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(. . .) diffusion concerns issues that are among the more
difficult to analyze adequately. Time is involved. Uncertainty
is inherent. Change is the major topic. Imperfect markets
abound

Paul Stoneman (2002)

Abstract

This chapter provides a theoretical framework of technology diffusion, which is

defined as a dynamic and time-attributed process involving the transfer of infor-

mation, knowledge and innovations, and standing for a continuous and gradual

spread of new ideas throughout large-scale and heterogeneous societies. First, it

extensively discusses theoretical technology diffusion concepts and models,

explaining the technology diffusion trajectories by the use of S-shaped curves.

Second, it presents the fundamental ideas and models standing behind the idea of

technological substitution. Third, there is demonstrated a novel approach to

identification of the ‘technological take-off’ and ‘critical mass’ effects with respect

to the dynamics of the technology diffusion process and its prerequisites. Finally,

based on theoretical frameworks derived from economic growth theories, it shows

conceptualizations of technology convergence and technology convergence clubs.
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3.1 Technology Diffusion: Theoretical Framework

The term ‘diffusion’ originates from the Latin nouns ‘diffusio’ and ‘diffusionis’, and
the verb ‘diffundere’. By definition, it refers to the process of spread, expansion,

dissemination, propagation or generalization.
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Diffusion is a dynamic and time-related process, involving the transfer of infor-

mation, knowledge and innovations. It stands for a continuous and gradual spread

of new ideas and concepts, over large-scale and heterogeneous societies (Gray

1973). Therefore, from the socio-economic perspective, the diffusion of inno-

vations, new technologies and new ideas is of seminal importance, as it provokes

profound changes in society and economy, impacting shifts in productivity and

education, and transforming markets and organizations, among other things.

The concept of diffusion of innovation developed by Everett Rogers (2010),

and extensively described in his touchstone book ‘Diffusion of innovation’1,

constitutes a starting point for a great variety of discussions on technology diffu-

sion. Rogers (2010) defines technology diffusion as ‘the process by which an
innovation is communicated through certain channels over time among members
of a social system’. Mansfield (1961, 1968, 1971), following Rogers, emphasizes

the unique role of ‘two-step’ communication in diffusion processes, which enables

the exchange of knowledge between ‘users’ and ‘non-users’ about the advantages

of new technologies.

Gray (1973) calls the process of diffusion the spread of innovations, which

depends on the effectiveness of communication channels and social attitudes.

Davies (1979) defines technology diffusion in a strict economic sense, claiming

that the process can be seen as passing from an equilibrium state, determined by the

use of ‘old’ technology, to another equilibrium where the whole society adopts the

‘new’ technology. This approach suggests that shifting from one technology to

another, over a diffusion time path, implies that the process is marked by constantly

emerging disequilibria. Nathan Rosenberg (1982) in his seminal book ‘Inside the
black box: technology and economics’, underlines that diffusion introduces

inventions into economy and society, and thus is perceived as being of

seminal importance for further development. On the same lines, Mansfield (1986)

recognizes diffusion as a process of transfer of innovation which hugely affects

national economies. Following Rogers’s concept, Mahajan and Peterson (1985)

claim that technology diffusion stands for the spread of ideas over time among

society members. Paul David (1986) argues that through diffusion channels new

technologies randomly reach new users; however, considering the socio-economic

environment, the process is less hazardous as agents are driven by the anticipated

profitability of new technologies. A broader perspective on the perception of

diffusion was proposed by John S. Metcalfe (1997), who considers diffusion as

flows of a multitude of technological improvements which—despite the fact that

they spread instantaneously—bring crucial changes to technological, social and

economic progress. Stoneman (1995) argues that the process of diffusion involves

increases in the number of adopters of new technologies, which results in a growing

number of users, while Sarkar (1998) states that ‘technological diffusion can be

1 In his work ‘Diffusion of Innovation’, E. Rogers presents 508 different case studies explaining

the diffusion of different innovations adopted by both companies and individuals in rural areas (see

Rogers and Havens 1962).
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defined as a mechanism that spreads ‘successful’ varieties of products and pro-
cesses through an economic structure and displaces wholly or partly the existing
‘inferior’ varieties’. Stoneman (2002) also suggests that the process of diffusion of

innovation explains the constant expansion of newly emerging technologies which

are being gradually adopted and used by individuals and/or companies2. Following

the logic of Metcalfe, Saviotti (2002) argues that technology diffusion brings a wide

array of new products to markets, and thus is perceived by societies as highly

desirable. Apart from the contributions mentioned above, there exists a substantial

body of literature discussing conceptual issues associated with technology diffu-

sion. Various aspects of technology diffusion are studied in the works of

Kindleberger (1995), Bell and Pavitt (1995, 1997), Geroski (1990, 2000),

Reinganum (1981a, 1989), Castellacci (2006b, 2007), Helpman (1998), Findlay

(1978a, b), Battisti (2008), Stoneman and Battisti (2010), Ireland and Stoneman

(1986), Karshenas and Stoneman (1993, 1995), Fagerberg and Verspagen (2002),

Kapur (1995, 2001), Gomulka (2006), Kubielas (2009), Antonelli (1986, 1991),

Dosi and Nelson (1994), Dosi (1991), Soete and Turner (1984), Comin and

Hobijn (2006).

The contemporary qualitative and quantitative conceptualization of technology

diffusion is deeply rooted in the evolutionary paradigm of Charles Darwin (1968)

and his pioneering work on natural growth and the spatial diffusion of species; but it

also refers to the theories of natural selection developed by Fisher (1930). Darwin

(1968) predicted the unique ability of species to multiply at exponential growth rates,

and to compete for survival in the environment in which they live. This concept was

then gradually adjusted for multipurpose use in the economic sciences, rigidly

assuming that ‘species’ are various variables (e.g. national income, technology or

products) which tend to grow over time. Today, technology diffusion theories are

designed to explain the spread of new ideas, innovations and technologies within

societies. Thus the process itself is strongly related to time and its speed depends on

the unique characteristics of people (Rogers and Shoemaker 1971; Metcalfe 1997).

Moreover, technology diffusion theories allow for detecting patterns in the spread of

new ideas, discovering regularities that the process depends upon, and identifying

factors stimulating or impeding it. Difficulties associated with the elaboration of

diffusion trajectories of newly emerging technologies reflect the heterogeneity of the

social and economic environment (Rosenberg 1972). People rarely make their

decisions interdependently (Geroski 2000), their cognitive capacities are limited,

and various reference points are referred to before accepting or rejecting new

technology (Dosi 1991). People’s behaviour is driven by customs, culture, traditions

and moral attitudes (Simon 1972; Silverberg 1994). Moreover, an individual’s

decision on the adoption of a new technology is made under uncertainty (Keller

2004; Ward and Pede 2013) and through cost-benefit analysis. Risk-averse people

will adopt innovations once they notice that a ‘new’ one brings relatively greater

2Agents.
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advantages compared to the ‘old’ one, and consequently the ‘old’ is replaced by the

‘new’ and better technology (Hall and Khan 2003). However, it is important to note

that diverse personal characteristics determine the diffusion time path, illuminating

the strength of the ‘domino effect’ which perpetuates the spread of new ideas. Rogers

(2010) claims that the diffusion process encompasses four major elements:

(1) innovation; (2) communication channels; (3) time; (4) a social system. He defines

an innovation as a new idea (i.e. product) which is desirably adopted by market

agents, and the process happens over time. As diffusion is time-related, the rate of

diffusion3—explaining the speed at which individuals in heterogeneous societies

adopt new ideas—is recognized as its most prominent feature. The speed of diffusion

is, however, heavily conditioned by social system absorptive and learning

capabilities, as well as by the propensity and ability to adopt novelties (Cohen and

Levinthal 1990; Keller 1996; Castellacci and Natera 2013; Lall 1992). This implies

that existing communication channels (means and forms of communication and

information dissemination) and social systems (defined as sets of social norms,

formal and informal institutions) precondition both diffusion itself and its speed

(Rogers 1976).

Despite potential disruptions, discontinuities and permanent uncertainty

(Ehrnberg 1995), the phenomenon of rises and falls of new technologies is well

described by simple logistic growth models and S-shaped curves that are generated

by plotting the technology’s behaviour over time, as this unique shape allows for a

straightforward explanation of the characteristic phases of the diffusion process.

Simply plotting the total number of adopters of new technology versus time

generates the sigmoid curve, and the special shape of this sigmoid pattern4 explains

the characteristic phases of the diffusion process. It is slow initially, then it

accelerates (the ‘domino effect’ is revealed), and finally slows down, heading for

the stabilization phase as the population approaches full saturation regarding the

new technology (Jaber 2011). Rogers (2010) uses a derivative of the sigmoid

curve—the bell-shaped curve (Nakicenovic 1991; Van den Bulte and Stremersch

2004)—to show five types of adopters: (1) innovators, (2) early adopters, (3) the

early majority, (4) the late majority and (5) laggards. The group of ‘innovators’

introduces new technologies to societies, while the ‘early adopters’ are those who

acquire novelties quickly and demonstrate little risk-aversion. The ‘early majority’

group follows the ‘early adopters’ and, prior to decisions made by the ‘early

majority’ decide to adopt the new technologies expecting benefits. The last two

groups—the ‘late majority’ and the ‘laggards’—are those who are generally

uncomfortable with new technologies and lag behind in their broad adoption5.

3 The rate of diffusion is additionally associated with the concept of ‘critical mass’ and it reveals

‘network effects’—explained in Sect. 3.3.
4 The unique characteristics and basic mathematics related to sigmoid curves are explained in

Sect. 3.2.
5 Goeffrey Moore, in his book ‘Crossing the Chasm’ (1991), proposes a modified version of

Roger’s bell-curve. He emphasizes the role of ‘disruptive innovations’ that generate the chasm
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Figure 3.1 presents the cumulative sigmoid curve, approximating the new techno-

logy diffusion time path, and its derivative—the bell-curve.

The bell curve explains knowledge accumulation (or expansion of innovation)

that is generated by the gradual diffusion of new technology through society. The

slope of the bell curve decreases systematically as the cumulative number of

adopters grows, and its maximum coincides with the inflection point of the

S-shaped pattern.

The logic and basic mathematics used to formalize the phenomenon of the

diffusion of technologies and the process of shifting from ‘old’ to ‘new’ ones is

explained by technology diffusion and technological substitution models, discussed

in the following Sect. 3.2.

3.2 Technology Diffusion and Technological Substitution

Models are abstractions and simplifications of reality. Useful models capture the essence of

reality in a way that enhances the understanding of phenomena

Frank M. Bass (2004)

The technology diffusion process is formalized in a wide array of ‘technology

diffusion models’ describing how novel emerging technologies tend to spread

through societies. Most of these models are well grounded in mathematics, which

allows ex-post diffusion trajectories to be approximated; and, relying on rigid

assumptions, future development scenarios and forecasts to be draw up.
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Fig. 3.1 Diffusion and innovation expansion curves. Theoretical specification

(gap, discontinuities) between the group of innovators and the early adopters and the group of the

early majority, the late majority and the laggards.
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3.2.1 Technology Diffusion. Concepts and models

For people who attempt to forecast the future, there is a continuing need for simple models

that describe the course of unfolding events. Each such model should be based upon easily

understood assumptions that are not susceptible to unconscious or invisible tampering by

the forecaster in his efforts to make the future what he wants it to be. The model should be

easy to apply to a wide variety of circumstances, and should be easy to interpret

Fisher and Pry (1972)

As clarified in Sect. 3.1, the term ‘diffusion’ has multiple meanings. However,

despite the diversity, it refers to the process of the physical spread of ideas, products

and many other things in the human environment. Time plays a central role in most

empirical studies that concern technology diffusion, as regardless of the source of

an innovation, its type and the cost of acquiring it, it is always a time-consuming

process for innovations to spread through societies and to be fully adopted and used.

A great part of the theoretical and empirical literature on technology diffusion is

mainly concerned with first the identification of factors that determine (enhance or

hinder) the diffusion process, and second tracing causal links between the techno-

logy diffusion dynamics and its determinants. Put another way, diffusion models

allow projections of how fast the technology will expand, and when (or if) the total
population will be saturated with the new technology.

As discussed in Karshenas and Stoneman (1993), theories of technology diffu-

sion can be classified into four general categories: epidemic models, rank (probit)

models, order models, and stock models. The theoretical specifications falling

within each of the four categories exclusively analyze technology diffusion from

the demand-side perspective, and refer to stand-alone technologies, assuming that

uncertainty does not emerge. In this book, to meet the general goals of our empirical

analysis, we concentrate on technology diffusion models originating from ‘epi-

demic models’, as they well suit the major aims of our research, although the other

theories and models are briefly discussed in this section.

Theoretically, technology diffusion process is analogous to the spread of infor-

mation over society. Thus, the growing ‘mass’ of those who get the information

depends on intensity and the number of contacts that facilitate further information

spread and acquisition. In a broad sense, this assumption yields the adoption of

‘epidemic models’ to explain technology diffusion dynamics and trajectories, while

the adjustment of ‘epidemic models’ to the needs of the formal analysis of technol-

ogy diffusion leads to incorporating the concept of the logistic growth curve,6

which allows for approximating diffusion trajectories.

