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Preface

The present volume presents research carried out within the research group FOR 797
“Analysis and computation of microstructure in finite plasticity” (MICROPLAST),
financed by the German Science Foundation (DFG). The research group was es-
tablished in 2007 and came to an end in 2015. During this period more that thirty
researchers contributed actively to this endeavor, organized in eight sub-projects.

The aim of MICROPLAST was to understand and model dislocation based mi-
crostructure formation and evolution in materials, and develop tools to compute it
effectively. This is important because plasticity determines a number of industrial
and natural phenomena, ranging from the deformation of the earth crust to form-
ing of metals. Most plastic processes are strongly influenced by the formation and
evolution of dislocation patterns and other plastic microstructures. Classical plas-
ticity models were able to make useful predictions without accounting for the mi-
crostructure, and focusing on a phenomenological understanding of the macroscopic
material response. These models have, however, strong limitations, concerning in
particular the transferability of the results, the applicability to large deformations,
to small samples, and the treatment of ageing and fatigue.

The foundation of MICROPLAST was inspired both by new mathematical and
modeling developments and by new experimental techniques. Around the turn of
the millennium novel variational concepts became available allowing to formulate
finite plasticity and associated microstructure formation within a rigorous and pow-
erful mathematical framework. The systematic variational formulation of the evo-
lution of internal variables via dissipation potentials and dissipation distances made
it possible to apply the concepts of relaxation theory and Γ -convergence, that were
originally developed for static problems, to the evolution of inelastic materials.

At the same time experimental techniques had advanced to a stage where it be-
came possible to perform in situ measurements of dislocation microstructures and
their evolution, thus giving valuable information for the development of the cor-
responding models. For this reason, MICROPLAST was established as an interdis-
ciplinary cooperation of scientists from the fields of mathematics, mechanics and
materials sciences, working closely together on a common goal.



VI Preface

This volume contains reports on the various achievements reached within
MICROPLAST. These range from experimental evidence on the mechanisms of
microstructure formation to micromechanical and multiscale models of these pro-
cesses. They include derivations of relaxed envelopes of non-convex energies using
novel developments of variational calculus, as well as full mathematical analysis of
the models established, and the development of suitable and fast numerical schemes.

It is our hope that we succeeded in giving an insight into a new developing field,
and that the readers will find the material in this volume interesting and beneficial
for their research.

The contributions in this volume have undergone an internal peer-review. We are
convinced that this process led to significant improvements in the papers contained
in this book.

Finally, we would like to thank the German Science Foundation for their generous
support and the always very pleasant and professional cooperation.

April 2015 Sergio Conti
Klaus Hackl
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Chapter 1
Numerical Algorithms for the Simulation
of Finite Plasticity with Microstructures

Carsten Carstensen, Dietmar Gallistl, and Boris Krämer

Abstract. This article reports on recent developments in the analysis of finite ele-
ment methods for nonlinear PDEs with enforced microstructures. The first part stud-
ies the convergence of an adaptive finite element scheme for the two-well problem
in elasticity. The analysis is based on the relaxation of the classical model energy
by its quasiconvex envelope. The second part aims at the computation of guaran-
teed lower energy bounds for the two-well problem with nonconforming finite ele-
ment methods that involve a stabilization for the discrete linear Green strain tensor.
The third part of the paper investigates an adaptive discontinuous Galerkin method
for a degenerate convex problem from topology optimization and establishes some
equivalence to nonconforming finite element schemes.

1.1 Introduction

Mathematical models in the framework of nonlinear elasticity for phase transforma-
tions in solids [BJ87, CK88, BJ92] and for elastoplastic deformations [CHM02]
lead to variational problems for which the existence of minimizers cannot be
obtained by the direct method in the calculus of variations, for further applications
and references see [CDK11, CDK13, CDK15] and the literature quoted therein.

Carsten Carstensen
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2 C. Carstensen, D. Gallistl, and B. Krämer

The infimization of the energy enforces oscillations of the infimizing sequence
on finer and finer scales called microstructures and converge only weakly but not
strongly. Typically the weak limit is not a minimizer of the original minimiza-
tion problem and has to be replaced by a generalized minimizer which involves
the gradient Young measure associated to the sequence of deformation gradients
[KP91, MŠ99].

The numerical simulation of problems of this kind is an onging challenging task
and a direct minimization of the nonconvex energy in a finite element space leads
to strongly mesh-dependent effects [Lus96, Chi00, Car01]. An alternative approach
is based on a minimization of the relaxed variational problem [Dac08] obtained
by replacing the energy density W by its quasiconvex relaxation W qc, that is, one
minimizes

Iqc(v) :=
ˆ
Ω

W qc(ε(v))dx−
ˆ
Ω

f · vdx among all v in A := uD +H1
0 (Ω ;R2) .

(1.1)
Here the function uD ∈H1(Ω ;R2) defines the Dirichlet boundary conditions for the
problem and the linear Green strain ε(v) is the symmetric part of the deformation
gradient Du. Since the energy density in the relaxed minimization problem satis-
fies the necessary convexity conditions in the vector-valued calculus of variations,
problem (1.1) allows for a minimizer in A . Moreover, any minimizer u character-
izes a macroscopic deformation of the original problem in the sense that there exists
a sequence (u j) j∈N which infimizes the energy of the original variational problem
and converges weakly to u. If this convergence is also strong in H1(Ω ;R2), then
the minimum of the energy is attained and u is a classical minimizer of the original
problem.

This approach is extremely appealing, if an explicit formula for W qc is known.
In this case one can construct for a given deformation gradient F , a corresponding
gradient Young measure ν with center of mass F which realizes the relaxed energy,
W qc(F) := 〈ν,W 〉 :=

´
R2×2 W (F)dν(F), and provides at the same time a represen-

tation for the stress variable σ(F) = DW qc(F) := 〈ν,DW 〉 :=
´
R2×2 DW (F)dν(F);

see [BKK00] and [CM02] for a discussion of the regularity of the stress variable. In
this way one obtains the associated stresses which are of fundamental importance
in engineering applications. A successful example of this approach in the numerical
analysis of a relaxed problem can be found in [CP97, CP01].

A posteriori error estimation for relaxed nonconvex problems or degenerate con-
vex problems typically encounters the reliability-efficiency gap [CJ03]. This means
that reliable a posteriori error estimators converge with a worse rate compared to the
true error and, hence, is not efficient: The efficiency index even diverges towards ∞.

The motivation of effective numerical simulations of microstructures in finite
plasticity arose in [CHM02], where it is shown that a typical time-step in finite
plasticity leads to a non convex minimization problem and that shear bands may
be seen as microstructures in the corresponding minimization process. The relax-
ation models in the post-modern calculus of variations [Dac08] appears as the only
feasible approach for a computer simulation in [Car01] and this provoked massive
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research on relaxation models of single- and multiple-slip systems and their time
evolution in this research group. The numerical treatment needs an extra justifica-
tion and, even if some convergence analysis arises naturally in [CP97] for a class
of convexified model problems, there remain severe open questions in the adaptive
mesh-refining [Car08] and in efficient and reliable error control [CJ03]. The math-
ematical understanding of the performance of the related discretization schemes
could not follow the lines of an implicit function theorem [CD04] because of the
too restrictive smallness and uniform polyconvexity assumptions. The latter at least
seemingly contradicts the concept of a related hull in finite plasticity. The research
of this project therefore started at the understanding of the convexified model prob-
lems of [CM02, CP97, Car08] and their generalization to polyconvex problems with
standard [CP97, Car08] and nonstandard discretization [CGR12] and a focus on
adaptive mesh-refining with a complete a priori and posterior error analysis.

In the first part of this paper, we outline the convergence analysis for the re-
laxation of the classical model energy in a two-dimensional setting for which the
relaxation was obtained in [Koh91, LC88, Pip91]; see (1.6) below for the precise
formula. From the point of view of numerical analysis, one striking advantage of the
relaxed minimization problem is that the macroscopic deformation u can, in prin-
ciple, be computed with a strongly convergent sequence of minimizers in suitable
finite element spaces. The reliability-efficiency gap does not prevent the conver-
gence proof of the associated stresses for a large class of variational problems with
energy densities that fail to be strictly convex [Car08].

The second part of this paper is devoted to the computation of guaranteed lower
energy bounds for the two-well problem of [Koh91, LC88, Pip91]. The nonconform-
ing finite element method serves as the main tool for deriving those lower bounds.

In the third part of the paper, we investigate a discontinuous Galerkin method for
a degenerate convex problem from topology optimization. The reliability-efficiency
gap motivated stabilized finite element methods (FEMs) [BC10, BC14] for degen-
erate convex minimization problems. The recent developments of [CL15] could im-
prove the reliability-efficiency gap with duality methods and nonconforming FEMs.
The discontinuous Galerkin method here appears as a natural choice of a stabilized
discontinuous method and this paper succeeds in establishing an equivalence to a
nonconforming finite element method. The conclusion in Section 1.6 connects the
research in this project with the achievements of this research group and contains
various open questions for future research.

1.2 Preliminaries and Notation

Let Ω ⊆ R2 be a bounded polygonal Lipschitz domain with outer unit normal ν
along the boundary ∂Ω . Let T be a regular triangulation of Ω into triangles in the
sense of Ciarlet, with edges F and vertices N . The interior (resp. boundary) edges
are denoted by F (Ω) (resp. F (∂Ω)). Analogously let N (Ω) denote the interior
vertices and N (∂Ω) denote the vertices on the boundary. The set of edges of a
triangle T ∈ T reads F (T ), the set of vertices of T is denoted by N (T ). For any
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T ∈ T let hT = diam(T ) and define the piecewise constant mesh-size function hT
by hT |T := hT . The length of an edge F ∈F is denoted by hF . For any interior edge
F ∈F (Ω), there exist two adjacent triangles T+ and T− such that F = ∂T+∩∂T−.
Let νF = (νF(1);νF (2)) denote the fixed normal vector of F that points from T+
to T−. For F ∈F (∂Ω), let νF denote the outward unit normal vector of Ω . The
tangential vector of an edge F is denoted by τF := (−νF(2);νF(1)). Given any
(possibly vector-valued) function v, define the jump and the average of v of across
F ∈F (Ω) by

[v]F := v|T+ − v|T− and 〈v〉F := (v|T+ + v|T−)/2 along F.

For a boundary edge F ∈F (∂Ω)∩F (T+), define [v]F := v|F − uD|F and 〈v〉F :=
(v|F + uD|F)/2 for the prescribed Dirichlet data uD.

For any T ∈T , the space of polynomial functions of degree at most k is denoted
by Pk(T ). The space of piecewise polynomials reads

Pk(T ) = {v ∈ L2(Ω) | ∀T ∈ T ,v|T ∈ Pk(T )}.

The piecewise action of the derivative D is denoted by DNC. The symmetric part
of the gradient reads ε := symD and its piecewise action reads εNC. The L2 projection
onto piecewise constants with respect to T is denoted by Π0.

Standard notation on Lebesgue and Sobolev spaces applies throughout this pa-
per; H−1(Ω) denotes the dual spaces of H1

0 (Ω). The space of smooth functions
with compact support in Ω is denoted by D(Ω). The L2 norm over the domain Ω
is abbreviated as ‖ · ‖ := ‖ · ‖L2(Ω). The L2 inner product reads (·, ·)L2(Ω). The inte-

gral mean is denoted by
ffl

. The space of real 2× 2 matrices reads M ≡ R2×2. The
symmetric part of a matrix A ∈M reads symA. The space of symmetric 2× 2 ma-
trices reads S := symM. The dot denotes the product of two one-dimensional lists
of the same length while the colon denotes the Euclidean product of matrices, e.g.,
a ·b = a
b ∈R for a,b ∈R2 and A : B = ∑2

j,k=1 A jkB jk for 2×2 matrices A, B. The
measure |·| is context-sensitive and refers to the number of elements of some finite
set or the length of an edge or the area of some domain and not just the modulus of
a real number or the Euclidean length of a vector.

1.3 Convergent Adaptive Finite Element Method for the
Two-Well Problem in Elasticity

In this section we outline the convergence analysis for the relaxation of the classical
model energy

W (E) = min
{1

2
〈C(E−A1),E−A1〉+w1 ,

1
2
〈C(E−A2),E−A2〉+w2

}
(1.2)

in a two-dimensional setting for which the relaxation was obtained in [Koh91, LC88,
Pip91]. see (1.6) below for the precise formula with given symmetric matrices A1
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and A2 called the wells. It turns out that the quasiconvex relaxation is in fact the
convex relaxation if and only if the two preferred strains A1 and A2 are compatible,
see [Koh91, Lemma 4.1] for necessary and sufficient conditions for compatibility.
The case of compatible wells was analyzed in [Car08] and therefore we focus on the
incompatible case in this paper. Moreover, we assume that the matrix A1−A2 is not
proportional to the identity matrix since in this case the uniqueness of minimizers
may be lost [Ser96, Remark 2.2]. Hence we assume that the eigenvalues η1 and η2

of the matrix A1−A2 satisfy
0 < η1 < η2 . (1.3)

We refer to the problem as nonconvex since for incompatible wells the relaxation is
not convex but quasiconvex.

1.3.1 Review of the Model Problem

In this subsection, we recall the model two-well problem following the discussion in
[CD14]. The starting point is the nonconvex energy density W for a two-dimensional
model in linear elasticity with linear kinematics for a phase transforming material
with two preferred elastic strains A1 and A2 ∈ S and elasticity tensor C for which

W (E) := min{W1(E),W2(E)} for all E ∈ S (1.4)

with suitable constants wj ∈ R and

Wj(E) :=
1
2
〈C(E−A j),E−A j〉+wj for j = 1,2. (1.5)

The focus lies on the classical case of an isotropic Hooke’s law with bulk modulus
κ > 0 and shear modulus μ > 0, i.e.,

CE := κ(trE)12×2 + 2μdevE for any E ∈ symM≡ S.

Since A1 and A2 are symmetric matrices, we may relabel the matrices in such a
way that the eigenvalues η1 and η2 of A1−A2 satisfy η1 ≥ |η2| and, after a suitable
change of coordinates, we may suppose that the eigenvectors are parallel to the coor-
dinate axes, i.e., A1−A2 = diag(η1,η2). It is well-established (see, e.g., Lemma 4.1
in [Koh91]) that A1 and A2 are incompatible as linear elastic strains if and only if
η2 > 0. The relaxed energy density W qc was computed by Kohn [Koh91], Lurie and
Cherkaev [LC88], and Pipkin [Pip91]. As mentioned, e.g., in [Koh91], Section 4,
the relaxation is piecewise quadratic and globally C1, and in the notation of this
reference given by the expression below. Define ν := (κ − μ)/μ as well as (for
j = 1,2)
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γ j := (κ− μ)tr(A1−A2)+ 2μη j and g :=
γ2

1

κ+ μ
=

γ2
1

μ(μ+ 2)
.

Let

P1 = {E ∈ S |W1(E)−W2(E)+ g/2≤ 0},
P2 = {E ∈ S |W1(E)−W2(E)− g/2≥ 0},
Prel = {E ∈ S | |W1(E)−W2(E)| ≤ g/2}.

The quasiconvex envelope of W [Koh91, Pip91, LC88] reads

W qc(E) =

⎧⎪⎨⎪⎩
W1(E) if E ∈P1,
W2(E) if E ∈P2,

W2(E)−
1

2g
(W2(E)−W1(E)+ g/2)2 if E ∈Prel

(1.6)

for any E ∈ S. This gives rise to the macroscopic energy

Iqc(v) :=
ˆ
Ω

W qc(ε(v))dx−
ˆ
Ω

f · vdx. (1.7)

Let
γ := μ(ν̃− (ν̃+ 2)γ2/γ1) for ν̃ := (κ− μ)/μ . (1.8)

The translated energy utilizes the shifted energy density

Φ(X) =W qc(symX)− γ detX for any X ∈M (1.9)

and amounts to

E(v) :=
ˆ
Ω
Φ(Dv)dx−

ˆ
Ω

f · vdx for any v ∈A .

It turns out [CD14] that this convex functional has (possibly non-unique) minimizers
in u ∈A which lead to a unique pseudostress τ := DΦ(Du).

1.3.2 Adaptive Algorithm

This section describes an algorithm for adaptive mesh-refining. The following para-
graphs are (in parts) a repetition of material published in [CD14].

Given an initial shape-regular triangulation T0, this scheme generates a sequence
of triangulations T� and corresponding finite element spaces V (�) which are shape-
regular depending on the initial configuration. In particular, all constants are inde-
pendent of �.
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1.3.2.1 INPUT

The input required by the numerical scheme is a shape-regular triangulation T0 of
the bounded domain Ω ⊂ R2, the associated finite element space V (0) = V (T0)
of continuous functions which are on all elements affine polynomials with values in
R2, and a fixed parameterΘ with 0<Θ < 1 for the marking strategy. For simplicity,
we assume that the Dirichlet condition uD is contained in V (0).

1.3.2.2 SOLVE and the Discrete Minimization Problems

Given the triangulation T�, � ∈ N0, with the corresponding discrete spaces V (�) =

V (T�) and V (�)
0 = V0(T�) on the level �, compute the discrete solution u� ∈ uD +

V (�)
0 ≡A� as the unique minimizer of the energy functional Iqc onA�. For simplicity,

we suppose that the discrete solution is computed exactly. Then, the discrete stress
is given by

σ� = DW qc(ε(u�)) ∈ L2(T�;S).

Note that DW qc is piecewise affine and globally continuous and hence globally Lips-
chitz continuous. Since ε(u�)∈P0(T�;S) is piecewise constant, so is σ� ∈ L2(T�;S).

1.3.2.3 ESTIMATE

Suppose that T+ and T− are two distinct triangles in T� with a common edge F =
∂T+∩∂T− ∈F�(Ω) of length |F |. The unit normal vector

νF = νT+ |F =−νT−|F along F

is defined up to the orientation which we fix as the orientation of the outer normal
νT+ of T+ along F . Given the discrete stress σ� = DW qc(ε(u�)) ∈ L2(T�;S) of the
previous subsection, the jump of σ� across the edge is defined as

[σ�]FνF = σ�|T+νT+ +σ�|T−νT− =
(
σ�|T+ −σ�|T−

)
νF along F.

Let F (T ) denote the set of the three edges of a triangle T ∈ T� and Fint(T ) =
F (T )\F�(∂Ω) the subset of interior edges. To each triangle T ∈ T� with area |T |
we associate the error estimator contribution η�(T ) given by

η2
� (T ) = |T |‖ f + divσ�‖2

L2(T) + |T |
1/2 ∑

F∈Fint (T)

‖[σ�]FνF‖2
L2(F).

The sum
η2
� = ∑

T∈T�

η2
� (T )

is indeed an error estimator for the accompanying pseudo-stress approximations
from the translated energy minimization problem, see [CD14]. However, the upper
bound η� of the pseudo-stress error is not sharp, the reliable error estimator η� is not
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efficient. This dramatic difficulty in the a posteriori error control is called reliability-
efficiency gap in [CJ03] and is caused by the degenerate convexity typically encoun-
tered in relaxed variational problems in the effective modelling of microstructures.

1.3.2.4 MARK and REFINE

Suppose that all element contributions (η2
� (T ) : T ∈ T�) defined in the previous

subsection are known on the current level � with triangulation T�. Given the input
parameterΘ ∈ (0,1) select a subset M� of T� (of minimal cardinality) with

Θη2
� ≤ ∑

T∈M�

η2
� (T ) =: η2

� (M�). (1.10)

This selection condition is also called bulk criterion or Dörfler marking [Dör96,
MNS02] and is easily arranged with some greedy algorithm.

Any marked element is bisected according to the rules in Figure 1.1 and further
mesh refinements may be necessary (e.g., via newest vertex bisection) such that
T�+1 is a refinement of T� with M� ⊂T� \T�+1.

Theorem 1.3.2 does not need the refinement with five bisections to obtain the
interior node property and may focus on green-blue-red or green-blue refinement
strategies.
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Fig. 1.1 Possible refinements of a triangle (up to rotations)

1.3.2.5 OUTPUT and Convergence Result

For a given triangulation T� the adaptive scheme generates the triangulation at the
next level T�+1 by a successive completion of the subroutines

SOLVE → ESTIMATE → MARK → REFINE (1.11)
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Based on the input triangulation T0, this scheme defines a sequence of meshes
T0,T1,T2, . . . and associated discrete subspaces

V (0)
� V (1)

� · · · � V (�)
� V (�+1)

� · · · � V = H1(Ω ;R2) (1.12)

with discrete minimizers u� ∈ uD +V (�)
0 , � ∈ N0. The main properties of this se-

quence of solutions are formulated in Theorem 1.3.1 and Theorem 1.3.2.

1.3.3 Convergence for the Deformation Gradient

The first main result of [CD14] shows strong convergence for three out of four
components in the deformation gradient. The fact that the last component cannot be
controlled is related to the degenerate convexity of the relaxed energy.

Theorem 1.3.1. Let u ∈ A be a minimizer of Iqc, and let uh be a minimizer of Iqc

in a finite element space uD +Vh,0 with uD ∈Vh and Courant finite element method
with respect to some shape-regular triangulation Th. Then there exist constants C1

and C2 which depend on the triangulation only through the shape-regularity such
that, in a suitable coordinate system with A1−A2 = diag(η1,η2),

‖∂1(u− uh)1‖H−1(Ω) + ∑
j,k=1,2;( j,k) �=(1,1)

‖∂k(u− uh) j‖

≤C1 min
vh∈uD+h,0

(
Iqc(vh)− Iqc(u)

)
.

If u ∈ H2(Ω ;R2) then

min
vh∈uD+Vh,0

(
Iqc(vh)− Iqc(u)

)
≤C2h‖D2u‖.

The second main result of [CD14] guarantees the convergence of the adaptive
mesh-refining process of 1.3.2.

Theorem 1.3.2. Suppose that the assumptions in Theorem 1.3.1 hold. Then the se-

quence (u�)�∈N with u� ∈ uD +V (�)
0 , � ∈ N0, computed by the adaptive scheme con-

verges with respect to the weak topology of H1(Ω ;R2) to the unique minimizer u
of the variational integral Iqc in the class of admissible functions A . Moreover, the
energies Iqc(u�) converge, i.e.,

lim
�→∞

Iqc(u�) = Iqc(u) = min
v∈uD+H1

0 (Ω ;R2)
Iqc(v) ,

and, in a suitable coordinate system with A1−A2 = diag(η1,η2), all components of
the deformation gradient except the (1,1)-component converge strongly L2(Ω), i.e.,
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‖∂1(u− u�)1‖H−1(Ω) + ∑
j,k=1,2;( j,k) �=(1,1)

‖∂k(u− u�) j‖→ 0 as �→ ∞.

One key ingredient in the proof is the observation [Koh91] that the relaxation of
the energy (1.4) can be written as the sum of a convex and a polyaffine function
which in the case at hand is a multiple of the determinant. This special structure
has, e.g., been used in [Ser96, Ser98] to obtain uniqueness results and regularity of
phase boundaries while our approach is in the spirit of the translation method which
has been widely used in homogenization theory to separate nonconvex terms with
special structure, usually polyaffine functions, from others terms. The key lemma of
[CD14] reads as follows.

Lemma 1.3.3 (convexity control). There exists some matrix D with the maxi-
mal eigenvalue ρ(D) such that the constant λ1 := max{1/(4(γ2

1 + γ2
2 )), 4ρ(D)}

satisfies

λ1|DΦ(A)−DΦ(B)|2 ≤Φ(A)−Φ(B)−DΦ(B) : (A−B) for all A,B ∈M.

Proof. The proof in [CD14, Theorem 4.1] leads to the existence of the constant λ1.
The matrix D and the new explicit expression of λ1 are derived in the appendix of
this paper. ��

1.4 Guaranteed Lower Energy Bounds for the Two-Well
Problem

The conforming finite element method from the previous section leads to upper
energy bounds. This section discusses the computation of guaranteed lower energy
bounds with nonconforming finite elements.

1.4.1 Nonconforming FEM and Discrete Energy Functional

The nonconforming P1 finite element space (also named after Couzeix-Raviart) is
defined by

CR1(T ) := {v ∈ P1(T ) | v is continuous in the interior edges’ midpoints}.

The space of nonconforming finite element functions that vanish in the boundary
edges’ midpoints is denoted by

CR1
0(T ) := {v ∈ CR1(T ) | v vanishes in the boundary edges’ midpoints}.

Set
CR1(T ;R2) := [CR1(T )]2 and CR1

0(T ;R2) := [CR1
0(T )]2.
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For a triangle T , the Crouzeix-Raviart interpolation ICR : H1(T )→ P1(T ) acts on
v ∈ H1(T ) through

ICRv(mid(F)) =

 
F

vds for all F ∈F (T )

and enjoys the integral mean property of the gradient

∇ICRv =
 

T
∇vdx. (1.13)

The following approximation property of ICR with the constantκ :=
√

1/48+ j−2
1,1 =

0.298234942888 is proven in [CG14].

Proposition 1.4.1 (Thm. 4 of [CG14]). For any v ∈ H1(T ) on a triangle T the
Crouzeix-Raviart interpolation operator satisfies

‖v− ICRv‖L2(T ) ≤ κhT‖∇(v− ICRv)‖L2(T ). ��

It is well-known that the classical nonconforming P1 FEM may be unstable for
problems involving the linearized Green strain tensor due to the lack of a discrete
Korn inequality. Indeed, the nonconforming FEM allows for configurations with
piecewise (infinitesimal) rigid body motions vh ∈ CR1

0(T ) such that DNCvh is a
nonzero skew-symmetric matrix field. The technique from [HL03] employs, with
some positive parameter α , the stabilization term

α ∑
F∈F

 
F
|[vh]F |2 ds.

The following discrete Korn inequality is proven in [HL03].

Proposition 1.4.2 (Proposition 2.2 of [HL03]). For any α > 0 there exists a posi-
tive constant C(α) which only depends on the shape-regularity in T such that any
vh ∈ CR1(T ) satisfies

C(α)−1‖DNCvh‖2 ≤ ‖εNC(vh)‖2 +α ∑
F∈F

 
F
|[vh]F |2 ds. ��

The discrete convex energy functional reads (for all vh ∈ CR1(T ;R2))

ENC(vh) :=
ˆ
Ω
Φ(DNCvh)dx+α ∑

F∈F

 
F
|[vh]F |2 dx−

ˆ
Ω

f · vh ds.

The discrete set of admissible functions reads

ACR := ICRuD +CR1
0(T ;R2)

and gives rise to the discrete problem
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uh ∈ argminvh∈ANC
ENC(vh).

Note that super-linear growth of ENC (and thus well-posedness of the minimization
problem) follows with Lemma 1.4.3 below provided α > 0 is sufficiently large (de-
pendent on γ). This restriction on α is required because the term in (1.9) involves
the determinant of quadratic growth.

1.4.2 Lower Energy Bounds

Let Cell = 2min{μ ,κ} denote the ellipticity constant that satisfies

Cell|E|2 ≤ |E|2C := E : CE for any E ∈ S. (1.14)

Lemma 1.4.3 (growth condition). The constants C1 := 2/Cell = max{1/μ ,1/κ}
and C2 :=C1 (max{|A1|C, |A2|C}−min{w1,w2− g/2}) satisfy, for any E ∈ S, that

|E|2 ≤C1W qc(E)+C2.

Proof. Let E ∈ S. In case that E ∈Prel, the definition of Prel yields |W1(E)−
W2(E)| ≤ g/2 and, hence,

1
2g

(W2(E)−W1(E)+ g/2)2 ≤ g/2. (1.15)

For any j = 1,2, the Young inequality reads

1
2
|E|2C−|A j|2C ≤ |E−A j|2C. (1.16)

The combination of (1.15)–(1.16) with the definition of W qc from (1.6) results in

1
2
|E|2C−max{|A1|C, |A2|C}+min{w1,w2− g/2}≤W qc(E).

The ellipticity (1.14) and elementary algebra conclude the proof. ��

Lemma 1.4.4 (Korn-type inequality). Any v ∈A satisfies

‖Dv‖2 ≤ 4‖ε(v)‖2 + 5‖DuD‖2. (1.17)

Proof. The Korn inequality

‖Dv‖2 ≤ 2‖ε(v)‖2 for any v ∈ H1
0 (Ω ;R2)

is an elementary consequence of the integration by parts formula. For a general
function v∈ A, the split v= v0+vD into v0 ∈H1

0 (Ω ;R2) and the harmonic extension
vD ∈A of the Dirichlet data uD|∂Ω leads to
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‖Dv‖2 ≤ 2‖ε(v0)‖2 + ‖DvD‖2.

The Young inequality 4ab≤ a2 + 4b2 for any (a,b) ∈ R
2 implies

0≤ ‖ε(v0)‖2 + 4‖ε(vD)‖2 + 4(ε(v0),ε(vD))L2(Ω).

Therefore,

1
2
‖ε(v0)‖2 ≤ ‖ε(v0)‖2 + 2‖ε(vD)‖2 + 2(ε(v0),ε(vD))L2(Ω) = ‖ε(v)‖2 + ‖ε(vD)‖2.

Hence, the elementary estimate ‖ε(vD)‖ ≤ ‖D(vD)‖ leads to

‖Dv‖2 ≤ 4‖ε(v)‖2 + 5‖DvD‖2.

Since the harmonic extension vD minimizes the H1 seminorm subject to the bound-
ary conditions uD|∂Ω , any other extension uD ∈ A provides the upper bound
‖DvD‖≤ ‖DuD‖. This proves (1.17). ��

Lemma 1.4.5. With the Friedrichs constant CF , the constants C1, C2 from Lemma
1.4.3, and γ from (1.8), any v ∈A satisfies

‖Dv‖2 ≤ 8C1E(v)+ 8γC1

ˆ
Ω

detDvdx+ 8|Ω |C2 + 16C2
1C2

F‖ f‖2 + 5‖uD‖2.

Proof. The Korn-type estimate (1.17), Lemma 1.4.3 and the definition of E imply

‖ε(v)‖2 ≤ C1

ˆ
Ω

W qc(ε(v))dx+
ˆ
Ω

C2 dx

= C1E(v)+C1

ˆ
Ω

f · vdx+C1γ
ˆ
Ω

detDudx+
ˆ
Ω

C2 dx.

The Friedrichs inequality with constant CF and the Young inequality prove

C1

ˆ
Ω

f · vdx ≤ C1‖ f‖‖v‖

≤ C1CF‖ f‖‖Dv‖ ≤ 2C2
1C2

F‖ f‖2 +
1
8
‖Dv‖2.

The combination of the foregoing displayed formulas proves the result. ��

Lemma 1.4.6. It holds

λ1‖DΦ(Du)−DΦ(DNCICRu)‖2 +ENC(uh)

≤ E(u)+κ‖hT f‖ ‖(1−Π0)Du‖+α ∑
F∈F

 
F
|[ICRu]F |2 dx.
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Proof. The discrete problem shows that

ENC(uh) = min
vh∈ACR

ENC(DNCvh)

≤ ENC(ICRu) (1.18)

= ∑
T∈T

ˆ
T
Φ(DNCICRu)dx+α ∑

F∈F

 
F
|[ICRu]F |2 dx−

ˆ
Ω

f · ICRudx.

Lemma 1.3.3 for A := Du and B := ICRu and an integration over T ∈ T lead to

λ1‖DΦ(Du)−DΦ(DICRu)‖2
L2(T ) +

ˆ
T
Φ(DICRu)dx

≤
ˆ

T
Φ(Du)dx+

ˆ
T

DΦ(DICRu) : D(u− ICRu)dx.

Since DΦ(DICRu) is constant on T , the projection property (1.13) shows that the
last term on the right-hand side vanishes. This, (1.18), and Proposition 1.4.1 lead to

λ1‖DΦ(Du)−DΦ(DNCICRu)‖2 +ENC(uh)

≤
ˆ
Ω
Φ(DNCICRu)dx+α ∑

F∈F

 
F
|[ICRu]F |2 dx−

ˆ
Ω

f · ICRudx

= E(u)+α ∑
F∈F

 
F
|[ICRu]F |2 dx+

ˆ
Ω

f · (u− ICRu)dx

≤ E(u)+κ‖hT f‖ ‖(1−Π0)Du‖+α ∑
F∈F

 
F
|[ICRu]F |2 dx. ��

Let Csr := maxT∈T h2
T/|T | be the shape-regularity constant.

Theorem 1.4.7 (guaranteed lower energy bound). Any v ∈A and

C( f ,v) :=

(
8C1E(v)+ 8γC1

ˆ
Ω

detDvdx+ 8|Ω |C2 + 16C2
1C2

F‖ f‖2 + 5‖uD‖2
)1/2

satisfy
ENC(uh)≤ E(u)+C( f ,v)(κ ‖hT f‖+ 3αCsr/π2).

Proof. For any v ∈ A , the term
´
Ω detDvdx does not depend on the particular

choice of v but only depends on the boundary data uD. Hence, the combination
of Lemma 1.4.5–1.4.6 leads to

ENC(uh)≤ E(u)+κ‖hT f‖C( f ,v)+α ∑
F∈F

 
F
|[ICRu]F |2 ds.
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For any edge F ∈F , the Poincaré inequality along F and the the trace inequality
[DE12, eqn (1.42)] reveal for the edge patch ωF that

 
F
|[ICRu]F |2 dx≤ π−2hF‖∂ [ICRu]F/∂ s‖2

L2(F) ≤ π−2Csr‖DNCICRu‖2
L2(ωF )

.

The sum over all edges in F and Lemma 1.4.5 conclude the proof. ��

Remark 1.4.8. The efficiency of the lower bound is topic of ongoing research. In
particular, the requirement of a sufficiently large stabilization parameter α leads to
an additive shift in the lower bound. The numerical tests below will investigate the
dependence for a model situation.

1.4.3 Guaranteed Error Control for the Pseudo-stress

This section presents an application to guaranteed a posteriori error estimates for
the pseudo-stress. Let τ := DΦ(Du) and τh := DΦ(DNCuh) denote the exact and
discrete pseudo-stress.

The computable a posteriori error estimator for ‖τ − τh‖ utilizes the conform-
ing companion operator J3 : CR1(T )→ P3(T )∩H1(Ω) from [CS15, Lemma 3.3]
which satisfies, for any vh ∈ CR1(T ) and any T ∈T , that

ˆ
T
(vh− J3vh)dx = 0 and

ˆ
T

DNC(vh− J3vh)dx = 0.

Proposition 1.4.9 (guaranteed a posteriori error estimate). The exact minimizer
u∈A of E and its pseudo-stress τ := DΦ(Du) and the discrete minimizer uh of ENC

with discrete pseudo-stress τh := DΦ(DNCuh) satisfy

λ1‖τ− τh‖2 ≤ 2

(
ENC(uh)−E(u)+

ˆ
Ω

f · (uh− J3uh)dx

)
+

1
λ1
‖DNC(uh− J3uh)‖2.

Proof. The convexity control from Lemma 1.3.3 for A := DNCuh and B := Du and
an integration over Ω lead to

λ1‖τ− τh‖2 ≤
ˆ
Ω
Φ(DNCuh)dx−

ˆ
Ω
Φ(Du)dx−

ˆ
Ω
τ : DNC(uh− u)dx

= ENC(uh)−E(u)+
ˆ
Ω

f · (uh− u)dx−
ˆ
Ω
τ : DNC(uh− u)dx.

The projection property of the companion operator J3 and the discrete Euler-
Lagrange equation reveal
ˆ
Ω
τ : DNC(uh− u)dx =

ˆ
Ω
(1−Π0)τ : DNC(uh− J3uh)dx+

ˆ
Ω

f · (J3uh− u)dx.
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The combination of the foregoing two displayed formulae with the Cauchy inequal-
ity results in

λ1‖τ− τh‖2 ≤ ENC(uh)−E(u)+
ˆ
Ω

f · (uh−J3uh)dx+‖(1−Π0)τ‖‖DNC(uh−J3uh)‖.

The Young inequality reads

‖(1−Π0)τ‖‖DNC(uh− J3uh)‖ ≤
λ1

2
‖(1−Π0)τ‖2 +

1
2λ1
‖DNC(uh− J3uh)‖2.

The first term on the right-hand side can be absorbed to obtain the claimed
estimate. ��

Remark 1.4.10. The term ENC(uh)−E(u) in the estimate of Proposition 1.4.9 can be
estimated with the guaranteed lower energy bound of Theorem 1.4.7.

1.4.4 Numerical Experiments

This subsection numerically investigates the performance of the guaranteed lower
energy bounds on the square domain and the Γ -shaped domain.

1.4.4.1 Numerical Realization

The material parameters under consideration read (cf. [CP00])

κ = 137, μ = 70, A1 =

[
0.3 0
0 −0.1

]
, A2 =

[
−0.1 0

0 −0.5

]
, w1 = w2 = 0.

The reference energy (referred to as “exact energy”) stems from a computation
with P1-conforming finite elements on uniformly refined meshes and Aitken ex-
trapolation. The numerical experiments have been carried with the Matlab routine
fmincon.

In this simple model situation the problem appears to be well-posed for any
choice of α > 0, with constants that deteriorate as α → 0.

1.4.4.2 Square Domain

Let Ω = (0,1)2 be the square domain with f ≡ 0 and Dirichlet data

uD|∂Ω (x1,x2) :=

{(
0, 1

10(1− 2|x1− 0.5|)
)

if x2 = 1,

(0, 0) else.

The guaranteed lower energy bounds are displayed in Table 1.1. The exact energy
reads 73.8253.
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Table 1.1 Guaranteed lower energy bounds for the square domain. The exact energy reads
73.8253

√
2×h= 1 2−1 2−2 2−3 2−4 2−5 2−6

α = 1 5.2755 8.02748 13.3979 24.7867 36.6346 43.458 46.2624
α = 0.1 31.5893 31.8635 32.5132 35.0702 42.4706 54.2174 63.6917
α = 0.05 33.0521 33.1891 33.518 34.8862 39.5763 49.7449 60.9973

1.4.4.3 Γ -Shaped Domain

Let Ω = (−1,1)2\
(
[0,1]× [−1,0]

)
be the Γ -shaped domain with f ≡ 0 and Dirich-

let data

uD|∂Ω (x1,x2) :=

{(
0, 1

10 (1−|x1|)
)

if x2 = 1,

(0, 0) else.

The guaranteed lower energy bounds are displayed in Table 1.2. The exact energy
reads 103.9553.

Table 1.2 Guaranteed lower energy bounds for the Γ -shaped domain. The exact energy reads
103.9553.

√
2×h= 1 2−1 2−2 2−3 2−4 2−5 2−6

α = 1 21.1156 26.2638 37.2546 49.6945 58.2414 62.2028 63.6278
α = 0.1 56.2229 56.8688 59.367 66.5721 78.4894 89.545 96.0492
α = 0.05 58.1715 58.499 59.8371 64.3799 74.4118 86.5119 95.5195

1.4.4.4 Discussion of the Computational Results

In the numerical experiments, the problem seems to be stable for any α and the
guaranteed lower bound becomes sharper for smaller values of α . On the other
hand, the discrete Korn constant deteriorates for small α which implies that also
the mesh-size h is required to be very small in order to achieve the lower energy
bound. This effect can be observed in the numerical experiments, where the choice
of α = 0.1 outperforms the lower bound for α = 0.05 on the triangulations under
consideration.

1.5 Discontinuous Galerkin Method for Degenerate Convex
Minimization Problems

This section discusses a discontinuous Galerkin FEM discretization for a degenerate
convex model problem from topology optimization.
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1.5.1 Optimal Design Benchmark

The optimal design problem analyzed here is to seek the distribution of two materials
of prescribed amount for maximal torsion stiffness of an infinite bar of given cross
section Ω . The volume fraction of the materials is given by the parameters 0≤ μ1 ≤
1 and μ2 := 1− μ1.

