Note that the loss in revenue
of Algorithm 1 compared to the optimal assignment exclusively comes from the
impression assigned to advertisers in A. However, the above algorithm does not
guarantee that impressions are sent to ad exchange when the optimal algorithm
does. Thus the optimal offline assignment might send many impressions to the
ad exchange, while the online assignment of the above algorithm does not and
thus might only be an 1/2 approximation. Such a situation is given in Example 1.

Example 1. Consider A = {a} with na = 1 and impressions 1 ≤ i ≤ n with
wi,α = 1 − ε and wi,a = i. Then the revenue R(A) of Algorithm 1 after n
impressions is n, while the optimal assignment achieves n+(n−1)(1− ε), where
(n − 1)(1 − ε) is achieved by the ad exchange. For ε → 0 and n → ∞ the ratio
R(A)/R(OPT ) is 1/2 although half of the revenue in the optimal assignment
OPT comes from the ad exchange.

Thus the algorithm from [4] is only 1/2-competitive, even when an ad exchange,
i.e., an advertiser with infinite capacity, is added.

Given an ad assignment A let Rα(A) denote the revenue the assignment gets
from impressions assigned to the ad exchange and let RA(A) denote the revenue
the assignment gets from impressions assigned to contracted advertisers. Thus we
have R(A) = Rα(A) + RA(A). Additionally, we use OPT to denote the optimal
assignment. We present next Algorithm 2, an online algorithm that receives as
revenue at least Rα(OPT ) + (1/2)Ra(OPT ), which is already an improvement
over Algorithm 1. It is based on the observation that assigning an impression that
should be sent to the ad exchange to an advertiser in A is worse than sending an
impression that should go to an advertiser in A to the ad exchange. Thus, the
algorithm is biased towards the ad exchange. Specifically the algorithm assigns
an impression to an advertiser a ∈ A only if it gives at least double the revenue
on a than on α.

Theorem 1. Let A be the ad assignment computed by Algorithm2 then R(A) ≥
Rα(OPT ) + 1/2 · RA(OPT ).

Proof. Let IA
OPT , resp. Iα

OPT , be the impressions assigned to A, resp. α, by the
optimal (offline) assignment OPT. We give an LP PA for the advertisers A and
impressions IA

OPT and its dual DA such that any feasible solution for DA gives
an upper bound dA for RA(OPT ).

Algorithm 2

1. Initialize βa = 0 for all a ∈ A ∪ {α}
2. When impression i arrives

(a) Compute j = argmax
a∈A

{wi,a − βa}.

(b) if {wi,j − βj} > 2 · wi,α then assign i to j and set βj = wi,j .
(c) if {wi,j − βj} ≤ 2 · wi,α then assign i to α.
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Primal PA: max
∑

i∈IA
OP T ,a∈A

wi,a xi,a

∑

a∈A

xi,a ≤ 1 ∀i∈IA
OPT

∑

i∈IA
OP T

xi,a ≤ 1 ∀a∈A

Dual DA: min
∑

i∈IA
OP T

zi +
∑

a∈A

βa

zi + βa ≥ wi,a ∀i∈IA
OPT ∀a∈A

Note that the summation in PA and the constraints in DA are only over impres-
sions in IA

OPT . The objective value of the optimal solution of DA, is an upper
bound for the objective of PA, and thus also for RA(OPT ). However, there is no
direct relationship between RA(A) and the objective of PA for A, as A might
also assign impressions from Iα

OPT to A.
To upper bound RA(OPT ) we construct a feasible solution for DA. We do

this in a iterative fashion, that is whenever Algorithm2 assigns an impression
i ∈ IA

OPT we update the feasible solution for DA as follows: (i) For the βa

variables we use the values currently set by the Algorithm 2; (ii) For the variable
zi we set zi = wi,j − βo

j , where βo
a is the value of βa before i is assigned. As

wi,j − βo
j = maxa∈A{wi,a − βa}, all the constraints for i are satisfied. Hence,

doing this for all i ∈ IA
OPT gives a feasible solution for DA and its objective dA

fulfills dA ≥ RA(OPT ).
Let ΔdA(i) be the increase of the objective dA when the algorithm assigns

impression i, i.e., the change in dA caused by the change in the β-values and the
assignment of the zi value. For notational convenience we also define Δdα(i) =
wi,α if i ∈ Iα

OPT and Δdα(i) = 0 otherwise. Furthermore, let ΔR(A, i) be the
increase in revenue of the algorithm when it assigns i. Note that

∑
i∈I ΔdA(i) =

dA,
∑

i∈I Δdα(i) = Rα(OPT ) and
∑

i∈I ΔR(A, i) = R(A).
We need to show that R(A) ≥ Rα(OPT ) + 1/2 · dA. For this it suffices to

show that for each i ∈ I it holds that

ΔR(A, i) ≥ Δdα(i) + 1/2 · ΔdA(i).

To prove this let βn
a , resp. βo

a, to denote the value of βa after, resp. before i
is assigned. We distinguish the cases (i) i ∈ IA

OPT and (ii) i ∈ Iα
OPT and use the

fact that βa is such that βa = 0 if no impression was assigned to a and otherwise
βa = wi′,a, where i′ is the impression currently assigned to a

(i) First consider the case i ∈ IA
OPT , which implies Δdα(i) = 0. Thus, we

have to show that ΔR(A, i) ≥ 1/2 · ΔdA(i).

1. If Algorithm 2 assigns i to an j ∈ A recall that we set zi = wi,j − βo
j and

the algorithm sets βn
j = wi,j . Thus ΔdA(i) = 2 · (wi,j − βo

j ) and ΔR(A, i)
is given by wi,j minus the value of the impression we have to drop (if any),
given by β0

a. As this values is stored in βo
j we get ΔR(A, i) = wi,j − βo

j and
thus ΔR(A, i) ≥ 1/2 · ΔdA(i).

2. If Algorithm 2 assigns i to α (although the OPT does not), we know from
Step 2c that {wi,j − βj} ≤ 2wi,α, where j = argmax

a∈A
{wi,a − βa}. As we set
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zi = wi,j − βo
j and the algorithm keeps all βa unchanged we get ΔdA(i) =

wi,j − βo
j and as we assign i to α we have ΔR(A, i) = wi,α. Thus ΔR(A, i)=

wi,α ≥ 1/2 {wi,j − βj}=1/2ΔdA(i).

Thus, for i ∈ IA
OPT it holds that ΔR(A, i) ≥ 1/2·ΔdA(i) = Δdα(i)+1/2·ΔdA(i).

(ii) Now consider i ∈ Iα
OPT , which implies Δdα(i) = wi,α. Recall that no

z-values are involved in this case. We show that ΔR(A, i) ≥ wi,α +1/2 ·ΔdA(i).

1. If Algorithm 2 assigns i to the ad exchange then the βa are not changed.
Thus ΔdA(i) = 0 and ΔR(A, i) is simply wi,α. Hence, ΔR(A, i) ≥ wi,α +
1/2 · ΔdA(i).

2. If Algorithm 2 assigns i to an a ∈ A we have {wi,a − βo
a} > 2wi,α and the

algorithm sets βn
a = wi,a. Thus ΔdA(i) = wi,a − βo

a. Furthermore, ΔR(A, i)
is given by wi,a minus the value of the impression we have to drop (if any),
given by β0

a. Thus ΔR(A, i) = (wi,a − βo
a) = (wi,a − βo

a)/2 + (wi,a − βo
a)/2 ≥

wi,α + 1/2 · ΔdA(i).

Thus, for i ∈ Iα
OPT it holds that ΔR(A, i) ≥ wi,α +1/2 ·ΔdA(i) = Δdα(i)+1/2 ·

ΔdA(i). Combined we obtain that

R(A)=
∑

i∈I

ΔR(A, i) ≥
∑

i∈I

(
Δdα(i)+

ΔdA(i)
2

)
≥ Rα(OPT )+

RA(OPT )
2

.

	


3 An Online 1-Slot Algorithm Exploiting High Capacities

In this section we generalize the result from Sect. 2 to the setting where each
advertiser a ∈ A has an individual limit na for the number of ad impressions he
is willing to pay for and we present Algorithm3 that achieves an improvement
in revenue for advertisers a with large na.
In Algorithm 3 we consider variables βa which, for a ∈ A, are always set s.t.

βa =
1

na(ena
− 1)

na∑

j=1

wj

(
1 +

1
na

)j−1

(1)

where the wj ’s are the weights of the impressions assigned to a in non-increasing
order and ena

= (1+1/na)na . That is, βa stores a weighted mean of the na most
valuable impressions assigned to a. Again we keep βα =0 in the whole algorithm.
Next we consider how assigning a new impression to a affects βa.

Lemma 1 ([4]). Consider a new impression i being assigned to advertiser a. Let
βo

a, resp. β
n
a denote the value of βa before, resp. after i was assigned and v the value

of the impression dropped from βa (0 if no impression is dropped), then

βn
a − βo

a ≤ βo
a

na
− v · ena

na(ena
− 1)

+
wi,a

na(ena
− 1)

.
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Algorithm 3

1. Initialize βa = 0 for all a ∈ A ∪ {α}
2. When impression i arrives

(a) Compute x = argmax
a∈A∪{α}

{ca · (wi,a − βa)}
(b) assign i to x and update βx according to (1)

where weights ca are defined as ca =

{
1 − 1

ena
a ∈ A

1 a = α

Notice that in Algorithm3 for each a ∈ A we have that 1/2 ≤ ca < 1 − 1/e.
We use Ra(A) for a ∈ A∪{α} to denote the revenue the assignment A gets from
advertiser a. Thus, R(A) =

∑
a∈A∪{α} Ra(A).

Theorem 2. Let A be the assignment computed by Algorithm3 then R(A) ≥∑
a∈A∪{α} ca · Ra(OPT ).

Theorem 2 will be a direct consequence of Theorem 3.
Finally let us briefly discuss whether the constants ca are chosen optimally.

From a result in [6] on online algorithms for b-matchings it follows immediately
that the constants ca in Theorem 2 are optimal for deterministic algorithms.
Moreover, in [7] it is shown that even randomized algorithms cannot achieve a
better competitive ratio than (1−1/e)3. So for large values of na even randomized
algorithms cannot improve over Algorithm3.

4 A Multi-slot Online Algorithm

In practice publishers often have several ad slots at a single page and want to
avoid to show multiple ads from the same advertiser on the same page to avoid
annoying their users. This can be modeled as follows: A sequence S = S0, S1, . . .
of sets of impressions arrive in an online manner. Each set S has be assigned (a)
before any future sets have arrived, and (b) such that non two impressions in S
are assigned to the same advertiser in A. Note that we allow multiple impressions
from S to be assigned to the ad exchange as we expect the ad exchange to
return different advertisers for them. Let the set of all impressions I =

∑
S∈S S.

With Algorithm 4 we present an online algorithm for this setting with the same
competitive ratio as Algorithm 3. Note, however, that, unlike Algorithm3, it
is compared to the optimal offline solution that respects the above restriction.
More formally, we call a function a : S → A ∪ {α} assigning impressions S to
advertisers valid if there are no i, i′ ∈ S, i �= i′, a ∈ A such that a(i) = a(i′) = a.
Our Algorithm 4 generates a valid assignment and is compared to the revenue of
the valid assignment generated by the optimal offline algorithm. Notice that the
computation of argmax in Algorithm4 is a weighted bipartite matching problem
and thus can be computed efficiently.
3 In [7] the authors study the Adwords problem but in [4] it is argued that the given

example can be also be interpreted as Online Ad Assignment problem.
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Algorithm 4

1. Initialize βa = 0 for all a ∈ A ∪ {α}
2. When impressions S = {i1, . . . , il} arrive

(a) Compute b = argmax
valid a

{∑
i∈S

ca(i) · (wi,a(i) − βa(i))

}

(b) assign each i to b(i) and, if b(i) ∈ A, update βb(i) according to (1).

where weights ca are defined as ca =

{
1 − 1

ena
a ∈ A

1 a = α

Recall that Ra(OPT ) for a ∈ A ∪ {α} is the revenue that an optimal assign-
ment generates from advertiser a. We show the following performance bound.

Theorem 3. Let A be the assignment computed by Algorithm4 and OPT the
optimal multi-slot ad assignment, then R(A) ≥ ∑

a∈A∪{α} ca · Ra(OPT ).

Proof. We proceed as follows: First we give a linear program Pa and its dual
Da for each a ∈ A such that the final objective value of any feasible solution
of Da is an upper bound of Ra(OPT ). Note, however, that there is no direct
relationship between the final objective values of the Pa’s and the revenue of
the algorithm. However, we are able to construct a feasible solution for each Da

with objective value da such that the revenue R(A) of the algorithm is at least∑
a∈A∪α ca ·da. Together with the observation that da ≥ Ra(OPT ) and a bound

dα on Rα(OPT ) this proves the theorem.
Let Ia

OPT be the impressions assigned to a ∈ A∪{α} by the optimal (offline)
assignment OPT. We use the following LPs for each a ∈ A.

Primal Pa: max
∑

i∈Ia
OP T

wi,a xi,a

xi,a ≤ 1 ∀i ∈ Ia
OPT∑

i∈Ia
OP T

xi,a ≤ na

Dual Da: min
∑

i∈Ia
OP T

zi + naβa

zi + βa ≥ wi,a ∀i ∈ Ia
OPT

Note that the summation in the primal and the constraints in the Dual are only
over the impressions in Ia

OPT , i.e., the impressions assigned by OPT to a. The
objective value of the optimal solution for Da is an upper bound for the objective
of Pa, and thus also for Ra(OPT ). This implies that any feasible solution of Da,
also the one we construct next, gives an upper bound for Ra(OPT ). As there
might be impressions assigned to a by the algorithm that do not belong to Ia

OPT ,
the objective value of Pa is, however, not necessarily related to Ra(A).

Next we give a feasible solution for Da for all a ∈ A, using the βa values as
currently set by the algorithm. More specifically, let a be the assignment of the
impressions in S by the optimal solution. For each i ∈ I, we set zi = wi,a(i)−βa(i)
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exactly when the algorithm assigns i. Note that this results in a feasible dual
solution for all a as each i belongs to exactly one set I

a(i)
OPT and zi is chosen

exactly so as to make the solution of Da(i) feasible, together with the current
βa(i) values. As βa(i) only increases in the course of the algorithm the solution
remains feasible at the end of the algorithm. Let da be the value of this feasible
solution for Da for some a ∈ A. By the above observation da ≥ Ra(OPT ).

For all a ∈ A let Δda(S) be the increase of the objective value da when the
algorithms assigns S, i.e., the change in da caused by the change in the βa-values
and the assignment of the zi-values for all i ∈ S. Note that

∑
S∈S Δda(S) = da

and, thus, Ra(OPT ) ≤ ∑
S Δda(S). For convenience we also define Δdα(S) =∑

i∈S∩Iα
OP T

wi,α. Furthermore, let ΔR(A, S) be the increase in revenue of the
algorithm when it assigns S. Thus R(A) =

∑
S∈S ΔR(A, S).

We are left with showing that R(A) ≥ ∑
a∈A∪α ca ·da. To prove that R(A) =∑

S∈S ΔR(A, S) ≥ ∑
a∈A∪α ca · da =

∑
S∈S

( ∑
a∈A∪α ca · Δda(S)

)
it suffices to

show that for each S ∈ S it holds that

ΔR(A, S) ≥
∑

a∈A∪α

ca · Δda(S).

We show this next. To simplify the notation let Δd(S) =
∑

a∈A∪α ca · Δda(S).
First consider ΔR(A, S): For a ∈ A let va be the value of the na-th valuable

impression assigned to a (the impression we would “drop” by assigning a new
one), and let vα = 0. If i is assigned to α then the gain in revenue is wi,b(i)

which equals wi,b(i) − vb(i). If i is assigned to a ∈ A then the gain in revenue is
the difference between the revenue of the new impression and the impression we
have to drop, i.e., wi,b(i) − vb(i). Thus for S altogether it holds

ΔR(A, S) =
∑

i∈S

(wi,b(i) − vb(i))

Now consider Δd(S): Recall that a is the assignment of the optimal solution for
the impressions S and let b be the assignment from Algorithm 4. For all a ∈ A
let βo

a, βn
a denote the value of βa right before, resp. right after this assignment.

Recall that for a = α, it holds that βa = 0 throughout the algorithm. Now
note that

Δd(S) =
∑

i∈S

(
ca(i) · (wi,a(i) − βo

a(i)) + cb(i) · nb(i) · (βn
b(i) − βo

b(i))
)

,

where the first term comes from the new variables zi which we set to wi,a(i)−βo
a(i)

(to make Da(i) feasible), and the second term comes from the updates of βa. By
the choice of b in the algorithm we get

Δd(S) ≤
∑

i∈S

(
cb(i) · (wi,b(i) − βo

b(i)) + cb(i) · nb(i) · (βn
b(i) − βo

b(i))
)

=
∑

i∈S

cb(i) ·
(
(wi,b(i) − βo

b(i)) + nb(i) · (βn
b(i) − βo

b(i))
)

.
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Next we bound the contribution of each i ∈ S separately by analyzing two cases:

– If b(i) = α then we know that βo
b(i) = βn

b(i) = vb(i) = 0 and cb(i) = 1. Thus

cb(i) ·
(
(wi,b(i) − βo

b(i)) + cb(i) · nb(i) · (βn
b(i) − βo

b(i))
)

= (wi,b(i) − vb(i)).

– If b(i) ∈ A then we can apply Lemma 1 to bound (βn
b(i) − βo

b(i)) as follows

cb(i) ·
(
(wi,b(i) − βo

b(i)) + nb(i) · (βn
b(i) − βo

b(i))
)

≤ cb(i) ·
(

(wi,b(i) − βo
b(i)) + βo

b(i) − vb(i) · enb(i)

enb(i) − 1
+

wi,b(i)

enb(i) − 1

)

= cb(i) ·
(

wi,b(i) · enb(i)

enb(i) − 1
− vb(i) · enb(i)

enb(i) − 1

)
= (wi,b(i) − vb(i))

In the last step we used that ca = 1 − 1/ena
for a ∈ A. By the above we obtain

Δd(S) ≤
∑

i∈S

(wi,b(i) − vb(i)) = ΔR(A, S).

Now consider that the set of impression is given by a series (Sj)0≤j≤n of pairwise
disjoint sets of impressions that show up simultaneously. By using the fact that
the gain in the revenue, resp. the gain in the upper bound for the sum, for the
sets Sj sum up to the total revenue of A, resp. an upper bound for OPT we get:

R(A)=
n∑

j=0

ΔR(A, Sj)≥
n∑

j=0

Δd(Sj)=
n∑

j=0

∑

a∈A∪{α}
ca Δda(Sj)≥

∑

a∈A∪{α}
ca Ra(OPT )

	


5 An Algorithm for Computing Reserve Prices

In our model we assumed the publisher knows exactly how much revenue he
can get from the ad exchange, i.e., the wi,α values are given for all i ∈ I. The
critical reader may interpose that this is not the fact in the real world or in the
ad exchange model proposed in [8]. Instead whenever sending an impression to
the ad exchange an auction is run. However, the publisher can set a reserve price
and if all the bids are below the reserve price then he can still assign it to one
of the contracted advertisers.

One nice property of Algorithms 2 and 3 is that they allow to compute the
minimal price we have to extract from the ad exchange such that it is better
to assign an impression to the ad exchange than to a contracted advertiser.
This price is given by maxa∈A {ca · (wi,a − βa)}. It follows that this price is also
a natural choice for the reserve price. Assume the auction executed at the ad
exchange fulfills the following property (P): If an ad impression is sold at the ad
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exchange, then the revenue achieved is independent of the reserve price chosen by
the publisher. Thus, the reserve price influences only whether the ad impression
is sold, not the price that is achieved. Then Theorem 3 applies, i.e., the revenue
of the algorithm is at least

∑
a∈A∪{α} ca · Ra(OPT ), even though the algorithm

is not given the wi,α values and it is compared to an optimal algorithm that
does. The reason is that the algorithm makes exactly the same decisions and
receives exactly the same revenue as Algorithm 3 that is given the wi,α values.

Theorem 4. Let A be the assignment computed by the Algorithm described
above, i.e., without knowledge of the wi,α values. If the auction at the ad exchange
fulfills property P, then R(A) ≥ ∑

a∈A∪{α} ca · Ra(OPT ).
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Abstract. We present a factor 14D2 approximation algorithm for the
minimum linear arrangement problem on series-parallel graphs, where
D is the maximum degree in the graph. Given a suitable decomposi-
tion of the graph, our algorithm runs in time O(|E|) and is very easy to
implement. Its divide-and-conquer approach allows for an effective par-
allelization. Note that a suitable decomposition can also be computed
in time O(|E| log |E|) (or even O(log |E| log∗ |E|) on an EREW PRAM
using O(|E|) processors).

For the proof of the approximation ratio, we use a sophisticated
charging method that uses techniques similar to amortized analysis in
advanced data structures.

On general graphs, the minimum linear arrangement problem is known
to be NP-hard. To the best of our knowledge, the minimum linear arrange-
ment problem on series-parallel graphs has not been studied before.

1 Introduction

The minimum linear arrangement problem is a well-known graph embedding
problem, in which an arbitrary graph is mapped onto the line topology, such that
the sum of the distances of nodes that share an edge is minimized. We consider
the class of series-parallel graphs, which arises naturally in the context of parallel
programs: modelling the execution of a parallel program yields a series-parallel
graph, where sources of parallel compositions represent fork points, and sinks
of parallel compositions represent join points (for the definition of a parallel
composition, see Subsect. 1.1). Note that in this context, series-parallel graphs
typically have a very low node degree: Since spawning child processes is costly,
one would usually not spawn too many of them at a time.

1.1 Problem Statement and Definitions

Throughout this work, we consider undirected graphs only. The following defin-
ition of the minimum linear arrangement problem is based on [22]:
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Definition 1 (Linear Arrangement). Given a graph G = (V,E), let n = |V |.
A linear arrangement π of G is a one-to-one function

π : V → {1, . . . , n}.

For a node v ∈ V , π(v) is also called the position of v in π.

Definition 2 (Cost of a Linear Arrangement). Given a graph G = (V,E)
and a linear arrangement π of G, we denote the cost of π by

COSTπ(G) :=
∑

{u,v}∈E

|π(u) − π(v)|.

Definition 3 (Minimum Linear Arrangement Problem). Given a graph
G = (V,E) (the input graph), the minimum linear arrangement problem (minLA)
is to find a linear arrangement π that minimizes COSTπ(G).

Next we define the class of series-parallel graphs, (the following is based on [11]):

Two-terminal Graph (TTG). A two-terminal graph G = (V,E) is a graph
with node set V , edge set E, and two distinct nodes sG, tG ∈ V that are called
source and sink, respectively. sG and tG are also called the terminals of G.

Series Composition. The series composition SC of k ≥ 2 TTGs X1, . . . , Xk

is a TTG created from the disjoint union of X1, . . . , Xk with the following
characteristics: The sink tXi

of Xi is merged with the source sXi+1 of Xi+1

for 1 ≤ i < k. The source sX1 of X1 becomes the source sSC of SC and the
sink tXk

of Xk becomes the sink tSC of SC.
Parallel Composition. The parallel composition PC of k ≥ 2 two-terminal

graphs X1, . . . , Xk is a TTG created from the disjoint union of X1, . . . , Xk

with the following two characteristics: The sources sX1 , . . . , sXk
are merged

to create sPC and the sinks tX1 , . . . , tXk
are merged to create tPC .

Two-terminal Series-Parallel Graph (TTSPG). A two-terminal series-
parallel graph G with source sG and sink tG is a graph that may be con-
structed by a sequence of series and parallel compositions starting from a set
of copies of a single-edge two-terminal graph G′ = ({s, t}, {{s, t}}).

Series-Parallel Graphs. A graph G is a series-parallel graph if, for some two
distinct nodes sG and tG in G, G can be regarded as a TTSPG with source
sG and sink tG.

Note that the series and parallel compositions are commonly defined over two
input graphs only. However, it is not hard to see that our definition of a series-
parallel graph is equivalent.

An example of a series-parallel graph is shown in Fig. 1.

1.2 Related Work

The minLA was first stated by Harper [18]. Garey, Johnson, and Stockmeyer
were the first to prove its NP-hardness on general graphs [16]. Ambühl, Mas-
trolilli, and Svensso showed that the minLA on general graphs does not have
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a polynomial-time approximation scheme unless NP-complete problems can be
solved in randomized subexponential time [3]. To the best of our knowledge,
the two best polynomial-time approximation algorithms for the minLA on gen-
eral graphs are due to Charikar, Hajiaghayi, Karloff, and Rao [6], and Feige
and Lee [13]. Both algorithms yield an O(

√
log n log log n)-approximation of the

minLA. The latter algorithm is a combination of techniques of earlier works by
Rao and Richa [24], and Arora, Rao, and Vazirani [4]. For planar graphs (which
include the series-parallel graphs), Rao and Richa [24] also present a O(log log n)-
approximation algorithm. Note that even though, for high degree graphs, these
algorithms achieve a better approximation factor than the one we present in this
work, there are some key differences between these algorithms and ours: First
of all, the algorithm we present is a very simple divide-and-conquer algorithm
and its functioning can be understood easily. The aforementioned algorithms,
however, are much more complex and involve solving a linear or semidefinite
program. Furthermore, our algorithm achieves a runtime of only O(|E|) (if the
series-parallel graph is given in a suitable format - otherwise, a more complex
preprocessing is required that takes time O(|E| log |E|), but this can be paral-
lelized down to O(log |E| log∗ |E|)) making it suitable in situations where a low
runtime is more important than the approximation guarantee. Still, for low graph
degrees (which are reasonable to assume in certain applications), our algorithm
even improves the approximation factor of Rao and Richa.

For special classes of graphs, the NP-hardness has been shown for bipar-
tite graphs [12], interval graphs, and permutation graphs [8]. On the other
hand, polynomial-time optimal algorithms have been found for hypercubes [18],
trees [7], d-dimensional c-ary cliques [21], meshes [14], and chord graphs [25].
Note that many people claim that the minLA is optimally solvable on outer-
planar graphs, referring to [15]. However, the problem solved in [15] is different
from the minLA as we show in [26]. Note that the question whether the minLA
is NP-hard on series-parallel graphs is unsettled.

Applications of the minLA include the design of error-correcting codes [18],
machine job scheduling (e.g., [2]), VLSI layout (e.g., [1,9]), and graph drawing
(e.g., [27]). For an overview of heuristics for the minLA see the survey paper by
Petit [23].

The class of series-parallel graphs, first used by MacMahon [20], has been
studied extensively. It turns out that many problems that are NP-complete on
general graphs can be solved in linear time on series-parallel graphs. Among
these are the decision version of the dominating set problem [19], the minimum
vertex cover problem, the maximum outerplanar subgraph problem, and the
maximum matching problem [28]. Furthermore, since the class of series-parallel
graphs is a subclass of the class of planar graphs, any problem that is already
in P for that class of graphs can be solved optimally in polynomial time for
series-parallel graphs as well (such as the max-cut problem [17]).

Another problem regarding series-parallel graphs is to decide, given an input
graph G, whether it is series-parallel and, if so, to output the operations that
recursively constructed the series-parallel graph. The first step is referred to as
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series-parallel graph recognition while the second step is referred to as construct-
ing a decomposition tree. A parallel linear-time algorithm for this problem on
directed graphs was first presented by Valdes, Tarjan, and Lawler [29]. Later,
Eppstein [11] developed a parallel algorithm for undirected graphs using a so-
called nested ear decomposition. The concept of an S-decomposition used in our
analysis is technically similar to that concept, though we use a different notation
more suitable for our purposes. The algorithm we propose for approximating the
minLA on series-parallel graphs also relies on a decomposition tree. For instances
in which it is not given, the algorithm by Bodlaender and De Fluiter [5] can be
used, since it runs on undirected graphs and outputs so-called SP-tree , which
can be easily transformed into a format suitable for our algorithm.

1.3 Our Contribution

We describe a simple approximation algorithm for the minimum linear arrange-
ment problem on series-parallel graphs with an approximation ratio of 14D2,
where D is the degree of the graph, and a running time of O(|E|) if the series-
parallel graph is given in a suitable format. If the series-parallel graph is not
given in the required format, this format can be computed in time O(|E| log |E|)
(which can even be further parallelized down to O(log |E| log∗ |E|) on an EREW
PRAM using O(|E|) processors). However, for certain applications it is reason-
able to assume that the graph is given in the right format, e.g., when the series-
parallel graph is used to model the execution of a parallel program, the desired
representation can be constructed along with the model. The simplicity and the
structure of the algorithm allow for an efficient distributed implementation.

Moreover, our proof of the approximation ratio introduces a sophisticated
charging method following an approach that is known from the amortized analy-
sis of advanced data structures. This technique may be applied in other analyses
as well.

2 Preliminaries

The algorithm we present is defined recursively and is based on a decomposition of
the series-parallel graph into components. Therefore, prior to describing the algo-
rithm, we introduce several definitions needed to formalize this decomposition.

The following definition is similar to the one in [5].

Definition 4 (SP-tree, Minimal SP-tree). An SP-tree T of a series-parallel
graph G is a rooted tree with the following properties:

1. Each node in T corresponds to a two-terminal subgraph of G.
2. Each leaf is a so-called L-node labelled as L(k) and corresponds to a path with

k edges.
3. Each inner node is a so-called S-node or P -node, and the two-terminal sub-

graph G′ associated with an S-node (P -node) is the graph obtained by a series
(parallel) composition of the graphs associated with the children of G′, where
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the order of the children defines the order in which the series composition is
applied (the order does not matter for a parallel composition).

4. The root node corresponds to G.

An SP-tree T of a series-parallel graph G is called minimal if the following
two conditions hold:

1. All children of an S-node are either P -nodes or L-nodes, but at least one is
a P -node.

2. All children of a P -node are either S-nodes or L-nodes.

It is easy to see that for any fixed series-parallel graph G, there exists a minimal
SP-tree for G.

We are now ready to introduce the following three important notions:

Definition 5 (Simple Node Sequence, Parallel Component, Series Com-
ponent). Let G be a series-parallel graph and T be a minimal SP-tree of G. The
sub-graph of G associated with a leaf L(k) of T for k ∈ N is called a simple node
sequence. The sub-graph of G associated with a P -node is called a parallel com-
ponent of G. The sub-graph of G associated with a S-node is called a series
component of G. Furthermore, any simple node sequence is called a series com-
ponent, too.

P

S

Fig. 1. Example of a simple series-parallel graph. P is a parallel component consisting
of two series components (more precisely, two simple node sequences with two edges
each). The thick edges belong to the subgraph induced by the series component S. It
consists of two single-edge simple node sequences (on the left and right end) and a
parallel component.

An illustration of the different types of components is given by Fig. 1. The defi-
nition of a minimal SP-tree implies the following: Each parallel component P is
the result of a parallel composition of two or more series components. Further-
more, each series component S is the result of a series composition of two or
more parallel components or simple node sequences, but not exclusively simple
node sequences. This leads to the following definition:

Definition 6 (Child Component). Let G be a series-parallel graph, let T be
a minimal SP-tree, and let X and Y be two nodes in T such that Y is a child of
X. Further, let Ci be the (series or parallel) component that is associated with
Y and let C be the (parallel or series) component C that is associated with X.
Then, Ci is called a child component of C, and we say: Ci ∈ C.
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For example, the two simple node sequences that induce the parallel component
P in Fig. 1 are child components of P . One implication of this definition is that
the terminals of a parallel component and its child components overlap.

For the rest of this work, we assume that for any fixed series-parallel graph
G, the simple node sequences, series components and parallel components of G
are uniquely defined by a fixed minimal SP-tree T . In the full version [10], we
describe an efficient method to compute a minimal SP-tree according to our
definition. It is basically an extension of an algorithm by Bodlaender and de
Fluiter [5].

3 The Series-Parallel Graph Arrangement Algorithm

The Series-Parallel Graph Arrangement Algorithm (SPGAA) is defined recur-
sively. In order to arrange the nodes of a series or parallel component C, the
SPGAA first determines the order of its child components recursively, and then
places the child components side by side in an order that depends on their size.
For any component C, when the algorithm has just arranged the nodes of C,
it holds that its source receives the leftmost position among all nodes of C and
that its sink receives the position directly to the right of the source. However,
later computations (in a higher recursion level) may re-arrange the terminals and
pull them apart. More specific details are given in the corresponding subsections
for the different types of components. Illustrations of all arrangements and all
different cases can be found in the full version [10].

3.1 Arrangement of a Simple Node Sequence

For any simple node sequence L, we label the nodes of L from left to right by
1 to k. That is, the source receives label 1 and the sink receives label k. The
arrangement of this sequence then is: 1, k, 2, k − 1, 3, k − 2, . . . . One can see that
this arrangement fulfills the property that the source is on the leftmost position
and that the sink is its right neighbor.