Originally, the concept of ‘epidemic models’ was derived from an analogy

between the spread of contagious diseases and that of technological innovation

(Sarkar 1998; Kumar and Krishnan 2002). The general logic behind the epidemic

model is following. Suppose we have an area where a population of hypothetical

agents (adopters, users) lives that tends to acquire new technologies as they emerge.

6 The concepts and mathematics underlying logistic growth are explained in Sect. 3.2.2.
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Moreover, the number of these potential adopters is constant over time. Initially, the

groups of ‘users’ and ‘non-users’ coexist, but the ‘non-users’ imitate those who

already use new technologies and are gradually ‘contaminated’. Hence, the ‘con-
tamination effect’ arises (Gray 1973) as agents are involved in personal contacts,

which perpetuate the process of further diffusion. It is assumed that the probability

of ‘contamination’ is time invariant and ‘non-users’ convert into ‘users’ once the

two get in touch; thus, the ‘adopters’ (‘users’) influence social systems in such a

way that the total number of ‘adopters’ increases. In systems where innovation

spreads, information and interpersonal contacts are perceived as significant driving

forces of diffusion processes, which inevitably leads to a growing number of ‘users’

(Stoneman 2002). The concept of epidemics, adjusted to the needs of technology

diffusion analysis, can be formalized as follows. Suppose that N denotes the total

number of potential users of a new technology, andn tð Þ stands for the actual number

of those who have already adopted the new technology at time t. We assume that

new adopters arrive as they get information on newly emerging technologies, and

the process of transmitting information is not disrupted by any external factor. φ
represents the probability of getting ‘contaminated’ and acquiring new technology,

so that the total number of users at a certain point in time t is expressed as (Stoneman

2002):

dn tð Þ
dt

¼ τ � n tð Þ
N N � n tð Þð Þ ; ð3:1Þ

where τ¼φ � ϑ, andϑ stands for the probability that the contact between a ‘user’ and
‘non-user’ will be effective and lead to the adoption of the new technology. If

Eq. (3.1) is a class of first-order differential equations, its solution can be formally

written as:

n tð Þ ¼ N

1þ exp �β � αtf gð Þ: ð3:2Þ

In Eq. (3.2), τ from Eq. (3.1), is replaced byα. Equation (3.2) is the classical formula

for a logistic curve with imposed growth limits Nð Þ, where β denotes the initial year
of diffusion, and α is the rate (speed) of diffusion.

Starting from the late 1950s, many contributions in the field of technology

diffusion studies were made. Extensive empirical analyses of technological diffu-

sion both within and between countries were conducted (see, e.g., the works of

Griliches 1957; Mansfield 1961, 1968), which resulted in the elaboration of diffu-

sion models that provided theoretical frameworks for more sophisticated formal

analysis of technology diffusion. The oldest and probably the most influential

model of technology diffusion, strictly basing itself on the concept of ‘epidemics’,

was proposed by Edwin Mansfield (1961). His pioneering works gave a solid

background for future studies of technology diffusion and its economic

consequences (Metcalfe 2004). In his works, Mansfield, strongly incorporates

evolutionary ideas (Darwin 1968; Fisher 1930) into technology diffusion theories,
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which inter alia, induced a broad adoption of logistic curves into the analysis of the
dynamics of innovation spread. The idea of incorporating logistic laws of evolution

(Darwin 1968; Fisher 1930) into formalized concepts of technology diffusion was

provoked by the analogies observed between the evolutionary paths of natural and

social systems. The dynamics of evolving populations is significantly driven by a

competitive selection process (Dosi and Nelson 1994; Silverberg and Verspagen

1995; Metcalfe 2004) that is often reported in economic processes. Social systems

or market structures tend to evolve along time paths, and logistic laws can success-

fully approximate the dynamics of the evolutionary process. In the literature,

Mansfield’s prime technology diffusion model is classified as an evolutionary

disequilibrium model (Srivastava and Rao 1990). It relies on four fundamental

assumptions (Mahajan and Peterson 1985; Sarkar 1998): (1) adopters are rational;

(2) adopters do not necessarily head for profit maximization that would be poten-

tially obtained from new technology acquisition; (3) technology diffusion is self-

perpetuating, and thus endogenous; and (4) the technology diffusion process might

not be continuous and is disequilibrating in its nature. Even if it is assumed that the

equilibrium is represented by N (in Eq. (3.2)), the level of use of the technology at

time t (!n tð Þ� is always belowN. Diffusion trajectories can, however, be explained

as processes of constant adjustment of the level of n tð Þ, which is approachingN: To
capture the process of new technology spread, Mansfield suggests adopting a

logistic growth equation to explain the phenomenon. Additionally, he introduces

the ‘word of mouth’ effect (Geroski 2000; Lee et al. 2010) to the formal model. This

emerges once potential adopters of the new technology tend to communicate among

themselves, which transmits knowledge of the advantages of new technologies7.

Put another way, Mansfield’s model assumes that the technology diffusion process

is pre-determined by previous users, as they are the main source of information

about new technologies.

Equation (3.3), below, summarizes Mansfield’s technology diffusion concept.

Assume that each ‘user’ of a new technology freely contacts a ‘non-user’, which

leads to the adoption of the new technology by the latter, and the probability of an

‘effective’ contact is denoted asϑ. If the total number of ‘users’ increases byΔt, and
Δt ! 0, the time path for technology diffusion yields:

n tð Þ ¼ N= 1þ ϑ exp �μt½ �ð Þ�1; ð3:3Þ
or alternatively:

n tð Þ ¼ N

1þ ϑ exp �μt½ �ð Þ; ð3:4Þ

where n tð Þ is the number of ‘users’ at time t, and N the potential number of total

‘users’. Following Geroski (2000), for Eqs. (3.3 and 3.4) we assume thatμ� ϑN and

7 ‘Word of mouth’ models are also labelled ‘contact’ or ‘disease’ models.
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ϑ� N � n 0ð Þð Þ= n 0ð Þð Þ, where n 0ð Þ stands for the number of ‘users’ in the initial

year of technology diffusion. Mansfield’s model of technology diffusion explains

the process as long as it is purely imitative. Thus, it explains the diffusion exclu-

sively by the internal influence (Turk and Trkman 2012) of earlier adopters who,

due to the ‘word of mouth’ effect, transmit information to later adopters. However,

if we relax the assumption of strictly endogenous determinants of technology

diffusion among ‘non-users’, and incorporate exogenous (external) factors which

influence the diffusion process (Lee et al. 2010), Eq. (3.3) can be expressed in an

adjusted form. Frank Bass (1969, 1974, 1980, 2004; Bass and Parsons 1969) in the

late 1960s developed an extended version of the Mansfield model by incorporating

a new ‘innovator perspective’. The Bass model relies on the assumption that

technology diffusion is determined not only by ‘imitators’ but also by ‘innovators’

(those who intend to try new technologies), who massively influence the decisions
made by their peers (Satoh 2001). The Bass specification is also recognized as a

‘mixed-information-source’ model, as it assumes that ‘users’ of new technology

differentiate their decision ‘to adopt or not’ according to information obtained from

various sources. In the Bass diffusion model, it is assumed that the speed (rate) of

diffusion is shaped by imitation and innovation determinants. If this is true, then,

following the logic of the Bass model, we can propose that the final outcome of new

technology diffusion can be easily decomposed into an ‘innovation effect’ and an

‘imitation effect’. The basic linear specification of the Bass formula (1969) is as

follows:

S tð Þ ¼ pþ q

κ
N tð Þð Þ; ð3:5Þ

where S tð Þ specifies the likelihood of adoption of the new technology by a

‘non-user’ at time t, p is the imitation coefficient, q is the innovation coefficient,

and N tð Þ is the cumulative adoption of the new technology (product) at time t.
By differentiating Eq. (3.5), we obtain (Satoh 2001):

dN tð Þ
dt

¼ pþ q

κ
N tð Þ

� �
� κ� N tð Þð Þ: ð3:6Þ

In Eq. (3.6), p and q are parameters,N tð Þ explains the same as in Eq. (3.5), while κ is
the total potential number of users of the new technology (product). Imposing that

F tð Þ is the fraction of potential ‘users’ who have adopted the new technology at time

t, so that F tð Þ ¼ N tð Þ=
κ0 , we rewrite Eq. (3.6) as:

dF tð Þ
dt

¼ pþ qF tð Þð Þ � 1� F tð Þð Þ: ð3:7Þ

The time path for new technology diffusion following the Bass specification is:
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N tð Þ ¼ κ
1� e� pþqð Þt

1þ q
pe

� pþqð Þt

 !
; ð3:8Þ

with notation analogous to that in Eqs. (3.5–3.7). Estimation of Eq. (3.8) returns

predictions on the growth in the number of users of the new technology (product).

The inflection point in the diffusion time path is at:

N t*
� � ¼ κ

1

2
� p

2q

� �
; ð3:9Þ

if t* ¼ � 1
pþqln

p
q; and under the condition that N t ¼ t0 ¼ 0ð Þ ¼ 0:

Today, the Bass model is broadly applied in marketing, mainly in predictions of

the dynamics of purchases of new products by consumers, or in forecasting

potential scenarios for future market exploitation.

Undoubtedly, the theoretical approaches to technology diffusion analysis

have certain shortcomings and limitations. ‘Epidemic models’ have been widely

criticized for their oversimplifying assumptions and weak theoretical background.

The approach is ‘blind’ to societal, demographic, cultural, educational and insti-

tutional prerequisites which condition the rate of adoption of a product and its

effective use. Additionally, in systems in which the spread of technologies is

supposed to be highly homogenous, agents acquire perfect information on new

technologies through interpersonal contacts, and the process of diffusion stops only

in the case that all the members of society use the new technology. Moreover, as is

stressed by Karshenas and Stoneman (1993), the ‘epidemic model’ assumes that

agents’ decisions on acquiring—or not—new technology are free of risk. However,

omitting risk can be misleading, especially when predicting the development of

future technologies, and risk should definitely not be ignored in the long-term

perspective. Applying an explicit or implicit ‘epidemic’ analogy to the theoretical

concepts explaining the technology diffusion process, to a point, was criticized by

the next two prominent authors, Paul David (1969) and Stephen Davies (1979), who

made significant contributions to the theory of technology diffusion. Davies (1979)

points out that ‘blind’ acceptance of the assumption that the diffusion process is

well approximated by logistic growth equations leads to another unrealistic

assumption—of a constant diffusion rate. If we relax the assumption of a time-in-

variant diffusion rate, the logistic pattern is not generated. In addition, many authors

claim (see Griliches 1957; Mansfield 1968; Romeo 1977; Davies 1979; Metcalfe

1987; Karshenas and Stoneman 1995; Stoneman 2001; Stoneman and Battisti 2005)

that these models fully and correctly explain the process of the systematic adoption

of new technologies by societies.

However, despite obvious limitations of the theoretical approaches to techno-

logy diffusion, their contribution to diffusion analysis is pervasive and unquestion-

able. As claimed and proved in multiple empirical studies, this approach, despite its

drawbacks, approximates time diffusion paths and the dynamics of the process

relatively well. Systems, despite being attributed to various features, tend to
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develop in a similar way. S-shaped curves (logistics growth patterns), which are

what are ‘generated’ from the Mansfield and Bass models, allow for broad intuitive

interpretations, describing and forecasting the growth of various technologies

(products) (Bass 2004). As growth trajectories have generally similar features,

classical S-time path analysis creates the possibility of ‘guessing by analogy’

(Bass 2004) with the growth histories of past technologies. ‘Epidemic models’

are simple, clearly describe and explain the diffusion trajectories of new

technologies, and allow the prediction with little uncertainty of future development

paths.

The next paragraphs briefly discuses alternative approaches to the conceptuali-

zation of technology diffusion: probit (rank), stock and order models. The probit

(or rank) approach, mostly developed and explained by Paul A. David (1969) and

Stephen Davies (1979), is based on two major assumptions: the behaviour of agents

(individuals or firms) is rational; and they head toward utility maximization. This

specification contains elements of rational choice theory (e.g. Rawls 1999; Foley

2009). In the probit approach, it is assumed that technology diffusion is attributed to

unique features of agents (in the case of companies, these can be the size, geo-

graphical location and production profile of firms), risk aversion to new

technologies, or just the opposite—risk acceptance, the relative prices of alternative

technologies to be potentially acquired, and the variety of substitutes for the

technology (product) in question. In other words, the rank approach relies on a

supposition that technologies spread in heterogeneous societies, and potential users

of new technology condition their decisions on cost/benefit analysis (Davies 1979;

Stoneman 2002). If the cost of technology acquisition at time t is defined as C tð Þ,
while the benefits8 generated from effective use of it are B tð Þ, then an individual

decides to buy the technology only if B tð Þ > C tð Þ is satisfied. The model, however,

although more sophisticated than simple ‘epidemic’ models, includes multiple

latent factors (e.g. consumer expectations) that determine agents’ final decisions

on new technology acquisition, and which heavily disrupt quantitative specifica-

tion. The rank models of technology diffusion fall into the equilibrium model

category. The equilibrium, referring to the actual numbers of users of a particular

technology, can be established along the diffusion path for each period of time.

Once, due to some external (exogenous) factors, the number of users changes, so

the equilibrium is disrupted and the system heads toward another equilibrium state.

