
Chapter 8

Microstructure in Plasticity,
a Comparison between Theory
and Experiment

Olga Dmitrieva, Dierk Raabe, Stefan Müller, and Patrick W. Dondl

Abstract. We review aspects of pattern formation in plastically deformed
single crystals, in particular as described in the investigation of a copper sin-
gle crystal shear experiment in [DDMR09]. In this experiment, the specimen
showed a band-like microstructure consisting of alternating crystal orienta-
tions. Such a formation of microstructure is often linked to a lack of con-
vexity in the free energy describing the system. The specific parameters of
the observed bands, namely the relative crystal orientation as well as the
normal direction of the band layering, are thus compared to the predictions
of the theory of kinematically compatible microstructure oscillating between
low-energy states of the non-convex energy. We conclude that this theory
is suitable to describe the experimentally observed band-like structure. Fur-
thermore, we link these findings to the models used in studies of relaxation
and evolution of microstructure.

8.1 Introduction

Plastically deformed single crystals often exhibit the formation of complex
microstructure [BHHK92, Han90, HBO10], where dislocations in the crystal
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arrange in intricate patterns. Since the creation and propagation of disloca-
tions ultimately mediates the plastic behavior of crystals, and these disloca-
tions interact through the elastic field and the local lattice distortion they
generate over many length scales, understanding the macroscopic plastic be-
havior of crystalline specimen is strongly dependent on understanding the
microstructure formation.

The seminal work by Ortiz and Repetto [OR99] introduced an incremen-
tal implicit time-stepping approach in order to study the evolution of plastic
deformation. In this approach, in each time-step, the sum of the stored elas-
tic energy and an incremental dissipation is minimized. The elastic energy
is usually assumed to be polyconvex, the dissipation in single crystals, how-
ever, is naturally non-convex: plastic deformation is easier in single-slip since
otherwise sessile atomistic products of dislocations on different slip planes—
so-called Lomer-Cottrell locks—form [RP99]. This non-convexity of the dis-
sipation potential due to latent- (or cross-)hardening is a candidate for the
description of plastic microstructure. Basically, the homogeneously deformed
state becomes energetically unfavourable, so the plastic strain oscillates be-
tween favourable energy wells in the dissipation potential, i.e., states of single
slip. This, however, can create long-range elastic effects which can only be
avoided if the generated microstructure is kinematically compatible, in the
sense that the plastic strain is the gradient of a continuous deformation. This
links the study of plastic microstructure to the study of Martensitic phase
transformations in shape-memory materials, where a non-convexity in the
elastic energy (due to the underlying phase transformation) is the source
of microstructure [BJ87]. In this context of phase transformations, sharply
delineated, laminated, zones of alternating deformation states are often ob-
served. At first glance, these laminates bear a striking resemblance to some
of the microstructure seen in experiments in single-crystal plasticity.

In [OR99], there is already a number of experimental studies referenced
in order to link such kinematically compatible laminates to observed plastic
microstructure in a more rigorous manner [RP80, JW84]. Many of these ex-
periments, however, were performed in fatigue, i.e., using repeated oscillating
small amplitude plastic deformation. The goal in [DDMR09] was to exam-
ine the pattern formation in a well-controlled single pass shear experiment,
thus bringing it closer to applications in deep-drawing and related industrial
deformation methods.

The remainder of this chapter is organized as follows. In section 8.2 we will
briefly review some approaches to the continuum modeling of microstructure
in crystal plasticity. Section 8.3 describes the experiment from [DDMR09].
We then offer some conclusions in the final section 8.4.
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8.2 Modeling Continuum Plasticity

The goal of this chapter is to test the underlying modeling assumptions
that are used, for example, in the studies of energy relaxation in [CDK13b,
CDK13a, CDK11, ACD09, CDK09] and in the studies of plastic evolu-
tion [HHK12, HK11, KH11] in continuum plasticity. We thus consider, in the
framework of multiplicative continuum plasticity, a deformation y : Ω → R

3,
for Ω ⊂ R

3, with appropriate boundary conditions. The deformation gradi-
ent F = ∇y is decomposed multiplicatively into an elastic contribution and
a purely plastic part (neither of which necessarily have to be kinematically
compatible) as

F = FelFpl.