3.2 Arrangement of a Parallel Component

For any parallel component P with source u, sink v, and m ≥ 2 child compo-
nents S1, S2, . . . , Sm (note that any parallel component has at least two child
components), the SPGAA recursively determines the arrangement of the child
components. We denote the computed arrangement of Si excluding the two ter-
minal nodes (which would have been placed at the first two positions of the
arrangement, see Subsect. 3.3) by S−

i . W.l.o.g. let Sm be a biggest child compo-
nent (w.r.t. the number of nodes in it). Then, the algorithm places u at the first
position, v at the second position, the nodes of S−

1 to the right of that (in their
order), and the nodes of S−

i to the right of S−
i−1 for i ∈ {2, . . . , m}.
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3.3 Arrangement of a Series Component

For any series component S with source u, sink v, and m ≥ 2 child components
P1, P2, . . . , Pm (note that any series component has at least two child compo-
nents, otherwise it would be a simple node sequence), the SPGAA first recur-
sively determines the arrangement of the child components. Second, it puts u
and v at the first two positions, in this order. The third step differs from the case
of a parallel component: To keep the cost of the arrangement low while ensuring
that a biggest child component Pa receives the rightmost position, the general
order of the child components is: P1, P2, . . . , Pa−1, Pm, Pm−1, . . . , Pa+2, Pa+1, Pa.
Here, the components from Pm to Pa+1 are flipped (the order of their nodes is
reversed). For m = a, the order is P1, P2, . . . , Pm and for a = 1, the components
are ordered in reverse (i.e., Pm, Pm−1, . . . , P1) (where all components except for
P1 are flipped).

However, since each two neighboring child components Pi and Pi+1 share a
(terminal) node, it must be decided which of the two components may “keep”
its node. The strategy here is as follows: Each component Pi (except for the first
component, whose source has received the leftmost position already) keeps its
source and lends its sink to Pi+1 (of which it is a source), except for Pm (whose
sink has been placed at the second position already). This may stretch existing
edges, which we will keep track of in the analysis.

An illustration of the arrangement for the case 1 < a < m can be found in
Fig. 2.

P1 P2 Pa−1 Pm Pm−1 Pa+2 Pa+1 Pa

Fig. 2. Order in which the SPGAA arranges a series component consisting of m child
components for 1 < a < m (where Pa is a biggest component). Dotted nodes indicate
the position at which a node would be placed according to the previous recursion level.
Dashed arrows indicate the change in position at the current recursion level.

4 Analysis

In this section, we prove the approximation ratio of 14 ·D2 for the Series-Parallel
Graph Arrangement Algorithm described in Sect. 3. As a first step, we provide
lower bounds on the amortized cost in an optimal arrangement for each kind
of component. The amortized cost of a component is the sum of two values:
First, the exclusive cost of this component (cost of the current component minus
the individual cost of all child components). Second, some cost that has been
accounted for in a lower recursion level. This cost is chosen such that the sum of
all amortized costs does not contain this cost more than three times. We use these
bounds to establish a lower bound on the total cost of an optimal solution. The
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details are described in Subsect. 4.2. As a second step, we state upper bounds on
the exclusive costs generated at each recursion step of the SPGAA in order to
determine an upper bound on the total cost in Subsect. 4.3. Last, we use both
the lower bound as well as the upper bound to relate the cost of an optimal
arrangement to that of an arrangement computed by the SPGAA. This is done
in Subsect. 4.4. In addition to providing the approximation ratio of the SPGAA,
we establish a polynomial runtime bound of our algorithm in Subsect. 4.5. Note
that all the proofs in this section can be found in the full version [10].

4.1 Prerequisites

For the analysis, we need several notions, which we now introduce.

Definition 7 (Length of an Edge). Given a graph G = (V,E) and a lin-
ear arrangement π of G, let u, v ∈ E. The length of (u,v) in π, denoted by
lengthπ(u, v) is defined as:

lengthπ(u, v) = |π(u) − π(v)|.

Definition 8. Given a linear arrangement π of a series-parallel graph G =
(V,E) and a (series or parallel) component C in G, we define:

Restricted Arrangement. The arrangement π cted to C, denoted by π(C) is
obtained by removing all nodes from π that do not belong to C, as well as their
incident edges, i.e., π(C) maps the nodes from C to {1, . . . , |C|}.

Restricted Length of an Edge. For any edge (u, v) that belongs to C, the
length of (u,v) restricted to C, denoted by lengthπ(C)(u,v), is the distance
between u and v in π(C).

Restricted Cost of an Arrangement. Let EC be the set of all edges from
G whose both endpoints are in C. The cost of C restricted to C, denoted by
R-COSTπ(C), is defined as:

R-COSTπ(C) :=
∑

(u,v)∈EC

lengthπ(C)(u, v).

Definition 9 (Exclusive Cost of a Series/Parallel Component). Given
a linear arrangement π of a series-parallel graph G and a (series or parallel)
component C in G containing m ≥ 0 child components C1, . . . , Cm, the exclusive
cost of C in π, denoted by E-COSTπ(C), is defined as

E-COSTπ(C) := R-COSTπ(C) −
m∑

i=1

R-COSTπ(Ci).

Note that the exclusive cost of a simple node sequence S is equal to the restricted
cost of S.

We can make the following observation regarding the relationship between
the exclusive costs of the components and the total cost:
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Observation 1. Let G be a series-parallel graph and let π be a linear arrange-
ment of G. Further, let C be the set of all (series or parallel) components in G.
It holds: ∑

C∈C
E-COSTπ(C) = COSTπ(G).

In the analysis of the SPGAA, we need to find at least one path from sP to
tP through P for each parallel component P such that any two such paths
are edge-disjoint for two different parallel components. Therefore, we introduce
the following notion of an S-decomposition , which yields these paths and is
recursively defined as follows:

Definition 10 (A-path, S-path, S-decomposition). Let P be an “inner-
most” parallel component in a series-parallel graph G (i.e., one whose child
components are simple node sequences only) with source s, sink t, and k child
components. Select an arbitrary simple path from s to t through P (i.e., select
one of the simple node sequences). This path is called the auxiliary path or sim-
ply A-path of P . The remaining paths from s to t through P are called the
selected paths or simply S-paths of P .

Recursively, for an arbitrary parallel component P , with source s, sink t, and
m ≥ 2 child components S1, . . . , Sm, for each child component Si, 1 ≤ i ≤ m,
select a simple path Qi from s to t through Si in the following way: If Si is
a simple node sequence, Qi is the whole sequence. Otherwise, Si is a series
component, which consists of k ≥ 0 simple node sequences and l ≥ 1 parallel
components (note that k + l ≥ 2). Denote these child components by P1, . . . Pk+l

in the order in which they appear in Si. Construct the path Qi step by step:
Start with P1 and add P1 completely to Qi if P1 is a simple node sequence. If,
however, P1 is a parallel component, select the A-path of P1 and extend Qi by
it. Continue in the same manner up to Pk+l. After this, the whole path Qi is
constructed. Q1 is called the A-path of P and the remaining paths Q2, . . . , Qm

are called the S-paths of P .
The selection of S-paths (and A-paths accordingly) for all parallel components

of G is called an S-decomposition of G.

An example of an S-decomposition can be found in the full version [10].
Intuitively, an auxiliary path of a parallel component Pj is a path through

the whole component which is reserved to be used in higher recursion levels (to
eventually become part of an S-path there). Any edges of an S-path are not used
for any S-path or A-path in any higher recursion level.

The main contribution of the S-decomposition is that it gives a mapping from
parallel components to paths through the respective components (the S-paths)
such that all these paths are edge-disjoint. More formally:

Lemma 1. For each series-parallel graph G, there exists an S-decomposition
SD. Besides, in any S-decomposition, each edge belongs to at most one S-path
in SD.

Provided with the definition of an S-decomposition, we are ready to define the
amortized cost as follows:
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Definition 11 (Amortized Cost). Let πOPT be an (optimal) linear arrange-
ment of a series-parallel graph G, let SD be an S-decomposition of G, and let S
be a series component in G. Further, let ES be the set that contains all edges of
simple node sequences that are child components of S and all edges of S-paths of
the child components of S that are parallel components. The amortized cost of
S, denoted by A-COSTπOPT

(S), is defined as:

A-COSTπOPT
(S) := E-COSTπOPT

(S) +
∑

{x,y}∈ES

lengthπOPT (S)(x, y).

For any parallel component P in a series-parallel graph G and any optimal linear
arrangement πOPT ,

A-COSTπOPT
(P ) := E-COSTπOPT

(P ).

Note that the addend in the amortized cost for simple node sequences is zero
(as the set ES is empty in this case).

This definition will be helpful for the analysis of the minimum cost of an
optimal arrangement. The amortized cost adds a certain value to the exclusive
cost of a (series or parallel) component C, with the following property:

Lemma 2. Let G = (V,E) be a series-parallel graph, and πOPT be an (optimal)
linear arrangement for G. Further, let C be the set of all (series or parallel)
components of G. It holds:

∑

C∈C
A-COSTπOPT

(C) ≤ 3 ·
∑

C∈C
E-COSTπOPT

(C).

For the analysis of an optimal arrangement, we also need the following notation:

Definition 12 (ΔC). Given an (optimal) linear arrangement πOPT of a series-
parallel graph G, and a (series or parallel) component C in G, consider πOPT

restricted to C. We denote the smallest number of nodes to the left or to the right
(depending on which number is smaller) of a terminal node of C in πOPT (C)
by ΔC .

It is convenient to define:

Definition 13 (Cardinality of a Component). For any series-parallel graph
G and any (series or parallel) component C in G: |C| is the number of nodes in
C, |C�| is the number of all nodes in C without the sink of C, and |C−| is the
number of nodes in C without the two terminal nodes of C.

4.2 A Lower Bound on the Total Cost of Optimal Solutions

In this subsection, we give lower bounds on the amortized costs of an optimal
arrangement for simple node sequences, parallel components, and series compo-
nents. In the end, we consolidate the results and state a general lower bound
on the total cost of an optimal arrangement. For the proofs, we refer to the full
version [10].

First of all, the following is a simple result about simple node sequences:
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Lemma 3. For any simple node sequence L in a series-parallel graph G in an
optimal arrangement πOPT , it holds:

A-COSTπOPT
(L) ≥ |L| − 1 + ΔL.

We now provide a lower bound on the amortized cost of series components:
Lemma 4. For any series component S in a series-parallel graph G with m ≥ 2
child components P1, . . . , Pm in an optimal arrangement πOPT , it holds:

A-COSTπOPT
(S) ≥ 1

2

(
m∑

i=1

|P�
i | − maxi|P�

i |
)

+ 1 +
m∑

i=1

ΔPi
− ΔS .

For the amortized cost of parallel components, we have the following result:
Lemma 5. For any parallel component P in a series-parallel graph G with m ≥
2 child components S1, . . . , Sm, in an optimal arrangement πOPT , it holds:

A-COSTπOPT
(P ) ≥ 1

2

(
m∑

i=1

|S−
i | − maxi|S−

i |
)

+
m∑

i=1

ΔSi
− ΔP .

These three lower bounds for the different types of components in any series-
parallel graph can be combined into a single lower bound:
Corollary 1. Let G = (V,E) be an arbitrary series-parallel graph and πOPT

an optimal arrangement of G. Further, denote the total cost of πOPT by
COSTπOPT

(G), the set of simple node sequences in G by LG, the set of par-
allel components by PG, the set of series components by SG. Then, it holds:

7 · COSTπOPT
(G) ≥

∑

L∈LG

2 · (|L| − 1) +
∑

P∈PG

(
∑

Si∈P

|S−
i | − maxSi∈P |S−

i |
)

+
∑

S∈SG

(
∑

Pi∈S

|P�
i | − maxPi∈S |P�

i |
)

.

4.3 An Upper Bound on the Total Cost of SPGAA Arrangements

For the approximation ratio of the SPGAA, we also need to find an upper bound
on the cost of arrangements computed by the SPGAA. One can show the fol-
lowing result:

Lemma 6. Let G = (V,E) be an arbitrary series-parallel graph and let πALG

be an arrangement of G computed by the SPGAA. Furthermore, denote the total
cost of πALG by COSTπALG

(G), the set of simple node sequences in G by LG,
the set of parallel components by PG, the set of series components by SG. Then,
it holds:

COSTπALG
(G) ≤

∑

L∈LG

2 · (|L| − 1) +
∑

P∈PG

2D2 ·
(

∑

Si∈P

|S−
i | − maxSi∈P |S−

i |
)

+
∑

S∈SG

2D ·
(

∑

Pi∈S

|P�
i | − maxPi∈S |P�

i |
)

.
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4.4 The Approximation Ratio of 14 · D2

Finally, based on the groundwork of the previous subsections, proving the main
theorem of this chapter is straightforward.

Theorem 2. For a series-parallel graph G, let πALG be the linear arrangement
of G computed by the SPGAA, and let πOPT be an optimal linear arrangement
of G. It holds:

COSTπALG
(G) ≤ 14 · D2 · COSTπOPT

(G).

4.5 Runtime

Regarding the runtime of the SPGAA, one can show the following result:

Theorem 3. On a series-parallel graph G = (V,E), the SPGAA has a runtime
of O(|E|) if a minimal SP-tree of G is given as an input, and a runtime of
O(|E| log |E|) otherwise.
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Abstract. We study a dual version of online edge coloring, where the
goal is to color as many edges as possible using only a given number,
k, of available colors. All of our results are with regard to competitive
analysis. For paths, we consider k = 2, and for trees, we consider any
k ≥ 2. We prove that a natural greedy algorithm called First-Fit is
optimal among deterministic algorithms on paths as well as trees. This
is the first time that an optimal algorithm for online dual edge coloring
has been identified for a class of graphs. For paths, we give a randomized
algorithm, which is optimal and better than the best possible determin-
istic algorithm. Again, it is the first time that this has been done for a
class of graphs. For trees, we also show that even randomized algorithms
cannot be much better than First-Fit.

1 Introduction

In the classical edge coloring problem, the edges of a graph must be colored using
as few colors as possible, under the constraint that no two adjacent edges receive
the same color. There is a dual version of the problem where a fixed number, k,
of colors is given and the goal is to color as many edges as possible, using at most
k colors. Sometimes the classical problem is called the minimization version and
the dual problem is called the maximization version of the problem.

In this paper, we study the online version of the maximization problem. In
the online version, the edges of the graph arrive one by one, each specified by its
endpoints. Immediately upon receiving an edge, the algorithm must either color
the edge with one of the k colors or reject the edge. The decision of which of the
k colors to use or to reject the edge is irrevocable. We call this problem Edge-k-
Coloring. For any class, Class, of graphs, we let Edge-k-Coloring(Class)
denote the problem of Edge-k-Coloring restricted to graphs of class Class.
For instance, Edge-2-Coloring(Path) is the online problem of coloring as
many edges as possible in a path using only two colors.

Quality Measure. We measure the quality of an online algorithm, A, for Edge-k-
Coloring using the standard notion of competitive ratio [11,15]. The competi-
tive ratio compares the performance of A to that of an optimal offline algorithm,
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OPT. We denote by A(σ) the number of edges colored by A when given a sequence,
σ, of edges. Similarly, OPT(σ) is the number of edges in σ colored by OPT. The
algorithm A is said to be C-competitive if there exists a constant b such that
A(σ) ≥ C · OPT(σ) − b for any input sequence σ. The competitive ratio, CA(k),
of A is the supremum over all C for which A is C-competitive. The competitive
ratio of A for Edge-k-Coloring(Class) is denoted by CClass

A (k).
Note that by this definition, 0 ≤ CA(k) ≤ 1. In particular, upper bounds on

the competitive ratio are negative results and lower bounds are positive results.
If the inequality above holds even when b = 0, we say that A is strictly C-

competitive. This gives rise to the notion of strict competitive ratio. The results
in this paper are strongest possible in the sense that all positive results hold
for the strict competitive ratio and all negative results hold for the competitive
ratio.

For randomized algorithms, a similar definition of competitive ratio is used
but A(σ) is replaced by the expected value E[A(σ)].

Notation and Terminology. We label the k colors 1, 2, . . . , k. For 1 ≤ i ≤ j ≤ k,
define Ci,j = {i, i + 1, . . . , j}. At any fixed point in the processing of the input
sequence, we denote by Cv the set of colors used at edges incident to the vertex
v. A color i ∈ C1,k is said to be available at v if i /∈ Cv. Two colorings of a graph
are said to be equivalent if one can be obtained from the other by renaming the
colors.

If v is a vertex in the input graph, we denote by d(v) the number of edges
incident to v. An isolated edge e = (v, u) is an edge such that d(v) = d(u) = 1
at the time where e is revealed. For any m, we let 〈e1, e2, . . . , em〉 denote a path
with m edges and label the edges such that, for 2 ≤ i ≤ m − 1, ei is adjacent to
ei−1 and ei+1. A star with m edges is the complete bipartite graph K1,m.

Algorithms. An algorithm is called fair if it never rejects an edge unless all of
the k colors have already been used on adjacent edges. In [8], the following two
fair and deterministic algorithms were studied:

First-Fit (FF) uses the lowest available color when coloring an edge. It can
be viewed as the natural greedy strategy.

Next-Fit (NF) remembers the last used color clast. When coloring an edge, it
uses the first available color in the ordered sequence 〈clast +1, . . . , k, 1, . . . , clast〉.
For the very first edge, it uses the color 1.

For the Edge-2-Coloring(Path) problem, we introduce a new family of
randomized algorithms: For 1

2 ≤ p ≤ 1, Randp is defined as follows. Whenever
an isolated edge is revealed, Randp uses the color 1 with probability p and the
color 2 with probability 1 − p. All non-isolated edges are colored (with the only
remaining color) if possible. Note that Rand1 is identical to First-Fit.

Previous Results. In [8] it is shown that any fair algorithm for Edge-k-Coloring
has a competitive ratio of at least 2

√
3 − 3 ≈ 0.464, and at most 1

2 if it is deter-
ministic. The lower bound is tight in the sense that Next-Fit has a competitive
ratio of exactly 2

√
3 − 3. It remains an open problem if any algorithm has a
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competitive ratio better than 2
√

3 − 3. The authors of [8] also show that no
algorithm (even when allowing randomization) has a competitive ratio better
than 4

7 ≈ 0.57.
The problem Edge-k-Coloring(k-Colorable) is also studied in [8]. When

the input graph is k-colorable, any fair algorithm is shown to have a competitive
ratio of at least 1

2 . Again, the lower bound is tight because Next-Fit has a
competitive ratio of 1

2 . The competitive ratio of First-Fit is shown to be k
2k−1 .

An upper bound of 2
3 is given for deterministic algorithms in this case.

We remark that all of the negative results mentioned above hold even if the
input graph is bipartite. Thus, contrary to offline edge coloring, the online Edge-
k-Coloring problem does not appear to be significantly easier when restricted
to bipartite graphs.

It is well known that for k = 1 (i.e., for the matching problem), the greedy
algorithm is an optimal deterministic algorithm with a competitive ratio of 1

2 .
The relative worst order ratio [3,4] of both the maximization and minimiza-

tion version of online edge coloring is studied in [6]. For the maximization version,
it is shown that First-Fit and Next-Fit are not (strictly) comparable. This is
true even when the input is restricted to bipartite graphs. For the minimization
version, First-Fit is proven better than Next-Fit.

The minimization version of online edge coloring is studied in [1]. If an online
algorithm never introduces a new color unless forced to do so, it will never use
more than 2Δ − 1 different colors on graphs of maximum degree Δ. It is shown
in [1] that no (randomized) online algorithm can do better than this, even if
the input graph is restricted to being a forest. On any graph, an optimal offline
algorithm uses at most Δ + 1 colors, and on trees, Δ colors suffice. Hence, any
algorithm that introduces a new color only when necessary, has a competitive
ratio of 2, and this is optimal.

The problem of online vertex coloring has received much attention, especially
in the minimization version (see [12] for a survey). Edge coloring a path of m
edges is equivalent to vertex coloring a path of m vertices. Thus, our results for
Edge-2-Coloring(Path) are also valid for online dual vertex coloring of paths
with 2 colors available.

A study of approximation algorithms for the offline version of Edge-k-
Coloring for multigraphs was initiated in [9]. This line of work has been con-
tinued in [5,10,13,14] for both simple graphs and multigraphs.

Our Contribution. For Edge-2-Coloring(Path), we give a 4
5 -competitive ran-

domized algorithm and prove that this is optimal. We also show that no deter-
ministic algorithm can be better than 2

3 -competitive and observe that this upper
bound is tight, since First-Fit is 2

3 -competitive. This is the first example of
a class of graphs for which a randomized algorithm for Edge-k-Coloring is
proven optimal and better than any deterministic algorithm.

For Edge-k-Coloring(Tree) where k ≥ 2, we prove that First-Fit is
k−1

k -competitive and that no deterministic or fair algorithm can be better than
this. Thus, an algorithm would have to be both randomized and unfair to achieve
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a better competitive ratio than First-Fit. However, we show that even such
algorithms cannot be better than k

k+1 -competitive. We also show that any fair

algorithm is 2
√

k−2
2
√

k−1
-competitive and that the competitive ratio of Next-Fit is

no better than this if k is a square number. This implies that the competitive
ratio of any fair algorithm goes to 1 as k goes to infinity.

Path and Tree are the first examples of graph classes for which an optimal
deterministic algorithm for Edge-k-Coloring has been identified.

Due to space restrictions, some details of the proofs have been omitted. These
can be found in the full version of the paper [7].

2 A Charging Technique for Proving Positive Results

We will now describe a simple charging technique for proving lower bounds on
the competitive ratio. The technique was first used for deterministic algorithms
in [8]. For some C, 0 ≤ C ≤ 1, our goal is to prove that a given (possibly
randomized) algorithm A is C-competitive. Assume that the edges of a graph
G = (V,E) have been given in some order, σ, and let EOPT ⊆ E be the set of
edges colored in some optimal solution.

The initial value vi(e) of an edge, e ∈ E, is vi(e) = Pr[e is colored by A]. For
deterministic algorithms, vi(e) ∈ {0, 1} for all e ∈ E. Note that by linearity of
expectation, we have E[A(σ)] =

∑
e∈E vi(e).

The surplus v+(e) of an edge, e ∈ E, (with respect to C) is

v+(e) =

{
vi(e) − C, if e ∈ EOPT

vi(e), if e /∈ EOPT

We let E+ ⊆ E and E− ⊆ E denote the sets of edges with positive and negative
surplus, respectively. Clearly, E− ⊆ EOPT. For deterministic algorithms, E− is
exactly those edges in EOPT that are not colored by the algorithm, and E+ is
the set of edges colored by the algorithm (assuming C < 1). The total positive
surplus

∑
e∈E+

v+(e) will be redistributed among the edges in E− according
to some strategy. This strategy is what needs to be defined when applying the
technique.

The final value vf (e) of an edge e ∈ EOPT is the total value of e after the
redistribution of surplus. Since only surplus value is redistributed, vf (e) ≥ C for
all e ∈ EOPT \ E−. Thus, if it can be proven that vf (e) ≥ C for all e ∈ E−, then

E[A(σ)] =
∑

e∈E

vi(e) =
∑

e∈E

vf (e) ≥
∑

e∈EOPT

vf (e) ≥ C · OPT(σ).

Thus, it follows that A is (strictly) C-competitive.

3 Coloring of Paths

In this section, we study the Edge-k-Coloring problem when the input graph
is a path. Clearly, this is only interesting if k ≤ 2. In this paper, we consider
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solely the case where k = 2, but we remark that one can use the same techniques
to obtain tight bounds on the competitive ratio when k = 1. Also, the results
for Path can be extended to graphs of maximum degree 2.

For Edge-2-Coloring(Path), our main result is a randomized algorithm
with a competitive ratio of 4

5 and a proof that this is optimal. Before considering
randomized algorithms, we give tight lower and upper bounds on the compet-
itive ratio of deterministic algorithms. The proofs of Propositions 1 and 2 are
straightforward and have been omitted (see also [8]).

Proposition 1. For Edge-2-Coloring(Path), Next-Fit is a worst possible
fair algorithm with CPath

NF (2) = 1
2 .

Proposition 2. ForEdge-2-Coloring(Path), First-Fit is an optimal deter-
ministic algorithm with CPath

FF (2) = 2
3 .

Knowing that no deterministic algorithm can be better than 2
3 -competitive, a

natural question to ask is how good a randomized algorithm can be. To this
end, we analyze the family of fair, randomized algorithms, Randp, defined in the
introduction.

Theorem 1. Let 1
2 ≤ p ≤ 1. Then,

CPath
Randp

(2) = min
{

p2 − p + 1,
2
3
(−p2 + p + 1)

}
.

Proof. For the upper bound, consider the following two adversary strategies for
revealing the edges of a path 〈e1, . . . , em〉:
(i) The adversary first reveals all edges ei with i ≡ 1 (mod 3), followed by all

edges ei with i ≡ 0 (mod 3). Finally, all the remaining edges are revealed.
(ii) The adversary first reveals all the odd numbered edges and thereafter all the

even numbered edges.

One can show that (i) gives an upper bound of 2
3 (−p2+p+1) on the competitive

ratio and that (ii) gives an upper bound of p2 − p + 1 on the competitive ratio.
For the lower bound, fix 1

2 ≤ p ≤ 1. Let P be a path. Consider an edge e at
the time of its arrival. If two edges adjacent to e have already been revealed, we
say that e is a critical edge. Denote by Ecrit the critical edges of P .

We will apply the charging technique described in Sect. 2. Note that all non-
critical edges have an initial value of 1 and, hence, a surplus of 1 − C. Thus,
E− ⊆ Ecrit.

For a non-critical edge e, it is easy to show inductively that the following
holds: The probability of e being colored with the color 1 is p or 1 − p. In the
former case, we say that e is odd and in the latter case, we say that e is even.
Note that an even edge must be adjacent to at least one odd edge.

Let ecrit be a critical edge. Denote by el and er the two edges adjacent to
ecrit. The edge ecrit will be rejected if and only if el and er are colored with
different colors. Also, the random variable denoting the color received by el is
independent of the random variable denoting the color received by er. There are
two possible cases:
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Case 1: One of el and er is odd and the other is even. Without loss of
generality, assume that el is odd and that er is even. By the discussion above,
the probability of ecrit being colored is p(1−p)+(1−p)p. Since er is even, it must
be adjacent to at least one non-critical edge e′

r. We transfer a value of 1
2 (1 − C)

from each of el and e′
r to ecrit and a value of 1 − C from er to ecrit. Transferring

the entire surplus of 1−C from er to ecrit is possible, since e′
r is non-critical and

therefore ecrit is the only critical edge adjacent to er. Thus, the final value of
ecrit is 2p(1 − p) + 2(1 − C). It follows that if C is at most 2

3 (−p2 + p + 1), then
the final value of ecrit is at least C.

Case 2: el and er are both odd or both even. By transferring half of the surplus
from el and er to ecrit, one can show that if C is at most p2 − p + 1, then the
final value of ecrit is at least C.

We conclude that if C is bounded from above by both p2−p+1 and 2
3 (−p2+

p + 1) then, using the strategy described above, all edges in the path end up
with a final value of at least C. ��
Theorem 1 shows that, for p = ϕ/

√
5, Randp has a competitive ratio of 4

5 (where
ϕ = (1+

√
5)/2 is the golden ratio). We will now show that 4

5 is the best possible
competitive ratio of any algorithm.

Theorem 2. If R is an algorithm for Edge-2-Coloring(Path), then

CPath
R (2) ≤ 4

5
.

Proof. We will use Yao’s minimax principle [2,16]. To this end, we describe a
randomized adversary. Let D be a deterministic algorithm and let M ∈ N be a
large even number. The adversary will reveal the edges of a path, P , as follows:
First, it reveals M +1 isolated edges, {e1, . . . , eM+1}. Afterwards, the adversary
picks uniformly at random a set of indices S ⊆ {2, . . . , M+1} such that |S| = M

2 .
For each index i ∈ S, the adversary reveals a single edge, e, connecting ei and
ei−1 (so that 〈ei−1, e, ei〉 becomes a subpath of P ). On the other hand, for each
index i ∈ S, the adversary reveals two edges, e and e′, connecting ei and ei−1

(so that 〈ei−1, e, e
′, ei〉 becomes a subpath of P ).

Suppose that for some index i, both ei and ei−1 are colored by D (it can be
shown that D does not gain anything by rejecting isolated edges). If i ∈ S, then ei

and ei−1 must be colored the same in order to avoid rejecting the edge connecting
them. If i ∈ S, then ei and ei−1 must be colored differently in order to avoid
rejecting one of the edges connecting them. Since Pr(i ∈ S) = Pr(i ∈ S) = 1

2 ,
this observation implies that the expected number of edges rejected by D is at
least M

2 . The total number of edges in P is (M + 1) + M
2 + M = 5

2M + 1. Thus,
E[D(P )] ≤ 2M + 1 < 4

5OPT(P ) + 1. ��
Theorems 1 and 2 together give the following corollary.

Corollary 1. For p = ϕ√
5
, Randp is optimal for Edge-2-Coloring(Path) with

Cpath
Randp

(2) =
4
5
.
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4 Coloring of Trees

We will now consider the Edge-k-Coloring problem when the input graph is
a tree. Our main result is a proof that First-Fit is an optimal deterministic
algorithm. We also show that, for any fixed k ≥ 4, First-Fit has a better
competitive ratio than Next-Fit for Edge-k-Coloring(Tree). First, we give
a general upper bound for algorithms that are deterministic or fair.

Theorem 3. If A is a deterministic or fair algorithm and k ≥ 2, then

CTree
A (k) ≤ k − 1

k
.

Proof. We only describe the adversary strategy. The edges of a tree are revealed
in N steps, for some large N ∈ N. The set of edges revealed in the ith step
constitute a star, Si, with k + 1 edges and center vertex ci. For 2 ≤ i ≤ N ,
if at least one edge in Si−1 is colored, the adversary chooses ci = x for some
colored edge (ci−1, x) in Si−1. Otherwise, it chooses ci = x for an arbitrary edge
(ci−1, x) in Si−1. Note that the adversary is clearly able to identify a colored
edge in Si−1, if one exists: If A is deterministic, this is trivially true, and if A is
fair, the first k − 1 edges of Si−1 will be colored. ��
Using the charging technique of Sect. 2, we will show that Theorem 3 is tight by
proving a matching lower bound for First-Fit. To this end, we introduce some
terminology related to deterministic algorithms.

Let A be a deterministic algorithm for Edge-k-Coloring, let G = (V,E)
be a graph, and suppose that A has been given the edges of G in some order.
Recall that, since A is deterministic, E+ denotes the set of edges colored by A,
and E− denotes the set of edges colored by OPT only. We partition E+ into the
set, Ed

+, of edges colored by both A and OPT (double colored edges) and the set,
Es

+, of edges colored by A only (single colored edges). Thus, EOPT = E− ∪ Ed
+.

For x ∈ V , let E+(x) be the edges in E+ incident to x and let d+(x) = |E+(x)|.
Define E−(x), Ed

+(x), Es
+(x), d−(x), dd+(x) and ds+(x) similarly.

Theorem 4. For k ≥ 2, First-Fit is an optimal deterministic algorithm for
Edge-k-Coloring(Tree) with

CTree
FF (k) =

k − 1
k

.

Proof. Fix a tree T = (V,E) and assume that the edges of E have been revealed
to First-Fit in some order. For the analysis, we will view T as a rooted tree
by choosing an arbitrary vertex to be the root. When writing e = (x, y) ∈ E, we
imply that x is the parent vertex of y.

Following Sect. 2, we set C = k−1
k . An edge in Ed

+ then has a surplus of
1 − C = 1

k and an edge in Es
+ has a surplus of 1. On the other hand, an edge in

E− has an initial value of zero.

We will define a strategy to distribute the total positive surplus obtained by
First-Fit among the edges in E− such that each edge gets a final value of at
least C. For ease of presentation, the strategy will be described in a stepwise
manner:
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Step 1: Consider in turn all edges e = (v, u) ∈ E+. Let c be the color assigned
to e by First-Fit and let e′ = (w, v) be the parent edge of e (if it
exists).
(a) If e′ ∈ Ed

+ and e′ has been colored with a color c′ > c, then e
transfers a value of 1

k to w.
(b) Any surplus remaining at e is transferred to v.
For each vertex v, let m(v) denote the value transferred to v in this
step.

Step 2: Consider in turn all vertices v ∈ V .
(a) If the vertex v has a parent edge e′ ∈ E−, then v transfers a value

of min
{
m(v), k−1

k

}
to e′.