The mathematical analysis of this problem [BC08] leads to the minimization
problem

min
v∈H1

0 (Ω)
E(v) with E(v) :=

ˆ
Ω

W (Dv)dx−F(v). (1.19)

Since the problem is not convex, it is not clear from the beginning if there exists
any solution u for the problem at all. The non-convex nature of the original problem
leads to the occurrence of microstructures. In the prototypical numerical simulation
of Figure 1.2 one observes the arrangement of the two materials in an interior region,
a boundary layer and small transition layer between the two regions. These transition
layers are the microstructures, in which we can only determine the amount of each
material but not their position. The solution u describes the macroscopic, space-
averaged state. The relaxation of problem (1.19) employs the convex envelope E∗∗

and leads to the degenerate convex minimization problem

sup
λ∈R

min
v∈H1

0 (Ω)
E∗∗(λ ,v), (1.20)

Fig. 1.2 Example of microstructures. The colour indicates the volume fraction between the
two materials.
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where λ is the Lagrangian parameter for the volume constraint of the two materials.
Kohn and Strang [KS86a, KS86b, KS86c] proved that the original problem (1.19)
and the relaxed form (1.20) are equivalent. The functional E∗∗(v), defined for a fixed
λ , has the form

E∗∗(v) :=
ˆ
Ω

W ∗∗(Dv)dx−
ˆ
Ω

f vdx, (1.21)

with the convex envelope W ∗∗ of W . The energy density W (F) := gλ (|F |) is de-
termined by the (scalar) stored energy function gλ (t) depicted in Figure 1.3 and
defined by

gλ (t) :=

⎧⎨⎩
μ2(t2/2−λ ) for t ≤ t1√

t1t2μ1μ2t−λ (μ1 + μ2) for t1 ≤ t ≤ t2
μ1(t2/2−λ ) for t2 ≤ t

.

The minimization problem with (1.21) can be analyzed with the direct method
of the calculus of variations [Dac08] leading to possible non-unique minimizers
u of the problem (1.19). It can be shown [CP97, Fri94] that the stress-field σ :=
DW (Du), which is also an interesting macroscopic quantity for the given problem
itself, is unique in the sense that two solutions u1 and u2 have equal σ . Furthermore,
local regularity of σ ∈ H1

loc(Ω) holds on polygonal domains while there is global
H1 regularity of σ in case of a smooth boundary [CM02].

Fig. 1.3 The stored energy function gλ (t) for λ = 0.2, μ1 = 1 and μ2 = 2.
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1.5.2 Discontinuous Galerkin Methods

The recent work [CL15] focuses on duality techniques based on mixed and non-
conforming FEMs for the optimal design problem. In the DG-FEM the continuity
condition over the edges is relaxed even more when compared with nonconforming
FEMs, namely that there is no continuity condition at all. This leads to a situa-
tion where the values in the nodes of the triangulation can be multi-valued. This is
schematically shown in Figure 1.4, where the black corners in the triangle symbol-
ize that at each node multiple values are possible depending on the actual triangles
T ∈ T (Ω) to which the node belongs. Let T be a shape-regular triangulation of
the bounded Lipschitz domain with polygonal boundary Ω . The DG-FEM space V0

is then defined by

Fig. 1.4 Discontinuous Galerkin FEM

V (T ) := P1(T ) and V0(T ) := {v ∈V (T ) : v|∂Ω = 0}.

The functions in the trial space are not continuous and thus there exists jump
terms in the distributional gradient, meaning that any continuous test functions φ ∈
[D(Ω)]2 and v ∈ H1(T ) (the space of piecewise H1 functions) satisfy

ˆ
Ω

vdivφ dx =−
ˆ
Ω
φ ·∇NCvdx+ ∑

F∈F (Ω)

ˆ
F
φ · [v]Fds.

1.5.3 Lifting Operator R

The lifting operator R maps H1(T ) into P0(T ;R2). It is defined for all v ∈ H1(T )
and τ ∈ P0(T ;R2) by

ˆ
Ω

R(v) · τdx =− ∑
F∈F (Ω)

ˆ
E
[v]FνF ds · 〈τ〉F .
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The discontinuous Galerkin (dG) method proposed here with the penalty param-
eter η > 0 employs the discrete energy functional

EdG(v) :=
ˆ
Ω

W (DNCv+R(v))dx−F(v)+η ∑
F∈F (Ω)

∣∣∣∣ 
F
[v]F ds

∣∣∣∣2 . (1.22)

The term η∑F∈F (Ω) |
ffl

F [v]Fds|2 penalizes big jumps over interior edges. The lifting
operator R is needed to guarantee convergence of the numerical scheme, because
of inconsistencies in the distributional gradient of functions that are not globally
continuous. The discontinuous Galerkin FEM seeks udG ∈V0(T�) such that

uh ∈ argmin{EdG(vh) : vh ∈V0(T�)}. (1.23)

The existence of discrete minimizers follows from growth conditions. In par-
ticular, any discrete minimizer uh is characterized by the discrete Euler-Lagrange
equation

ˆ
Ω

DW (DNCuh +R(uh)) ·∇vhdx+η ∑
F∈F (Ω)

 
F
[uh]F [vh]Fds = E(vh). (1.24)

1.5.4 Connection with the Nonconforming Method

The following arguments employ the averaging operator I∗CR : H1(T )→ CR1
0(T )

defined, for any v ∈ H1(T ), by
 

F
I∗CRvds =

 
F
〈v〉F ds for all F ∈F (Ω).

This operator gives rise to the following explicit representation of the lifting
operator R.

Lemma 1.5.1. Any vh ∈H1(T ) satisfies

DNCvh +R(vh) = I∗CRvh.

Proof. The proof is an elementary consequence of the piecewise integration by
parts. ��

The following theorem establishes a connection between the dG method and the
nonconforming P1 method.

Theorem 1.5.2. Let uh be a minimizer of (1.23). Then uCR := I∗CRuh minimized EdG

over CR1
0(T ),

uCR ∈ argmin{EdG(vCR) : vCR ∈ CR1
0(T )}.
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Proof. Lemma 1.5.1 and the Euler-Lagrange equation (1.24) imply
ˆ
Ω

DW (DNCI∗CRuh) ·∇vCRdx = F(vCR) for all vh ∈V0(T ). (1.25)

This is the Euler-Lagrange equation for the Crouzeix-Raviart function uCR := I∗CRuh.
This caracterizes all the discrete minimizers and, hence, uCR is a minimizer of
EdG. ��

1.5.5 Adaptive Finite Element Method

The AFEM is based on the following refinement indicator. Given a discrete mini-
mizer u� = uh(T�) ∈V0(T�) define, for any T ∈T�,

η2
� (u�,T ) := ‖hT f‖2

L2(T) + ∑
F∈F (T )

h−1
F ‖[u�]F‖2

L2(F).

This motivates the following adaptive mesh-refining.
Input: Marking parameter 0 < θ ≤ 1, initial mesh T0

Set: For �= 0,1,2,3, . . . do

1. Compute a discrete minimizer u� ∈ argminEdG(V0(T�))
2. Compute refinement indicators (η2

� (u�,T ) : T ∈ T�)
3. Generate a set of marked elementsM� ⊆T� such that

∑
T∈M�

η2
� (u�,T )≤ θ ∑

T∈T�

η2
� (u�,T )

4. Generate a T�+1 with newest-vertex bisection based on the marked set M as in
§ 1.3.2.4.

end do

1.5.6 Computational Experiments

A convergent adaptive finite element method (AFEM) in its primal form was in-
troduced in [BC08] and a convergent adaptive mixed finite element method in
[CGR12].

AFEMs refine the mesh locally to save degrees of freedom and thus reduce the
computational cost when compared to a uniform overall mesh-refinement.

The numerical experiments consider two different domains, namely theΓ -shaped
domain and the slit domain displayed in Figure 1.5.
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Fig. 1.5 Γ -shaped domain and slit domain

1.5.7 Γ -shaped Domain

The Aitken interpolation for the minmum energy of the problem leads to the refer-
ence energy E =−0,244309.

Fig. 1.6 Decay of the energy error δ� versus number degrees of freedom on the Γ -shaped
domain

The domain Ω2 has a reentrant corner at the origin which presumably limits the
regularity of the exact solution. Therefore, a higher resolution of this area is neces-
sary in order to obtain optimal approximations. The above error estimator in Figure
4.6 for the stress error behaves also like N−1/2 = h. Thus, linear convergence rates
for the error bound is obtained. A local refinement towards the corners and the reen-
trant corner in the origin is observed, leading to an improvement convergence rate
for the energy error δ�. In total, the numerical results show clearly that the AFEM-
algorithm converges for the domain Ω . Furthermore, the energy error converges
with a better rate for the adaptive mesh.

The microstructures show the expected structure, namely an interior region, a
boundary layer and small transition layer between the two regions.
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Fig. 1.7 Microstructures for T7 of Ω2

1.5.8 Slit Domain

The Aitken interpolation for the minimum energy of the problem yields EA =
−0,161548.

Fig. 1.8 Energy error δ� versus number degrees of freedom for the slit domain
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Fig. 1.9 Microstructures for T7 of Ω3.

A strong local refinement towards the reentrant corner is observed. This leads to
an improved convergence rate for the energy error because of the same reason men-
tioned for domain Ω2. In total, the numerical results show clearly that the AFEM-
algorithm converges for the domain Ω .

The microstructures show the expected structure, namely an interior region, a
boundary layer and small transition layer between the two regions.

1.6 Conclusions and Outlook

The application of discontinuous Galerkin methods was motivated by stabilization
techniques in [BC10, BC14] with penalty terms which imitate the surface energy in
microstructures. Therein, at least the underlying data structures suggest to utilize the
discontinuous Galerkin methods and their first applications in this work have been
successful in the sense that those can be used for relaxed problems – at least when
the relaxation hull is convex. However, the proposed scheme with its relation to non-
conforming finite element methods lead to the alternative use of nonconforming or
mixed finite element schemes and their discrete modification as in [CL15, CGR12].
This may finally lead to close the reliability-efficiency gap in the a posteriori error
analysis, typically encountered when relaxation hulls are not strictly convex [CJ03].
There remains an open question for future research whether a refined efficiency
analysis can provide sufficient conditions for this gap’s closure.

The applications of post-modern calculus of variations and the power of the re-
laxation theory has been demonstrated throughout the research group and, for in-
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stance, led to relaxations of single-slip systems which can be employed in a rigor-
ous computer simulation with a mathematical foundation that has to be developed.
One amongst the many challenges is that the relaxed energy, thought even poly-
convex in many cases, involves a non high-dimensional convex minimization on
the discrete level where globally-convergent fast solvers are unknown and urgently
needed. Despite the progress in [CD14], analyzed within this project, the first con-
tribution ever towards the mathematical foundation of the numerical analysis with
a relaxed and non-convex minimization problem, the treatment of pointwise con-
straints on the determinant is not justified. There are many heuristics, which are
reasonable for other linearized problems and justifiable for very smooth solutions
and strictly convex problems, that may be adopted. Their mathematical foundation
remains as an open issue for future research that may enable the rigorous numerical
treatment of the relaxation hulls in single- and multiple-slip systems arising in the
enforced microstructures in plasticity. The nonstandard discretisation thereof may
or may not enable upper and lower bound of the effective energy as in [CL15] in the
future. The first attempts in this paper illustrate that this is feasible in principle but
the interaction of Korn’s inequality with the constraints on the determinant are not
fully understood and suggest modifications of the strategy and the development of
new discretisations and algorithms for future research.

Within the scope of finite plasticity, there remain various open questions when it
comes to the time-evolution [HHM12, HM12, GKH15, Mie15]. For relaxation for
time dependent plasticity, see [KK11]. One difficulty is the lack of strong conver-
gence of the strain approximations and related internal variables even within one
time-step. Even from the modeling point of view it is unclear whether a relaxation
plus a stabilization via a surface energy or via higher-order model may be helpful.
The generalization of [BC10, BC14] to non convex but polyconvex problems is one
possibility to overcome those difficulties in the future.

The overall mathematical foundation of the various effective mathematical mod-
els developed within the research group for the microstructures in finite plasticity in
total remains an open question. This project has provided partial answers towards
this ultimative but open goal of the justification of a computer simulation in that
important class of applications in computational calculus of variations.
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Appendix A. Computation of λ1

This section is devoted to the explicit calculation of the constant λ1 from Lemma 1.3.3.
The quadratic form T : M→ R reads

T (F) :=
1
2
|symF |2C−

1
2g

(
symF : C(A1−A2)

)2− γ detF for any F ∈M.

Throughout this appendix, identify M with R
4 via(

a b
c d

)
�→ (a,b,c,d).

Straightforward calculations prove for any E ∈ S that

CE = AE for A :=

⎡⎢⎢⎣
κ+ μ 0 0 κ− μ

0 2μ 0 0
0 0 2μ 0

κ− μ 0 0 κ+ μ

⎤⎥⎥⎦ .
Any F ∈M satisfies

detE = E
BE for B :=

⎡⎢⎢⎣
0 0 0 1/2
0 0 −1/2 0
0 −1/2 0 0

1/2 0 0 0

⎤⎥⎥⎦ .
Furthermore,

(
symF : C(A1−A2)

)2
= E
CE

for C :=

⎡⎢⎢⎣
η2

1 (κ+μ)+η2
2 (κ−μ)+4κη1η2 0 0 (η1 +η2)

2(κ2 +μ2)
0 0 0 0
0 0 0 0

(η1 +η2)
2(κ2 +μ2) 0 0 η2

1 (κ−μ)+η2
2 (κ+μ)+4κη1η2

⎤⎥⎥⎦ .
This implies

T (F) = E
DE for D :=
1
2

A1/2− γB− 1
2g

C.

The derivative DT at F ∈M acts on any G ∈M as

DT (F ;G) = 2F
DG.

The matrix D is symmetric an, hence, has 4 real eigenvalues. The largest eigenvalue
ρ(D) of D satisfies

|DT (·;A)−DT(·;B)|2 = |2D(A−B)|2 ≤ 4ρ(D)T (A−B).
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Hence, the constant λ3 of [CD14, display after (4.8)] equals 4λmax
D . The con-

stant λ1 of [CD14] therefore reads λ1 = max{1/(4(γ2
1 + γ2

2 )), 4λmax
D } as stated in

Lemma 1.3.3. ��
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Chapter 2
Variational Modeling of Slip: From Crystal
Plasticity to Geological Strata

Sergio Conti, Georg Dolzmann, and Carolin Kreisbeck

Abstract. Slip processes are soft modes of deformation, characteristic of a variety
of layered materials. The layers can be at the atomic scale, as in the plastic defor-
mation of crystalline lattices, or on a macroscopic scale, as in stacks of cards or
sheets of paper and geological strata. The characteristic deformation processes in-
volve sliding of the layers over one another, leading to a shear deformation with a
specific orientation. If the forcing is not parallel to the layers, complex microstruc-
tures may form, which have a remarkable similarity over different systems and often
consist of alternating shears of different sign. We review here recent results on the
detailed analysis of slip processes in crystal plasticity based on the theory of re-
laxation, discuss the general variational framework for these microstructures, and
compare with available experimental results in different systems. We then address
the situation in which slip in several different directions may coexist in the same
system, as frequently observed in plastically deformed crystals.

2.1 Introduction

Plastic deformation of crystals can be modeled as a combination of slip processes
along specific directions, referred to as slip directions or slip systems, which depend
on the crystallographic structure of the material under consideration. In an experi-
mental set-up, typically only a few different slip systems are active at the same time
and it is not uncommon to observe only one active slip system. This fact is related
to the effect of latent (or cross) hardening, which penalizes deformations involving
slip along more than one slip system at the same material point. Macroscopic plas-
tic deformations are realized at a microscopic scale by fine mixtures of slip along
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different directions in different parts of the sample, see [OR99, CHM02, MSL02]
for a modern energetic mathematical formulation of these mechanisms.

The orientation of these microstructures is to a large extent geometrically deter-
mined, the microstructures themselves can be understood as a variant of a buckling
phenomenon, in which the neighboring layers impede each other. The geometric
nature of the instability leading to the microstructure can be elucidated by estab-
lishing relations to and comparisons with other systems undergoing slip processes.
Even though the physical processes behind pattern formation are quite different and
involve widely different length and time scales, one observes striking geometric
similarities.

In this report, we review recent progress in this area and draw a parallel between
the subgrain microscale in materials science and macroscopic patterns in other sys-
tems briefly introduced in Section 2.2 below. In particular, we point out similarities
between the formation of laminates in elasto-plastic materials due to external load-
ing and the appearance of periodic kink band structures observed in rock strata under
tectonic compression [PC90], see Sect. 2.2.1, and in compressed stacks of sheets of
paper which are laterally confined [HPW00], see Sect. 2.2.2. We note that there
are many other systems which exhibit similar structures, such as fiber reinforced
elastomers, see for example [BF94, Fle97, PGPR09, SPC14].

Our approach to the mathematical description and analysis of these effects is
energetic in nature. The investigation of variational integrals with nonconvex energy
densities in the framework of the calculus of variations in general and nonlinear
elasticity in particular offers an approach to the study of spontaneous appearance of
microstructure in materials [Dac07, Mül99]. Elasto-plastic deformations involving
a mixture of phases at different scales appear naturally as elements of minimizing
sequences. More specifically, we restrict our attention to the fundamental aspect of
the formation of single layers and to the response of layered materials to applied
external forces. By a layered material we mean a material that consists of relatively
stable layers, which are weakly coupled to one another. Typical examples include
a deck of cards or a stack of sheets of paper. A crystal lattice can also be seen
as a layered material with respect to several different orientations related to the
crystallographic structure of the material. The assumption that only one orientation
is relevant permits a substantial simplification of the analysis, focusing on a specific
type of microstructure.

A general theoretical explanation for the development of fine structures from a
variational viewpoint is that the system energy is not quasiconvex, and that struc-
tures at scales much smaller than the macroscopic length scale under considera-
tion may reduce the energy of the system and are therefore energetically favorable
[Mor52, Mor66]. Since these fine structures are known to have a crucial impact
on the behavior of the system on the larger scale, it is important to determine the
effective material response. This is the subject of the mathematical theory of relax-
ation [Dac07, Mül99], and we review some aspects of this theory in Section 2.4
as well. Recently interest has been also directed to an extension of this approach
to time-dependent microstructures [KK11, HHM12], we refer to [Mie15, GKH15]
for recent reviews. The concrete implementation of relaxation theory to problems in
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plasticity is still in its beginnings and will be a subject of important future research,
we refer to [CGK15] for a review of the current state of the art.

Following the general discussion of the underlying concepts of relaxation theory,
we review case studies in which the theoretical approach has been successfully ap-
plied. Our starting point are variational models in crystal plasticity with one active
slip system, for which we refer to Section 2.5. The effective behavior of these mod-
els in the geometrically nonlinear setting was studied in [CT05, Con06, CDK13a,
CDK13b, ACD09]. It turns out that the underlying relaxation mechanisms are based
on simple laminates, which identifies them as the optimal structures also observable
in experiments, see Sect. 2.2.3.

Based upon these results, we draw parallels between microstructures in plasticity
and microstructures in the related systems described in Section 2.2. In fact, this en-
ergetic model transfers to the context of geological strata if the physical quantities
are reinterpreted in a suitable way, see Sec.2.5.4 for details. In this sense, the simple
laminated structures observed in elasto-plastic materials translate into chevron pat-
terns for layered sedimentary rocks. Moreover, the results obtained by the foregoing
analogy are in good agreement with experiments on the folding of a stack of paper
under high compression parallel to the layers, see Section 2.2.2 for a description
of the experimental set-up and results. The variational viewpoint outlined in Sec-
tion 2.5.4 gives a new perspective on and complements the existing models in the
field. A discrete model, which we describe in more detail in Section 2.3 and which
serves us as a comparison, was introduced in [HPW00] and further developed and
extended in [WHP04, WVHY12].

This report is concluded in Section 2.6 with an extension of the results to sit-
uations with multiple active slip systems, which correspond to different crystallo-
graphic orientations. This situation leads to a new type of microstructure, in which
slip along different systems may interact. The richer set of possible microstructures
renders the relaxation more demanding, indeed up to now a full relaxation has only
been achieved in the case of two slip systems with hardening [CDK13b]. We present
a partial relaxation result for the case of three slip systems at 120-degrees angles,
which may be seen as a first step towards the analysis of the set of slip systems
which appear in fcc or bcc crystals, details will be given elsewhere [CD]. A full
relaxation result in a geometrically linear setting was obtained in [CO05].

2.2 Experimental Observation of Slip Microstructures in
Nature

In this section we present three different material systems in which laminated
structures can be observed. More specifically, we refer to chevron folds in rocks,
kink band structure in stacks of sheets of papers under compression and layers at
microscopic scales in single-slip crystal plasticity.
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Fig. 2.1 Chevron folds, Cornwall, UK. From Wikipedia [Sma].

2.2.1 Chevron Folds in Rocks

Chevron folds are a characteristic structure which is often observed in stratified
rocks, as for example turbidites, as illustrated in Fig. 2.1. These rocks have been
formed by sedimentation and contain alternating layers with different mechanical
properties. They can be visualized as a stack of layers, which are alternating strong
and weak, as for example sandstone layers separated by shales. The observed zigzag
patterns can be understood as originating from flat layers after longitudinal compres-
sion and a superimposed single, macroscopic rotation.

2.2.2 Kink Bands in Stacks of Paper under Compression

Fig. 2.2 shows an experiment on kink banding in layered structures [HPW00], which
is often used as a simple reference for the effects happening in the geological context.
The set-up is such that the specimen consisting of a pile of papers confined by flexible
faces is compressed in the direction of the layers. The lateral confinement prevents
the paper from macroscopically buckling away from the initial configuration.

Depending on the intensity of the load, different phases and regimes can be dis-
tinguished. The observation is as follows, referring for definiteness to the case of
flexible confinement, (b) in Fig. 2.2. In the first stage of compression, slip in small
bands appears (first picture). These bands have an orientation of about 20 degrees
from the plane normal, in both directions (second picture). The bands where slip oc-
curs are separated by large regions in which the material has not undergone slip and
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Fig. 2.2 An experiment with compression of a stack of paper. Reproduced from [HPW00,
Fig. 2] with permission by Elsevier.

the layers are simply translated to the left or to the right. With increasing compres-
sion the bands expand, reducing the size of the regions with no slip (left picture in
the bottom line). Ultimately, the entire sample has undergone slip, in both possible
directions (central picture in the bottom line). The overall structure is periodic and
has sharp kinks between approximately affine regions.
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m

s

Fig. 2.3 Atomistic view of a slip system and analogy with deck of cards. In this figure, s= e1
and m = e2.

Fig. 2.4 Experimental pictures using a combination of digital image correlation and elec-
tron backscattering defraction. Reproduced from [DDMR09, Fig. 5] with permission from
Elsevier. We also refer to [DRMD15] in this volume for an explanation of the experimental
techniques and detailed findings.

2.2.3 Simple Laminates in Shear Experiments in Crystal
Plasticity

Plastic deformation of crystals is due to the sliding of neighboring atomic planes
with respect to each other, mediated by the motion of dislocations. It can be de-
scribed by the slip plane normal m, the slip direction s (two mutually orthogonal
unit vectors) and the amount of slip γ (a scalar), see Fig. 2.3. Macroscopically, the
corresponding deformation gradient is a simple shear, Id+γs⊗m.

The discrete symmetry of the crystal leads to the presence of few relevant slip
systems, which normally correspond to the most densely packed planes and to the
shortest interatomic distances inside these planes. In experiments, one typically ob-
serves that locally only one slip system is active, which is explained by a mecha-
nism of cross hardening in the system. This may lead to complex microstructures,
in which different simple shear deformations are mixed to generated macroscopic
deformations which are not simple shear, see Fig. 2.4. Mathematically, these mi-
crostructures can be understood via a variational model within the deformation the-
ory of plasticity [OR99, CHM02, MSL02], which is appropriate under monotonic
loading conditions.
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2.3 The Hunt-Peletier-Wadee Model for Kink Bands

In this paragraph we summarize the experimental observations and the mathemat-
ical models, which have been presented in a two-dimensional model originally in-
troduced by Hunt, Peletier and Wadee in 2000 [HPW00]. This model focuses on the
reproduction of the early stages of kink-band formation, in particular the develop-
ment of the first single kink-band, see Fig. 2.2. For further developments we refer
to [WVHY12, BFA98, BEH03, WHP04, HORL11, DPBH12] and the references
therein.

The starting point is the idea that the observed strain concentration is not due to
plastic yielding inside the layers, but results predominantly from the interplay of the
following three effects: layer-parallel stiffness, lateral confinement, and (Coulomb)
friction between the layers. In the geological situation described in Section 2.2.1,
the overburden pressure plays the role of the lateral confinement. On the one hand,
the layer-parallel stiffness provides energy storage that leads to a jump phenomenon
observed at the beginning of the experiment, when the first kink-band forms. On
the other hand, interlayer friction creates the lock-up states of a kink, which cor-
respond to the experimental observation that a single kink once formed is stable
and keeps on folding towards a maximal angle. The lateral confinement is respon-
sible for chevron folds being favorable structures. Indeed, sharp kinks are optimal
in the sense that they keep the voids between the layers as small as possible, and
hence reduce the work against the lateral confinement, while at the same time they
do not cost too much bending energy. For a single kink, this modeling assumption
is motivated by a rigorous variational argument in [HPW00, Appendix]. This argu-
ment gives a reason for the appearance of kink-like microstructures. It is based on
one-dimensional kinematics and does not, therefore, address the issue of the two-
dimensional geometry of the folds.

Resting upon the three pillars outlined above, Hunt, Peletier and Wadee [HPW00]
developed (under a few a priori assumptions like fixed kink-band width) a simple
model that approximates bending structures with discrete linear segments connected
by inline springs, forming a hinge with sharp corners and straight limbs, and takes
external loading into account. One building block with the acting forces is depicted
in Fig. 2.5.

The potential energy E of the system is the sum of the energy contributions of the
single hinge segments. These again are composed of the (elastic) potential energy
Ek of the spring with stiffness k in the hinge (with neutral state of parallel limbs), the
(pseudo)energy contribution Efr due to interlayer friction, as well as the work Wlc

and Wl against the lateral confinement and the external loading, respectively. These
assumptions lead to

E = Ek +Efr−Wlc−Wl. (2.1)

An explicit computation minimizing the system energy yields the equilibrium states
of this system. A stability analysis by means of the global Maxwell stability criterion
casts light on the jump phenomenon that leads to the emergence of the first kink.
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Fig. 2.5 A hinge segment with acting forces. Reproduced from [HPW00, Fig. 2] with
permission from Elsevier.

In conclusion, this model provides good explanations for the effects observed in
the experiment of Fig. 2.2, and opens the road for further investigations needed to
clarify additional aspects. Firstly, the model focuses on the early stages up to the
formation of the first kink. An extended discussion of the development of the first
few kink-bands, among other modifications and improvements to the basic model,
is given in [WVHY12]. We also refer to [BFA98], where the focus lies on kink-band
evolution, especially on band broadening and transverse kink-band propagation in
fiber composites. Secondly, the energy in (2.1) relies on the hypothesis that kinks
form, as well as on a priori assumptions on the character of the kinks. The condi-
tion of fixed kink-band width is relaxed in both [WVHY12] and [BFA98], where
it results from a minimizing procedure after adding a bending energy to the model,
which leads to an intrinsic length scale.

2.4 Variational Modeling of Microstructure

In the following, we briefly review a general variational framework for the study of
the spontaneous appearance of periodic microstructures in materials. The starting
point is the observation that lack of convexity of energy densities in variational
principles may cause oscillations of minimizing sequences; the fundamental tools
are quasiconvexity and the theory of relaxation, which permits to understand the
asymptotic behavior of minimizing sequences. We refer to [Mül99, Dac07, Rou97]
for a more detailed presentation. We shall later discuss in Section 2.5 its application
to layered materials, including crystal plasticity and the experiment on paper sheets
presented in Fig. 2.2.

Spontaneously formed microstructures in materials can in many cases be under-
stood as the physical realization of minimizing sequences for variational integrals
which may not have minimizers, as for example in the large body of work on marten-
sites, see [BJ87, CK88, BJ92, Mül99]. Indeed, the lack of a suitable convexity prop-
erty of the integrand leads to a failure of lower semicontinuity of the variational
functional with respect to the relevant topology. Consequently, the direct method in
the calculus of variations, which is based on lower-semicontinuity, cannot be applied
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to prove the existence of minimizers subject to appropriate boundary conditions. In
this situation, a study of the minimizing sequences gives valuable information about
the behavior of the system under consideration. Simple problems, like the one pro-
posed by Young [You69], which is frequently referred to as the sailor’s problem,
illustrate that oscillations can help to further reduce the energy.

A typical variational problem is given by

E(u) =
∫
Ω

W (∇u(x)) dx→min, u ∈D = u0 +W 1,p
0 (Ω ;Rn), (2.2)

where Ω ⊂ R
n, W : Rn×n → R is a continuous function with p-growth, i.e., there

exist p ∈ (1,∞) and constants c, C > 0 such that

c|F |p−C≤W (F)≤C(1+ |F|p) for all F ∈ R
n×n .

Here u0 ∈W 1,p(Ω ;Rn) represents given Dirichlet boundary data. An important ad-
ditional assumption on W in continuum mechanics is the assumption of material
frame invariance, i.e., that W (RF) =W (F) for all R ∈ SO(n) and all F ∈Rn×n.

The appropriate concept of convexity for variational functionals depending on
gradient fields is quasiconvexity, as introduced by Morrey [Mor52, Mor66]. Under
the p-growth conditions stated above, quasiconvexity of W is a necessary and suffi-
cient condition for lower semicontinuity of E with respect to weak convergence in
W 1,p. If W is quasiconvex, the direct method proves that (2.2) has solutions. Here we
say that the function W is quasiconvex if among all possible local microstructures
with affine boundary conditions Fx the homogeneous affine configuration u(x) =Fx
is optimal, in formulas

W (F) =

∫
(0.1)n

W (∇u) dx≤
∫
(0,1)n

W (F +∇ϕ) dx (2.3)

for all ϕ ∈W 1,∞
0 ((0,1)n;Rn) and all F ∈ Rn×n. If W fails to be quasiconvex, re-

laxation theory [Dac07] suggests to replace (2.2) with the corresponding effective
problem, in which the local structures are already averaged out so that it describes
the macroscopic response of the system. Precisely, the relaxed problem is given by

E rlx(u) =
∫
Ω

W qc(∇u(x)) dx→min, u ∈D . (2.4)

Here W qc denotes the quasiconvex envelope of W , meaning the largest quasiconvex
function below W . Under the foregoing assumptions, it is known that

inf
u∈D

E(u) = min
u∈D

E rlx(u),

meaning that relaxation preserves the total energy of the system. Moreover, there is
a one-to-one correspondence between minimizers of E rlx and W 1,p-weak limits of
minimizing sequences for E . An additional benefit of the knowledge of the relaxed
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Fig. 2.6 Energy reduction by convexification through microstructure. Left panel: if the en-
ergy is not convex, the average C of two states A and B may have higher energy than the
average of the energies of A and B. It is then energetically convenient to replace C by a fine-
scale mixture of A and B, if kinematically possible. Right panel: this decomposition is often
sketched as a “splitting” of C into A and B. See Fig. 2.7 for a sketch of one possible kinematic
realization of the splitting, in the situation that A−B is a rank-one matrix.

problem is that it allows for numerical simulations of elastic materials without a res-
olution of all the fine scale oscillation and may lead to a significant reduction of the
computational costs [Car01, CDD02]. The main difficulty, however, is to find an ex-
plicit representation for W qc. In fact, this amounts to solving an infinite-dimensional
minimization problem and requires a good idea of the optimal microstructures gov-
erning the relaxation process. So far, a full analytical relaxation has been found only
for very few special examples, see for instance [Koh91, DD02, CD14b].

In continuum mechanics, the condition of non-interpenetration of matter is often
included by requiring that W (F) is infinite whenever detF ≤ 0. In order to avoid
infinite compression of materials one also adds the assumption that W (F) diverges
to infinity if detF↘ 0. Obviously, the p-growth conditions formulated above cannot
hold for energy densities with these physically relevant properties and the general
theory of relaxation cannot be applied. An extension of this theory with a suitable
definition of W qc and appropriate growth conditions has been recently obtained, see
[KRW13, CD14a].

We conclude this section by pointing out the fundamental mechanism which re-
lates nonconvex energies to oscillations in minimizing sequences. A typical shape
of the energy density W as it appears frequently in nonlinear elasticity theory can
be seen in Fig. 2.6, depicted along a specific direction in the space of matrices,
i.e. t �→ Ft ∈ Rn×n for a scalar parameter t ∈ R. Assume that this curve is in fact a
rank-one line, in the sense that

Ft = A+ tR

with F0 = A, F1 = B and F1−F0 = R = a⊗b for some a,b ∈Rn with |b|= 1. Then
it is possible to construct for each convex combination F = λF0 +(1−λ )F1 with
λ ∈ (0,1) and every k ∈ N a Lipschitz-function uk on (0,1)n with ∇uk ∈ {F0,F1}
for almost every x ∈ (0,1)n. More precisely, we set
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k = 2

b

k = 4 k = 8

Fig. 2.7 Laminates with different periods as elements of a minimizing sequence of the form
given in (2.5). The orientation of the layers is determined by the rank-one direction and given
by the vector b. The deformation gradient is constant in each layer and lies in {F0,F1}.

uk(x) = Fx+
1
k

h
(
k(x ·b)

)
a, x ∈ (0,1)n, (2.5)

where h : R→ R is the continuous one-periodic function with h′ = λ − 1 in (0,λ )
and h′= λ in (λ ,1). As Fig. 2.7 shows, b describes the orientation of the oscillations
by being the normal on the planar jump discontinuities of ∇uk, while a and k are
the amplitude and the scale of the oscillation, respectively. As F is the average of
the oscillations between F0 and F1, one has uk

∗
⇀ Fx in W 1,∞((0,1)n;Rn). In the

following, we refer to the construction in (2.5) as a simple laminate. Notice that the
way the functions uk are constructed in (2.5) does not make ϕk = uk−Fx admissible
trial functions for (2.3). A modification of uk by a cut-off using affine interpolation
to achieve the boundary conditions Fx, though, produces only an error (measured in
the W 1,2-norm) of order O(k−1). We denote this new function by vk.

The foregoing computations show that

W qc(F)≤
∫
(0,1)n

W (∇vk) dx∼ λW (F+)+(1−λ )W(F−)+O(k−1) .

Hence, the simple laminate construction gives an upper bound on W qc. An improved
upper bound can be obtained by iterating the construction, leading to pictures with
layers within layers and to the concept of lamination-convex and rank-one-convex
envelopes, see [Dac07, Mül99]. Constraints on the determinant can also be included
by appropriately modifying the cutoff procedure, see [MŠ99, Con08]. A matching
lower bound can be found by the concept of polyconvexity [Mor52, Bal77, Dac07,
Mül99], which is based on the idea that the integral of the determinant of a gradient
field only depends on the boudary values. To the best of our knowledge, all explicit
computations of W qc for physically relevant problems are based on this strategy.

2.5 Models in Crystal Plasticity with One Active Slip System

This section applies the strategy for the reduction of energy described in Section 2.4
to the model energies which have been proposed for single crystals and their plastic
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deformation. We begin in Section 2.5.1 with the variational formulation of crystal
plasticity in a broader framework and focus then on the situation with rigid elasticity
and one active slip system. The mathematical relaxation result is presented and dis-
cussed in Section 2.5.2, the physical significance of the microstructure is explained in
Section 2.5.3. In Section 2.5.4. we then compare the mathematical results with the for-
mation of kink bands in rocks described in Section 2.2.1. We conclude the treatment
of single-slip processes with the discussion of more comprehensive models which ex-
tend and complement the ones presented here in various directions, including elastic
energy (Section 2.5.5) and higher order regularizations related to geometrically nec-
essary dislocations (Section 2.5.6). Multiple slip is addressed in Section 2.6.

2.5.1 Variational Formulation of Crystal Plasticity

Let the function u : Ω → Rn be the deformation of an elasto-plastic body with ref-
erence configuration Ω ⊂Rn. As a fundamental assumption of crystal plasticity we
use the multiplicative decomposition of the deformation gradient in the sense of
Kröner [Krö60] and Lee [Lee69], i.e.,

F = ∇u = FeF p, (2.6)

where the elastic part Fe captures local rotation and stretching, and the plastic part
F p describes the irreversible deformations encoding the history of plastic flow. For
a discussion of the significance of the multiplicative decomposition (2.6) we refer
also to [LL67, SO85, MS92, CG01, Mie03, MM06, RC14] and references therein.
In crystals, plastic deformation happens along well-characterized slip systems (s,m)
consisting of a slip plane with normal m∈Rn and a slip direction described by s∈Rn,
with s and m orthogonal unit vectors as discussed in Section 2.2.3. The orientation
and number of the slip systems is specified by the crystallographic structure of the
lattice. For instance, for fcc crystals in three dimensions one has twelve slip systems.

Since models with only one slip system are more easily accessible to analytical
treatment, they have been subject of a number of works [CT05, Con06, CDK09,
CDK11, CDK13a]. Besides their reduced complexity, single-slip models are inter-
esting as they describe the early stages of plastic deformation under the assumption
of an ideal single crystal as an initial configuration, i.e., when the first dislocations
emerge and start to move. In the single-slip framework the plastic part F p has the
form

F p = Id+γs⊗m, γ ∈R, (2.7)

which corresponds to a simple shear deformation with γ the amount of shear. A
related micromechanical model commonly visualized as a deck of cards (or just as
well a pile of paper) is depicted in Fig. 2.3.

Since elastic strains in metals are much smaller than the plastic ones, one often
restricts to the elastically rigid case [OR99], in which Fe is locally assumed to be
a rotation, i.e. Fe ∈ SO(n) pointwise. Then, the total deformation gradient F lies
(pointwise) in the set
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M = {F ∈R
n×n : F = R(Id+γs⊗m), R ∈ SO(n), γ ∈R} . (2.8)

We adopt here the time-discrete variational approach to elasto-plasticity proposed
by [OR99, CHM02, MSL02], restricting ourselves to the first time step. This has to
be seen as a simplification that rules out preexisting microstructures and is appropri-
ate for (locally) monotonic loading conditions. The system energy in integral form
of the first incremental problem is related to the energies that appeared in the theory
of finite elasticity (see Section 2.4). Precisely,

E(u) =
∫
Ω

W (∇u) dx+ l(u) (2.9)

with l the external loading and W the condensed energy density. The latter involves
three different contributions optimized over all possible multiplicative decomposi-
tions, i.e.,

W (F) = min
F=FeF p

{We(F
e)+Wp(F

p)+Diss(F p)}, F ∈ R
n×n. (2.10)

Here We is the elastic energy density, which in the case of rigid elasticity is given
by We(Fe) = 0 if Fe ∈ SO(n) and We = ∞ otherwise, Wp is the hardening function
and Diss is the dissipative energy contribution. In the following, we choose linear
hardening, meaning

Wp(F
p) =

{
κ |γ|2 if F p = Id+γs⊗m for some γ ∈ R,

∞ otherwise,

and specify

Diss(F p) =

{
τ|γ| if F p = Id+γs⊗m for some γ ∈ R,

∞ otherwise,

with τ,κ ≥ 0 given material constants, where τ stands for the critical shear stress
and κ is the hardening modulus. Here s and m are regarded as fixed vectors. The
side condition can, of course, be enforced by only one of Wp and Diss; we include
it in both functions to express the fact that for the present purposes they need only
be defined on the set M .