For further discussion on the subject of multiplicative strain decomposition
see [RC14]. As mentioned in the introduction, we follow the approach by
Ortiz and Repetto [OR99] in studying a time-discrete problem instead of a
continuous time evolution problem. We will furthermore restrict ourselves
here to the analysis of microstructure formation in a single time step. A
suitable functional for such a time step now reads, with a suitable elastic
energy density Wel and a plastic dissipation Wpl,

E(y, Fpl) =

∫
Ω

Wel(Fel) +

∫
Ω

Wpl(Fpl). (8.1)

The assumption of strong latent hardening now leads to the assumption that
the plastic deformation necessarily has to occur in single slip only. Given a set

{mj}Mj=1 slip plane normals in the crystal and a set {bij}Nj

i=1 Burgers’ vectors
(orthogonal to mj , respectively) in each slip plane, we thus assume that

Wpl =

⎧⎨
⎩

0 if Fpl = Id+
∑M

j=1

∑Nj

i=1 γijbij ⊗mj ,

with γijγkl = 0 for i �= k or j �= l,
+∞ otherwise,

where we have (for simplicity) disregarded dissipation, which is small for
plastic deformation in single slip and introduced the single-slip side condition
as an infinite penalty on the energy. We remark that we expect that our results
in section 8.3 below would not change substantially if this side condition was
made somewhat less strict by introducing a hardening matrix with large off-
diagonal entries instead.

Commonly, a higher-gradient curl-type term is introduced to such an en-
ergy in order to account for geometrically necessary dislocations [Nye53,
Kon52, CG01]. Even with such an additional regularization (certainly also
without), one relaxation of the model that can immediately be performed
is that of considering a single-plane side condition instead of the single-slip
condition above. See [AD14] for more information. After this relaxation, the
plastic dissipation can be written as
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Wpl =

⎧⎨
⎩

0 if Fpl = Id+
∑M

j=1 sj ⊗mj ,

with sj ∈ m⊥
j and |sj | |sl| = 0 for j �= l,

+∞ otherwise,

(8.2)

The investigations in the aforementioned articles usually start with an en-
ergy of this kind, often assuming a limited number of slip systems (i.e., one
or two) and then studying further relaxation, evolution, or computational
problems [MRF10].

Our approach, as mentioned above, was somewhat different but comple-
mentary: we wanted to check whether a configuration admitting low en-
ergy can be found that reproduces observed microstructure. The experiment
performed and its outcome are described in the following section.

8.3 A Single-Pass Shear Deformation Experiment and
the Resulting Microstructure

This section is a review of material published in [DDMR09] and [DSDR10].
We briefly recapitulate the experimental methods and observations and then
answer the question posed at the end of section 8.2 by explicitly construct-
ing a low-energy microstructure that reproduces the experimentally observed
parameters.

8.3.1 Sample Preparation and Shear Deformation
Experiments

The specimens were cut by spark erosion from 99.98% pure copper single
crystals produced by the melt-grow method to a dimension of 3mm× 2mm
with a height of 10−15mm. They were then polished, first mechanically and
finally electrolytically. The specimen is illustrated in Fig. 8.1a.

The shear experiments were performed on a special miniaturized testing
device made by Kammrath Weiss GmbH (44141 Dortmund, Germany). The
specimen is fixed in a stable, centered position between two movable cross-
heads in the device. These cross-heads were sheared with respect to each
other at a rate of 5µm/s as measured by the machine extensometer, the load
was controlled to a maximal load value of 1 kN by the device’s load cell. For a
schematic of the position of the specimen in the device see Fig. 8.1a. As seen
in the figure, the freestanding part of the specimen has a length of 2.4mm.

To an accuracy of 0.5◦, the orientation of the undeformed single crystal spec-
imen in the device is (101)[121̄] with the shear load applied along the [121̄] di-
rection. Fig. 8.1b shows the shear load with respect to the crystal orientation
in the context of the relevant f.c.c. slip systems in the {111}-plane given by
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the normal of the applied shear load. Under the given loading conditions, there
are two primarily active coplanar slip systems with Schmid factors of maximal
magnitude.

8.3.2 Digital Image Correlation for Strain Mapping
and EBSD for Texture Mapping

In the course of the shear deformation, the strain on the surface of the sample
was measured using the digital image correlation (DIC) method. The basic
idea of this method is that an optical pattern (graphite spray for optical
decoration on white acrylic spray) is applied to the surface of the sample
and geometrical changes of this pattern are recognized by means of digital
image analysis. For DIC we used a GOM Inc. Aramis System (version 6.0.0-3)
with two digital cameras (CCD-1300, maximal resolution 1280 × 1024 pixels)
placed behind the testing device. The recording time for each frame was 1 s.