(b) Any value remaining at v is distributed equally among the child
edges of v belonging to E−.

The following simple but useful properties of the strategy defined above will be
used to prove the theorem. Each of the four facts gives a lower bound on the
value transferred from an edge e = (v, u) to its parent vertex, v. Let e′ = (w, v)
be the parent edge of e (if it exists).

Fact 1: Assume that e ∈ Es
+. If e′ /∈ Ed

+ or e′ does not exist, then e con-
tributes a value of 1 to m(v). If e′ ∈ Ed

+, then e contributes a value of at least
k−1

k to m(v).
Fact 2: Assume that e is colored with the color c. If e′ �∈ Ed

+ or e′ does not
exist, then m(v) ≥ c

k .
Fact 3: Assume that e ∈ Ed

+. If e′ /∈ Ed
+, then e contributes a value of 1

k to
m(v).

In order to state the next fact, we need to introduce some new terminology.
For v ∈ V , let ĉv = max

{Cv ∪ {0}}
. That is, ĉv is the largest color available at

v (and ĉv = 0 if no colors are available). If an edge e incident to v is colored
with a color c > ĉv, then e is said to be a high-colored edge (with respect to v).

Fact 4: Assume that e ∈ Ed
+. If e is high-colored with respect to v, then the

colored child edges of e contribute a total value of at least k−d+(v)
k to m(v).

We will combine these facts to show that any edge e = (x, y) ∈ E− gets a
final value of at least k−1

k . If Cx = C1,k, then ĉx = 0. Otherwise, ĉx ∈ Cy, since
First-Fit is fair. Hence, Fact 2 implies that m(y) ≥ ĉx

k . Thus, e receives a value
of at least min{k−1

k , ĉx
k } from y. In particular, we will assume that ĉx < k − 1,

since otherwise we are done. We will now turn to proving that e receives a value
of at least k−ĉx−1

k from x. This will finish the proof, since it means that e gets
a final value of at least ĉx

k + k−ĉx−1
k = k−1

k .
Let e′ = (z, x) be the parent edge of x (if it exists). The rest of the proof is

split into three cases depending on which of the sets Ed
+, E−, and Es

+ (if any)
that contains e′.

Case 1: e′ ∈ Ed
+. There must be k−ĉx high-colored edges incident to x. Thus,

x has at least k − ĉx − 1 high-colored child edges, and at least k − ĉx − 1−ds+(x)
of them belong to Ed

+. By Fact 4, x receives a value of at least k−d+(x)
k from

the child edges of each of these at least k − ĉx − 1 − ds+(x) edges. Moreover, by
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Fact 1, each of the ds+(x) child edges of e′ belonging to Es
+ contributes a value

of k−1
k to m(x). Thus,

m(x) ≥ (k − ĉx − 1 − ds+(x))
k − d+(x)

k
+ ds+(x)

k − 1
k

≥ d−(x)
k − ĉx − 1

k
,

where the last inequality follows by calculations using that d+(x) ≥ k − ĉx,
d+(x) − ds+(x) = dd+(x), and k − dd+(x) ≥ d−(x). Thus, since no value is trans-
ferred from x to e′ in Step 2(a), each child edge of x belonging to E− receives a
value of at least k−ĉx−1

k from x in Step 2(b).
The two remaining cases (e′ ∈ Es

+ or e′ does not exist) and (e′ ∈ E−) are
treated similarly to Case 1. ��
By Theorems 3 and 4, an algorithm for Edge-k-Coloring(Tree) can only be
better than First-Fit, if it is both randomized and unfair. However, the next
result shows that even such algorithms cannot do much better than First-Fit.

Theorem 5. If R is an algorithm for Edge-k-Coloring and k ≥ 2, then

CTree
R (k) ≤ k

k + 1
.

Proof. We give only the adversary strategy. The adversary first reveals the edges
of a path P = 〈e1, . . . , em〉, for some large m ∈ N. Let v1, . . . , vm+1 be the vertices
in the path such that ei = (vi, vi+1), for 1 ≤ i ≤ m. If E[R(P )] ≤ k

k+1m, the
adversary reveals no more edges. If E[R(P )] > k

k+1m, then for each i, 1 ≤ i ≤
m + 1, the adversary reveals k edges constituting a star, Si, with center vertex
vi. ��
We now show that, for any fixed k ≥ 4, First-Fit is better than Next-Fit, but
the competitive ratio of any fair algorithm tends to 1 as k tends to infinity. We
will use the notation introduced just before Theorem4.

Theorem 6. If F is a fair algorithm, then for any k ≥ 2,

CTree
F (k) ≥ 2

√
k − 2

2
√

k − 1
.

Proof. If F is randomized, the proof holds for any coloring the algorithm may
produce, and hence, for the expected number of edges colored.

Let T = (E, V ) be a tree and assume that the edges of T have been revealed
to F in some order. We will view T as a rooted tree by choosing an arbitrary
vertex to be the root. As in the proof of Theorem4, we let e = (x, y) imply that
x is the parent of y.

We will apply the charging technique from Sect. 2 to show that F is C-competitive,
where C = 2

√
k−2

2
√

k−1
. To this end, we use the following redistribution strategy:
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Step 1: Each edge (v, u) ∈ E+ transfers its entire surplus to its parent vertex,
v.
For each vertex v, let m(v) denote the value transferred to v in this
step.

Step 2: Consider in turn all vertices v ∈ V .
(a) If the vertex v has a parent edge e′ ∈ E−, then v transfers a value

of min {m(v), C} to e′.
(b) Any value remaining at v is distributed equally among the child

edges of v belonging to E−.
For each edge e, let mv(e) denote the value transferred from v to e in
this step.

This finishes the description of the strategy.
Fix an edge e = (x, y) ∈ E−. We need to show that mx(e) + my(e) ≥ C.

Since my(e) = min{C, d+(y) − Cdd+(y)}, this will always be the case unless
d+(y) − Cdd+(y) < C. One can show that if d+(y) − Cdd+(y) < C, then d+(y) =
dd+(y). It follows that we only need to consider the case where d+(y) = dd+(y),
meaning that all of the edges incident to y which have been colored by F have
also been colored by OPT. In particular, this implies that my(e) = (1 − C)d+(y).
Consider now the value mx(e) transferred to e from x.

Case 1: The parent edge of x belongs to E−. The edge e receives a value of

mx(e) ≥ d+(x)−Cdd
+(x)−C

d−(x)−1 from the colored child edges of x. Since dd+(x)+d−(x) ≤
k (OPT can color at most k edges incident to x), it follows that d−(x) ≤ k−dd+(x).

Thus, mx(e) ≥ d+(x)−Cdd
+(x)−C

k−dd
+(x)−1

. We claim that

mx(e) + my(e) ≥ d+(x) − Cdd+(x) − C

k − dd+(x) − 1
+ (1 − C)d+(y) ≥ C

Using dd+(x) ≤ d+(x) and d+(y) ≥ k−d+(x), it follows that in order to prove the
claim, it suffices to show that d+(x) + (1 − C)(k − d+(x))(k − d+(x) − 1) ≥ Ck.
The left hand side of this inequality is a quadratic polynomial in d+(x). Allowing
d+(x) to be any real number, one can show that this quadratic polynomial attains
its minimum value of Ck when d+(x) = k − √

k. In particular, the inequality is
certainly true for all integer values of d+(x) and hence, mx(e) + my(e) ≥ C.

The three remaining cases, the parent edge of e belongs to Es
+, belongs to

Ed
+, or does not exist, are treated similarly to Case 1. ��

We will show that the lower bound of Theorem6 is essentially tight by providing
a matching upper bound on the competitive ratio of Next-Fit when k is a square
number.

Theorem 7. If k = n2 for some integer n ≥ 2, then Next-Fit is a worst
possible fair algorithm with

CTree
NF (k) =

2
√

k − 2
2
√

k − 1
.
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Proof. The lower bound follows from Theorem 6. For the upper bound, we define
a tree T = (V,E) and a subset E′ ∈ E. We specify a coloring, C , of E′ with the
property that each edge in E \ E′ is adjacent to edges of all k colors.

The tree T consists of N bunches of stars, for some large N . Each bunch
contains a large star with k − √

k edges colored with C1,k−√
k and

√
k − 1 small

stars, each with
√

k edges colored with Ck−√
k+1,k. The center vertex of the large

star in bunch i, 1 ≤ i ≤ N , is called vi. This finishes the description of E′ and
its coloring. For each bunch of stars, E \E′ contains an edge between vi and the
center vertex of each of the small stars in the bunch. The ith bunch is connected
to the (i + 1)th bunch by an edge from vi+1 to the center vertex of one of the
small stars in the ith bunch. Note that, after assigning the coloring C to E′,
none of the edges in E \ E′ can be colored. This finishes the description of T .

The adversary will use k disjoint copies, T1, . . . , Tk, of T . The edges in the
resulting graph can be given in an order such that Next-Fit colors each tree
with a coloring equivalent to C . Finally, the k disjoint trees are connected, using
k − 1 edges between vertices that have degree one in the trees. Since k ≥ 4, we
must have

√
k+2 ≤ k and so the maximum degree of the graph is k. Thus, since

the graph has no cycles, OPT colors all edges of the graph. ��
We will briefly consider the case where k is not a square number. Any fair
algorithm for Edge-1-Coloring(Tree) is just the greedy matching algorithm.
It is observed in several papers that this algorithm is 1

2 -competitive (for all
input graphs) and that no deterministic algorithm can do better, even when the
input graph is a tree. If k ≥ 2, but not a square number, then the lower bound
from Theorem 6 can be slightly improved by using the fact that d+(x) must
be an integer. In particular, one can show that all fair algorithms for Edge-k-
Coloring(Tree) are at least 1

2 -competitive for k = 2 and 2
3 -competitive for

k = 3. Since these bounds match the upper bound from Theorem3, we conclude
that all fair algorithms have the same competitive ratio when k ≤ 3.

If k ≥ 4 (but not necessarily a square number), one can obtain the fol-
lowing upper bound by rounding

√
k appropriately in the proof of Theorem7:

CTree
NF (k) ≤

k

�√
k�+�√

k�−2

k

�√
k�+�√

k�−1
. In particular, for any fixed k ≥ 4, the competitive

ratio of First-Fit is better than the competitive ratio of Next-Fit for Edge-
k-Coloring(Tree).

5 Open Problems

Finding optimal online algorithms for Edge-k-Coloring in general and on
other classes of graphs is an interesting open problem. We believe that the tech-
niques used in the proofs of Theorems 4 and 6 can be generalized to, e.g., graphs
of bounded degeneracy. In particular, graphs of bounded degeneracy can be ori-
ented so that each vertex has bounded outdegree and the resulting digraph is
acyclic. This makes it possible to use strategies for redistributing the surplus
similar to the ones we have used for trees.
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Abstract. We consider the problem of scheduling packets of different
lengths via a directed communication link prone to jamming errors.
Dynamic packet arrivals and errors are modelled by an adversary. We focus
on estimating competitive throughput of online scheduling algorithms.
We design an online algorithm for scheduling packets of arbitrary lengths,
achieving optimal competitive throughput in (1/3, 1/2] (the exact value
depends on packet lengths). Another algorithm we design makes use of
additional resources in order to achieve competitive throughput 1, that is,
it achieves at least as high throughput as the best schedule without such
resources, for any arrival and jamming patterns. More precisely, we show
that if the algorithm can run with double speed, i.e., with twice higher
frequency, then its competitive throughput is 1. This demonstrates that
throughput of the best online fault-tolerant scheduling algorithms scales
well with resource augmentation. Finally, we generalize the first of our
algorithms to the case of any f ≥ 1 channels and obtain competitive
throughput 1/2 in this setting in case packets lengths are pairwise divisible
(i.e., any larger is divisible by any smaller).

Keywords: Packet scheduling · Adversarial jamming · Online algo-
rithms · Competitive throughput · Resource augmentation

1 Introduction

Motivation. Achieving high-level reliability in packet scheduling has recently
become more and more important due to substantial increase of the scale of
networks and higher fault-tolerant demands of many incoming applications. In
the era of Internet of Things and nano-devices, it will no longer be possible to
attend devices physically, and therefore the designed protocols must be stable
and robust no matter of failure pattern. Imagine the problem of thousands of
malfunctioning nano-capsules with overflown buffers that need to be somehow
removed from the human body, or the consequences of lack of communication
between AVs with humans onboard or medical devices incorporated into patients
bodies, even if such case might happen with probability less than 1%.
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Our Approach. This paper studies a fundamental problem of online packet
scheduling via unreliable link (also called a channel), when transmitted packets
may be interrupted by jamming errors. This problem was recently introduced
by Fernandez Anta et al. [4] and analyzed for two different packet lengths; in
our work, an arbitrary number of packet lengths is considered. Packets arrive
dynamically to one end of the link, called a sender, and need to be transmitted
in full, i.e., without any in-between jamming error, to the other end (called a
receiver). Jamming errors are immediately discovered by the sender. We analyze
all possible scenarios, including worst case ones, which we model as a concep-
tually adversary who controls both packet arrivals and channel jamming. The
adversary is unrestricted, in the sense that she may generate any arrival and
error pattern in time. The main objective of the online scheduling protocol is
to achieve as high throughput as possible under current scenario, where the
throughput is the rate of the total length of successfully sent packets in time.
(Other measures, such as queue sizes and packet latency, are not considered in
this work — it is known that they both require higher speedup augmentation
in order to achieve competitiveness, cf., [5,6]). Because of the online setting, we
consider the competitive throughput measure, which is roughly a ratio between
the throughput achieved by the online algorithm and the one reached by any
other deterministic algorithm (even equipped with the knowledge of adversarial
arrivals and errors).

Previous Work. The framework considered in this work was recently intro-
duced in [4] in the context of two packet lengths. The authors showed that general
offline version of this problem, in which the scheduling algorithm knows a priori
when errors will occur, is NP-hard, cf., [4]. They also considered algorithms and
upper limitations for relative throughput in case of two packet lengths. In par-
ticular, they proved that relative throughput of any online scheduling protocol
cannot be bigger than ρ/(ρ + ρ), where ρ is the ratio between the largest and
the smallest packet lengths and ρ = �ρ�. (Note that the upper bound becomes
1/2 if the bigger packet length is a multiplicity of the smaller packet length.)
This upper bound can be achieved by a protocol scheduling a specific pream-
ble of shorter packets followed by the Longest First rule after every error, but
cannot be reached by simpler protocols such as Longest First itself or Short-
est First. Therefore, it remained open whether there is an online scheduling
protocol reaching the relative throughput of (roughly) 1/2 for arbitrary num-
ber of packet lengths; we answer this question in affirmative in this work, using
alternative techniques. Moreover, as also shown in [4], randomization does not
help, which motivates the study of deterministic algorithms. Recently, Fernandez
Anta et al. [6] analyzed four popular scheduling algorithms in the same frame-
work: FIFO, LIFO, Longest First and Shortest First. Among others, they proved
that, for any packet lengths, the first three algorithms have relative throughput
0 while the last one has 1

1+ρ < 1
2 , even for pairwise divisible packet lengths.

Moreover, none of the four algorithms reaches the relative throughput 1 for any
speedup smaller than ρ. All results in [4,6] hold also for competitive throughput
(for sufficiently large additive constant).
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Our Contribution. We design a deterministic online scheduling algorithm
achieving optimal competitive throughput for an arbitrary number k of packet
lengths �min = �1 < �2 < . . . < �k = �max (Sect. 3). We first show a simpler ver-
sion of the algorithm, for the case when packet lengths are pairwise divisible, i.e.,
any larger is divisible by any smaller (we call it pairwise divisibility property). We
then extend the protocol so that it does not need to rely on such limitation about
divisibility, and achieves the competitive throughput min1≤j<i≤k

{ �ρi,j�
�ρi,j�+ρi,j

}
,

where ρi,j = �i/�j is the ratio between the i-th and the j-th packet length. Note
that this general formula for competitive throughput is in the range (13 , 1

2 ], which
is independent of ρ (in contrast to the four popular algorithms analyzed in [6]),
and it reaches 1

2 if and only if the pairwise divisibility property holds.
A natural question arrises whether a better throughput could be achieved

under some additional resources provided to the scheduler, for example, speedup
(e.g., using higher frequency). Unfortunately, the designed protocols do not
achieve competitive throughput 1 even if speedup 2 is applied (it can be eas-
ily checked that the competitive throughput is at most 2/3 in such case, while
the four popular algorithms analyzed in [6] require speedup at least ρ), which
implies that they are not well-scalable (i.e., linearly) with resource augmenta-
tion.1 Therefore we design another deterministic online protocol to optimize
competitive throughput for speedup 2, provided pairwise divisibility property
holds (Sect. 4). It is a generalization of the preamble protocols, proposed in [4]
and [5] in the case of only two packet lengths.

Finally, we show how to generalize our algorithm achieving throughput 1
2

for a single channel (without speedup) to the setting with any f ≥ 1 channels.
This extension is not straightforward, since different channels may have different
error frequencies generated by the adversary, and therefore the central scheduler
has to adapt separately to each channel capacity while keeping general progress
with respect to the joint set of pending packets. To the best of our knowledge,
this is the first work studying throughput of fault-tolerant dynamic scheduling
on many channels against unrestricted adversary.

Due to limited space, many details are deferred to the full version of the
paper [8].

Related Work. Packet scheduling [9] is one of the most fundamental problems
in computer networks. A realistic approach involves online scheduling [7,11], and
therefore a competitive analysis [1,13] is often used to evaluate the performance
of proposed solutions. Online scheduling was considered in a number of models;
for more information the reader is referred to [10] and [11].

There are relatively few approaches assuming both online packet arrivals
and errors. Apart from the already mentioned work [4], the authors in [5] stud-
ied buffer sizes of online scheduling protocols on error-prone channel. Unlike the
relative/competitive throughput measure, in order to be positively competitive

1 Note that the considered speedup 2 is chosen because we claim linear scalability of
competitive throughput with the increase of speedup, that is, starting from level 1/2
with no speedup we expect the competitive throughput to reach value 1 for speedup 2.
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with the best scheduling algorithms with respect to the buffer sizes, additional
resources need to be given to the online protocol, i.e., speedup (higher fre-
quency). This form of resource augmentation appeared to be efficient: for some
speedup smaller than 2 there is a deterministic online scheduling algorithm hav-
ing roughly the same queue sizes as any other scheduling algorithm running
without speedup. That work motivated us to consider resource augmentation
technique, in the form of using some speedup (higher frequency), to reach at
least the same throughput as the best scheduler without speedup for any execu-
tion.

Wireless packet scheduling was also considered in models with physical con-
straints included, such as radio networks or SINR. Anantharamu et al. [2] con-
sidered packet scheduling on a multiple access channel with signal interference,
under a restricted adversarial patterns of packet arrivals and channel jamming.
Richa et al. [12] who analyzed competitive throughput of randomized scheduling
protocols on multiple access channels with signal interference against adaptive,
but still restricted, adversarial jamming.

Andrews and Zhang [3] studied buffer stability (i.e., bounded buffers prop-
erty) of online packet scheduling on a wireless channel, where both the chan-
nel conditions and the data arrivals are controlled by an adversary. They also
assumed bounded adversary, as otherwise stability could not be reached in their
model.

2 Model

We consider a uni-directional point-to-point link in which one end point, called
a sender, transmits packets to the other end point, called a receiver. The sender
is equipped with unlimited buffer (or a queue), in which the arriving packets
are queued. Packets may be of different lengths, and may arrive at any time; we
assume that time is continuous, and scheduling algorithm have access to packets
as soon as they arrive. There are k ≥ 2 different packet lengths, denoted by
�min = �1 < �2 < . . . < �k = �max. For simplicity, we will use the names “�i-
packets” and “packets �i” for packets of length �i, for any 1 ≤ i ≤ k. In some
parts of the paper we assume that �i/�j is an integer for any 1 ≤ j < i ≤ k (so
called pairwise divisibility property). We denote ρ = �max/�min. We assume that
all packets are transmitted at the same bit rate, hence the transmission time is
proportional to the packet’s length. The link is prone to jamming errors, that is,
transmitted packets might be corrupted at any time point.

Arrival Models. We consider adversarial packet arrivals: the packets’ arrival
time and length are governed by an adversary. We define an adversarial arrival
pattern as a collection of packet arrivals (i.e., packet id, length and arrival time)
caused by the adversary.

Link Jamming Errors. We consider adversarial model of jamming errors, in
which the adversary decides at which time to cause a jamming error on the
link. The error at time t implies that a packet being transmitted at time t is
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broken, and the information about it is immediately delivered to the sender so
that it breaks the current transmission and could schedule another packet (or
re-schedule the one that was just broken). A corrupted packet transmission is
unsuccessful, in the sense that it is not received by the receiver and it needs
to be retransmitted in full (not necessarily right after the error — scheduling
algorithm may decide to postpone it and transmit another packet instead). We
assume that scheduling algorithms do not voluntarily stop transmitting packets
before the end of the transmission, unless they get feedback about jamming
error. An adversarial error pattern is defined as a collection of error events on
the link caused by the adversary.

Adversarial models are typically used to argue about the algorithm’s behavior
in any possible scenario, in particular, in the worst-case ones.

Efficiency Metric: Competitive Throughput. We would like to measure
throughput of the communication link(s) in terms of competitive analysis of
online algorithms. Let A be an arrival pattern and E an error pattern. For a
given deterministic algorithm ALG, let LALG(A, E , t) be the total length of all
the successfully transmitted (i.e., non-corrupted) packets by time t under arrival
pattern A and error pattern E . Let OFF be any offline algorithm that knows the
exact arrival and error patterns.

For arrival pattern A, adversarial error pattern E and time t, we define the
competitive throughput TALG(A, E , OFF, t) of a deterministic algorithm ALG by
time t with respect to OFF as:

TALG(A, E , OFF, t) =
LALG(A, E , t)
LOFF (A, E , t)

.

For completeness, TALG(A, E , OFF, t) equals 1 if LALG(A, E , t) = LOPT

(A, E , t) = 0.
We define the competitive throughput of ALG in the adversarial arrival model

to be the biggest value TALG satisfying the following equation for each offline
algorithm OFF, each time t and some constant a (depending only on the model
parameters, but not on t):

LALG(A, E , t) ≥ TALG · LOFF (A, E , t) − a. (1)

Resource Augmentation: Speedup. In the second part of the paper, in Sect. 4,
we consider resource augmentation technique. This technique was recently applied
to fault-tolerant scheduling in [5] in the context of buffer stability metric. In partic-
ular, we compare the throughput of a given online algorithm under the assumption
that this algorithm is run with a certain speedup s > 1, with the throughput of the
best scheduling algorithm run without any speedup. From technical perspective,
computing of the competitive throughput under speedup s > 1 follows the same def-
initions as given above, with the only difference that the value of LALG(A, E , t) is
calculated under assumption that ALG transmits packets s times faster (i.e., a
packet of length � can be transmitted in time period of length �/s). In this work
we focus on speedup s = 2.

Notation. We use the notations [n,m] = {p ∈ N |n ≤ p ≤ m} and [n] = [1, n].
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Algorithm 1. Greedy
1: loop
2: while

∑k
i=1 �ini < �k do Stay idle � ni : number of awaiting �i-packets

3: Transmit-group(k)

3 Packet Scheduling for k Packet Lengths

In this section we present an online algorithm, which is optimal for any number of
packet lengths k ≥ 2. First, for the ease of presentation, we present the algorithm
Greedy under assumption that �i/�i−1 ∈ N for 1 < i < k. Later, in Sect. 3.1, we
show how to remove this assumption by modifying the algorithm Greedy; the
resulted algorithm is called MGreedy.

The main idea behind our algorithms is to keep transmitting as many short
packets as possible (shortest-first strategy), subject to some balancing con-
straints. Observe that it is difficult for any offline algorithm OFF to get substan-
tial advantage over any online algorithm ALG when ALG sends small packets
from its queue. Thus, preference for small packets ensures that ALG can be as
efficient as any OFF, as long as ALG has short packets in its queue. However, if
OFF transmits large packets during transmission of small packets by ALG, it can
afterwards transmit small packets when ALG does not have any of them in its
queue. Simultaneously, when OFF is transmitting small packets, the adversary
can generate errors preventing ALG from a successful transmission of large pack-
ets. Despite this disadvantage of a greedy approach, we show that an appropriate
implementation of this strategy, using some balancing constraints, provides an
optimal solution with respect to competitive throughput, and thus against any
optimal way of scheduling under occurring arrival and failure patterns.

Our specific modification of the greedy shortest-first strategy is based on
sending packets in groups, which altogether balance the length of the next larger
packet. We explain it first for two types of packet lengths: �min and �max. If there
are at least ρ = �max/�min small packets (�min) in the queue, the algorithm builds
a group, which consists of ρ of them, and keeps sending them until all of them are
transmitted successfully. If there are less than ρ small packets in the queue at the
moment when a transmission of a group is finished, a large packet (�max) is
transmitted. However, whenever there are at least ρ small packets, the group of
small packets is formed, independently of the fact whether a transmission of a
large packet(s) is successful or not. This idea is then recursively applied for the
case when there are k > 2 types of packets.

A pseudo-code of our greedy algorithm is presented as Algorithm 1, with its
recursive subroutine given as Algorithm 2. In the pseudo-codes, ni denotes the
number of �i-packets which are currently (at the moment) waiting in the queue
for transmission.

Performance Analysis of Algorithm Greedy. For the sake of analysis of
algorithm Greedy, we introduce some new notations. First, let us assume that
an arrival pattern and an injection pattern are chosen arbitrarily and are fixed,
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Algorithm 2. Transmit-group(j)
1: loop
2: if

∑j−1
i=1 �ini ≥ �j then � ni : number of awaiting �i-packets

3: for a = 1 to �j/�j−1 do Transmit-group(j − 1)
return

4: Transmit �j ; If the transmission is successful: return

so we could omit them from formulas in the further analysis. For an algo-
rithm A, let qA(i, t) denote the sum of lengths of �i-packets in the queue of
A at the moment t. That is, qA(i, t) = ni · �i for a fixed time t. Moreover, let
qA(< i, t) =

∑
j<i qA(j, t) and we define qA(≤ i, t) analogously. Let LA(i, t)

denote the length of packets �i successfully transmitted by time t. For a time
period τ = [t1, t2], let LA(i, τ) = LA(i, t2) − LA(i, t1). That is, LA(i, τ) denotes
the total length of �i-packets successfully transmitted in the interval τ (i.e., such
that their transmissions are finished in τ). The notions LA(< i, t), LA(≤ i, t),
LA(< i, τ), and LA(≤ i, τ) for time t and time interval τ are defined analogously
to qA(< i, t), qA(≤ i, t), qA(< i, τ) and qA(≤ i, τ). We also use the above intro-
duced notations without the first argument, i.e., qA(t), qA(τ), LA(t), and LA(τ),
which are shorthands for qA(≤ k, t), qA(≤ k, τ), LA(≤ k, t) and LA(≤ k, τ),
respectively.

An algorithm A is busy at time t if it is transmitting a packet at t, it has
just finished a successful transmission at t, or its transmission is jammed by an
error at t. Otherwise A is idle at t.

Our goal is to compare progress in sending packets of our algorithm Greedy
and any algorithm OFF. We say that an algorithm A is m-busy (with respect to
OFF) in a time period τ = [t1, t2] if the following conditions are satisfied:

1. A is busy at each time t ∈ τ ;
2. A does not (try to) transmit packets �i for i > m during τ ;
3. qA(i, t1) ≥ qOFF (i, t1) for each i ∈ [m]. (That is, at time t1 A has no less

packets of length �i in its queue than OFF, for each i ≤ m.)

Now, we state technical results regarding periods in which Greedy is m-busy
for some m ∈ [k]. These lemmas eventually lead to the proof of the fact that
competitive throughput of Greedy is 1/2 (provided �i/�i−1 ∈ N for i ∈ [2, k]),
which is optimal. First, we make an observation that, if Greedy does not use
packets longer than �m for m ∈ [k], then the total length of packets transmitted
by Greedy is at least as large as the total length of packets of length at least �m

transmitted by OFF (up to an additive constant).

Lemma 1. Assume that Greedy is m-busy in a time period τ , m ≤ k. Then,
LGreedy(τ) ≥ LOFF (≥ m, τ) − �k.

Next, we formulate a relationship between the length of packets transmitted in
time period τ by Greedy and OFF up to the moment when Greedy is transmit-
ting the longest packet used by itself during τ .
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Lemma 2. Assume that Greedy is m-busy in a time period τ = [t1, t2], m ≤ k.
Let t ∈ τ be any time at which Greedy starts transmitting a packet of length �m.
Then,

2LGreedy([t1, t]) ≥ LOFF ([t1, t]) + qOFF (< m, t) − �m − �k.

Using previous lemmas, one can prove by induction a relationship between
LGreedy(τ) and LOFF (τ) for periods τ which are m-busy for Greedy, where
m ∈ [k].

Lemma 3. Assume that Greedy is m-busy in a time period τ , for m ≤ k. Then,

2LGreedy(τ) ≥ LOFF (τ) − gm

where gm satisfies the relationships g1 = �k and gi+1 = gi + 2�i+1 + 2�k for
i ∈ [1, k − 1].

Theorem 1. The competitive throughput of Greedy is equal to 1/2, provided
li/li−1 ∈ N for each i ∈ [2, k].

Proof. Let us fix A and E . For any time t, let t′ be the largest value among
t′′ < t such that Greedy is idle at t′′. Then,

– LGreedy(t′) < LOFF (t′) + �k, since Greedy is idle only in the case that total
length of packets in its queue is smaller than �k;

– Greedy is k-busy in τ = [t′, t] and therefore LGreedy(τ) ≥ 1
2LOFF (τ)− 1

2gk by
Lemma 3.

By combining the above observations, we get LGreedy(t) ≥ 1
2LOFF (t)−�k − 1

2gk,
which gives the claimed result for the additive constant a = 1

2gk + �k. ��
Corollary 1. The algorithm Greedy achieves optimal competitive throughput for
packets’ lengths �1 < . . . < �k such that �i/�i−1 ∈ N for each i ∈ [2, k].

Proof. It is shown in [4] that competitive throughput of any online algorithm for
two types of packets is at most ��2/�1�

��2/�1�+�2/�1
, which is equal to 1

2 when �2/�1 ∈ N.
As an adversary can decide to schedule merely two types of packets among
available k types, Theorem 1 implies optimality of competitive throughput of
Greedy. ��

3.1 Arbitrary Lengths of Packets

In this section we discuss an application of the ideas behind the algorithm Greedy
to the general case, i.e., when the condition �i/�i−1 ∈ N is not satisfied. Let
ρi,j = �i/�j . A natural generalization of Greedy is that, instead of ρi,i−1 groups
of packets of length �i−1 on the i-th level of recursion, we choose �ρi,i−1� groups
of packets of total length (as close as possible to but not larger than) �i−1 in order
to “cover” �i. Then, we can apply the ideas of “covering” packets transmitted
by OFF using groups of packets transmitted by Greedy. If k = 2, this approach
gives an algorithm with competitive throughput �ρ2,1�

�ρ2,1�+ρ2,1
, which is optimal due

to [4]. The lower bound from [4] naturally generalizes to the following result, since
the adversary may inject only two types of packets.
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Theorem 2. The competitive throughput of any online scheduling algorithm is
at most

min
1≤j<i≤k

{ �ρi,j�
�ρi,j� + ρi,j

}
.

However, for k > 2, the additional advantage of OFF over Greedy, following
from rounding on various levels of recursion, could accumulate. In order to limit
this effect, instead of transmitting ��i/�i−1� groups of packets on the level i − 1,
we keep sending groups on the level i−1 as long as the sum of lengths of packets
from the transmitted groups is not larger than �i − �i−1. This gives the following
technical result. (For simplifying the arguments in the remaining part of the
analysis, let us denote ρi,i−1 = �i/�i−1 by simply ρi, for i ∈ [2, k].)

Lemma 4. Consider such a modification of Greedy that TransmitGroup(j) keeps
calling TransmitGroup(j − 1), for j > 1, as long as the total length of transmitted
packets in the current execution of TransmitGroup(j) is at most �j − �j−1. The

competitive throughput of this algorithm is at least mini∈[2,k]

{
ρi−1
2ρi−1

}
.