Thus, for W one obtains after performing the local minimization that

W (F) =Wτ,κ(F) =

{
τ|γ|+κ |γ|2 if F ∈M ,

∞ otherwise.
(2.11)

The quantity γ is computed from F using (2.8). Since F = R(Id+γs⊗m) implies
|F |2 = 2+ γ2, it is easy to see that |γ| is uniquely determined from F . This en-
ergy density is non-convex and even non-quasiconvex due to geometrical softening
implied by the local rotations of Fe.
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2.5.2 Relaxation Results in Crystal Plasticity with One Slip
System

We discuss here the known results on the relaxation of the condensed Wτ,κ defined
in (2.11). The underlying relaxation mechanism, and the laminates which are con-
structed to prove the upper bounds, give information on the physically optimal mi-
crostructures. At this point, it is an open problem to find an explicit formula for W qc

τ,κ
with Wτ,κ the full energy density including dissipation and hardening. However,
several results have been obtained if only one of the two contributions is present,
namely, for Wτ,0 and W0,κ , which we present below. For notational simplicity we
only discuss the two-dimensional case here, for generalizations to three dimensions
we refer to [CT05, CDK13a]. The quasiconvex hull of a set K ⊂ Rn×n can be un-
derstood as the set of possible averages of gradient fields taking values in K, see
[Mül99, Dac07] for a precise definition.

Theorem 2.5.1 (From [CT05, Con06]). The quasiconvex hull of the set defined in
(2.8) is

N = {F ∈ R
2×2 : detF = 1 and |Fs| ≤ 1} , (2.12)

in formulas N =M qc. For F ∈N ,

W qc
0,κ(F) = κ(|Fm|2− 1), (2.13)

and

W qc
τ,0(F) = τ

√
|F |2− 2, (2.14)

while W qc
0,κ(F) =W qc

τ,0(F) = ∞ for F ∈ R2×2 \N .

A comparison between the results in the regimes τ = 0 and κ = 0 shows that
the sets of macroscopic strains that can be achieved with finite energy are identical,
and given by N defined in (2.12). On N the formulas W qc

τ,0 and W qc
0,κ , however,

differ qualitatively, which suggests that distinct microstructure govern the respective
relaxation process.

We sketch the basic ideas of the proofs of (2.13) and (2.14), since they are instruc-
tive for a good understanding of the fine microscopical patterns that can be observed
in experiments, as those discussed in Section 2.2. In both cases simple laminates as
in Section 2.4, are optimal, they will have different characteristics, though.

The proofs rely on matching upper and lower bounds for W qc
τ,0(F) and W qc

0,κ(F)

with F ∈ R2×2, respectively. We first deal with the case F �∈ N . Assume that a
function u ∈W 1,∞((0,1)2;R2) is given, such that u(x) = Fx on the boundary and
Wτ,κ(∇u) ∈ L1((0,1)2). Then det∇u = 1 and |∇us| ≤ 1 pointwise. This implies
detF = 1 and |Fs| ≤ 1, against the assumption F �∈N . Therefore W qc

τ,κ(F) = ∞.
The case F ∈N requires more work. The upper bound is based on the explicit

construction of an appropriate rank-one line through F , so that F can be written
as a convex combination of rank-one matrices in M . These two matrices repre-
sent the set of admissible gradients for the laminate construction leading to trial
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functions admissible for the minimization problem in the definition of quasiconvex-
ity. We point out that one particular difficulty is the fact that the energy densities are
extended valued, in contrast to the setting introduced in the previous section. This
is a technically demanding point which can be treated using the constrained convex
integration approach developed in [MŠ99], we refer to [CT05] for details. The lower
bound, on the other hand, guarantees the optimality of the construction and follows
easily by convexity.

We give here a sketch of the mathematical derivation of the laminates entering
the upper bound, and discuss later in Section 2.5.3 the heuristic motivation and the
physical significance of the constructions.

We start with the quadratic-growth case of W0,κ . The optimal rank-one line
through F ∈N \M is given by

t �→ Ft = F + tFm⊗ s, t ∈ R.

Notice that the right-hand side in (2.13) is constant along Ft and coincides with
W0,κ on M . Moreover, one can find F− = Ft− , F+ = Ft+ with t− < 0 < t+ such that
F−,F+ ∈M with the corresponding plastic slips γ− and γ+ =: γ∗. Then, F±m = Fm
implies |γ±|2 = |Fm|2−1, so that γ− =−γ+, meaning that the amount of slip in the
two phases of the resulting simple laminate are the same, but oriented in opposite
directions. The geometry in matrix space is illustrated in Fig. 2.8 b). In this figure,
we use the representation

(FT F)1/2 =

(
a+ b c

c a− b

)
=U, a,b,c ∈ R, (2.15)

where a is given by a =
√

1+ b2+ c2, since detF = 1 and U denotes the square
root of the matrix FT F . We fix for definiteness s = e1 and m = e2. If F ∈M , then
|Fe1|= 1 and the length of the first row of U is equal to one. Hence,

U =

(
cosφ sinφ
sinφ z

)
, φ ∈ [0,2π ], z ∈ R ,

and the constraint detU = 1 gives z = (1+ sin2 φ)/cosφ and b < 0 in the represen-
tation of (2.15). In these coordinates, the set M corresponds to the blue curve open
to −∞, as seen in the figure.

We now turn to the linear-growth case of W qc
τ,0. The relaxation mechanism also in

this situation based on simple laminates, but it is a different laminate. Consider the
rank-one line

t �→ Ft = F + tFy⊥⊗ y, t ∈ R,

where the unit vector y ∈ R2 is chosen such that (Fy · Fy⊥)2 = |F |2 − 2 and
|Fy⊥| = 1 (there are two solutions for y up to the choice of a sign), see Fig. 2.8 a).
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a) b)

Fig. 2.8 Construction of rank-one lines for a) Wτ ,0 and b) W0,κ with s = e1 and m = e2, in
the coordinates (b,c) introduced in (2.15). The blue curve denotes the matrices in M , the red
curve the rank-one line t �→ Ft . Note that the rank-one line through the matrix F with b =−1,
c = 0 intersects the set on which Wτ ,0 and W0,κ are finite in two points. The relaxed energy is
finite on the rank-one segments generated by all these pairs of points and infinite elsewhere.

This guarantees that the right-hand side in (2.14) is affine on Ft for t ∈ [t−, t+].
Then, by solving a quadratic equation, one finds for F ∈ N \M two matrices
F− = Ft− , F+ = Ft+ with t− < 0 < t+ such that F−,F+ ∈M with γ∗ := γ+. If Fy ·
Fy⊥ ≥ 0 (similarly for Fy ·Fy⊥ ≤ 0), it can be shown that t− equals −(Fy ·Fy⊥),
which entails F− ∈ SO(2) or equivalently γ− = 0. Hence, one phase of the optimal
laminate does not experience any plastic deformation but results from pure elastic
deformation in form of local rotation.

2.5.3 Heuristic Origin of the Laminates

To understand the mechanical origin of the laminates appearing in Theorem 2.5.1
it is useful to consider the following thought experiment, illustrated in Fig. 2.9. A
material with a single slip system, with s = e1 and m = e2, is subject to tension
in direction m, that is, normal to the slip plane. If the material only deforms plas-
tically, any deformation gradient F p = Id+γe1⊗ e2 does not change the distance
between two planes orthogonal to e2, see the second sketch in Fig. 2.9 b). However,
many segments joining the two planes are made longer. For example, the segment
joining (0,0) with (0,1), which has unit length, is mapped to the segment joining
(0,0) with (γ,1), which has length

√
1+ γ2 > 1. Combining this deformation with

a rotation, one can have the two points (0,0) and (0,1) move to the points (0,0)
and (0,

√
1+ γ2), thereby increasing their distance to order γ2. This deformation is,

however, not appropriate for other parts of the sample, since it leads to a macro-
scopic rotation, see Fig. 2.9 b).

A more complex pattern permits to use the horizontal slip to make the sample
longer in the vertical direction, see Fig. 2.10. The plastic deformation is in this
case not uniform. The material divides into two parts; one of them slips to the left,
the other one to the right. The two images of the central segment are both longer
than the original segment, therefore one can rotate them so that they coincide (third
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a)

Id Id+γe1 ⊗ e2

b)

Fig. 2.9 Geometry for the orthogonal forcing problem, leading to the laminates of Fig. 2.10.
a) Material description: One has a single slip system, with horizontal slip direction and verti-
cal normal. b) Forcing: The material is in tension in the direction normal to the slip planes.

figure in Fig. 2.10 a)). If the operation is not performed on two but on many subsets
of the sample, all separated by parallel lines, a fine structure arises which permits
to elongate the probe in the vertical direction, and shorten it in the horizontal one,
see the last sketch in Fig. 2.10 a). The resulting pattern is a typical laminate, as
illustrated in Fig. 2.7. This construction turns out to be the optimal microstructure
for W0,κ .

In the case of Wτ,0 a different microstructure arises, see in Fig. 2.10 b). In this
situation, only one part of the domain transforms plastically, the other one is only
rotated. Again, if the domain subdivision is fine enough, the macroscopic deforma-
tion is approximately a compression in the horizontal direction and a stretching in
the vertical one. A related discussion, focused on the phenomenon of geometrical
softening in plasticity, is given in [OR99].

In order to understand qualitatively the difference between the two laminates, it
is important to notice that the effect used here is purely nonlinear and would not
be present in a geometrically linear theory. Indeed, the elongation is in both cases
second-order in the slip γ , as the Taylor series√

1+ γ2 = 1+
1
2
γ2 +O(γ4)

shows. Normally, nonlinear phenomena are larger if the intensity is large, which can
be achieved by concentration. To make this precise, let us first consider the energy
Wτ,0, which has linear growth. For a given amount of energy e > 0 invested in the
deformation, the material can produce any distribution of γ with average e/τ (in
the sense of the L1-norm). Since the elongation is quadratic in γ , it is larger if the
plastic slip is concentrated on a small part of the sample: a large slip on a small
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a)

Id−γ∗e1⊗e2 Id+γ∗e1⊗e2

b)

Id Id+γ∗e1⊗e2

Fig. 2.10 Illustration of laminate formation in the two regimes. a) W0,κ with quadratic
growth: In this case there is only one possible direction for the lamination, namely, along
m = e2. b) Wτ ,0 with linear growth: In this case there are two possible directions, symmetric
with respect to m = e2.

volume generates a larger nonlinear effect than a small slip over a large volume. In
other words, the average of the square is larger than the square of the average. This
is the reason why it is natural to expect that, in the case of the energy Wτ,0, slip and
energy are localized in a part of the sample. The localization cannot be complete,
as would be the case in a shear band, due to elastic compatibility requirements.
However, two symmetric patterns are possible, see Fig. 2.11.

The case of W0,κ is different: here the energy is second-order in γ , therefore it is
not the average of γ which should be considered fixed, but the average of its square.
In this case we consider the Taylor series in γ2, as above expanding up to the first
term which is nonlinear. Since our variable is γ2, the first nonlinear term is γ4. In
particular, the expression√

1+ γ2 = 1+
1
2
γ2− 1

8
γ4 +O(γ6)

is sublinear in γ2. This means, that for a given amount of energy invested in the
deformation, the maximal stretch is obtained if the slip |γ| is uniformly distributed,
hence the material chooses not to localize and |γ| is uniform. Only its sign, which is
not seen by the energy, oscillates. The same effect is also present for p > 2, as was
shown in [CDK11]. In particular, for all p ≥ 2 the same microstructure is optimal.

The two constructions presented above are quite different, and it is not clear
which microstructure is the correct one if both terms are present in the energy. In
fact, the formula for W qc

τ,κ is unknown in the general case. However, for models with
small plastic slip τ|γ| will be the dominating term, so that Wτ,0 serves as a good ap-
proximation to the actual energy density, while for sufficiently large γ the linear term
may be neglected and we may work with W0,κ . This expectation is backed up by nu-
merical simulations. Indeed, a transition between one regime and the other was ob-
served in numerical simulations in [BCHH04, CCO08], which were performed with
an energy where both τ and κ are positive. Precisely, it was observed that for small
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c)

b)

a)

Fig. 2.11 In the linear-growth regime of Wτ ,0, if the sample is thin with respect to the number
of slip bands, two different orientations of the bands may coexist. a) is the periodic pattern of
Fig. 2.10, which is possible for any sample geometry and any volume fraction; b) is the sym-
metric variant, which is completely equivalent; c) shows a pattern in which the two directions
are mixed.

deformations the sign of γ oscillates between zero and a positive value, whereas for
large deformations, the oscillation is between two opposite values. Additional struc-
tures involving also elastic components were seen in [BCHH04, CCO08], since the
elastic coefficients were finite in the numerical relaxation.

2.5.4 Relation to Kink Bands in Rocks

We come back to the kink bands presented in Section 2.2.1 and 2.2.2. We propose
a variational, two-dimensional model for compression of layered materials, which
bears a close relationship to the approach of crystal plasticity discussed in Sec-
tion 2.5.1. Our model does not include any kinematic assumption on the geometry
of the deformation. It is stationary, and based on an energy-dissipation functional,
much like in the case of plasticity. The microstructure is then understood as a math-
ematical consequence of the non-convexity of the governing energy.

Let u : Ω → R2 be the deformation of a cross section Ω ⊂ R2 of the stack of
paper or a configuration of geological strata, within a plane-strain approximation.
The orientation of the layers is described by the pair of vectors (e1,e2) with e2 being
the normal on layers and e1 being layer-parallel. We assume that the deformation
gradient F = ∇u decomposes into

F = ∇u = FrFs,

where Fs = Id+γe1⊗e2 with γ ∈R describes interlaminae shearing and Fr ∈ SO(2)
accounts for local changes in orientation of the material layers. In analogy to
Section 2.5.1, we consider the energy E given by



50 S. Conti, G. Dolzmann, and C. Kreisbeck

Table 2.1 Analogies between models in geology and models in crystal plasticity

model in structural geology of strata model in single-slip crystal plasticity

layer orientation (e1,e2) slip system (s,m)
interlayer shearing Fs plastic slip F p

change of layer-orientation Fr local lattice rotations Fe

amount of shearing γ amount of plastic slip γ
lock-up parameter κ hardening modulus κ
static friction coefficient τ critical shear stress τ

E(u) =
∫
Ω

W (∇u) dx+ l(u),

with l the external load due to tectonic compression or external loading and confin-
ing forces, and

W (F) = min
F=FrFs

{Wr(F
r)+H(Fs)+Diss(Fs)}

=

{
τ|γ|+κ |γ|2 if F ∈M ,

∞ otherwise,

where τ,κ ≥ 0 are material constants. The dissipation is physically understood as
originating from the static interlayer friction, and τ is the friction coefficient. Hard-
ening, modeled by the quadratic hardening function H, is a consequence of the
increased stiffness of prefolded structures, so we call κ the lock-up parameter.

This model is from a mathematical point of view identical to the one introduced in
the previous section, see Tab. 2.1 for an overview of the relevant identifications. An
application of the mathematical results of Section 2.5.2 to this new context allows
one to predict the appearance of an arrangement of chevron folds, which consti-
tutes the analog to compatible laminate structures in crystal plasticity. The relevant
laminates are the same as discussed in Section 2.5.3. This fully two-dimensional
variational energetic approach extends the ideas of the one-dimensional analysis of
[HPW00, WHP04].

Fig. 2.12. shows a comparison of the laminates of Fig. 2.10 with the experiment
on the stack of paper discussed in Fig. 2.2 In particular, one observes also exper-
imentally the asserted transition between the two regimes, where either friction or
lock-up prevails. This shows that in the beginning, interlayer friction is the dominant
effect, while for stronger compression the hardening contribution due to locking of
the layers takes over.
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a) γ∗−γ∗

b) γ∗0

c)

Fig. 2.12 Comparison of the laminates of Fig. 2.10 with the patterns in compressed paper
from Fig. 2.2 (reproduced from [HPW00, Fig. 2], with permission from Elsevier). a) Large-
compression deformation, compared with the laminate for W0,κ , with slip±γ∗. b) Small com-
pression, compared with the laminate for Wτ ,0, which has γ = 0 and γ = γ∗. It is apparent that
in the experiment, just like in c), the slip has concentrated to a part of the domain. How-
ever, the interfaces are not all parallel, but instead use the two possible orientations, leaving
macroscopic regions in between, as discussed in Fig. 2.11 and illustrated in c).

2.5.5 Elastic Approximation

The results discussed in Section 2.5.2 are based on the assumption that the elasticity
is hard, so that the elastic strain Fe is a rotation at each material point. This assump-
tion can be justified considering the limit of a sequence of functionals with larger
and larger elastic coefficients. Precisely, we set

W ε
0,κ(F) = inf

γ∈R
{1
ε

dist2(F(Id−γs⊗m),SO(2))+κ |γ|2} ,

where ε > 0 is a small parameter, representing the ratio between the typical elastic
coefficient and the hardening coefficient. Although for lower growth energies of
this type may relax to zero [CDK09], the variational problems generated by W ε

0,κ
converge, in the appropriate sense, to the rigid-elastic problem discussed above.



52 S. Conti, G. Dolzmann, and C. Kreisbeck

Theorem 2.5.2 (From [CDK11]). Let Ω ⊂ R2 be a bounded Lipschitz set. The
functionals

Eε(u) =
∫
Ω

W ε
0,κ(∇u)dx

converge in the sense of Γ -convergence with respect to the strong convergence in L1

to the functional

E0(u) =

⎧⎨⎩
∫
Ω

W qc
0,κ(∇u)dx if u ∈W 1,2(Ω ;R2) and ∇u ∈N a.e.

∞ otherwise.

The function W0,κ and the set N are those of Theorem 2.5.1.

We recall that Γ -convergence implies that the minimizers of E0 are the accumula-
tion points of the minimizing sequences of the sequence Eε , see [Bra02, DM93] for
details. One key ingredient in the proof of this result is the statement that if Eε(uε)
is bounded, then uε has a subsequence converging to a function with gradient in N
almost everywhere, in particular, with unit determinant. This assertion is based on
a generalization of the div-curl Lemma, see [CDM11]. Theorem 2.5.2 was general-
ized to three dimensions in [CDK13a], and to two slip systems in [CDK13b].

2.5.6 Higher-Order Regularizations

Even though the model introduced above predicts, depending on the application
in mind, zigzag patterns of kink-bands or microscopic laminate structures, it does
not have an intrinsic length scale, so that arbitrarily fine oscillations can occur, or
even have to be expected. To overcome this problem one can incorporate a suitable
regularization term that penalizes fast oscillations. In the case of crystal plasticity,
this is usually done via the theory of strain-gradient plasticity. In a geometrically
linear framework, this corresponds to adding the expression∫

Ω
|curlF p| dx

to the system energy in (2.9), which corresponds to the line-tension energy of
geometrically necessary dislocations [CG01, MM06]. For a mathematical deriva-
tion of this expression from microscopic models, see for example [GM06, GLP10,
CGM11] in a geometrically linear setting and [SZ12, MSZ14, MSZ15] in a geomet-
rically nonlinear context.

The macroscopic effect of this regularization term was addressed for example
in [CO05, AD14, AD15] in various simplified models. In the current geometrically
nonlinear single-slip context, a first result was obtained in [Sch14]. These works
build upon a large body of mathematical literature on singularly perturbed noncon-
vex variational problems, which often leads to the identification of self-similar opti-
mal microstructures via the study of the scaling of the energy, and which started
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with the works of Kohn and Müller on microstructure in shape-memory alloys
[KM92, KM94].

2.6 Beyond One Slip-System

As discussed in the introduction, latent hardening leads to the observation that lo-
cally only one slip system may be active. However, in real materials, there are quite
a few slip systems available and the assumption that laminates can be formed only
within one slip system is too restrictive. In this section, we go beyond this assump-
tion and present relaxation results for models in which several different slip systems
are available. In such a situation, the relaxed energy has typically different regimes,
some in which only one slip system is used and some in which different slip systems
interact.

2.6.1 Two Slip Systems in a Plane

We first consider a model with two orthogonal slip systems in a plane which are
given by e1⊗ e2 and e2⊗ e1, where e1,e2 denotes the standard basis in R2. If only
the dissipation term is present, then the energy is given by

Ŵ2s(F) =

{
|γ| if F = R(Id+γei⊗ e⊥i ), γ ∈ R, i = 1,2, R ∈ SO(2),

∞ otherwise.
(2.16)

In this case, the rank-one convex and the polyconvex envelope can be determined
explicitly (for the definitions we refer to [Mül99, Dac07]). The quasiconvex enve-
lope, however, is not yet known. Additionally, the rank-one convex envelope cannot
be computed using simple laminates, and not even with a finite iteration of the lam-
ination construction, but instead requires a construction with laminates of infinite
order.

Theorem 2.6.1 (From [ACD09]). The rank-one convex envelope Ŵ rc
2s of Ŵ2s defined

in (2.16) is given by

Ŵ rc
2s (F) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(λ2−λ1)(F) if detF = 1,min{|Fe1|, |Fe2|} ≤ 1,

ψ(|Fe1|, |Fe2|) if detF = 1,1≤ |Fe1| ≤ |Fe2|,
ψ(|Fe2|, |Fe1|) if detF = 1,1≤ |Fe2| ≤ |Fe1|,
∞ if detF �= 1,

where

ψ(α,β ) =
∫ α

1

2s2
√

s4− 1
ds+

1
α

(√
α2β 2− 1−

√
α4− 1

)
.
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The polyconvex envelope Ŵ pc
2s of Ŵ2s defined in (2.16) is given by

Ŵ pc
2s (F) = max

θ∈[0,π/2]

√
|F |2 + 2|Fe1 ·Fe2|sin(2θ )+ 2cos(2θ )− 2cosθ .

Further, Ŵ pc
2s ≤ Ŵ qc

2s ≤ Ŵ rc
2s , but for some matrices F one has Ŵ pc

2s �= Ŵ rc
2s .

Here λ1(F) and λ2(F) denote the signed singular values of F , i.e., the ordered eigen-
values of U in the polar decomposition F = QU , Q ∈ SO(2), U = UT . They are
identified uniquely by the conditions

λ 2
1 (F)+λ 2

2 (F) = |F |2 , λ1(F)λ2(F) = detF , λ2 ≥ |λ1| .

For the proof and a more specific discussion of the difference between Ŵ rc
2s and Ŵ pc

2s
we refer to [ACD09].

We now turn to the case of quadratic growth and define

W2s(F) =

{
|γ|2 if F = R(Id+γei⊗ e⊥i ), γ ∈R, i = 1,2, R ∈ SO(2),

∞ otherwise.
(2.17)

In this situation, a full relaxation result is available.

Theorem 2.6.2 (From [CDK13b]). The quasiconvex envelope of the function W2s

defined in (2.17) is given for F ∈R2×2 by

W qc
2s (F) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
|Fe1|2− 1

)
if detF = 1, |Fe2| ≤ 1 ,(

|Fe2|2− 1
)

if detF = 1, |Fe1| ≤ 1 ,

ψ(max{|Fe1 +Fe2|, |Fe1−Fe2|}) if detF = 1, |Fe1|, |Fe2|> 1 ,

∞ if detF �= 1 ,

where ψ(t) = (
√

(t2− 1)+− 1)2
+, t ∈ R, and where we use for a ∈ R the nota-

tion (a)2
+ = max{a,0}2. The same holds for the rank-one convex and polyconvex

envelopes, W pc
2s =W rc

2s =W qc
2s .

The proof, including extensions to the case of p-growth with p≥ 2 and three dimen-
sions, is given in [CDK13b]. The relevant laminates are sketched in Figure 2.13.

2.6.2 Three Slip Systems in a Plane

Our last example concerns the situation in which three slip systems are active. We
assume that

W3s(F) =

{
|γ|2 if F = R(Id+γvi⊗ v⊥i ), γ ∈ R, i = 1,2,3, R ∈ SO(2),

∞ otherwise,
(2.18)
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Fig. 2.13 Construction of the relaxation for W2s which uses first-order laminates only. The
slip system e1⊗ e2 corresponds to the curve which is open to −∞, the slip system e2⊗ e1 to
the curve which is open to ∞. In addition to the rank-one lines shown in Fig. 2.8 which use
only one slip system, the relaxation uses a laminate which is supported on both slip systems.
The rank-one line through the matrix F = (0,1) in a, b, c coordinates intersects the set on
which W2s is finite in four points. The relaxed energy is finite on the surface detF = 1.

where

v1 =

(
1
0

)
, v2 =

(
−1/2√

3/2

)
, v3 =

(
−1/2
−
√

3/2

)
. (2.19)

We define N (i) as the sets corresponding to the set defined in (2.12) for the three
slip systems,

N (i) = {F ∈ R
2×2 : detF = 1 , |Fvi| ≤ 1} ,

and A as the complement of their union,

A = {F ∈ R
2×2 : detF = 1 , |Fvi|> 1 for i = 1,2,3} .

Further, we let A∗ be the set of points which is contained in none or at least two of
the N (i),

A∗ =A ∪
⋃

i=1,2,3

(N (i+1)∩N (i+2))

and N∗ the rest, i.e., the set of points contained in exactly one of the N (i).

N∗ =
⋃

i=1,2,3

N (i) \ (N (i+1)∪N (i+2)) .

See Fig. 2.14 for an illustration. We use the same representation as in 2.15. Here
and in the following, the index i is understood cyclically, in the sense that N (i) =
N (i+3) and so on.
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c

b−1

N (1)

N (2)

N (3)

M(1)

M(2)

M(3)

A

Fig. 2.14 Representation of the phase diagram for the system with three slip-systems with
120◦ degree angles in the (b,c) plane, with the coordinates defined in (2.15). The three red
curves represent the matrices of single-slip type, i.e., the sets M (i) = {F = R(Id+γvi⊗v⊥i )}.
The regions N (i) are “inside” the curves, the region A is the one “outside”.

c

b

Fig. 2.15 Blow-up of the central region of the phase diagram of Fig. 2.14 with some of the
relevant rank-one lines drawn.
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Our main result is the following.

Theorem 2.6.3. Let W3s be as in (2.18). Then

g∗∗(max
i
|Fv⊥i |)≤W qc

3s (F)≤ g(max
i
|Fv⊥i |) if F ∈N∗ ,

W qc
3s (F) = h(max

i
|Fvi|) if F ∈A∗ ,

and
W qc

3s (F) =∞ if detF �= 1 .

Here, h and g are defined by

h(z) =
4
3

z2− 2
3
− 4

3

√
z2− 3/4 ,

and
g(z) = min{z2− 1, f (z)} ,

where
f (z) = 2+ 4z2− 2

√
12z2− 3 ,

and g∗∗ is the convex envelope of g.

g

z
1 2

f(z)

z2 − 1

z− z+

Fig. 2.16 The function g and its convex envelope. The red segment is the double-tangent
construction, which differs from g in the interval (z−,z+). The right-hand-side panel shows
a blowup of this region. The difference g−g∗∗ is maximal at the cusp, which occurs at z =√

7/3, and is of about 7%. The two functions coincide for z≤ z− � 1.385, which corresponds
to a strain of about 40%.

The strategy of the proof is to construct upper bounds by simple laminates and
lower bounds by polyconvexity. The lower bounds follow easily from the definitions
of f and g∗∗. The upper bounds are all obtained from first-order laminates, which
are different in different regions, see Fig. 2.15 for an illustration. This is the reason
for the definition of A∗ and N∗. The upper and lower bound s given do not coincide
in a region of relatively large strains, see Fig. 2.16. We remark that for moderate
strains, as for example for all F with detF = 1 and |F− Id | ≤ 0.469, the two bounds
coincide and the relaxation is explicitly known.
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Chapter 3
Rate-Independent versus Viscous Evolution
of Laminate Microstructures in Finite
Crystal Plasticity

Christina Günther, Dennis M. Kochmann, and Klaus Hackl

Abstract. In this chapter we investigate the variational modeling of the evolution of
inelastic microstructures by the example of finite crystal plasticity with one active
slip system. For this purpose we describe the microstructures by laminates of first
order. We propose an analytical partial relaxation of an incompressible neo-Hookean
energy formulation, keeping the internal variables and geometric microstructure pa-
rameters fixed, thus approximating the relaxed energy by an upper bound of the
rank-one-convex hull. Based on the minimization of a Lagrange functional, consist-
ing of the sum of rate of energy and dissipation potential, we derive an incremen-
tal strategy to model the time-continuous evolution of the laminate microstructure.
Special attention is given to the three distinct cases of microstructure evolution, ini-
tiation, rotation, and continuous change. We compare a rate-independent approach
with another one that employs viscous regularization which has certain advantages
concerning the numerical implementation. Simple shear and tension/compression
tests will be shown to demonstrate the differences between both approaches and to
show the physical implications of the models introduced.

3.1 Introduction

Laminate microstructures represent a frequent phenomenon in inelastic materi-
als. Essentially they may be understood as material instabilities caused by a lack
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of convexity of the corresponding free energy. They were initially observed in
the case of shape memory alloys, and this discovery led to the development of
an intricate and very successful theory of energy relaxation, described for ex-
ample in [Dac82, BJ87, Bha03]. For a long time, similar laminate patterns have
been observed to be produced by the motion of dislocations in single crystals
[CM95, CSMC05, DDMD09]. But it was possible to model them only after sig-
nificant progress had been made in the variational formulation of evolution laws
for inelastic materials in [OR99, CKM02, MCJ03, ML03, MLG04]. These works
made it possible to apply the variational concept of energy relaxation, especially via
lamination, to dislocation microstructures as well.

After the underlying framework has been established progress was made in vari-
ous directions. A rigorous mathematical foundation of the variational methods used
was established by Mielke and co-authors in a series of papers [Mie02, Mie03,
MS08, Mie04, MM09]. Closed form relaxed envelopes were found by Conti, Dolz-
mann and co-authors in [CT05, CO05, CDK09, CDK11, CDK13], and by An-
guige and Dondl in [AD14]. Finally, numerically based treatments of dislocation
microstructures may be found in the works of Carstensen, Hackl, Miehe and co-
authors [BCHH04, BCC+06, CHHO06, CSO08, BC10, MGB07, MRF10, Mie14].

In this work, we focus on the time-continuous evolution of laminate microstruc-
tures governed by variational principles. In contrast to the papers cited above we will
employ a partially relaxed energy maintaining the inelastic microstructure param-
eters as variables and only eliminating elastically fast variables via minimization.
This energy will then be supplemented by a corresponding relaxed dissipation po-
tential which will allow to derive evolution equations for the microstructure param-
eters. We will undertake a comparison of rate-independent and viscous evolution
laws. In this context we will stress three essential stages of the material process:
initiation, rotation, and continuous evolution.

The present paper has the aim to review recent research of the authors on the
subject. It reports results published in [HK08, HK09, HK10, HK11, KH10, KK11,
HHM12, HHK14] along with novel results in a common context. This means that
some passages of this report appear in similar form within those works.

3.2 Variational Modeling of Microstructures

The energetic state of an inelastic material be described by a total energy of the form

E (t,u,z) =
∫
Ω
Ψ(∇∇∇u,z)dV − �(t,u), (3.1)

where Ψ is the specific Helmholtz free energy, u the displacement vector, z a col-
lection of internal variables, �(t,u) represents the potential of external forces and Ω
is the body’s volume.

According to the principle of minimum potential energy, the actual displacement
field follows from



3 Evolution of Laminate Microstructures 65

u = argmin
{
E (t,u,z)

∣∣u = u0 on Γu
}
, (3.2)

where Γu denotes a subset of the body’s boundary ∂Ω . The internal variables can
be computed from the principle of the minimum of dissipation potential [CKM02,
HF08] according to

ż = argmin
{
L (u,z, ż)

∣∣ ż}, (3.3)

where we introduced the Lagrange functional

L (u,z, ż) =
d
dt

Ψ(∇∇∇u,z)+Δ(z, ż). (3.4)

Here Δ(z, ż) is the so-called dissipation potential and the dot denotes differentiation
with respect to time. This Lagrange functional consists of the sum of elastic power
and dissipation due to changes of the internal state of the material [CKM02, OR99].
Minimization of the Lagrange functional hence determines the changes of the inter-
nal variables. Note, that in contrast to (3.1) the functional in (3.4) is purely local,
i.e., the minimization principle (3.3) holds point-wise in the space of internal vari-
ables. Of course, the integrated form can be used as well if necessary. This fact will
be employed later on when we derive relaxed dissipation potentials.

If the free energy density is not quasiconvex it is unfavorable for the material
to accommodate an imposed macroscopic deformation gradient by a homogeneous
deformation field but rather by forming microstructural patterns that mix different
homogeneous states of minimal energy. The material body, aiming to reduce its
energy, does not respond by means of a homogeneous deformation state but breaks
up into multiple domains at local energy minima in such a way that it is compatible
with the overall imposed deformation or any given boundary conditions.

Here we will focus on so-called laminate microstructures, which in the case of
dislocation patterns is supported by experimental evidence [DDMD09]. For concise-
ness we will restrict ourselves to first-order laminates. Everything stated in subse-
quent sections can be extended to general laminates in an essentially straightforward
manner.

A laminate of first order is characterized by N volume fractions λi separated
by parallel planes with normal vector b, as sketched in Fig. 3.1. To every volume
fraction i there corresponds a value zi of the internal variables. Moreover, in every
volume fraction we have a deformation gradient Fi which we write as

Fi = F(I+ ai⊗b). (3.5)

This formulation ensures that deformation gradients differ only by tensors of rank
one, enforcing compatibility at laminate interfaces and hence ensuring the existence
of a corresponding deformation field u. We need to impose the volume average of
the deformation gradient

N

∑
i=1

λi Fi = F, (3.6)

which is equivalent to
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N

∑
i=1

λi ai = 0. (3.7)

Let us consider the normal vector b as ingrained into the material since any change
of b would require a change of the internal variables and thus lead to dissipation.
The amplitudes ai on the other hand can be changed purely elastically. This suggests
to define a semi-relaxed energy by

Ψ rel(F,λλλ ,z,b) = inf
{ N

∑
i=1

λiΨ(Fi,zi)
∣∣ai :

N

∑
i=1

λiai = 0
}
, (3.8)

where we introduced the abbreviations λλλ = {λ1, . . . ,λN} and z= {z1, . . . , zN}. Note
that the energy is only partially relaxed since full relaxation would require further
minimization with respect to the internal variables (and in particular with respect to
b). If we assume that the lamination respects the ordering {1, . . . ,N} and that the
normal vector b remains fixed, the relaxation of the dissipation is given by

Δ∗(λλλ ,z, λ̇λλ , ż) =
N

∑
i=1

λiΔ(zi, żi)+ inf
{ N

∑
i, j=1

Δλi j D(zi,z j)
∣∣Δλi j :

N

∑
i=1

Δλi j = λ̇ j,
N

∑
j=1

Δλi j = λ̇i,Δλi j = 0 for |(i− j)modN| �= 1
}
. (3.9)

Here we have employed the so-called dissipation distance [Mie03] defined by

D(z0,z1) = inf
{ ∫ 1

0
Δ(z(s), ż(s)) ds

∣∣ z(0) = z0,z(1) = z1
}
. (3.10)

Now we may apply the principle of the minimum of the dissipation potential to
the functionals in (3.8) and (3.9) in order to obtain evolution equations for λ and z
for fixed b via

{λ̇λλ , ż}= argmin
{
L (F,λλλ , λ̇λλ ,z, ż,b)

∣∣ λ̇λλ , ż}, (3.11)

F1,

F2, b

F3,

�1

�2

�3

z
1

z
2

z
3

Fig. 3.1 First-order laminate for N = 3 with normal vector b, deformation gradients Fi and
internal variables zi (originally published in [KK11])
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where we introduced the Lagrange functional

L (F,λλλ , λ̇λλ ,z, ż,b) =
d
dt

Ψ rel(F,λλλ ,z,b)+Δ∗(λλλ ,z, λ̇λλ , ż). (3.12)

3.3 Single Slip Crystal Plasticity

For conciseness we will restrict ourselves here to a model of crystal plasticity involv-
ing one single slip system. For a full description of the general case, see [KK11].

The split of the deformation gradient into an elastic part Fe and an irreversible,
plastic part Fp yields the standard multiplicative decomposition F = FeFp. We will
assume an incompressible neo-Hookean material possessing an energy of the form

Ψ (Fe,p) =
μ
2

(
trFT

e Fe− 3
)
+κ |p|α , detF = 1, (3.13)

where p denotes a hardening variable, and μ > 0 is the shear modulus and κ > 0
the hardening modulus.

Plastic deformation is accommodated by dislocation gliding along specific ac-
tive slip systems. Each slip system is characterized by its unit vectors s and m
(|s| = |m| = 1, s ·m = 0), where s characterizes the slip direction and m denotes
the unit vector normal to the slip plane. For a single active slip system the plastic
deformation gradient can then be calculated as

F−1
p = I− γ s⊗m, (3.14)

where γ denotes the plastic slip. For the hardening variable we consider the flow
rule [CKM02]

ṗ = |γ̇| (3.15)

with the initial condition p(0) = 0 (virgin initial state).
Dissipation occurs as a result of dislocation motion and is hence linked to changes

of the plastic slips. For the dissipation potential with only one active slip system we
simply assume [CKM02, HK08]

Δ (γ̇) = r |γ̇|+ s
2
γ̇2, (3.16)

where r is the critical resolved shear stress and s represents a viscosity parameter.
With Ψ and Δ given, the local material behavior is now completely determined

by the variational principle of the minimum of the dissipation potential (3.3).

3.4 Partial Analytical Relaxation via Lamination

Let us assume a first-order laminate microstructure with N domains having inter-
faces with unit normal b. We define the deformation gradient in domain i according
to (3.5). To every volume fraction i there correspond values of the internal variables
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γi and pi. To ensure incompressibility of each laminate domain, we must enforce
that for every domain i we have detFi = 1, which is equivalent to

ai ·b = 0. (3.17)

Taking into account the constraints (3.7) and (3.17) by introducing Lagrange multi-
pliers ΛΛΛ and ρi, the semi-relaxed energy can be written as

Ψ rel(F,λi,γi j , pi j,b)

= inf
{ μ

2

N

∑
i
λi [ trCe,i− 3− 2ΛΛΛ ·ai− 2ρiai ·b]+κ

N

∑
i
λi|pi|α)

∣∣ai
}
. (3.18)

We denote by Ce,i = FT
e,iFe,i the elastic right Cauchy-Green tensor in domain i with,

following (3.14) and (3.5),

Fe,i = FiF−1
p,i = F(I+ ai⊗b)(I−

n

∑
j
γi js j⊗m). (3.19)

Minimization in (3.18) with respect to the unknown quantities ai gives the relaxed
energy

Ψ rel(F,λi,γi, pi,b) =

κ
N

∑
i
λi|pi|α +

μ
2

[
1

∑N
i

λi
bi·b

(
N

∑
j

N

∑
k

λ jλkb j ·Cbk

b j ·b bk ·b
− 1

b ·C−1b

)

+
N

∑
i

λi

(
bi ·b

b ·C−1b
− bi ·Cbi

bi ·b

)
+

N

∑
i

λi tr
(

F−T
p,i CF−1

p,i

)
− 3

]
, (3.20)

where
bi = b− γi(b ·m s+b · s m)+ γ2

i b · s s, (3.21)

see [KK11] for details.
For instructiveness of the following examples, let us finally reduce the present

model to a two-domain laminate (N = 2) and define the volume fraction of domain
2 by λ .