After the deformation of the specimen, the surface of the samples was
characterized structurally and crystallographically. In order to perform this
characterization, a scanning electron microscope (SEM)1 with a field emis-
sion gun operated at 15 kV was used. The microscope was equipped with
a detector for the imaging of backscattered electrons (BSE imaging). The
EBSD patterns were then recorded and evaluated by an EDAX/TSL EBSD

(a) (b)

Fig. 8.1 a: Specimen in the specimen holder. b: Illustration of the crystallographic
orientation of the specimen, displaying the slip systems (according to the Schmid-
Boas nomenclature (also used in [OR99]). From [DSDR10], c© IOP Publishing.
Reproduced by permission of IOP Publishing. All rights reserved.

1 The device used was a JEOL JSM 6500F microscope.
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System equipped with a Digiview camera. In the high-resolution EBSD mea-
surements the exposure time for each frame was set to about 0.5 s at the
smallest binning size, and for the calculation of the Hough transformation a
binned pattern size 240 × 240 and an angular spacing control of 0.5◦ were
chosen.

8.3.3 Outcome of the Single Crystal Shear
Deformation Experiments

Shear Deformation and DIC Analysis: The specimens were deformed
in simple shear up to a deformation of γ = 0.23 as measured in the machine
extensometer. The load/displacement dependence was recorded during the
shear deformation, the data can be seen in Fig. 8.2a. The digital images
of the initial and final deformation state as captured for DIC are shown in
Fig. 8.2b. A closer inspection of the DIC data of the deformed sample revealed
some strain concentration in the sample near the clamps and a large central
region of homogeneously deformed material.

This homogeneously deformed part of the sample was then examined more
closely. In particular, we found that it can be very well approximated by a
completely homogeneous deformation in simple shear with a shear magnitude
of γ = 0.20, but with a normal of shear rotated clockwise by ϕ = 4.5◦ from
the vertical direction.

Fig. 8.2 a: Stress/shear angle dependence obtained from the load/displacement
measurement (grey curve) and using the DIC method (black curve). b: Digital im-
ages of the sample surface decorated for the DIC method before (upper image) and
after the deformation (lower image). Image from [DDMR09], c©Elsevier. Reproduced
by permission of Elsevier. All rights reserved.



8 Microstructure in Plasticity, Theory and Experiment 211

Microstructural Characterization of the Sample: As mentioned above,
the specimen was analyzed in an SEM after deformation. The BSE micro-
graph of the single crystal sample is shown in Fig. 8.3a, with the direction
of the applied shear load indicated by the white arrows. Some glide bands
can be observed; their orientation in relation to the nearest plane trace of a
{111}-plane is indicated by a grey line. The central area containing the glide
bands was then analyzed using EBSD.

Fig. 8.3b shows the EBSD image of the deformed part of the crystal
recorded with a step size 2µm. The mismatch of orientation to the orien-
tation of an arbitrarily chosen point in the image is plotted. One can observe
a variation of the orientation within 3◦. The formation of a microscopic band
structure with a different orientation compared to the material in between
the bands can be observed from this map. The averaged orientation of the
sample in the image was used to calculate the the plane traces of the {111}-
slip planes displayed in the upper right hand corner of the image. The plane
trace of the {111}-slip plane containing the two slip systems with maximal
modulus of the Schmid factor (as illustrated in Fig. 8.1 above) is shown as
a black line in the center of the image. Comparing this direction with the
orientation of the microbands (illustrated by the grey line), a deviation of
approximately 7◦ can be determined. Note that the orientation of the mi-
crobands is not crystallographic. A further feature of the generated bands is

Fig. 8.3 a: BSE overview micrograph with white arrows indicating the applied
shear load. The black line is a plane trace of a slip-plane (i.e., a {111}-plane). b:
EBSD characterization of the local lattice orientation. The band-like structure can
be clearly observed here. In the upper right corner of the image, the set of {111}-
plane traces is displayed, and in the center the orientation of the laminates with
respect to the nearest {111}-plane trace is shown. The 7◦ mismatch between the
two is characteristic for the microstructure. From [DDMR09], used with permission.
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the additional substrcuture inside of the microbands (which are subdivided
by orthogonal lines). For an analysis of this substructure see section 8.3.5.

A high-resolution EBSD image is shown in Fig. 8.4a, taken with a step-size
of 0.1µm. Again, this image presents the local deviation of the orientation
with respect to a reference orientation. The grey scale displays that the crys-
tal lattice inside of the microbands is rotated by 3◦ in comparison to the
material outside. Fig. 8.4b, on the other hand, demonstrates the variation of
the the crystal orientation out of the defined crystallographic direction, which
is nearly parallel to the normal of the frontal face. The grey scale range is
the same as in Fig. 8.4a and displays no significant tilt on that order of mag-
nitude. We therefore conclude that the microbands’ orientation is rotated 3◦

clockwise with respect to the outside material and with a rotation axis that
is perpendicular to the front face of the specimen.