Proof. In Lemmas 1, 2 and 3, we repeatedly use the argument that, if Greedy
does not use packets of length �i for i > m, then each such packet transmitted by
OFF corresponds to a group of (shorter) packets transmitted by Greedy of total
length �i. This observation can be preserved for the modified Greedy algorithm
with a relaxation that a packet �i transmitted by OFF corresponds to a group
of packets transmitted by Greedy of length at least �i − �i−1 = (1 − ρi)�i. This
relaxation translates inequalities from Lemmas 1, 2 and 3 to:

ρm

ρm−1 · LGreedy(τ) ≥ LOFF (≥ m, τ) − �k

(1 + ρm

ρm−1 ) · LGreedy([t1, t]) ≥ LOFF ([t1, t]) + qOFF (< m, t) − �m − �k

(1 + ρm

ρm−1 ) · LGreedy(τ) ≥ LOFF (τ) − gm

If we apply the above inequalities instead of those from Lemmas 1, 2 and 3 in
the proof of Theorem 1, we obtain the result claimed here. ��
However, as a group of packets transmitted by Greedy “covering” the packet
�i transmitted by OFF may contain packets of various lengths, the competitive
throughput of the solution from Lemma 4 is difficult to compare with the upper
bound from Theorem 2. In order to tackle this issue, we introduce yet another
modification to the algorithm.

The main goal of this modification is to ensure that Greedy is transmitting
packets of the same length for long periods of time and it changes to other
length only if it is necessary. An execution of the algorithm is split into stages.
In a stage, packets of total length (close to) ck�k are transmitted, where c ∈ N

is a fixed large constant. At the beginning of a stage, the set C of candidates
is determined as C = {i |ni�i ≥ ck�k}. Then, the interesting length �i� is set
for parameter i� = min(C), and the algorithm starts transmitting packets li� .
After each transmission, successful or not, the interesting length i� is updated to
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Algorithm 3. MGreedy c : constant parameter
1: C ← {i | ni�i ≥ ck�k} � ni : number of awaiting �i-packets
2: loop
3: while {i | �ini ≥ ck�k} = ∅ do Stay idle
4: C ← {i | �ini ≥ ck�k}
5: i� ← min(C)
6: for a = 1 to ck do �′ ← TransmitGroup(j − 1)
7: � ← � + �′

Algorithm 4. TransmitGroup(j) i� : global variable of MGreedy and
TransmitGroup
1: � ← 0
2: while � ≤ �j − �i� do
3: if j > i� then �′ ← TransmitGroup(j − 1)
4: � ← � + �′

5: else
6: Transmit �j

7: C ← C ∪ {i | �ini ≥ ck�k} � ni : number of awaiting �i-packets
8: i� ← min(C)
9: If a transmission of �j successful: � ← �j

10: return �

i� ← min({i�} ∪ {i | �ini ≥ ck�k}). (Note that the set of candidates {i | �ini ≥
ck�k} may change over time, as the adversary injects packets.)

Using the notion of the interesting length, we work in line with the original
algorithm Greedy, with the following restrictions:

– no packet is transmitted as long as the interesting length is not determined
(i.e., the set of candidates is empty);

– only a packet of length li� can be transmitted.

As the total length of packets staying in the queue whose lengths are not
interesting is at most k · ck�k, they do not have impact on the multiplicative
constant defining the competitive throughput. Thus, for the analysis of the com-
petitive throughput, we can assume that there are no packets of lengths which
are not interesting at each time t. That is, there are no packets of lengths �i

such that i �∈ C. Then, the new algorithm MGreedy works exactly as the origi-
nal algorithm Greedy. The pseudo-code of algorithm MGreedy and the modified
sub-routine TransmitGroup(j), which now returns also some value �, are given
as Algorithms 3 and 4, respectively.

Performance Analysis of Algorithm MGreedy. We say that an execu-
tion of TransmitGroup(k) is uniform if the algorithm transmits packets of a fixed
length �i during that executions of TransmitGroup(k) as well as during the execu-
tions of TransmitGroup(k) directly preceding it. A new key property of algorithm
MGreedy compared with Greedy is that most of its executions of sub-routine
TransmitGroup(k) are uniform.
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Proposition 1. At least ck − 2k calls of TransmitGroup in a stage of MGreedy
are uniform.

Given the above observation, we can evaluate the competitive throughput of
MGreedy.

Lemma 5. The competitive throughput of the algorithm MGreedy is at least

min
1≤j<i≤k

{ �ρi,j�
�ρi,j� + ρi,j

}
· c′,

where c′ is a constant depending on the parameter c such that c′ can be arbitrarily
close to 1 for large enough c.

As we can choose arbitrarily large c, Lemma 5 implies that the competitive
throughput of MGreedy might be arbitrarily close to the upper bound from
Theorem 2. In the following theorem, we state that one can guarantee the optimal
competitive throughput. This result is obtained by a modification of MGreedy
such that it gradually increases the constant c during its execution.

Theorem 3. The optimal competitive throughput of an online algorithm is equal to

min
1≤j<i≤k

{ �ρi,j�
�ρi,j� + ρi,j

}
.

4 An Algorithm for a Scenario with Speedup

Now we return to the packets whose lengths fulfil divisibility property, i.e.
�i/�i−1 ∈ N for 1 < i < k, and address the problem of increasing through-
put by enabling algorithm to work with greater speed. We design an algorithm
Prudent (Algorithm 5) which, working with speedup s = 2, achieves compet-
itive throughput 1. This algorithm works in phases, where a phase is a time
period between two consecutive errors. Behaviour of the algorithm in a phase is
described as Algorithm 5. During each phase it tries to send packets of maximal
length which do not exceed the total length of packets sent so far in that phase.
It can be treated as a greedy strategy restricted by a “safety policy” that does
not allow to send long packets unless the cost of their unsuccessful transmissions
can be amortized by an advantage over an adversary gained during the earlier
transmissions since the time of the last error.

One can easily show that such a strategy guarantees that an algorithm sends
at least as many �k-packets as any OFF, provided the algorithm works with
speedup s = 2. Then, one can show inductively that the following inequality
holds for i ∈ [1, k−1] at any time t: LPrudent(≥ k−i, t) ≥ LOFF (≥ k−i, t)− 5

2 i�k.
As a simple consequence of this fact, we get the following theorem.

Theorem 4. The competitive throughput of Algorithm Prudent working with
speed-up 2 is equal to 1, provided �i/�i−1 ∈ N for each i ∈ [2, k].
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Algorithm 5. Prudent
1: loop
2: while {i | �ini ≥ �k} = ∅ do Stay idle � ni : number of awaiting �i-packets
3: let i be the smallest number such that: ni�i ≥ �k;
4: if i < k then
5: transmit �i+1/�i packets �i;
6: Lsent ← �i+1

7: while Lsent < �k do
8: j ← maximal number such that nj�j ≥ �k − Lsent and �j ≤ Lsent

9: transmit �j+1/�j packets �j

10: Lsent ← Lsent + �j+1

11: loop
12: transmit longest unsent packet

Algorithm 6. GreedyMC on channel ψ ≤ f

1: loop
2: while

∑k
i=1 �ini < f�k do Stay idle � ni : number of awaiting �i-packets

3: Transmit-group-MC(k)

Algorithm 7. Transmit-group-MC(j) on channel ψ ≤ f

1: loop
2: if

∑j−1
i=1 �ini ≥ f�j then � ni : number of awaiting �i-packets

3: for a = 1 to �j/�j−1 do Transmit-group-MC(j − 1)
return

4: Transmit �j ; If the transmission is successful: return

5 Packet Scheduling on f > 1 Channels

In this section we show how to adjust algorithm Greedy from Sect. 3 to the setting
where f > 1 independent channels are available. All channels are controlled by
the adversary, and the only difference between the model with a single channel
and the one with f > 1 channels is that the scheduling algorithm needs to choose
a channel for each scheduled packet. The analysis of the modified algorithm,
called the GreedyMC, will be done under the same assumption as for the original
Greedy algorithm, that is, �i/�i−1 ∈ N for 1 < i ≤ k.

The modification and its analysis are not obvious, since the adversary may for
example cause more errors on one channel and consequently the scheduler should
try to schedule packets of shorter lengths on it, comparing to the other channels.
Therefore, the following two modifications need to be done. First, the scheduler
runs the algorithm GreedyMC, and its sub-routine Transmit-group-MC, sepa-
rately for each channel; that is, as soon as channel ψ ≤ f gets free, the algorithm
tries to find a suitable packet to schedule on ψ from all available packets in the
queue. Second, these individually run copies of the algorithm take into account
availability of packets for other channels, by generalising the formula triggering
the next level of recursion from

∑j−1
i=1 �ini ≥ �j to

∑j−1
i=1 �ini ≥ f�j , i.e., by



Online Packet Scheduling Under Adversarial Jamming 205

multiplying the right side of the equation by the number of channels f . We also
assume that the scheduled packet is removed from the queue, to avoid redun-
dancy; it gets re-stored in case an error is reported on the channel during its
transmission. A pseudo-code of GreedyMC is presented as Algorithm 6, with its
recursive subroutine given as Algorithm 7.

6 Conclusions

We presented novel efficient and reliable algorithms for online scheduling of
packets of different lengths. The first two protocols assure maximum possible
throughput and they guarantee to be no more than twice (or three times, in
case of no divisibility) worse than the throughput of any other scheduling algo-
rithm. The result can be generalized to the setting of any f > 1 channels.
Another algorithm guarantees at least as high throughput as the optimal one,
when run with additional speed-up of 2, which suggests linear scalability with
resource augmentation.

We believe that this study together with recent work [4,6] demonstrates algo-
rithmic potential of the model, and will result in further fault-tolerant study of
more complex scheduling problems, including deadlines, priorities, dependencies,
and other features.
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Abstract. In k-hypergraph matching, we are given a collection of sets of
size at most k, each with an associated weight, and we seek a maximum-
weight subcollection whose sets are pairwise disjoint. More generally, in
k-hypergraph b-matching, instead of disjointness we require that every
element appears in at most b sets of the subcollection. Our main result
is a linear-programming based (k − 1 + 1

k
)-approximation algorithm for

k-hypergraph b-matching. This settles the integrality gap when k is one
more than a prime power, since it matches a previously-known lower
bound. When the hypergraph is bipartite, we are able to improve the
approximation ratio to k − 1, which is also best possible relative to the
natural LP. These results are obtained using a more careful application
of the iterated packing method.

Using the bipartite algorithmic integrality gap upper bound, we show
that for the family of combinatorial auctions in which anyone can win at
most t items, there is a truthful-in-expectation polynomial-time auction
that t-approximately maximizes social welfare. We also show that our
results directly imply new approximations for a generalization of the
recently introduced bounded-color matching problem.We also consider
the generalization of b-matching to demand matching, where edges have
nonuniform demand values. The best known approximation algorithm for
this problem has ratio 2k on k-hypergraphs. We give a new algorithm,
based on local ratio, that obtains the same approximation ratio in a much
simpler way.

1 Introduction

In a matching problem we want to find the maximum weight subcollection of
pairwise disjoint sets within a given collection. Often these problems are studied
with respect to the maximum set size k (i.e. on “k-hypergraphs”); matching is
polynomial-time solvable for k = 2, while it is APX-hard for k = 3, even in
special cases like 3-dimensional matching [18].
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The b-matching problem generalizes matching: the input specifies a limit bv

for every vertex, and we can select at most bv sets containing each v; ordinary
matching results when b is the all-1 vector. A b-matching instance can allow each
set e to be selected multiple times up to some upper capacity limit ce. Simple
b-matching is the case where all capacities are unit. The uncapacitated case is
where c = −→∞, i.e. there are no capacity limits.

One of our results considers the generalization of b-matching to demand
matching, a notion originally introduced for graphs in [26]. For this problem
each edge is given a demand value de, and we now constrain that for every ver-
tex v, the sum of the d-values of the incident edges should be at most bv. When
d is the all-1 vector we recover the b-matching problem.

Hypergraphic matching problems are often studied via linear programming
relaxations. In this paper we use only the naive LP relaxations. The worst-case
ratio between the LP optimum and the optimal integral solution is called the
integrality gap. An LP-relative α-approximation algorithm is one that produces
(in polynomial time) an integral solution of value at least 1/α times the LP’s
optimal value — this both upper bounds the integrality gap by α and gives an
α-approximation algorithm. Many classical approximation algorithms are LP-
relative; so the notion is not novel, rather, this terminology helps us be concise.

1.1 Results

Our main result is the following theorem.

Theorem 1. There is an LP-relative (k − 1 + 1
k )-approximation algorithm for

k-hypergraph b-matching, for any capacities.

In [23] one of the authors announced, without a proof, a weaker result than the
above theorem, namely an upper bound of k−1+ 1

k on the integrality gap. Here we
give an algorithm to find an integral solution matching this bound in polynomial
time, requiring a significant extension of the techniques presented in [23].

For the special case b = 1, Füredi, Kahn and Seymour [15] proved an
upper bound of k − 1 + 1

k in 1993, while Chan & Lau [10] recently gave the
first polynomial-time algorithm matching this bound. Their technique does not
directly extend to the k-hypergraph b-matching case. The technique that we
use to prove Theorem 1 is iterated packing, the same technique from [23]. Part
of the contribution of the present paper is to simplify and extend some of the
approaches from [10,23]. Our main technical innovation is, using iterated pack-
ing, to explicitly specify particular additional solutions as ineligible for packing:
not only solutions that would be ineligible for the original problem, rather we
additionally prohibit solutions exceeding the ceiling of the current fractional
solution.

Theorem 1 is tight for infinitely many k: when k − 1 is a prime power, as
observed in [15], the projective plane PG(2, k−1) of order k−1 yields a matching
lower bound of k−1+ 1

k on the integrality gap. It is an interesting open question
to settle the integrality gap for any other values of k.
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We are able to determine the exact integrality gap for another interesting class
of hypergraphs. Call a hypergraph bipartite ([1]; cf. [24]) if, for some distinguished
subset U of vertices, every hyperedge contains exactly one vertex from U .

Theorem 2. There is an LP-relative (k−1)-approximation algorithm for bipar-
tite k-hypergraph b-matching, for any capacities.

Chan and Lau [10] proved Theorem 2 in the special case that b = 1 and
the instance is k-dimensional1. Proving Theorem 2 is similar to Theorem 1
plus extending an observation of [10] from k-dimensional hypergraphs to bipar-
tite ones. Like Theorem 1, a matching integrality gap lower bound is known
[14, p. 157] when k − 1 is a prime power: the hypergraphic dual of the affine
geometry AG(2, k−1), i.e. a truncated projective plane, has integrality gap k−1.

We obtain the following interesting corollaries from the bipartite case. In the
bounded-color k-hypergraph b-matching problem we are given an instance of the
k-hypergraph b-matching problem along with a partition of the edge set into l
color classes, E = E1 ∪ · · · ∪ El, and a positive integer wi for 1 ≤ i ≤ l. We seek
a feasible k-hypergraph b-matching of maximum weight such that at most wi

edges from class Ei are selected for each i.

Corollary 1. There is an LP-relative k-approximation for bounded-color
k-hypergraph b-matching.

Corollary 2. For combinatorial auctions where each bidder can win at most
(k − 1) items, there is a randomized polynomial-time mechanism that, in expec-
tation, is both truthful and (k − 1)-approximately maximizes social welfare.

We are not aware of any prior results for this extremely natural class of combi-
natorial auctions, cf. [22, Chap. 12].

The proof of Corollary 2 uses the mechanism of Lavi and Swamy [21], where
the distinguished vertices in the bipartite hypergraph correspond to the bidders.
For this application, it is crucial that Theorem 2 gives an LP-relative approxi-
mation in polynomial time.

Finally, we give a new short proof of the following known theorem:

Theorem 3 [23]. There is an LP-relative 2k-approximation for k-hypergraph
demand matching.

Our simpler proof is based on the local ratio method, rather than the iterated
packing used in [23]. We rely on a connection in [5, p. 12] between local ratio
and iterated packing.

1.2 Related Work

As Tutte observed [28], both in edge-weighted graphs and in the cardinality case,
uncapacitated graphic b-matching can be reduced to matching by replacing each
1 A hypergraph is k-dimensional if for some k-partition of the ground set, every edge
intersects every part exactly once.
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vertex by bv clones. Each edge uv is likewise cloned bubv times. This reduction
has two problems: (1) the clones cause an exponential increase in the instance
size (from lg‖b‖1 to ‖b‖1); and (2) it does not work in the capacitated case, since
we need to prevent too many clones of the same edge from being selected. Cloning
applies to hypergraphs, too, but has the same two problems. Algorithmically, we
can often avoid (1) by not dealing with the clones explicity. For graphs we can
fix problem (2): an edge-trisecting reduction [28] (see also [25, p. 562]) extends
cloning to work on capacitated instances. But for hypergraphs, there is no known
workaround for problem (2).

As a strawman, let us mention that one can reduce capacitated b-matching in
k-hypergraphs to uncapacitated b-matching in (k +1)-hypergraphs, by inserting
new vertices in each hyperedge and by moving each edge’s capacity to the b value
of its new vertex. One can even then apply cloning. But this is not that useful
for us: e.g., we cannot use the previously-known b = 1 case of version Theorem 1
to even prove the nonconstructive version of Theorem 1 for general b, since this
reduction increases the hyperedge size from k to k + 1.

Algorithmically, the simple (capacity c = 1) case of b-matching is the hardest.
The proof is standard, by fixing the integer part of an optimal fractional solution.

Observation 1. Given an (LP-relative) α-approximation to simple b-matching
in k-hypergraphs, we can obtain the same quality of approximation for general
capacities.

Hypergraph Matching. Matching problems in k-uniform hypergraphs are well-
studied algorithmically. For any fixed ε > 0 the best known approximation ratios
are k

2 + ε for the unweighted version by Hurkens and Schrijver [17] and k+1
2 + ε

for the weighted version by Berman [8]. In the case k = 3, the algorithmic results
of [10] give an ε-improved approximation ratio of 2 for 3-dimensional matching.
On the other hand, Hazan, Safra and Schwartz [16] showed that the problem
is hard to approximate within a factor of Ω( k

log k ) unless P = NP, even in the
k-dimensional case.

Hypergraph b-Matching. For b-matching in k-hypergraphs, Krysta [20] gave a
greedy k+1-approximation for the simple case, and Young & Koufogiannakis [19]
gave a k-approximation for the uncapacitated version. Both of these approxima-
tion algorithms give LP-relative guarantees. An improvement in some cases was
recently obtained by the k-exchange system framework of Feldman et al. [13]. The
b-matchings form a k-exchange system (this is explicit only for k = 2 in [13]). In
this way one can obtain a local search-based (k+1

2 + ε)-approximation algorithm
for weighted k-hypergraph b-matching. However, its running time is exponential
in k and it does not give any LP-relative guarantee.

It may be tempting to think that the b-matching problem in hypergraphs
is a simple extension of 1-matching in hypergraphs because the theory and
algorithms for b-matching in graphs closely relate to those for 1-matchings. As
evidenced by the results above, this does not appear to be the case. An approxi-
mation algorithm that runs in time polynomial in k with guarantee better than k
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for k-hypergraph b-matching had been an open problem that we resolve with this
work. Our methods are LP-based, whereas local search seems to give the best
known results; however, the bounding techinques used in local search for hyper-
graph 1-matching do not seem to readily extend to the hypergraph b-matching
case. For example, Arkin and Hassin [2] give a local search (k − 1+ ε)-algorithm
for weighted k-hypergraph 1-matching; however, as a warmup they present a
trivial bound of k — even this trivial bound does not easily extend to the
k-hypergraph b-matching case.

Other Work. Pseudo-greedy methods similar to iterated packing have been suc-
cessfully applied to several packing and coloring problems, including multicom-
modity flows on trees [11], independent sets in t-interval graphs [5], and weighted
edge coloring of bipartite graphs [12]. Iterated packing is a means of obtaining an
approximate convex decomposition; Carr and Vempala [9] have shown a strong
connection between the latter and approximation ratios of LP-based approxima-
tion algorithms.

As mentioned earlier, a 2k-approximation for k-hypergraph demand matching
is known [23]; a better ratio of 3 is possible when k = 2 [23]. These nearly
match (exactly match, when k = 2) the best known lower bound of 2k − 1 [3]
on the integrality gap of the natural LP relaxation (this construction does not
require that k −1 is a prime power). Bansal et al. [3] devised a deterministic 8k-
approximation and a randomized (ek+o(k))-approximation for the more general
problem of approximating k-column-sparse packing integer programs.

Stamoulis very recently introduced the bounded-color matching problem
(defined above in the more general hypergraph context) and devised a
2-approximation [27]. This result is also based on iterated packing. Stamoulis
observes that thebounded-colormatchingproblem is a special case of 3-hypergraph
b-matching. In fact it is suggested in this paper that a polynomial-time (k−1+ 1

k )-
approximation for k-hypergraph b-matching may be possible. Our work was
developed independently, and we observe that our results generalize Stamoulis’s
results, since the special hypergraph b-matching instances obtained by the reduc-
tion he suggests are bipartite, and we are able to leverage Theorem 2 to give a
k-approximation for the more general bounded-color k-hypergraph b-matching
problem, which we introduce here.

We will exploit the interplay between LP-relative approximation algorithms
and convex decompositions — an equivalence between the two was shown by
Carr & Vempala [9]. The Lavi-Swamy [21] mechanism combines techniques from
[9] with the VCG mechanism.

We give an overview of iterated packing in the next section. There, we
also introduce a structure theorem from [10] and its specialization to bipartite
instances, versions of which will be used throughout the paper. Next, to further
introduce the iterated packing methodology, we give an iterated packing proof of
the same result, although it does not run in polynomial time. This is extended
to b-matching in Sect. 4, which contains our main technical innovations. First
an existential proof is given (Algorithm2) and then finally Algorithm3 proves
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Theorems 1 and 2 constructively. Then in Sect. 7 we present the proof of
Theorem 3, which is based on the local ratio method.

2 Iterated Packing Overview

The notion of an approximate convex decomposition is essential to iterated pack-
ing, as the latter iteratively builds such a decomposition for a given fractional
solution. Here we present a slightly different notion of an approximate convex
decomposition than usually considered.

Definition 1. For α ≥ 1, define α-convex multipliers to be any collection of
nonnegative reals whose sum is α. Likewise, we say that x is an α-convex
combination of the points {xi}i if there are α-convex multipliers {λi}i so that
x =

∑
i λix

i.

The utility of α-convex combinations is that they provide a convenient way to
talk about integrality gaps without rescaling as was done in [9] or [23].

Proposition 1 [9]. If every feasible LP solution for a packing program can be
written as an α-convex combination of integral feasible solutions, then its inte-
grality gap is at most α.

Proof. We need to show that for any nonnegative weight function w, if x∗ is
the fractional solution that maximizes w(x∗), then there is an integral solution
of weight at least w(x∗)/α. A random solution from the α-convex combination
representation of x∗, drawing xi with probability λi/α, has expected weight∑

i
λi

α w(xi) = w(x∗)/α. So one of the xi has at least this weight.

(In fact [9] also proves an algorithmic converse, used also by the Lavi-Swamy
framework [21] underlying Corollary 2.)

We will use Proposition 1 as follows: we develop a polynomial-time algo-
rithm to write fractional hypergraph b-matchings as ρ-convex combinations of
feasible integral b-matchings. Then by Proposition 1, we get the LP-relative ρ-
approximation algorithm claimed in Theorems 1 and 2.

In [23] the idea of iterated packing was introduced. Each iteration, called a
packing step, updates the current α-convex combination to a new one, increasing
some terms of the combination on one coordinate.

Definition 2 (Packing Step). Let us be given an α-convex combination x =∑
i λix

i where the xi are feasible integral solutions, an edge e to pack, and a
target value t ∈ R+. We may think of a packing step as packing the edge e
into some of the solutions xi such that each resulting solution is still feasible
and that we have packed e into solutions with a total mass of t, i.e. the sum of
corresponding λi is t.

Let χe be the vector in R
E with coordinate 1 on e and 0 elsewhere. A packing

step will replace some 0 ≤ λ′
i ≤ λi portion of each xi with xi+χe, where we allow

λ′
i > 0 only when xi +χe is feasible. Therefore

∑
i(λi −λ′

i) ·xi +
∑

i λ′
i · (xi +χe),

the result of the packing step, expresses x + tχe as an α-convex combination of
integer feasible solutions.
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For a packing step to actually be feasible, it is clearly both necessary and suf-
ficient that the set P = {i | xi + χe feasible} of solutions into which e can be
packed must satisfy λ(P ) ≥ t.

For the sake of polynomial-time implementation of our final algorithm, note
we can ensure at most one i has λ′

i /∈ {0, λi} in the above argument, so that
each packing step increases the number of terms by at most one. Alternatively
we could use Carathéodory’s theorem which guarantees that any α-convex com-
bination can be rewritten as one with at most d+1 terms where d is the number
of coordinates.

The basic iterated packing formula starts with a fractional solution x in
hand and iteratively constructs an integral solution by starting with an empty
hypergraph on V . The edges are processed in some order, and for each edge e,
a packing step is performed on e with a target value of xe. One key fact about
iterated packing is that when a target value is larger, packing is easier, hence
iterated packing shows how large fractional values facilitate approximation for
packing problems much like iterated packing does for covering problems. The
basic approach may be refined in several directions. One may start with base
integral solution that is non-empty hypergraph. This was explored in [23] to
derived an improved approximation for the demand matching problem. Another
improvement is to consider a specific ordering of edges.

This key idea driving our algorithm is analyzing an ordering of edges which
allows us to obtain a polynomial-time algorithm. Although, as announced in [23],
extensions of ideas from [23] may be used to derive an upper bound of k−1+1/k
on the integrality gap for the k-hypergraph b-matching problem, the bound is
non-constructive and does not give a polynomial-time algorithm. We show that
by considering an ordering of edges that was first studied by Chan and Lau [10],
we obtain a polynomial-time k − 1 + 1/k-approximation. This ordering is based
on vertices of small degree in an extreme point solution, which in turns allows
one to argue that there is an edge with large fractional value. The lemma below
shows that we can find a vertex of sufficiently small degree.

Let {Av,e}v,e be the 0-1 incidence matrix for our k-hypergraph: it has rows
for vertices and columns for edges, with at most k ones per column. When x∗ is
an extreme point solution to the matching LP {0 ≤ x ≤ 1 | Ax ≤ 1}, elementary
properties of polyhedra show that the incidence matrix of {e | 0 < x∗

e < 1} has
linearly independent columns. This makes the following lemma useful: it was
proven by Chan and Lau for the general case, while the bipartite case follows
from generalizing their arguments about the k-dimensional case.

Lemma 1. If the incidence vectors of ∅ 	= E′ ⊆ E are linearly independent,
then some vertex in (V,E′) has degree between 1 and k. In the bipartite case, the
upper bound can be strengthened to k − 1.

Proof. The first part is a counting argument. The incidence matrix retains its
rank if we delete the all-zero rows, leaving only those rows corresponding to the
set V ′ of vertices with nonzero degree. The number of such vertices must satisfy
|V ′| ≥ |E′| or else rank |E′| could not be achieved. Since each column has at
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most k unit entries, there are at most k|E′| unit entries in the whole matrix. So
averaging, some row has at most k|E′|/|V ′| ≤ k nonzeroes, and this gives the
desired vertex.

For bipartite hypergraphs, examine the situation in which equality holds.
This can only happen if |E′| = |V ′| and the matrix has exactly k ones per
row and per column. Let U be the subset of vertices so that every hyperedge
intersects U exactly once. So, each hyperedge intersects the complement of U
exactly k − 1 times. Therefore, the vector in R

V with (−k − 1) entries in U and
unit entries elsewhere is orthogonal to all rows, contradicting that the adjacency
matrix has full rank.

In order to talk about both the general and bipartite cases in a unified way,
define

ρ :=

{
k − 1 + 1

k in the general case, and
k − 1 in the bipartite case.

Additionally, define the degree bound

μ :=

{
k in the general case, and
k − 1 in the bipartite case.

3 Non-polynomial Time Algorithm for k-Hypergraph
Matching

We now give an alternate proof that k-hypergraph matching has integrality gap
of at most k+1− 1

k . The algorithm behind this proof does not run in polynomial
time. However, this section also introduces the notation and steps involved in
iterated packing, which we will extend in the next section to get our main result.

Lemma 2 [23]. In k-hypergraph matching, a packing step to bring x to x+ tχe,
where x + tχe is a feasible fractional solution, is possible if α ≥ k − (k − 1)t.

Proof. Let Qv, for each v ∈ e, be the set of solutions i for which xi + χe is not
feasible. We have λ(Qv) ≤ 1− t since x+ tχe is feasible2. We need room (disjoint
in the worst case) for all such Qv, plus an additional t to pack the new edge in
solutions that permit it, giving the bound k(1 − t) + t = k − (k − 1)t.

We can indeed get large coordinates using the following strengthening of Lemma 1.

Lemma 3. Any nonzero extreme point solution x to the k-hypergraph matching
polytope has some fractional coordinate at least 1/μ.

2 In detail, the solutions xi for i ∈ Qv have degree 1 at v, so by the definition of a
convex combination (Ax)v = λ(Qv), but (Ax)v ≤ 1 − t since, by feasibility, 1 ≥
A(x + tχe)v = (Ax)v + t.
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Proof. If xe = 1 for any coordinate then we are done, so suppose otherwise. We
know from elementary linear algebra that there is a set V ′′ of vertices and a set
E′′ of edges so that x is the unique solution to xe = 0,∀e /∈ E′′;x(δ(v)) = 1,∀v ∈
V ′′. Then the same counting argument as in Lemma 1 (resp. and the same linear
independence in the bipartite case) ensures that some v ∈ V ′′ is incident on at
most k (resp. k − 1) edges. Since it has x(δ(v)) = 1 the e ∈ δ(v) maximizing xe

satisfies the lemma.

Using this, we obtain an iterated packing algorithm for the k-hypergraph match-
ing problem, which is displayed as Algorithm 1. Note that this algorithm is
presented as a recursive top-down variant of iterated packing, while the basic
version in the previous section was presented as a bottom-up algorithm for ease
of exposition. Another more crucial deviation of this algorithm from the basic
iterated packing formula is that since our analysis requires an extreme point,
we must express each non-extreme solutions as convex combinations of extreme
points, and we use that:

A convex combination of α-convex combinations is an α-convex combination. (1)

In fact this is the reason the algorithm is not guaranteed to run in polyno-
mial time; however, the algorithm does terminate since the number of nonzero
coordinates of x decreases in each recursive call.

Algorithm 1. HM∗(V,E, x) // write x as ρ-convex comb. of 0-1 solutions
1: If x = 0 return the trivial ρ-convex combination λ1 = ρ, x1 = 0.
2: If x is not an extreme point solution to {x ∈ R

E
+ | Ax ≤ 1},

3: Write x as a convex combination of extreme point solutions.
4: Recurse on each extreme point and return their result combined via (1).
5: Pick e so that xe is maximized and let x′ be x except with x′

e set to zero.
6: Recurse: (xi, λi)i := HM∗(V, E, x′).
7: Packing step: pack xe of e into (xi, λi)i and return the result.

Proposition 2. Given any LP solution x, Algorithm 1 returns an expression of
x as a ρ-convex combination of integral solutions.

Proof. This follows from Lemmas 2 and 3, since if μ = k we have k−(k−1)/μ =
k − 1 + 1

k = ρ, and if μ = k − 1 we have k − (k − 1)/μ = k − 1 = ρ.

This completes the non-polynomial time iterated packing proof that the inte-
grality gap for matching is at most ρ. Next, we extend it to b-matching.

4 Iterated Packing and k-Hypergraph b-Matching

In this section, which contains the main new iterated packing technique, we
build on the ideas from the previous section. We begin with a non-constructive
iterated packing algorithm to show that the integrality gap for k-hypergraph
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b-matching is at most ρ. Then, we move to a constructive version via iterated
packing that runs in polynomial time.

By Observation 1, we assume unit capacities (simple b-matching). We will
use the following statement, whose proof is analogous to Lemma 3.

Lemma 4. Any nonzero extreme point solution x to the k-hypergraph b-matching
polytope has some fractional coordinate at least 1/μ.

The naive adaptation of iterated packing (Algorithm1) to b-matching would
involve writing the input as a convex combination of extreme point solutions
to {x ∈ [0, 1]E | Ax ≤ b}, working with α-convex combinations of integer 0-1
solutions to Ax ≤ b. However, this approach is unworkable. When we try to
mimic Lemma 2, as b gets larger, we cannot bound λ(Qv) by anything less than
1, giving an approximation ratio of k or worse.

To fix this problem, we will enforce two additional conditions. One of these
conditions, the main driver of the new proof, is that the strengthened degree
bound Axi ≤ �Ax must hold in every level of the recursion (rather than the
unworkable requirement that solutions merely respect the final target degrees).
The second condition is that the λ-mass of solutions meeting this strengthened
bound with equality cannot be more than 〈(Ax)v〉 (here 〈·〉 denotes the frac-
tional part), except in the degenerate case that (Ax)v is integral. Intuitively (i)
balances the number of edges packed at a vertex across the solutions xi, avoiding
the trouble that the naive approach would encounter in future iterations, while
(ii) helps achieve (i) inductively. A modified packing step is a packing step that,
given a solution (x, λ) satisfying both of these properties, produces another
(x′, λ′) satisfying both of these properties. Then the definition of the resulting
algorithm, Algorithm 2, is as follows.