The stock9 models include three main approaches to technology diffusion: those

of Reinganum (1981b) and Schumpeter (1984) and a last stream which is based on

an evolutionary approach. Both Reinganum (1981b) and Schumpeter’s (1984)

specifications may be classified as equilibrium class models. Both concepts are

8 The benefits from the adoption of new technology are mainly associated with introducing

‘process innovation’ that underlies company performance. This can be conditioned, inter alia,
by prospective profitability, expected risk, organizational structure and other factors which may

impact outcomes for a company.
9 The models, are labelled ‘stock’, as diffusion in time (t + 1) depends on the stock (number) of

given technology users in period ‘t’.
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deeply rooted in neoclassical theories. Thus, the technology diffusion path is

characterized by a sequence of equilibria in each time period. The consecutive

equilibria are generated as agents, driven by infinite rationality and having access to

full information, make decisions on new technology acquisition. The Reinganum

approach assumes that firms tend to buy new technology when they expect a

reduction in cost, so that the cost generated by the ‘old technology’ Cold tð Þ, is
greater than Cnew tð Þ in a given time period. If Cold tð Þ > Cnew tð Þ, then positive

externalities, accounted as increases in profits, are expected. The Schumpeterian

approach is similar in its logic to Reinganum’s. However, the Schumpeterian

concept (Soete and Turner 1984; Aghion et al. 2013) of technology diffusion is

conceptually placed in a broader macroeconomic perspective, and it accounts for

spillovers as new technologies expand and are gradually acquired by new users.

Finally, the evolutionary approach offers a similar explanation of the technology

diffusion process to the two just discussed. However, the main difference between

the Reinganum and Schumpeterian explanations of technology diffusion and the

approach argued by the evolutionary school lies in the basic assumptions that the

models rely on. Evolutionary concepts reject assumptions on perfect information

and perfect market competition, as is the case in the Reinganum and Schumpeterian

models, and they relax the assumption on profit maximization and the infinite

rationality of agents. To a point, evolutionary models are similar to those based

on ‘epidemic’ concepts, as they claim that technology diffusion is not a self-

equilibrating process. In evolutionary models, the process of technology diffusion

is also defined as self-perpetuating, and the individual features of agents are

assumed to be endogenous. If companies (individuals) get profits from newly

acquired technologies, i.e. if B tð Þ > C tð Þ, then new users arrive and the diffusion

proceeds. Generally, models developed under evolutionary economics are

recognized as being more open-ended and more real-world-oriented, providing a

more suitable insight into the nature and dynamics of the process. Following Allen

(1988a, b), Sarkar (1998) argues that ‘(. . .) diffusion (. . .) of innovations and
technological changes has been considered in neoclassical economics, abstracted
from history, culture, social structure (. . .). (. . .) such abstraction may have ren-
dered equilibrium models simpler, (. . .) but having very low economic plausibility
of [their] assumptions, thereby making it difficult to test these models rigorously for
falsification’.

In the late 1980s, ‘order’ models were developed (see, e.g., Fudenberg and

Tirole 1985). Also classified as equilibrium models, these rely on the same

assumptions under which the stock models operate. However, the ‘order’

approaches emphasize that the order of adoption of new technologies matters for

the diffusion process. Order models relax the assumption that each agent (user) gets

equal profit from new technology acquisition, and assume that a user that adopts a

new technology first (first in order) enjoys higher profits compared to those who

acquire new technologies later on. Hence, along the diffusion pathB tið Þ > B t iþ1ð Þ
� �

;

where B tð Þ explains the profits gained by a user of a new technology.
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3.2.2 Approximating Technology Diffusion Trajectories

A deep insight into the dynamics of technology diffusion was provided in the

influential works of, inter alia, Mansfield (1968), Griliches (1957), and Nelson

(1982), who analyzed the phenomenon adopting the evolutionary dynamics con-

cept. This resulted in the introduction to economic studies of the logistics law,

which is broadly applied in natural science to describe the path dependence of

biological growth (Verhulst 1838; Pearl and Reed 1922). According to the logistic

law of growth, systems tend to grow exponentially. In 1838, inspired by the

Malthusian growth model, the Belgian mathematician Pierre-Francois Verhulst

(1838)10 formalized logistic growth and introduced the logistic function. In a

generic sense, the function that Verhulst proposed is a logistic equation, also

known as a simple sigmoid asymptotic function, and it produces an S-shaped

curve once empirical data on diffusion (growth) is plotted over time. The growth

curve can be divided into two specific parts by the inflection point: first (before the

inflection point), it is a downward powers function; second (after the inflection

point), it is a logarithmic function. The ubiquitous family of S-shaped curves (also

recognized as: S-curves, logistic curves, S-shaped patterns, S-shaped paths,

S-shaped trajectories, S-shaped time paths, Gompertz11 curve, Foster’s curve,

sigmoid curves) allow for the visualization of the logistic growth process and its

intuitive interpretation (Modis 2007). Mathematically, the logistic growth function

originates from the exponential growth model, and if written as an ordinary

differential equation is as follows (Meyer et al. 1999):

dYx tð Þ
dt

¼ αYx tð Þ: ð3:10Þ

IfY tð Þdenotes the level of variable x, tð Þ is time, andα is a constant growth rate, then
Eq. (3.10) explains the time path of Y tð Þ. If we introduce e12 to Eq. (3.10), it can be
reformulated as:

Yx tð Þ ¼ βeαt; ð3:11Þ
or alternatively:

Yx tð Þ ¼ αexpβt; ð3:12Þ
with notation analogous to Eq. (3.10) and β representing the initial value of x at

t ¼ 0.

10 The logistic equation is also recognized as the Verhulst-Pearl equation, as Pearl and Reed

(1922), in the early 1920s already adopted similar formulas in the biological sciences.
11 Referring to Benjamin Gompertz (1825) and his ‘law of mortality’, which is a mathematical

specification to model time-series (Gompertz model, Gompertz growth).
12 Base of naatural logarithms.
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By convention, the simple growth model is pre-defined as exponential. Thus, if

left to itself x will grow infinitely in geometric progression. But, indiscriminate

extrapolation of Yx tð Þ generated by an exponential growth model would lead to

unrealistic predictions, as due to various constraints, systems do not grow infinitely

(Stone 1980; Kingsland 1982; Meyer 1994; Coontz 2013). Therefore, it is reason-

able to impose growth boundaries to the original model. To solve the problem of

‘infinite growth’, the ‘resistance’ parameter (Meyer et al. 1999; Banks 1994;

Cramer 2003; Kwasnicki 2013) was added to Eq. (3.10). This modification

introduces an upper ‘limit’ to the exponential growth model, which instead gives

the original exponential growth curve a sigmoid shape (Fig. 3.2).

Formally, the modified version of Eq. (3.10) is the logistic differential function,

defined as:

dY tð Þ
dt

¼ αY tð Þ 1� Y tð Þ
κ

� �
; ð3:13Þ

where the parameter κ denotes the imposed upper asymptote that arbitrarily limits

the growth of Y. As already mentioned, adding the slowing-down parameter to

exponential growth generates an S-shaped trajectory13 (see Fig. 3.3).

The three-parameter14 logistic differential equation, Eq. (3.13), can be re-written

as a logistic growth function, taking non-negative values throughout its path:
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Fig. 3.2 Exponential versus

logistic (sigmoid) curve

specification. Theoretical

specification

13 Following Meyer et al. (1999), we define 1� Y tð Þ
κ

� �
as a ‘slowing term’ (‘negative feedback’),

which is close to 1 as Y tð Þ � κ, but if Y tð Þ ! κ then 1� Y tð Þ
κ

� �
! 0:

14 For estimates of the asymmetric responses 5-parameter logistic functions (5PL) are applied. A

standard 5PL is as follows (Gottschalk and Dunn 2005): y ¼ f x; pð Þ ¼ d þ a�dð Þ
1þ x

c½ �b
� 	g, where
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Nx tð Þ ¼ κ

1þ e�αt�β
; ð3:14Þ

or, alternatively:

Nx tð Þ ¼ κ

1þ exp �α t� βð Þð Þ ; ð3:15Þ

where Nx tð Þ stands for the value of variable x in time period t. The parameters in

Eqs. (3.14 and 3.15)15 explain the following:

• κ—upper asymptote, which determines the limit of growth ( N tð Þ ! κ ), also
labelled ‘carrying capacity’ or ‘saturation’;
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Fig. 3.3 S-shaped time path. Theoretical specification. Note: the logistic function follows the

S-path if plotted on an absolute and linear scale. Once the Fisher-Pry (The Fisher-Pry (Fisher and

Pry 1972) transform yields:�N tð Þ=
κ
0 . Thus

F 1�Fð Þ¼ eαtþβ= .) transform is applied, the logistic curve can

be plotted linearly.

p ¼ a; b; c; d; gð Þ, c > 0 and g > 0. If we restrict g ¼ 1, a 4-parameter logistic function is

generated.
15 The parameters in Eqs. (3.14 and 3.15) can be estimated by applying ordinary least squares

(OLS), maximum likelihood (MLE), algebraic estimation (AE), or nonlinear least squares (NLS).

As Satoh and Yamada (2002) suggests, NLS returns the relatively best predictions, as the estimates

of standard errors (of κ, β, α) are more valid than those returned from estimation using other

methods. Adoption of NLS allows avoiding time-interval biases, which are revealed in the case of

OLS estimates (Srinivasan and Mason 1986). However, the main disadvantage of the NLS

procedure is that estimates of the parameters may be sensitive to the initial values in the time-

series adopted.
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• α—growth rate, which determines the speed of diffusion;

• β—midpoint, which determines the exact time (Tm ) when the logistic pattern

reaches 0:5κ.

The growth rate α additionally determines the ‘steepness’16 of the S-shaped

curve. However to facilitate interpretation17, it is useful to replace αwith a ‘specific

duration’18 parameter, defined as Δt ¼ ln 81ð Þ
α . Having Δt, it is easy to approximate

the time needed for x to grow from 10 to 90 % κ. The midpoint (β
�
describes the

point in time at which the logistic growth starts to level off. Mathematically,

the midpoint stands for the inflection point of the logistic curve. Incorporating Δt
and (Tm) into Eq. (3.15), entails:

Nx tð Þ ¼ κ

1þ exp � ln 81ð Þ
Δt t� Tmð Þ

h i: ð3:16Þ

A generalized version of the logistic function (Kudryashov 2013) including more

than one explanatory variable of Nx tð Þ, is as follows:

N Zð Þ ¼ expZ

1þ expZ
¼ 1

1þ exp�Z
; ð3:17Þ

with Z ¼ xT γ, where x stands for all covariates and γ is the coefficient of x.
Given that different growth processes are decomposable into sub-process, the

model in Eq. (3.15) can easily be transformed into a multiple growth ‘pulses’

model. Assuming we are dealing with just two recognizable ‘pulses’ (sub-processes
of growth), this gives rise to the expression:

Nx tð Þ ¼ N1 tð Þ þ N2 tð Þ: ð3:18Þ

Hence, N1 tð Þ and N2 tð Þ yield: κ1

1þexp
ln 81ð Þ
Δt1

t� Tm1ð Þ
� �

2
4

3
5 and κ2

1þexp
ln 81ð Þ
Δt2

t� Tm2ð Þ
� �

2
4

3
5

respectively. The model defined in Eq. (3.18), is commonly known as a bi-logistic
growth equation. The generalized version of Eq. (3.18) for multiple (!‘z’) logistic
growth sub-processes follows the z-component logistic growth model:

16 Also labelled ‘width’.
17 The parameter α as such, is not economically interpretable, thus it is exclusively estimated to

calculate the ‘specific duration’.
18 Also labelled ‘characteristic duration’ or ‘specific time’.
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N tð Þ ¼ κ1
1þ exp ln 81ð Þ

Δt1 t� Tm1
ð Þ

� �
2
4

3
5þ . . .þ κi

1þ exp ln 81ð Þ
Δti t� Tmi

ð Þ
� �

2
4

3
5

¼
X z

i¼1
Ni tð Þ; ð3:19Þ

if:

Ni tð Þ ¼ κi
1þ exp �αi t� βið Þð Þ: ð3:20Þ

The concept formalized in Eq. (3.18) is graphically displayed in Fig. 3.4 (see

below).

The left-hand side of Fig. 3.4, shows a component logistic curve with two clearly

distinguishable growth phases (growth impulse (1) and growth impulse (2)).

The left-hand curve is the approximated sum of two discrete ‘wavelets’ (Meyer

et al. 1999), and can be decomposed into two separate three-parameter logistic

functions. The curves on the right, instead, present the two distinct growth sub-
impulses. Such decomposition allows for detailed analysis of the behaviour of the

relevant technology in each phase of growth.19

Most technology diffusion models deal with strictly one technology (innovation)

and describe its in-time behaviour. However, if another technology arrives there

emerges a competition between the ‘old’ and ‘new’ technologies. Hence, the

technological substitution process is revealed, which explains the life cycle of

certain technologies, distinguishing certain phases of growth and decline. Here-

after, Sect. 3.2.3 briefly describes technological substitution theories and models.
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Fig. 3.4 Component logistic model decomposition into bi-logistic growth. Theoretical

specification

19 If a Fisher-Pry transform is applied for normalization, then the logistic curves become linear,

which additionally facilitates further analysis of growth sub-phases.

3.2 Technology Diffusion and Technological Substitution 45



3.2.3 Technological Substitution

Technologies rise, saturate and finally decline when new and better ones emerge.