8.3.4 Energy Minimizing Microstructure

Our hypothesis is that a non-convexity in the energy landscape is the basic
mechanism underlying the formation of the patterns described in the previous
section. The idea, as pioneered by Ball and James [BJ87], is the following:
Consider the deformation of a body from a reference configuration Ω ⊂ R

3

Fig. 8.4 a: High resolution EBSD map showing the edge of a microband. The grey
scale indicates the the crystal orientation relative to a reference point. A graphical
illustration of the observed local lattice rotation is shown on the right hand side.
b: EBSD map of the same area showing the variation of the orientation away
from the normal direction (same scale as above). From [DDMR09], c© Elsevier.
Reproduced by permission of Elsevier. All rights reserved.
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by a sufficiently smooth function y : Ω → R
3 mapping each point in the

reference configuration to its current location. The free energy density of
this continuum body is given by a frame indifferent function W depending
on the deformation gradient F = ∇y. Assume now that the deformation
admits two preferred states (energy minima) F1 and F2. Due to material
frame indifference, the energy must not change under rigid body motions,
i.e., W (F ) = W (QF ) with Q ∈ SO(3). Assuming the body is elastically
rigid, a good free energy functional can be written as

W (F ) =

{
0 if F = QF1 or F = QF2 for Q ∈ SO(3),
∞ otherwise.

(8.3)

A natural question to ask now is which boundary conditions such a material
can accommodate in an averaged sense. After relaxing the elastic rigidity to a
strong growth away from the minima, one can also introduce small boundary
layers in the deformation. In general, this is an open question. However, it is
possible to give an interesting upper bound for the relaxation of such a non-
convex W . If one assumes that there exists an invariant plane between the
two minimizers of the energy, i.e., a plane that is deformed in the same way
by both deformation gradients, then one can alternate these two deformation
gradients to form a fine scale mixture known as a laminate. The condition
for this can be written in the following way: There must exist Q ∈ SO(3)
and a, n ∈ R

3 such that
QF1 − F2 = a⊗ n. (8.4)

In other words, modulo a rigid body motion, the difference between the de-
formation gradients must be a rank one matrix. Under these conditions, it is
possible to find a continuous, piecewise affine deformation y whose gradient
is at any point given either by QF1 or F2. Alternating these deformations
with volume fraction λ and 1 − λ results in affine boundary conditions of
the form λQF1 +(1−λ)F2 that can be accommodated by the material. This
situation is illustrated in Fig. 8.5.

To this end, we first determine the macroscopic strain of the sample, which
will act a side condition to minimizing an elasto-plastic energy functional. An
analysis of the DIC-measurement illustrated in Fig. 8.2 revealed a central,
homogeneously deformed section of the specimen with measured macroscopic
strain

U =

⎛
⎝0.9555 −0.0198 0.0445

1.1036 0.0198
0.9555

⎞
⎠ (8.5)

in the final deformation state. This calculation of the average strain assumed
that the deformation in the direction normal to the crystal surface was the
identity. Apart from this we only performed a basis change from the basis
used in the DIC measurement to the basis of the f.c.c. lattice.

Subsequently, a MATLAB program was employed to find a deformation
that satisfies the twinning equation (8.4) with the two deformation gradients
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Fig. 8.5 Lamination of a piecewise affine deformation: the two subdomains, Ω1

and Ω2, are deformed in an affine manner such that the resulting deformation y is
continuous. From [DDMR09], c© Elsevier. Reproduced by permission of Elsevier.
All rights reserved.

being simple shear in f.c.c. slip systems, while averaging to the strain (8.5)
from the measurement. The program simply employs a gradient flow method
for the magnitudes of slip in two specifically chosen slip systems with respect
to the elasto-plastic energy

E =

∥∥∥∥
√
(UP−1)T · (UP−1)− Id

∥∥∥∥
2

, (8.6)

where P = (1−λ)Q(γ1P1+Id)+λ(γ2P2+Id). Here, λ is the volume fraction
of one part of the laminate, P1 and P2 are the displacement gradients of the
two chosen slip systems, and Q is the lattice rotation as calculated in the
twinning equation (8.4). Equation (8.6) can be seen as a relaxation of the
energy in (8.3) allowing for elastic deformation.

As the main component P1 of plastic deformation we choose an equal
activity in the A2 and A6 slip systems (in the following, we refer to slip
systems by the Schmid-Boas nomenclature, also used in [OR99]). We note
that these slip systems are naturally compatible without a lattice rotation—
they are coplanar slip systems. Following [AD14], we thus consider coplanar
slip systems to be lumped into one.