Algorithm 2. HbM∗(V,E, x) // write x as ρ-convex comb. of special 0-1
solutions
1: If x = 0 return the trivial ρ-convex combination λ1 = ρ, x1 = 0. // as before
2: If x is not an extreme point solution to {y ∈ [0, 1]E | Ay ≤ �Ax�},
3: Write x as a convex combination of extreme point solutions. // as before
4: Recurse on each extreme point; return their combination via (1). // as before
5: Pick e so that xe is maximized; let x′ be x with x′

e set to zero. // as before
6: Recurse: (xi, λi)i := HbM∗(V, E, x′). // as before
7: Modified packing step: pack xe of e into (xi, λi)i and return the result.

We will prove by induction that the algorithm succeeds in finding packings
meeting both conditions.

Lemma 5. For any 0 ≤ x ≤ 1, HbM∗(V,E, x) returns an expression of x as a
ρ-convex combination of 0-1 xi that satisfies (i) Axi ≤ �Ax for each i, and (ii)
for every v such that (Ax)v is non-integral, λ({i | (Axi)v = �Axv}) ≤ 〈(Ax)v〉.
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For the proof, it is helpful to realize that we use (Ax)v interchangeably as x(δ(v)),
and that it represents the “degree” of x at v.

Proof. The base case and the non-extreme case are easy; while the extreme
points decomposing a non-extreme solution may have smaller values for �Ax,
this does not hurt us. So we only need to deal with the case that x is extreme
and nonzero, where e is chosen with xe ≥ 1/μ.

To prove that the modified packing step can always be carried out while
satisfying (i) and (ii), we again bound a set of unpackable solutions. Specifically,
our goal will be to define sets Qv for each v ∈ e such that any packing step that
avoids adding e to any of the solutions

⋃
v∈e Qv will satisfy (i) and (ii) for x, and

such that the sets Qv are λ-small enough that e always has room to be added.
For each v ∈ e, there are three cases, the main distinction being whether

�(Ax′)v = �(Ax)v. Note that these terms are either equal, or differ by one.

– Case (I), (Ax′)v = 0. This packing is trivial, set Qv = ∅.
– Case (II), �(Ax)v = �(Ax′)v 	= 0. Proving (ii) is vacuous when (Ax)v is inte-

gral, and otherwise it follows easily by induction since 〈(Ax)v〉 = 〈(Ax′)v〉+xe

and at most xe of λ-mass of solutions will have its degree increased at v. To
show (i) is satisfied inductively, just like in Sect. 3, define Qv to be the set
of i with (Axi)v = �(Ax)v; e can be added to any other xi without vio-
lating the degree constraint. The terms (Ax)v and (Ax′)v differ by xe and
have the same integer ceiling, so by induction on (ii), we have the bound
λ(Qv) ≤ 〈x′(δ(v))〉 ≤ 1 − xe showing that Qv is not too big. This bound will
be used later.

– Case (III), �(Ax)v = 1 + �(Ax′)v and (Ax′)v 	= 0. Then satisfying (i) at v is
easy (since all xi have degree at most �(Ax′)v at v) but we must design Qv

so that (ii) is satisfied after the packing step.
If (Ax)v is integral any packing works (we can take Qv = ∅), so assume the
opposite. Moreover, when (Ax′)v is integral, by (i) all solutions xi have degree
less than �(Ax)v at each v ∈ e, and since we are only packing xe = 〈(Ax)v〉
amount of e, (ii) is also satisfied by any possible packing.

Hence, assume both (Ax′)v and (Ax)v are non-integral. If we pack e arbi-
trarily, the total weight of new solutions with degree �(Ax)v at v could be too
large to satisfy (ii). Therefore, we will define Qv to exclude some subset of the
solutions Q′

v := {i | (Axi)v = �(Ax′)v} that could rise to have this degree.
We have λ(Q′

v) ≤ 〈(Ax′)v〉 from (ii) inductively. We now define Qv to be
some subset of Q′

v with λ(Qv) = 1−xe. This is not possible if λ(Q′
v) < 1−xe

but in this case we just define Qv := Q′
v. Also, even if no subset of Q′

v has
λ-value exactly 1 − xe we can split3 a term of the ρ-convex decomposition
to achieve this. The point of this Qv is that, using (ii) inductively, the post-
packing total λ-value of the solutions with degree �(Ax)v at v will be at most
λ(Q′

v \ Qv) ≤ 〈(Ax′)v〉 − (1 − xe) = 〈(Ax)v〉; the latter equality holds since
(Ax)v = (Ax′)v + xe and by the hypotheses of this case. So these Qv allow us
to inductively satisfy (i) and (ii), on top of which λ(Qv) ≤ 1 − xe.

3 Splitting means to replace the term (xi, λi) with two terms (xi, p), (xi, λi − p) with
distributed λ-mass on the same integer solution xi.
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In all cases, λ(Qv) ≤ 1 − xe. Analogous to Lemma 2 there is enough room to
complete the packing step so long as ρ ≥ xe+λ(

⋃
v∈e Qv). By a union bound this

would be implied by ρ ≥ xe + k(1 − xe). This gives the same analysis as before
(Proposition 2) in terms of our bounds on xe and ρ, so the modified packing step
succeeds and we are done.

4.1 Polynomial-Time Iterated Packing for k-Hypergraph
b-Matching

Finally, we give our main algorithm. It uses modified packing steps and always
maintains a ρ-convex combination satisfying the conditions of Lemma5. As
usual, the core algorithm HbM (Algorithm 3) operates on solutions where the
incidence matrix A is of full column rank.

Algorithm 3. HbM(V,E, x) // write x as ρ-convex comb. of 0-1 solutions
Require: A has its columns linearly independent
1: If x = 0 return the trivial ρ-convex combination λ1 = ρ, x1 = 0.
2: Pick a vertex v̂ with minimum nonzero degree.
3: Pick e ∈ δ(v̂) such that xe is maximized.
4: Recurse: (xi, λi)i := HbM(V, E \ {e}, x|E\{e}).
5: Extend each xi back to R

E by setting the e-coordinates to 0.
6: Modified packing step: pack xe of e into (xi, λi)i and return the result.

Lemma 6. If 0 < x < 1 and the columns of the incidence matrix A are lin-
early independent, HbM expresses x as a ρ-convex combination of 0-1 solutions
satisfying the same properties as Lemma5.

Proof. The proof is very similar to proof of Lemma5 (except we have linear
independence instead of extremeness) and we therefore re-use its notation and
some of the observations therein. Our goal is to show that each modified packing
step succeeds. Write Q for

⋃
v∈e Qv. For the modified packing step to succeed

we need λ(Q) + xe ≤ ρ as before. We will use that λ(Qv) ≤ (1 − xe) for each v,
which holds as in Lemma 5.

The first case we will handle is |e| < k. In this case, λ(Q)+xe ≤ |e|(1−xe)+
xe ≤ (k − 1)(1 − xe) + xe ≤ k − 1 ≤ ρ, as needed. So we assume |e| = k.

Since Lemma 1 applies to our setting, the degree of v̂ is at most μ. The next
case we will handle is xe ≥ 1/μ. In this case, λ(Q) + xe ≤ k(1 − xe) + xe =
k − (k − 1)xe ≤ k − (k − 1)/μ = ρ (like the proof of Proposition 2). So we may
assume xe < 1/μ.

Likewise, by the definition of μ, we may assume x(δ(v̂)) < 1, since otherwise
we fall in to the previous case by our choice of e.

Since x(δ(v̂)) < 1, we can get an exact expression for Qv̂ more specific than
that given in the proof of Lemma5. All solutions xi in the ρ-convex combination
have degree 0 or 1 at v, and the latter are the ones in Qv̂ (blocking e at v̂), and
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so λ(Qv̂) = (Ax′)v̂ = (Ax)v̂ − xe = x(δ(v̂)) − xe. This complements the upper
bounds λ(Qv) ≤ 1 − xe that hold for all other v ∈ e with v 	= v̂. This lets us
bound the amount of room needed for the modified packing step:

xe + λ(Q) ≤ xe + x(δ(v̂)) − xe + (k − 1)(1 − xe)
≤ μxe + (k − 1)(1 − xe) = k − 1 + (μ − k + 1)xe

≤ k − 1 + (μ − k + 1)/μ = k − (k − 1)/μ = ρ

where the middle inequality used x(δ(v̂)) ≤ μxe and the last used xe < 1
μ .

To complete the proofs of Theorems 1 and 2, we yet again use the approach of
starting with an extreme point solution and fixing its integer part (like Obser-
vation 1), recursing only on the residual b-matching problem, which has linearly
independent rows and 0 < x < 1.

5 Application: Bounded-Color k-Hypergraph b-Matching

We observe that improved approximations for the bounded-color k-hypergraph
b-matching problem, which is defined above Corollary 1, follow directly from our
results. The specialization of this problem for the case of matchings in graphs
was very recently introduced by Stamoulis [27], who gave a 2-approximation
(note that Stamoulis had considered only matchings and not b-matchings). This
independent result also leverages a variant of iterated packing. We give a k-
approximation for the general case of bounded-color k-hypergraph b-matching,
and thus extend the above result to hypergraphs as well as b-matchings.

Stamoulis observed that bounded-color matching is a special case of 3-
hypergraph b-matching: for each color class Ei, add a new vertex ci with capac-
ity wi. Now replace each edge {u, v} with a hyperedge {ci, u, v}. This precisely
models the bounded-color matching problem. An analogous reduction shows that
bounded-color k-hypergraph b-matching is a special case of standard (k + 1)-
hypergraph b-matching. To obtain our approximation, we simply observe that
these special instances are bipartite, as the set U consisting of all the ci vertices
intersects every hyperedge exactly once. This gives us a k-approximation since
the instance under consideration is a (k + 1)-hypergraph.

6 Application: Allocations

We will take advantage of the Lavi-Swamy framework [21], which is a fractional
version of the well-known Vickrey-Clarke-Groves (VCG) mechanism. We cannot
directly use VCG in this setting, because one of the steps in VCG is to compute
the allocation which maximizes the total utility of all players, and this problem
is NP-complete in our setting for t ≥ 2, by a reduction from 3-dimensional
matching. The main result of Lavi and Swamy is that once we have an LP-
relative ρ-approximation algorithm with respect to the natural LP, we can get
a truthful-in-expectation mechanism, which also maximizes the expected overall
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utility within a factor of ρ. Minimizing this factor means we are coming closer
to a VCG-like mechanism, whereas allocating everyone the empty set is truthful
but a bad approximation.

First we define the natural LP relaxation for the allocation problem. Let xi
S

be a fractional indicator variable indicating whether player i will win exactly the
set S of items. Then the LP requires that each player wins one set of items, and
that each item is allocated at most once, fractionally. Write vi

S as the valuation
of player i for set S. Altogether the fractional allocation LP is:

max
∑

i,S

xi
Sv

i
S : 0 ≤ x ≤ 1; ∀i ∈ [n] :

∑

S

xi
S = 1; ∀s ∈ [m] :

∑

i

∑

S:s∈S

xi
S ≤ 1. (A)

We assume the input to the mechanism is an explicit list from each bidder,
consisting of their valuation for each set upon which they wish to put a positive
bid. The number of variables and constraints in the LP is polynomial in the
number of such bids. Although for constant k, any reasonable bid language or
oracle can be used, since the number of sets of size < k is polynomial and we
can convert everything to an explicit list.

Definition 3. An ρ-approximate truthful-in-expectation mechanism for the allo-
cation problem is a randomized algorithm of the following form. It takes the val-
ues v as inputs; its outputs are a valid allocation of items to players together
with prices pi charged to each player i. It has the following two properties. First,
where S(i) denotes the set of items allocated to player i, we have

∑
i vi

S(i) is
at least

∑
i vi

T (i)/ρ for every valid allocation T . Second, for every fixed v−i, a
player who gives insincere valuations v̂i as their input, resulting in random vari-
ables p̂, Ŝ compared to the original ones p, S, does not increase their expected net
utility:

E[vi
Ŝ(i)

− p̂i] ≤ E[vi
S(i) − pi].

Moreover, 0 ≤ E[pi] ≤ E[vi
S(i)] for all i.

Theorem 4 (Lavi-Swamy [21]). Given a polynomial-time LP-relative ρ-
approximation algorithm for an allocation problem, we can obtain a polynomial-
time ρ-approximate truthful-in-expectation mechanism.

However, the allocation problem here is precisely bipartite k-hypergraph match-
ing: for each bidder and each set of items they could win, create a set out of
them all together, and this set has size at most 1 + k − 1 = k; and each such
hyperedge contains exactly one bidder, so the hypergraph is indeed bipartite.
So our bipartite extension of the Chan-Lau theorem (Sect. 2) applies and we
are done. The LP-relative property is essential; the non-LP relative local search
approach from [13] cannot be used with [21].

7 Local Ratio and k-Hypergraph Demand Matching

We recommend [4,6,7] for background on the local ratio method, including its
relationship with the primal-dual method. The heart of the local ratio approach
is the following lemma:
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Lemma 7 (Local Ratio Lemma). Let xOPT be the (unknown) optimal inte-
gral solution. If wi · xLR ≥ wi · xOPT for all i, and w =

∑
i wi, then w · xLR ≥

w · xOPT , i.e. xLR is α-approximately optimal.

Compared with fractional local ratio, we do not start by solving an LP, which
is faster. But, we cannot use x∗ to guide the algorithm — we have to ensure
an oblivious approximation guarantee that holds against the unknown optimal
solution.

In this section we briefly outline a reinterpretation of the 2k-approximation for
k-hypergraph demand matching from [23] as a local ratio algorithm. Compared
with [23], the new algorithm will be both simpler and faster (as we solve no LPs).
The inspiration for this simplified algorithm is a connection between local ratio
algorithm and iterated packing elucidated by Bar-Yehuda et al. [5, p. 12].

As before, let A be the incidence matrix, and let A[d] be the same matrix but
with the column for each e having its entries multiplied by de. Then an ILP for-
mulation for the hypergraph demand matching problem is to find an integral x
maximizing wx subject to A[d]x ≤ b and c ≥ x ≥ 0. We will assume that de ≤ bv

whenever v ∈ e. This is without loss of generality for the purposes of approx-
imation, while for bounding the integrality gap this no-clipping assumption is
needed to even get a constant upper bound (even if k = 1, a.k.a. knapsack).

We use the same basic ideas used in [23] but arranged differently. The crux in
our case is to show that for every instance, there is a hyperedge e and a weight
function satisfying that any feasible solution is either 2k-approximately optimal
or has room for e to be added. With this (Lemma8) and using the local ratio
lemma, we can show that Algorithm 4 is a 2k-approximation algorithm.

Lemma 8. Let e be the hyperedge so that de is minimal. Define a weight function
ŵ on all hyperedges by ŵe = 1, and for all other f ,

ŵf :=
∑

v∈e∩f

df

max{bv − de, de} . (2)

Then (i) every feasible solution (whether or not it contains e) has value at most
2k under ŵ, (ii) ŵe ≥ 1, and (iii) any feasible subset of E\{e} to which e cannot
be added has weight at least 1 under ŵ.

Algorithm 4. HDM(V,E, d, b, w) // for hypergraph demand matching
1: Pick e ∈ E such that de is minimum, or return ∅ if E = ∅.
2: Define a new weight function ŵ ∈ R

E via ŵe = 1 and (2) for f �= e.
3: Let weŵ be its scalar multiple by we, and w′ := w − weŵ. // note w′

e = 0
4: Define E′ := {e ∈ E | w′

e > 0}. // note e �∈ E′

5: Recurse: F ′ := HDM(V, E′, d, b, w′|E′).
6: If F ′ ∪ {e} is feasible define F := F ′ ∪ {e}, else define F := F ′.
7: Return F .
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O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 349–361. Springer,
Heidelberg (2011)

24. Person, Y., Schacht, M.: Almost all hypergraphs without fano planes are bipar-
tite. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2009, pp. 217–226. Society for Industrial and Applied Mathe-
matics, Philadelphia (2009)

25. Schrijver, A.: Combinatorial Optimization. Springer, New York (2003)
26. Shepherd, F.B., Vetta, A.: The demand-matching problem. Math. Oper. Res.

32(3), 563–578 (2007)
27. Stamoulis, G.: Approximation algorithms for bounded color matchings via convex
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Abstract. We consider the Minimum Elmore Delay Steiner Tree Prob-
lem, which arises as a key problem in the routing step in VLSI design:
Here, we are given a set of pins located on the chip which have to be
connected by metal wires in order to make the propagation of electrical
signals possible. Challenging timing constraints require that these elec-
trical signals travel as fast as possible. This is modeled as a problem of
constructing a Steiner tree minimizing the Elmore delay [9] between a
source vertex and a set of sink vertices. The problem is strongly NP -
hard even for very restricted special cases, and although it is central in
VLSI design (see e.g. [18]), no approximation algorithms were known
until today.

In this work, we give the first constant-factor approximation algorithm.
The algorithm achieves an approximation ratio of 3.39 in the rectilinear
plane and 4.11 in metric graphs. We also demonstrate that our algorithm
brings improvements on real world VLSI instances compared to the cur-
rently used standard method of computing short Steiner trees.

Keywords: Steiner trees · Approximation algorithm · VLSI design

1 Introduction

Due to its complexity, computing the physical layout of a modern computer chip
is a task that is largely performed by automated software tools. In this physical
design process many combinatorial optimization problems arise – see Held et al.
for an overview [14]. In this work, we consider a problem that occurs in routing:
Here, circuits located on the chip have to be connected by metal wires in order
to allow propagation of computed information. This means that information is
computed at one circuit, which sends this information from one of its output pins
(the source) to a set of other circuits, which receive it at their input pins (the
sinks). Finding such a connection transmitting the signal can then be formulated
as a Steiner tree problem in a weighted graph or the rectlinear plane (wires never
run diagonal) with pins as terminals.

Here, a signal can be regarded as a voltage change at the source pin (sender),
which triggers a voltage change at the sink pins (receivers). Tight timing con-
straints on the chip require the difference in time between these two events,
called delay, to be as small as possible. Since the layout of the Steiner tree
c© Springer International Publishing Switzerland 2015
E. Bampis and O. Svensson (Eds.): WAOA 2014, LNCS 8952, pp. 224–235, 2015.
DOI: 10.1007/978-3-319-18263-6 19
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connecting the given set of pins has a large influence on signal delay, it is natural
to formulate a mathematical optimization problem asking for a Steiner tree that
minimizes source-sink delays. There are numerous ways to approximate signal
delays ranging from very accurate but computationally expensive simulations to
very simple but imprecise estimates (e.g. signal delay is a linear function in the
distance between source and sink in the Steiner tree).

s t

(a): Example of a shortest
Steiner tree with presumably
bad source-sink delays. The red
sink t has a short distance to
the source s, but the s-t path
in the tree is very long.

s

(b): A better Steiner tree with
the same length. All paths are
shortest paths here. Neverthe-
less, Elmore delay may not be
optimal.

s

(c): With regard to Elmore de-
lay, this might be a better tree.
The tree is a bit longer, but de-
lay along the source-sink paths
might be smaller due to less ca-
pacitance in some of the sub-
trees.

Fig. 1. Three Steiner trees for the same terminal set with probably very different
source-sink delays.

When it comes to getting a fast and reasonably accurate delay approximation,
the model that is ubiquitously used in VLSI design is called the Elmore delay
model [9]. In a Steiner tree, the Elmore delay between a root vertex s and a sink
vertex t depends on the total length of the tree, the square of the length of the
path from s to t in the tree, and on the capacitance of each subtree rooted at the
vertices of this path, which is the sum of edge lengths plus the capacitances of all
sink vertices in the subtree. This makes the Elmore delay formula an objective
function which is comparatively complicated to state (Fig. 1).

Although the Elmore delay model has been used for decades to evaluate signal
delays of given Steiner trees, the problem of constructing a Steiner tree minimiz-
ing Elmore delay has only been approached heuristically without achieving any
theoretical approximation bounds. Instead, the VLSI design community attacked
this problem either by using heuristics without proven performance bounds or
by simplifying the objective function to one which is better understood from
a theoretical point of view, e.g. to the construction of short Steiner trees with
bounded source-sink path lengths. The latter approach results in a significant
loss of precision in practice and does not provide any non-trivial performance
bounds in theory, as Proposition 3 will prove.

The rest of the paper will be structured as follows: Sect. 2 will contain a
short introduction to the Elmore delay model. In Sect. 3 we will formally define



226 R. Scheifele

the Minimum Elmore Delay Steiner Tree Problem and present an overview on
previous and related work. Section 4 will then contain the first constant-factor
approximation algorithm for constructing Steiner trees minimizing Elmore delay.
Finally, Sect. 5 contains experimental results that show that our new algorithm
brings significant improvements on real world VLSI instances.

2 The Elmore Delay Model

The Elmore delay model is a rather simple method to approximate the signal
delay through what is called a RC tree. It was originally introduced by Elmore [9]
in 1948 and later on extended by Rubinstein, Penfield and Horowitz [26], who
also give a simple formula that can be used for fast computation. Their model
is a tree structured network consisting of a discrete number of resistors and
capacitors, where each resistor has a fixed resistance and each capacitor has a
fixed capacitance.

r1 r2

r3

r4

r5

r6 r7

c1

c2 c3

c4 c5 c6

root

Fig. 2. An RC tree with seven resistors and six capacitors: We have C6 = c5 + c6 and
C2 = c2+c3+c4+c5+c6. Resistor 2 imposes a delay of r2·C2. The capacitors accountable
for the downstream capacitance of resistor 2 (green) are shown in red. Resistors closer
to the root have a higher downstream capacitance and therefore impose higher delays
per resistance unit (Color figure online).

We number the k resistors and n capacitors for some k, n ∈ N consecutively
with resistances r1, ..., rk and capacitances c1, ..., cn respectively, and let Cj for
j ∈ {1, ..., k} denote the sum of capacitances of all capacitors in the subtree
rooted at resistor j. They show that the Elmore delay at capacitor i is then
given by

∑
j∈I rj · Cj , where I ⊆ {1, ..., k} denotes the set of resistors on the

path from the root to capacitor i. Figure 2 gives an illustration of this.
We omit their definition of an RC tree at this point but rather give a graph

theoretical interpretation with emphasis on our application in VLSI design. In
this regard, an RC tree can be modeled as a directed Steiner tree Y with a source
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s and a terminal set T , where s is the origin of the signal and the orientation of
the edges corresponds to the direction in which the signal propagates. Here, the
source s is regarded as a resistor with resistance r(s) ≥ 0 and the sink vertices
t ∈ T are regarded as capacitors with capacitances c(t) ≥ 0, t ∈ T . Each edge
in the tree corresponds to a metal wire, which is simultaneously a resistor with
resistance R := rwire · l and capacitor with capacitance C := cwire · l, where l is
the length of the wire and rwire, cwire > 0 are given constants. Steiner points do
not have any resistance or capacitance.

R/2 R/2

C

R

C/2 C/2

R/4 R/4 R/4 R/4

C/4 C/4 C/4 C/4

Fig. 3. Left: A wire with resistance R and capacitance C is modeled as two resistors
with a capacitor in between. In terms of Elmore delay, it is equivalent to modelling it
as two capacitors with a resistor in between (center). It is also the same as modelling
it as k alternating resistors and capacitors with resistance R/k and C/k, respectively,
and taking the limit for k → ∞ (right shows k = 4).

To match the previous model, a wire is divided into two resistors with resis-
tance R/2 and one capacitor with capacitance C in between, as shown in Fig. 3.
It can be shown that in terms of Elmore delay, this is exactly the limit of divid-
ing the wire into k alternating resistors and capacitors with resistance R/k and
C/k, respectively, when k goes to infinity. Using this modelling of RC networks
as Steiner trees we arrive at the following mathematical definition of Elmore
delay:

Definition 1. Given a metric space (M,dist), an arborescence Y = (V,E)
rooted at s ∈ V with resistance r(s) ∈ R≥0, a set of sinks T ⊆ V with capac-
itances c : T → R≥0 and vertex positions p : V → M , we fix the following
notation:

– For v, w ∈ V we define dist(v, w) := dist(p(v), p(w)).
– Let l(Y ) :=

∑
(v,w)∈E dist(v, w) denote the length of Y .

– For v, w ∈ V let PY (v, w) denote the v-w path in the underlying undirected
graph of Y and distY (v, w) :=

∑
(x,y)∈PY (v,w) dist(x, y) the distance of v and

w in Y .
– For v ∈ V let Y (v) denote the subtree rooted at v.

Then the Elmore delay to t ∈ T is defined as

dY (t) := r(s) · CY (s) +
∑

(v,w)∈E(PY (s,t))
dist(v, w) ·

(dist(v, w)
2

+ CY (w)
)
,

where CY (v) := l(Y (v))+
∑

t∈V (Y (v))∩T c(t) is said to be the downstream capac-
itance of v ∈ V .
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We partition the Elmore delay into the terms source delay andwire delay, where
sd(Y ) := r(s) · CY (s) is the source delay of Y and wdY (t) :=

∑
(v,w)∈E(PY (s,t))

dist(v, w) ·
(

dist(v,w)
2 + CY (w)

)
is the wire delay to t in Y .

In our definition of Elmore delay, the constants rwire and cwire do not appear as
they can be normalized to be 1 for the sake of mathematical simplicity. A great
advantage of the Elmore delay model is that it can be computed in linear time
by first computing the downstream capacitances CY (v), v ∈ V (Y ), in reverse
topological order, and then computing the delay to all vertices in topological
order. This way it is fast to compute for a given tree while being reasonably
accurate in most cases. It has been shown by Boese et al. [2] that even in cases
where it is not very accurate, it is still a high fidelity estimate, which means
that improving Elmore delay will almost certainly improve real delay simulated
by tools that are too computationally expensive to be called more often than
a very few times in the VLSI design flow. For these reasons, the Elmore delay
model has been the delay model of choice in VLSI design for the last decades.
For more on it, see also Gupta et al. [12] or Peyer [22].

3 The Problem Formulation

Looking at the definition of Elmore delay from Sect. 2, one can see that short
Steiner trees produce small source delays, while Steiner trees connecting every
sink directly to the source produce small wire delays. The main difficulty is to
find a good tradeoff between both extremes. We now give the problem definition:

Problem: Minimum Elmore Delay Steiner Tree Problem (MDST)

Input: A metric space (M, dist), a source s with resistance
r(s) ∈ R≥0, a set of sinks T with capacitances
c : T → R≥0 and positions p : {s} ∪ T → M

Task: Find a directed Steiner tree Y rooted at s and positions
p : V (Y )\({s} ∪ T ) → M minimizing

(a) d(Y ) := maxt∈T dY (t) (MAX-MDST),

(b) d(Y ) :=
∑

t∈T w(t) · dY (t) for w : T → R≥0

(SUM-MDST)

We first point out that in general metric spaces an optimum solution of the above
problem does not have to exist. However, in the metric spaces that we are mainly
interested in, namely metric graphs and (R2, l1), this is trivial for the former and
easy to prove for the latter [27]. Secondly, we note that by setting r(s) sufficiently
large, the MDST problem degenerates into the Shortest Steiner Tree Problem,
which is known to be NP -hard both in metric graphs and (R2, l1) [10,19]. It is
actually possible to prove strong NP -hardness even for a very restricted special
case of the MDST problem (see [27]):

Theorem 2. The MDST problem is strongly NP -hard even for |M | = 2 or
(M,dist) = (R2, l1) and all sinks have the same position.
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Having stated this theorem, we want to remark a small subtlety in the problem
formulation. To express a solution, we use a tree structure that we embed into
the metric space by the mapping p, which is not required to be injective. There
are applications in VLSI design where this model is more useful, e.g. the global
routing step, where many vertices of the original routing graph are contracted
to a single vertex, resulting in a grid graph that is much smaller than the actual
routing graph. In this case it makes sense to allow multiple vertices (including
terminals) of the tree to be mapped to the same spot in the metric space. This
is not relevant when the goal is to construct a shortest Steiner tree, but it is
when trying to minimize Elmore delay. Theorem 2 uses the fact that for |M | = 2
the MDST problem can be regarded as a partitioning problem. For more on the
VLSI routing problem see e.g. Gester et al. [11].

Previous Work: The special case of this problem where (M,dist) = (R2, l1)
has received quite some attention in the past, but almost nothing is known from
a theoretical point of view. To give a short summary, Boese et al. show in [4] that
for the variant minimizing the weighted sum of source-sink delays there is always
an optimum solution using only Steiner points on the Hanan Grid.1 Therefore,
they can solve the problem in exponential time. They also give an example in [3]
that even for |T | = 4 the existence of optimum solutions on the Hanan Grid is
generally not given for the variant minimizing maximum source-sink delay. The
works of Kadodi [17] and of Peyer [22] indicate that the same statement can be
made for |T | = 2. Both show how to solve the problem of minimizing maximum
source-sink delay for instances with |T | ≤ 3 optimally in constant time. Boese
et al. [3] also give an overview on some greedy heuristics that have been evaluated
in practice, but no performance bounds are proven. Finally, Peyer et al. [23] give
heuristics for improving the delay of a given rectilinear Steiner tree without
increasing its length. A summary of results is given by the book of Kahng and
Robins [18].

Related Work: A related problem with more theoretically founded results is
the construction of so called shallow light Steiner trees, i.e. short Steiner trees
with bounded source-sink path lengths. Here, one has to mention the Rectilinear
Steiner Arborescence Problem, where the task is to construct a minimum length
shortest-path tree in the rectilinear plane for a root vertex and a set of sinks.
This problem is NP -hard as was shown by Shi and Su [28], but a 2-factor
approximation can be achieved using the algorithm of Rao et al. [24] with the
improvements of Córdova and Lee [7]. However, this result is only of minor
interest for our purpose since it can produce very long trees. More precisely,
Rao et al. [24] give an example that shows that the length of a shortest rectilinear
shortest-path tree can be as long as Ω(log(|T |)) times the length of a shortest
rectilinear Steiner tree. A more flexible approach is that of Khuller et al. [20],
which also had a highly visible influence on the development of the algorithm
we are going to present in this paper. They start with a short Steiner tree Y0

1 The Hanan Grid is the grid that is induced by the set of x- and y-coordinates of the
vertices in {s} ∪ T – see Hanan [13].
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for terminal set {s} ∪ T and a parameter ε > 0 and compute a tree Y such that
distY (s, t) ≤ (1 + ε) · dist(s, t) for all t ∈ T and l(Y ) ≤ (1 + 2

ε ) · l(Y0). Their
algorithm works for general metric spaces, and in case that the metric space is
(R2, l1), Held and Rotter [15] improve this result for small values of ε to produce
a tree Y with distY (s, t) ≤ (1+ε)·dist(s, t) for all t ∈ T and l(Y ) ≤ (1+ 2

ε )·l(Y0)
for ε > 2 and l(Y ) ≤ (2 + �log(2ε )	) · l(Y0) for 0 < ε ≤ 2. However, we want
to give a trivial example showing that none of the above algorithms achieves a
non-trivial approximation guarantee when applied to the MDST problem:

Proposition 3. For any k ∈ N and γ < 1 there is an instance of the MDST
problem with |T | = k and (M,dist) = (R, l1) such that for every shortest Steiner
tree Y we have distY (s, t) = dist(s, t) for all t ∈ T and d(Y ) = γk · OPT ,
where d(Y ) can be measured in any of the two given objective functions and
OPT denotes the optimum objective function value in that respective function.

4 The Algorithm

We have seen that the MDST problem is strongly NP -hard even for very restricted
special cases. Now we present the first constant-factor approximation algorithm.
The algorithm will require an initial solution Y0 and a parameter ε > 0 as
additional input, where this initial solution Y0 should be as short as possible.
It is well known that the Shortest Steiner Tree Problem can be approximated
efficiently (see e.g. the work of Korte and Vygen [21] for an overview on the
topic). Now here comes the description of the algorithm:

Consider an instance I of the MDST problem and let Y0 and ε > 0 as
described above. We may assume that Y0 is a binary tree with root s such that
the leaves of Y0 are exactly the vertices in T .2 We also fix the terminology
that connecting a subtree Y (v) for a tree Y and v ∈ V (Y ) to s by a shortest
path means deleting the incoming edge of v from Y , choosing x ∈ V (Y (v))
with dist(s, x) = minw∈V (Y (v)) dist(s, w), connecting x to s and changing the
orientation of the edges in E(Y (v)) such that they are directed away from s
again.