The relaxed dissipation potential, based on (3.16) still has to be determined. For
a first order laminate consisting of two domains, the relaxed dissipation potential
due to the change of plastic slip can be easily found by weighting the dissipation
potential for each domain, given in (3.16), with the respective volume fraction. The
summation yields the total relaxed dissipation potential due to plastic slip as

Δ∗1 (λ , γ̇i) = (1−λ )
[
r |γ̇1|+

s
2
γ̇2

1

]
+λ

[
r |γ̇2|+

s
2
γ̇2

2

]
. (3.22)

Any change of volume fraction in the domains of the laminate is a dissipative pro-
cess, since the corresponding plastic slips in the altered areas have to change as well.
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Fig. 3.2 Viscous transition zone at the moving interface between regions with different in-
ternal variables

Hence, it contributes to the entire dissipation potential. We assume here that the vis-
cous part enters the dissipation by a viscous transition zone between the domains
instead of a sharp interface between the domains (Figure 3.2). This zone moves
with velocity v in the normal direction and has the width δ (volume ratio). The
velocity can then be expressed in terms of the rate of λ by

v =
λ̇
2
. (3.23)

Exploiting the intercept theorem, we find

γ̇ =
|γ2− γ1|

2δ
λ̇ (3.24)

which allows us to calculate the relaxed dissipation potential due to the change of
volume fraction as

Δ∗2
(
γi, λ̇

)
= r |γ2− γ1|

∣∣∣λ̇ ∣∣∣+ s
2
(γ2− γ1)

2

2δ
λ̇ 2. (3.25)

The combined dissipation potential is then given as

Δ∗(λ ,γi, λ̇ , γ̇i) = Δ∗1 (λ , γ̇i)+Δ∗2
(
γi, λ̇

)
, (3.26)

and the Lagrange functional reads

L (F,λ ,γi, pi, λ̇ , γ̇i,b) =
d
dt

Ψ rel(F,λ ,γi, pi,b)+Δ∗(λ ,γi, λ̇ , γ̇i). (3.27)

Here, one of the major differences of the present model to previous approaches be-
comes apparent from the last term in (3.26): a change of the volume fractions (here,
of λ ) causes dissipation. However, we do not consider the dissipation required to
transform some region with originally no plastic history into a part of the increasing
domain (an increase of domain 2 would then mean λ̇ > 0 and Δ∗ = r|λ̇ γ2|). Instead,
we correctly account for the transformation of some part originally belonging to
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domain 1 into a part of the increasing domain 2. Therefore, the amount of dissipa-
tion depends on the microstructure at the beginning of each time step.

3.5 Rate-Independent Evolution

We have now all ingredients in hand to model the evolution of laminate microstruc-
tures. We will start with the rate-independent case, setting s = 0 in the expressions
for the dissipation potentials given in (3.22) and (3.25). We discuss separately the
three stages of initiation, rotation, and continuous evolution if laminate microstruc-
tures.

3.5.1 Evolution Equations

Via the principle of the minimum of the dissipation potential given in (3.3) we arrive
at evolution equations for λ and γi, i.e., the stationarity conditions from minimizing
the above Lagrange functional, which read

0 ∈ ∂Ψ rel

∂λ
+

∂Δ∗

∂ λ̇
, (3.28)

0 ∈ ∂Ψ rel

∂γi
+

∂Ψ rel

∂ pi
sign γ̇i +

∂Δ∗

∂ γ̇i
, for all 1≤ i≤ N. (3.29)

There is an aspect concerning the evolution of the hardening parameters pi we
still have to discuss. Any change of λ results in mixing the formerly pure domains
in a small part of the body; e.g. an increase of λ in the two-domain laminate will
raise the volume fraction of domain 2 (with history variables p2 j) by adding certain
regions which were previously associated with domain 1 and hence exhibited history
variable values p1 j. As a consequence, the hardening histories p2 j should be updated
to account for a mixture of the two domains (see Fig. 3.3). We propose to obtain
the updated pi-values by computing the energetic average of the original values
weighted by the volume fractions. For example for a single active slip system and
for λn+1 = λn +Δλ and Δλ > 0 we have

(λn +Δλ )pα2,n+1 = λn pα2,n +Δλ pα1,n, p1,n+1 = p1,n, (3.30)

and analogously for Δλ < 0

(1−λn−Δλ )pα1,n+1 = (1−λn)pα1,n−Δλ pα2,n, p2,n+1 = p2,n. (3.31)

The corresponding formulations for multiple active slip systems are analogous
and assume no interaction between the different slip systems at this step (cross-
hardening is accounted for by the choice ofΨp). So, we omit these lengthy equations
here for conciseness; see [HK09, KK11] for details.
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Fig. 3.3 Schematic view of the update procedure: as the volume fractions change in the
initial laminate (here, the volume fraction of domain 2, λ , increases), the updated, internal
hardening parameters are obtained from energetic averaging of the initial values (originally
published in [KK11]).

3.5.2 Laminate Rotation

As can be seen from Fig. 3.4, once a laminate microstructure exists a change of
the laminate orientation (i.e., a change of b) results in changes of the plastic slip in
certain regions of the deformed body and is hence associated with a specific amount
of dissipation given by

Db(λλλ ,z) =
N

∑
i, j=1

λiλ jD(zi,z j). (3.32)

The dissipation Db is proportional to the area of those regions which change their
domain membership upon rotation and to the dissipation distance required to turn
a region of domain i into a part of domain j. We assume that a jump in orientation
will take place as soon as it becomes energetically favorable. This gives

inf
{
Ψ rel(F,λλλ ,z,bn+1)−Ψ rel(F,λλλ ,z,bn)

∣∣bn+1 : |bn+1|= 1
}
+Db(λλλ ,z)≤ 0

(3.33)

b
n+1

rotating laminate

b
n

b
n+1

b
n

phase-changing
regions

�

1-�

Fig. 3.4 Rotation of the original laminate (for simplicity with only two domains with volume
fractions λ and 1−λ ) from the old normal vector bn to the new normal vector bn+1. The
right graphic highlights the hatched regions which have changed their domain membership
upon rotation and hence caused dissipation (originally published in [KK11]).



72 C. Günther, D.M. Kochmann, and K. Hackl

for given bn,λλλ ,z. Eq. (3.33) completes the description of the inelastic evolution of
a first-order laminate. In the sequel, this formal concept will be applied to model
problems of crystal plasticity, where we follow ideas of [MLG04, HK08, HK09].

From (3.32) (see also Fig. 3.3) it follows for a single active slip system that

Db(λ ,γ1,γ2) = 2rλ (1−λ )|γ1− γ2|. (3.34)

3.5.3 Laminate Initiation

A crucial issue is the initiation of the laminate microstructure from the originally
uniform crystal. We can treat this laminate initiation as follows. At the beginning of
each time increment, one computes the driving force qλ =−∂Ψ/∂λ with respect to
the volume fractions in the limit of a marginal amount of domain 2, i.e. for single-
slip

q0(F,γ1,γ2, p1, p2,b) = lim
λ→0

qλ (F,λ ,γ1,γ2, p1, p2,b). (3.35)

Maximizing this driving force with respect to bn+1 and γ2,n+1, one can determine
the energetically favored values of these quantities in the arising domain 2, i.e.

(bn+1,γ2,n+1) =

argmax
{

q0(Fn+1,γ1,n,γ2,n+1, p1,n, p2,n+1,bn+1)
∣∣∣ p2,n+1 = |γ2,n+1|, |bn+1|= 1

}
.

(3.36)

One then determines the actual value of λn+1 by solving

r |γ1,n− γ2,n+1|= qλ (Fn+1,λn+1,γ1,n,γ2,n+1, p1,n, p2,n+1 = |γ2,n+1| ,bn+1). (3.37)

If there exists a solution λn+1, a laminate forms with domain 2 having the deter-
mined values of λn+1, γ2,n+1 and bn+1.

3.5.4 Numerical Scheme

Our numerical scheme computes the microstructure evolution by incrementally min-
imizing the Lagrange functional. As we use the relaxed energy and dissipation
potential, this constitutes in principle a well-posed problem and we can resort to
solving the stationarity conditions. We here demonstrate the general procedure for
single-slip plasticity, i.e. we compute the updates of the plastic slips Δγi, the his-
tory variable updates Δ pi, and the volume fraction update Δλ from the stationarity
conditions (3.28) and (3.29). For a given load increment [Fn,Fn+1], each step starts
with the current state as initial values λn,γi,n, pi,n, and solves the stationarity con-
ditions in order to update all internal variables at time tn+1 with known load Fn+1.
For the initially homogeneous material the interface normal bn+1 as well as the
internal variables of the originating second laminate domain, λn+1, γ2,n+1 and
p2,n+1, are determined from (3.36). Once a laminate has formed, the evolution of
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the internal variables λ , γi and pi is computed using a staggered scheme. In a first
step a time-discretized version of (3.28) is solved for the increment Δλ for fixed
γ1 and γ2. Afterwards, p1 and p2 are updated via (3.30) or (3.31). Then, in a sec-
ond step, (3.29) are solved for the increments Δγ1 and Δγ2 for fixed λ . Finally, the
updated values of λ ,γ1,γ2, p1, p2 are transferred to the next time-step.

Note that the order of solving the stationarity conditions is only of minor impor-
tance as long as the the load increment is kept small, which we tacitly assume. With
increasing load increments the order of solution gains influence; in particular, the
initial laminate formation requires very small increments to capture the actual onset
of lamination and thus the correct variables in the newly forming laminate domain.

3.6 Simulation of Rotating Laminates

Due to the special nature of the dissipation term (3.32) and the criterion (3.33) lami-
nate rotation tends to occur in a discontinuous manner, remnant of the stick-slip be-
havior of dry friction. In order to study this phenomenon a simplified model adapted
to this task has been introduced in [HHM12]. We repeat these results here, adapted
to the notation of the present work.

Let us consider a particular case of the model introduced in Section 3.3 charac-
terized by the fact that the plastic slip is only allowed to assume two distinct values
given by γ = ±γc. Moreover, for simplicity we set κ = 0 in (3.13), i.e. allow no
hardening, and s = 0 in (3.16), i.e. restrict ourselves to the rate-independent case.
This may constitute a model for a (fictitious) shape-memory-alloy possessing only
two martensitic variants with transformation or Bain strains given by I± γc s⊗m.

Under these assumptions the relaxed dissipation potential reduces to

Δ∗(λ̇ ) = 2rγc|λ̇ |. (3.38)

The dissipation distance for rotation (3.34) becomes

Db(λ ) = 4rγcλ (1−λ ). (3.39)

The laminate energy, i.e. the argument of the minimization in (3.18) can be specified
as

Ψ lam(F,λ ,a,b) = λΨ(F(I +(1−λ )a⊗b)(I+ γc s⊗m))

+ (1−λ )Ψ(F(I−λ a⊗b)(I− γc s⊗m)), (3.40)

where a · b = 0. In the plane-strain case, we can specify the quantities above as
b= (cosφ ,sinφ) and a= a0 (−sinφ ,cosφ), m= (cos φ̄ ,sin φ̄), s = (−sin φ̄ ,cos φ̄ ).
The laminate microstructure is then fully described by the parameters a0, λ and φ .

In the absence of dissipation the energy will be minimized with respect to all
possible laminates resulting in a relaxed energy of the form

Ψ rel,full(F,λ ,φ) = inf
{
Ψ lam(F,λ ,a)

∣∣λ ∈ [0,1], a0 ∈R, φ ∈ [0,π)
}
. (3.41)
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However, with dissipation present in the model we calculate the partially relaxed
energy as

Ψ rel(F,λ ,φ) = inf
{
Ψ lam(F,λ ,a)

∣∣a0 ∈ R
}
. (3.42)

The principle of the minimum of the dissipation potential (3.3) now gives

0 =
∂Ψ lam

∂a0
, 0 ∈ ∂Ψ lam

∂λ
+ r sign λ̇ . (3.43)

In a time-incremental setting this can be written as

0 =
∂Ψ lam

∂a0n
, 0 ∈ ∂Ψ lam

∂λn
+ r sign(λn−λn−1), (3.44)

where the subscripts n− 1 and n denote the values of the specific quantities at the
beginning and at the end of the time-increment considered.

The condition for rotation of the laminate (3.33) becomes

f (Fn,λn,φn−1,φn)

=Ψ rel(Fn,λn,φn)−Ψ rel(Fn,λn,φn−1)+ 4rγcλn(1−λn)< 0. (3.45)

Note that in [HHM12] a more general expression is given where a change in the
parameter λ during rotation is taken into account. The evolution of φ is now given
as

φn ={
argmin

{
f (Fn,λn,φn−1,φ)

∣∣φ } for inf
{

f (Fn,λn,φn−1,φ)
∣∣φ }< 0

φn−1 else
. (3.46)

Given Fn, a0,n−1, λn−1, φn−1, the equations (3.43) and (3.46) can be solved for λn,
a0,n, φn. This allows one to compute the evolution of λ and φ in a time-incremental
manner.

As an example we present a simple shear test of the form F =

(
1 0

ξ (t) 1

)
, where

ξ (t) = t for t ∈ [0,2]. The model parameters chosen are: μ = 75MPa, γc = 0.2,
2rγc = 1MPa, φ̄ = π/10. Hence, the inelastic shearing deformation is misaligned
with respect to the applied shear.

In Figure 3.5 the laminate rotation angle φ is displayed as a function of ξ , once
as result of the minimization in (3.41), and once as result of the time-incremental
procedure in (3.46). The same is done for the volume ratioλ as function of ξ in Figure
3.6. In Figure 3.7 the difference in λ of the results from (3.43) and (3.46) is shown.

It can be seen that φ starts to deviate from the solution found by minimization,
until finally the inequality (3.45) is satisfied. Then the minimization result is re-
trieved in a sudden way. This process repeats itself in a stick-slip-type behavior.
After every jump in φ , the variable λ remains constant within a certain interval,
until the differential inclusion in (3.43) becomes nontrivial again.
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Fig. 3.5 Evolution of φ as function of ξ . Dashed line: minimizer of Ψ rel,full in (3.41), solid
line: solution via time-incremental evolution.

3.7 Viscous Evolution

The rate-independent model captures the microstructural characteristics of a first
order laminate as demonstrated in [HK08, KK11]. However, a drawback of this
model is that the numerical calculations are cumbersome and often unstable. These
problems occur because calculating the evolution of the microstructure involves a
global minimization in every time step. However, the functional to be minimized
typically has extremely many local minima. Therefore, this approach leads to good

0.5 1.0 1.5 2.0
Ξ

0.2

0.4

0.6

0.8

Λ

Fig. 3.6 Evolution of λ as function of ξ . Dashed line: minimizer of Ψ rel,full in (3.41), solid
line: solution via time-incremental evolution.
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Fig. 3.7 Difference of λ as function of ξ between the minimizer ofΨ rel,full in (3.41) and the
solution via time-incremental evolution.

results on the material point level but the application on macroscopic specimens is
questionable.

The model can be rendered purely local in all aspects by extending the dissipation
potential by quadratic terms in the rates of the internal variables, i.e. by setting s �= 0
in in (3.22) and (3.25). Note that no change is necessary concerning the relaxed
energy (3.20).

3.7.1 Evolution Equations

The evolution equations for the history variables are found using the principle of the
minimum of the dissipation potential (3.3). For the respective dissipative quantities
λ and γi, these read

0 ∈ ∂Ψ rel

∂λ
+ r |γ2− γ1|sign λ̇ +

s
2δ

(γ2− γ1)
2 λ̇ , (3.47)

0 ∈ ∂Ψ rel

∂γi
+ rλi sign γ̇i + sλi γ̇i. (3.48)

Equations (3.47) and (3.48) can be solved analytically to give

λ̇ =− 2δ
s(γ1− γ2)

2

(∣∣∣∣∂Ψ rel

∂λ

∣∣∣∣− r |γ1− γ2|
)
+

sign
∂Ψ rel

∂λ
, (3.49)

and

γ̇i =−
1

sλi

(∣∣∣∣∂Ψ rel

∂γi

∣∣∣∣− rλi

)
+

sign
∂Ψ rel

∂γi
, (3.50)
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where (·)+ denotes the positive part of the respective expression.
The update of the hardening parameters pi is then performed in the same manner

as in the rate-independent case according to (3.30) and (3.31).

3.7.2 Laminate Rotation

Our aim is to replace the global criterion (3.33) by a local formulation. For this
purpose, let the normal vector b be parametrized by its angle φ with respect to a
reference direction. Then for fixed F,λi,γi, pi the relaxed energy can be written as

ψ rel(φ) =Ψ rel(F,λ ,γi, pi,b). (3.51)

Condition (3.33) can be expressed as

inf
{
ψ(φn+1)−ψ(φn)

∣∣φn+1
}
+ 2rλ (1−λ )|γ1− γ2| ≤ 0. (3.52)

In order to be consistent with the viscous approach we would like the evolution
of φ to be governed by a dissipation potential of the form

Δ rel
φ = a(λ ,γ1,γ2)

∣∣φ̇ ∣∣+ b(λ ,γ1,γ2) φ̇2. (3.53)

Unfortunately, there is up to date no canonical way of determining the functions
a(λ ,γ1,γ2) and b(λ ,γ1,γ2). We therefore have a this point to resort to heuristic ar-
guments. Inspired by the expressions in (3.34) and (3.25) we set

a(λ ,γ1,γ2) = αDb(λ ,γ1,γ2) = 2αrλ (1−λ )|γ1− γ2|
∣∣φ̇ ∣∣ ,

b(λ ,γ1,γ2) = βλ (1−λ )(γ1− γ2)
2 φ̇2,

(3.54)

introducing positive parameters α , β . These terms have the advantage of possessing
the correct limit behavior for λ → 0, λ → 1 and γ1− γ2→ 0.

Using the proposed form of the dissipation potential, an evolution equation for
φ , analogous in form to (3.49) and (3.50), is obtained as

φ̇ =− 1

2β (1−λ )(γ1− γ2)
2

(∣∣∣∣∂ψ rel

∂φ

∣∣∣∣− 2αrλ (1−λ )|γ1− γ2|
)
+

sign
∂ψ rel

∂φ
.

(3.55)
Similar to the rate-independent case, the hardening parameters pi have to be updated
according to the approach in [KK11], as given in (3.30) and (3.31).

3.7.3 Laminate Initiation

The Equations (3.49, 3.50, 3.55) in combination with (3.30) or (3.31), and (3.15)
form the final system of model equations that have to be solved. However, a closer
inspection of these equations reveals that (3.49) and (3.50) are not well-defined
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in the case λ = 0 or λ = 1, or γ1 = γ2. Hence, in correspondence to the rate-
independent model, an initiation scheme for the microstructure in terms of an initial
volume fraction and plastic slip is necessary.

We will do this in a similar fashion as in subsection 3.5.3, with the substantial
difference, that the initiated value γ2,n+1 in the newly created laminate might be
arbitrarily far from γ1,n, while now it will only be allowed to deviate from it by a
small amount, resulting in a continuous evolution of all internal variables.

To be precise, let us compute the driving force for laminate initiation as

q1(F,γ1, p1,b) = lim
λ → 0
γ∗ → 0

1
γ∗

qλ (F,λ ,γ1,γ2 = γ1 + γ∗, p1, p2 = p1 + |γ∗|,b), (3.56)

where once again qλ = −∂Ψ/∂λ . Note the substantial difference to (3.35), where
γ2 could assume arbitrary values.

Maximizing this driving force with respect to bn+1 gives the direction in which
the laminate is formed, i.e.

bn+1 = argmax
{

q1(Fn+1,γ1,n, p1,n,bn+1)
∣∣∣ |bn+1|= 1

}
. (3.57)

In a subsequent step we set γ∗ = γ ini signq1(Fn+1,γ1,n, p1,n,bn+1), where γ ini� 1
is a small fixed value, and determines λn+1 by solving

r |γ ini|= qλ (Fn+1,λn+1,γ1,n,γ2,n+1 = γ1,n + γ ini, p1,n, p2,n+1 = |γ2,n+1| ,bn+1).
(3.58)

If there exists a solution λn+1, a laminate forms with domain 2 having the deter-
mined values of λn+1, γ2,n+1 and bn+1.

3.8 Comparison of the Laminate Evolution for the
Rate-Independent Case and the Viscosity Limit

For the computations shown in the sequel we will use the so-called viscosity limit for
comparison, i.e. the limit of the viscous evolution for vanishing loading velocities.
Numerically this will be realized by calculating a fixed number of time-increments
with constant external load w, before w is increased again. We control the loading
velocity by introducing a factor ϑ . This quantity is an integer that gives the number
of updates that we perform for a fixed external load w. The loading velocity is then
given as Δw/(ϑ Δ t). In the examples presented here we choose ϑ = 10.

The numerical schemes outlined above (rate-independent and viscous approach)
can be applied to arbitrary materials, for which the relaxed energy density is known.
As the energy density employed in the preceding sections requires incompressible
material behavior, we restrict our following examples to volume-preserving defor-
mation paths only. We present results from applying the developed procedures to
different exemplary problems.
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b

Fig. 3.8 Microstructure development of a first-order laminate for a simple shear test with
a single active slip system. Two bifurcated laminate domains arise with common surface
normal b. The newly nucleated domain 2 exhibits finite plastic slip already at the onset of
lamination whereas the original domain 1 remains elastic first and eventually yields plasti-
cally, too. Volume fractions develop to finally recover the crystal in a stable homogeneous
state with uniform plastic slip.

For all calculations we use μ = 2GPa, r = 1MPa and α = 4 in (3.13). The ac-
tive slip systems are characterized for plane problems by the orientation angle φ̄
denoting the angle of the slip direction s with the x-axis.

Figure 3.8 illustrates the general nature of solutions obtained for those problems
considered here. First, the crystal behaves in a homogeneous elastic manner. At the
onset of lamination, a second domain arises out of the originally uniform single
crystal. This newly nucleated domain exhibits a finite amount of plastic slip already,
whereas the original domain may still evolve elastically, and it occupies only a small
volume fraction of the crystal. (Depending on the non-aligned slip system, plastic
flow may also occur before the onset of lamination.) Upon further loading both
domains eventually exhibit plastic flow and all internal variables evolve. Finally,
only one domain remains as soon as the external strain reaches values at the relaxed
and the unrelaxed energy coincide, leaving the crystal in a homogeneous stable state
with uniform plastic slip and uniform hardening variables.

The first example shown investigates the microstructure evolution during a plane-
strain simple shear test parametrized by the macroscopic deformation gradient

F =

⎛⎝1 w 0
0 1 0
0 0 1

⎞⎠ . (3.59)

This deformation is schematically sketched in Figure 3.9. The results for both pre-
sented approaches are determined with κ = 0.1GPa, the first approach is computed
with constant load increments of Δw = 5 · 10−4 up to a maximum of wmax = 2.8.
The exact step size of the load increment is here of minor importance as long as
the increment is kept small. (This is of particular importance for finding the initial
laminate.) For the viscous approach, the step size is considered as Δw = 1 · 10−3.
The slip system for both approaches is oriented under an angle of φ̄ = 135◦. For
the viscous approach the parameters are considered as s = rt� with t� = 0.01s, and
δ = r j with j = 0.1mm3/N.

Because of the non-aligned slip system the material stability of the homogeneous
deformation is lost for both approaches and microstructures arise. The evolution of
the volume fraction of the second domain λ and the plastic slips γ1 and γ2 for both
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Fig. 3.9 Plane-strain simple shear test

Fig. 3.10 Volume fraction λ of domain 2 and plastic slips γ1 and γ2 of both domains for:
(a) Rate-independent approach, (b) viscous approach, plastic slip γunrel. for homogeneous
evolution.

approaches is shown in Fig. 3.10. For the rate-independent approach the volume
fraction of the second domain begins almost directly to evolve and reaches a maxi-
mum value of λ = 0.36 at w = 0.4. Then the volume fraction decreases again until
λ = 0 at w = 2.35, from thereon the material is homogeneous again. For the viscous
model lamination will set in at approximately w = 0.10 when the volume fraction of
domain two starts to evolve. Therefore in comparison to the rate-independent model,
the initiation is delayed. This had to be expected because the plastic slip γ2 has to
evolve continuously now. At approximately w = 2.35, a uniform microstructure has
established that only consists of the second domain of the laminate. At approxi-
mately w = 2.35, a uniform microstructure has established that only consists of the
second domain of the laminate.



3 Evolution of Laminate Microstructures 81

Fig. 3.11 Cauchy shear stress and free energy for: (a) rate-independent approach, (b) viscous
approach

Simultaneously to the evolution of the volume fraction, plastic slip evolves in
both domains of the laminate. Both models lead to similar results: For the rate-
independent model, the plastic slip in both domains starts to evolve directly. The
plastic slip in domain one decreases from zero to γ1 = −1.6. The plastic slip in
domain two jumps to γ2 = 0.4 and then increases further to γ2 = 2.0. For the viscous
model, the evolution of the plastic slip in domain one is drastically delayed due to
the viscous effects and starts at w = 0.35. Thereafter, the plastic slip increases to
γ2 = 1.4, then the material consists only of the first domain. Except the delay at
the onset of the microstructure, the values of the plastic slip of the first domain
correspond to the absolute values resulting for the rate-independent model, only
the sign differs. The plastic slip in domain two is negative and jumps from zero to
γ2 =−0.15. During further loading, its absolute value increases slowly to |γ2|= 1.9,
which is again similar to the absolute value of the results of the rate-independent
model.

Along with the evolving microstructure, the resulting Cauchy stresses

σ = μ
(
FeF−T

e − I
)

(3.60)

can be calculated for both models. In the upper part of Fig. 3.11 the Cauchy shear
stresses, determined (a) with the rate-independent and (b) with the viscous approach,
are presented. On the left side, the stresses of the rate-independent model are shown.
While the microstructure evolves, the resulting stress increases due to the hardening
slowly until the crystal is homogeneous again. From there on the stress increases
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with a larger slope. On the right hand side, the stresses of the viscous approach
are presented: during the first part of the shearing, the stress increases with slightly
decreasing slope. This follows from the non-linear neo-Hookean energy that we
choose. When the first domain of the laminate has evolved, hence plastic slip occurs,
the slope of the stress is reduced but still increasing. The total amount of plastic
deformation during this period remains still too small to influence the stresses.

However, when the plastic slip also evolves in domain one (in this case the larger
domain), the stress drops quite drastically. This surprising effect can be explained
in the following way. In the rate-independent model the laminate is initiated at a
load when the relaxed energy starts to differ from the original one. In the viscosity
limit, this happens essentially when the energy looses ellipticity, i.e. much later. This
means, that the energy will then increase with a smaller rate during laminate evolu-
tion to compensate for the higher starting value, resulting in smaller stresses. This
phenomenon is strong enough to counter even hardening effects. A similar effect
has been observed in [YBG11] using a related model based on energy relaxation.

At a loading larger than w > 2.35, there exists no further material that could
transform to domain two. Consequently, stress starts to increase again. Summarized,
the evolutions of the shear stresses for the two models are not very closely related,
as the precise values of the microstructure parameters have a great impact.

The free energies for both approaches are displayed in the lower part of Fig. 3.11.
The graph for the rate-independent model is convex. Due to the viscous delay of the
microstructure, the energy for the viscous model still exhibits a non convexity at the
onset and the ending of the microstructure. In addition, the energy obtained by the
viscous model is smaller than that for the rate-independent one which is physically
expected due to the additional term in the dissipation potential.

As a second example we investigate the microstructure evolution for a plane-
strain tension-compression test with the macroscopic deformation gradient

F =

⎛⎝1+w 0 0
0 1/(1+w) 0
0 0 1

⎞⎠ . (3.61)

The loading is illustrated in Fig. 3.12. Computations were carried out with κ =
0.01GPa and the rate-independent model is tested with constant load increments
Δw = 2 · 10−4 up to the maximum load of wmax = 2.5. For the viscous model, the
parameters coincide with those of the shear test. In both models, the slip system is
oriented under an angle of φ̄ = 70◦. Again, due to the loss of rank-one convexity, the
homogeneous deformation state becomes unstable and decomposes into a laminate.
The microstructure evolution, including the evolution of plastic slips and the volume
fractions, is summarized in Fig. 3.13. On the left side, the presented evolution is
based on the rate-independent ansatz, on the right side, the evolution is resulting
from the viscous ansatz.

In the upper part of Fig. 3.13 the evolution of the volume fraction of domain two
is presented for both models. Both results show similar characteristics: already for a
very small amount of loading a microstructure is established and the second domain
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Fig. 3.12 Tension-compression test

Fig. 3.13 Volume fraction λ of domain 2 and plastic slips γ1 and γ2 of both domains for: (a)
rate-independent approach, (b) viscous approach.

increases monotonically from 0 to 1. From there on, the crystal is homogeneous
again, consisting only of the second domain. A closer observation reveals slight
differences, the volume fraction in the rate-independent model (left side of Figure
3.13) increases monotonously to one (reached at w = 1.9), while for the viscous
approach (right side of Figure 3.13), the volume fraction increases rapidly up to
a value of 30% before the slope is less pronounced. At w = 1.75, the process is
completed and λ = 1.



84 C. Günther, D.M. Kochmann, and K. Hackl

The evolution of the corresponding plastic slips in both domains for the outlined
approaches is presented in the lower part of Fig. 3.13. The plastic slip for the rate-
independent ansatz is shown on the left hand side of Figure 3.13. The plastic slip
in domain one is positive and increases monotonously from zero to γ1 = 1.9. The
plastic slip of the second domain jumps from zero to−0.6 and then decreases further
to γ2 =−2.4. Meanwhile the plastic slip in the viscous model (lower part on the right
hand side of Figure 3.13) evolves similar: in domain one, the plastic slip increases,
after a small delay, up to γ1 = 2.4, which is rather similar to the results of the rate-
independent ansatz. The plastic slip of domain two jumps from zero to -0.15, then
it decreases further to -2.4 during formation of laminate two. Except the reduced
jump in the beginning, this also corresponds to the evolution obtained by the rate-
independent ansatz. Once again, the observed delays in the viscous model can be
explained by the viscous regularization of the microstructure initiation.

Fig. 3.14 Cauchy normal stress and free energy for: (a) rate-independent approach, (b) vis-
cous approach

The Cauchy normal stress σ11 and the free energy are presented in Figure 3.14.
The stress which is exhibited by the rate-independent approach (on the left hand in
the upper part of Fig. 3.14) increases linearly as the microstructure evolves. When
the crystal is homogeneous again, the slope increases. The normal stress of the vis-
cous model is presented on the right hand side of Figure 3.14. During the first load-
ing steps, the stress increases up to a maximum value of 0.12GPa. In these first
loading steps, the volume fraction of domain two is negligible: even though there is
a large amount of plastic slip in domain one, the total amount of plastic slip is too
small to significantly influence the stress.



3 Evolution of Laminate Microstructures 85

With the increase of volume fraction and the plastic slip in domain one, the stress
drops drastically (as in the case of shear loading) to 0.0 GPa and then remains con-
stant. At first glance, the zero stresses during the evolution of microstructure are
surprising since hardening is present. However, the hardening can be observed in
the individual domains only. Since plastic slip is identical in both domains, except
for the sign, the stresses will increase in every domain due to hardening, but cancel
each other effectively. No macroscopic hardening can be observed. While this be-
havior is very interesting, our simulations indicate, that it is not generic but occurs
only for specific parameter values.

The graph of the energy of the rate-independent ansatz (on the left hand in the
lower part of Fig. 3.14) appears convex. The energy of the viscous approach is
shown on the right hand in the lower part of Fig. 3.14. The graph of the energy
displays two characteristic kinks. This is once again due to the delayed initiation
and disappearance of microstructure caused by the viscous regularization.

3.9 Conclusion and Discussion

We have presented two strategies to model the time-continuous evolution of lam-
inate microstructures in finite-strain plasticity. For both studies we have in great
detail studied the aspects of laminate initiation, laminate rotation, and continuous
evolution, which all have to be treated in a different manner. We employed partially
relaxed approximations of the nonconvex potentials involved. For an incompress-
ible neo-Hookean material we have derived a closed-form, partially-relaxed energy
which corresponds to a laminate of first order. The relaxation of the laminate energy
is carried out only with respect to those variables that change purely elastically, in
our case the amplitudes of the deformation gradient in each domain. The course of
all remaining unknowns is determined from dissipative evolution equations, where
we employ the principle of the minimum of the dissipation potential.

The first approach is based on a dissipation potential leading to rate-independent
evolution. While the results obtained this way are very instructive, the numerical ef-
fort is rather high and the approach has a tendency to instabilities. Thus it is doubtful
that it can be applied to more complicated situations than treated here. Therefore,
the model has been modified by adding a quadratic term to the dissipation poten-
tial leading to viscous behavior. Now the evolution equations no longer require any
global minimization. They can be evaluated directly with standard approaches for
numerical integration. For the comparison of both approaches, a shear test and a
tension-compression test were performed. Both tests show good agreement between
the numerical schemes, except a delayed occurrence and vanishing of microstruc-
ture in the viscous case. This behavior, however, had to be expected due to the local
nature of all equations in the latter case.

While this paper concentrates more on the principal aspects of laminate evolution,
the focus of future work will lie on the extension of the present models to physically
more realistic ones, involving for example several slip systems, on the solution of
full boundary-value problems, and on comparison with experimental data.
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Chapter 4
Variational Gradient Plasticity:
Local-Global Updates, Regularization and
Laminate Microstructures in Single Crystals

Steffen Mauthe and Christian Miehe

Abstract. This work summarizes recent results on the formulation and numerical
implementation of gradient plasticity based on incremental variational potentials
as outlined in a recent sequence of work [Mie14, MMH14, MWA14, MAM13].
We focus on variational gradient crystal plasticity and outline a formulation and
finite element implementation of micromechanically-motivated multiplicative gra-
dient plasticity for single crystals. In order to partially overcome the complexity
of full multislip scenarios, we suggest a new viscous regularized formulation of
rate-independent crystal plasticity, that exploits in a systematic manner the long-
and short-range nature of the involved variables. To this end, we outline a multifield
scenario, where the macro-deformation and the plastic slips on crystallographic sys-
tems are the primary fields. We then define a long-range state related to the primary
fields and in addition a short-range plastic state for further variables describing the
plastic state. The evolution of the short-range state is fully determined by the evo-
lution of the long-range state, which is systematically exploited in the algorithmic
treatment. The model problem under consideration accounts in a canonical format
for basic effects related to statistically stored and geometrically necessary dislo-
cation flow, yielding micro-force balances including non-convex cross-hardening,
kinematic hardening and size effects. Further key ingredients of the proposed al-
gorithmic formulation are geometrically exact updates of the short-range state and
a distinct regularization of the rate-independent dissipation function that preserves
the range of the elastic domain. The model capability and algorithmic performance
is shown in a first multislip scenario in an fcc crystal. A second example presents
the prediction of formation and evolution of laminate microstructure.
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4.1 Introduction

With the ongoing trend of miniaturization and nanotechnology, the predictive mod-
eling of size effects play an increasingly important role in metal plasticity. In this
context, two specific phenomena have recently received growing attention: plastic
laminate microstructure stemming from latent hardening and size effects stemming
from geometrically necessary dislocations (GNDs). In this work, we propose a gra-
dient plasticity model based on the framework of gradient crystal plasticity that
approximates the laminate interfaces in a phasefield like manner and incorporates
the effects of GNDs by use of the dislocation density tensor. Our considerations
are based on the work of Miehe et al. [MMH14] and inspired by ideas presented
in Hildebrand & Miehe [HM12]. A key challenge of the numerical implementa-
tion of gradient crystal plasticity is the complexity within full multislip scenarios,
in particular in context of rate-independent settings. We outline variational-based
formulations and efficient numerical implementation of gradient crystal plasticity
based Nye’s dislocation tensor in the free energy, which is well suited for large-
scale computations.

The physically-based phenomenological description of macroscopic plastic
strains in metallic single crystals has been guided by the pioneering works Tay-
lor [Tay34, Tay38], Schmid & Boas [SB35], Nye [Nye53] and Kröner [Kro60]. The
mechanism of inelastic distortion in ductile single crystals was found to be governed
by plastic slip on a certain set of crystallographic systems where the shear stresses
reach critical values. Mathematical continuum descriptions of elastic-plastic defor-
mations in crystals have been developed by Hill [Hil66] in the small-strain format
and by Rice [Ric71], Hill & Rice [HR72], Mandel [Man72], Teodosiu [Teo70],
Kröner & Teodosiu [KT72] and Asaro [Asa83a] in the context of finite strains, see
also the reviews Lin [Lin71], Asaro [Asa83b], Havner [Hav92] and Bassani [Bas93].
The geometric basis of what is often called the macroscopic continuum slip theory
of finite crystal elastoplasticity is a multiplicative decomposition of the local defor-
mation gradient into a plastic part solely due to multislip on given crystallographic
planes and a remaining part which describes elastic distortions and rigid rotations of
the lattice, yielding the standard definition F e := FF p−1. The constitutive equa-
tions which govern the slip resistance and the slip evolution can be motivated by mi-
cromechanical investigations of defects in crystals as reviewed in Cottrell [Cot53],
Seeger [See58], Nabarro [Nab67], Hirth & Lothe [HL68], Mura [Mur87], Hull &
Bacon [HB84] and Phillips [Phi01]. The formulation of micromechanically moti-
vated hardening laws for multislip is a cornerstone of the continuum slip theory. We
refer to the reviews Kocks [Koc66], Kocks et al. [KAA75], Asaro [Asa83b], Perzyna
[Per88], Havner [Hav92], Bassani [Bas93], Cuitiño & Ortiz [CnO92] and references
cited therein. Algorithmic representations of local finite crystal plasticity models
suitable for the numerical simulation of initial boundary value problems in con-
text with the application of finite element methods were developed by Peirce et al.
[PAN82], Needleman et al. [NALP85], Cuitiño & Ortiz [CnO92], Anand & Kothari
[AK96], Miehe [Mie96], Kothari & Anand [KA98], Ortiz & Stainier [OS99] and
Miehe et al. [MSS99, MSL02], who discuss alternative numerical schemes for the
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updates of the stresses and the active set of slip systems in the multisurface frame-
works of rate-dependent and rate-independent crystal plasticity. A current status of
computational local crystal plasticity at finite strains is outlined in Miehe & Schotte
[MS04].

However, the above mentioned local approach to crystal plasticity is not able
to describe size effects. Experimental evidence for nano indentation tests of sin-
gle crystals, torsion tests of microwires and microbending tests of thin films show
that inhomogeneous plastic flow at small scales is inherently size dependent, with
’smaller being stronger’, see Hall [Hal51], Petch [Pet53], Fleck et al. [FMAH94]
and Stölken & Evans [SE98], among others. As a consequence, an important field of
research in crystal plasticity treats advanced formulations that allow to model size
and boundary layer effects accompanied with additional hardening. Micromechan-
ical basis of such investigations are so-called geometrically necessary dislocations
(GNDs) occuring in inhomogeneous plastic deformations, which supplement sta-
tistically stored dislocations (SSDs) governing homogeneous plastic deformations.
Basic definitions for the phenomenological quantification of GNDs can be traced
back to Nye [Nye53], Kröner [Kro60], Ashby [Ash70], Fleck & Hutchinson [FH97],
Nix & Gao [NG98] and Arzt [Arz98]. A key ingredient here is the definition of the
dislocation density tensor, which can be related to Cartans torsion tensor. This owes
mainly to the description of defect distributions by objects of differential geometry,
as outlined in the classical works Kondo [Kon52], Bilby et al. [BBS55], Kröner &
Seeger [KS59] and Kröner [Kro60] which identifed the continuum-mechanical the-
ory of dislocations with a Cartan geometry. This geometric aspect was elaborated in
Steinmann [Ste96] with a view on multiplicative plasticity.