The process of continuous replacement of ‘old’ technologies by ‘new’ technologies

is labelled technological substitution, and can easily be encountered in various

systems and under different circumstances (Fisher and Pry 1972). Technological

substitution is evolutionary or revolutionary in its nature. It brings significant

changes to societies (Kucharavy and De Guio 2011), and it may be perceived as a

consequence of technology development marked by a stream of ‘discontinuities’

(Miranda and Lima 2013), and leading to replacements of ‘old’ technologies by

‘new’ ones. Generically, the process of technological replacement resembles com-

petition between the ‘old’ and ‘new’ technology, in which the ‘old’ technology is

initially a dominant competitor in the market and the ‘new’ ‘invading’ one fights for

a growing market share (Morris and Pratt 2003).

By definition, the technological substitution model (also labelled logistic substi-

tution model) explains the competitors’ changing market shares (fractions) along

the competition process, which is attributed to time. Technological replacement is

gradual (Wang and Lan 2007), and, as broadly observed, the time behaviour of

competing technologies follows a logistics trajectory. In a competitive system, each

technology passes through three characteristic phases: a logistic growth phase

(P1)—the prime phase of growth, when initially growth rates are slow, but they

then enter an exponential growth phase (this results in fast diffusion of the technol-

ogy); a saturation phase (P2)—the technology reaches the maximum of its market

share and thus follows a non-logistic pattern; and a logistic decline phase (P3)—the

technology is fading away from the market, its market share is gradually declining

as it is substituted by new technology, which is in the logistic growth phase.

Most contemporary empirical works considering the process of gradual substi-

tution between two competing technologies20 can be traced back to the influential

models proposed by Fisher-Pry (1972), Marchetti and Nakicenovic (1980), and

Nakicenovic (1987). The Fisher-Pry model of technological substitution is based on

three general assumptions (Fisher and Pry 1972; Bhargava 1995; Kumar and Kumar

1992): (1) many technological advances can be considered competitive

substitutions of one method of satisfying a need with another; (2) if a substitution

has progressed as far as a few percent, it will proceed to completion; (3) the rate of

fractional substitution of new for old is proportional to the remaining amount of the

old left to be substituted.

Technically, the technological substitution model explains changing shares of

the market that competitors take over, and it relies on the assumption that the total

20 Conceptually, technological substitution models refer to the seminal works of Alfred Lotka

(1920) and Vito Volterra (1926), who were the first to introduce a generalized version of the

logistic growth equation. They developed a model of competition among different species in

biological systems (Voltera) and chemical chain reactions (Lotka). Today, the Volterra-Lotka

competition equation is widely adopted for qualitative analysis of technological substitution if at

least two competing technologies are involved.
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sum of users of the two competing technologies is fixed.21 Blackman (1971) and

Marchetti and Nakicenovic (1980) formalize the original technological substitution

model developed by Fisher and Pry, and develop a three-parameter logistic substi-

tution model describing the behaviour of two competitors along the time path. The

technological substitution model is based on the following assumptions:

• There are n competing technologies;

• Once a ‘new’ technology has invaded the market, it grows at logistic rates;

• The ‘old’ technology fades away also at logistic rates, but the speed of decline is

predominantly affected by the speed of diffusion of the ‘new’ technology22;

• It is possible for only one technology (out of two or more competitors) to be in

the saturation phase at a given point of time;

• A technology in the saturation phase follows a non-logistic pattern.

Let us assume a competitive system and consider the technology substitution

model with two technologies replacing each other. Assume that N is the total

population, whereNi represent the users of the two technologies, so that the share of

the population using i-technology at time t is:

f i tð Þ ¼ Ni tð Þ
N

: ð3:21Þ

To avoid unrealistic estimates, it is presumed that the number of users is fixed and

each deploys one out of the two available technologies (Morris and Pratt 2003),

which implies an obvious constraint like:

f i tð Þ þ f j tð Þ ¼ 1; ð3:22Þ

where 0i 0 and 0 j 0 are competing technologies. By convention, the technologies

follow a logistic growth trajectory (Kwasnicki 1999) defined as:

21 Relaxing the assumption of a fixed total number of users would allow the system to grow

infinitely, which is not the case in real-data based empirical studies.
22 Theodore Modis (2003) distinguishes six ways that two competitors can affect the growth rate in

a competitive system. These are: (1) pure competition (competitors need to fight to survive in the

same environment, as they use the same resources, which are limited); (2) predator-prey competi-

tion (one competitor is labelled prey and the second the predator—the ‘predator’ population grows

as there are abundant ‘preys’; this kind of competition generates cyclical growths and declines in

populations of ‘predators’ and ‘preys’. Lotka-Volterra equations are applied to describe this kind

of competition; (3) symbiosis (competitors are interrelated as the existence of the first is totally

dependent on the existence of the second); (4) parasitic (the first competitor benefits from the

second, but is does not affect the latter’s existence, also labelled ‘win-impervious’ competition);

(5) symbiotic (the first competitor benefits from the second, but the latter is negatively affected by

the competition but remains indifferent to the loses, also labelled ‘loss-indifferent’); (6) no

competition (the two competitors are not overlapping each other as they use different resources

to survive.
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f i tð Þ ¼
1

1þ exp �a� btð Þ; ð3:23Þ

where value a is defined for the initial year t ¼ 0ð Þ: To indicate the market share

yi tð Þð Þ possessed by technology 0i 0 (either a declining or growing technology), we

adopt a Fisher-Pry transform (1972) so that Eq. (3.23) yields yi tð Þ ¼ ln f i tð Þ
1� f i tð Þ
h i

.

Respecting the assumption defined in Eq. (3.22), we find that:

yi tð Þ þ y j tð Þ ¼ 1: ð3:24Þ

If Eq. (3.24) is satisfied, the market share of technology 0 j 0 in the non-logistic

saturation phase (P2) is given by:

f j tð Þ ¼ 1�
X

j 6¼i
f i tð Þ: ð3:25Þ

Thus, the share of the market possessed by technology 0i 0 is strictly subject to the

share of the market possessed by technology 0 j 0.
For an economic interpretation of the process of technological substitution, it is

essential to determine the point in time when certain phases of substitution begin or

end. Following Meyer et al. (1999), the estimate of the point in time when the

saturation phase stops is given by:

y
0 0
i tð Þ
y
0
i tð Þ ! min: ð3:26Þ

Having yi and thus y
0
i, it is possible to estimate the two parameters of the logistic

curve for technology 0i 0, which can be mathematically expressed as:

Δti ¼ ln 81ð Þ
y
0
i tð Þ

; ð3:27Þ

and:

Tmi
¼ ln

yi tð Þ � ln 81ð Þ
Δt

� �
ln 81ð Þ
Δt

2
4

3
5: ð3:28Þ

Δti is labelled ‘takeover’ (Fisher and Pry 1972) and it indicates the time needed for

technology 0i 0 to increase its market share from yi tð Þ ¼ 0:1 to yi tð Þ ¼ 0:9. Tmis

explains the specific point in time (e.g. year) when the substitution process between

the competing technologies is half-complete; thus yi tð Þ ¼ y j tð Þ ¼ 0:5.

48 3 Technology Diffusion



Figure 3.5 graphically presents the mechanism of technological substitution,

which combines two substitution curves with deterministic asymptotic behaviour.

Figure 3.5 shows the life cycles of both the ‘predator’ and ‘prey’ technologies,

and three distinct phases are detectable: logistic growth, saturation and logistic

decline. It is easy to note that once the ‘predator’ technology is in its logistic growth

phase, the ‘prey’ technology follows a logistic decline. The intersection point

depicts the specific time (i.e. the year) when the technological substitution process

is half complete. Thus both the ‘predator’ and ‘prey’ control 50 % of the total

market (! yi tð Þ ¼ y j tð Þ ¼ 0:5).

3.3 The ‘Critical Mass’: What Stands Behind?

3.3.1 The ‘Critical Mass’. Explaining the Concept

Technology diffusion is strictly attributed to network externalities (network

effects), which emerge as positive feedback from random contacts between society

members, giving rise to exponential growth of the network itself. Carrington

et al. (2005) and Villasis (2008) argue that ‘network’ stands for an interconnected

chain or group, while the ‘social network’ ‘is a social structure made of nodes tied
by one or more types of relations (. . .)’. If social networks give positive feedback,
then network effects (externalities) may emerge, showing the value of potential

connectivity exponentially increasing with the number of users of a new technology

(Economides and Himmelberg 1995a, b; Villasis 2008). Katz and Shapiro (1985)

and Shapiro and Varian (1998) define network effects as an increasing utility of

using the product when the absolute number of users of this product increases.

However, the positive effects of networks may arise only if the social system

achieves a certain ‘critical mass’, ensuring a further sustainable multiplication

of users (Katz and Shapiro 1985, 1986, 1992; Markus 1987; Oliver et al. 1985).
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In other words, a positive re-alimentation schema of revealing network effects is

conditioned on the society reaching a certain ‘critical mass’. The notion of ‘critical
mass’ might be confusing, since it has multiple meanings. It originates from

physics, and in its generic sense denotes the amount of radioactive material

necessary for nuclear fission to take place (Oliver et al. 1985). Mancur Olson

(1965) was the first to introduce the concept of ‘critical mass’ to the social sciences,
and he defines ‘critical mass’ as the critical number of early adopters which is

necessary to lead the rest of the population in collective actions.23 Rephrasing this,

‘critical mass’ theory leads to the critical (threshold) conditions for collective

actions to emerge, and then continue as self-perpetuating24 and profitable25

(Marwell and Oliver 1993; Molina et al. 2001; Puumalainen et al. 2011).

To a certain extent, the ‘critical mass’ concept has also been discussed in the

literature on technology diffusion. The process of technology diffusion follows the

third-order (S-shaped) time path, and so the main emphasis in analyzing the

diffusion process is put on estimating the inflection point of the curve. By defini-

tion, the inflection point on an S-shape trajectory denotes the specific time period

when saturation reaches 50 % of the population and the rate of diffusion starts to

slow down. However, when considering the ‘critical mass’ concept in reference to

the diffusion process, it might be relevant to identify the critical (threshold) level of
saturation of a given technology, at which the further process of diffusion becomes

self-perpetuating. Rogers (2010) argues that at the ‘critical mass’ ‘diffusion

becomes self-sustaining’. However, the concept of ‘critical mass’ that Rogers

(2010) uses is based on the assumption that the diffusion process will continue

endogenously at exponential rates, finally reaching the stabilization phase once the

‘critical mass’ of users is achieved (see Fig. 3.6) This therefore relaxes the

assumption that the diffusion process of, e.g., a new product is determined by

changes in relative prices or shifts in quality.

Similar explanations of significance of the ‘critical mass’26 in the continuous

diffusion process characterized by multiple equilibria states are given by Cabral

(1990, 2006), Economides and Himmelberg (1995a, b), and Evans and Schmalensee

(2010). For instance, Economides and Himmelberg (1995a, b) propose that the

‘critical mass’ constitutes the smallest possible (minimal non-zero) equilibrium

assuring the stability of a further diffusion process27 at an exponential rate, while

23 Oliver et al. (1985) recall that the critical mass effect is also known as the ‘snob and bandwagon
effect’, the ‘free rider problem’ or the ‘tragedy of commons’.
24 Self-sustaining.
25Many claim (see, e.g. Bonacich et al. 1976; Frohlich et al. 1971; or Hardin 1982) that Olson’s

concept of critical mass was too general and unconditional and so it did not allow for any

mathematical formalization. Additionally, their experiments have proved that Olson’s concepts

was not correct, as in many cases people’s real behaviour does not confirm Olson’s assumptions.
26 The notion of critical mass is also known as ‘installed base’ (Grajek and Kretschmer 2012).
27 In fact, they precondition the value of critical mass on prices, arguing that lower prices require

lower critical mass, to assure sustainability of the diffusion process.
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Evans and Schmalensee (2010) show that the level and diffusion of the ‘critical mass’
are heavily determined by the nature of networks and individual consumer

preferences.

In analyzing the phenomenon of ‘critical mass’ as proposed by Rogers (2010), the
theory of the diffusion of innovation becomes an obvious conceptual background. In

diffusion theory, the very first adopters (innovators) of a new product do so because

they benefit from the new product. Whether the rest of the society members will

follow them or not usually depends on a threshold, defined as the number of people

who have already adopted the new product. The central presumption of diffusion

theory is that the process of diffusion follows a sigmoid pattern. Hence, identification

of the ‘critical mass’ might be strictly related to examining when and at what

saturation level diffusion accelerates and the ‘take-off’ emerges. It is thus possible

to state that diffusion accelerates once the ‘critical mass’ is reached (Allen 1988a;

Rogers 2010; Schoder 2000). Cabral (1990, 2006) claims that ‘critical mass’ occurs if
network effects are sufficiently strong and diffusion is endogenously driven. He also

states that the ‘critical mass’ point depicts the ‘catastrophe point’ on the diffusion

time path, which corresponds to low-level equilibrium. Loch and Huberman (1999),

in their work ‘A Punctuated-EquilibriumModel of Technology Diffusion’, propose an
evolutionary model where two competing technologies (old and new) are available.

Assuming that both technologies demonstrate network externalities and generate

benefits from their use, consumers will switch to the new technology only if the

technology diffuses at high speed. They also presume that other factors like, e.g.,

uncertainty, cultural ‘openness’ or personal preferences play a crucial role in the

diffusion process, being strong incentives or barriers for new technologies to reach a

‘critical mass’ and spread throughout society.