Algorithm 4. Let Y be the tree that we are constructing, initially Y = Y0.
We traverse the vertices of V (Y0)\ {s} in reverse topological order of V (Y0). Let
w ∈ V (Y0)\ {s} be a vertex that we are traversing and v its predecessor in Y .
We check whether CY (w) + dist(v, w) ≥ ε

2 min
{
dist(s, x) : x ∈ V (Y (w)) ∪ {v}}

and connect Y (w) to s by a shortest path if the inequality is true. The algorithm
stops when all vertices in V (Y0)\ {s} have been traversed.

We start with an obvious bound for the running time of the algorithm:

Proposition 5. Algorithm4 can be implemented in O(τ) time, where τ denotes
the time it takes to compute dist(s, v) for all v ∈ V (Y0).

In order to analyze the performance guarantee of the algorithm, we first give
simple lower bounds that we will use to establish the quality of our solution:
2 Every general Steiner tree can be transformed into such a tree in linear time by

adding additional Steiner points and edges of length 0.
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Fig. 4. Reconnection step of Algorithm 4: If CY (w) + dist(v, w) is too large, the edge
(v,w) is deleted from the tree. Connectivity is then reestablished by connecting s to a
vertex of minimum distance in Y (w).
Table 1. Approximation bounds of Algorithm 4 for different metric spaces:
“O(n log(n))” means O(|T | log |T |) in (R2, l1) and O(|V | log |V | + |E|) if (M, dist) is
the metric closure of an edge-weighted graph G = (V, E).

(R2, l1) Graphs

Polynomial time 3.39 (ε = 0.84) 4.11 (ε = 1.025)

“O(n log(n))” 4.31 (ε = 1.07) 5.16 (ε = 1.27)

Definition 6. Given an MDST instance, let smt({s} ∪ T ) denote the length of
a shortest Steiner tree for {s}∪T . Then lbsd := r(s) · (smt({s}∪T )+

∑
t∈T c(t))

is a lower bound for the source delay and lbwd(t) := dist(s, t) ·
(

dist(s,t)
2 + c(t)

)

is a lower bound for the wire delay to t ∈ T . The sum lb(t) := lbsd + lbwd(t) is
a lower for the total delay to t ∈ T .

Basically, we will prove that for some functions f, g : R>0 → R>0 the source
delay of the output is bounded by f(ε) · r(s)CY0(s) and the wire delay to each
sink t ∈ T by g(ε) · lbwd(t), where f will be decreasing while g will be increasing
in ε. We get the following main results:

Theorem 7. Given an instance of the MDST problem, an initial solution Y0

and ε > 0, Algorithm4 computes a solution Y such that

– sdY ≤ (
1 + 2

ε

)
r(s) · CY0(s),

– wdY (t) ≤ max
{
(1 + ε)2, 1 + 1

16ε3 + 3
4ε2 + 2ε

} · lbwd(t) for all t ∈ T ,

in O(τ) time, where τ denotes the time it takes to compute dist(s, v) for all
v ∈ V (Y0).

Corollary 8. Given an instance of the MDST problem, an initial solution Y0

with l(Y0) ≤ β · smt({s}∪T ) for some β ≥ 1 and ε > 0, Algorithm4 computes a
tree Y such that dY (t) ≤ max

{
(1 + 2

ε )β, (1 + ε)2, 1 + 1
16ε3 + 3

4ε2 + 2ε
} · lb(t)

for all t ∈ T .
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By Corollary 8, Algorithm 4 is a constant-factor approximation algorithm for the
MDST problem for any choice of ε. To get the best approximation guarantee
that is independent of the instance parameters, we choose ε to be (a numeri-
cal approximation of) the solution of the equation (1 + 2

ε )β = (1 + ε)2, since
for β ≤ 2 the solution of this equation is small enough to never let the term
1 + 1

16ε3 + 3
4ε2 + 2ε attain the maximum in the bound for the wire delay.3 This

way we get dY (t) ≤ α · lb(t) for all t ∈ T for a constant α depending on β, and
Table 1 shows the values of α in dependence of our given metric space and the
running time that we are willing to spend for the construction of the initial short
Steiner tree.

For the row allowing all polynomial time algorithms we make use of the exis-
tence of a PTAS for the Shortest Steiner Tree Problem in (R2, l1) (see Arora [1]
or Rao and Smith [25]) and use the algorithm of Byrka et al. [5] with an approxi-
mation ratio of 1.39 for graphs. As algorithms for the second row we use the fact
that a minimum terminal spanning tree yields a 2-approximation for the Short-
est Steiner Tree Problem in all metric spaces and, as proven by Hwang [16],
a 3

2 -approximation in (R2, l1).4 Finally, we note that we can achieve an approx-
imation ratio of 3.39 in all metric spaces in case that the input Steiner tree is a
shortest Steiner tree (see e.g. Dreyfus and Wagner [8], Vygen [29] and Chu and
Wong [6] for algorithms for computing shortest Steiner trees on not too large
instances). A lower bound for the best possible maximum ratio between source-
sink delay and our lower bound in general metric spaces can be found in [27].
It turns out that our algorithm achieves this bound in case that the input Steiner
tree is a shortest Steiner tree.

5 Experimental Results

We ran Algorithm 4 on instances of the rectilinear MDST problem extracted
from current chips provided by IBM. In our experiments, we start with a short
Steiner tree, apply our algorithm and compare source-sink delays of the ini-
tial Steiner tree to the ones of the result of our algorithm. Since computing
short Steiner trees is today’s method of choice for VLSI routing, we can expose
the benefits of our new algorithm this way. Here, the initial short Steiner tree is
constructed optimally for |T | ≤ 8 using the approach of Chu and Wong [6], while
it is computed by fast 3

2 -approximation algorithms for larger terminal sets.5 We
then apply Algorithm4 on this tree for every value of ε ∈ [0.25, 25] that is a
multiple of 0.25, and take the solution Y with the lowest delay, where we define
the delay of a Steiner tree Y as d(Y ) := maxt∈T dY (t)/lb(t) throughout this
section. The running time is not listed in the table because it is very small on
every testcase – we can solve the 719690 instances on 45-2 in only 226 s even

3 β ≤ 2 can always be assumed by not using anything worse than a minimum terminal
spanning tree as initial solution.

4 A rectilinear minimum spanning tree can be computed in O(|T | log |T |) time using
only edges of the Delaunay Triangulation.

5 The actual algorithm used is depending on the size of the terminal set.
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though we call Algorithm 4 100 times on every instance. The machine used for
our experiments is an Intel Xeon CPU running at 3.46 GHz.

Table 2. Experimental results of Algorithm 4: For a tree Y the delay of Y is defined as
d(Y ) := maxt∈T dY (t)/lb(t). Y denotes the output of Algorithm 4 while Y0 denotes the
initial short Steiner tree. The avg/min/max/sum values are taken over all instances
on the whole chip. Instances with |T | = 1 are omitted because they are trivial in our
setting. The initial number in a chip name denotes the technology node.

Chip # Inst Avg |T | Avg d(Y0) -> d(Y ) Min
d(Y )

d(Y0)
Max d(Y0) -> d(Y )

∑
l(Y )∑
l(Y0)

45-1 56834 4.06 1.06 -> 1.06 0.50 4.69 -> 2.40 1.05

45-2 719690 3.81 1.18 -> 1.12 0.28 7.34 -> 2.62 1.23

32-1 400397 5.25 1.08 -> 1.07 0.40 4.99 -> 2.57 1.04

32-2 474490 4.77 1.05 -> 1.04 0.26 5.51 -> 2.50 1.04

22-1 1042 5.35 1.17 -> 1.12 0.41 3.20 -> 1.88 1.11

22-2 68247 3.88 1.12 -> 1.10 0.37 4.41 -> 2.35 1.10

14-1 29183 3.60 1.12 -> 1.09 0.38 4.38 -> 2.13 1.16

14-2 32159 3.98 1.10 -> 1.09 0.52 2.87 -> 2.09 1.09

As one can see, the average number of terminals per instance is very small
on every chip. This together with the fact that the source resistance value r(s)
is fairly large on most instances explains why the shortest Steiner tree approach
is already very close to the lower bound on average. Nevertheless, our algorithm
still produces major improvements, reducing the average ratio between delay
and lower bound further.

However, more important than the reduction in average delay is the reduction
of the maximum ratio between delay and lower bound. Our algorithm can bound
this ratio for every sink by a reasonable number, while we have connections
with quite bad delays when using the shortest Steiner tree approach. This is a
very desirable behaviour of our algorithm, as such outliers are likely to cause
trouble in the design process. On the other hand, one must keep an eye on
the increase in wiring length, which may cause routability problems on the chip.
Here, one needs a better approach than the one that we used for our experiments
(i.e. always taking the tree with the best delay without considering wiring length
at all), e.g. bounding the allowed wiring length for a particular tree depending
on timing-criticality of the sinks, which is possible in our algorithm by picking
the right values of ε. However, in our experiments we just wanted to show the
potential benefits of our algorithm when applied in VLSI design, and looking
at the numbers in Table 2, Algorithm 4 proves to be a valuable improvement
over the existing approach of exclusively using short Steiner trees to route the
connections on a chip.
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Abstract. We study online preemptive makespan minimization on m
parallel machines, where the (multiprocessor) jobs arrive over time and
have widths from some fixed set W ⊆ {1, 2, . . . ,m}. For every number m
of machines we concisely characterize all the sets W for which there is a
1-competitive fully online algorithm and all the sets W for which there
is a 1-competitive nearly online algorithm.

1 Introduction

In a multiprocessor job system, jobs may occupy several machines in parallel. For
instance, concurrent threads of some parallel application may be run simultane-
ously and thereby block several machines. Multiprocessor scheduling problems
have been studied extensively over the last three decades. The papers [4,5] by
Drozdowski provide an excellent introduction to the area.

The Considered Scheduling Model. We investigate the following problem
of scheduling n multiprocessor jobs J1, . . . , Jn on m identical machines. Every
job Jj (j = 1, . . . , n) has a length p(Jj), a width w(Jj), and a release date r(Jj).
Job Jj enters the system at time r(Jj), and requests simultaneous processing on
exactly w(Jj) machines for a total of p(Jj) time units. Preemption is allowed:
the processing of a job can be interrupted at any moment in time, and can be
resumed at any later moment on the same set of machines or on another set of
machines, however this set always has to contain exactly w(Jj) machines. Every
machine can process at most one job at a time. The goal is to minimize the
largest job completion time, which is called the makespan of the schedule. In the
three-field notation this problem is denoted P |pmtn, sizej , rj |Cmax.

The computational complexity of this problem is well-understood. If the
number m of machines is a fixed constant, then Pm|pmtn, sizej , rj |Cmax can
be formulated as a linear program of polynomial size and hence is solvable in
polynomial time; see Blazewicz et al. [2]. If the number m of machines is part of
the input, then the problem is NP-hard even in the absence of job release dates;
see Drozdowski [3]. The survey paper [4] by Drozdowski summarizes the com-
plexity landscape around scheduling multiprocessor jobs. On the approximation
c© Springer International Publishing Switzerland 2015
E. Bampis and O. Svensson (Eds.): WAOA 2014, LNCS 8952, pp. 236–247, 2015.
DOI: 10.1007/978-3-319-18263-6 20
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side, Johannes [8] and independently Naroska and Schwiegelshohn [11] show that
the List Scheduling algorithm yields an approximation ratio of 2.

Online Algorithms. In the current paper we are mainly interested in the online
version of P |pmtn, sizej , rj |Cmax where jobs arrive over time; see for instance
Sgall [14] or Pruhs et al. [12] for surveys of the standard online scheduling sce-
narios. The scheduler learns about job Jj at time r(Jj), and immediately receives
full knowledge of the length and the width of the job. At any moment in time
the online scheduler decides which of the available jobs should be processed on
which of the machines. An online algorithm is c-competitive, if for all instances
the online makespan is at most a multiplicative factor c above the optimal offline
makespan. The competitive ratio of an online algorithm is the smallest real c for
which the algorithm is c-competitive.

As jobs may be preempted, there arises a delicate distinction between fully
online and nearly online algorithms. A fully online algorithm makes all its deci-
sions based on the sole knowledge of the jobs that have arrived up to the current
moment. A nearly online algorithm additionally knows the arrival time of the
next job arriving in the future. As a nearly online algorithm has more informa-
tion than a fully online algorithm, nearly online algorithms may possibly reach
better competitive ratios than fully online algorithms. However, the actual dif-
ference between these two concepts is very small. If one allows some form of
time-sharing, for example an infinite number of preemptions and infinitesimally
small preempted job pieces, then fully online and nearly online algorithms are
essentially equivalent: The best possible fully online competitive ratio then equals
the best possible nearly online competitive ratio. If on the other hand one only
allows a finite number of preemptions, then fully online algorithms in general
are slightly weaker than nearly online algorithms. Nevertheless, whenever there
exists a c-competitive nearly online algorithm, then for every ε > 0 there also
exists a (c + ε)-competitive fully online algorithm.

Hong and Leung [7] construct a 1-competitive fully online algorithm for
P |pmtn, rj |Cmax, that is, for the variant where all widths are 1 and where every
job requests processing on a single machine. (The online algorithm in [7] also
knows the optimal offline makespan from the very beginning, but it only uses
this knowledge to stop in an early stage if it detects an infeasibility.) Labetoulle
et al. [9] give a 1-competitive nearly online algorithm for problem Q|pmtn, rj |
Cmax, where the machines are uniformly related. Vestjens [15] strengthens this
result: he provides a concise analysis of Q|pmtn, rj |Cmax and characterizes all
combinations of the machine speeds for which there exists a 1-competitive fully
online algorithm. Very recently, Guo and Kang [6] constructed a 1-competitive
fully online algorithm for the two-machine problem P2|pmtn, sizej , rj |Cmax. On
the negative side, Johannes [8] proves that no (fully or nearly) online algo-
rithm for the general problem P |pmtn, sizej , rj |Cmax can have a competitive
ratio below 6/5.

Contribution of this Paper. We analyze the problem of P |pmtn, sizej , rj |Cmax

where all job widths belong to some fixed subset W ⊆ {1, 2, . . . ,m} a priori
known to the scheduler. For every number m of machines we characterize all the
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sets W for which there is a 1-competitive fully online algorithm and all the sets
W for which there is a 1-competitive nearly online algorithm.

This generalizes the two 1-competitive fully online algorithms mentioned
above: the algorithm of Hong and Leung [7] which covers the cases with W = {1}
and the algorithm of Guo and Kang [6] which covers the case W = {1, 2} and
m = 2.

Statement of Main Result. For a number m of machines and a width w,
we define the rank of w relative to m as R(w,m) = �m/w�. In other words,
R(w,m) denotes the maximum number of jobs of width w that can be processed
simultaneously on m machines.

A width w is called fat for m machines if w > m/2 (so that w has rank 1),
and it is called skinny if w ≤ m/2 (so that w has rank at least 2). For a
set W ⊆ {1, 2, . . . ,m}, we denote by W− ⊆ W its skinny elements and by
W+ ⊆ W its fat elements. Jobs are called fat respectively skinny if their width
is fat respectively skinny.

Theorem 1.1. Let m ≥ 1 be the number of machines and let W ⊆ {1, 2, . . . ,m}
be the set of possible job widths. There exists a 1-competitive nearly online schedul-
ing algorithm on m identical parallel machines with job widths in W , if and only
if the following two conditions are both fulfilled:

(c1) All a, b ∈ W− satisfy R(a,m) = R(b,m); in other words, all skinny widths
in W have the same rank relative to m.

(c2) All a, b ∈ W− and all c ∈ W+ satisfy R(a,m − c) = R(b,m − c); in
other words, whenever a fat job blocks some of the machines, then all the
skinny widths in W have the same rank relative to the number of remaining
machines.

Furthermore there exists a 1-competitive fully online scheduling algorithm on m
identical parallel machines with job widths in W , if and only if conditions (c1)
and (c2) together with the following condition (c3) are fulfilled:

(c3) All c ∈ W+ and all a ∈ W− satisfy R(a,m − c) = 0 or R(a,m) = 2.

Note that conditions (c1) and (c2) guarantee that all the ranks are independent
of a. Then condition (c3) gives only two possibilities: Either every fat job blocks
execution of any other job, or no three jobs can be executed together (and then
some fat jobs may block all other jobs, while other fat jobs may be scheduled
together with any single skinny width job).

The rest of the paper is dedicated to the proof of Theorem 1.1. After providing
some technical preliminaries, the four Sects. 2–5 contain the proofs of the if-parts
and the only-if-parts for the characterization of the nearly and the fully online case.

Technical Preliminaries. This section collects some tools and observations
that will be useful in the rest of the paper. Preemptive makespan minimization
of jobs with unit-widths on parallel machines (that is, problem P |pmtn|Cmax)
can be solved by the wrap-around rule of McNaughton [10]. We will apply
McNaughton’s classical result in the following equivalent formulation for multi-
processor jobs.
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Proposition 1.2. Consider a system with m machines and n multiprocessor
jobs J1, . . . , Jn, where all jobs are available at time 0 and where all job widths
have the same rank R relative to m. There is a preemptive schedule that completes
all jobs by time t, if and only if

(i) The length of every job satisfies p(Jj) ≤ t.
(ii) The total length of all jobs satisfies

∑n
j=1 p(Jj) ≤ Rt.

Hong and Leung [7] gave a 1-competitive fully online algorithm for the spe-
cial case of P |pmtn, sizej , rj |Cmax where all jobs have width 1. We will use the
following equivalent formulation of their result for multiprocessor jobs.

Proposition 1.3. The online problem of preemptively scheduling multiprocessor
jobs on m machines allows a fully online 1-competitive algorithm, if all job widths
have the same rank R relative to m.

Finally, we state some observations on job widths and job ranks. If two widths
a and b have the same rank r relative to m, then any combination of r jobs of
width a or b can be run in parallel on m machines. We will use the following
observation many times implicitly in our arguments.

Observation 1.4. For a, b ∈ {1, 2, . . . ,m} with R(a,m) = R(b,m) it holds that

(i) b < 2a and a < 2b;
(ii) R(b,m − ka) = R(b,m) − k for k = 1, . . . , R(a,m).

2 The Negative Result for Nearly Online Algorithms

In this section we prove that whenever a set W of job widths violates one of the
conditions (c1) and (c2) in the statement of Theorem1.1, then no 1-competitive
nearly online scheduling algorithm can exist on m machines.

All our arguments are centered around the utilization of machines in an
adversarially constructed instance: At any moment in time, the total width of
the jobs run in an optimal schedule will be at least the total width of the jobs run
in the online schedule, and on some non-trivial time interval the optimal total
width will be strictly larger. Consequently the online makespan will be strictly
worse than the optimal makespan, and the nearly online scheduler cannot be
1-competitive.

Due to the space limit we present only the case when the condition (c1) is
violated. The proof when (c2) is violated, i.e., when R(a,m − c) > R(b,m − c)
works similarly, as we can simply block c machines by a fat job. An exception is
the case when R(b,m − c) ∈ {0, 1}, which needs a separate construction.

Throughout this section we assume that condition (c1) is violated, and we
consider a, b ∈ W− with R(a,m) > R(b,m) > 1; note that this implies b > a.
For simplicity of presentation we introduce r = R(b,m). The proof of the next
lemma is omitted.

Lemma 2.1. Let x0 and y0 be integers that maximize the value of ax+by subject
to the constraints ax+by ≤ m and x, y ≥ 0. Furthermore let x1 and y1 be integers
that maximize the value of ax + by subject to the constraints ax + by ≤ m and
x ≥ 1 and y ≥ 0. Then x0 ≥ 1 or x1 ≥ 2.
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We present an adversarial argument against an arbitrary nearly online scheduler,
which is built around x0, y0, x1, y1 from Lemma 2.1. The first adversarial phase
is as follows: at time 0 we confront the scheduler with R(a,m − rb) + 1 jobs of
width a and length r, and with (r−1)r jobs of width b and length 1. The second
adversarial phase starts at time r − 1, when a group of long jobs arrives that all
have the same length L = r +R(a,m − rb). If x0 ≥ 1 (see Lemma 2.1), then this
group consists of x0 −1 jobs of width a and of y0 jobs of width b. If x0 = 0, then
this group consists of x1 − 1 ≥ 1 jobs of width a and of y1 jobs of width b.

The optimal schedule S1 for the first phase continuously processes all the
R(a,m − rb)+1 jobs of width a together with some r − 1 of the jobs of width b.
The makespan of this schedule S1 equals r. The optimal schedule S2 for all the
jobs from both phases is as follows:

– During the time interval [0, r − 1], schedule S2 continuously processes
R(a,m − rb) jobs of width a (from the first phase) together with some r of the
jobs of width b (from the first phase). Then at time r−1 all jobs from the first
phase are completed, with the sole exception of r + R(a,m − rb) unprocessed
time units of the jobs of width a.

– From time r − 1 to time r − 1+L, schedule S2 continuously processes x0 jobs
of width a and y0 jobs of width b (in the case where x0 ≥ 1) or it continuously
processes x1 jobs of width a and y1 jobs of width b (in the case where x0 = 0).
In either case the makespan of S2 equals r − 1 + L.

During [0, r − 1], schedule S2 utilizes a · R(a,m − rb) + br machines. During
the remaining time, schedule S2 either utilizes ax0 + by0 machines (in the case
x0 ≥ 1) or ax1+by1 machines (in the case x0 = 0). According to Lemma 2.1, this
is either the globally best possible utilization (if x0 ≥ 1), or the best possible
utilization subject to the constraint that at least one job of width a is running
(if x0 = 0).

How would a 1-competitive nearly online algorithm behave on this instance?
As it has no knowledge on the jobs from the second phase, the online algorithm
would have to follow the structure of the optimal schedule S1 during the time
interval [0, r − 1]. Then it utilizes a · (R(a,m − rb) + 1) + b · (r − 1) machines,
which is strictly smaller than the utilization of schedule S2 during [0, r − 1].
If x0 ≥ 1, then during the remaining time the online scheduler cannot beat
the (globally optimal) utilization of schedule S2. If x0 = 0, then the online
scheduler must process one of the x1 − 1 ≥ 1 jobs of width a (from the second
phase) from time r − 1 to time r − 1 + L; by Lemma 2.1 there is no way of
beating the utilization of schedule S2 in this case. All in all, the utilization of
the online schedule is sometimes weaker but never better than that of the optimal
schedule.

3 The Positive Result for Nearly Online Algorithms

In this section we design and analyze the 1-competitive nearly online scheduling
algorithm FatMcN for all cases where the job widths in W satisfy conditions
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(c1) and (c2) in Theorem 1.1. Our approach applies and extends the machinery
from the area, as introduced for instance in Schmidt [13], Hong and Leung [7],
and Albers and Schmidt [1]. From the technical point of view our arguments are
more subtle, and our results seem to reach the very limits of what can be derived
for this type of online problem.

Description of the Algorithm. The main idea of our nearly online algorithm
FatMcN is (i) to handle the fat jobs (Fat) with highest preference, and (ii) to fit
the skinny jobs into the remaining space by using McNaughton’s result (Mc) in
Proposition 1.2.

Whenever there are fat jobs available, FatMcN selects a fat job of maximum
width and runs it. The resulting completion times of the fat jobs together with the
arrival times of all (fat or skinny) jobs constitute the so-called critical time points
0 = t0 < t1 < · · · < ts = Cmax. (For technical reasons, we will assume that at the
very end of the instance a final trivial job of length 0 is released, so that the last crit-
ical time point coincides with the optimal makespan.) For every time slot [tk, tk+1]
we definemk as themaximumnumber of skinny jobs that can be processed simulta-
neously during the slot. Note that by conditions (c1) and (c2) the numbers mk are
well-defined, and that in fact any collection of mk skinny jobs can be processed
simultaneously at any time point during the slot. As a nearly online algorithm,
FatMcN is always aware of the next critical time point.

The schedule for the skinny jobs during time slot [tk, tk+1] is determined at
time tk. Let p1 ≥ p2 ≥ · · · ≥ ps denote the processing times of the skinny job
pieces that are available and still need processing at time tk. Intuitively it is
clear that long job pieces should receive more processing than short job pieces.
To make this intuition precise, we introduce a threshold τ whose exact value will
be fixed later.

– Short job pieces with pj ≤ τ are not processed during the time slot.
– Long job pieces with pj > τ are processed for min{pj − τ, tk+1 − tk} time

units.

(The value tk+1−tk in the minimum expression is the length of the time slot and
hence imposes a hard upper bound on the processing of any job piece during the
slot.) It remains to fix the value of threshold τ . As the length of the processed
job pieces min{pj − τ, tk+1 − tk} decreases monotonically with τ and as we want
to process the jobs as much as possible, we choose τ as the smallest non-negative
real number which satisfies

∑

j:pj>τ

min{pj − τ, tk+1 − tk} ≤ mk · (tk+1 − tk). (1)

The left-hand side of (1) denotes the total job length packed into the slot, and
the right-hand side of (1) imposes the upper bound from Proposition 1.2.(ii). By
Proposition 1.2 all selected job pieces can indeed be scheduled during the time
slot [tk, tk+1]. This completes the description of algorithm FatMcN.
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We conclude this section with some observations on the schedule produced
by algorithm FatMcN that will be crucial in the analysis. First, we note that
FatMcN maximizes the total length of skinny job pieces processed during slot
[tk, tk+1]. Secondly, the processing of jobs during slot [tk, tk+1] maintains their
relative ordering with respect to their lengths:

Lemma 3.1. Let pi and pj be the remaining processing times of two jobs at
time tk, and let xon

i and xon
j be the amounts of processing that these jobs receive

from algorithm FatMcN during slot [tk, tk+1]. If pi ≤ pj, then xon
i ≤ xon

j and
pi − xon

i ≤ pj − xon
j .

Correctness of the Algorithm. We will now prove that algorithm FatMcN
always minimizes the makespan and hence indeed is 1-competitive. To this end
we fix an arbitrary instance and consider an optimal offline schedule S∗ and
the corresponding online schedule Son for it. The following lemma follows by a
switching argument which we omit.

Lemma 3.2. W.l.o.g. we may assume that the optimal schedule S∗ processes
the fat jobs during the same time slots as schedule Son.

By Lemma 3.2 we will assume from now on that the two schedules S∗ and Son

only differ in their handling of some skinny jobs and hence are governed by the
same sequence of critical time points t0 < t1 < · · · < ts. Let [tk, tk+1] be the earli-
est time slot during which schedules S∗ and Son disagree in processing the skinny
jobs, so that at least one skinny job receives different amounts of processing in
S∗ and Son. If schedule Son processes xon time units of some job during the slot
while S∗ processes x∗ time units of the job, then we say that the two sched-
ules have an overlap of min{xon, x∗} with respect to this job. As a measure of
progress we will use the sum of the overlaps taken over all jobs. We will show how
to increase this total overlap by restructuring the optimal schedule S∗, without
worsening its makespan.

First we observe that the total length of skinny jobs processed during slot
[tk, tk+1] in schedule Son is at least as larger as in S∗: If τ > 0 in the algorithm,
then Son has no idle time and S∗ cannot fit more. If τ = 0 then Son schedules
the maximal possible part of each skinny job and thus S∗ cannot complete more,
either.

First we claim that we can assume that the total length of skinny jobs
processed during slot [tk, tk+1] is the same in schedules Son and S∗.

Next suppose that schedule Son processes larger total length of skinny jobs
than S∗, let the difference be z. It follows that we can move one or more skinny
job pieces of a job with x∗ < xon from some later time slot into [tk, tk+1]; we
choose the total length of the pieces to be min{xon − x∗, z}. This increases the
overlap and does not violate the conditions of Proposition 1.2, thus Son may
be rearranged in [tk, tk+1] into a valid schedule. After a finitely many steps we
have z = 0, as we are moving pieces of each job only once.

Now, in the remaining cases, schedules S∗ and Son both process exactly
the same total length of skinny jobs during the slot. As the schedules differ,
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there exists a job Ji that during the slot receives more processing in S∗ than in
Son and there exists another job Jj that receives more processing in Son than
in S∗. If we denote the corresponding four job pieces by xon

i and x∗
i (for job Ji)

and by xon
j and x∗

j (for job Jj), then this means

xon
i < x∗

i and xon
j > x∗

j (2)

We denote the remaining processing time of jobs Ji and Jj at time point tk by
pi and pj . As the schedules S∗ and Son fully agree up to time tk, these values
are the same in both schedules. The following lemma follows from the properties
of FatMcN.

Lemma 3.3. The jobs Ji and Jj satisfy pj − x∗
j > pi − x∗

i .

By Lemma 3.3 schedule S∗ must contain a non-trivial time slot [u, v] with u ≥
tk+1, during which job Jj is processed continuously while job Ji is not processed
at all. We choose such an interval where u and v are preemption times of some
jobs and let ε = min{x∗

i − xon
i , v − u}. We switch an ε-piece of job Ji from slot

[tk, tk+1] with an ε-piece of job Jj in slot [u, v]. While this keeps schedule S∗

feasible and optimal, it also improves the total overlap.
We repeatedly perform such switches until eventually the overlap covers all

the processing time in the slot, so that schedule S∗ agrees with schedule Son on
time slot [tk, tk+1]. To see that the process is finite, note that by the choice of u
and v there is only a fixed number of intervals [u, v] we can use (the number is
given by the number of preemptions in the schedule), thus after a fixed number
of switches the schedules Son and S∗ must agree on an additional job and even-
tually on all jobs in the time slot. Then we handle the remaining time slots in
the same fashion, and eventually transform the optimal schedule S∗ into the
online schedule Son without ever worsening the makespan. Consequently the
schedule Son produced by algorithm FatMcN has the optimal makespan, which
means that FatMcN is 1-competitive.

4 The Negative Result for Fully Online Algorithms

In this section we show that if W violates one of the conditions (c1), (c2), (c3),
then there is no 1-competitive fully online algorithm on m machines under the
width set W . Throughout we may assume that W actually satisfies conditions
(c1) and (c2), as otherwise the arguments in Sect. 2 apply and exclude the exis-
tence of a nearly and thus also of a fully online algorithm. Hence condition (c3)
is violated, so that there exist a ∈ W− and c ∈ W+ with R(a,m − c) ≥ 1 and
R(a,m) ≥ 3. This condition implies that a job of width c may be replaced by two
jobs of width a, or more precisely R(a,m) ≥ R(a,m − c) + 2. If R(a,m − c) = 1
then this follows from R(a,m) ≥ 3. If R(a,m − c) ≥ 2 then c > m/2 implies
R(a, c) ≥ R(a,m − c) ≥ 2, which yields R(a,m) ≥ R(a, c) + R(a,m − c) ≥
R(a,m − c) + 2, and the condition holds as well.

Once again we use an adversarial argument. In all possible cases, the optimal
makespan of the resulting job set will be 4. The first adversarial phase confronts



244 J. Sgall and G.J. Woeginger

the scheduler at time 0 with one fat job of width c and length 2, with two skinny
crucial jobs of width a and length 1, and with R(a,m − c) − 1 skinny dummy
jobs of width a and length 4. We stress that if R(a,m − c) = 1 then there are
no dummy jobs. It is easily verified that the optimal offline makespan for this
job set is at most 4.

Next the adversary spends some time waiting and observing the actions of the
1-competitive fully online scheduler. Let t > 0 be the first moment in time where
the online algorithm changes the collection of running jobs (by preempting a job,
or by completing a job, or by starting a new job on a previously idle machine).

– During the time interval [0, t], the online scheduler must continuously process
all the R(a,m − c) − 1 dummy jobs. If R(a,m − c) = 1, this statement is
trivial. If R(a,m − c) ≥ 2 and no further jobs arrive, this is the only way to
prevent the online makespan from exceeding the optimal makespan of 4.

– During [0, t] the online scheduler must continuously process the fat job of
length 2. Otherwise another fat job of width c and length 2 arrives at time
2. The optimal schedule has makespan 4, whereas the online schedule cannot
complete both fat jobs by time 4.

As c+a ·(R(a,m − c)−1)+2a > m, the online scheduler does not have sufficient
space to process both crucial skinny jobs during the time interval [0, t].

The second adversarial phase starts at time t, when a skinny job of width a
and length 4−t arrives together with a fat job of width c and length 1+t/2. The
optimal offline schedule still has makespan 4. Indeed, the optimal schedule uses
a · (R(a,m − c) − 1) machines to continuously process the dummy jobs during
[0, 4]. It uses a further machines to first process a piece of length t/2 of one crucial
job, then a piece of length t/2 of the other crucial job, and finally the skinny job
of length 4−t that arrives at time t. It uses c machines to first process the two fat
jobs during [0, 3+ t/2] and then during [3+ t/2, 4] the remaining pieces of length
1 − t/2 of the two crucial jobs; this is feasible as R(a,m) ≥ R(a,m − c) + 2.