Continuum strain-gradient theories for single crystal plasticity which follow this
geometric viewpoint were outlined in Menzel & Steinmann [MS00] in the small-
strain context and in Gurtin [Gur00, Gur02] and Cermelli & Gurtin [CG01] for finite
deformations. Here, the central ingredient leading to size effects was to make the
free energy dependent of the lattice-curvature-based dislocation density tensor re-
lated in a geometrically consistent format to the curl of the plastic deformation map
CurlF p. It was shown in Mielke & Müller [MM06] that such an ansatz allows the
proof of existence theorems in finite plasticity. Similar but more physically-based
continuum models of gradient crystal plasticity based on dislocation densities de-
fined on crystallographic slip systems and their interactions are outlined in Arsenlis
& Parks [AP99], Arsenlis et at. [APBB04], Evers et al. [EBG04a, EBG04b], Gurtin
[Gur08], Kuroda & Tvergaard [KT08] and Ertürk et al. [EvG09]. Detailed compar-
ative reviews on different modeling approaches to gradient crystal plasticity provide
Svendsen [Sve02] and Svendsen & Bargmann [SB10]. However, large scale three-
dimensional numerical implementations of gradient crystal plasticity are missing in
the literature, partly due to the complexity of the above mentioned models. This is in
particular evident with respect to the modeling of size effects in polycrystals. Here,
the current status of numerical implementation is often restricted to simplified gra-
dient models and idealized slip models for planar double slip, such as the works Ekh
et al. [EGRS07], Bargmann et al. [BERS10] and Wulfinghoff & Böhlke [WB12].
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The formation of laminate deformation microstructure during plastic deforma-
tion of single crystals has been experimentally observed e.g. by Dmitrieva et
al. [DDMR09] and can have a strong effect on the hardening properties of the ma-
terial. Mathematically, the formation of laminate microstructure is triggered by a
non-convexity of the latent hardening function that favors an inhomogeneous state
of laminate microstructure of alternating states with fewer active slip systems over
a homogeneous multi-slip state for certain slip combinations. Such a dominance
of latent hardening over self hardening has been observed e.g. by Kocks [Koc64]
and Franciosi et al. [FBZ80]. One approach to the modeling of plastic laminates
is that of a minimization of the condensed non-convex free energy function with
respect to a parametrized laminate microstructure. This approach is referred to as
relaxation and restricts the possible microstructure. Examples for application of
relaxation to single crystal plasticity can be found in Ortiz & Repetto [OR99],
Carstensen et al. [CHM02], Miehe et al. [MLG04], Kochmann [Koc09], Kochmann
& Hackl [KH11] and Conti et al. [CDK09, CDK13]. Since these approaches do not
fully resolve the microstructure, an incorporation of size effects based on GNDs is
not directly possible. An alternative approach is obtained by a suitable slip gradient
regularization together with a nonconvex hardening function in the slips. A small
strain single slip example for this approach in one dimension with non-convex self
hardening is given in Yalcinkaya et al. [YBG11] and very similarly in Klusemann
et al. [KBS12]. A two-dimensional small strain double slip approach with non-
convex latent hardening and an isotropic gradient term is outlined in Yalcinkaya
et al. [YBG12]. A model framework which combines strain-gradient plasticity and
lamination by partially relaxing the free energy function and hence restoring ex-
istence and uniqueness of solutions has been recently proposed by Anguige &
Dondl [AD14].

Following Miehe [Mie14] and Miehe et al. [MMH14], the aim of this paper is
to outline an efficient implementation of finite gradient plasticity suitable for large-
scale problems, that is in a rigorous format based on variational principles. To this
end, we outline a multifield scenario where the macro-deformationϕ and the plastic
slips γα on crystallographic systems are the primary fields. The first ingredient is a
variational-based formulation of gradient crystal plasticity that exploits in a geomet-
rically consistent format the dislocation density tensor A := F pCurlF p/ det[F p]
defined in Cermelli & Gurtin [CG02]. To overcome the problem of active set
searches in rate-independent multislip scenarios, we apply a particular viscous
regularized technique. This regularization recasts the non-smooth setting of rate-
independent crystal plasticity in a natural way into a close related smooth set-
ting. The proposed regularization ansatz ensures the resolved shear stresses to be
bounded by the critical Schmid stress. This is in sharp contrast to standard regular-
ization techniques based on power laws with high exponents, used in the classical
literature of crystal plasticity. The next ingredient of the proposed formulation is a
systematic differentiation between long-range and short-range states. This differen-
tiation is based purely on the chosen algorithmic structure and does not imply any
physical properties. Directly related to the primary fields, we define as the long-
range state G := {∇ϕ, γ1, ..., γm,∇γ1, ...,∇γm} the deformation gradient, the
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plastic slips and their gradients. We then introduce as the short-range plastic state
L := {F p,AT , γ+1, ..., γ+m} the plastic deformation map, the dislocation density
tensor and scalar hardening parameters associated with the slip systems. It is shown
that the evolution of the short-range state is fully determined by the evolution of the
long-range state. This separation into long- and short-range states is systematically
exploited in the algorithmic treatment by a new update structure, where the short-
range variables play the role of a local history base. The evolution equations of the
proposed model of finite gradient crystal plasticity are governed by a rate-type vari-
ational principle, which represents a canonical two-field minimization structure as
outlined in Miehe [Mie14]. Following the general concept outlined in this paper, we
formulate a rate-potential that governs the minimization principle. The Euler equa-
tions of the minimization principle are the quasi-static equilibrium condition and
the coupled micro-balances which govern the slip on the crystallographic systems.
The formulation is specified for a simple model problem with isotropic constitutive
functions, that demonstrate a particular back stress response on the slip systems due
to the geometric dislocation density tensor. The algorithmic implementation uses a
particular update for the short-range plastic deformation map F p, governed by an
approximation of the exponential map suggested in Miehe & Schotte [MS04] that
satisfies exactly the plastic incompressibility constraint. In contrast, the dislocation
density tensor AT as well as the hardening parameters γ+1, ..., γ+m are updated in
a semi-explicit manner based on a frozen sensitivity L,G. This is a key ingredient
with regard to a geometrically consistent but efficient numerical implementation.
The computational formulation is governed by an incremental potential that is spa-
tially discretized by finite elements with nodal degrees for the deformation map as
well for the plastic slip.

The paper is structured as follows. We outline in Section 4.2 the theoretical for-
mulation, including the particular regularization technique and the concept of sepa-
ration into long- and short-range states. Section 4.3 contains the algorithmic formu-
lation, including the definition of incremental potentials which govern the geomet-
rically consistent implicit-explicit updates of the short-range state variables and the
finite element design. We then demonstrate in Section 4.4 the modeling capabilities
and algorithmic performance is demonstrated for a fcc crystal with 12 slip systems,
i.e. 3+12 = 15 nodal degrees of freedom. Section 4.5 then shows the capability of
the presented model to predict formation and evolution of laminate microstructure
stemming from latent hardening in crystals.

4.2 A Multifield Formulation of Gradient Crystal Plasticity

4.2.1 Introduction of Long-Range Field Variables

Let B ⊂ Rd be the reference configuration of the crystal with dimension d ∈ [2, 3]
in space and ∂B ⊂ Rd−1 its surface with normal n as depicted in Figure 4.1. We
study the deformation of the crystal under mechanical loading in the range T ⊂ R
of time and are interested in predicting the macro-motion field at material points
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Fig. 4.1 Geometry of map-type finite plasticity. The reference configuration B ∈ R3 and
the current configuration S ∈ R3 are considered as differentiable manifolds. ϕ : B×T → S
is the nonlinear deformation map that determines the current position x ∈ S . q : B × T →
M assembles α = 1 . . .m plastic slips γα.

X ∈ B at time t ∈ T . Microstructural plastic slip mechanisms of the crystal are
described by micro-motion fields, which generalize the classical notion of locally
evolving internal variables to global fields driven by additional micro-balances. In
what follows, ∇(·) := ∂X(·) and ˙(·) := ∂t(·) denote the material gradient and the
time derivative of the field (·), respectively.

4.2.1.1 Macro-motion Field

In the large strain context, we describe the macroscopic motion of the body by the
macro-motion field

ϕ :

{
B × T → Rd

(X, t) �→ ϕ(X , t) ,
(4.1)

which maps at time t ∈ T points X ∈ B of the reference configuration B onto
points x = ϕ(X, t) of the current configuration ϕt(B). The material deforma-
tion gradient F := ∇ϕ(X, t) is constrained by the condition J := det[∇ϕ] > 0
on its Jacobian. The exterior surface of the reference configuration is decomposed
via ∂B = ∂Bϕ ∪ ∂BP into a part ∂Bϕ, where the macro-motion is prescribed by
Dirichlet-type boundary conditions ϕ(X , t) = ϕD(X , t) at X ∈ ∂Bϕ and a part
∂BP , where a macro-traction tN (X, t) is prescribed by Neumann-type boundary
conditions as outlined below. Clearly, we have ∂Bϕ ∩ ∂BP = 0.

4.2.1.2 Micro-motion Fields

For multislip crystal plasticity with m slip systems α = 1, ...,m, we introduce the
micro-motion fields

γα :

{
B × T → R
(X, t) �→ γα(X , t) ,

(4.2)
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Fig. 4.2 Primary fields. The basic fields of the coupled problem are the deformation map ϕ
and the plastic slips γα defined on the domain B ⊂ Rd of the reference configuration.

characterizing the plastic slip on the m slip systems α = 1, ...,m. They de-
scribe in a homogenized sense the dislocation movement through the crystal due
to structural changes of the lattice on lower scales. The gradients of these fields
gα := ∇γα(X, t) govern the compatibility features of gradient-type crystal-
plasticity. Their presence in the energy storage and dissipation potential func-
tions induce the balance-type structure of the partial differential equations for the
evolution of the plastic slips. With respect to each plastic slip field γα, we decom-
pose the surface of the solid via ∂B = ∂Bγα ∪ ∂BHα into a part ∂Bγα , as de-
picted in Figure 4.2, where the plastic slip is prescribed by Dirichlet-type boundary
conditions γα(X, t) = γα

D(X , t) at X ∈ ∂Bγα and a part ∂BHα , where micro-
tractions t̃αN (X, t) are assumed as Neumann-type boundary conditions. We have
∂Bγα ∩ ∂BHα = 0. The Dirichlet and Neumann conditions allow the specification
of microstructural constraints for the plastic slips, for example at grain boundaries
of polycrystals.

4.2.1.3 Long-Range Constitutive State Variables

With regard to the subsequent specification of stored energy and dissipation poten-
tial functionals, we introduce the set of global constitutive state variables

G := {F , γ1, ..., γm, g1, ..., gm} (4.3)

associated with the fields introduced above. Hence, the constitutive response func-
tions of the crystal are assumed to depend on the deformation gradientF , the plastic
slips {γα}α=1...m on the m systems and their spatial gradients {gα}α=1...m. The
introduction of these variables is consistent with a simple material of the grade one,
where the constitutive functions depend on both the macro- and micro-motions and
their first gradients. Note that the dependence on the macro-motionϕ drops out due
to the argument of material frame invariance, which also restricts the dependence
on the deformation gradient F in (4.3) to a dependence on the right Cauchy-Green
tensor C(X , t) := F T (X , t)F (X , t).
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4.2.2 Introduction of Short-Range Field Variables

In order to describe the plastic deformation and hardening of single crystals within
the framework of the continuum slip theory, we need to introduce several short-
range variables. They describe the microstructural changes with spatially short-
range actions and evolve by local equations, i.e. ordinary differential equations,
driven by the long-range variables introduced above.

4.2.2.1 The Plastic Deformation Map

The most important internal variable in the continuum slip theory of plasticity is the
plastic deformation map

F p :

{
B × T → Rd×d

(X, t) �→ F p(X, t) ,
(4.4)

that determines the superimposed plastic deformation of the crystal solely due to
plastic shearing on the m slip systems α = 1, ...,m. The evolution of F p in time is
determined by the local evolution equation

d

dt
F p =

m∑
α=1

F p
,γα γ̇α with F p

,γα := MαF p (4.5)

in terms of the sensitivities F p
,γα with respect to the long-range fields {γα}α=1...m

and with the initial condition F p(X , 0) = 1 . Here, Mα := sα ⊗ nα are constant
second-order structural tensors, where the orthogonal unit vectors nα and sα define
the slip plane normal and the slip direction of the slip system α. The basic assump-
tion that plastic flow occurs by simple shearing induces the plastic deformation map
F p ∈ SL(3) = {F p| det[F p] = 1} as an element of the special linear group
SL(3) of unimodular second-order tensors. This so-called plastic incompressibility
constraint is a central ingredient of the Schmid-type continuum theory of crystals.

4.2.2.2 The Geometric Dislocation Density Tensor

The next variable needed in a physically-based theory of crystal plasticity is the
geometrically consistent dislocation density tensor

AT :

{
B × T → Rd×d

(X , t) �→ AT (X, t)
(4.6)

that depends on the plastic deformation map F p and its material curl via the defini-
tion

AT :=
1

det[F p]
(CurlTF p)F pT , (4.7)
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Fig. 4.3 Geometric necessary dislocations. The storage of GNDs is induced by a lattice
curvature. a) GNDs in bending test with density ρ = κ/b, considered by Ashby and Nye. b)
GNDs induced by inhomogeneous plastic deformation with density ρ = 1/b ∂γ/∂X .
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Fig. 4.4 Dislocation density tensor. Geometrically consistent measures for the incompatibil-
ity of the intermediate configuration. The closure failure of a line integral in the intermediate
configuration corresponds to the macroscopic Burgers vector β̄.

see Cermelli & Gurtin [CG01]. It plays a crucial role as an incompatibility mea-
sure of the plastic deformation. The tensor is needed as a macroscopic measure
for the amount of geometrically necessary dislocations (GNDs). The geometrical
relation between a plastic lattice curvature and the amount of GNDs goes back to
Nye [Nye53], see Figure 4.3. Taking the time-derivative of (4.7), we obtain the local
evolution equation

d

dt
AT =

m∑
α=1

{ AT
,γα γ̇α +AT

,gα · ġα } (4.8)

with initial condition AT (X , 0) = 0 and with the sensitivities with respect to the
plastic slips {γα}α=1...m and their gradients {gα}α=1...m

AT
,γα := MαAT +ATMαT and AT

,gα := −sα ⊗ [F p × (F pTnα)] . (4.9)
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4.2.2.3 Hardening Parameters

Finally, to be able to model hardening effects on all slip systems, we introduce m
short-range accumulated plastic slip fields associated with the slips γα as

γ+α :

{
B × T → R
(X , t) �→ γ+α(X, t)

(4.10)

for α = 1, ...,m. They are needed for the description of the typical latent hardening
of single crystals due to statistically stored dislocations (SSDs). We assume these
hardening variables to be governed by the evolution equations

d

dt
γ+α = f ′(γ̇α)γ̇α with γ+α(X, 0) = 0 (4.11)

in terms of the long-range fields {γα}α=1...m introduced in (4.2), with the sensitivity
f ′. Here, the canonical choice is the non-smooth norm function

f(γ̇α) = |γ̇α| and f ′(γ̇α) = sign(γ̇α) , (4.12)

which characterizes the sensitivity in (4.11) to be the signum function. Hence, the
hardening parameter γ+α accumulates the absolute amount of slip activity on slip
system α. In what follows, we consider regularizations of the non-smooth norm
function, which are convenient for numerical implementations. A particular choice
is the regularized function

f(γ̇α) = γ̇0 ln[ cosh(γ̇
α/γ̇0) ] and f ′(γ̇α) = tanh(γ̇α/γ̇0) , (4.13)

where the the signum function is approximated by a tanh function in terms of the
regularization parameter γ̇0. A visualization is given in Figure 4.5.

4.2.2.4 Short-Range Constitutive State Variables

We denote the internal variables introduced above as the set of local constitutive
state variables

L := {F p,AT , γ+1, ..., γ+m} , (4.14)

which enter the stored energy and dissipation potential functionals besides the
global constitutive variables G. Observe from (4.5), (4.8) and (4.11) that the evolu-
tion of these local variables is essentially determined by the evolution of the global
variables, such that we can write

d

dt
L = L,G · Ġ , (4.15)
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Fig. 4.5 Regularization technique. The non-smooth function f1 = |γ̇α| in a) has the subd-

ifferential in b). A common approximation is f2 = m
m+1

(γ̇α)
m+1
m in c) with derivative in d).

We propose the regularization f3 = γ̇α
0 ln[cosh(γ̇α/γ̇α

o )] in e) with derivative in f).

whereL,G contains the state-dependent sensitivities as introduced in (4.5), (4.9) and
(4.12) or (4.13). This property is exploited in the proposed computational setting of
gradient crystal plasticity, where the variablesF p, AT and γ+α form a local history.

4.2.3 Energy Storage, Dissipation Potential and Load Functionals

4.2.3.1 Stored Energy Functional

The energy stored in a crystal due to macroscopic lattice distortions and microscopic
stress fields takes the form

E(ϕ, γ1, ..., γm,L) =

∫
B
ψ(G,L) dV . (4.16)

The energy functional depends on the long-range macro- and micro-motion fields
ϕ and γα through the global constitutive variables G. The energy density ψ =
ψ(G,L) describes the stored energy per unit volume of the crystal and is a consti-
tutive function of both the global as well as the local state variables. We assume a
split of this constitutive function into three parts

ψ = ψLAT (F ,F p) + ψSSD(γ+1, ..., γ+m) + ψGND(AT ) . (4.17)

The first term ψLAT characterizes the energy storage due to macroscopic elastic
distortion of the crystal lattice. Following a standard argument of crystal plasticity
that assumes invariance with respect to previous plastic deformations, this energy
has the form ψLAT (F ,F p) = ψLAT (F

e) and depends solely on the elastic defor-
mation map F e := FF p−1. A simple example of this function is provided by the
isotropic Neo-Hookean function
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ψLAT

γ+1

γ+2

0.0

0.1

0.2

0.3

0.0
0.1

0.2
0.3

0.4
0.5 0.0

0.1

0.2

0.3

0.4

0.5

Fig. 4.6 Plot of the energy ψSSD due to latent hardening as defined in (4.19) with material
parameters τ̂ = 4.0 N/m2, γ̂ = 1.0 and b = 0. For the specific choice b = 0, ψSSD does not
include self hardening, only cross-hardening. Further note that ψLAT is a nonconvex function.

ψLAT (F
e) =

μ

2

[
tr(F eTF e)− 3

]
+

μ

β

[
det(F eTF e)

β
2 − 1

]
, (4.18)

where μ > 0 and β > 0 are material parameters specifying the elastic response.
The second term ψSSD in (4.17) describes the stored energy due to micro-stress

fields caused by statistically stored dislocations (SSDs). It models hardening effects
on the slip systems due to forest dislocations with the typical latent hardening phe-
nomena. Here, we propose an ansatz

ψSSD(γ+1, ..., γ+m) =
1

2
τ̂ γ̂

[
m∑

α=1

m∑
β=1

(
γ+α

γ̂

)n

aαβ
(
γ+β

γ̂

)n
]
, (4.19)

where τ̂ > 0 and γ̂ > 0 are a reference resolved shear stress and a reference
slip strain, and aαβ is a constant interaction matrix aαβ =

[
q + (b− q)δαβ

]
. For

n = b = 1, this formulations yields the bilinear ansatz of HUTCHINSON [Hut76]
or KOCKS [Koc64]. For q = b = n = 1, (4.19) results in isotropic Taylor-type
hardening with the linear hardening modulus h = τ̂/γ̂ > 0, see TAYLOR [Tay38],
whereas q > b leads to a non-positive definite interaction matrix aαβ and describes
off-diagonal-dominant latent hardening of the slip systems. This induces the typical
laminate microstructures in plasticity, see below.

Finally, the third term ψGND in (4.17) describes the stored energy due to micro-
stress fields caused by geometrically necessary dislocations (GNDs). It is assumed
to have the isotropic form

ψGND(AT ) =
λl2

2
‖AT ‖2 (4.20)
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of the transposed geometric dislocation density tensor introduced in (4.7), where the
material parameter l constitutes a length-scale, see e.g. Gurtin [Gur02] and where λ
is another material parameter.

With the above constitutive functions at hand, we may define the rate of energy
functional

E(ϕ̇, γ̇1, ..., γ̇m) :=
d

dt
E

=

∫
B
[ ∂Gψ · Ġ+ ∂Lψ · L̇ ] dV

=

∫
B
[δϕψ · ϕ̇+

m∑
α=1

δγαψ γ̇α]dV +

∫
∂BP

[(∂Fψ) · n] · ϕ̇dA

+

m∑
α=1

∫
∂BHα

[(∂gαψ) · n]γ̇αdA

(4.21)

at a given state {G,L}. Hence, we have introduced the variational or functional
derivatives δϕψ := −Div[∂Fψ] and δγαψ := ∂γαψ −Div[∂gαψ].

4.2.3.2 Dissipation Potential Functional

We consider the evolution of the plastic slips to be governed by a dissipation poten-
tial functional

D(γ̇1, ..., γ̇m) =

∫
B
φ(γ̇1, ..., γ̇m) dV , (4.22)

where the dissipation potential function φ = φ(γ̇1, ..., γ̇m) is assumed to be a func-
tion of the slip rates γ̇α only and to be convex, which guarantees the consistency of
the proposed formulation with the second axiom of thermodynamics. A decoupled
representation is given by

φ =

m∑
α=1

[ τc f(γ̇
α) +

η

2
(γ̇α)2 ] , (4.23)

consisting of a rate-independent part governed by the constant critical resolved shear
stress τc > 0 and a viscous regularization term governed by the viscosity parameter
η > 0. The function f is identical with the one defined in (4.12) or (4.13). For
the canonical non-smooth rate-independent response, we have f(γ̇α) = |γ̇α|. In
analogy to (4.12), we consider regularizations of these non-smooth norm functions,
which are convenient for numerical implementation. Particularly, as given in (4.13)
we choose f(γ̇α) = γ̇0 ln[ cosh(γ̇

α/γ̇0) ].
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4.2.3.3 Load Functional

We assume an external loading of the crystal due to a body force field γ per unit
volume of the reference domain B and a macro traction field tN per unit of the
surface. Hence, the loading power functional is a function of the rate ϕ̇, particularly

Pext(ϕ̇, t) :=

∫
B
γ(X, t) · ϕ̇ dV +

∫
∂BP

tN (X , t) · ϕ̇ dA+
∑
α

∫
∂BHα

t̃αN γ̇α dA .

(4.24)

4.2.4 Rate-Type Variational Principle and Euler Equations

Based on the rate of energy, dissipation potential and load functionals E := d
dtE,

D and Pext introduced in (4.21), (4.22) and (4.24) and conceptually drawing from
Miehe [Mie11, Mie14], we define the rate-type potential

Π(ϕ̇, γ̇1, ..., γ̇m)︸ ︷︷ ︸
potential

:= E(ϕ̇, γ̇1, ..., γ̇m)︸ ︷︷ ︸
rate of energy

+ D(γ̇1, ..., γ̇m)︸ ︷︷ ︸
dissipation

− Pext(ϕ̇; t)︸ ︷︷ ︸
external power

(4.25)

at a given state {G,L} at time t. The rate potential takes the explicit form

Π =

∫
B
π dV +

∫
∂BP

[ (∂Fψ) ·n− tN ] · ϕ̇ dA+
m∑

α=1

∫
∂BHα

[ (∂gαψ) ·n] · γ̇α dA

(4.26)
in terms of the rate bulk potential per unit volume

π(ϕ̇, γ̇1, ..., γ̇m) = [δϕ̇ψ − γ̄] · ϕ+

m∑
α=1

δγαψ γ̇α + φ(γ̇1, ..., γ̇m) . (4.27)

Note that the only nonlinear entry occurs through the dissipation function φ. All
other terms are linear in the rates {ϕ̇, γ̇1, ..., γ̇m} of the macro- and micro-motion
fields. We assume that the rates of the macro- and micro-deformation fields at a
given state are governed by the variational principle

{ϕ̇, γ̇1, ..., γ̇m} = Arg{ inf
ϕ̇

inf
γ̇α

Π(ϕ̇, γ̇1, ..., γ̇m) } . (4.28)

Hence, the constitutive setting of gradient plasticity for single crystals has an un-
derlying rate-variational structure. Taking the variation of the rate potential (4.26)
with arbitrary rates ϕ̇ ∈ W0

ϕ and γ̇α ∈ W0
γα , whereW0

ϕ andW0
γα are the admis-

sible rates that are zero on the Dirichlet boundary, we obtain as Euler equations the
coupled field equations of gradient plasticity

Div[P ] + γ̄ = 0 in B and ψ,γα −Div[ψ,gα ] + φ,γ̇α = 0 in B , (4.29)
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for α = 1, ...,m, where P = δFψ is the first Piola or nominal stress tensor and
where we have assumed φ as smooth. They determine the evolution of the plas-
tic slip and through (4.5), (4.8) and (4.11) the evolution of the plastic map F p,
CurlTF p and the hardening parameters γ+α. Furthermore, we obtain the Neumann-
type boundary conditions

(∂Fψ) · n = tN on ∂BP and (∂gαψ) · n = t̃αN on ∂BHα . (4.30)

4.2.5 Explicit Form of the Micro-force Balance Equations

We now outline the explicit form of the micro-balance equations (4.29)2 based on
the specific constitutive functions introduced above. With the additive split (4.17)
and the constitutive functions (4.18), (4.19), (4.20) and (4.23) we get

(τα− ταB) = [τc+h̃α]f ′(γ̇α) +ηγ̇α+Div[κα] (4.31)

in B for α = 1, ...,m. Here, we introduced the hardening contribution h̃α :=
∂γ+αψSSD , the back stress ταB := ∂γαψGND and the nonlocal contribution κα :=
∂gαψGND which can be evaluated as

τα
B = λl2 AT :

[
MαAT +ATMαT

]
and κα = −λl2sα · [ATF p × (F pTnα)] .

(4.32)

First, we observe the forest hardening of the slip systems related to statistically
stored dislocations (SSDs), governed by the not positive definite interaction matrix
aαβ . Next, we recognize a back stress hardening response due to contribution ταB ,
related to the geometrically necessary dislocations (GNDs). Hence, the effective
Schmid stress on the slip systems α is determined by ταeff := τα − ταB . The di-
vergence term contains the length-scale-dependent contribution resulting from the
GNDs. Finally, we have a viscous regularization term governed by the viscosity η.

4.3 Algorithmic Formulation of Gradient Crystal Plasticity

4.3.1 Time-Discrete Field Variables in Incremental Setting

The variational structure outlined above is of great importance with regard to the
time-discrete setting of gradient-type dissipative solids, see Miehe [Mie11, Mie14].
To show this, we consider solutions of the field variables at the discrete times
0, . . . , tn, tn+1, . . . , T of the process interval [0, T ]. In order to advance the solu-
tion within a typical time step, we focus on the finite time increment [tn, tn+1],
where

τn+1 := tn+1 − tn > 0 (4.33)
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denotes the step size. In the subsequent treatment, all field variables at time tn are
assumed to be known. The goal then is to determine the fields at time tn+1 based on
variational principles valid for the time increment under consideration. In order to
obtain a compact notation, we drop in what follows the subscript n+1 and consider
all variables without subscript to be evaluated at time tn+1.

4.3.2 Update Algorithms for the Short-Range Field Variables

4.3.2.1 The Plastic Deformation Map

A geometrically consistent integration of the evolution equation (4.5) for the plastic
deformation map F p that satisfies the plastic incompressibility constraint F P ∈
SL(3) in an algorithmically exact manner is provided by the exponential map, see
e.g. Miehe [Mie96]. It is given by

F p = exp[N ]F p
n with N :=

m∑
α=1

(γα − γα
n )M

α (4.34)

where γα are the current accumulated slip on systems α = 1...m. The algorithm
preserves F p ∈ SL(3) due to the property det{exp[N ]} = exp{tr[N ]} and the
deviatoric nature of Mα. The efficient approximation of this exponential algorithm
proposed in Miehe & Schotte [MS04] has the two-step multiplicative format

F p =
(
det[F̄ p]

)−1/3
F̄ p with F̄ p := [1−ξN ]−1[1+(1−ξ)N )]F p

n . (4.35)

The first step (4.35)2 considers a family of algorithms parameterized by the integra-
tion parameter ξ ∈ [0, 1]. For ξ = 0 this includes a fully explicit update of F p and
for ξ = 1 a fully implicit Euler update of F p. ξ = 1/2 recovers the second-order
accurate trapezoidal rule, which can also be considered as the Padé approximation
of the exponential map (4.34). Clearly, this first step does not preserve the group
structure SL(3). This is achieved by the second step (4.35)1, which enforces the
unimodular characteristic of the plastic map.

4.3.2.2 The Geometric Dislocation Density Tensor

The integration of the evolution equation (4.8) for the transposed dislocation density
tensor AT does not need to satisfy any geometric constraint. We hence use the
explicit update equation

AT = AT
n +

m∑
α=1

{ Sα
n(γ

α − γα
n ) + Sα

n · (gα − gα
n) } (4.36)

in terms of the sensitivities (4.9) which we rename as

Sα
n := MαAT

n +AT
nM

αT and Sα
n := −sα ⊗ [F p

n × (F pT
n nα)] (4.37)
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evaluated in terms of the density tensor AT
n and the plastic deformation map F p

n

at time tn. This linear structure guarantees the identical form of the variational-
based micro-balance equation as in the continuous setting. Note that the algorithmic
sensitivities of AT with respect to γα and gα are determined by the constant tensors
Sα

n and Sα
n . Hence, the second-order sensitivities vanish.

4.3.2.3 Hardening Parameters

Finally, the integration of the evolution equation (4.11) for the hardening parameters
γ+α is assumed to have the form

γ+α = γ+α
n + τf([γα − γα

n ]/τ) (4.38)

in term of the norm function (4.12) or its regularization (4.13). The first- and second-
order sensitivities read

γ+α
,α = f ′([γα − γα

n ]/τ) and γ+α
,αβ = f ′′([γα − γα

n ]/τ)/τδαβ , (4.39)

where we introduced the Kronecker delta δαβ .

4.3.3 Time-Discrete Incremental Variational Principle

Associated with the time interval (4.33), we define the incremental energy functional
of the crystal due to the coupled macro-micro-motion by

Eτ (ϕ, γ1, ..., γm) :=

∫
B
{ ψ(G, L̂τ (G))− ψn } dV (4.40)

at given constitutive state {Gn,Ln}, where E is the energy functional defined in
(4.16). It is governed by the free energy function ψ. Next, we define associated with
the time interval (4.33) an algorithmic expression for an incremental dissipation
potential functional

Dτ (γ1, ..., γm) := τ

∫
B
φ([γ1 − γ1

n]/τ, ..., [γ
m − γm

n ]/τ) dV , (4.41)

where φ is the dissipation function defined in (4.23). Finally, we consider the incre-
mental algorithmic form of the load functional (4.24)

P τ
ext(ϕ) =

∫
B
γ ·(ϕ−ϕn)dV +

∫
∂BP

tN ·(ϕ−ϕn)dA+
∑
α

∫
∂BHα

t̃αN (γα−γα
n )dA

(4.42)
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at given state ϕn and γα
n . Then, the time-discrete counterpart of the rate-potential

Π in (4.25) takes the algorithmic form

Πτ (ϕ, γ1, ..., γm)︸ ︷︷ ︸
potential

:= Eτ (ϕ, γ1, ..., γm)︸ ︷︷ ︸
energy

+Dτ (γ1, ..., γm)︸ ︷︷ ︸
dissipation

− P τ
ext(ϕ)︸ ︷︷ ︸
work

. (4.43)

We may write this incremental potential as

Πτ =

∫
B
{ πτ (G)− γ · (ϕ−ϕn) } dV

−
∫
∂BP

tN · (ϕ−ϕn) dA−
∑
α

∫
∂BHα

t̃αN (γα − γα
n ) dA ,

(4.44)

where we call πτ the incremental internal work density. It has the representation

πτ (G) = ψ(G, L̂τ (G))− ψn + τφ
(
[γ1 − γ1

n]/τ, ..., [γ
m − γm

n ]/τ
)

(4.45)

in terms of the free energy function ψ and dissipation potential function φ, respec-
tively. Then, the finite-step-sized incremental minimization principle

{ϕ, γ1, ..., γm} = Arg{ inf
ϕ

inf
γα

Πτ (ϕ, γ1, ..., γm) } (4.46)

determines the macro- and micro-motion fields ϕ and γ1, ..., γm at the current time
tn+1 as the minimum of the incremental functional Πτ .

4.3.4 Space-Time-Discrete Incremental Variational Principle

We now consider the spatial discretization of the coupled problem of gradient-
extended crystal plasticity by a finite element method. Let Th denote a finite ele-
ment triangulation of the solid domain B. The index h indicates a typical mesh size
based on Eh finite element domains Bh

e ∈ Th and Nh global nodal points. Asso-
ciated with the triangulation Th, we write the finite element interpolations of the
long-range constitutive state (4.3)

Gh = B(X)d (4.47)

in terms of the global nodal state vector d ∈ R(d+m)Nh

, which contains the current
macro-motion ϕ and the m scalar micro-motion fields γ1, ..., γm at all nodal points
of the finite element mesh. B is a symbolic representation of a global interpolation
matrix for the coupled problem. We use quadratic interpolations for both the macro-
as well as the micro-motion fields, in what follows denoted as Q2-Q2-elements.
Clearly, this global array is never formulated explicitly, but represents symbolically
the interpolations on all finite element domains Bh

e ∈ Th. It governs the space-
discrete representation of the potential (4.44)
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Πτh(d) =

∫
B
πτ (Bd) dV + l.t. , (4.48)

where the loading terms (l.t.) are not displayed in order to keep the notation com-
pact. Then, the space-time-discrete minimization principle

d = Arg{ inf
d
Πτh(d) } (4.49)

determines the global nodal state vector d of the finite element mesh at the current
time tn+1. The necessary condition of the discrete variational problem (4.49) reads

Πτh
,d =

∫
B
BT [∂Gπτ ] dV −L = 0 (4.50)

and provides a nonlinear algebraic system for the determination of the nodal state
vector d. L is the nodal load vector due to body forces and Neumann loads. A
standard Newton-type iteration scheme is applied to the fully coupled nonlinear
algebraic system (4.50) updates the global nodal state by the algorithm

d⇐ d− [Πτh
,dd ]

−1[Πτh
,d ] with Πτh

, dd :=

∫
B
BT [∂2

GGπτ ]B dV (4.51)

in terms of the monolithic tangent matrix of the coupled problem Πτh
,dd. Observe the

symmetry of the tangent matrix induced by the incremental variational structure of
the coupled problem. The update (4.51) is performed until convergence is achieved
in the sense |Πτh

,d | < tol.
The finite element residual and tangent are governed by the generalized stress

and tangent arrays S := ∂Gπτ (G) and C := ∂2
GGπτ (G), i.e. the first and second

derivatives of the incremental internal work density πτ defined in (4.45) by the

E1

Ẽ1

E2

Ẽ2

E3
Ẽ3

Ei = RẼi

[101̄] [11̄0]

[1̄10]

[011̄]

[01̄1][1̄01]

(111)

Fig. 4.7 Orientation of the fcc unit cell. The standard cartesian base {Ẽi}i=1,3 is rotated
to the base {Ei}i=1,2,3 aligned to the fcc crystal. The (111) slip plane of the fcc crystal is
marked by the shading.
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discretized constitutive state vectorG at current time tn+1. The partitioned structure
of the generalized stress array takes the form

S = ∂Gπτ (G)

⎡⎣ P eF p−T

−(τα − ταB) + [ τc + h̃α ]f ′(γ̇α) + ηγ̇α

κα

⎤⎦ (4.52)

for α = 1 . . .m with the algorithmic expression γ̇α = [γα − γα
n ]/τ .

4.4 Example 1: Analysis of an F.C.C. Crystal Grain Aggregate

4.4.1 Slip Systems and Euler Angles

With the space-time discrete algorithmic formulation of our gradient crystal plastic-
ity model, we are now in the position to carry out numerical simulations. We restrict
our attention to the example of copper, which has an f.c.c. crystal structure that is
characterized by four {111} slip planes defined by slip normals ñ and three 〈110〉
slip directions s̃ on each plane, yielding m = 12 slip systems {s̃α, ñα} in total,
see Figure 4.7 and Table 4.1, where the slip directions and slip normals of all slip
systems are given with respect to an orthogonal frame {ẼA}A=1,2,3 aligned to the
crystal axes. A relative rotation of the crystal and thereby {ẼA}A=1,2,3 with respect
to the fixed orthogonal frame {EA}A=1,2,3 can be described by EA = R ẼA with
R = Q3(ϑ3)Q2(ϑ2)Q1(ϑ1) ∈ SO(3) and where the matrices Q1,Q2 and Q3 are
defined by the explicit expressions

Q1=

⎡
⎣
cosϑ1 − sinϑ1 0
sinϑ1 cosϑ1 0
0 0 1

⎤
⎦ , Q2=

⎡
⎣
1 0 0
0 cos ϑ2 − sinϑ2

0 sinϑ2 cos ϑ2

⎤
⎦ , Q3=

⎡
⎣
cos ϑ3 − sinϑ3 0
sinϑ3 cos ϑ3 0

0 0 1

⎤
⎦ ,

in terms of the Euler angles ϑ1, ϑ2 and ϑ3 that parametrize rotations about the Z-
axis, the X-axis and again the Z-axis, respectively. This also governs the rotation of
the slip directions and normals, such that sα = R s̃α and nα = R ñα.