The works of Lim et al. (2003) and Kim and Kim (2007) attempt to identify the

‘critical mass’ from the S-shaped diffusion pattern. Implementing the Bass diffu-

sion model,28 they develop the concepts of ‘early take off’ (Kim and Kim 2007) and
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28 For the formal specification, see Sect. 3.2.
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‘late take off’ (Lim et al. 2003) with respect to diffusion studies. Adopting the

formal specification of non-cumulative and cumulative adoption curves, they cal-

culate the specific periods of time indicating the beginnings of the ‘early take off’

and ‘late take off’ phases. Assuming that t is time, that (C tð Þ ) describes the

cumulative curve and (nonC tð Þ� is the non-cumulative one, then:

C tð Þ ¼ κ
1� e� pþqð Þt

1þ q
p
e� pþqð Þt ; ð3:29Þ

and:

nonC tð Þ ¼ κ
p pþ qð Þ2 e� pþqð Þt

pþ qe� pþqð Þtð Þ2
; ð3:30Þ

where κ is the saturation level, and p and q explain the external and internal

influence respectively. Mathematically (Kim and Kim 2007), the inflection points

of the curves specified in Eqs. (3.29–3.39) correspond to:

tinfl C tð Þð Þ ¼ � 1

pþ q
ln
p

q
; ð3:31Þ

and:

tin f lðnonCðtÞÞ ¼ � 1

pþ q
ln½ð2þ

ffiffiffi
3

p
f rac pqÞ�: ð3:32Þ

The inflection point defined as in Eq. (3.31) denotes entry into the exponential

growth phase on the S-time path. By convention, by using the value of the inflection

point we can determine the number of adoptions, which refers to tinfl(C(t)). There-
fore, the number of adoptions at tinfl(C(t)) would presumably determine the level of

the ‘critical mass’. However, as Valente (1996, 2005), Mahler and Rogers (1999),

and Lim et al. (2003) argue, it may be highly controversial whether the point

tinfl(C(t)) unquestionably denotes the ‘critical mass’. The question is whether, after

passing the tinfl(C(t)) point, the diffusion turns out to be a self-sustaining process or

not. If not, there is no justification for treating tinfl(C(t)) as the ‘critical mass’ point.
Thus, the conviction that the ‘critical mass’ is easily detectable might be misleading

and confusing.

Different approaches to the identification of ‘critical mass’ are offered by Grajek
(2003, 2010), Grajek and Kretschmer (2011, 2012), Baraldi (2004, 2012), Arroyo-

Barrigüete et al. (2010) and Villasis (2008). To quantify ‘critical mass’, Grajek and
Kretschmer (2012) define it as a function of the installed base and price. Following,

e.g., Cabral (1990, 2006), they presume that due to the installed base effect the

diffusion of products should continue even if prices remain unchanged. Conse-

quently, Grajek and Kretschmer (2012) develop a structural model of demand with

installed base effects. To estimate the threshold level of the ‘critical mass’, they
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suggest that diffusion is highly endogenous and the process as such can be identified

as multi-equilibrating. Their seminal findings, examining the case of the global

cellular telephony market over the period 1998–2007,29 suggest that the ‘critical
mass’ can be predominantly attributed to the size of the installed base, prices and

the market size. Strong network effects allow for a lower installed base and higher

prices to assure the sustainability of further diffusion, and the opposite is true in the

case of weak network effects. Additionally, Grajek and Kretschmer (2012) report

that the ‘critical mass’ phenomenon is only revealed in the case of emerging

(pioneering markets). The model they propose for the identification of the ‘critical
mass’ combines an installed base effect, the current installed base and prices. If the

‘critical mass’ occurs under certain threshold conditions, then the diffusion

becomes self-sustaining. In this spirit, they define the ‘critical mass’ point as a

combination of the three factors previously listed. Considering the assumptions in

the Grajek and Kretschmer (2012) model, in certain societies (countries) the

diffusion of innovation will never occur unless the ‘critical mass’ is reached.

This would imply that some societies might be stuck in a ‘low-equilibrium trap’

and unable to ‘take-off’. Baraldi (2012) provides new insights into the estimation of

the size of the ‘critical mass’ rather than concentrating exclusively on its

determinants (recall the works of, e.g., Grajek and Kretschmer 2012). Baraldi

(2012) argues that the size of the ‘critical mass’ is determined by the strength of

network effects. To detect the strength of the network effects, she adopts a concave

demand curve. Hence, the occurrence of the ‘critical mass’ (regardless of the price
of the new product) takes place the sooner the stronger the network effect is and the

opposite otherwise.30

Similar to Baraldi (2012), Arroyo-Barrigüete et al. (2010) offer a conceptualiza-

tion of the ‘critical mass’. They use a convex demand curve to depict the ‘critical
mass’ point. Arroyo-Barrigüete et al. (2010) follow Oren et al.’s (1982) concept of

‘critical mass’, arguing that it explains the minimum size of the network that

encourages new users to join the network and adopt the new product. Once the

‘critical mass’ of users is achieved, the process of diffusion is self-perpetuating.

Following Katz and Shapiro (1985), who define the network effects as an increasing

29 Similar evidence on the role of the installed base is offered by Gruber and Verboven (2001),

Koski and Kretschmer (2005), and Grajek (2010).

30 Baraldi (2012) specifies the network effects as: Xi, t ¼ f GDP
population

� �
i, t
, pi, t, g Xi, t�1ð Þ

� �
, where

i denotes country, and t the time period. Xi,t is thus the installed base, pi,t is price,
GDP

population

� �
i, t

is

GDP per capita, and g Xi, t�1ð Þ reveals network externalities in country i at time t. To control for

concavity, g Xi, t�1ð Þ includes a squared term for the lagged installed base. To estimate the size of

the critical mass, Baraldi (2012) follows Rohlfs (1974), Katz and Shapiro (1985) and Economides

and Himmelberg (1995a) and formalizes the inverse demand function as

pi, t ¼ αþ β1basei, t þ β2ln basei, t�1ð Þ þ β3Xi, t þ εi, t, where Xi,t captures control variables. To

assure concavity, β2 > 0, and β1 < 0 must be satisfied. If β2 > 0 and β2 > β1, the network

externalities are revealed and the upward slope of the demand curve emerges. The higher β2, the
sooner the critical mass point is reached.
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utility of using a product as the total number of users grows, Arroyo-Barrigüete

et al. (2010) suggest that new users will arrive once the utility obtained from the

product is higher than its price.31 However, Arroyo-Barrigüete et al. (2010) claim

that direct estimation of the ‘critical mass’ point is hardly possible, as the process of
diffusion of new products is preconditioned by individual choices (not always

rational) and preferences, market structure, legal conditions and other unquantifi-

able effects.

It is worth underlining that despite a relatively well-developed theoretical

framework and conceptual background aiming to explain the ‘critical mass’-like
phenomenon, the number of empirical works seeking a quantitative assessment of it

is very limited. This may be a consequence of the great heterogeneity of the

proposed theoretical specifications without any clear and well-established defini-

tion of ‘critical mass’.
Few empirical works provide quantitative identification of the critical mass in its

generic sense. Some examples are the works of Mahler and Rogers (1999), who

study telecommunication services in 392 German banks, and Cool et al. (1997),

who analyze the diffusion of innovation in an intra-organizational context,

providing evidence on the threshold share of the population that has already

adopted the new product which can ensure the further process of diffusion is self-

sustaining. Mahler and Rogers (1999) suggest that keeping diffusion at very low

levels makes it impossible to reach the ‘critical mass’, which hinders the broad

spread of innovations. Cool et al. (1997) find that the ‘critical mass’ can be reached
in different organizational regimes. They also underline that before reaching the

‘critical mass’ point, diffusion is predominantly driven by supply factors, while

after passing the ‘critical mass’ point further diffusion is mainly pushed by growing

demand.

Most presented concepts of the ‘critical mass’ consider the phenomenon in a

microeconomic rather than a macroeconomic perspective. This is a serious limita-

tion, as reaching a ‘critical mass’ might be strongly affected by social, economic,

institutional, cultural or legal prerequisites.

The following Sect. 3.3.2 is intended to explain a novel conceptualization of the

‘critical mass’ regarding technology diffusion process.

3.3.2 The ‘Technological Take-Off’ and the ‘Critical Mass’. A Trial
Conceptualisation

As was previously discussed, the ‘critical mass’, may be defined as the minimal

necessary number of user of new technology, which ensure the emergence of the

‘take-off’ period along the diffusion trajectory, at which the further process of

diffusion becomes self-perpetuating (see Fig. 3.3).

31 The condition follows: U ¼ aþ b neð Þ > P, where U is the utility function and P is the product

price.
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The term ‘take-off’ itself, however has been originally introduced to the eco-

nomic literature by Walt Rostow, who, in his founding paper ‘The take-off into self-
sustaining growth’ (1956), claimed that the process of economic growth is

characterised by discontinuity ‘centering on a relatively brief time interval of two
or three decades when the economy and the society of which it is a part transforms
themselves in such ways that economic growth is, subsequently, more or less
automatic’ (Rostow 1956, p. 1). He labelled this transformation the ‘take-off’.
Rostow (1956, 1963, 1990) also wrote that identifying the ‘take-off’ entails seeking
to isolate the specific period (interval) in which ‘the scale of productive activity
reaches a critical level, (. . .) which leads to a massive and progressive structural
transformation in economic, better viewed as change in kind than a merely in
degree’ (Rostow 1956, p. 16). The concept of the ‘take-off’ was then developed and
implemented in the works of, e.g., Hoselitz (1957), Ranis and Fei (1961), Bertram

(1963), Azariadis and Drazen (1990), Becker et al. (1994), Evans (1995), Baldwin

et al. (2001), and Easterly (2006). In most of the cited works, the notion of the ‘take-

off’ was, however, combined with Rosenstein-Rodan’s (1943) ‘Big Push’ doctrine,

which was predominantly applied to describing and explaining the stages, patterns

and determinants of economic development and growth.

Similar to economic growth, the process of technology diffusion may well be

approximated by easily distinguishable phases (stages) (see Fig. 3.2). During the

initial phase, the process of diffusion slows, whereas subsequently, under

favourable circumstances, it accelerates and proceeds at an exponential growth

rate, ultimately approaching relative stabilisation (maturity) when the growth rates

gradually diminish.

In Sect. 3.3.2, we propose a novel trial conceptualisation of how to identify the

‘take-off’ period and the ‘critical mass’ regarding technology diffusion process.

The presented throughout the Sect. 3.3.2 theoretical framework has been developed

based on the previously run empirical analysis which outcomes are extensively

discussed in Chap. 5 (see also Appendices F and G for detailed calculations).

To meet the objective of this work, we adjust the conceptual background

provided by Rostow (1956, 1990) and develop the term ‘technological take-off’
and define it the time interval when the nature of the diffusion process is radically

transformed due to shifting the rate of diffusion and forcing the transition from

condition of stagnation into dynamic and self-sustaining growth (diffusion) of new

technology. In this sense, the emergence of the ‘technological take-off’ is essential
for ensuring the sustainability of technology diffusion and enabling the widespread

adoption of new technology throughout society. Generally, before the ‘techno-
logical take-off’, diffusion proceeds slowly, but once the ‘technological take-off’
is achieved, diffusion proceeds more rapidly and the number of new technology

adopters begins to expand fast, typically at an exponential rate. Finally, in the

maturity phase, the number of new technology users reaches system carrying

capacity (saturation) and stabilises. To remain in line with the previous, the long-

term process of technology diffusion may be arbitrarily divided into four separate

phases (stages). Firstly, the initial (early) phase is when the technology diffusion is

initiated, but the annual growth and penetration rates are typically negligible. In the
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early stage of diffusion, the preconditions for the ‘technological take-off’ are also

established. The second phase constitutes the ‘technological take-off’ itself; then, in
the third phase—‘post technological take-off’—the increase in users of the new

technology is self-perpetuating and becomes a normal condition in a given econ-

omy. Finally, the fourth phase occurs when diffusion significantly slows down,

approaching saturation (maturity).

However, the emergence of the ‘technological take-off’ is intimately related to

and preconditioned by achieving the ‘critical mass’, which has yet to be defined.

With this aim, we develop the following terms: the technology replication coeffi-

cient (Φi,y) (hereafter, the replication coefficient), marginal growth in technology

adoption (Ωi,y) (hereafter, marginal growth), critical year (Ycrit,i,y), and critical

penetration rate (critICTi,y), where i denotes country and y year.
Assume that for a given country (i) and a given technology (ICT), the term Ni,y

stands for the level of technology (ICT) adoption in y year. By definition,Ni, y > 0,

because negative adoption is not possible, and ifNy ¼ 0, the diffusion process is not

reported. Along this line, the technology replication coefficient (Φi,y) follows:

Φi, y ¼ Ni, y

N i, y�1ð Þ
; ð3:33Þ

then:

Ni, y ¼ Φi, y N i, y�1ð Þ
� 	

; ð3:34Þ
if Ni, y > 0 and N i, y�1ð Þ > 0, and Φi, y ∈ 0;1ð Þ. The replication coefficient for

respective technology (ICT) explains the multiplication of technology users that

occurs because of the emerging ‘word of mouth’ effect (Geroski 2000; Lee

et al. 2010). Suppose that for y year, the Φi,y ¼3. This shows that in (y� 1
�
year,

each user of the given technology has ‘generated’ two additional new users of the

new technology. In this sense, the replication is the cornerstone of the diffusion

process itself. Figure 3.7 illustrates how respective values of Φi,y determine Ni,y

over time.