The online scheduler, however, must block a·R(a,m − c) machines from time
t onwards just in order to complete the dummy jobs and the job of length 4 − t
that arrives at time t. This leaves a fat job of length 2, a fat job of length 1+t/2,
and a crucial job of length 1 that has not been processed at all before time t.
These three jobs cannot be completed on the remaining machines by time 4.
Hence the makespan produced by the fully online scheduler will be above 4, and
a fully online scheduler cannot be 1-competitive.

5 The Positive Result for Fully Online Algorithms

In this section we construct 1-competitive fully online scheduling algorithms for
all the cases where the job widths in W satisfy conditions (c1), (c2), and (c3)
in Theorem 1.1. We will separately discuss two scenarios. The first scenario has
R(a,m − c) = 0 for all a ∈ W− and c ∈ W+ in condition (c3). The second
scenario has R(a,m) = 2 for some a ∈ W− in condition (c3).
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The First Scenario. If R(a,m − c) = 0 holds for all a ∈ W− and c ∈ W+,
then no fat job can be processed simultaneously with a skinny job. Furthermore
any set of R = R(a,m) skinny jobs can be processed on the machines in parallel.

We sketch an online algorithm for this scenario. Whenever there are fat jobs
available, we run an arbitrary fat job. Similarly as in Lemma3.2 it can be seen
that there is an optimal schedule that handles the fat jobs in exactly the same
way as our fully online algorithm. However, this time we are in a simpler situation
as the processing of fat jobs and the processing of skinny jobs must occur in
disjoint time slots, and thus cannot interfere with each other. Hence we may
use the 1-competitive fully online algorithm of Hong and Leung [7] as stated in
Proposition 1.3 to schedule the skinny jobs. All in all, this yields a fully online
algorithm for the first scenario.

The Second Scenario. If R(a,m) = 2 holds for some a ∈ W−, then conditions
(c1) and (c2) imply that R(a,m) = 2 for all a ∈ W− and that the fat jobs can be
divided into two types: very fat jobs which cannot be processed simultaneously
with any skinny job and the remaining fat jobs which can be processed with one
arbitrary skinny job.

The main idea of our fully online algorithm TwoFatMcN is first to handle the
very fat and fat jobs with high preference and then to fit the skinny jobs into
the remaining space. This is easier than for FatMcN as we combine at most two
jobs and then the only obstacle against balancing them exactly is if one job is
longer than the total processing time of the remaining jobs.

Let at any time p1 ≥ p2 ≥ · · · ≥ ps denote the processing times of the skinny
job pieces that are available and still need processing. Let P denote their total
remaining time, P =

∑s
i=1 ps and let R denote the total processing time of the

fat (but not very fat) job pieces that are available and still need processing.
The algorithm TwoFatMcN at each decision time determines the schedule

for some future interval. However, whenever a new job arrives, the schedule is
stopped immediately and a new decision is made. Thus the next decision time
is either the next arrival time or the time when the prespecified schedule ends.

(1) If a very fat job is available, run one such job until its completion.
(2) If a fat job is available, run the first such job f (chosen by some canonical

ordering). Run also one skinny job (if available) chosen as follows:
(a) If no skinny job is available, run only f until its completion.
(b) If p1 > p2, run the job with remaining time p1 for time p1−p2 or until the

completion of f , whatever happens first. Also, if there is a single skinny
job, run it for time p1 or until the completion of f , whatever happens
first.

(c) If p1 = p2, run the job with remaining time p2 for time min{p2, R/2} or
until the completion of f , whatever happens first.

(3) If no fat and no very fat job is available:
(a) If there is a single skinny job run it until its completion.
(b) Otherwise, if p1 > P/2, run the job with remaining time p1 together

with one other arbitrary job until the completion of the second job.
(c) Otherwise, create a schedule of length P/2 for the skinny jobs using

McNaughton’s rule and follow it.
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It is not immediately clear that the algorithm is finite, as in steps (2b) and (2c)
no job may complete or arrive. However, note that while running a single fat
job f , each step (2b) is followed by step (2c). Furthermore, a job j can be run
in step (2c) only once: The step (2c) takes time R/2 and after that, the other
job with remaining time p1 would need to run for R/2 before p2 ties the longest
remaining time again. However, this together would take time R which means
that f is completed.

Correctness of the Algorithm. We will now prove that algorithm TwoFatMcN
always minimizes the makespan and hence indeed is 1-competitive. To this end
we fix an arbitrary instance and consider an optimal offline schedule S∗ and the
corresponding online schedule Son for it. The next lemma is proven by the same
exchange argument as Lemma 3.2. We omit the proof.

Lemma 5.1. W.l.o.g. we may assume that the optimal schedule S∗ processes
the fat and very fat jobs during the same time slots as schedule Son.

Let at any time Z = max{R, p1, (P + R)/2}, taking p1 = 0 if no skinny job is
available. Note that Z is the length of the optimal schedule for the remaining
pieces of skinny and fat jobs if no further jobs arrive. Lemma5.1 implies that at
any time, the remaining pieces of fat jobs in S∗ have total length R. Let P ∗, p∗

1,
and Z∗ denote the values P , p1, and Z with respect to the optimal schedule S∗.
The following invariant follows inductively from the definition of the algorithm,
details are omitted.

Lemma 5.2. At any time during the execution of TwoFatMcN we have

P ≤ P ∗ and Z ≤ Z∗. (3)

Lemmas 5.1 and 5.2 together imply that as long as Son has some unfinished
job, also S∗ has an unfinished job. Thus the makespan of Son is equal to the
makespan of Son and TwoFatMcN is a fully online 1-competitive algorithm.

6 Conclusions

Now that we understand the 1-competitive cases of problem P |pmtn, sizej ,
rj |Cmax, the next goal should be to get a better understanding of the com-
petitive ratios in the remaining cases. Determining the best possible competitive
ratio for every possible width set W and every possible number m of machines
might be a messy and hopeless enterprise. A realistic first step could be to
determine the best possible competitive ratio c∗ for the general online problem
P |pmtn, sizej , rj |Cmax. Currently, we only know 6/5 ≤ c∗ ≤ 2 from the work of
Johannes [8] and Naroska and Schwiegelshohn [11].

Our main Theorem 1.1 implies that for m = 2 and m = 3 machines there exist
1-competitive online algorithms. The smallest open problems arise on m = 4
machines. What is the optimal competitive ratio for m = 4 and W = {1, 2}?
What is the optimal competitive ratio for m = 4 and W = {1, 2, 3}?

And what if we a priori know the optimal makespan? We have observed
that the algorithm of Hong and Leung uses this knowledge but not in any signif-
icant way. We know that knowing the optimal makespan cannot help us to design
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a 1-competitive algorithm: in all our constructions, we may as well announce the
optimal makespan to be a fixed large value at the beginning and instead of end-
ing the instance, we could release another batch of jobs that fully utilizes the
machines till the announced optimal makespan. However, knowing the optimal
makespan (intuitively speaking) should improve the competitive ratio.
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known optimum. Jǐŕı Sgall acknowledges support by the project 14-10003S of GA ČR.
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Abstract. The field of a priori optimization is an interesting subfield
of stochastic combinatorial optimization that is well suited for routing
problems. In this setting, there is a probability distribution over active
sets, vertices that have to be visited. For a fixed tour, the solution on an
active set is obtained by restricting the solution on the active set. In the
well-studied a priori traveling salesman problem (TSP), the goal is to
find a tour that minimizes the expected length. In the a priori traveling
repairman problem (TRP), the goal is to find a tour that minimizes the
expected sum of latencies. In this paper, we give the first constant-factor
approximation for a priori TRP.

Keywords: a priori optimization · Approximation algorithms · Trav-
eling repairman problem

1 Introduction

In the last few decades, a lot of research has been done in stochastic combinato-
rial optimization. This field is concerned with classical combinatorial optimiza-
tion problems, like the shortest path problem and the minimum Steiner Tree
problem, but with additional uncertainty in the instance. For example, there
are situations where the problem instance changes on a daily basis. Instead of
reoptimizing every instance, because it might be impossible or undesirable, one
can alternatively choose to pick one solution that will be good on average. This
is the setting of a priori optimization. In this paper, we consider the a priori
traveling repairman problem (TRP). This is a routing problem, where there is
a probability distribution over subsets of the vertices that have to be visited.

In a priori routing, we are given a complete weighted graph G = (V,E)
and a probability distribution on subsets of V . Depending on the model, this
distribution is given either explicitly or by a sampling oracle. It is assumed that
the instances are metric. In the first stage, a tour τ on V has to be constructed.
In the second stage, an active set A ⊆ V is revealed, which is the set of vertices
to be visited. The second-stage tour τA is obtained by shortcutting the first-stage
tour over the active set. For each active set, the first-stage tour has a second-
stage objective value. The goal is to find a first-stage tour that minimizes the
c© Springer International Publishing Switzerland 2015
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expected cost of the second stage tour. When it is clear form the context, we
may refer to this expected second stage cost simply as the expected cost of the
solution.

In the literature, several models for the probability distribution over the
active sets are used. In the black-box model, there is no knowledge on the prob-
ability distribution. The only instrument available is a sampling oracle, which
gives a sample from the distribution on request. In the scenario model, the
instance contains an explicit list with active sets and their corresponding prob-
abilities. In the independent decision model, each vertex has its own probability
of being active, independent of the other vertices. The special case where all
probabilities are equal is called the uniform model.

In the a priori traveling salesman problem (TSP), the goal is to minimize
the expected length of the tour. The problem was introduced in the PhD-theses
of Jaillet [1] and Bertsimas [2]. An approximation algorithm was achieved by
Schalekamp and Shmoys [3], who showed that there is a O(log n)-approximation
algorithm in the black-box model. Later, Gorodezky et al. [4] showed that
this bound is tight. Constant-factor approximations were achieved for the first
time by Shmoys and Talwar [5], who showed that there exists a randomized
4-approximation and a deterministic 8-approximation in the independent deci-
sion model. The deterministic approximation guarantee was later improved to
6.5 by Van Zuylen [6]. It is easy to show that the randomized 4-approximation
can be improved to a factor α + 2 by replacing the double-tree subroutine in
the algorithm of Shmoys and Talwar by an α-approximation algorithm for TSP.
Using Christofides’ algorithm [7] gives a randomized 3.5-approximation.

This paper is concerned with the a priori traveling repairman problem. In the
deterministic traveling repairman problem or minimum latency problem, we have
a complete graph G = (V,E), a metric cost function c over the edges and a root
vertex r. We want to find a tour τ starting at the root which minimizes the sum
of latencies. Here, the latency of a vertex v is defined as the length of the path
from r to v along τ . The problem is known to be NP-hard in general [8] and it is
even NP-hard on weighted trees [9]. The best known approximation guarantees
are 3.59 for general metrics [10] and a polynomial time approximation scheme
for the Euclidean plane and weighted trees [11].

The a priori traveling repairman problem is defined similarly to the a priori
traveling salesman problem. The goal is to find a first-stage tour which mini-
mizes the expected second-stage sum of latencies. Here, the second-stage sum
of latencies for active set A is obtained by shortcutting the first-stage tour over
A and summing up the latencies in the second-stage tour. In this paper, we
establish a constant-factor approximation for the a priori traveling repairman
problem in the uniform model. To achieve this result, we consider the a priori
k-TSP, the prize-collecting tour single-sink rent-or-buy problem and the a priori
prize-collecting traveling salesman problem. These problems will be defined in
their corresponding sections.

In the next section, the basic ideas for our algorithm for the a priori traveling
repairman will be discussed. After that, it will be shown how the a priori k-TSP
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can be used to obtain a constant-factor approximation for a priori TRP on
trees. In Sect. 4, we will discuss how to get a constant-factor approximation
for the a priori TRP on general metrics. In order to get there, we investigate
the prize-collecting tour single-sink rent-or-buy problem and the a priori prize-
collecting traveling salesman problem. Finally, we end with some remarks on
open problems.

In this paper, it is assumed that the edge costs are non-negative integers
satisfying the triangle inequality. In the following, we denote A for an active set
of vertices. When the sets A are drawn from the probability distribution over all
sets A, we denote the expectation with respect to this distribution as EA[·].

2 The a Priori Traveling Repairman Problem

In the a priori traveling repairman problem, the goal is to find a first-stage tour,
starting at the root, that minimizes the expected sum of latencies. Finding an
approximation algorithm for this problem turns out to be much harder than for
a priori TSP. It is easy to adjust the proof in [4] to show a Ω(log n) lower bound
on the approximation guarantee in the black-box model. Getting positive results
is even non-trivial if all vertices are on a line. In the deterministic setting, this
problem can be solved using dynamic programming [12]. This result relies on
the fact that vertices will always be visited when the tour comes across them.
In the a priori setting, this is not true. Consider the example from the scenario
model shown in Fig. 1. Here, there is a point at v1 at distance 1 from the root
which is always active. Further, there are 100 points at v2 at distance 10 from
the root which are simultaneously active with probability 0.01, and there are 10
points at v3 at distance 2 on the other side of the root which are simultaneously
active with probability 0.1. Note that this gives four possible scenarios. Here,
the optimal a priori tour is (v2, v3, v1), meaning that we pass by the point at
v1 twice before visiting it. The intuition behind this is that we do not want to
visit v1 before v3, but we do want to visit v2 before v3. We conjecture that in
the independent model skipping is never optimal. If this is true, then dynamic
programming may be used to solve this problem.

Fig. 1. Instance of a priori TRP in the scenario model. The optimal tour passes the
point at v1 twice before visiting it.

There also are difficulties in the independent decision model. The intuitive
approach of using the probabilities as weights, i.e. wi = pi, and solving the
weighted version of TRP turns out to give arbitrary bad solutions. The problem
remains easy on star graphs. It can be shown by an interchange argument that
the vertices have to be visited in non-increasing order of E[Ni]/E[Li]. Here, E[Ni]
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is the expected number of clients at vertex i and E[Li] is the expected length to
vertex i, i.e. the length of the edge times the probability that at least one of the
clients at the endpoint has to be visited.

2.1 Preliminaries

Any tour should start in the given root r. For a given tour and active set A,
we denote �A

v as the latency of vertex v ∈ A in the tour shortcutted over A. If
vertex v is not in A, then we define �A

v = 0. Each vertex v has probability pv of
being active. If Cv is the expected latency of vertex v given that v is active, our
objective becomes minimizing

EA[
∑

v

�A
v ] =

∑

v

pvEA[�A
v |v is active] =

∑

v

pvCv. (1)

Let d(r, v) be the minimum cost of traveling from the root to vertex v. Note that
Cv is the expected latency of vertex v, given that it is active. Hence, we obtain
the following lemma.

Lemma 1. For any tour and vertex v, we have Cv ≥ d(r, v).

2.2 Algorithm

Our algorithm is based on algorithms for the deterministic TRP [10,13,14]. How-
ever, the a priori setting makes the problem a lot harder to solve. As explained
above, even the problem on the line is non-trivial in the a priori setting and not
known to be solvable in polynomial time. Our algorithm makes use of an (α, β)-
TSP-approximator in the a priori setting, which is similar to the one introduced
in [13]. Suppose we have an instance of a priori TSP and a number L. The goal
is to find a tour of expected length at most L which minimizes the number of
unvisited vertices. An (α, β)-TSP-approximator in the a priori setting will find
a tour of expected length at most βL with a number of unvisited vertices at
most α times the optimal number of unvisited vertices. The algorithm can be
described as follows. Let L0 = 1 and c a parameter to be determined later and
define Li = L0c

i. Now for each length Li, we obtain a tour T (Li) by applying
the (α, β)-TSP-approximator in the a priori setting. These tours will then be
concatenated, i.e. we first traverse tour T (L0), then we traverse tour T (L1) and
so on until all vertices are visited, where we shortcut already visited vertices.
We output the resulting tour.

Theorem 1. Given an (α, β)-TSP-approximator in the a priori setting, our
algorithm with c = 2 is a (8�α�β + 1)-approximation for the a priori traveling
repairman problem in the uniform model, i.e. pv = p for all v ∈ V .

Proof. Assume that α is an integer, otherwise use its ceiling as upper bound. Parti-
tion the vertices of the algorithm’s tour in blocks of size at most α. If we renumber
the vertices in our tour such that the first visited vertex is 1, the second visited
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vertex is 2, etc., we define the block Bx to be the subset containing the vertices
n − α(x + 1) + 1, n − α(x + 1) + 2, . . . , n − αx for x = 0, 1, . . . ,

⌈
n
α

⌉ − 1. Let
C∗

n−x denote the expected latency of vertex n − x, the (n − x)th vertex on the
optimal tour, given that it is active. Now let Si be the set of vertices with a condi-
tional expected latency from Li−1 until Li in the optimal tour. Suppose that the
(n − x)th vertex visited by the optimal tour is in Si, i.e. Li−1 ≤ C∗

n−x < Li. We
know that there exists a tour visiting at least n − x vertices with expected length
at most 2C∗

n−x ≤ 2Li = Li+1, so the TSP-approximator finds a tour visiting at
least n−αx vertices of expected length at most βLi+1. This implies that each ver-
tex v ∈ Bx is visited in T0∪ . . .∪T (Li+1). We can bound the conditional expected
latency, denoted as CAlg

v , in the following way. To get an upper bound, we assume
that v is visited for the first time in T (Li+1). Shortcut vertex v on tour T (Li+1)
and visit it after the vertices of T (Li+1). Denote its expected latency in the new
tour by C ′

v and note that we have CAlg
v ≤ C ′

v. Finally note that the expected
latency in the new tour is bounded by β(L0 + . . .+Li+1)+d(r, v). If we sum over
all vertices in Bx, we get

∑

v∈Bx

CAlg
v ≤ α(β(L0 + L1 + . . . + Li+1)) +

∑

v∈Bx

d(r, v)

≤ 2αβLi+1 +
∑

v∈Bx

d(r, v)

= 8αβLi−1 +
∑

v∈Bx

d(r, v)

≤ 8αβC∗
n−x +

∑

v∈Bx

d(r, v).

If we multiply by p and sum over all blocks, we can bound the objective (1) as
follows

� n
α�−1∑

x=0

∑

v∈Bx

pCAlg
v ≤ 8αβ

� n
α�−1∑

x=0

pC∗
n−x +

∑

v

pd(r, v)

≤ 8αβ
∑

v

pC∗
v +

∑

v

pd(r, v)

≤ (8αβ + 1)Opt. 	


This approximation guarantee might be improved by choosing another value
of c, but it turns out that c = 2 is optimal for our analysis. We can improve the
approximation factor by randomizing the starting length L0 = 2cU , where U is
a random variable uniformly distributed on [0, 1], and optimize over c.

Theorem 2. Given an (α, β)-TSP-approximator in the a priori setting, our
algorithm with L0 = 2cU and c = e is a (2e�α�β + 1)-approximation for the a
priori traveling repairman problem in the uniform model, where U is a random
variable uniformly distributed on [0, 1].
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Proof. Partition the vertices of the resulting tour in blocks of size at most α
and renumber vertices as in Theorem 1. Suppose that C∗

n−x = qc�, where q < c.
If q < cU , then there exists a path from the root with expected length at most
cUc� visiting at least n − x vertices. This means that T (L�) contains at least
n − αx vertices and is of length at most 2βcUc�. So, for v ∈ Bx, we have CAlg

v ≤
β

∑�
i=0 L0c

i+d(O, v) ≤ βL0c
�( c

c−1 )+d(O, v). In the other case, we have q < c ≤
cUc, so there exists a path from the root with expected length at most cUc�+1.
This means that T (L�+1) contains at least n − αx vertices and is of length
at most 2βcUc�+1. So, for v ∈ Bx, we have CAlg

v ≤ β
∑�+1

i=1 L0c
i + d(O, v) ≤

βL0c
�+1( c

c−1 ) + d(O, v). In the first case, we have logc q ≤ U ≤ 1 and we have
0 ≤ U ≤ logc q in the second case. Taking expectations over U gives

CAlg
v ≤

∫ 1

logc q

(
βL0c

�

(
c

c − 1

)
+ d(O, v)

)
dU

+
∫ logc q

0

(
βL0c

�+1

(
c

c − 1

)
+ d(O, v)

)
dU

=
2cβ

ln c
C∗

n−x + d(O, v)

If we multiply by p and sum over all vertices in Bx and over all Bx, we get a bound
of 2c

ln cαβ + 1. Optimizing over c gives c = e and a bound of 2eαβ + 1. 	

The algorithm can be derandomized by trying multiple values for U . This will
give an approximation guarantee that is arbitrary close to 2eαβ + 1 [14]. Note
that if α = 1, the approximator corresponds to a β-approximation for a priori
k-TSP, the problem of finding a tour on k vertices of minimum expected length.
This yields the following corollary.

Corollary 1. If there is a γ-approximation for the a priori k-TSP, there is
a (2eγ + 1)-approximation for the a priori traveling repairman problem in the
uniform model.

3 Tree Metrics

To obtain an approximation guarantee for the a priori TRP on trees, we use
Corollary 1. Note that finding a k-tour in a tree is similar to finding a k-tree in
a tree. So, in this case we can solve the a priori k-MST problem, in which we
have to find a tree spanning k vertices such that the expected cost of the tree is
minimized.

Theorem 3. The a priori k-TSP in the uniform model on tree metrics can be
solved to optimality in polynomial time.

Proof. First, we turn the tree into a binary tree with the original vertices at
the leaves, by adding vertices with probability zero and edges with cost zero.
Next, we use dynamic programming to solve the a priori k-MST problem.
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Define the function t(v, y) to be the minimal expected cost of a subtree rooted
at v containing y leaves. For all leaves v, we have t(v, 0) = t(v, 1) = 0. For a
certain state (v, y), the best tree follows from a combination of z vertices of the
left subtree and y − z vertices from the right subtree. For a given combination,
the expected cost is equal to the sum of the expected cost of the subtrees plus,
for each subtree, the cost of the edge connecting v with the subtree times the
probability that at least one of the vertices in the subtree is active. If we denote
�(v) and q(v) for the left and right child of v respectively and c(v, w) as the cost
of the edge between v and w, we get the following recursive formula:

t(v, y) = min
z=0,...,y

{t(�(v), z) + (1 − (1 − p)z)c(v, �(v))

+ t(q(v), y − z) + (1 − (1 − p)y−z)c(v, q(v))}.

The optimal tree containing k vertices is the solution corresponding to t(r, k),
where r is the root of the tree. Note that the dynamic program needs O(nk2)
time, so a priori k-MST (and hence k-TSP) on trees can be solved in polynomial
time. 	

Corollary 2. There is a 2e + 1 ≈ 6.44-approximation for the a priori traveling
repairman problem in the uniform model on trees.

It is not clear how to generalize this result to the non-uniform case. The difficulty
is that the probability that at least one vertex in the subtree is active can take
exponentially many different values. On the other hand, it is easy to extend the
DP above to the case where there is a constant number of different probabilities.

4 General Metrics

For general metrics, we show how to obtain an (α, β)-TSP-approximator with
some constant α and β. It turns out that finding such an approximator reduces
to finding an approximation algorithm for the a priori prize-collecting traveling
salesman problem. In addition to a priori TSP, each vertex i has a penalty πi.
For a given active set and first-stage tour, the objective value is determined by
the cost of the shortcutted tour plus the penalties of the unvisited active vertices.
Again, the goal is to minimize the expected value over the active sets. Finding an
approximation algorithm for this problem reduces to finding an approximation
algorithm for the prize-collecting tour single-sink rent-or-buy problem (prize-
collecting tour SRoB). In the single-sink rent-or-buy problem (SRoB) [16], we are
given a graph G = (V,E) with a metric cost function ce on the edges. There is
a client at every vertex with unit demand. We have to open a facility at some
of the vertices and connect the clients to the facilities. We denote cij as the cost
of the shortest path between i and j in G. Connecting facility i with client j
costs ce if e = (i, j) and buying edge e costs Mce, where M ≥ 1. We need to
buy edges such that the open facilities are joined by a Steiner tree. The goal is
to minimize the sum of connection cost and Steiner cost. In the tour single-sink
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rent-or-buy problem (tour SRoB), G is a complete graph. Here, edges have to
be bought such that the open facilities are joined by a tour. Note that cij = ce

if e = (i, j). In the prize-collecting tour SRoB, it is not needed to connect every
client. If client i is not connected, then we have to pay penalty πi. The goal is to
minimize the sum of connection cost, tour cost and penalty cost. In this section,
we give a constant-factor approximation for the prize-collecting tour SRoB which
leads to a constant-factor approximation for the a priori prize-collecting TSP.
Finally, we will show how this results in an (α, β)-TSP-approximator in the a
priori setting.

4.1 Prize-Collecting Tour SRoB

The prize-collecting tour SRoB has, to the best of our knowledge, not been
considered explicitly in the literature. Let us first consider the problem with-
out penalties. We can obtain a randomized 3-approximation for tour SRoB by
adjusting the analysis for tour connected facility location (a generalization of
tour SRoB) by Eisenbrand et al. [15]. This can be derandomized by adapting the
analysis of Van Zuylen [6] to obtain a deterministic 3-approximation. However,
it is not clear how to extend these results to prize-collecting SRoB. Therefore, we
will use the primal-dual algorithm for SRoB by Swamy and Kumar [16] instead.

Tour SRoB. First, consider SRoB. We assume that a facility is opened at root
vertex r. In the ILP-formulation below, we define xij to be 1 if j is connected
to i, which will be on the tree. We define ze to be 1 if we use edge e in the tree.

(P) min
∑

i

∑

j

cijxij + M
∑

e

ceze

s.t.
∑

i

xij ≥ 1 ∀j ∈ V

∑

i∈S

xij ≤
∑

e∈δ(S)

ze ∀S ⊆ V \ {r}, j ∈ V

xij , ze ∈ {0, 1} ∀i, j ∈ V, e ∈ E.

In any solution for the tour SRoB, each vertex j is connected with some vertex
i on the tour (possibly i = j). In that case, any cut separating i from r must
contain at least two edges. Hence, an LP-relaxation for tour SRoB is obtained
by relaxing the integrality constraints and by putting a factor 2 in front of xij

in the second constraint.
We can now use the primal-dual algorithm for SRoB to obtain an approxi-

mation algorithm for tour SRoB. Given an instance of tour SRoB, we divide all
edge costs by 2, i.e. c′

e = ce/2 and c′
ij = cij/2. To keep the remaining restrictions

of the dual and the Steiner costs the same, we also set M ′ = 2M . Secondly, we
use the primal-dual algorithm of Swamy and Kumar [16] on the new instance to
obtain a solution for SRoB. Finally, we double the tree and shortcut the resulting
Eulerian tour. Note that this algorithm and its analysis are similar to the work of
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Goemans and Williamson [17], who showed how to obtain a 2-approximation for
the prize-collecting TSP using a 2-approximation for the prize-collecting Steiner
tree problem. Further note that this ratio is worse than the ratio that can be
obtained from [15]. However, that result is based on a sampling approach which
we do not know how to extend to the prize-collecting version of the problem.

Theorem 4. The approach above gives a 5-approximation for the tour SRoB.
Moreover, the value is at most 5 times the optimal value of its LP-relaxation.

Prize-Collecting Version. In this version, it is not needed to connect all
vertices. However, a penalty πi is incurred when vertex i is not connected. For
the LP-relaxation of the prize-collecting tour SRoB problem, we add the variable
sj , which is set to 1 if client j is not visited. In an integral solution, the first
constraint corresponds to a client being either not visited or connected with an
open facility.

(P’) min
∑

i

∑

j

cijxij + M
∑

e

ceze +
∑

j

πjsj

s.t. sj +
∑

i

xij ≥ 1 ∀j ∈ V

2
∑

i∈S

xij ≤
∑

e∈δ(S)

ze ∀S ⊆ V \ {r}, j ∈ V

xij , ze, sj ≥ 0 ∀i, j ∈ V, e ∈ E.

Using the ellipsoid method, the LP-relaxation can be solved in polynomial time.
Note that the separation problem can be solved by using a min-cut problem.
Solving gives optimal solution (x∗, z∗, s∗). If s∗

j ≥ δ, then we set ŝj = 1, else
we set ŝj = 0, where 0 ≤ δ ≤ 1 is determined later, and let T = {j : ŝj = 0}.
The vertices in V \ T will not be visited. Next, we obtain a solution of tour
SRoB on T by applying the algorithm from Theorem4. This results in a feasible
solution for prize-collecting tour SRoB on V . Partition the optimal LP-value in
the connection plus tour cost CLP and penalty cost ΠLP.

Lemma 2. The algorithm above finds a solution for the prize-collecting tour
SRoB such that the resulting tour and connection costs are bounded by 5/(1 −
δ)CLP and the resulting penalty costs are bounded by (1/δ)ΠLP.

Proof. By rounding the solution, we lose at most a factor 1/δ on the penalty
cost. By Theorem 4, the connection and tour cost for tour SRoB on T can be
bounded by 5 times the optimal solution of its LP-relaxation. We obtain a feasi-
ble solution for this LP-relaxation by deleting the sj ’s from the LP-relaxation of
prize-collecting tour SRoB and multiply all other variables by a factor 1/(1− δ).
Combining the two statements, we obtain that the connection and tour cost
can be bounded by 5/(1 − δ) times the connection and tour cost of the optimal
LP-solution. 	
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If we choose δ uniformly at random on [0, θ], with 0 < θ ≤ 1 to be specified later
[18], we obtain the following result.

Lemma 3. Randomization of the algorithm above gives a solution for the prize-
collecting tour SRoB such that the resulting tour and connection costs are in
expectation bounded by (5 ln (1/(1 − θ)) /θ)CLP and the resulting penalty costs
are in expectation bounded by (1/θ)ΠLP.

Note that the algorithm can be derandomized by checking all values s∗
j ∈ [0, θ]

for δ, since the set of unvisited vertices does not change for values in between
two consecutive values of s∗

j . So, by checking at most n values, we obtain a
deterministic algorithm with the same guarantees. Choosing θ = 1 − e−1/5 gives
the following approximation guarantee.

Theorem 5. There is a 5.52-approximation for the prize-collecting tour SRoB
problem.

4.2 The a Priori Prize-Collecting Traveling Salesman Problem

In this subsection, it is shown how to reduce the a priori prize-collecting TSP
to the prize-collecting tour SRoB and lose a factor 3 in the approximation. First,
we omit the penalties.

Lemma 4. Any approximation algorithm for the tour SRoB problem can be
turned into an approximation algorithm for the a priori TSP in the uniform
model with loss of at most a factor 3 in the approximation.

Proof. Given an instance of a priori TSP with edge costs cij and uniform prob-
abilities p, we define an instance of tour SRoB as follows. The edge costs are
c′
ij = 2pcij and M = 1/(2p). Given any feasible solution for this instance we get

a feasible solution for a priori TSP of at most the same cost as follows. Let T
be the tour in the SRoB solution. For the a priori tour we take T and double all
the edges from clients to facilities in the SRoB solution. It is easy to see that,
by the scaling factor 2p, the expected cost of the shortcut TSP solution is at
most that of the SRoB solution.

Let OptTSP and OptSRoB denote the optimal value of, respectively, the a
priori TSP and the tour SRoB instance. It remains to show that OptSRoB ≤
3OptTSP. Select each vertex with probability p and take an optimal tour on the
set of selected vertices S. Let this be the tour for the SRoB solution. Connect
all other vertices in the cheapest way to S. It follows from the analysis in [5]
that the cost of this SRoB solution is at most 3 times the optimal cost of the a
priori TSP instance, since the construction above is just their algorithm except
for the fact that we take an optimal tour on S. Hence, OptSRoB ≤ 3OptTSP. 	

The theorem above applies as well in the prize-collecting setting.

Lemma 5. Any approximation algorithm for the prize-collecting tour SRoB
problem can be turned into an approximation algorithm for the a priori prize-
collecting TSP in the uniform model with loss of at most a factor 3 in the approx-
imation.
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Combining the lemma above with Theorem 5 we get the following theorem.

Theorem 6. There is a 16.55-approximation for the a priori prize-collecting
TSP in the uniform model.

4.3 Main Result

The step from a priori prize-collecting TSP to the a priori TRP is easy and is
similar to that of the deterministic setting as in [13]. It even works in the inde-
pendent decision model. Given any α-approximation for a priori prize-collecting
TSP we get a (2α, 2α)-TSP-approximator in the a priori setting. Let L be given
and assume that there exists a tour T of expected cost at most L which visits
at least (1 − ε)n vertices. Denote the set of unvisited vertices of tour T by Q.
We show how to get a tour of expected length at most 2αL that visits at least
(1−2αε)n vertices. Define an instance of a priori prize-collecting TSP by giving
vertex i a penalty πi = L/(piεn). The optimal value of this instance is at most
that of solution T which is L +

∑
i∈Q piπi ≤ 2L. Hence, any α-approximation for

the a priori prize-collecting TSP instance should return a tour that has expected
length at most 2αL and also an expected penalty cost of at most 2αL. The latter
implies that it leaves at most 2αL/(piπi) = 2αεn vertices unvisited.