Table 4.1 The slip directions s̃α and planes ñα of the 12 slip systems of f.c.c. crystals in
terms of a basis {ẼA}A=1,2,3 aligned with the crystal axes

√
2s̃

√
3ñ

√
2s̃

√
3ñ

√
2s̃

√
3ñ

A2 [ 0 1 1̄ ] ( 1̄ 1 1 ) A3 [ 1 0 1 ] ( 1̄ 1 1 ) A6 [ 1̄ 1̄ 0 ] ( 1̄ 1 1 )

B2 [ 0 1 1̄ ] ( 1 1 1 ) B4 [ 1̄ 0 1 ] ( 1 1 1 ) B5 [ 1 1̄ 0 ] ( 1 1 1 )

C1 [ 0 1 1 ] ( 1 1 1̄ ) C3 [ 1 0 1 ] ( 1 1 1̄ ) C5 [ 1 1̄ 0 ] ( 1 1 1̄ )

D1 [ 0 1 1 ] ( 1̄ 1 1̄ ) D4 [ 1 0 1̄ ] ( 1̄ 1 1̄ ) D6 [ 1̄ 1̄ 0 ] ( 1̄ 1 1̄ )
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Table 4.2 Material parameters for Copper

No. Parameter Name Value Unit

1. μ shear modulus 54135.0 MPa

2. β exponent 2.125 -

3. τ0 initial Schmid stress 1.0 MPa

4. q off-diagonal component 1.4 -

5. b diagonal component 1.0 -

6. n exponent 1 -

7. τ̂ reference shear stress 0.0 MPa

8. γ̂ reference slip strain 1.0 -

9. λ energy density 54135.0 MPa

10. η viscosity 0.1 MPa s

11. γ̇0 rate regularization 0.1 s−1

12. l GND length scale 0.1− 2.0 m

4.4.2 Voronoi-Tessellated Unit Cell under Shear

Consider the numerical example of a Voronoi-tessellated unit cell under shear de-
formation. The unit cell consists of five grains and has a periodic structure in all
three space dimensions. The unit cell has a dimension of 10× 10× 10 mm. In each
grain the initial orientation of the crystal lattice is supposed to be different. At the
boundaries of the cell ∂B, homogeneous boundary conditions are applied

ϕ(X) = F̄ (Γ )X , with F̄ (Γ ) = 1 + Γ e2 ⊗E3 , (4.53)

Here, ei for i = 1, 2, 3 are the covariant basis vectors of the spatial configuration,
Ei for i = 1, 2, 3 the contravariant basis vectors of the Lagrangian configuration.
The prescribed shear Γ is applied with a rate of Γ̇ = 1.0 s−1. Furthermore, at the
grain boundaries, “micro-clamped” boundary conditions for the plastic slips γα are
applied γα = 0 for X ∈ ∂Bgrain. The geometric setup is depicted in Figure 4.8 and
the material parameters are given in Table 4.2. The Voronoi-tessellated unit cell is
discretized by 23.210 quadratic tetrahedral elements with 33.871 nodes. In the nu-
merical simulation, a time step of Δt = 10−6 s is used. The unit cell is deformed up
to a shear of Γ = 20.0 %. The numerical results obtained for two different length
scale parameters are shown in Figures 4.9 and 4.10. Figure 4.10 shows the accumu-
lated plastic slip γ̄ =

∑
α γα. Observe that the smaller length scale l leads to a more

distinct transition zone between the micro-clamped grain boundaries and the interior
of the grains. Furthermore, the smaller length scale yield a higher amount of plastic
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Fig. 4.8 Three-dimensional Voronoi-tessellated unit cell under shear: Geometric setup
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Fig. 4.9 Three-dimensional Voronoi-tessellated unit cell under shear: Resultant homogenized
shear stress τ̄23 over the homogeneus strain F̄23 for different length scales l

slip activity γ̄ inside the grains. By means of homogenization we observe a stiffer
macroscopic behavior for the unit cell with higher length scale. This is visualized in
Figure 4.9 for three different length scales.

4.5 Example 2: Laminate Microstructure in Single Crystals

In the next example, we want to demonstrate the capability of our gradient crys-
tal plasticity model to predict the formation and evolution of plastic deformation
microstructure in f.c.c. Copper with same plane double slip.
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l = 1.0 mm l = 2.0 mm

Γ = 5 %

Γ = 10 %

Γ = 20 %

0.0 0.12γ̄ [ - ]

Fig. 4.10 Three-dimensional Voronoi-tessellated unit cell under shear: Evolution of accumu-
lated plastic slip γ̄ for different length scales and at different deformation states

4.5.1 Double Slip Systems

For the subsequent considerations, we restrict our attention to two slip systems with
common slip normal. Particularly, we choose the systems A2 and A6, see Table 4.1.
Assuming a relative rotation R of ϑ1 = −30.00◦, ϑ2 = 54.74◦ and ϑ3 = −45.00◦
between the local crystal basis {ẼA} and the global referential basis {EA}, we
obtain the referential slip directions and slip normals as

s1 =
1

2

⎡⎣−√31
0

⎤⎦EA , s2 =
1

2

⎡⎣√31
0

⎤⎦EA and n =

⎡⎣ 0
0
1

⎤⎦EA . (4.54)

Figure 4.11b shows the orientation of the slip systems in the frame {EA}.
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Fig. 4.11 Slip systems of an f.c.c. crystal: a) Slip planes and slip systems in the coordinate
system ẼA aligned with the unit axes. b) Slip plane A and slip systems A2, A3 and A6 in
the rotated coordinate system EA = RẼA after rotation with the Euler rotation R with
ϑ1 = −30.00◦, ϑ2 = 54.74◦ and ϑ3 = −45.00◦.

4.5.2 Implications of Same Plane Double Slip

As mentioned above, for this example we limit our attention to the case of a single
crystal with only two active slip systems that lie on the same slip plane such that
m = 2 and n1 = n2 = n.

4.5.2.1 Plastic Deformation

Making use of the assumption m = 2 and n = n1 = n2, equation (4.5) can be
directly integrated and leads to

F p(γα) = 1 +

2∑
α=1

γαsα ⊗ n ⇒ F p −1(γα) = 1 −
2∑

α=1

γαsα ⊗ n . (4.55)

Unlike general multi-slip, the assumption of same plane double slip thus allows the
derivation of an explicit relation between plastic deformation and slips as F p(γα).

4.5.2.2 Dislocation Density Tensor

For same plane double slip, (4.7) with (4.55) yields the simplified relation

A(∇γα) =

2∑
α=1

sα ⊗
[
(∇γα · sα)tα − (∇γα · tα)sα

]
. (4.56)

Note from (4.56) that the dislocation density tensor A and hence also the measure
‖A‖2 are both independent of slip gradient components in the normal direction n.
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4.5.2.3 Stored Energy Functional

For the double slip problem with m = 2, with the explicit dislocation density tensor
(4.56) at hand, and introducing bαβ = (1 − δαβ)s

α·sβ

2

[
(sα · sβ)tα ⊗ tβ − (tα ·

sβ)sα⊗ tβ+(tα · tβ)sα⊗sβ
]
+δαβ

[
tα⊗ tβ+sα⊗sβ

]
we can rewrite the energy

of GNDs ψGND defined in (4.20) as

ψGND(∇γα) =
λ

2
l2GND

2∑
α=1

2∑
β=1

∇γα · (bαβ∇γβ) . (4.57)

Note that due to the structure of the tensors bαβ derived from the definition of A
and defined solely by the slip directions sα and the transverse slip directions tα,
the gradient energy ψGND as given in (4.57) punishes all but the n-components
of the gradients ∇γα. However, the n-direction is exactly the direction in which
we expect the formation of plastic laminate interfaces. To see this, consider two
adjacent domains with equal elastic deformation F e but with distinct plastic slip
states {γ̌1, γ̌2} and {γ̃1, γ̃2} and hence distinct total deformations

{γ̌1, γ̌2} ⇒ F̌ = F eF̌
p
= F e(1 + (γ̌1s1 + γ̌2s2)⊗ n) , (4.58)

{γ̃1, γ̃2} ⇒ F̃ = F eF̃
p
= F e(1 + (γ̃1s1 + γ̃2s2)⊗ n) . (4.59)

By subtracting (4.58) from (4.59), one can see that the resulting deformation gradi-
ents F̌ and F̃ of such domains are rank one connected by an interface with reference
normal n,

F̌ − F̃ =
{
F e[(γ̌1 − γ̃1)s1 + (γ̌2 − γ̃2)s2]

}
⊗ n . (4.60)

We hence see that the material can form laminate deformation microstructure with
coherent sharp interfaces with normals n between adjacent layers of (any two) dis-
tinct slip states. To regularize the resulting sharp interfaces, we add a gradient term
that energetically punishes only the n-components of∇γα,

ψLAM (∇γα) =
λ

2
l2Γ

2∑
α=1

∇γα
(
n⊗ n

)
∇γα , (4.61)

where λ > 0 is the material parameter associated with the energy density of lat-
tice defects already introduced in (4.20) and lΓ > 0 is proportional to the length-
scale of the regularized transition between states of different plastic slip at the in-
terfaces. Introducing the set of structural tensors cαβ = δαβ(n ⊗ n), reformulat-
ing the energy ψLAM in the spirit of (4.57), we can introduce the gradient energy
ψGRAD = ψGND + ψLAM given by

ψGRAD(∇γα) =
λ

2

2∑
α=1

2∑
β=1

∇γα ·
[
(l2GND bαβ + l2Γ cαβ)∇γβ

]
(4.62)
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Table 4.3 Material parameters for Copper , taken from Dmitrieva et al. [DDMR09] to fit the
experiment

No. Parameter Name Value Unit

1. μ shear modulus 48000.0 MPa

2. β exponent 2.125 -

3. τ0 initial Schmid stress 100.0 MPa

4. q off-diagonal component 1.0 -

5. b diagonal component 0.0 -

6. n exponent 2 -

7. τ̂ reference shear stress 400.0 MPa

8. γ̂ reference slip strain 0.01 -

9. λ energy density 10000.0 MPa

10. η viscosity 100.0 MPa s

11. γ̇0 rate regularization 0.001 s−1

12. l GND length scale 0.5 m

13. lΓ regularization length 0.05 m

that punishes all contributions of the slip gradients ∇γα. Choosing lΓ � lGND

leads to an anisotropic gradient energy ψGRAD(∇γ1 = ‖∇γ1‖m1,∇γ2 = ‖∇γ2

‖m2) with ψGRAD(αn, αn) < ψGRAD(αm1, αm2)∀m1,m2 �= ±n ∈ R3 ∀α ∈
R. This referential gradient anisotropy is somewhat similar to that introduced in the
context of martensitic laminates with a known rank-one direction in Hildebrand &
Miehe [HM12].

4.5.3 Laminate Deformation Microstructure in Single Crystal
Copper

The two numerical simulations are inspired by the shear experiments described in
Dmitrieva et al. [DDMR09], where deformation laminate microstructure is observed
in a Copper single crystal with the orientation depicted in Figure 4.11b. The material
parameters are taken from Dmitrieva et al. [DDMR09] to fit the experiment, and
given in Table 4.3. With this in mind, we consider a cubic domain with length L=1
mm, which we discretize by 40×40×40 finite elements. We prescribe homogeneous
boundary conditions

ϕ(X) = F̄ (Γ )X , with F̄ (Γ ) = 1 + Γ s̄⊗ n , (4.63)

where s̄ = (s2 − s1)/|s2 − s1| and where Γ̇ = 0.25 s−1. Note that (4.63) is a
time-dependent simple shear that cannot be accommodated by single slip on one
of the two slip systems. In all simulations, we use a time step of Δt = 0.0001s.
With this essential deformation boundary condition, we carry out two simulations
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Fig. 4.12 The homogenized stress-strain response P̄13(F̄13 = Γ ) for laminate deformation
microstructure formation and evolution during micro-free and micro-clamped homogeneous
simple shear. The GND-governed boundary layer of the plastic slips in the micro-clamped
simulations yields a stiffer response.

with different micro-boundary conditions for the plastic slips. In one simulation,
we use natural micro-boundary condition of the form t̃

α

N = 0 on ∂B and in the
other, we use essential micro-boundary condition of the form γα = 0 on ∂B. These
boundary conditions are sometimes referred to as micro-free and micro-clamped
boundary conditions, see e.g. Svendsen et al. [SBER10]. The results of the sim-
ulations are given in Figures 4.12–4.14. Under micro-free boundary conditions,
our model predicts that the plastic deformation state in B is homogeneous up to
−γ1 = γ2 ≈ 0.015, see Figure 4.13a, which depicts a state slightly past this point.
The non-convexity of the latent hardening contribution ψ̂SSD then triggers the for-
mation of laminate microstructure with interface normal n as predicted, where in
one layer, γ1 ≈ −0.015 stays constant while γ2 accommodates further deforma-
tion, while in the other γ2 ≈ 0.015 stays constant while γ1 accommodates further
deformation, see Figures 4.13b-e. Note from the figures that the width of the smooth
transition between the states {−0.015, γ2} and {γ1, 0.015} is governed by the reg-
ularization length scale lΓ and that (4.13) very well approximates the accumulated
slips γ+α = |γα|. Under micro-clamped boundary conditions, our model predicts
that the plastic deformation state in B is homogeneous besides a boundary layer
up to −γ1 = γ2 ≈ 0.0175, see Figure 4.14a, which depicts a state slightly be-
fore this point. Then, again, formation of microstructure starts, see Figures 4.14b-e.
Note from the figures that the width of the smooth transition between the states
{−0.0175, γ2} and {γ1, 0.0175} in the direction n is again governed by the regu-
larization length scale lΓ while the width of the boundary layer at the boundaries
in E1 and E2-direction is now governed by the GND length scale l. To show the
effect of the boundary conditions on the homogenized overall behavior, Figure 4.12
depicts the homogenized stress-strain relation P̄13(F̄13). The figure nicely shows
the more pronounced hardening under micro-clamped boundary conditions caused
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Fig. 4.13 Snapshots of the distributions of γ1(x) and γ2(x) in S and of γ1(Z), γ2(Z)
and projected values of γ+1(Z), γ+2(Z) along the referential line connecting the points
( 1
2
L, 1

2
L, 0) and ( 1

2
L, 1

2
L,L) during micro-free homogeneous shear of all points on

∂Bϕ = ∂B with ϕ(X, t) = ϕ̄(X , t) = (1 + Γ (t)e1 ⊗ E3)X: a) t = 0.0s, Γ = 0.0,
b) t = 0.25s, Γ = 0.0625, c) t = 0.5s, Γ = 0.125, d) t = 0.75s, Γ = 0.1875 and
e) t = 1.0s, Γ = 0.25.

by the inhibition of plastic slip in the boundary layer with width proportional to
lGND. Comparing the stress strain curves to the ones measured by Dmitrieva et
al. [DDMR09], we see from the slope of the curve P̄13(F̄13) that our model dras-
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Fig. 4.14 Snapshots of the distributions of γ1(x) and γ2(x) in S and of γ1(Z), γ2(Z)
and projected values of γ+1(Z), γ+2(Z) along the referential line connecting the points
( 1
2
L, 1

2
L, 0) and ( 1

2
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2
L,L) during micro-clamped homogeneous shear of all points on

∂Bϕ = ∂B with ϕ(X, t) = ϕ̄(X , t) = (1 + Γ (t)e1 ⊗ E3)X: a) t = 0.0s, Γ = 0.0,
b) t = 0.25s, Γ = 0.0625, c) t = 0.5s, Γ = 0.125, d) t = 0.75s, Γ = 0.1875 and
e) t = 1.0s, Γ = 0.25.

tically overestimates the hardening and from the form of P̄13(F̄13) that the chosen
bi-quadratic hardening function ψ̂SSD is not completely in agreement with experi-
mental results. Also, we note that the predicted deformation laminate microstructure
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with alternating activities of the A2 and the A6 slip systems is not in agreement to
that observed by Dmitrieva et al. [DDMR09], where alternating activities of the A2
and the A6 slip systems are expected, but where it is concluded that in disagree-
ment with this expectation, the laminate consists of regions with A2/A6 activities
alternating with regions of C1/C5 activity. Such behavior can of course not be cap-
tured in the proposed double slip model. In summary, we see that our model is
capable of predicting the formation and evolution of plastic deformation laminate
microstructure in combination with length scale effects due to geometrically nec-
essary dislocations. The hardening parameters necessary to trigger the formation of
laminates lead to an overestimation of the overall hardening. However, due to its
strong physical basis and its canonical form, it is an ideal basis for extensions to
multi slip and also quantitatively realistic latent hardening laws.

4.6 Conclusion

We outlined a formulation and finite element implementation of micromechanically-
motivated multiplicative gradient plasticity for single crystals, which may be con-
sidered as a canonically simple setting. The central ingredient is a contribution to
the free energy storage in terms of the geometrically consistent dislocation gradient
tensor, that governs the GND-based kinematic hardening mechanisms. In order to
partially overcome the complexity of full multislip scenarios, we suggested a new
viscous regularized concept of rate-independent crystal plasticity, and exploited in
a systematic manner the long- and short-range nature of the variables involved, see
also Miehe et al. [MMH14]. The separation into long- and short-range states was al-
gorithmically treated by a new update structure, where the short-range variables play
the role of a local history base. The model problem under consideration accounts in
a canonical format for basic effects related to statistically stored and geometrically
necessary dislocation flow, yielding micro-force balances including non-convex
cross-hardening, kinematic hardening and size effects. Further key ingredients of
the proposed algorithmic formulation are geometrically exact updates of the short-
range state and a distinct regularization of the rate-independent dissipation function
that preserves the range of the elastic domain. We demonstrated the modeling ca-
pabilities and algorithmic performance by a large-scale numerical example for mul-
tislip scenarios of f.c.c. single crystals. Furthermore, the capability of the model to
predict the formation and evolution of plastic laminate microstructure due to latent
hardening has been shown in a reduced double-slip setting. We have demonstrated
this under micro-free and micro-clamped boundary conditions in combination with
length scale effects caused by GNDs. More detailed results on computational gradi-
ent plasticity are outlined in the recent works [Mie14, MMH14, MWA14, MAM13].

Acknowledgements. Support for this research was provided by the German Science Foun-
dation (Deutsche Forschungsgemeinschaft), as part of the research group “MICROPLAST”
(FOR797) on Analysis and Computation of Microstructures in Finite Plasticity, project
Mi295/12-2. We also thank Felix Hildebrand for his contribution on laminate microstructure.



4 Variational Gradient Plasticity 119

References

[AD14] Anguige, K., Dondl, P.: Relaxation of the single-slip condition in strain-
gradient plasticity. Proceedings of the Royal Society A 470(2169), 1–15 (2014)

[AK96] Anand, L., Kothari, M.: A computational procedure for rate-independent crys-
tal plasticity. Journal of the Mechanics and Physics of Solids 44, 525–558
(1996)

[AP99] Arsenlis, A., Parks, D.M.: Crystallographic aspects of geometrically-necessary
and statistically-stored dislocation density. Acta Materialia 47, 1597–1611
(1999)

[APBB04] Arsenlis, A., Parks, D.M., Becker, R., Bulatov, V.V.: On the evolution of
crystallographic dislocation density in non-homogeneously deforming crystals.
Journal of the Mechanics and Physics of Solids 52, 1213–1246 (2004)

[Arz98] Arzt, E.: Size effects in materials due to microstructural and dimensional con-
straints: a comparative review. Acta Materialia 46, 5611–5626 (1998)

[Asa83a] Asaro, R.: Crystal plasticity. Journal of Applied Mechanics 50, 921–934 (1983)
[Asa83b] Asaro, R.: Micromechanics of crystals and polycrystals. Advances in Applied

Mechanics 23, 1–115 (1983)
[Ash70] Ashby, M.F.: The deformation of plastically non-homogeneous materials. The

Philosophical Magazine A 21, 399–424 (1970)
[Bas93] Bassani, J.L.: Plastic flow of crystals. Advances in Applied Mechanics 30,

191–258 (1993)
[BBS55] Bilby, B.A., Bullough, R., Smith, E.: Continuous distributions of dislocations:

a new application of the methods of non-riemannian geometry. Proceedings of
the Royal Society London A 231, 263–273 (1955)

[BERS10] Bargmann, S., Ekh, M., Runesson, K., Svendsen, B.: Modeling of polycrys-
tals with gradient crystal plasticity - a comparison of strategies. Philosophical
Magazine 90, 1263–1288 (2010)

[CDK09] Conti, S., Dolzmann, G., Klust, C.: Relaxation of a class of variational mod-
els in crystal plasticity. Proceedings of the Royal Society A 465, 1735–1742
(2009)

[CDK13] Conti, S., Dolzmann, G., Kreisbeck, C.: Relaxation of a model in finite plas-
ticity with two slip systems. Mathematical Models and Methods in Applied
Sciences 23(11), 2111–2128 (2013)

[CG01] Cermelli, P., Gurtin, M.E.: On the characterization of geometrically neces-
sary dislocations in finite plasticity. Journal of the Mechanics and Physics of
Solids 49, 1539–1568 (2001)

[CG02] Cermelli, P., Gurtin, M.E.: Geometrically necessary dislocations in viscoplas-
tic single crystalls and bicrystals undergoing small deformations. International
Journal of Solids and Structures 39, 6281–6309 (2002)

[CHM02] Carstensen, C., Hackl, K., Mielke, A.: Nonconvex potentials and microstruc-
tures in finite-strain plasticity. Proceedings of the the Royal Society of London,
Series A 458, 299–317 (2002)

[CnO92] Cuitiño, A.M., Ortiz, M.: Computational modelling of single crystals. Mod-
elling and Simulation in Materials Science and Engineering 1, 225–263 (1992)

[Cot53] Cottrell, A.H.: Dislocations and plastic flow of crystals. Oxford University
Press, London (1953)

[DDMR09] Dmitrieva, O., Dondl, P., Müller, S., Raabe, D.: Lamination microstructure in
shear deformed copper single crystals. Acta Materialia 57, 3439–3449 (2009)



120 S. Mauthe and C. Miehe

[EBG04a] Evers, L.P., Brekelmans, W.A.M., Geers, M.G.D.: Non-local crystal plasticity
model with intrinsic ssd and gnd effects. Journal of the Mechanics and Physics
of Solids 52, 2379–2401 (2004)

[EBG04b] Evers, L.P., Brekelmans, W.A.M., Geers, M.G.D.: Scale dependent crystal
plasticity framework with dislocation density and grain boundary effects. In-
ternational Journal of Solids and Structures 41, 5209–5230 (2004)

[EGRS07] Ekh, M., Grymer, M., Runesson, K., Svedberg, T.: Gradient crystal plasticity
as part of the computational modelling of polycrystals. International Journal
for Numerical Methods in Engineering 72, 197–220 (2007)

[EvG09] Ertürk, I., van Dommelen, J.A.W., Geers, M.G.D.: Energetic dislocation inter-
actions and thermodynamical aspects of strain gradient crystal plasticity theo-
ries. Journal of the Mechanics and Physics of Solids 57, 1801–1814 (2009)

[FBZ80] Franciosi, P., Berveiller, M., Zaoui, A.: Latent hardening in copper and alu-
minium single crystals. Acta Metallurgica 28, 273–283 (1980)

[FH97] Fleck, N.A., Hutchinson, J.W.: Strain gradient plasticity. Advances in Applied
Mechanics 33, 295–362 (1997)

[FMAH94] Fleck, N.A., Müller, G.M., Ashby, M.F., Hutchinson, J.: Strain gradient plas-
ticity: theory and experiment. Acta Materialia 42, 475–487 (1994)

[Gur00] Gurtin, M.E.: On the plasticity of single crystals: free energy, microforces,
plastic-strain gradients. Journal of the Mechanics and Physics of Solids 48,
989–1036 (2000)

[Gur02] Gurtin, M.E.: A gradient theory of single-crystal viscoplasticity that accounts
for geometrically necessary dislocations. Journal of the Mechanics and Physics
of Solids 50, 5–32 (2002)

[Gur08] Gurtin, M.E.: A finite-deformation, gradient theory of single-crystal plasticity
with free energy dependent on densities of geometrically necessary disloca-
tions. International Journal of Plasticity 24, 702–725 (2008)

[Hal51] Hall, E.: The deformation and ageing of mild steel: III discussion of results.
Proceedings of the Physical Society. Section B 64, 747–753 (1951)

[Hav92] Havner, K.S.: Finite plastic deformation of crystalline solids. Cambridge Uni-
versity Press, Cambridge (1992)

[HB84] Hull, D., Bacon, D.J.: Introduction to dislocations. Pergamon Press, Oxford
(1984)

[Hil66] Hill, R.: Generalized constitutive relations for incremental deformation of
metal crystals by multislip. Journal of the Mechanics and Physics of Solids 14,
95–102 (1966)

[HL68] Hirth, J.P., Lothe, J.: Theory of dislocations. McGraw-Hill, London (1968)
[HM12] Hildebrand, F., Miehe, C.: A phase field model for the formation and evolution

of martensitic laminate microstructure at finite strains. Philosophical Maga-
zine 92, 4250–4290 (2012)

[HR72] Hill, R., Rice, J.: Constitutive analysis of elastic-plastic crystals at arbitrary
strain. Journal of the Mechanics and Physics of Solids 20, 401–413 (1972)

[Hut76] Hutchinson, J.W.: Bounds and self-consistent estimates for creep of poly-
crystalline materials. Proceedings of the the Royal Society of London, Series
A 348, 101–127 (1976)

[KA98] Kothari, M., Anand, L.: Elasto-viscoplastic constitutive equations for polycrys-
talline metals: application to tantalum. Journal of the Mechanics and Physics
of Solids 46, 51–83 (1998)

[KAA75] Kocks, U.F., Argon, A.S., Ashby, M.F.: Thermodynamics and kinetics of slip.
Progress in Materials Science 19, 141–145 (1975)



4 Variational Gradient Plasticity 121

[KBS12] Klusemann, B., Bargmann, S., Svendsen, B.: Two models for gradient in-
elasticity based on non-convex energy. Computational Materials Science 64,
96–100 (2012)

[KH11] Kochmann, D.M., Hackl, K.: The evolution of laminates in finite crystal plas-
ticity: a variational approach. Continuum Mechanics and Thermodynamics 23,
63–85 (2011)

[Koc64] Kocks, U.F.: Latent hardening and secondary slip in aluminium and silver.
Transactions of the Metallurgical Society of AIME 230, 1160–1167 (1964)

[Koc66] Kocks, U.F.: A statistical theory of flow stress and work-hardening. The Philo-
sophical Magazine 13, 541–566 (1966)

[Koc09] Kochmann, D.: Mechanical Modeling of Microstructures in Elasto-Plastically
Deformed Crystalline Solids. PhD thesis, Ruhr-Universität Bochum (2009)

[Kon52] Kondo, K.: On the geometrical and physical foundations of the theory of yield-
ing. Proceedings Japan National Congress of Applied Mechanics 2, 41–47
(1952)

[Kro60] Kroener, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspan-
nungen. Archive for Rational Mechanics and Analysis 4, 273–334 (1960)

[KS59] Kröner, E., Seeger, A.: Nicht-lineare Elastizitätstheorie der Versetzungen und
Eigenspannungen. Archive for Rational Mechanics and Analysis 3, 97–119
(1959)
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Chapter 5
Variational Approaches and Methods for
Dissipative Material Models with Multiple Scales

Alexander Mielke

Abstract. In a first part we consider evolutionary systems given as generalized
gradient systems and discuss various variational principles that can be used to con-
struct solutions for a given system or to derive the limit dynamics for multiscale
problems via the theory of evolutionary Gamma-convergence. On the one hand we
consider a family of viscous gradient system with quadratic dissipation potentials
and a wiggly energy landscape that converge to a rate-independent system. On the
other hand we show how the concept of Balanced-Viscosity solution arise in the
vanishing-viscosity limit.

As applications we discuss, first, the evolution of laminate microstructures in
finite-strain elastoplasticity and, second, a two-phase model for shape-memory ma-
terials, where H-measures are used to construct the mutual recovery sequences
needed in the existence theory.

5.1 Introduction

This work shows how methods from abstract evolutionary systems can be employed
for the study of material models which allow for small or finite-strain elastic defor-
mation y and are characterized by further internal or dissipative variables z which
may describe damage, plastic deformations, magnetization, polarization, or phase
transformations. The common feature of all models considered is their description
in terms of an energy functional E and a dissipation potential R. Hence the evolu-
tion of the state q = (y,z) can be described by a generalized force balance, namely

0 ∈ ∂q̇R(q(t), q̇(t))+DqE (t,q(t)). (5.1)
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Here ∂q̇R(q, q̇) denotes the convex subdifferential of the dissipation potential R,
where for each state q the function R(q, ·) is nonnegative, convex, and lower semi-
continuous and satisfies R(q,0) = 0. Thus, the possibly set-valued subdifferential
∂q̇R(q, q̇) contains the dissipative forces generated by the rate q̇ if the system is
in the state q. These forces have to be balanced by the potential restoring forces
−DqE (t,q).

The formulation of material models in terms of the functionals E and R instead
of general PDEs shows additional physical structure that can be exploited mathe-
matically. In particular, one can employ the rich theory of the calculus of variations,
even for evolutionary systems. As a first case, we see that a very useful time dis-
cretization of (5.1) can be obtained by the time-incremental minimization problem

qk+1 ∈ Argmin
q

(
E (tk+1,q)+ (tk+1−tk)R

(
qk+θ ,

1
tk+1−tk

(q−qk)
))

. (5.2)

In the context of abstract evolutionary systems this scheme relates to De Giorgi’s
theory of minimizing movements, and one way of obtaining solutions is via De
Giorgi’s (R,R∗)-principle, also called the energy-dissipation principle (EDP),
which is given by the simple variational characterization via

E (T,q(T ))+
∫ T

0
R(q, q̇)+R∗(q,−DE (t,q))dt ≤ E (0,q(0))+

∫ T

0
∂tE (t,q)dt.

This principle and its equivalence to (5.1) will be discussed in Section 5.2.1.
The EDP is also extremely useful for studying multiscale problems given in terms

of generalized gradient systems (XXX ,Eε ,Rε), where ε ∈ [0,1] is a small parame-
ter. The major question is under what conditions the solutions qε : [0,T ]→ XXX for
(XXX ,Eε ,Rε) converge to a solution q0 : [0,T ]→ XXX for (XXX ,E0,R0) in the limit ε→ 0.
If this holds and additionally the energies converge, i.e. Eε(t,qε(t))→ E0(t,q0(t))

we call this evolutionary Γ -convergence. In general, the Γ -convergences Eε
Γ→ E0

and Rε
Γ→R0 are not enough. We discuss some of the results from [Mie14] and give

applications to models with wiggly energies, where for ε > 0 the dissipation poten-
tials Rε(q,v) = 1

2 〈v,Gε(q)v〉 are quadratic and satisfy Rε → 0, but the limiting dis-
sipation potential R0 is 1-homogeneous, such that (XXX ,E0,R0) is a rate-independent
system (RIS), such as linearized elastoplasticity, see Section 5.4.2.

Moreover, the vanishing-viscosity limit ε → 0 of generalized gradient systems
(XXX ,E ,Rε), where the “small-viscosity dissipation potential” has the formRε(q,v)=
Ψ(q,v)+ ε

2 〈v,Gv〉, can also be studied efficiently using a reparametrized version of
the EDP, see Section 5.4.3. This leads to the notion of balanced-viscosity solutions
(also called BV solutions) for RIS (XXX ,E ,Ψ ,G), where G indicates the additional
viscosity structure which determines the jump behavior.

For purely rate-independent models it is advantageous to replace the infinitesimal
dissipation metric Ψ by the dissipation distance D(q0,q1) between two states z0

and z1. This leads to the notion of energetic rate-independent systems (ERIS). In
particular, the time-incremental minimization (5.2) does not depend on the time
step and can be replaced by
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qk+1 ∈ Argmin
q∈XXX

(
E (tk+1,q)+D(qk,q)

)
. (5.3)

It was observed in [MTL02] that all accumulation points of the piecewise inter-
polants of the solutions of (5.3) are so-called energetic solutions, see (5.5) for the
purely energetic definition of this solution concept.

A corresponding notion of evolutionaryΓ -convergence for ERIS (XXX ,Eε ,Rε) was
developed in [MRS08], see also [MR15] for more details. Using this approach and
the general existence theory for finite-strain elastoplasticity from [MM09, Mie10]
it was shown in [MS13] that linearized elastoplasticity can be derived as the evolu-
tionary Γ -limit of finite-strain elastoplasticity, if the yields stress is tending to 0, see
Section 5.3.2.

In Section 5.5 we discuss two rate-independent material models that describe the
evolution of microstructures. The first one is a mathematical version of the model
proposed in [KH11], where laminates are considered as dissipative internal variables
and equipped with a physically motivated dissipation distance, see Section 5.5.1 and
[HHM12]. In Section 5.5.2 the two-phase model introduced in [MTL02] is recon-
sidered using a new construction for mutual recovery sequences, which allows us to
generalize the original existence proof considerably.

In Table 5.1 and 5.2 we give an overview of the discussed topics in this work.

Table 5.1 A survey on the existence results discussed here via variational formulations

Topic Section Reference
Energetic solutions for finite-strain elastoplasticity Sec. 5.2.2 [MM09, Mie10, MR15]
Energetic solutions for laminate evolution Sec. 5.5.1 [HHM12]
Energetic solutions for a two-phase SM material Sec. 5.5.2 [MTL02, HM15]
Balanced-Viscosity solutions Sec. 5.4.3 [MRS09, MZ14, MRS14b]
Finite-strain viscoplasticity Sec. 5.2.1 [MRS15]
One-dimensional finite-strain viscoelasticity via
EVI

Sec. 5.2.1 [MOŞ14]

Table 5.2 A survey on the results on evolutionary Γ -convergence discussed in this work

ε-dependent multiscale problem limit problem Section Reference
wiggly-energy ODE scalar dry-friction model Sec. 5.4.1 [PT02, Mie12]
system of bistable, viscous springs 1D pseudo-elasticity Sec. 5.4.2 [MT12]
finite-strain elastoplasticity linearized elastoplasticity Sec. 5.3.2 [MS13]

5.2 Variational Formulations for Evolution

A main point of looking in different variational principles lies in the fact that theses
principles lead to different mathematical formulations. For instance, when looking
to global existence results for material models allowing for finite strains and the
associated geometric nonlinearities, it is highly desirable to use minimization prin-
ciples on the energy such that the rich theory of direct methods from the calculus of
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variations are applicable, such as weak lower semicontinuity, existence of minimiz-
ers, Γ -convergence, and relaxation techniques.

5.2.1 Generalized Gradient Systems and the Energy-Dissipation
Principle

We now convert the formal ideas from the introduction into rigorous mathemati-
cal statements. We call a triple (XXX ,E ,R) a generalized gradient system (gGS), if
XXX is a Banach space, E : [0,T ]×XXX → R∞ := R∪{∞} is an energy functional, and
R : XXX×XXX→ [0,∞] is a dissipation potential, which means that for all q∈XXX the func-
tional R(q, ·) : XXX→R∞ is lower semicontinuous, nonnegative, convex, and satisfies
R(q,0) = 0. We speak of a classical gradient system, or simply a gradient system,
if R(q, ·) is quadratic, i.e. there exists a (viscosity) operator G(q) =G(q)∗ ≥ 0 such
that R(q,v) = 1

2 〈G(q)v,v〉. However, plasticity requires non-quadratic dissipation
potentials, e.g. of the form R(π̇) = σyield‖π̇‖L1 + 1

2μvisc‖π̇‖2
L2. In particular, the

rate-independent case requires R(q,λv) = λR(q,v) for all λ > 0, which is incom-
patible with a quadratic form.

The following proposition from convex analysis shows that there are several com-
pletely equivalent formulations of the generalized force balance (5.1). The equiva-
lences of the points (ii) to (iv) are also called the Fenchel equivalences, cf. [Fen49].
The essential tools is the Fenchel-Legendre transform Ψ ∗ : XXX∗ → R∞ of a convex
functionΨ : XXX → R∞ defined via

Ψ∗(ξ ) := sup{〈ξ ,v〉−Ψ(v) | v ∈ XXX }.

Note that in a reflexive Banach space we have (Ψ ∗)∗ =Ψ .

Proposition 5.2.1 (Equivalent formulations). Let XXX be a reflexive Banach space
and Ψ : XXX → R∞ be proper, convex, and lower semicontinuous. Then, for every
ξ ∈ XXX∗ and every v ∈ XXX the following five statements are equivalent:

(i) v ∈ Argmin
w∈XXX

(
Ψ(w)−〈ξ ,w〉

)
; (ii) ξ ∈ ∂Ψ (v);

(iii) Ψ (v)+Ψ∗(ξ ) = 〈ξ ,v〉;
(iv) v ∈ ∂Ψ ∗(ξ ); (v) ξ ∈ Argmin

η∈XXX∗

(
Ψ ∗(η)−〈η ,v〉

)
.

Note that the definition of Ψ∗ immediately implies the Young-Fenchel inequality
Ψ(w)+Ψ∗(η)≥ 〈η ,w〉 for all w and η . Thus, (iii) expresses an optimality as well.

Defining the dual dissipation potential R∗ via R∗(q, ·) := (R(q, ·))∗ we can ap-
ply these equivalences to reformulate (5.1) in the following ways:

(I) Rayleigh principle [Ray71]

(HRP) q̇ ∈ Argmin
(
R(q,v)−〈DE (t,q),v〉

)
;
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(II) Force balance in XXX∗ Rayleigh-Biot equation [Ray71, Bio55]

(FB) 0 ∈ ∂q̇R(q, q̇)+DE (t,q) ∈ XXX∗;

(III) Power balance in R De Giorgi’s (R,R∗) formulation [DMT80]

(PB) R(q, q̇)+R∗(q,−DE (t,q)) =−〈DE (t,q), q̇〉;
(IV) Rate equation in XXX Onsager equation [Ons31]

(RE) q̇ ∈ ∂ξR∗(q,−DE (t,q)) ∈ XXX ;

(V) Maximum dissipation principle cf. e.g. [HF08]

(MDP) DE (t,q) ∈Argmax
(
〈ξ , q̇〉−R∗(q,ξ )

)
.

In fact, [Ray71, Eqn. (26)] also includes the kinetic energyK , which we omit in our
quasistatic approximation, namely d

dt

(
Dq̇K (q, q̇)

)
+Dq̇R(q, q̇)+DqE (t,q) = 0.

Note that we have changed the sign in (V) to justify the name of (MDP). The
reason for this will become apparent in the rate-independent setting where R∗ only
takes the two values 0 and ∞, see (5.4) and [HF08].

Before returning to the general situation, we highlight the three different cases
(II)–(IV) for the classical viscous dissipation, i.e.R(u,v)= 1

2 〈Gv,v〉 andR∗(u,ξ )=
1
2 〈ξ ,Kξ 〉 with K=G−1. Then, we have

(FB) Gu̇ =−DE (u) (RE) u̇ =−KDE (u) =−∇GE (u)

(PB)
1
2
〈Gu̇, u̇〉+ 1

2
〈DE (u),KDE (u)〉=−〈DE (u), u̇〉,

where (RE) can be seen as a “gradient evolution”, as ∇G is the gradient operator.
The above forms can already be understood as variational formulations, since the

evolution is expressed by extremizing a functional or by variations or derivatives of
the two functionals E and R. However, for mathematical purposes it is desirable to
have variational formulations for the whole solution trajectories q : [0,T ]→ XXX . One
such principle can be derived on the basis of the power balance (PB) by integration
in time and using the chain rule and finally employing the Young-Fenchel inequality
Ψ(w)+Ψ∗(η)≥ 〈η ,w〉, cf. [DMT80] or the survey [Mie14].

Theorem 5.2.2 (De Giorgi’s energy-dissipation principle). Under suitable techni-
cal conditions on (XXX ,E ,R) a function q : [0,T ]→ XXX satisfies (I)–(V) from above for
almost all t ∈ [0,T ] if and only if the Energy-Dissipation Principle (EDP) holds:

(EDP)

⎧⎪⎪⎨⎪⎪⎩
E (T,q(T ))+

∫ T

0
R(q, q̇)+R∗(q,−DE (t,q))dt

≤ E (0,q(0))+
∫ T

0
∂tE (t,q(t))dt.

Moreover, the EDP is equivalent to the energy-dissipation balance (EDB), where
“≤” in (EDP) is replaced by “=”.

It is obvious how to obtain (EDB) (and hence (EDP) from (I)–(V). For this one
simply integrates the power balance (III) in time and uses a abstract chain rule
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E (t,q(t)) = E (r,q(r))+
∫ t

r
〈DE (s,q(s)), q̇(s)〉+ ∂sE (s,q(s))ds.

Starting from (EDP) and using the chain rule one easily obtains the power balance
(III) as an estimate, namely

∫ T
0 R+R∗ dt ≤

∫ T
0 −〈DE , q̇〉dt. However, the Young-

Fenchel inequality gives R+R∗ ≥ −〈DE , q̇〉 for almost all t ∈ [0,T ], so that the
power balance (III) has to hold.