If Φi, y > 1, it implies that in each consecutive year, the number of users of new

technology increases, so that Ni, y > Ni, y�1. This indicates that the values of Φi,y

must be higher than 1 to ensure diffusion. If Φi, y ¼ 1, the number of new techno-

logy users is constant over time, and thus Nt ¼ N tþ1ð Þ ¼ . . . ¼ N tþnð Þ and no

diffusion is reported. Finally, Φi, y < 1 would imply that the number of users of

new technology is decreasing over time, so thatNi, y�1 > Ni, y. It may be argued that

the replication coefficient (Φi,y) exhibits the dynamics of the diffusion process

and—to some degree—demonstrates the strength of the network effects that

enhance the spread of new technology over society.

As was already claimed, if Φi, y > 1, the number of new technology users is

constantly increasing, so that Ni, y > Ni, y�1. Based on the latter, we propose the
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term ‘marginal’ growth in technology adoption (Ωi,y), which formally may be

expressed as:

Ωi, y ¼ Ni, y � Ni, y�1; ð3:35Þ
under the conditions that Ni, y > 0 and Ni, y�1 > 0. The value of Ωi,y expresses the

change in the total number of users32 of new technology over two consecutive

years.

It is easily observed that these two coefficients—Φi,y and Ωi,y, are closely

interrelated. Assuming that Φy > 1, the level of marginal growth in i country and

in y year is:

Ωi, y ¼ N i, y�1ð Þ Φi, y � 1
� 	

; ð3:36Þ
or:

Ωi, y ¼ �N i, y�1ð Þ 1�Φi, y

� 	
: ð3:37Þ

Simply transforming Eq. (3.35) yields:

Ωi, y

Ni, y�1

¼ Φi, y � 1
� 	

: ð3:38Þ

Generally, the Ωi,y depends directly on the strength of the replication process that is

expressed through the Φi,y.

Examining the Φi,y and Ωi,y simultaneously, it is easy to conclude that:

Fig. 3.7 Changes is number

of technology users versus
replication coefficients.

Source: Author’s elaboration

32 In our case, expressed as number of users per 100 inhabitants.
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1. If (Φi, y > 1 then Ωi, y > 0), the replication process is sufficiently strong and the

diffusion proceeds, which is demonstrated in the increasing number of new

technology users Ni, y < N i, yþ1ð Þ
� �

;

2. If (Φi, y ¼ 1 then Ωi, y ¼ 0), the diffusion does not proceed, which results in a

constant number of users of new technology
�
Ni, y ¼ N i, yþ1ð Þ ¼ . . . ¼ N i, yþnð Þ);

3. If (Φi, y < 1 then Ωi, y < 0), the replication process is so weak that the diffusion

is limited, and there will be a decreasing number of users of new technology

(Ni, y > N i, yþ1ð Þ
�
.

If the replication coefficient is constant over time (Φi, y ¼ Φi, yþ1 . . . : ¼ Φi, yþn

�
,

then in each consecutive period, the marginal growths in technology adoption are

equal Ωi, y ¼ Ωi, yþ1 . . . ¼ Ωi, yþn

� �
; and the diffusion proceeds linearly. However,

as was already discussed in Sect. 3.2, the technology diffusion process is far from

linear but rather follows an S-shaped trajectory instead.

In this vein, we intend to examine the behaviour of respective coefficients—Φi,y

and Ωi,y—along the sigmoid technology diffusion pattern (for visualisation, see

Fig. 3.8), which allows for determining the critical year (Ycrit,i,y) and critical

penetration rate (critICTi,y), and finally for identifying the ‘technological take-off’
interval.

In the early (initial) diffusion phase, the replication coefficient tends to be higher

than marginal growth Φi, y > Ωi, y

� �
, and thus, a gap emerges betweenΦi,y andΩi,y.

However, as the diffusion proceeds and the replication process is gains strength

(so thatΦi, y > 1andΩi, y > 0 ), theΩi,y ultimately increases gradually while theΦi,y

decreases in consecutive years, which will inevitably lead to closing the gap

between Φi,y and Ωi,y (the paths that show the changes in Φi,y and Ωi,y are

converging; see Fig. 3.8). If the latter is satisfied, the paths that show changes in

Φi,y and Ωi,y finally intersect (the gap between Φi,y and Ωi,y is closed), so that in the

next years, the replication coefficients are lower than marginal growth

Φi, y < Ωi, y

� �
, and the paths that show changes inΦi,y andΩi,y diverge. The specific

time when the gap between Φi,y and Ωi,y is closed (theoretically, Φi, y ¼ Ωi, y) we

label the critical year (Ycrit,i,y); meanwhile, the penetration rate of new technology

in Ycrit,i,y we name the critical penetration rate (critICTi,y). Technically, the critical
year denotes the specific time period when the dynamic of the diffusion process is

transformed, as the early diffusion phase is left behind and the new technology

begins to diffuse exponentially; the ‘critical penetration rate’ we define as the

threshold that, once passed, provokes the diffusion to become self-perpetuating,

which implies overcoming the ‘resistance to steady growth’ (Rostow 1990). The

‘critical penetration rate’ traces the number of individuals—‘innovators’—who

demonstrate little risk aversion and high propensity to acquire novelties and who

thus are the first new technology adopters and the ones who propagate its further

diffusion throughout society. Finally, we argue that the ‘critical penetration rate’
approximates the ‘critical mass’ of new technology adopters, which preconditions
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the further spread of technology and forces the emergence of the ‘technological
take-off’.

It is important to note that following this procedure would yield rigid identifi-

cation of the exact date when Φi, y ¼ Ωi, y. However, to satisfy the latter, daily data

on new technology penetration rates would be required, which for obvious reasons

is scarcely possible. To challenge this obstacle, we choose to treat as the critical

year (Ycrit,i,y) the first year when Φi, y < Ωi, y, if in the previous year, the Φi, y�1 >

Ωi, y�1 was reported. As was already mentioned, once it passes the Ycrit,i,y, the new
technology begins to diffuse at an exponential rate, which is exhibited in the

increasing values of Ωi,y. Finally, the process of diffusion slows and inevitably

Fig. 3.8 Relationships between technology replication coefficient (i,y), ‘marginal’ growth in

technology adoption (i,y), critical year (Ycrit,i,y) along the S-shaped technology diffusion trajectory.
Source: Author’s elaboration
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approaches the maturity phase when the desired saturation (Ny,i) is achieved. The

slow-down and maturity phase Φy ! 1 and Ωy ! 0 determines the termination of

the diffusion process.

Finally, we propose labelling the 2-year interval right after the Ycrit,i,y as the

‘technological take-off’, which, as was previously defined, denotes the time period

when the nature of the diffusion process is transformed because the diffusion rate

shifts and forces the transition from stagnation to the dynamic and self-sustaining

growth (diffusion) of the new technology.

Presuming that y stands for Ycrit,i,y and to address the assumption that the

‘technological take-off’ is the period during which the rate of diffusion is radically

shifted, we suggest the following formalization of the conditions under which the

‘technological take-off’ emerges:

Ωi, yþ1ð Þ > 0

Ωi, yþ2ð Þ > 0

Ωi, yþ1ð Þ > Ωi, yð Þ
Ωi, yþ2ð Þ > Ωi, yð Þ

:

8>><
>>: ð3:39Þ

Following Eq. (3.38) we argue that if y stands for Ycrit,i,y, the ‘technological take-
off’ interval occurs during the period < yþ 1; yþ 2 >.

If the critical year (Ycrit,i,y) is not identified, the conditions specified in Eq. (3.39)
are also not satisfied, and this implies that the emergence of the ‘technological
take-off’ has been restricted. Technically, the previous indicates that during the

initial diffusion phase, the replication lacked the strength to ensure gradual

increases in Ωi,y, which would allow for closing the gap between Φi,y and Ωi,y

(see Fig. 3.9). As result, the paths that show the changes in Φi,y and Ωi,y diverge

rather than converge, and the critical year does not emerge. IfΦi, y ¼ 1 orΦi, y < 1,

the situation is similar, and the technology diffusion is impeded. The countries

where the YCrit,i,y has not been identified are those where the process of entering

exponential growth has been restrained and they remained virtually locked in the

‘low-level-technology’ trap, becoming latecomers in this respect.

Finally, we strongly argue that the ‘critical year’, the ‘critical penetration rate’
and the ‘technological take-off’ do not emerge unconditionally or in isolation but

are heavily predetermined by multiple social, economic and instructional

prerequisites. The ‘technological take-off’ is preconditioned and induced by strong

stimuli that are typically well-established in the early diffusion phase. In this vein,

we claim that the analysis of the ‘critical mass’ should be considered in a broad

context that allows for capturing a broad array of factors that could potentially

foster or impede the ‘technological take-off’. We suggest that identifying both the

critical penetration rate and the ‘technological take-off’ interval should be

complemented by broad analysis of the socio-economic and institutional conditions

under which the ‘technological take-off’ emerged. This approach places the purely

numerical analysis in the broad macroeconomic perspective and is essential for

capturing those factors that potentially foster or hinder the emergence of the

60 3 Technology Diffusion



‘technological take-off’; and proposed broadening of the ‘critical mass’ analysis
sheds light on countries’ socio-economic and institutional characteristics and

situates the analysis in a broad macroeconomic perspective. These preconditions

generally combine institutional change, economic performance, political regimes,

social norms and attitudes, and the state of development of any backbone infra-

structure. In a broad sense, the ‘technological take-off’ requires that a society and an
economy be prepared to actively respond to newly emerging possibilities (Rostow

1956). If these requirements are not sufficiently fulfilled, the ‘technological take-
off’ will not occur. Our concept of ‘critical mass’ is, to a point, related to what was
stressed in the works of Baumol (1986), Perez and Soete (1988), and Verspagen

(1991), that a country’s ability to adopt new technologies is preconditioned by a

wide array of factors. Societies assess and assimilate technological novelties by

relying upon ‘intellectual’ capital (Soete and Verspagen 1994) and institutional,

governmental and cultural conditions. Some empirical evidence shows that the

most prominent factors in a country’s ability to adopt and effectively use new

technologies are education and the skills of the labour force (Baumol 1986).

Countries that experience significant lacks in these factors will likely never be

able to ensure the widespread use of new technologies and use the full potential of

technological change. As a result, they will never catch up with richer countries and

will continue to lag behind as technologically disadvantaged regions.

3.4 Technology Convergence and Technology Convergence
Clubs

Dynamic technology diffusion, accompanied by fundamental shifts in technology

adoption and use, should inevitably lead to a significant reduction in cross-country

technology gaps and growing cohesion. In other words, if countries experience

growing levels of technology adoption, cross-country convergence should be

Fig. 3.9 The ‘low-level-

technology’ trap. Source:

Author’s elaboration
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exhibited. In this vein, we define ‘technology convergence’33 as a process leading

to the ‘technology gap’ narrowing, and eradicating different forms of exclusion

from access to and use of basic ICTs (Lechman 2012a, b). In this sense, technology

convergence should fundamentally decrease cross-country inequalities in access to

and use of ICTs,34 as countries which are initially technologically-poorer shall

exhibit relatively higher average annual growth rates of ICTs adoption, compared to

countries which are initially better off with this respect. We intentionally encourage

technology convergence unconditionally, leaving aside all factors which hypothet-

ically might enhance or hinder the process. Still, our main attention shifts to

providing an analytical framework to answer the prominent question of whether

countries exhibit growing cohesion (decreasing technology gaps) in terms of their

level of adoption and use of ICTs. So far, the approach to technology convergence

analysis that we suggest is not commonly recognized, and the empirical evidence in

the field remains relatively poor. Some evidence can be traced in the works of

Comin and Hobijn (2004, 2011), Comin et al. (2006), Castellacci (2006a, 2008),

Castellacci and Archibugi (2008), Castellacci (2011) and Lechman (2012a, b).