Now, a constant-factor approximation algorithm for the a priori TRP in the
uniform setting follows from Theorems 2 and 6.

Theorem 7. There is an O(1)-approximation for the a priori traveling repair-
man problem in the uniform model.

5 Open Problems

There still are many open problems in the field of a priori optimization. For the
a priori traveling repairman problem we were only able to give a constant-factor
approximation in the uniform model and the constant is still large. At several
points in the proof the uniformity of the probabilities is essential. The problem
is wide open in the independent probability and scenario model. Also, it is not
known if the uniform problem can be solved efficiently in case all points are on
the line. If any optimal solution has the property that no point is passed without
visiting it, like in the deterministic problem, then the problem may be solved
by dynamic programming. However, a proof is missing and we have shown that
this property does not hold in the scenario setting.

In our analysis we used the theory of (α, β)-TSP-approximators and prize-
collecting TSP. Better approximations may be obtained by using the a priori
k-TSP. No constant-factor approximation is known for this problem.
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Abstract. A covering problem is an integer linear program of type
min{cT x | Ax ≥ D, 0 ≤ x ≤ d, x integral} where A ∈ Z

m×n
+ , D ∈ Z

m
+ ,

and c, d ∈ Z
n
+. In this paper, we study covering problems with addi-

tional precedence constraints {xi ≤ xj ∀j � i ∈ P}, where P = ([n], �)
is some arbitrary, but fixed partial order on the items represented by
the column-indices of A. Such precedence constrained covering problems
(PCCP) are of high theoretical and practical importance even in the
special case of the precedence constrained knapsack problem, i.e., where
m = 1 and d ≡ 1.

Our main result is a strongly-polynomial primal-dual approximation
algorithm for PCCP with d ≡ 1. Our approach generalizes the well-
known knapsack cover inequalities to obtain an IP formulation which
renders any explicit precedence constraints redundant. The approxima-
tion ratio of this algorithm is upper bounded by the width of P, i.e.,
by the size of a maximum antichain in P. Interestingly, this bound is
independent of the number of constraints. We are not aware of any other
results on approximation algorithms for PCCP on arbitrary posets P. For
the general case with d �≡ 1, we present pseudo-polynomial algorithms.

Keywords: Approximation algorithms · Precedence constraints ·Knap-
sack problem · Capacitated covering

1 Introduction

We consider integer linear programs of type min{cT x | Ax ≥ D, 0 ≤ x ≤
d, x integral}, where A ∈ Z

m×n
+ is a non-negative integral matrix with entries

uk
i , D ∈ Z

m
+ is a demand vector with entries Dk, and c, d ∈ Z

n
+. Such integer

linear programs are usually called covering problems. The name becomes more
evident if we interpret a solution vector x ∈ Z

n
+ as choice of multiplicities xi of

items of type i ∈ N = [n] that needs to satisfy a set of m covering constraints∑
i∈N uk

i xi ≥ Dk (k ∈ K = [m]). Each item i is equipped with a per-unit weight
uk

i w.r.t. covering-constraint k, a per-unit cost ci, and an upper bound di on the
multiplicity of item i.

For example, the special case of just one covering constraint (m = 1),
and upper bounds di = 1 on the multiplicities models the classical knap-
sack problem. The knapsack problem is more familiar in the packing variant
c© Springer International Publishing Switzerland 2015
E. Bampis and O. Svensson (Eds.): WAOA 2014, LNCS 8952, pp. 260–272, 2015.
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max{cT x | ∑
i∈N uixi ≤ B, x ∈ {0, 1}n} which asks for a subset of items in

N of maximum c-value that fits into a knapsack of capacity B. This problem
can equivalently be formulated in the covering variant min{cT x | ∑

i∈N uixi ≥
D,x ∈ {0, 1}n}, where D =

∑
i∈N ui −B, which aims at minimizing the value of

items that are not packed into the knapsack. The knapsack problem belongs to
one of the most studied problems in combinatorial optimization (see, e.g. [10]),
and is well-known to be weakly NP-hard [10]. Nevertheless, it is computationally
tractable as there exist e.g., an FPTAS [8] and a primal-dual 2-approximation
[3,10] for the problem.

However, in various settings of knapsack-type problems, and also in more
general covering problems, the items to be chosen need to obey certain prece-
dence relations � in the following sense: the chosen multiplicity of item i may
not exceed the chosen multiplicity of item j, whenever j ≺ i in some predefined
partially ordered set (poset) P = (N,�). That is, we consider the precedence
constrained covering problem

min{cT x | Ax ≥ D, 0 ≤ x ≤ d, x integral, xi ≤ xj ∀j � i ∈ P} (PCCP)

w.r.t. an arbitrary, but fixed poset P = (N,�). Due to its importance both from
a theoretical and practical perspective, we will put special emphasize on the
case where m = 1 and d = 1n, i.e., the precedence constrained knapsack
problem (PCKP). For the sake of simplicity, we use D as a scalar whenever
m = 1.

PCKP and its generalizations are not only very interesting on their own right.
Besides, they are also used as subroutine in max clique and scheduling with
precedence constraints (see, e.g., [19]).

Evidently, the complexity of precedence constrained covering problems,
already in PCKP, depends strongly on the structure of the underlying poset P.
For example, if P is an antichain, i.e., if there is no precedence relation between
any two items, then PCKP reduces to the classical and tractable knapsack prob-
lem. In the other extreme, where P is a chain, i.e., where all items are compara-
ble, the problem is trivially solvable: the optimal solution consists of the smallest
initial subchain whose weight covers D.

Known Results. Due to the two extreme examples of PCKP described above,
the reader could be tempted to think that PCKP is rather easy in the presence
of arbitrary partial orders as well - but this is not the case.

The packing variant of PCKP restricted to ui = ci for all elements i ∈ N
with a bipartite partial order was already proven to be strongly NP-complete
by Johnson and Niemi [9]. Hajiaghayi et al. [7] show that the packing version
of PCKP is inapproximable within a factor of 2logδ(n), for some δ > 0, unless
3SAT ∈ DTIME(2n

3
4+ε

) for all ε > 0. Special cases of the packing variant of
PCKP can be solved in polynomial time. Johnson and Niemi [9] provide an
FPTAS for instances where P is a tree. Kolliopoulos and Steiner [12] show that
there is an FPTAS if P is bipartite and all items either have zero weight or zero
capacity. Pritchard et al. [17] provide an O(α2)-approximation algorithm for the
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multidimensional precedence constrained packing problem with dilation α, which
is defined as the maximal number of constraints any variable appears in. The
polyhedral structure of PCKP was investigated by a wide range of papers, includ-
ing work of Boyd [2], Park and Park [16], Leensel et al. [15] and Boland et al. [1].
The work includes cutting planes as well as preprocessing steps that can be used
to reduce the problem size.

Covering problems (CPs) without precedence constraints and with at most p
non-zero entries per row are NP-hard to approximate within a factor of p−1− ε
and p− ε under the unique games conjecture, respectively, due to Dinur et al. [5]
and Khot et al. [11]. This bound was also achieved by a primal-dual algorithm
due to Fujito et al. [6] and a greedy algorithm due to Koufogiannakis et al. [14].

The special case of CP with dilation α was proven to be inapproximable
within any factor below Θ(ln(α)) [18]. This bound was also achieved by an
iterative rounding algorithm due to Kolliopoulos and Steiner [13]. For more
information on covering problems without precedence constraints, we refer the
reader to Pritchard et al. [17]. Since PCCP contains CP as a special case, it
inherits its lower bounds. To the best of our knowledge, there are no approxi-
mation algorithms known for PCCP under the presence of arbitrary precedence
constraints, yet.

Our Contribution and Outline of the Paper. In Sect. 2, we extend the primal-dual
2-approximation algorithm of Carnes and Shmoys [3] for the knapsack problem
without precedence constraints (KP) to also work for general bounds d on the
multiplicities. As in [3], the algorithm is based on knapsack cover inequalities
to bound the integrality gap. Though this is probably not too exciting from a
theoretical point of view, it helps to understand the more involved algorithmic
and analytic techniques in the subsequent sections. In Sect. 3, we investigate the
knapsack problem with precedence constraints (PCKP). We observe
that adding precedence constraints to the knapsack covering inequalities may
lead to an unbounded integrality gap. However, we were able to incorporate
the poset structure into the knapsack covering inequalities by shifting weights
along the poset. This way, a primal-dual approach led us to a w(P)-approximate
solution, where w(P) denotes the width of poset P, i.e., the maximal size of an
antichain in P. We give an example showing that this result is tight in the sense
that our algorithm may in fact output a solution with performance ratio w(P).

Thereafter, in Sect. 4, we show that the algorithm can be generalized to deal
with more than one covering constraint, i.e., to the precedence constrained
covering problem (PCCP), provided that d ≡ 1. Surprisingly, the approxima-
tion factor w(P) remains the same, i.e., the factor is independent of the number of
constraints. As a byproduct we yield a p-approximation for the covering problem
without precedence constraints, where p denotes the maximal number of non-zero
entries in any row of matrix A, which was already discussed by [6,14].

For PCCP with general d, we provide a construction that allows to solve the
problem within an approximation factor of w(P)Δ in pseudo-polynomial time,
where Δ = maxi di is the maximum item multiplicity.
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Finally, in Sect. 5, we provide an inapproximability result in showing that
there is no PTAS for PCKP unless NP ⊆ ∩ε>0BPTIME(2nε

) even if ci = ui for
all i ∈ N , and the poset is bipartite.

1.1 Preliminaries

A partially ordered set is a tuple P = (N,�) consisting of a set of elements N
and an order relation � for pairs of elements. In our context, elements are also
called items. Two elements i, j ∈ N are comparable if i � j or j � i holds, and
incomparable otherwise. An element i ∈ N is smaller or equal , respectively larger
or equal to j ∈ N , if i � j or j � i holds, respectively. The elements are equal if i
is both, smaller and larger or equal to j. A subset of items I ⊆ N is called a chain
if P restricted to I induces a linear order on the set I. Analogously, a subset of
items I ⊆ N is called an antichain if no pair of items i, j ∈ I is comparable.
The size of a maximum chain and antichain, respectively, is denoted by h(P)
and w(P). A subset I ⊆ N is called ideal if i ∈ I, j � i implies j ∈ I. An ideal
I ⊆ [n] is also said to be closed under P. We define the ideal i↓ and filter i↑,
respectively, of an element i ∈ N as the set of all items which are smaller or
equal and larger or equal, respectively, to i, that is, i↓ := {j ∈ N : j � i} and
i↑ := {j ∈ N : i � j}.

The set of all ideals of P is denoted by L(P). An element i ∈ N covers
j ∈ N , if j � i and there is no element k ∈ N such that j ≺ k ≺ i. The set
min P := {i ∈ N : �j ∈ N with j ≺ i} denotes the set of minimal items in N .
Finally, we define P(A) for an ideal A ∈ L(P) as the poset P restricted to items
which are not in A, i.e. P(A) := (N \ A,�). Notice that the restriction of a
poset is also a poset. Often it is easier to talk about a poset in terms of a graph,
hence, whenever it is more convenient, we use P as a graph (N,E) with an edge
(i, j) ∈ E if and only if j covers i. This graph is denoted by the cover graph of P.

An α-approximation algorithm for a minimization problem P is an algorithm
with polynomially bounded running time which finds a feasible solution for P
with solution cost of at most α times the cost of an optimal solution. A fully poly-
nomial time approximation scheme (FPTAS) is a family F of α-approximation
algorithms such that for any α > 1 there exists an α-approximation algorithm
in F . Analogously, a pseudo-polynomial α-approximation algorithm and poly-
nomial time approximation scheme (PTAS), respectively, are defined as above
however with the relaxation that each algorithm only requires a running time
polynomial in the input size and in α for any constant α.

2 Knapsack Cover Inequalities

Carnes and Shmoys [3] introduced the first primal-dual algorithm for the classical
knapsack problem in its covering variant (KP) min

{ ∑
i∈[n] cixi :

∑
i∈[n] uixi ≥

D,x ∈ {0, 1}n
}
, i.e., the special case of PCCP where m = 1, d ≡ 1, and P is an

antichain. A simple instance with two items {1, 2}, weights u1 = D − 1, u2 = D,
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costs c1 = 0, c2 = D and demand D shows that the LP relaxation of the formu-
lation above has an unbounded integrality gap. The optimal IP solution has to
select item two with solution cost D while an optimal LP solution chooses item
one and only a fraction 1

D of item two, yielding optimal solution costs of one.
The integrality gap can be strengthened with help of the so-called knap-

sack cover inequalities
∑

i∈N\A ui(A)xi ≥ D(A) for A ⊆ N , introduced by
Carr et al. [4]. These inequalities read as follows: if set A ⊆ N were selected
into the solution, then the remaining items have to cover a residual demand of
at least D(A) := max{D − ∑

i∈A ui, 0}. Due to integrality constraints for items,
the constraint coefficients can be cropped at the right hand side value, hence
ui(A) := min{ui,D(A)} can be seen as the effective weight of an item given that
the items in A are part of the solution. The inequalities are also helpful for the
design of approximation algorithms for a variety of covering related problems
such as facility location [3] or network design [4].

As shown in [3], a primal-dual greedy algorithm now yields a 2-approximation
to (KP). The overall goal of this paper is to design and analyze primal-dual
algorithms for far reaching generalizations of (KP). Our generalizations advance
in three directions: (1.) we consider arbitrary integral bounds d ∈ Z

n on the
item-multiplicities, (2.) we consider a set of m covering constraints, instead of
only one, and (3.) we add precedence constraints.

At this point however, mainly in order to get the reader familiar with the
techniques used in this paper, we extend the problem only in direction (1): we
present a short analysis of a generalization of the result in [3] towards d ∈ Z

N
+ .

Therefore, we redefine the residual demand for a set of items A ⊆ N as D(A) :=
max{D −∑

i∈A uidi, 0}, that is, we assume that whenever an item is part of the
solution, its item multiplicity is chosen to be as large as possible. With these
definitions, the linear relaxation of the knapsack problem with general d ∈ Z

n
+

becomes

min

{
∑

i∈N

cixi |
∑

i/∈A

ui(A) · xi ≥ D(A) ∀A ⊆ N, x ≥ 0

}
. (1)

Note that the upper bound x ≤ d is given implicitly by the new definition of
D(A) and ui(A) as increasing a variable xi beyond di increases the solution
costs without further decreasing the residual demand for constraints for sets

Algorithm 1. Primal-Dual Algorithm for PCKP
1: Let S = ∅, y ≡ 0.
2: while D(S) > 0 do
3: Increase y(S) until some dual constraint becomes tight for item i ∈ N \ S.

4: xi = min{
D(S)
ui

�, di}.
5: S = S ∪ {i}.
6: end while
7: return S.
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A + i (which is short for A ∪ {i}). For the same reason, the new formulation is
infeasible if the knapsack instance was infeasible as D(N) = D − ∑

uidi > 0
and the constraint for A = N contains no more variables.

The primal-dual algorithm, given as Algorithm 1, works as follows. We start
with an integral infeasible primal solution S = ∅ and a feasible solution y ≡ 0 of

max

⎧
⎪⎪⎨

⎪⎪⎩

∑

A⊆N

D(A) · y(A) |
∑

A⊆N :
i/∈A

ui(A) · y(A) ≤ ci ∀i ∈ N, y(A) ≥ 0

⎫
⎪⎪⎬

⎪⎪⎭
, (2)

which is the dual of (1). In each iteration, we increase the dual variable corre-
sponding to the current partial solution S until a dual constraint becomes tight
for some item i ∈ N \ S. The item is added to the solution and xi is either set
to its upper bound di or to the minimal value such that the residual demand
D(S) is exceeded. The algorithm iterates until the solution exceeds the knapsack
demand, i.e. until D(S) ≤ 0.

Theorem 1. Algorithm 1 is a primal-dual 2-approximation for the knapsack
problem with general d ∈ Z

n
+ (See full version for the proof).

A straightforward generalization of the results for KP towards PCKP would
invoke the following precedence constrained minimum knapsack formulation:

min

⎧
⎨

⎩
∑

i∈N

cixi |
∑

i/∈A

ui(A)xi ≥ D(A) ∀A ⊆ N, xi − xj ≥ 0 ∀i � j, x ∈ {0, 1}n

⎫
⎬

⎭ (PKP2)

However, the integrality gap of this LP can be unbounded (see Lemma below).
In order to bound the integrality gap, we will incorporate the poset structure
into the knapsack cover inequalities, see the next section.

Lemma 1. Formulation (PKP2) has an unbounded integrality gap (See full ver-
sion for the proof).

3 Precedence Constrained Knapsack Cover Inequalities

This section introduces our novel generalization of knapsack cover inequalities
towards precedence constraints. For this section we consider only PCKPs, i.e.
m = 1 and d ≡ 1. Instead of independently formulated precedence constraints,
we generalize the notion of effective weight towards precedence constrained effec-
tive weight. Recall that the formulation from Sect. 2 ensures a constraint for each
subset A ⊆ [n] of items which lower bounds the weight of selected items in [n]\A
given that all items in A are part of the solution. In this section, we reformulate
this statement as follows. We introduce a constraint for each ideal in P and
lower bound the effective weight of all selected minimal items in P(A), given
that all items in A are part of the solution. Therefore, we define the effective
weight ūi(A) of an item i and ideal A ∈ L(P) of selected items to be a share of
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the total weight of the filter i↑, if i ∈ min P(A), or zero otherwise. Recall that
P(A) denotes the partially ordered set P restricted to elements which are not
in A. More precisely, we allocate the weight of each item j ∈ P(A) \ min P(A)
uniformly among all minimal items in the ideal of j, that is, min j↓. Therefore,
we define Xj(A) to be the set of items in min j↓ with respect to P(A), i.e.
Xj(A) := {i : i � j and i ∈ min P(A)}. If an item is not a minimal item in
P(A), we set the effective weight to zero, i.e. ūi(A) := 0. As usual, coefficients
exceeding the right hand side of any inequality can be cropped. Hence for items
i ∈ min P(A), the effective weight is given by

ūi(A) := min

⎧
⎨

⎩D(A), ui +
∑

j:i≺j

uj(A)
|Xj(A)|

⎫
⎬

⎭ .

With help of the definitions above, we can formulate PCKP as (PPCKP ) with
dual of its linear relaxation (DPCKP ).

min

⎧
⎨

⎩
∑

i∈N

cixi |
∑

i∈min P(A)

ūi(A) · xi ≥ D(A) ∀A ∈ L(P), x ∈ {0, 1}n

⎫
⎬

⎭ (PPCKP )

max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

A∈L(P)

y(A)D(A) |
∑

A∈L(P):
i∈min P(A)

ūi(A) · y(A) ≤ ci ∀i ∈ N, y(A) ≥ 0 ∀A ∈ L(P)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(DPCKP )

The primal covering constraints
∑

i∈minP(A) ūi(A) · xi ≥ D(A) for A ∈ L(P),
which we call precedence constrained knapsack cover inequalities, ensure that the
selected elements in min P(A) satisfy the residual demand D(A). In contrast to
the previous section, however, the effective weight ūi(A) of an item i has changed
to also reflect a share of the item capacities in the filter of i. The new set of
constraints has two advantages. (1) The set of partial order constraints is no
longer required as it is implicitly enforced by the constraints. (2) The primal-
dual greedy algorithm is guided such that it will always generate a solution which
is closed under P.

The bad example described in Lemma 1 is no longer valid in (PPCKP ). In fact,
for this particular instance, the LP optimum now coincides with the IP optimum.
Theorem 2 shows that the formulation indeed models the precedence constrained
knapsack problem.

Theorem 2. (PPCKP ) is a valid relaxation for PCKP, i.e. any integer feasible
solution in (PKP2) is feasible in (PPCKP ). Furthermore, any feasible solution
for (PPCKP ) which is closed under P is feasible in (PKP2).

Proof. Let us consider an integer feasible solution x of (PKP2) with support
S := {i : xi = 1} and an arbitrary ideal A ∈ L(P). Since x is feasible in (PKP2),
we know that

∑
i∈S\A ui(A) ≥ D(A) holds. We will see that the corresponding

covering constraint in (PPCKP ) will also be satisfied. If S\A ⊆ min P(A), we are
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done as the elements in both sums coincide and the coefficients in the covering
constraint of (PPCKP ) dominate the corresponding coefficients in (PKP2).

Now suppose that there is an item i ∈ (S \min P(A))\A. Since the knapsack
instance is precedence constrained, all items in i↓ ∩ min P(A) = Xi(A) are also
contained in S. Since the weight of item i is allocated uniformly among the
items in Xi(A) and Xi(A) \ S = ∅ holds, the weight of item i is also present in
the covering constraint of (PPCKP ). As this observation holds for all items in
(S \ min P(A)) \ A, we can deduce that

∑
i∈S∩minP(A) ūi(A) ≥ ∑

i∈S\A ui(A) ≥
D(A) holds.

For the second implication, we consider an integer feasible solution x of
(PPCKP ) with support S = {i : xi = 1}. Since x is feasible, we know that∑

i∈minP(S) ūi(S)xi = 0 ≥ D(S) holds. Hence we conclude that
∑

i∈S ui ≥ D.
Since S is assumed to be closed under P and the knapsack constraint is satisfied,
the solution is feasible in (PKP2).

Theorem 3 shows that the primal-dual greedy algorithm described in the previous
section (Algorithm 1), finds a feasible primal-dual solution pair (S, y) to (PPCKP )
and (DPCKP ). The subsequent Theorem 4 derives an upper bound of w(P) on
the solution quality. Finally, Theorem 5 shows that this bound is tight.

Theorem 3. The greedy algorithm finds a feasible primal-dual solution pair
(S, y) to (PPCKP ) and (DPCKP ) in polynomial time. Furthermore, for any item
i ∈ S, the corresponding dual constraint is tight.

Proof. For this proof, we denote the chain of ideals Si ∈ L(P) which are gen-
erated by the algorithm by ∅ = S0 ⊂ S1 ⊂ · · · ⊂ S� = S. It is easy to see that
the generated primal solution S satisfies the knapsack constraint D ≤ ∑

i∈S ui

as the algorithm stops only if D(S) ≤ 0 or S = [n]. If the algorithm stopped
due to the latter and D(S) > 0, it is clear that the instance was infeasible.
Otherwise, the solution satisfies the knapsack constraint and it remains to show
that the solution is closed under P, which is clear due to an inductive statement.
The empty set is closed under P, hence solution S0 is closed under P. The algo-
rithm adds an item i in iteration k only if it is a minimal item with respect to
P(Sk). Due to the definition of P(A) it is clear that Sk ∪ {i} remains an ideal if
i ∈ min P(Sk).

Let us consider the chain of ideals for dual feasibility. The algorithm increases
dual variables only on the chain S0 ⊂ · · · ⊂ S�. As soon as an item was added to
subset Sk, it has no more non-zero constraint coefficients in any later iteration
due to the design of our constraints. Recall that a constraint sums the effective
precedence constrained weight among all items in P(Sk), namely no items which
are contained in Sk. Since the algorithm makes sure that an item is added to
the solution as soon as the first constraint in an iteration became tight, this
concludes the proof.

Theorem 4. A solution found by the greedy algorithm has cost of at most w(P)·
OPT , where w(P) denotes the size of a maximum antichain in P.
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Proof. Let S be the set of items in the final solution with integer feasible solution
x = χS . Then the solution cost can be evaluated as follows:

cost(S) =
∑

i∈S

ci =
∑

i∈S

∑

A∈L(P):
i∈minP(A)

y(A)ūi(A) =
∑

A∈L(P)

y(A)
∑

i∈minP(A)∩S

ūi(A)

≤
∑

A∈L(P)

y(A)D(A)|min P(A) ∩ S|

≤ max
A∈L(P)

{|min P(A) ∩ S|}
∑

A∈L(P)

y(A)D(A) ≤ w(P) · OPT.

The second equality is due to the fact that we only add items to S if the corre-
sponding dual constraint is tight. The third equality can be achieved by reorder-
ing the terms of the sum. By definition, we know that ūi(A) ≤ D(A) holds, hence
the first inequality holds. The second inequality estimates the sum by taking the
maximum among terms. Since minimal elements are incomparable by definition,
we know that the cardinality can be bounded by the size of a maximum antichain
in P.

Theorem 5. The bound in Theorem 4 is tight.

Proof. Consider a poset with 2nk items consisting of k parallel chains each of
length 2n with the following functions representing the i’th item in the �’th
chain: u�

i = 1 if i ≤ n and u�
i = k − 1 if i > n, c�

i = 1 if i ≤ n and c�
i = K

if i > n for some fixed, large K ∈ Z+. If we consider a corresponding PCKP
instance with D = nk, an optimal solution will consist of the first n items from
each of the k chains with a solution cost of nk. Each chain on its own will also
correspond to a feasible solution with cost n + Kn.

Let us consider the precedence constrained knapsack inequality for A = ∅
which reads as follows:

∑k
�=1 u�

1(∅)x�
1 =

∑k
�=1 nkx�

1 ≥ nk. For the optimum
solution, all variables in this constraint are set to one, hence

∑k
�=1 u�

1(∅)x�
1 =

knk and k = w(P) which yields equality in our argumentation in the proof
of Theorem 4. Since our algorithm starts by increasing the corresponding dual
variable y(∅), this concludes the proof.

As a remark we want to point out that the modified primal-dual greedy algorithm
inherits the primal-dual greedy algorithm of Carnes and Shmoys [3] in the special
case where P is an antichain. Theorem 6 shows that the algorithm yields a
constant factor approximation whenever the precedence constrained effective
weight is bounded by a constant factor. In the case of an antichain we have
α = 1, hence a 2-approximation.

Theorem 6. If there is a constant α ≥ 1 such that ūi(A) ≤ αui(A) holds for
all items i ∈ N and ideals A ∈ L(P), then the primal-dual algorithm finds a
solution of cost at most 2α · OPT (See full version for the proof).

Corollary 1. If P is an antichain, then the primal-dual greedy algorithm finds
a 2-approximation for PCKP.
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4 Precedence Constrained Covering Problems

The precedence constrained knapsack cover inequalities can also be used to
reformulate general PCCPs with d ≡ 1 by replacing each knapsack constraint∑

i∈N uk
i xi ≥ Dk individually. Hence, a PCCP instance can be reformulated as

(PPCCP ) with dual of the linear relaxation (DPCCP ).

min

⎧
⎨

⎩

∑

i∈N

cixi |
∑

i∈min P(A)

ū
k
i (A) · xi ≥ D

k
(A) ∀A ∈ L(P), ∀k ∈ K x ∈ {0, 1}n

⎫
⎬

⎭
(PPCCP )

max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

k∈K

∑

A∈L(P)

y
k
(A)D

k
(A) |

∑

k∈K

∑

A∈L(P):
i∈min P(A)

ū
k
i (A) · y

k
(A) ≤ ci ∀i ∈ N y ≥ 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (DPCCP )

Similar to Theorem 2, it is easy to see that the model is a relaxation for
(PCCP). We will now show that a slightly modified version of Algorithm 1 also
finds a primal-dual solution pair for (PPCCP ) and (DPCCP ). Therefore, let us
consider an iteration of the algorithm for some partial solution S′. In the one-
dimensional case, we increased the corresponding dual variable y(S′) until a
dual constraint became tight. In this case, we have m variables yk(S′) to choose
from. The natural way to increase variables here is to increase each variable
proportionally to its residual demand Dk(S′) until a constraint becomes tight
for item i /∈ S′. As before, we add item i to S′ and iterate until Dk(S′) ≤ 0 for
all k ∈ K.

With the same argumentation as in Theorem 3, we can observe that the algo-
rithmfinds aprimal-dual solutionpair (S, y) to (PPCCP ) and (DPCCP ).Theorem7
yields the approximation ratio of w(P) which surprisingly coincides with the one-
dimensional case.

Theorem 7. A solution found by the modified primal-dual algorithm has cost
of at most w(P) · OPT . (See full version for the proof).

Corollary 2. If the poset is an antichain, the modified primal-dual algorithm
finds a solution with cost no larger than p · OPT , where p denotes the maximal
number of non-zero entries in any row of the initial constraint set Ax ≥ D. (See
full version for the proof).

For the special case of capacitated covering problems without precedence con-
straints and with d ≡ 1, the primal-dual algorithm finds a p-approximation,
where p denotes the maximal number of non-zero entries in any row of the
initial constraint set Ax ≥ D. A similar algorithm for this special case was
also pointed out by [6,14]. Unfortunately, the results of this section can not
be extended towards PCCP with d �≡ 1 in the way we did this for KP in
Sect. 2. Lemma 1 shows that a solution found by the algorithm considered in
this section may no longer have bounded cost. Nevertheless, we are able to pro-
vide a pseudo-polynomial time approximation algorithm for this case with help of
Theorem 2.
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Proposition 1. The approximation ratio of the modified variant of Algorithm 1
for instances of PCCP with d �≡ 1 is unbounded even if m = 1.

Proof. Consider an instance with two items N = {1, 2} with demand D, a partial
order P = (N, 1 � 2) and c ≡ 1, u1 = 1, u2 = D, d1 = D, d2 = 1. Then the
optimal IP solution consists of a single copy of the first item and a single copy of
the second item, the algorithm however would select D copies of item one.

Proposition 2. For PCCP with d �≡ 1 there is a w(P) Δ-approximation algo-
rithm with running time O(n2mΔ), where Δ = maxi{di} (See full version for
the proof).

5 Inapproximability of PCKP

Although we know that the packing variant of PCKP is inapproximable within
any constant factor [7], there are no inapproximability results for the cover-
ing variant, yet. With Theorem 8, we provide the first such result showing
by reduction from bipartite k-clique that PCKP has no PTAS unless NP ⊆
∩ε>0BPTIME(2nε

).

Theorem 8. There is no PTAS for PCKP unless NP ⊆ ∩ε>0BPTIME(2nε

)
even if ci = ui, m = 1 and the partial order is bipartite (See full version for the
proof).

6 Summary and Outlook

This paper described primal-dual approximation algorithms for several general-
izations of the classical minimum knapsack problem. More precisely, we solved
variants of PCCP which are of the form

min

{
∑

i∈N

cixi : Ax ≥ D,x ≤ d, x ∈ Z+, (POSET)

}
,

where (POSET) describes a set of partial order constraints, A ∈ Z
m×n
+ and D

and d are of appropriate dimension.
As an introduction, we described a 2-approximation algorithm for d �≡ 1

and m = 1 without precedence constraints. The following results were sub-
ject to precedence constraints. We introduced a generalized notion of the well-
known knapsack cover inequalities towards precedence constraints, denoted by
precedence constrained knapsack cover inequalities. With help of these inequal-
ities we were able to provide a w(P) approximation algorithm for PCKP, i.e.
d ≡ 1,m = 1 which we generalized towards d ≡ 1,m > 1. As a byproduct,
we derived a p-approximation for CP with d ≡ 1,m > 1 without precedence
constraints which was already discussed in [6,14]. Finally, we provided a con-
struction which allows to solve PCCP with d �≡ 1 and m > 1 within a factor of
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Table 1. Summary of the results in this paper and lower bounds on the approxima-
tion ratio. Lower bounds are under the assumption of the unique games conjecture,
unbounded dilation and NP �⊆ ∩ε>0BPTIME(2nε

). Bounds in bold are results of this
paper.

m = 1 d ≡ 1 (POSET) Lower bound Previous upper bound Our upper bound

Y N N NP-hard 2, rounding, (FPTAS) 2, primal-dual

Y Y Y No PTAS n/a w(P)

N Y Y No PTAS n/a w(P)

Y N Y No PTAS n/a w(P)Δ

(Pseudo-polynomial)

N N Y No PTAS n/a w(P)Δ

(Pseudo-polynomial)

w(P)Δ in pseudo-polynomial time. It remains open to find an algorithm with
strongly polynomial bounds. Our results are also summarized in Table 1.

Although we presented the first approximation algorithms for precedence
constrained covering problems, there still remains a gap between the lower and
upper bounds. It would especially be interesting to provide a lower bound similar
to the packing version of PCKP as provided by Hajiaghayi et al. [7]. For the
generalization towards d �≡ 1 we were only able to provide pseudo-polynomial
algorithms, hence it remains open to provide strongly polynomial bounds. Since
CPs with bounded dilation α are approximable within Θ(log(α)), it might be
interesting to consider this case in the presence of precedence constraints as well.
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