Remark 5.2.3 (Brézis-Ekeland-Nayroles principle [BE76, Nay76]). This principle
exactly serves the same purpose, namely providing a minimum principle for whole
trajectories. It is similar to the EDP but in some sense dual. It applies to the case that
XXX is a Hilbert space, R(q, q̇) = 1

2‖q̇‖2
XXX , and an energy E (t,q) = Φ(q)−〈�(t),q)〉,

where Φ is convex. Then, q : [0,T ]→ XXX solves the force balance (FB), now in the
form q̇+ ∂Φ(q) �= �(t) if and only if∫ T

0
Φ(q(t))+Φ∗(�(t)−q̇(t))−〈�(t),q(t)〉dt +

1
2
‖q(T )‖2

XXX −
1
2
‖q(0)‖2

xxx ≤ 0,

where the estimate “≥ 0” always holds. We refer to [Ste08] for a discussion and a
generalization to the doubly nonlinear case R(q, q̇) =Ψ(q̇).

The importance of the EDP is that a discrete counterpart can be derived based on
the incremental minimization problem (5.2) and De Giorgi’s variational interpolants
q̃τ . In a classical Banach-space setting on can use the piecewise constant right and
left-continuous interpolants qτ and qτ as well as the piecewise affine interpolant q̂τ
(all satisfying qτ(tk) = qk) and obtains the discrete version of EDP in the form

E (tk, q̂τ(tk))+
∫ tk

tl
R(qτ , ˙̂q)+R∗(qτ ,−DE (t, q̃τ))dt ≤ E (tl , q̂τ(tl))+

∫ tk

tl
∂tE (t,qτ)dt.

Under suitable assumptions it is possible to take the time-step limit τ→ 0 and arrive
at the notion of weak energy-dissipation solutions, defined by the condition that

E (t,q(t))+
∫ t

r
R(q, q̇)+R∗(q,−DE (s,q))ds ≤ E (r,q(r))+

∫ t

r
∂sE (s,q)ds

holds for all t ∈ [0,T ], s = 0, and almost all s ∈ [0,T ]. An existence proof for weak
energy-dissipation solutions for a model of finite-strain viscoplasticity using the
multiplicative decomposition is given in [MRS15]. There it is not possible to derive
the missing chain-rule estimate to return back to the differential inclusions (I)–(V).

Another very useful variational principle is only valid for classical gradient
systems, where it is possible to define a dissipation distance D . If the energy
functionals E (t, ·) are geodesically λ -convex, then one reformulate the evolution-
ary problem via a so-called evolutionary variational inequality (EVI), see [AGS05,
Mie14]. For an application of this theory of geodesically λ -convex gradient sys-
tems in one-dimensional viscoelasticity we refer to [MOŞ14]. This one-dimensional
existence theory, where q = y, relies on time-incremental minimization problems
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yk+1 = Argmin
( 1

2(tk+1−tk)
D(w,yk)2 +E (w)

)
and establishes strong convergence of the solution even in the case of nonconvex E .

An approximative variational characterization of whole trajectories can be ob-
tained by the weighted energy-dissipation functional (WED functional), which is
defined via

Wε(q) =
∫ T

0
e−t/ε(R(q(t), q̇(t))+

1
ε
E (t,q(t))

)
dt, q(0) = q0.

and which was introduced in [MO08] in the context of material modeling. It
was used earlier for elliptic regularization of parabolic problems, see [LM72] and
[Ilm94] for the treatment of Brakke’s approach to the mean-curvature flow.

Under sufficient smoothness of E and R we see that the Euler-Lagrange equation
takes the form

Dq̇R(q, q̇)+DqE (t,q)= ε
( d

dt

(
Dq̇R(q, q̇)

)
−DqR(q, q̇)

)
, Dq̇R(q(T ); q̇(T ))= 0.

Thus, we obtain an “elliptic regularization” of the original evolutionary problem.
The advantage is that showing the existence of minimizers q̂ε : [0,T ]→ XXX for Wε
is usually much easier than establishing the existence of solutions for the gGS. Yet,
the major problem then is to pass to the limit ε → 0 to find a limit q of the approxi-
mations q̂ε . For the rate-independent case R(q,v) =Ψ(v) this was done in [MO08]
obtaining energetic solutions q. For classical gradient system R(q,v) = 1

2 〈Gv,v〉
with G independent of q the convergence q̂ε → q was established in [MS11].

The general aim of introducing the WED functional in [MO08] was the possi-
bility of using relaxation techniques that are invented originally only for stationary
problems also in the context of evolutionary problems. First results on such relax-
ations are presented in [MO08, Sec. 4.4+5], mainly in the context of RIS. For a
proper relaxation of a viscous PDE we refer to [CO08, Sec. 4], where the case

XXX = L2(Ω), E (q) =
∫
Ω

F(∇q(x))− f (t,)q dx, R(q̇) =
1
2

∫
Ω

q̇2 dx

was considered, with Ω ⊂ R2 and F(A) = 0 for A ∈ K := {±(1,0),±(0,1)} and ∞
else. It is proved that quasiminimizers q̃ε of Wε converge to solutions of the relaxed
evolution defined via the differential inclusion

q̇ =
1
2

divσ +
1
2

f , where σ(t,x) ∈ ∂χS(∇u(t,x)),

where S = convK = {(A1,A2) ∈R2 | |A1|+|A2| ≤ 1} and χS is indicator function of
convex analysis, i.e. χS(A) = 0 for A ∈ S and ∞ otherwise.
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XXX XXX XXX∗ XXX∗

Ψ ∂Ψ Ψ ∗ ∂Ψ ∗∞ ∞

Fig. 5.1 Primal and dual dissipation potentialΨ for RIS

5.2.2 Rate-Independent Systems and Energetic Solutions

The case of purely rate-independent dissipation is distinct from the general dissi-
pation potentials. It is characterized by the condition on R(q,λv) = λR(q,v) for
all λ > 0. In that case we call (XXX ,E ,R) a rate-independent system (RIS). Then,
the force-velocity relation v �→ ∂vR(q,v) is meant in the sense of subdifferentials of
convex functions, which are set-valued:

∂Ψ (v) = {η ∈ XXX∗ | ∀w ∈ XXX : Ψ(w)≥Ψ(v)+ 〈η ,w−v〉}.

For rate-independent cases we have

∂vR(q,λv) = ∂vR(q,v) = {η ∈ K(q) |R(q,v) = 〈η ,v〉},

where K(q) := ∂vR(q,0) is called the elastic domain. Moreover, for the dual dissi-
pation potential we find the simple form

R∗(q,ξ ) = χK(q)(ξ ) =
{

0 for ξ ∈ K(q),
∞ for ξ �∈ K(q),

see Figure 5.1.
In principle the five formulations I to V of the previous subsection are still valid

for RIS. However, one can use the special structure of ∂vR and R∗ to simplify
the presentation. For instance, the maximum-dissipation principle reduces to the
simpler form

rate-independent MDP: DqE (t,q) = Argmax
ξ∈K(q)

〈ξ , q̇〉. (5.4)

Second the energy-dissipation principle in the rate-independent case takes a simpler
form as R∗ is either 0 or ∞. A differentiable function q : [0,T ]→ XXX solves I to V if
and only if

(S)loc −DqE (t,q) ∈ K(q) := ∂vR(q,0),

(E) E (T ;q(T ))+
∫ T

0
R(q, q̇)dt = E (0,q(0))+

∫ T

0
∂tE (t,q)dt.
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We call the first condition a local stability condition, since the system stays in a state
q(t) in which the driving force ξ (t) = DqE (t,q(t)) is not big enough to overcome
the possible dissipative forces η ∈ K(q).

The major problem for RIS is that the solutions will in general develop jumps,
i.e. the three values q(t−0) := lims↗t q(s), q(t), and q(t+0) := lims↘t q(s) may
be different. In such a discontinuous situation the differential formulations are not
really useful. Of course, if there is enough convexity in the system the solution will
not develop jumps and the above formulations are optimal.

In general cases, the notion of energetic solutions can be used to character-
ize solutions with jump in a variational way. In that case the infinitesimal dissi-
pation potential R, which in mathematical terms plays the role of a infinitesimal
Finsler metric, is not suitable and has to be replaced by a dissipation distance
D : XXX×XXX → [0,∞] which is assumed to satisfy the triangle inequality D(q1,q3)≤
D(q1,q2)+D(q2,q3), but the symmetry D(q1,q2) =D(q2,q1) is not needed. The
triple (XXX ,E ,D) is called an energetic rate-independent systems (ERIS), and a func-
tion q : [0,T ]→ XXX is called an energetic solution if for all t ∈ [0,T ] the global sta-
bility (S) and the energy balance (E) hold:

(S) E (t,q(t))≤ E (t, q̃)+D(q(t), q̃) for all q̃ ∈ XXX ;

(E) E (T,q(T ))+DissD(q; [0,T ]) = E (0,q(0))+
∫ T

0
∂sE (s,q)ds,

(5.5)

where the total dissipation along a possibly discontinuous solutions is defined via

DissD (q; [r,s]) := {
N
∑
j=1

D(q(t j−1),q(t j)) |N ∈N, r≤ t0 < t1 < · · ·< tN ≤ s}. (5.6)

For energetic solutions, possible jumps can be given a natural physical interpreta-
tion. First, (E) implies the exact energy conservation E (t,q(t+0)) = E (t,q(t−0))−
D(q(t−0),q(t+0)). Second, (S) implies that a jump immediately occurs if it is pos-
sible, which is called the principle of realizability in [MTL02].

The notion of energetic solutions was first introduced in [MTL02], and under
suitable technical assumptions it was shown that all limits of the piecewise constant
interpolants of the solutions of the time-incremental minimization problems

qk+1 ∈ Argmin
q̃∈XXX

(
D(qk, q̃)+E (tk+1, q̃)

)
(5.7)

converge to energetic solutions. We refer to [Mie11b, MR15] for a detailed account
of this theory.

Note that in the incremental problems (5.7) one is doing a global minimization,
which is reflected in the global stability condition (S). This leads to a jump behav-
ior which is sometimes unrealistic, since potential barriers are not seen. To define a
notion of solutions that do not show the problem of too early jumps, one can treat
RIS as limits of rate-dependent systems, i.e. systems with a small viscosity propor-
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tional to ε and then consider the vanishing-viscosity limit ε→ 0. The corresponding
notion of solutions is called Balanced-Viscosity solutions, which will be discussed
in Section 5.4.3.

The two major stimuli in the development of the theory of energetic solutions
for RIS were the theory of crack evolution in brittle materials, see [DFT05] for
linearized elasticity and [DL10] for finite-strain elasticity, and the theory of finite-
strain elastoplasticity, see [MM09, Mie10]. In the former case the name irreversible
quasistatic evolution is used for what is called energetic solutions here. In both
cases, there is not a useful underlying linear structure in a function space XXX , and the
full strength of the abstract definition of energetic solutions is needed.

5.3 Evolutionary Γ -Convergence

Following the notions in the survey article [Mie14] we consider families of gGS
(XXX ,Eε ,Rε)ε∈]0,1[ and ask the questions whether the solutions qε for these system
have a limit q for ε → 0 and whether the limit q is again a solution to a gGS
(XXX ,E0,R0). Ideally, one might hope that it is sufficient that Eε and Rε convergence
in a suitable topology to E0 and R0, respectively. We will show that such results
exist, but we will also discuss situations where we start with quadratic Rε and end
up with a limiting dissipation R0 that is rate independent.

We first give the general definition of pE-convergence, which is a short name
of evolutionary Γ -convergence with wellprepared initial conditions. Hence, the let-
ter“E” stands for both, ‘E’volutionary convergence and ‘E’nergy convergence. while
the letter “p” stands for well‘P’reparedness of the initial conditions, in contrast to
E-convergence, where the latter is not needed.

Definition 5.3.1 (pE-convergence of (XXX ,Eε ,Rε)). We say that the generalized gra-

dient systems (XXX ,Eε ,Rε) pE-converge to (XXX ,E0,R0), and write (XXX ,Eε ,Rε)
pE→

(XXX ,E0,R0), if

qε : [0,T ]→ XXX
is sol. of (XXX ,Eε ,Rε),

qε(0)→ q0, and
Eε(0,qε(0))→ E0(0,q0)<∞

⎫⎪⎪⎬⎪⎪⎭ =⇒

⎧⎪⎪⎨⎪⎪⎩
∃q sol. of (XXX ,E0,R0) with q(0)=q0

and a subsequence εk→ 0 :
∀ t ∈ ]0,T ]: qεk(t)→ q(t) and

Eεk(qεk(t))→ E0(q(t)).

(5.8)

Similarly, we define the pE-convergence for ERIS (Q,Eε ,Dε)
pE→ (Q,E0,D0), if

“solution” is understood in the sense of energetic solutions.

In the following subsection we discuss some abstract results for pE-convergence.

5.3.1 pE-convergence for Generalized Gradient Systems

The first general approach to the evolutionary Γ -convergence for classical gra-
dient systems, where the variational structure was exploited systematically, goes
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back to [SS04], see also [Ser11, Mie14]. This approach is based on the energy-
dissipation principle for the gGS (XXX ,Eε ,Rε) presented in Theorem 5.2.2, which
transforms the evolutionary system 0 ∈ ∂q̇Rε(qε , q̇ε)+DqEε(t,qε) into the upper
energy-dissipation estimate

Eε(t,qε(T ))+Jε(qε(·)) ≤ Eε(0,qε(0))+
∫ T

0
∂sEε(s,qε (s))ds,

where Jε (q) :=
∫ T

0
Rε(q(t), q̇(t))+R∗ε (q(t),−DqEε(t,q(t)))dt

Having a variational principle for the whole trajectory, one can now use variational
techniques to pass to the limit ε → 0. First we observe that the first term on the
right-hand converges to the desired limit by the assumption of the wellpreparedness
of the initial conditions. For the second term on the right-hand side we may assume
that it is lower order and can be handled by compactness. In fact, often one has
Eε(t,q) = Uε (q)−〈�ε(t),q〉, then ∂tE (t,q) = −〈�̇ε(t),q〉 is linear in q and strong
convergence of �̇ε(t)→ �̇(t) is XXX∗ is sufficient.

Hence, it remains to estimate the two terms on the left-hand side. Here we can
take advantage that we only need an estimate from above, i.e. the liminf estimates

E0(T,q(T ))≤ liminf
ε→0

Eε(T,qε(T )) and J0(q(·))≤ liminf
ε→0

Jε(qε(·))

are sufficient. For this, one has to derive suitable a priori estimates on the solutions
qε such that one is able to extract a subsequence qεk which converges in a sufficiently
strong topology to establish the desired liminf estimates.

The famous Sandier-Serfaty approach [SS04, Ser11] relies on the two liminf es-
timates ∫ T

0 R0(q0(t), q̇0(t))dt ≤ liminfε→0
∫ T

0 Rε(qε(t), q̇ε(t))dt and

R∗0(q0,−DqE0(t,q0))≤ liminf
ε→0

R∗ε (qε ,−DqEε(t,qε)).

However, the energy-dissipation principle (EDP) is even more flexible, since we
do not need these two separate lower bounds. In passing to the liminf for the total
dissipation

∫ T
0 Rε+R∗ε dt we may even give up the special dual form R+R∗ of the

integrand. This idea, which was applied successfully in [AMP+12, Mie12, MPR14,
LMPR15], can be summarized as follows.

Defining the functional Jε : W1,1([0,T ];XXX)→ [0,∞] via

Jε(u) :=
∫ T

0
Rε(u, u̇)+R∗ε (u,−DEε(u))dt,

we have to find a sufficiently good lower bound for the Γ -liminf, namely

(i) uε(·) ∗⇀ u(·) in L∞([0,T ];XXX) =⇒
∫ T

0
M0(u(t), u̇(t))dt ≤ liminf

ε→0
Jε(uε),
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where the integrand M0 does not need to be of the form R0 +R∗0 . Hence, finding
the best (i.e. largest) M0 is nothing else than finding the (static) Γ -limit of the
functionals Jε . It suffices to find (XXX ,E0,R0) and M0 such that

(ii) Eε
Γ
⇀ E0;

(iii) M0(u,v)≥−〈DE0(u),v〉;
(iv) the chain rule holds for(XXX ,E0,R0);

(v) M0(u,v) =−〈DE0(u),v〉 =⇒ R0(u,v)+R∗0(u,−DE0(u)) =−〈DE0(u),v〉.

As before, we can start from the EDP Eε(uε(T ))+Jε(uε) = Eε(uε(0)). Using the
wellpreparedness of the initial datum, (i), and (ii) we pass to the limit and obtain the
EDP

E0(u(T ))+
∫ T

0
M0(u(t), u̇(t))dt ≤ E0(u(0)).

Now using the (iii) and the chain rule (iv) we find

E0(u(0))
(iv)
= E0(u(T ))−

∫ T

0
〈DE (u(t)), u̇(t)〉dt

(iii)
≤ E0(u(T ))+

∫ T

0
M0(u(t), u̇(t))dt ≤ E0(u(0)).

Thus, we conclude that we must have equality in (iii) for almost all t ∈ [0,T ], such
that we can use (v) to conclude that u is a solution for (XXX ,E0,R0). Hence, the pE-

convergence (XXX ,Eε ,Rε)
pE→ (XXX ,E0,R0) is established.

Section 5.4.1 summarizes the results of [Mie12, MT12], which show that the
above strategy can even be applied to justify the passage from small viscous dis-
sipation (i.e. Rε(u, ·) is quadratic) to a limit problem with large rate-independent
dissipation (i.e. R0(u, ·) is positively homogeneous of degree 1, see Section 5.2.2).

In fact, under a slight and natural strengthening of the conditions (i) to (v), it is
possible to construct R0 directly from M0. Indeed, assume that M0(u, ·) is addi-
tionally even, convex, R-valued, and lower semicontinuous, then RM defined via

RM (u,v) :=M0(u,v)−M0(u,0)

is a dissipation potential. Moreover, using property (iii) we find the estimate

R∗M (u,−DE0(u)) = sup
v∈XXX

(
〈−DE0(u),v〉−M0(u,v)+M0(u,0)

)
≤M0(u,0).

Thus, we find the desired EDP E0(u(T ))+
∫ T

0 RM +R∗M dt ≤ E0(u(0)). We em-
phasize that the choice R0 =RM in (iv) and (v) is admissible, but not unique. In
particular, it may be possible to find simpler R0 as is the case in the application
discussed in Section 5.4.1.
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5.3.2 pE-convergence for Rate-Independent Systems

A quite general theory of evolutionary Γ -convergence for ERIS (XXX ,Eε ,Dε ) was
already developed in [MRS08], see also [MR15] for more details and applications.
For simplicity, here we restrict to the case that the energies have the form

Eε(t,q) =Fε(q)−〈�ε(t),q〉, (5.9a)

where XXX is a reflexive Banach space. We allow for the case that F is not convex
and that the dissipation distances Dε are not translation invariant. A typical set of
assumptions reads as follows:

∃c,C > 0 ∀ε ∈ [0,1], q ∈ XXX : Fε (q)≥ c‖q‖2−C; (5.9b)

∀ε ∈ [0,1] : Fε : XXX →R∞ is weakly lower semicontinuous; (5.9c)

∃C > 0 ∀ε ∈ [0,1] : ‖�ε‖C1([0,T ]) ≤C; (5.9d)

∀ t ∈ [0,T ] : �̇ε(t)→ �̇0(t) in XXX∗ as ε → 0; (5.9e)

∀ε ∈ [0,1] ∀q j ∈ XXX :

{
Dε (q1,q3)≤Dε(q1,q2)+Dε(q2,q3),

Dε(q1,q2) = 0 =⇒ q1 = q2.
(5.9f)

In general, these conditions together with Γ convergence of the energies and the
dissipation are not strong enough to show pE-convergence. Even for existence for a
fixed ε we need additional conditions, e.g. weak continuity of Dε is sufficient.

Our first result on pE-convergence for ERIS assumes that the dissipation dis-
tances Dε weakly continuously converge to D0, viz.

Dε
C
⇀D0, which means that qε ⇀ q0, q̂ε ⇀ q̂0 =⇒ Dε (qε , q̂ε)→D0(q0, q̂0).

Theorem 5.3.2 (pE-convergence for ERIS). Assume that the ERIS (XXX ,Eε ,Dε) sat-

isfy (5.9), Eε
Γ
⇀ E0, and Dε

C
⇀D0 in XXX; then (XXX ,Eε ,Dε )

pE
⇀ (XXX ,E0,D0).

We refer to [MRS08] for the first proof and to [Mie14, Thm. 5.4] for a shorter proof.
In fact, it is rather straightforward to establish the EDP, i.e. (E) in (5.5) where “=”
is replaced by “≤”. The major difficulty lies in showing that the global stability
condition (S) holds for the limit ε = 0. This stability then implies a “chain-rule
estimate”, which show that (E) holds even with equality “=”.

The major tool for passing to the limit in the stability condition is the existence
of so-called mutual recovery sequences. (A very similar condition is already very
useful in showing existence of energetic solutions.) Given a family (qε)ε∈[0,1] with
qε ⇀ q0 and a test state q̂0, we say that the family (q̂ε)ε∈]0,1[ is a mutual recovery
sequences at time t, if

limsup
ε→0

(
Eε(t, q̂ε)−Eε(t,qε)+Dε(qε , q̂ε)

)
≤ E0(t, q̂)−E0(t,q0)+D0(q0, q̂0).

(5.10)
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Clearly, if all qε satisfy the stability condition at time t, then all term in the limsup
are nonnegative; hence we conclude that the right-hand side is nonnegative, which
is the stability of q0 if the test state q̂0 can be chosen arbitrary. Under the conditions
of the above Theorem 5.3.2 we see that the existence of mutual recovery sequence
easily holds, since it suffices to choose recovery sequences for the energy Fε and
use the weak continuity of Dε and 〈�ε(t), ·〉.

In the case that XXX is a Hilbert space HHH, the energies are quadratic, and the dissi-
pation distances are translationally invariant, viz.

Fε(q) =
1
2
〈Aεq,q〉 ≥ c‖q‖2

HHH and Dε(q1,q2) =Ψε(q2−q1), (5.11)

one can construct mutual recovery sequences in the form q̂ε = qε +wε with wε →
q̂0− q0 and exploit the better convergence q̂ε − qε = wε → q̂0− q0 (strong conver-
gence in HHH!) in the following terms:

Fε(q̂ε)−Fε(qε) =
1
2
〈Aεwε , q̂ε+qε〉 and Dε(qε , q̂ε) =Ψε(wε ). (5.12)

Using this, the following result was derived in [LM11] and [MR15, Ch. 3.5.4]. Here

the Mosco convergence Eε
M→ E0 means Eε(t, ·) Γ→ E0(t, ·) and Eε(t, ·) Γ

⇀ E0(t, ·) for
all t ∈ [0,T ].

Theorem 5.3.3 (pE-convergence for quadratic ERIS). Let (HHH,Eε ,Ψε)ε∈[0,1] sat-

isfy (5.9) and (5.11). If Eε
M→ E0, Ψε

C→ Ψ0, and Ψε
Γ
⇀ Ψ0, then (HHH,Eε ,Ψε)

pE
⇀

(HHH,E0,Ψ0).

In contrast to Theorem 5.3.2 we need the continuous convergenceΨε
C→Ψ0 here

only in the strong topology of HHH. Applications of this theory occur in linearized
elastoplasticity in the context of homogenization in [MT07, GM11, Han11] and in
the derivation of elastoplastic plate models.

A highly non-trivial application of pE-convergence is treated in [MS13], where
the ERIS (XXX ,Eε ,Dε ) for ε > 0 describe models for finite-strain elastoplasticity
for which existence of energetic solutions was established in [MM09, Mie10]. In
[MS13], the energy, the dissipation distance, and the loadings are scaled by ε > 0
in such a way that the system converges to linearized elastoplasticity in the sense
of pE-convergence. The major assumption is that the yield stress (contained in Dε )
scales in the same way as the displacement. Thus, linearized elastoplasticity is a
justifiable model only under the condition that the yield stress is so small that even
small strains can generate plastic effects.

5.4 Justification of Rate-Independent Models

In this section we discuss two distinct cases in which RIS arise as limits of rate-
dependent systems. The typical situation we are interested in is a system with slow
loading, where we always assume that the loading time t ∈ [0,T ] is our relevant time
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scale. In fact, in mechanics this time scale is often called process time, since it may
be significantly larger than the intrinsic time scales inside the material.

In Section 5.4.1 we consider purely viscous systems, i.e. with a quadratic dis-
sipation potential Rε(q,v) = εα

2 〈G(q)v,v〉, where the small parameter ε indicates
that the relaxation times due to viscous effects are much smaller, namely of order
O(εα). However, to prevent the system to relax into a global minimum for each
macroscopic time we consider an energy that has microscopic wiggles that keeps
the system outside macroscopic minimizers.

In Section 5.4.3 we consider gGS with a dissipation potential consisting of a
fixed rate-independent and a small rate-dependent part, e.g. Rε(q,v) =Rri(q,v)+
ε
2 〈G(q)v,v〉. For ε > 0 the solutions qε will be absolutely continuous with respect
to t ∈ [0,T ] and the task is to characterize the jumps that develop in the vanishing-
viscosity limit ε→ 0.

We also refer to [LOR07] for a derivation of macroscopic rate-independent be-
havior in the case of crack propagation.

5.4.1 Wiggly Energies Give Rise to Rate-Independent Friction

This section deals with the question how macroscopic RIS can arise from purely
viscous systems in the limit of vanishing viscosity ε→ 0. We refer to [PT02, MT12,
Mie12] for the full details. We stay in the framework of evolutionaryΓ -convergence
of gGS (XXX ,Eε ,Rε). In particular, we will start with the cases Rε(q,v) = εα

2 〈Gv,v〉,
where obviously Rε → 0, and end up with a limit system (XXX ,E0,R0), where R0 is
rate-independent. The first example will show very clearly that R0 is determined not
by Rε , but by microscopic variations in the energies Eε , hence one uses the name
wiggly energies.

In [Mie12] the following slight generalization of the wiggly-energy model of
[Jam96] was studied. The latter was analyzed already in [PT02, PT05], but the gradi-
ent structure was first exploited in [Mie12]. As viscous gradient system (XXX ,Eε ,Rε)
it takes the form

XXX = R, Eε(t,q) =F (q)+ εW (q, 1
ε q)− �(t)q, Rε(v) =

εα

2
v2.

Here F ∈ C2(R) denotes the macroscopic part of the energy, W ∈ C2(R×S1) de-
notes the wiggly part, and � ∈ C1([0,T ]) is the given time-dependent loading. Here
S1 =R/Z indicated that W is nontrivially periodic with period 1 in the second vari-
able. In particular, writing W =W (q, p), we assume

ρ+(q) := max{DpW (q, p) | p∈S1 }> 0 and (5.13a)

ρ−(q) := min{DpW (q, p) | p∈S1 }< 0. (5.13b)

Defining E0(t,q) = F (q)− �(t)q, we see that the energies Eε uniformly converge
to the macroscopic limit E0 via |Eε(t,q)− E0(t,q)| ≤ Cε , i.e. the wiggles are not
seen on the energetic level. However, for the restoring force DqEε(t,q) we see a
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strong deviation from DqE0(t,q). In particular, the functions q �→ DqEε(t,q) has
many zeros (local equilibria of Eε).

The ODE 0 = Dq̇Rε(q̇)+DqEε(t,q) generated by (R,Eε ,Rε) reads

0 = εα q̇+F ′(q)+DpW (q, 1
ε q)− εDqW (q, 1

ε q)− �(t). (5.14)

The aim of evolutionary Γ -convergence is to show that the solutions qε of the
viscous gradient system (R,Eε ,Rε) converge to a solutions of the RIS (R,E0,R0),
where the macroscopic energy E0 is given above and the rate-independent dissipa-
tion potential R0 is defined via

R0(z,v) :=

{
ρ+(z)v for v≥ 0,
ρ−(z)v for v≤ 0.

(5.15)

Hence the solutions q of the limiting RIS (R,E0,R0) are given by the differential
inclusion

0 ∈ ∂q̇R0(q, q̇)+DqE0(t,q). (5.16)

We emphasize that the definition of R0 does only involve characteristics of the
wiggly microscopic energy landscape of Eε , namely the p-derivate of the wiggle
function W (q, p).

The main convergence result states that the solutions qε of (5.14) converge to
solutions of the RIS (R,E0,R0).

Theorem 5.4.1 ([PT02, Mie12]). Let F , W, �, Eε , and Rε be as described above,
α > 0, and assume that the mutual-convexity condition

inf{F ′′(q) |q ∈ R}> sup{|DqDpW (q, p)| |q ∈ R, p ∈ S
1 } (5.17)

holds. Then (R,Eε ,Rε)
E→ (R,E0,R0).

The proof in [Mie12] relies on three major pillars, namely (a) suitable a priori
estimates, (b) a liminf-estimate for the energy-dissipation principle, and (c) unique-
ness of the limiting systems. For (a) and (c) the standard energy estimates and the
mutual-convexity condition (5.17) are used. The major difficulty lies in the limit
passage (b) for the energy-dissipation principle as described in Section 5.3.1. For
this we define the total dissipation functional

Jε(q)=
∫ T

0
Mε(t,qε(t), q̇ε (t))dt with Mε(t,q,v)=Rε(q,v)+R∗ε (q,−DqEε(t,q)).

Inserting the specific forms of Rε , R∗ε , and Eε we find

Mε(t,q,v) =
εα

2
v2 +

1
2εα

∣∣F ′(q)− �(t)+DpW (q,q/ε)+ εDqW (q,q/ε)
∣∣2.
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Homogenization arguments from [Bra02, Sect. 3] yield the liminf estimate

liminf
ε→0

Jε (qε)≥J0(q) :=
∫ T

0
M0(t,q, q̇)dt with M0(t,q,v) =P(v,F ′(q)−�(t)),

P(q,ξ ) := |v|K(q,ξ )+ χ[ρ−(q),ρ+(q)](ξ ), and K(q,ξ ) =
∫
S1
|ξ+DpW (q, p)|dp.

It is easy to check the conditions (ii)–(v) in Section 5.3.1 for E0 and R0 given above.
First note that (ii) and (iv) are trivial. Next observe K(q,ξ )≥ |ξ |, which implies (iii).
For the crucial condition (v) we use that M0(t,q,v) = −vDqE0(t,q) means ξ =
DqE0(t,q) ∈ [ρ−(q),ρ+(q)] and |v|K(q,ξ ) =−vξ . However, K(q,ξ ) = |ξ | holds if
and only if ξ �∈ ]ρ−(q),ρ+(q)[. Thus, the equivalence to 0 ∈ ∂vR0(q,v)+ ξ (or any
other of the five equivalent formulations in Proposition 5.2.1) follows easily.

5.4.2 1D Elastoplasticity as Limit of a Chain of Bistable Springs

A second evolutionary Γ -limit with wiggly energies is established in [MT12]. The
system models a chain of N bistable springs with small viscous damping. Denoting
by e j the strain in the jth spring, the system reads

ν ė j =−F ′biq(e j)+ μN
j +G(t, j/N)+σ(t) for j = 1, ...,N;

CN((e j)) := 1
N ∑N

j=1 e j = �(t),

}
(5.18)

where the biquadratic double-well potential Fbiq(e) := k
2 min{(e+a)2,(e−a)2}

generates the bistability. The coefficients μN
j are biases that act as quenched disorder

(time-independent) and are chosen randomly, namely independently and identically
distributed according to a probability density f ∈L1([−μ∗,μ∗]) with average 0.

The system is driven by the volume loading G ∈ C1([0,T ]× [0,1]) and the con-
straint CN corresponding to a Dirichlet loading � ∈ C1([0,T ]) prescribing the total
length of the chain, where σ is the Lagrange parameter for this constraint.

Using eee = (e1, ...,eN) as a state vector, the system has the energy functional EN

and the viscous dissipation potential RN :

EN(t,eee) =
1
N

N

∑
j=1

(
Fbiq(e j)− μN

j e j +G(t, j/N)e j

)
and RN(eee, ėee) =

ν
2N

N

∑
j=1

ė2
j .

The total system can now be written abstractly as a viscous gradient flow via

0 = DėeeRN(eee, ėee)+DeeeEN(t,eee)+σ(t)DCN(eee) with CN(eee) = �(t).

Our small parameter is now ε = 1/N, which is the ratio between the length of the
springs and the total length. Clearly, the energy EN is wiggly in the sense that there
are many local minimizers for a given constraint CN(eee) = �, namely up to 2N .

The limit of particle number N → ∞ and viscosity ν → 0 can be studied by
embedding the system into a spatially continuous setting on the physical domain
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Ω = ]0,1[. The potential Fbiq has two wells and hence two phases for each spring,
which we characterize by the phase indicators z j = sign(e j) ∈ {−1,0,1}. With the
indicator functions

ϕN
j (x) :=

{
1 for x ∈

(
( j−1)/N, j/N

)
,

0 otherwise.
(5.19)

we define elastic and plastic strains via (eN(t), pN(t)) :=PN(eN(t)), where

PN :

{
RN → L2(Ω)×L2(Ω),

eee = (e j) j=1,...,N �→
(
∑N

j=1 eN
j ϕN

j , a∑N
j=1 zN

j ϕN
j

) (5.20)

The definition of (eN , pN) is such that we obtain a linear stress-strain relation

F ′biq(e
N(t,x)) = k

(
eN(t,x)− pN(t,x)

)
,

since the nonlinearity is moved into the definition of p via z j = sign(e j).
The limiting gGS (HHH,E0,R0) describes linearized elastoplasticity with harden-

ing and is defined via

HHH = L2(Ω)×L2(Ω), R0(ṗ) =
∫
Ω

ka
∣∣ ṗ(x)∣∣dx,

E0(e, p) =
∫
Ω

k
2

(
e(x)−p(x))2 +Hf (p(x)

)
+G(t,x)e(x)dx,

where the hardening potential Hf is a convex function that is uniquely determined
by the distribution function f for the random biases μN

j . Indeed, defining Lf such
that L′′f = f one obtains Hf as Legendre transform of Lf , see [MT12].

Together with the constraint C0(e) :=
∫
Ω e(x) dx = �(t), we obtain the RIS

(HHH,E0,R0,C0) with a 1-homogeneous dissipation potential R0 given in terms of
the “yield stress ka”. The associated differential inclusion

0 = DeE (e, p)+σ(t)DC (e) = k(e−p)+σ , C (e) = �(t),

0 ∈ ∂R(ṗ)+DpE (e, p) = kaSign(ṗ)+ k(p−e)+ ∂Hf (p).
(5.21)

describes one-dimensional elastoplasticity with Dirichlet loading u(t,0) = 0 and
u(t,1) = �(t), if the displacement is defined by u(t,x) =

∫ x
0 e(t,y)dy.

The following convergence result shows that the rate-independent evolution (5.21)
is indeed the evolutionaryΓ -limit of the finite-dimensional viscous systems (5.18).

Theorem 5.4.2 ([MT12, Thm. 5.2]). Assume νN = 1/Nα for a fixed α > 1. Con-
sider the solutions eeeN : [0,T ]→RN of the gradient system (RN ,EN ,RN), where the
biases μN

j are chosen randomly (and independently and identically distributed) ac-
cording to the distribution f . Then, with probability 1 with respect to the random

biases μN
j we have (RN ,EN ,RN)

pE
⇀ (HHH,E0,R0) in the sense of the embedding PN:

If the initial conditions eeeN(0) satisfy eN
j (0)< 0 for all j,
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PN(eee
N(0))⇀ (e0, p0) in HHH, and E N(0,eeeN(0))→ E (0,e0, p0);

then, for all t ∈ [0,T ] we have

PN(eee
N(t))⇀ (e(t), p(t)) in HHH and E N(t,eeeN(t))→ E (t,e(t), p(t)),

where (e, p) is the unique solution of (5.21).

We again emphasize that the limiting dissipation potential R0 is not related to
the original quadratic potentials RN . In the definition of R0 the constants k and a
appear, which are part of the definition of the double-well potential Fbiq.

5.4.3 Balanced-Viscosity Solutions as Vanishing-Viscosity Limits

Assuming rate independence for an evolutionary system is always an approxima-
tion: the loading time-scale is taken to be much slower than all the internal relax-
ation processes. Moreover, in most material models there are two kinds of variables,
i.e. we write the state variable q as a couple q = (y,z), where y denotes the elastic or
fast variables, usually containing the elastic deformation φ : Ω → Rd or the small
displacement u : Ω → Rd . The variable z are taken to be internal variables which
are slower and may be modeled by rate-independent friction such as plastic yields or
activated phase transformation. Hence, a typical quasistatic material model (where
we still neglect inertial terms) will have the form of a coupled system

0 = εαG1(y,z)ẏ+DyE (t,y,z), 0 ∈ ∂Ψ(y,z, ż)+ εG2(y,z)ż+DzE (t,y,z),

where we again assume that the loading rate is scaled to be of order one, such that
the viscous relaxation times for the variable y are O(εα) while the variable z has
rate-independent terms (instantaneous relaxation is possible) as well as additional
viscous relaxation on the time scale O(ε). Clearly, we have a generalized gradient
system (XXX ,E ,Rε) with

XXX = YYY×ZZZ and Rε(y,z, ẏ, ż) =Ψ(y,z, ż)+
εα

2
〈G1(y,z)ẏ, ẏ〉YYY +

ε
2
〈G2(y,z)ż, ż〉ZZZ.

Again, we can ask the question of evolutionary Γ -convergence of (XXX ,E ,Rε) to-
wards a limit system (XXX ,E ,Ψ ,Ξ), in the sense that solutions qε of the former con-
verge to the solutions q0 of the latter system. Here the additional structure “Ξ”
indicates that the simple RIS (XXX ,E ,Ψ ) needs to be enhanced by some information
characterizing the jumps.

To obtain a rate-independent limit, one is again interested in the case ε → 0,
which is called the vanishing-viscosity limit. Formally, it is expected that the limits
q0 = (y0,z0) of solutions qε = (yε ,zε ) will satisfy the different inclusion

0 = DyE (t,q0(t)) and 0 ∈ ∂żΨ(q0(t), ż0(t))+DzE (t,q0(t)) (5.22)
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for almost all t ∈ [0,T ]. However, in general the limits q0 : [0,T ]→ XXX will develop
jumps with q0(t−0) �= q0(t+0) and (5.22) will not be enough to characterize these
jumps. Moreover, the jumps arising in the vanishing-viscosity limit will depend on
the different viscosity choices εαG1(q) and εG2(q).

Indeed, in [MRS14b] the dependence of the exponent α > 0 was investigated
in a situation where q = (y,z) ∈ Rn×Rm and where E (t, ·,z) is strictly convex.
It turns out that the jump behavior is quite different for the three cases α ∈ ]0,1[,
α = 1, and α > 1. For α > 1 the component y can relax into the unique minimizer
of E (t, ·,z(t)) much faster than any changes in z. Hence, it is possible to reduce the
situation by eliminating the variable y by defining y =Y (t,z) = Argminỹ∈YYYE (t, ỹ,z)

and Ê (t,z) = E (t,Y (t,z),z).
For α ≤ 1 the situation is much more difficult and new jump phenomena occur,

which are not yet understood, see [MRS14b] for some first results.