For the secondary component of plastic deformation, there are a number
of different choices for a kinematically compatible complementary slip activ-
ity. Noting that we are solely looking for a low energy state, we restrict our
investigation to two particular possibilities, which guarantee kinematic com-
patibility independently of the choice of γ1 and γ2: first, an equal activity in
C1 and C5, and second, an equal activity in B4 and D4.

Which volume fraction is attributed to which slip is a further degree of
freedom in our construction. Using the histogram of the distribution of lat-
tice rotations on the whole homogeneously deformed part of the face of the
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crystal, we determined that one component of the microstructure occupies
approximately two thirds of the total area in the picture. This larger area can
now be associated with either the primary component or with the secondary
component of the plastic deformation. Note that from the experiments alone,
we can not determine this directly, since only the lattice orientation, and not
the shear strain was measured microscopically.

We note that if we find such a laminate as described above that also results
in a small energy E in (8.6), we immediately have found a deformation state
that admits a small energy in the plastic deformation model (8.1) with non-
convex dissipation of type (8.2) which averages to the given macroscopic
deformation. The reason is the following: the laminate of consisting of two
different plastic deformation states as constructed above is automatically
admissible with vanishing energy for (8.2). Furthermore, since the laminate
is itself a gradient (modulo rigid body motions), it does not require any elastic
strain to be made compatible. The only elastic strain appearing in (8.1) is
thus the strain from the inexact recovery of the given average strain, i.e., the
strain in the energy E in (8.6).

The parameters of the energy minimizers determined by the gradient flow
are displayed in Table 8.1. It can be observed that some of the slip-system
combinations yield lamination parameters (i.e., direction of the lamination
normal, and relative lattice orientation) matching very well the experimental
data. The resulting deformations are illustrated in Fig. 8.6, to be compared
with the EBSD-results.

Table 8.1 Results from the energy minimization algorithm used to find a low
energy laminate of slip systems recovering the average strain in (8.5). The value of
λ is the volume fraction of slip in P2. The values γi are the amount of slip in the
respective slip system, α is the (clockwise) angle of orientation of the lamination
normal with respect to the nearest 〈111〉-direction. The value β is the (clockwise)
angle of lattice misorientation. The value E is the energy at the minimizing state.
All rotations are exactly in the plane with normal [101].

Choice of λ γP1 γP2 α β E

slip systems

P2 = B4+D4 1/3 0.18 0.082 −7.5◦ 3.8◦ 5.0 · 10−6

P2 = C1−C5 2/3 0.28 −0.040 −6.3◦ 3.3◦ 5.0 · 10−6

8.3.5 An Analysis of the Substructure Within the
Lamination Bands

In Fig. 8.3 one can clearly see the formation of a substructure within the
microbands of an orientation variation of 1◦. The reasons for the formation
of this substructure were examined in [DSDR10]. There, a discrete disloca-
tion dynamics model was used to determine the equilibrium distribution of
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Fig. 8.6 Illustration of the two laminates from Table 8.1 that agree well with
the EBSD result from Fig. 8.3b. From [DDMR09], c© Elsevier. Reproduced by
permission of Elsevier. All rights reserved.

dislocations within the microbands. Given the boundary conditions of bend-
ing near the clamped edges of the specimen, the formation of domain walls
within the microbands in quantitative agreement with the observed orienta-
tion variation was found.

8.4 Conclusions

Here we presented the findings of a copper single crystal shear experiment
as published in [DDMR09, DSDR10], in relation to modeling plasticity mi-
crostructure by variational approaches. These experiments show that the the-
ory of kinematically compatible microstructures, in particular laminate mi-
crostructures, can indeed be used to predict the formation of microstructure
in plasticity. We demonstrated that there exist low-energy states consisting of
plastic laminates whose macroscopic deformation averages to the measured
macroscopic strain, while at the same time their microstructural properties
do match the measured properties of the local lattice orientation pattern-
ing. In this sense, our work justifies the energy minimization approach to
plasticity used for example in [CDK13b, CDK13a, CDK11, ACD09, CDK09,
HHK12, HK11, KH11].

A main question that remains open regards the evolution of such laminate
microstructures, in particular, whether those structures can arise in finite-
strain deformation, where the lamination normal depends on the amount
of shear. Some ideas for modeling the evolution of laminates have been ex-
plored in [KH11]. In this particular case, we see that during the course of
the deformation, only a minor change in the lamination normal was neces-
sary [DDMR09].
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