Comin and Hobijn (2004) provide extensive analysis of technology convergence

over the period 1788–2001. Their study covers 20 technologies in 23 different

countries and tests the convergence hypothesis applying beta- and sigma-

convergence procedures. Comin et al. (2006) perform similar exercises to Comin

and Hobijn (2004). They test beta- and sigma-convergence using the CHAT (Cross-

Country Historical Adoption of Technology) dataset, additionally separating

within-technology and across-technologies effects. Castellacci (2006a, 2008) and

33 In the literature discussing ‘technological catching-up’, the term is often confused with ‘tech-

nology convergence’. In effect, it is misleading to use these two terms alternatively. Technological

catching-up is the process through which countries benefit from the stock of knowledge available

in the rest of the developed world, and goes far beyond simple technology convergence (Rogers

2010). The technological catching-up theories instead seek to answer how technologically back-

ward countries may benefit from their underdevelopment and by diminishing the relative gap in

Total Factor Productivity (TFP) experience economic growth (Soete and Turner 1984). The idea of

incorporating different aspects of ‘technology’ into growth models traces back to pioneering

works by Veblen (1915), Nurkse (1955), Gerschenkron (1962), Rostow (1971), Schumpeter

(1984). Nelson and Phelps (1966) were the first to formalize the Veblen-Gerschenkron ‘relative

backwardness’ idea and they introduced the idea of the function of technological catching-up

depending on human capital and its absorptive capabilities (also argued by Abramovitz (1986)):
dA
dt = A ¼ ∅ :ð Þ T�A

A

� �
, where T stands for the level of the best practice technology, A is the level of

technology in a backward country, and∅ :ð Þ is the function of absorptive capacities. Recently the

literature treating international technological catching-up, and technology diffusion and transfer as

factors contributing to rapid economic growth is pervasive. The most prominent evidence can be

found in works by, inter alia, Fagerberg (1987, 1994), Perez and Soete (1988), Verspagen (1994),
Dowrick (1992), Ben-David (1993), Coe and Helpman (1995), Barro and Sala-i-Martin (1990),

Keller (1996), Bassanini et al. (2000), Dowrick and Rogers (2002), Castellacci (2002, 2006a, b,

2008, 2011), Liebig (2012), Stokey (2012), Shin (2013) and Serranito (2013).
34 Apart from some empirical evidence on ‘technology convergence’ with respect to ICTs, there

exist numerous studies where an analogous problem is tackled, but is labelled ‘closing the digital

divide’ (see e.g. Servon 2008; James 2003, 2011; Vicente and L�opez 2011).
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Castellacci and Archibugi (2008) detect technology convergence clubs along with

technology convergence testing. Castellacci (2008) reports on technology conver-

gence and technology convergence clubs for 149 countries over the period 1990–

2000. He additionally tests for ‘technological capabilities’ which may enhance or

hinder the process of closing cross-country technology gaps. Additional evidence

on the process of closing technology gaps is also reported by Castellacci (2011).

Castellacci and Archibugi (2008), using data from the ArCo database (Archibugi

and Coco 2004a, b, 2005) provide similar evidence over an analogous time period

but they include 131 countries in their analysis. The empirical analysis found in

works by Lechman (2012a, 2012b) reports on technology convergence exclusively

for Information and Communication Technologies, for 145 countries over the

period 2000–2010, and the technology convergence is tested adopting beta-,

sigma-, and quantile-convergence approaches.

Originally, the concept of ‘convergence’ referred to growing cross-country

cohesion in terms of economic development, approximated by per capita income

level. Thus, the conceptual background for technology convergence analysis is

derived from endogenous growth theories. These are explained in Sects. 3.4.1 and

3.4.2.

3.4.1 Convergence: Theoretical Specification

Following neoclassical growth theory (Solow 1956), countries follow a conver-

gence pattern heading for common equilibrium in per capita income (Barro and

Sala-i-Martin 1990; Barro et al. 1991, 1995). In other words, countries tend to

converge toward a ‘steady-state’ equilibrium, but they experience gradual

decreases in their rate of growth (Kangasharju 1999), however, under the rigid

assumption of identical cross-country growth rates. In other words, the convergence

process implies that initially poorer countries experience a relatively higher average

annual growth rate, and thus catch up with the rich ones. The idea that poor

countries tend to grow faster than rich ones is strictly attributed to Gerschenkron’s35

pioneering hypothesis of ‘relative backwardness’ (1960, 1962). Gerschenkron

argues that backward economies take advantage of their economic underdevelop-

ment36 and by assimilating technology spillovers into high growth rates they catch

up with the rich countries37 (Verspagen 1994). Thus, the Veblen-Gerschenkron

35Although in many works Alexander Gerschenkron is cited as the first to introduce the idea of

‘relative backwardness’, the term was also used by Thorsten Veblen (1915) and

Leibenstein (1957).
36 Similarly, Findlay (1978a), Baumol (1986) and Romer (1993) consider relative backwardness to

be a convergence facilitating factor.
37 Gerschenkron’s ‘relative backwardness’ idea (1962) was formalized in a model by Nelson-

Phelps (1966), who argued that the growth of technology in an economically backward country is

proportional to the gap between the backward country and the country using the most advanced

technological solutions (located close to the Technology Frontier Area) (Gomulka 2006).
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hypothesis links economic convergence38 with the initial size of the gap with world

technology frontiers (Stokke 2004)39; while Abramovitz (1986) points out that

backward countries have a potential for rapid advances, but he also stresses the

importance of social capabilities which can enhance or hinder the catching-up

process (Abramovitz 1989).

Technically speaking, convergence occurs if average annual growth rates are

inversely correlated with initial per capita income. A straightforward implication of

undisturbed convergence is that—in a long-term perspective—cross-country

disparities should inevitably be eradicated. If this is not the case, countries instead

experience divergence and the gap between ‘rich’ and ‘poor’ enlarges. Empirically,

the convergence can be tested using two standard approaches, namely sigma (σ)-
convergence and beta (β)-convergence. σ-convergence is exhibited once disparity

in per capita income decreases over time, which is measured by changes in the

standard deviation (absolute approach) or the coefficient of variation (relative

approach).40 The standard deviation for country i in country set n and year t is as
follows (Rodrik 2013; Thirlwall 2013):

σi, t ¼ 1

n

Xn

i¼1
log

yi
yx

� �� �2
" #1=2

; ð3:40Þ

if yx� 1
n

Xn

i¼1
log yið Þ, and y stands for per capita income. Over the period

analyzed, the σ-convergence hypothesis is verified positively if σi, t ! 0 is

satisfied.41 This approach to convergence testing, although very interpretive and

simple, has one main disadvantage: the standard deviation reveals a high sensitivity

to the inclusion of outliers in the country set tested, and additionally it does not

allow any causal mechanism provoking economic convergence among countries to

be captured.42

38 Productivity convergence.
39 Findlay (1978a), however, argues that the gap to the world technology frontier cannot be too
large, and countries located below a threshold value of the gap will not be able to catch-up

economically.
40 The coefficient of variation is highly useful in σ-convergence testing if two or more country

groups are compared in terms of their internal convergence.
41 If σ-convergence is tested with regard to the coefficient of variation, then the coefficient of

variation is
σi, t
ϑi, t
, where θi,t is the mean of the tested variable over the whole sample.

42 The σ-convergence hypothesis was tested, inter-alia, in works by de la Fuente (2003), Canaleta

et al. (2002), Rey and Dev (2006), Young et al. (2008), Egger and Pfaffermayr (2009), Garrido-

Yserte and Mancha-Navarro (2010), Schmitt and Starke (2011), Smetkowski and W�ojcik (2012),

Delgado (2013) and Thirlwall (2013).
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Following the neoclassical growth model (Sala-i-Martin 1995), the conditions

for absolute (unconditional) β-convergence can be formulated as a regression

equation43:

gi ¼ aþ bvi, t0 þ εi; ð3:41Þ
where i denotes the country, t0 is the initial year in the time span for the conver-

gence test, vi, t0 is the level of per capita income in t0 expressed as its natural

logarithm, and εi is a random error term. The coefficient b44 in Eq. (3.41) stands for
the convergence coefficient, indicating the speed of the process. Consider that, for

example, b ¼ 1:5, then one unit increase in ln vi, t0ð Þ provokes an average annual

growth in per capita income approximately 1.5 % higher in initially poorer

countries. For economic interpretation, the sign—positive or negative—of b is

crucial, since negative b indicates convergence (see Fig. 3.10), but positive

b means divergence, yielding growing disparities between countries. Formally, if

coefficient b ¼ 0, then neither convergence nor divergence is reported and the gaps

between countries are maintained over time.

Using the coefficient b from Eq. (3.41), the speed of convergence can be

estimated. Assume that over the given time period T ¼ 0 . . . . . . t, so that:

Initial ICT level

A
nn

ua
l g

ro
w

th
 ra

te
 o

f I
C

T

0

Initially poor country (P)

Initially rich country (R)
A(2)

A(1)

ICT (P)ICT (R)

Growth rate (R)

Growth rate (P)

Fig. 3.10 Unconditional

(absolute) convergence. Note:

the figure refers to

‘technology (ICT)

convergence’; P poor

country; R rich country

43 Conventionally, Eq. (3.41) is estimated applying OLS. However, if we relax the assumption that

the variables are normally distributed, the estimated coefficients might be biased and inefficient.

Koenker and Bassett (1978) suggest the adoption of non-parametric quantile regression to avoid

the problem. The quantile regression approach is highly useful when the original variable

distribution is highly skewed (asymmetric). Standard β-convergence estimates allow for assess-

ment of variable behaviour but are based on the conditional mean, while quantile regression

(q-regression, q-convergence) introduces estimates in non-central locations (Koenker 2004; Hao

and Naiman 2007). Using the quantile regression approach, it is possible to determine any number

of quantiles for estimation, which allows modelling of variable behaviour in any pre-defined

location of variable distribution.
44 Also explaining the partial correlation between a variable growth rate and its initial level.
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b ¼ � 1� e�βT
� �

: ð3:42Þ
By extracting β from Eq. (3.42), we obtain:

β ¼ �ln 1þ bð Þ=T; ð3:43Þ
where β indicates the rate at which convergence proceeds and countries head

toward a steady state of per capita income. Consequently, we calculate the time

span necessary for actual inter-country disparities to be halved:

HLi ¼ �ln 2ð Þ½ �=β: ð3:44Þ
Suppose that HLi is 10 years. This implies that if the current convergence rate is

maintained over the period the inter-country gaps will be halved within a 10-year

period.

The concept of unconditional convergence (both σ and β) is built on the rigid

assumption that the process of convergence is ‘automatic’ and is not

pre-conditioned by any country’s individual characteristics. However, it is reason-

able that the tendency of countries to converge (diverge) toward a steady state is

conditioned by factors unobservable from their absolute convergence (Galor 1996;

Quah 1996; Rodrik 2013). These can be technological development, social capital,

institutional constraints, culture or many others.45 The formalization of conditional

convergence, however, requires that Eq. (3.41), needs to be modified by adding a

vector (Vi) explaining a country’s individual features. Thus, the regression is

estimated as:

gi ¼ aþ bvi, t0 þ αVi þ εi; ð3:45Þ
with notation as in Eq. (3.41). The economic interpretation of b is analogous to that

in the case of unconditional convergence.

σ-, and β-convergence testing (both unconditional and conditional) is based on

econometric procedures with cross-sectional data application (de la Fuente 2000).

However, Bernard and Durlauf (1995) and Bernard and Jones (1996) argue that

convergence is a dynamic process. They suggest an alternative approach to conver-

gence analysis which is based on a time series.46 They claim that economies should

stochastically converge under the assumption that long-term growth forecasts for

each country are close to equal.47 Assume we have just two countries a and b, and

45 The body of evidence on conditional convergence is massive. Seminal contributions in the field

were made by, inter alia, Dowrick and Nguyen (1989), Barro and Sala-i-Martin (1990); Mankiw

et al. (1992), Quah (1993, 1999), Pritchett (1997), Del Bo et al. (2010), Schmitt and Starke (2011),

Barro (2012), and Yorucu and Mehmet (2014).
46 Also labelled ‘stochastic convergence’ (see i.e. McGuinness and Sheehan 1998).
47 The approach for convergence testing using a time-series has been applied in a multitude of

studies, e.g. using empirical evidence on inter-regional stochastic convergence, by inter alia,
Johnson (2000), Drennan et al. (2004), Alexiadis and Tomkins (2004), Herrerı́as and Monfort
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for both the long-run GDP per capita forecasts are equal. Thus, the condition for

absolute convergence can be expressed as (Bernard and Durlauf 1995):

lim
k!1

E ln GDPpcð Þa, tþk � ln GDPpcð Þb, tþk=Πt

� �
¼ 0; ð3:46Þ

where t denotes time and Π is the stock of information which is available at a given

point in time. The formula in Eq. (3.46), can be easily extended to any number of

countries in the sample for which the absolute convergence hypothesis is to be

tested.48

3.4.2 Convergence Clubs Hypothesis

Apart from the growing body of theoretical and empirical evidence on the conver-

gence process, the concept of ‘convergence clubs’ has emerged. It was initially

proposed and conceptualized by Baumol (1986) and consequently developed by

Baumol and Wolff (1988), and Baumol et al. (1989). The ‘convergence clubs’

hypothesis assumes that a sub-set of countries (of the full sample) experience

convergence49 and head toward a common steady state (Alexiadis and Tomkins

2004; Alexiadis 2013a), while the ‘rest’ of the countries are left outside the ‘club’

and gradually diverge. The general message is that convergence occurs only for a

subset of countries, while the ‘rest’ are excluded from the ‘very exclusive organi-

zation’ (Baumol 1986). Alexiadis and Alexandrakis (2008) argue that convergence

clubs arise as some economically backward countries do not satisfy certain initial

conditions and cannot fully realize their potential of catching-up with rich countries

(Easterly et al. 1993; Ocampo et al. 2007). Thus, a group of initially poor countries

grows at lower rates than rich countries, and the gap between the two increases.50

In the literature, there exist two main approaches providing a theoretical frame-

work for the detection of convergence clubs. The first one, proposed by Baumol

(1986), derives from the absolute convergence to ‘steady state’ approach (see, e.g.,

Barro and Sala-i-Martin 1990; Barro et al. 1991, 1995), and the second—developed

(2013), Lin et al. (2013); or inter-country stochastic convergence as in the works of Datta (2003),

Bentzen (2005), and Canarella et al. (2010).
48 The possibility of applying the formula in Eq. (3.46) to use it for absolute convergence testing,

however, is determined by specific econometric tests. The most commonly used for this purpose is

the Augmented Dickey Fuller test (1979, 1981), which introduces cointegration and unit root

procedures to the empirical analysis of time-series.
49 Generally in terms of β-convergence.
50 Quah (1997, 1999) argues that countries may form ‘coalitions’ and behave non-linearly in their

convergence patterns for three main reasons: countries’ behaviour along their development paths

are heavily preconditioned by other counties (e.g. by trade flows, human labour flows); countries

tend to specialize to boost economies of scale; and human capital, culture, social and absorptive

capabilities matter for development (see also Abramovitz 1989).
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by Chatterji (1992)—is based on ‘convergence in gaps’.51 Formally, the test for the

existence of convergence clubs in a set of countries consists in augmenting the

standard procedure for β-convergence testing (see Eq. (3.41)) by introducing the

square term of the explanatory variable. Inserting these square terms into Eq. (3.41),

generates the possibility of identifying multiple equilibria (Alexiadis 2013a) as the
convergence path exhibits non-linearities (Desdoigts 1999; Quah 1997, 1999;

Fiaschi and Lavezzi 2007; Artelaris et al. 2011). Following the theoretical specifi-

cation developed by Baumol (1986) and Baumol and Wolff (1988), the basic

condition for convergence club emergence is expressed in a quadratic model:

gi ¼ aþ b1vi, t0 þ b2v
2
i, t0

þ εi: ð3:47Þ

Equation (3.47) is an augmented version of the standard regression (see Eq. (3.41))

applied for β-convergence testing. The hypothesis on convergence clubs is

supported only in the case that the coefficients b1 and b2 emerge as negative and

positive respectively. The model defined in Eq. (3.47) has several important

implications. First, it shows that the convergence pattern with respect to a set of

countries might not be linear, and the convergence as such is identified only in a

subset of countries, while the rest are left behind (see Fig. 3.11). The function

defined in Eq. (3.47) reaches its maximum when the first derivative of Eq. (3.48)

reaches zero. Thus:

f ’gi,vi, t0
¼ dgi

dvi, t0
¼ 0: ð3:48Þ

Extracting vi, t0 from Eq. (3.48), gives the level of per capita income corresponding

to the maximum of the function in Eq. (3.47), which can be calculated as:

vthreshold ¼ �b1
2b2

: ð3:49Þ

The per capita income in (t0) calculated applying Eq. (3.49) stands for the ‘thresh-
old value’ (‘threshold condition’) (Alexiadis 2013a) and enables the identification

of convergence club members.

Thus, in the case of countries that initially exceed the ‘threshold value’ of per
capita income vi, t0 � vthreshold > 0ð Þ the relationship between the average annual

growth rate and the level of per capita income in (t0) is negative. Hence

β-convergence is confirmed, and they form a convergence club. However, for

51 The evidence on convergence club identification, mainly with respect to per capita income, can

be found in works by, inter alia, Ben-David (1994, 1998), Armstrong (1995, 2002), Dewhurst and

Mutis-Gaitan (1995), Fagerberg and Verspagen (1996), Verspagen (1997), Desdoigts (1999),

Baumont et al. (2003), Durlauf (2003), Su (2003), Canova (2004), Fischer and Stirb€ock (2006),

Le Gallo and Dall’Erba (2006), Alexiadis (2013b), Lechman (2012c), Song et al. (2013), Brida

et al. (2014) and Fischer and LeSage (2014)
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countries that were initially located below the ‘threshold value’ of per capita
income vi, t0 � vthreshold < 0ð Þ, the relationship between the average annual growth

rate and the level of per capita income in (t0) is positive and β-convergence is not
reported.52 Hence, these are left outside the club.

Following the original concept of technology gaps developed, inter alia, by
Gomulka (1971, 1986), Chatterji (1992) proposed a different approach to conver-

gence club detection. He argues that positive verification of the β-convergence
hypothesis is not sufficient for the reduction of gaps among countries. Cross-

country disparities may grow over time and thus convergence ‘in gaps’ is not

reported. The procedure proposed by Chatterji (1992) for the detection of conver-

gence clubs may be treated as an enriched and more sophisticated version of

σ-convergence. Its theoretical specification is the following. Assume we have a

set of countries over the period (t0 . . . . . ..T ) with a leading economy (L ). We

follow the rigid assumption that both in the initial and the terminal year the leading

economies remain unchanged. The gap (divide) between the L-economy and any

other country in the set is defined as (Chatterji and Dewhurst 1996; Kangasharju

1999):

Gi, t0 ¼ ln
Vleader, t0

Vi, t0

� �
; ð3:50Þ

in the initial year (t0), and in the terminal year (T ) it is:

Gi,T ¼ ln
Vleader,T

Vi,T

� �
: ð3:51Þ
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52 It is important to note that Baumol (1986) approach to convergence club identification is heavily

pre-conditioned by the initial level of per capita income.
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Following Kangasharju (1999), the condition for the identification of convergence

clubs in a given country set is defined as a three-equilibria model:

Gi,T ¼ Ψ 1 Gi, 0ð Þ þ Ψ 2 Gi, 0ð Þ2 þ Ψ 3 Gi, 0ð Þ3: ð3:52Þ
The third degree polynomial53 (Eq. 3.52) yields the existence of three different

equilibrium (see Fig. 3.12) satisfying Gi, 0 ¼ Gi,T . This also suggests that conver-

gence follows a cubic behaviour, and at every equilibrium the gap between econ-

omy i and economy L is constant.

Following Chatterji (1992) and Alexiadis (2013a), the steady-state values

(G1, t0 ! Equilibrium (1), G2, t0 ! Equilibrium (2), and G3, t0 ! Equilibrium (3))

that determine club membership are defined as:

G2, t0 ¼
�Ψ 2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ 2ð Þ2 � 4Ψ 3 Ψ 1 � 1ð Þ

q
�2Ψ 3

G3, t0 ¼
�Ψ 2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ 2ð Þ2 � 4Ψ 3 Ψ 1 � 1ð Þ

q
�2Ψ 3

ð3:53Þ

and G1, t0 is zero by definition.
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53 Cubic specification.
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Convergence behaviour and convergence club formation strictly depend on the

value Ψ 1. If Ψ 1 < 1, then countries with an initial gap lower than G2, t0 exhibit

convergence. Thus for a convergence club the gap between country i and economy

L is gradually decreasing. Conversely, countries with an initial gap between G2, t0

and G3, t0 are instead diverging from economy L and are excluded from the club,

increasing their distance to economy L. The most backward economies with an

initial gap aboveG3, t0 may converge, but only toward the third equilibrium point. If

Ψ 1 > 1, the situation is just the opposite. Countries exhibiting convergence

(forming convergence clubs) are those with an initial gap varying from G2, t0 to

G3, t0 , while countries with an initial gap below G2, t0 instead tend to diverge from

economy L. Again, the poorest countries, with initial gaps above G3, t0 , converge,

but toward the ‘lower’ equilibrium.
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sfähigkeit und Industrieller Wandel.

Grajek, M. (2010). Estimating network effects and compatibility: Evidence from the Polish mobile

market. Information Economics and Policy, 22(2), 130–143.
Grajek, M., & Kretschmer, T. (2012). Identifying critical mass in the global cellular telephony

market. International Journal of Industrial Organization, 30(6), 496–507.
Gray, V. (1973). Innovation in the states: A diffusion study.The American Political Science Review,

67(4), 1174–1185.
Griliches, Z. (1957). Hybrid corn: An exploration in the economics of technological change.

Econometrica, Journal of the Econometric Society, 25(4), 501–522.
Gruber, H., & Verboven, F. (2001). The evolution of markets under entry and standards regu-

lation—The case of global mobile telecommunications. International Journal of
Industrial Organization, 19(7), 1189–1212.

Hall, B. H., & Khan, B. (2003). Adoption of new technology (No. w9730). National Bureau of

Economic Research.

76 3 Technology Diffusion

http://dx.doi.org/10.1111/pirs.12104
http://dx.doi.org/10.1111/pirs.12104


Hao, L., & Naiman, D. Q. (2007). Quantile regression. Quantitative applications in the
social sciences (Vol. 149). Thousand Oaks, CA: Sage.

Hardin, R. (1982). Collective action (pp. 38–49). Baltimore: Resources for the Future.

Helpman, E. (Ed.). (1998). General purpose technologies and economic growth. Cambridge, MA:

MIT Press.

Herrerı́as, M. J., & Monfort, J. O. (2013). Testing stochastic convergence across Chinese

provinces, 1952–2008. Regional Studies. doi:10.1080/00343404.2013.786825 (ahead-of-

print).

Hoselitz, B. F. (1957). Noneconomic factors in economic development. The American Economic
Review, 47(2), 28–41.

Ireland, N., & Stoneman, P. (1986). Technological diffusion, expectations and welfare.

Oxford Economic Papers, 38, 283–304.
Jaber, M. Y. (Ed.). (2011). Learning curves: Theory, models, and applications. Boca Raton, FL:

CRC Press.

James, J. (2003). Bridging the global digital divide. Cheltenham: Edward Elgar.

James, J. (2011). Are changes in the digital divide consistent with global equality or inequality?

The Information Society, 27(2), 121–128.
Johnson, P. A. (2000). A nonparametric analysis of income convergence across the US states.

Economics Letters, 69(2), 219–223.
Kangasharju, A. (1999). Relative economic performance in Finland: Regional convergence, 1934‐

1993. Regional Studies, 33(3), 207–217.
Kapur, S. (1995). Technological diffusion with social learning. Journal of Industrial Economics,

43(2), 173–195.
Kapur, D. (2001). Diasporas and technology transfer. Journal of Human Development, 2(2),

265–286.

Karshenas, M., & Stoneman, P. L. (1993). Rank, stock, order, and epidemic effects in the diffusion

of new process technologies: An empirical model. The RAND Journal of Economics, 24(4),
503–528.

Karshenas, M., & Stoneman, P. (1995). Technological diffusion. In P. Stoneman (Ed.), Handbook
of the economics of innovation and technological change (pp. 265–297). Oxford: Blackwell.

Katz, M. L., & Shapiro, C. (1985). Network externalities, competition, and compatibility.

The American Economic Review, 75(3), 424–440.
Katz, M. L., & Shapiro, C. (1986). Technology adoption in the presence of network externalities.

The Journal of Political Economy, 94(4), 822–841.
Katz, M. L., & Shapiro, C. (1992). Product introduction with network externalities. The Journal of

Industrial Economics, 40, 55–83.
Keller, W. (1996). Absorptive capacity: On the creation and acquisition of technology in develop-

ment. Journal of Development Economics, 49(1), 199–227.
Keller, W. (2004). International technology diffusion. Journal of Economic Literature, 42(3),

752–782.

Kim, M. S., & Kim, H. (2007). Is there early take-off phenomenon in diffusion of IP-based

telecommunications services? Omega, 35(6), 727–739.
Kindleberger, C. P. (1995). Technological diffusion: European experience to 1850. Journal of

Evolutionary Economics, 5(3), 229–242.
Kingsland, S. (1982). The refractory model: The logistic curve and the history of population

ecology. Quarterly Review of Biology, 57(1), 29–52.
Koenker, R. (2004). Quantile regression for longitudinal data. Journal of Multivariate Analysis,

91(1), 74–89.
Koenker, R., & Bassett, G., Jr. (1978). Regression quantiles. Econometrica: Journal of the

Econometric Society, 84, 33–50.
Koski, H., & Kretschmer, T. (2005). Entry, standards and competition: Firm strategies and the

diffusion of mobile telephony. Review of Industrial Organization, 26(1), 89–113.

References 77

http://dx.doi.org/10.1080/00343404.2013.786825


Kubielas, S. (2009). Technology gap approach to industrial dynamics and sectoral systems of
innovation in transforming CEE economies (Working paper). Warsaw University.

Kucharavy, D., & De Guio, R. (2011). Logistic substitution model and technological forecasting.

Procedia Engineering, 9, 402–416.
Kudryashov, N. A. (2013). Polynomials in logistic function and solitary waves of nonlinear

differential equations. Applied Mathematics and Computation, 219(17), 9245–9253.
Kumar, V., & Krishnan, T. V. (2002). Multinational diffusion models: An alternative framework.

Marketing Science, 21(3), 318–330.
Kumar, U., & Kumar, V. (1992). Technological innovation diffusion: The proliferation of substi-

tution models and easing the user’s dilemma. IEEE Transactions on Engineering Management,
39(2), 158–168.

Kwasnicki, W. (1999). Technological substitution processes. An evolutionary model. Institute of

Industrial Engineering and Management, Wroclaw University of Technology.

Kwasnicki, W. (2013). Logistic growth of the global economy and competitiveness of nations.

Technological Forecasting and Social Change, 80(1), 50–76.
Lall, S. (1992). Technological capabilities and industrialization. World Development, 20(2),

165–186.

Le Gallo, J., & Dall’Erba, S. (2006). Evaluating the temporal and spatial heterogeneity of the

European convergence process, 1980–1999. Journal of Regional Science, 46(2), 269–288.
Lechman, E. (2012a). Technology convergence and digital divides. A country-level evidence for

the period 2000-2010. Ekonomia, Rynek, Gospodarka, Społeczeństwo, No. 31.
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