In light of the above discussion for α > 1 we restrict ourself to the case XXX =
ZZZ and consider gGS (ZZZ,E ,Rε) with the simplest “vanishing-viscosity dissipation
potential”

Rε(v) =Ψ(v)+
ε
2
〈Gv,v〉, (5.23)

whereΨ is positively homogeneous of degree 1 and G=G∗ > 0. The important ob-

servation is that G generates a Hilbert-space norm ‖v‖VVV :=
(
〈Gv,v〉

)1/2
, which is de-

fines the Hilbert space VVV . Throughout, we assume that ZZZ is continuously embedded
into VVV , which is certainly the case for the model system studied in [Mie11b, MZ14]:

(MS)

⎧⎪⎨⎪⎩
ZZZ = L1(Ω), VVV = L2(Ω), Rε(v) =

∫
Ω
|v|+ ε

2
|v|2 dx,

and E (t,z) =
∫
Ω

κ
2
|∇z|2 +W(z)− �(t)zdx for z ∈ H1

0(Ω),

where Ω ⊂Rd is a smooth bounded domain, W is the double-well potential W (z) =
(z2− 1)2/4, and � is a smooth loading. The evolutionary equation is

0 ∈ Sign(ż)+ ε ż−κΔz+W ′(z)− �(t) for (t,x) ∈ [0,T ]×Ω ,

z(t,x) = 0 for (t,x) ∈ [0,T ]× ∂Ω ,
(5.24)

which is extensively studied in [MZ14] by direct PDE methods.
For passing to the limit ε → 0 and still controlling the jump behavior it is useful

to reparametrize the solutions t �→ (t,zε(t)) ∈ [0,T ]×ZZZ in the extended state space
and study the convergence there. This idea was introduced in for RIS in [EM06]
and turned into an energetic framework in the series of papers [MRS09, MRS12,
MRS14a, MRS14b].

For the reparametrization we let t = t(s) and z(t) = z(s), where s ∈ [0,S] is now
an arclength-like parameter. We write z′(s) = d

ds z(s) and note ż(t(s))t′(s) = z′(s).

Definition 5.4.3 (Parametrized solutions). Let the RIS (ZZZ,E ,Ψ ,G) and VVV be
given as above. Then, a pair (t,z) : [0,S]→ [0,T ]×ZZZ is called a G-parametrized
solution, if (t,z) ∈W1,1(0,T ;R×VVV ) and there exists λ : [0,S]→ [0,∞[ such that
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t(0) = 0, t(S) = T, t′(s)≥ 0, λ (s)≥ 0, λ (s)t′(s) = 0,

0 ∈ ∂Ψ(z′(s))+λ (s)Gz′(s)+DzE (t(s),z(s)),

}
a.e. on [0,S]. (5.25)

The definition clearly displays the rate independence of the notion ofG-parametrized
solutions, since z′ only occurs in the rate-independent term ∂Ψ or together with λ
which can be scaled freely.

For a variational approach we transform the EDP, cf. Theorem 5.2.2, by time
rescaling and obtain for (t,z) the following identity:

E (t(S),z(S))+
∫ S

s=0
Pε
(
t′(s),z′(s),−DzE (t(s),z(s))

)
ds

= E (m f t(0),z(0))+
∫ S

0
∂tE (t(s),z(s))t

′(s)ds, (5.26)

where Pε(τ,V,ξ ) = τRε(
1
τV )+ τR∗ε (ξ ). (5.27)

Using the special form of Rε we obtain a quite explicit form for Pε , namely

Pε(τ,V,ξ ) =Ψ(V )+
ε
2τ
〈GV,V 〉+ τ

2ε
MVVV (ξ )2 with MVVV (ξ ) := inf

η∈∂Ψ (0)
‖ξ−η‖VVV∗ .

It is now easy to see that the Γ -limit of Pε : [0,∞[×ZZZ×VVV ∗ → [0,∞] for ε→ 0 takes
the form

P0(τ,V,ξ ) :=

{
Ψ(V )+Ψ∗(ξ ) for τ > 0,

Ψ(V )+ ‖V‖VVV MVVV (ξ ) for τ = 0.

Clearly, P0(τ,V,ξ )≥−〈ξ ,V 〉 for all (τ,V,ξ ). Moreover, equality holds if and only
if 0∈ ∂Ψ(V )+ξ in the case τ > 0 and 0∈ ∂Ψ (V )+λGV +ξ in the case τ = 0 see
[MRS12, Sec. 3.2]. Thus, all parametrized solutions satisfy the limiting EDP

E (t(S),z(S))+
∫ S

s=0
P0
(
t′(s),z′(s),−DzE (t(s),z(s))

)
ds (5.28)

= E (t(0),z(0))+
∫ S

0
∂tE (t(s),z(s))t

′(s)ds, (5.29)

and vice versa, sufficiently smooth solutions of the EDP are parametrized solu-
tions. The advantage of (5.29) is that we do not need to assume z ∈W1,1([0,T ];VVV ).
All solutions (t,z) with t ∈ W1,1([0,T ]) and z ∈ BV([0,T ];ZZZ)∩ C0([0,T ];VVV ) of
(5.29) are called parametrized balanced-viscosity solutions of (ZZZ,E ,Ψ ,G). Here
the term “balanced viscosity” relates to the subtle balance of rate-independent
and viscous dissipations along jumps, that is seen in P0 for τ = 0 in the term
Ψ(V )+ ‖V‖VVV MVVV (ξ ).

The advantage of reformulating subdifferential equations like (5.24) and (5.25) in
terms of the reparametrized EDP (5.27) is that we can control the limit ε→ 0 easily.
In particular, if the define the solutions of (ZZZ,E ,Ψ ,G) to be parametrized balanced-
viscosity solution, then we have evolutionary Γ -convergence of (ZZZ,E ,Rε) (with
Rε from (5.23)) to (ZZZ,E ,Ψ ,G).
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However, the introduction of the parametrization may appear ad hoc and dis-
turbing. So one can define the notion of Balanced-Viscosity solutions as follows:
z : [0,T ]→ ZZZ is called a BV solutions for (ZZZ,E ,Ψ ,G) if there exists a parametrized
balanced-viscosity solutions (t,z) : [0,S]→ [0,T ]×ZZZ such that for all t ∈ [0,T ] there
exists an s ∈ [0,S] with t = t(s) and z(t) = z(s). This simply means that the image
of (t,z) in [0,T ]×XXX contains the graph of z : [0,T ]→ ZZZ.

One major achievement in [MRS12, MRS14a] is a proper intrinsic definition
of BV solutions without referring to parametrizations. For this one defines a new
(time-dependent) dissipation distance ΔΔΔ(t, ·, ·) that measures the minimal dissipa-
tion according to P0 along all curves connecting to states z0 and z1:

ΔΔΔ(t,z1,z2) := inf
{ ∫ 1

0
P0
(
0, ẏ(r),−DzE (t,y(r))

)
dr
∣∣∣

y ∈ C1([0,1];VVV), y(0) = z1, y(1) = z2

}
. (5.30)

Note that ΔΔΔ is defined with time t as a frozen parameter, i.e. t′(r) = τ = 0.
Clearly, we have the triangle inequality ΔΔΔ(t,z0,z2) ≤ ΔΔΔ(t,z0,z1)+ΔΔΔ (t,z1,z2) and
the lower estimate ΔΔΔ(t,z1,z2) ≥ Ψ(z2−z1). For the definition of BV solutions
we use a supplemented dissipation functional Dissp,E defined on functions z ∈
BV([0,T ];XXX). Here J(z) ⊂ [0,T ] is the jump set of z, i.e. all the times t where the
three values z(t−0), z(t), and z(t+0) are not equal. The new dissipation functional
DissM,E (z; [t1, t2]) is bigger than the purely rate-independent functional DissΨ de-
fined in (5.6), because it properly accounts for the additional dissipation through the
viscous terms during jumps:

Dissp,E (z; [t1, t2]) := DissΨ (z; [t1, t2])+ Δ̂ΔΔ(t1,z(t1),z(t+1 ))+Δ̂ΔΔ(t2,z(t−2 ),z(t2))

+∑t∈J(z)

(
Δ̂ΔΔ (t,z(t−),z(t))+Δ̂ΔΔ(t,z(t),z(t+))

)
,

where Δ̂ΔΔ (t,z0,z1) := ΔΔΔ(t,z0,z1)−Ψ(z1−z0)≥ 0.

Definition 5.4.4 (Balanced-Viscosity solutions). A function z ∈ BV([0,T ];ZZZ) is
called a Balanced-Viscosity solution, in short BV solution, for (ZZZ,E ,Ψ ,G), if

∀ t ∈ [0,T ]\ J(z) : z(t) ∈Sloc(t) := {z ∈ ZZZ |0 ∈ ∂Ψ (0)+DzE (t,z)} and (5.31a)

∀ t ∈ [0,T ] : E (t,z(t))+DissM,E (z; [0, t]) = E (0,z(0))+
∫ t

0
∂tE (t,z(t))dt. (5.31b)

It is interesting to see that the definition of BV solutions again consists of a static
stability condition and an energy balance as in the case of energetic solutions, see
(5.5). However, now the stability is local instead of global and it is only valid at
continuity points of the solution. To compensate for this the dissipation is enhanced
at jumps deriving from the additional dissipation through balanced viscosity.

We now use the advantage that BV solutions are defined as functions from the
time interval [0,T ] into the state space ZZZ like the viscous approximations. Thus, the
natural question is how the solutions zε converge to BV solutions. This question
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was first answered in [MRS12] for the finite-dimensional setting and in [MRS14a,
Thm. 3.9] for a general infinite-dimensional setting.

Theorem 5.4.5 (Vanishing-viscosity limit gives BV solutions). Under suitable
technical conditions on (ZZZ,E ,Ψ ,G) and the initial condition z0 ∈ ZZZ, the solutions
zε : [0,T ]→ ZZZ of (XXX ,E ,Rε) with zε (0) = z0 and Rε from (5.23) exist and there exist
a subsequence εk→ 0 and a BV solution z : [0,T ]→ ZZZ for (ZZZ,E ,Ψ ,G) such that

∀ t ∈ [0,T ] : zεk(t)⇀ z(t) in ZZZ and E (t,zεk(t))→ E (t,z(t)) for k→ ∞.

Moreover, any pointwise limit z of a subsequence of (zε )ε>0 is a BV solution.

Our final result concerns the vanishing-viscosity limit jointly with time dis-
cretizations, which provides an easy way of numerically calculating BV solutions.
We discretize the time interval by partitions Π = (t0, t1, ...., tNΠ ) with fineness
φ(Π) = max{ tk−tk−1 | k = 1, ...,NΠ }. The incremental minimization problem for
the viscous problem reads

zεk ∈ Argminz∈ZZZE (tk,z)+Ψ(z−zεk−1)+
ε

2(tk−tk−1)

∥∥z−zεk−1

∥∥2
VVV , zε0 = z0.

We denote by zΠ ,ε : [0,T ]→ ZZZ the piecewise constant interpolant. The following
result was first proved in [EM06, MRS12] for the finite-dimensional setting. For a
quite general infinite-dimensional version we refer to [MRS14a, Thm. 3.10].

Theorem 5.4.6 (Convergence of viscous time discretizations). Assume suitable
technical conditions on (ZZZ,E ,Ψ ,G) and z0 ∈ ZZZ (see [Mie11b, MRS14a]) and con-
sider a sequences (Πn)n∈N and (εn)n∈N such that

εn→ 0 and φ(Πn)/εn→ 0. (5.32)

Then, there exists a subsequence nl → ∞ and a BV solution z for (ZZZ,E ,Ψ ,G) such
that the piecewise constant interpolants zΠn,εn satisfy

∀ t ∈ [0,T ] : zΠnl ,εnl (t)⇀ z(t) in ZZZ and E (t,zΠnl ,εnl (t))→ E (t,z(t)) for l→ ∞.

Moreover, any such pointwise limit of a subsequence of (zΠn,εn)n∈N is a BV solution.

5.5 Rate-Independent Evolution of Microstructures

The theory of RIS provides an ideal framework for studying microstructures in
the sense of the calculus of variations, namely those given by laminates or more
general Young measures. The starting point of most of these works was the sem-
inal paper [OR99] on microstructures in finite-strain plasticity. In the sequel a
lot of work was done for the relaxation of a single elastoplastic time step, see
[CHM02, CDK13b, CDK13a]. We also refer to [HK14, Hei15, Hei14] for the
characterization and numerical calculation of quasiconvex hulls.
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In contrast, the evolution of microstructures in plasticity is mathematically much
less developed, see e.g. [Mie04, CT05]. However, the same theory was soon trans-
ferred to easier dissipative material models such as damage (cf. e.g. [FG06, GL09,
Mie11a]) and phase transformations in elastomers (cf. e.g. [DD02]) or shape-
memory materials (cf. e.g. [BCHH04, BH09, KH11, CLR15]).

In the following we discuss two applications of the evolutionary theory, both
based on energetic solutions for RIS, see Section 5.2.2. The first application is
treated in [HHM12] and deals with the evolution of microstructure in the form of
laminates, where laminates are explicitly takes as an allowed microstructure with
an appropriate dissipation distance as proposed in [KH11]. The second application
reconsiders the evolutionary model from [MTL02], where the microstructure is cap-
tured by a macroscopic phase fraction z(t,x) ∈ [0,1].

5.5.1 Laminate Evolution in Finite-Strain Plasticity

We summarize the results in [HHM12], which analyze a rate-independent model for
finite-strain elastoplasticity with microstructure. The state of the system is described
by the deformation φ : Ω → Rd and by a Young measure Λ : Ω →L ⊂ Prob(K),
where K := Rd×d×SL(Rd)), and SL(Rd) = {P ∈ Rd×d | detP = 1} is the special
linear group containing the plastic strains, whereas Rd×d will contain microfluctua-
tions of the deformation gradient.

The main idea is to specify a physically relevant subset L of admissible Young
measures, like laminates of a fixed order as in [OR99], to define a suitable dis-
sipation distance between these measures, and to prevent formation of different
microstructures by a suitable regularization. Following [KH11] the simplest set of
admissible probability measures are laminates of first order:

L := {αδ((1−α)b⊗n,Q) + (1−α)δ(−αb⊗n,R) |α ∈ [0,1], b,n ∈ R
d , R,Q ∈ SL(Rd)}.

Of course, more complicated lamination trees on the sense of [OR99] would be
possible. The point is now to define a dissipation distance Dlam : L ×L → [0,∞]
between such laminates, which properly accounts for changes in the microstructure.
In particular, one wants to model the fact that it is very difficult to rotate the nor-
mal vector n in such microstructures. When keeping n fixed, then the deformation
fluctuation b ∈ Rd may change without dissipation, while changes of the volume
fraction α dissipate according to the distance DSL(Q0,Q1) or DSL(R0,R1).

The ERIS is now constructed via the state space Q = YYY × Z with
YYY = W1,p(Ω ;Rd) and Z = {Λ ∈ YM(Ω ;K) |Λ(x) ∈ L a.e. } and the energy
functional

E (t,φ ,Λ) =

∫
Ω

∫
L

(
W (∇φ(Id+A)P−1)+H(P)

)
Λ(dA,dP)dx

+σG (Λ)−〈�(t),φ〉 with G (Λ) :=
∫
Ω

∫
Ω

dW(Λ(x),Λ(y))p

|x−y|d+θ p dxdy,
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where dW defines a 1-Wasserstein like norm on L , namely

dW(Λ0,Λ1) := sup{
∫

K
g(A,P)Λ1(dA,dP)−

∫
K

g(B,Q)Λ0(dB,dQ) |LipK(g)≤ 1}.

Thus, G (Λ) serves as a spatial regularization for the laminate field Λ : Ω → L
which prevents the formation of further more complicated microstructures.

The dissipation distance D : Z ×Z → [0,∞] is defined as

D(Λ0,Λ1) =

∫
Ω

Dlam(Λ0(x),Λ1(x))dx

Under suitable assumptions on the polyconvex energy density W and the harden-
ing energy H it is shown in [HHM12, Thm. 2.4] that the ERIS Q,E ,D) has for each
stable initial condition (φ0,Λ0) an energetic solution describing the laminate evolu-
tion. Indeed, using the regularizing term G one has a compactness for the laminate
fields, which allows to establish suitable lower semicontinuity results for E and D
as well as mutual recovery sequences in the sense of (5.10).

5.5.2 A Two-Phase Shape-Memory Model for Small Strains

Finally we present some new results for the two-phase model for introduced in
[MTL02]. In fact, this model was the origin for the development of energetic so-
lutions.

The two elastic phases are described by linearized elasticity with the same elastic
tensor C, but have different transformation strains A j. On the microscopic level one
may use the stored energy density

Ŵ (e) = min{1
2
(e−A1):C(e−A1)+ c1,

1
2
(e−A2):C(e−A2)+ c2},

where e = e(u) := 1
2 (∇u+∇u
) is the infinitesimal strain tensor. The relaxation of

Ŵ with given volume fraction z ∈ [0,1] for phase 2 was derived in [Koh91]:

W (e,z) = (1−z)
(

1
2 (e−A1):C(e−A1)+c1

)
+z
(

1
2(e−A2):C(e−A2)+c2

)
−ρz(1−z),

where the relaxation coefficient ρ > 0 can be calculated explicitly.
The ERIS studied in [MTL02] is given by QQQ = H1

D(Ω ;Rd)×L1(Ω ; [0,1]),

E (t,u,z) =
∫
Ω

W (e(u),z)− �(t) ·udx, and D(z0,z1) = δ‖z1−z0‖L1 (5.33)

for some smooth loading and some dissipation coefficient δ > 0. A first existence
result for energetic solutions was obtained in [MTL02, Thm. 5.1] under the unnat-
ural assumption that the energy E (t, ·) is convex. A corresponding numerical al-
gorithm using space-time discretization and incremental minimizations (cf. (5.7))
was developed in [CP01]. Using the abstract theory for ERIS in [Mie11b, MR15],
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the existence theory was recently improved, see [HM15], by a new construction of
mutual recovery sequences, see (5.10).

Theorem 5.5.1 ([HM15]). The ERIS (5.33) with � ∈W1,1([0,T ];H1
D(Ω)∗) has, for

each stable initial state q0 = (u0,z0), an energetic solution (u,z) : [0,T ]→ QQQ.

The proof relies in reducing the system to a problem in z alone. For this note that
the equation DuE (t,u,z) = 0 is a linear elliptic PDE for u with a right-hand side
that is linear in z and �. Hence, the unique solution u =U(z, �) ∈H1

D(Ω ;Rd) can be
inserted into E to obtain the reduced ERIS (Z ,I ,D) with

Z := L1(Ω ; [0,1]) and I (t,z) = E (t,U(z, �(t)),z) =
1
2

〈
Lz+γ(t),z

〉
+α(t).

Here L is a pseudo-differential operator of order 0, and the symbol, which can be
calculated explicitly, is non-negative by the explicit formula for ρ from [Koh91].
The symbol attains the value 0 along the optimal laminates and ρ is the largest
number such that the symbol remains non-negative.

Because of the constraint z ∈ [0,1] the quadratic trick indicated in (5.12) cannot
be used for showing the closedness of the set of stable states. Indeed, from the
incremental minimization problem (5.7) we obtain piecewise constant interpolants
zτ : [0,T ]→Z that are globally stable, i.e. (S) in (5.5) holds at t = kτ for k ∈ N0.
For a subsequence τk → 0 we have zτn(t) ⇀ z(t) and we have to show that z(t) is
stable as well.

Since stability is a static concept we can fix t and drop it for notational conve-
nience. To establish stability of z we start from the stability of zn in the form

I (t, ẑn)+D(zn, ẑn)−I (t,zn)≥ 0 for all ẑn ∈Z .

To pass to the limit we can only use zn ⇀ z, but may choose a suitable mutual
recovery sequence ẑn ⇀ ẑ for a given test state ẑ. In [HM15] the following choice
was introduced:

ẑn(x) = ẑ(x)+ g(x)(zn(x)−z(x)), where g(x) =

⎧⎪⎨⎪⎩
ẑ(x)
z(x) for ẑ(x)< z,

1 for ẑ(x) = z,
1−ẑ(x)
1−z(x) for ẑ(x)> z.

Clearly we have ẑn ∈Z , ẑn ⇀ ẑ and sign(ẑn−zn) = sign(ẑ−z). DecomposingΩ into
Ω+ and Ω− such that ẑ≥ z and ẑ < z, respectively, we obtain

1
rD(zn, ẑn) = ‖zn−ẑn‖L1 =

∫
Ω+

ẑn−zn dx+
∫
Ω− zn−ẑn dx

=
∫
Ω+

ẑ−z
1−z (1−zn)dx+

∫
Ω−

z−ẑ
z zn dx →

∫
Ω+

ẑ−zdx+
∫
Ω− z−ẑdx = 1

rD(z, ẑ).

To control the energy differences I (t, ẑn)−I (t,zn) we exploit the quadratic
form of the energy. In fact, the sequence vn := zn−z ⇀ 0 generates an H-measure
μ ≥ 0 which exactly characterizes the limit of the quadratic energy, namely
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lim
n→∞

I (t,zn) =I (t,z)+
∫
Ω

∫
ω∈Sd−1

ΣL(ω)μ(x,dω)dx,

where ΣL(ω) ≥ 0 is the symbol of L. The construction of ẑn gives v̂n := ẑn− ẑ =
gvn ⇀ 0, such that v̂n generates the H-measure g2μ . Thus, we obtain

lim
n→∞

(
I (t, ẑn)−I (t,zn)

)
=I (t, ẑ)−I (t,z)+

∫
Ω

∫
ω∈Sd−1

(g(x)2−1)ΣL(ω)μ(x,dω)dx.

Now, using g2 ≤ 1 we conclude the desired limsup estimate

0≤ limsup
n→∞

(
I (t, ẑn)+D(zn, ẑn)−I (t,zn)

)
≤I (t, ẑ)+D(z, ẑ)−I (t,z).

Since ẑ was arbitrary, the global stability (S) of z is established.
We refer to [HM15] for a detailed analysis, which includes the convergence of

space-time discretizations in suitable finite-element spaces as well as the strong con-
vergence of certain Riesz projections related to the directions of the microstructures
between the two phases.
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[MRS08] Mielke, A., Roubı́ček, T., Stefanelli, U.: Γ -limits and relaxations for rate-
independent evolutionary problems. Calc. Var. Part. Diff. Eqns. 31, 387–416
(2008)
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Chapter 6

Energy Estimates, Relaxation, and
Existence for Strain-Gradient Plasticity
with Cross-Hardening

Keith Anguige and Patrick W. Dondl

Abstract. We consider a variational formulation of gradient elasto-plasticity
subject to a class of single-slip side conditions, and show how the non-
convexity effects induced by such conditions can be not only resolved math-
ematically, but also tested physically. We first show that, for a large class
of plastic deformations, a given single-slip condition (specification of Burg-
ers’ vectors and slip planes) can be relaxed by introducing a microstructure
through a two-stage process of mollification and lamination. This yields a re-
laxed side condition which only prescribes certain slip planes, and allows for
arbitrary slip directions in these planes. The relaxed model should be a useful
tool for simulating macroscopic plastic behavior without the need to resolve
arbitrarily fine spatial scales. After deriving the relaxed model, we discuss a
partial result on the existence of minimizers. Finally, we apply the relaxed
model to a specific physical system, in order to be able to compare the ana-
lytical results with experiments. In particular, a rectangular shear sample in
which only two slip planes are active is clamped at each end, and is subjected
to a prescribed horizontal shear, which requires a certain amount of energy.
We show that above some critical aspect ratio the energy is strictly positive
and below that aspect ratio it is zero. Moreover, in the respective regimes
determined by the aspect ratio, we prove energy scaling bounds, expressed
in terms of the amount of prescribed shear, and we show that the scalings as
well as the critical aspect ratio change radically if the single-slip condition or
the strain gradient penalization is neglected.
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6.1 Introduction

The formation of complex subgrain dislocation patterns in plastically de-
formed crystals has been observed by many authors [HBO10, HLCH97,
HCLH98, NGH85] over several decades. Such dislocation microstructures are
known to have a substantial effect on a number of aspects of plastic be-
haviour, such as work hardening and the Bauschinger and Hall-Petch effects.
At present, these effects are commonly modeled in a phenomenological man-
ner. However, the resulting models often fail to capture correctly the behav-
ior of specimens on the micron scale [UDFN04, DRR10], and the appropriate
modelling approach in this case is still under debate.

In the framework of continuum plasticity, Ortiz and Repetto proposed
a mechanism for subgrain pattern formation in their seminal work [OR99].
The basic idea is to model plastic evolution by an incremental time-stepping
procedure, where in each step the sum of the potential energy and the dissi-
pation potential is minimized. Under certain conditions, such discretizations
can be shown to converge to a suitable gradient flow in the limit of small
time steps [MM09], and furthermore the framework of incremental energy
minimization makes the models amenable to variational treatment. The dis-
sipation term in such models of crystal plasticity is naturally non-convex: if
dislocations from different slip systems meet, then they form energetically
favorable (but sessile) atomistic reaction products, such as the so-called
Lomer-Cottrell locks. This increases the dissipation potential for any plastic
deformation that does not occur in single slip and is the origin of microstruc-
ture formation in those models. We will introduce this non-convexity in a
simplified manner, precluding material deformation in more than one slip
system, i.e., enforcing a single-slip condition which states that at each mate-
rial point, the plastic deformation has to occur in single slip. For a detailed
discussion on non-convex potentials and their relation to microstructure for-
mation in plasticity, see [CHM02, Mie06].

A strain-gradient term, such as
∫
| curlFpl|, modeling the potential-energy

contribution of geometrically necessary dislocations, is commonly added to
the energetic formulation, and in fact such a term may be necessary to re-
cover a physically realistic description of hardening in some models [FCO14].
Historically, the introduction of a curl-type strain-gradient term goes back to
Nye [Nye53] and, independently, to Kondo [Kon52].

In the following we will, similarly as in [CT05, CDK13, ACD09], adopt
the framework of incremental energy minimization proposed by Ortiz and
Repetto, applied in particular to a strain-gradient plasticity model with cross
hardening. Section 6.2 will give a term-by-term introduction to the modeling
ingredients. The model introduced there, in both its geometrically linear and
nonlinear forms, will serve as the basis of our further investigations. In par-
ticular, we introduce a special curl term which accounts for non-cancellation
of dislocations in collinear slip in Section 6.2.3.



6 Strain-Gradient Plasticity with Cross-Hardening 159

In Section 6.3, following closely the procedure in [AD14b], we discuss an
inherent problem with our single-slip condition, showing that, for the pur-
poses of efficient numerical simulation and (relatedly) obtaining existence of
minimizers, this condition needs to be relaxed in a suitable way. In partic-
ular, the strain-gradient term does not regularise the problem fully, since
we show that the resulting energy is not lower-semicontinuous. Hildebrand
et al. [HM12] already observed this issue in numerical simulations. They
used exactly a model of single-slip plasticity with penalization of geometri-
cally necessary dislocations, and discovered a mesh-dependent microstructure
when the sample was placed under a shear load within a slip plane, but not
in a Burgers’ vector direction. There, the problem was solved by introducing
an ultra-fine full-gradient-penalty regularisation, thus rendering the mini-
mization problem well-posed. Such a penalty term, however, introduces an
even finer length scale which needs to be resolved in simulations. In order
to remedy this, we thus propose a relaxation of the single-slip condition to a
single-plane condition (where coplanar slip-systems are allowed to be active
at the same point), and show that the resulting relaxed energy is an upper
bound for the lower-semicontinuous envelope of our model.

Under exactly what assumptions our relaxed model does in fact admit
a minimizer is currently an open question. We are, however, able to show
that the single-plane side-condition is preserved along converging minimizing
sequences, which is a necessary condition for lower-semicontinuity. The main
ideas underlying the proof of this result are presented in Section 6.4.

It is of course natural to ask whether the strain-gradient term and the
cross-hardening side condition are in fact relevant for modeling, and whether
their implications are visible in experiments. Therefore, in Section 6.5, we
propose an experiment that can be used to measure the effect of the com-
bination of these two modeling ingredients. In fact, it turns out that their
implications are quite drastic, since they yield a change in the optimal scal-
ing of the energy of a specimen undergoing shear deformation. This section
closely follows the corresponding discussion in [AD14a].

Finally, some conclusions and a look ahead to some further possible avenues
of investigation are presented in Section 6.6. In particular, we continue our
discussion about the existence and regularity of minimizers of our relaxed
model, which still poses a number of unresolved questions.

6.2 A Continuum Model for Strain-Gradient Plasticity
with Cross Hardening

In the following, we will introduce the individual components of our contin-
uum model for crystal plasticity—except for the specific form of the penalty
term for geometrically necessary dislocations, this model is commonly used
when considering the mathematical foundations for continuum plasticity.



160 K. Anguige and P.W. Dondl

6.2.1 Plastic Shear

We consider an elasto-plastic body in its reference configuration Ω ⊂ R3,
together with a mapping

y : Ω → R
3

which satisfies suitable boundary conditions. For sufficiently smooth deforma-
tions y, we define the deformation gradient F = ∇y, such that the row-wise
curl of this tensor vanishes: CurlF = 0.

Reference Configuration

Intermediate Configuration

Current Configuration

Fpl

Fel

F = FelFpl

Fig. 6.1 The deformation described by the deformation gradient F is decomposed
into a plastic part Fpl and and elastic part Fel. The plastic deformation generates
an intermediate configuration.

Now, following [LL67], we make the fundamental assumption that this
deformation gradient can be decomposed into, first, a purely plastic strain,
consisting only of a rearrangement of atoms through plastic slip, generating
an intermediate configuration, and, second, a purely elastic deformation. We
denote the plastic strain by Fpl and the elastic strain by Fel, and refer to
Figure 6.1 for an illustration. We note that the validity of this multiplicative
decomposition is still under debate, and refer to [RC14] for a recent discussion
of the issue.

The decomposition thus allows us to identify an elastic energy for the
crystalline specimen depending only on the elastic strain Fel = FF−1

pl . We
furthermore postulate that the dissipation potential, in the sense of the im-
plicit time discretization, can be written as a function of the increment in
plastic strain. In the following, we will restrict ourselves to a treatment of the
first such time-step, and thus arrive at an energy for the elastic strain and
the dissipation of the form∫

Ω

Wel(FF−1
pl ) +

∫
Ω

Wpl(Fpl),
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with a suitable frame-indifferent elastic energy density Wel and a dissipation
potential Wpl.

It is well known that plastic deformation in crystals is ultimately mediated
by the motion of dislocations through the body. At moderate temperature,
each such dislocation travels predominantly on a given crystallographic plane,
a so-called slip-plane - after the dislocation has passed a point on the plane,
the atoms above the plane have been moved by one Burgers’ vector relative
to those below it. Each type of dislocation is associated with a fixed slip-plane
and a fixed Burgers’ vector lying in the slip plane, and each such pair consti-
tutes a slip system. Kinematically, therefore, the plastic strain can be written
as the product of a number of simple shear deformations, each with a given
crystallographically determined shear normal and shear direction, and arbi-
trary shear angle. In the common face-centered-cubic crystalline metals, for
example, there are twelve such slip systems, given by four slip-plane normals
and three different Burgers’ vectors in each slip-plane.

6.2.2 Locks and Cross-Hardening

Cross-hardening [WBL91, Koc64, FBZ80] describes the phenomenon whereby
activity in one slip system suppresses activity in all other slip systems at the
same point, and this immediately leads to a loss of convexity in the dissipation
potential Wpl introduced above [OR99]. Corresponding to this, Wpl(Fpl) will
(roughly speaking) be minimal if Fpl is a pure simple shear in one of the
given crystallographic slip systems.

Mostly in fatigue experiments, but also in experiments involving only
a single-pass deformation, lamination-type microstructures with alternating
slip-system activity are observed [RP80, JW84, BHHK92, DDMR09]—this
effect is believed to stem from cross-hardening [OR99, DDMR09]. In the fol-
lowing, we make the simplifying assumption of infinite cross hardening, such
that Fpl must be in single slip at each point. Similar assumptions have been
made for example in [CDK13, CDK09], among others. In [DDMR09] it was
shown that the predicted laminate microstructure arising from the assump-
tion of infinite cross hardening does indeed match experimental results, while
evolution models of such laminate structures have been analyzed in [KH11].
Our main result, namely that the single-slip condition should be relaxed in
a specific manner, carries over to models where multiple slip is penalized, for
example by an off-diagonally-dominant hardening matrix.

The effect of cross hardening arises from the formation of energetically fa-
vorable, and sessile dislocation products, when two dislocations from different
slip-planes meet. These so-called Lomer-Cottrell locks have been obeserved
in experiments [FZ82] and studied in detail in atomistic simulations [RP99].
In order to continue the plastic deformation with activity in more than one
slip-plane, these locks have to either be broken or new dislocation loops have
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to be formed, thus leading to an increased dissipation in directions involving
more than one slip-system in Fpl.

In line with the above discussion, we will thus assume that the crystal
structure admits a set of slip-plane normals M = {mj}Nj=1, each with a

given set of Burgers’ vectors Bj = {bij}K(j)
i=1 , and that Fpl takes the form

Fpl(x) = Id +
N∑
j=1

K(j)∑
i=1

sij(x)bij ⊗mj , (6.1)

with the single slip condition sijskl = 0 if i �= k or j �= l for almost every
point x ∈ Ω. Note that, under this condition, the product of simple shears
assumed above simplifies immediately, such that there is only one non-zero
summand at each point, and that the plastic deformation proposed above
therefore satisfies detFpl = 1 everywhere (despite its simplified form as a
sum, not a product of simple shears).

6.2.3 Geometrically Necessary Dislocations

As noted in the introduction, a strain-gradient penalty term is often in-
cluded in models of crystal plasticity. Such a length-scale-introducing term
corresponds to a penalization of geometrically necessary dislocations in the
crystal. The basic idea is the following: while the deformation gradient F is
required to be kinematically compatible, i.e., there exists a sufficiently reg-
ular function y : Ω → R

3 such that F = ∇y, neither the plastic strain Fpl

nor the elastic strain Fel need admit this property. Consider, for example, a
cubic specimen with a slip plane aligned with one of the axes, and then shear
two parts of the crystal in opposing directions (forming a small-angle grain
boundary). For an illustration see for example [Lej10], Fig 2.2. Clearly, Fpl,
and therefore also Fel, are not gradients. The surface where the two differ-
ently sheared subdomains meet admits a density of geometrically necessary
dislocations. In [CG01] an argument is made that the correct term for the
density of geometrically necessary dislocations must be∣∣∣∣ 1

detFpl
(CurlFpl)F

T
pl

∣∣∣∣ , (6.2)

(see also [MM06] for a brief discussion of this matter, as well as a general-
ization to arbitrary dimension). Here and below, Curl denotes the row-wise

curl of a 3× 3-matrix, and |A| =
√
TrATA for a matrix A.

Considering the term in (6.2), together with the fact that our single-slip
side condition yields a very specific form of Fpl, it is easy to see that both the
volumetric prefactor as well as the multiplication with FT

pl can be disregarded.
We thus arrive at the simpler term
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|CurlFpl| .

This term does, however, have certain undesirable properties. To see this,
consider a specimen with two abutting subdomains deformed in collinear slip
(i.e., slip in different slip planes, but in the same Burgers’ vector direction).
Such a plastic strain is completely curl free, since the subdomains are rank-
one connected, and thus the geometric dislocation density tensor would vanish
due to cancellations of dislocations with opposite sign. However, it has been
shown in atomistic simulations by Devincre et. al. [DHK05, DKH07], that
these cancellations are not complete, and a density of dislocations remains on
the surface between the subdomains. We thus introduce a different measure
for the dislocation density in order to avoid such cancellations of dislocations
from different slip planes. For a discussion of this assumption in a simplified
scalar model, see [CO05, Chapter 4]. Concretely, our dislocation density is
taken to be

G(Fpl) =

N∑
j=1

K(j)∑
i=1

∣∣∣∇m⊥
j
sij

∣∣∣ , (6.3)

i.e., we take the sum of the lengths of the vectors given by the planar gradients
(gradients only in the directions perpendicular tomj) of the respective plastic
slips sij . We note that this term, as well as the curl-terms above, are in general
non-negative measures.

Regarding the physical validity of our modelling assumptions, we have
shown analytically in [AD14a] that in rectangular shear samples of small
size, the strain-gradient energy and single-slip condition, taken together, play
a dramatic role. Specifically, for a particular crystallographic configuration,
there are three qualitatively different energy-scaling regimes, which are de-
termined by the aspect ratio of the specimen—moreover, if either the curl
penalty or the single-slip condition are dropped then the intermediate scal-
ing regime vanishes. Corresponding to the high-aspect-ratio case, one conse-
quence of this is that a micron-sized sample consisting of only a few grains will
easily shear off if a slip system under stress connects free surfaces [UDFN04].
This is laid out in more detail in Section 6.5.

6.2.4 The Model

The geometrically nonlinear elasto-plastic energy, which encodes the elements
described above, is taken to be

E(u, Fpl) =

{∫
Ω Wel(Fel) dx +

∫
Ω G(Fpl) +

∫
Ω |Fpl| dx : if (SSC) holds,

+∞ : otherwise,
(6.4)
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Note that we have taken Wpl(Fpl) to be a simple L1-rate-independent dissi-
pation potential. As mentioned above, cross-hardening is taken account of in
the single-slip condition (SSC):

Fpl(x) = Id + s(x)⊗m(x) almost everywhere,

with

m(x) = mj(x) ∈ M and s(x) ∈
K(j)⋃
i=1

Span{bij(x)} ⊂ R
3.

6.3 Relaxation of the Single-Slip Condition

The goal of this section is to show that instead of the (SSC) introduced above,
one should only enforce the relaxed slip condition (RSC)

m(x) = mj(x) ∈ M and s(x) ∈ Span

K(j)⋃
i=1

{bij(x)} ⊂ R
3.

We claim that this (RSC) is the natural relaxation, preserving the exclusivity
of slip in different slip planes, but allowing the mixing of coplanar slip.

Suppose thus that we have a displacement u ∈ H1 on Ω ⊂ R
3 satisfying

some Dirichlet condition, and a C1, relaxed plastic strain Fpl of the form (6.1).
Furthermore, for each slip-plane normal, mj , we make a fixed choice of two
admissible Burgers’ vectors, b1j , b2j such that (with coefficients cij),

Fpl = Id +

N∑
j=1

sj ⊗mj and sj =

2∑
i=1

cijbij , (6.5)

thus exactly satisfying (RSC).
Then, for any such selection of Burgers’ vectors, we claim that the following

functional is a good candidate for the relaxation of the energy E:

Erel(u, Fpl) =

⎧⎨⎩
∫
Ω Wel(Fel) +

∫
Ω Glam(Fpl) +

∫
Ω |Fpl|lam : if (RSC) holds,

+∞ : otherwise,
(6.6)

where the laminated curl is given by

Glam(Fpl) =
N∑
j=1

2∑
i=1

∣∣∣∇m⊥
j
cij

∣∣∣ . (6.7)
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Note that we explicitly take the curl of the (unique, as per our assumption)
coefficients of the decomposition of the relaxed slip in its Burgers’ vector
components. Moreover, the laminated dissipation is given by

|Fpl|lam =
N∑
j=1

2∑
i=1

|cij | dx, (6.8)

again, taking the norm not of the slip, but of its decomposition.
The reason why we take (6.6) as our expression for the relaxed energy

is that a smooth, relaxed strain Fpl can be approximated by a sequence of
laminated single-slip strains (Fn

pl)
∞
n=1 in which the slip alternates between the

two chosen Burgers’ vectors in each slip patch, and such that∫
Ω

G(Fn
pl)→

∫
Ω

Glam(Fpl), (6.9)

and ∫
Ω

∣∣Fn
pl

∣∣→ ∫
Ω

|Fpl|lam , (6.10)

as n→∞.
Our main theorem is then

Theorem 1. Suppose that Wel : M
3×3 �→ [0,∞) is continuous and satisfies

a p-growth condition

−c1 + c2|F |p ≤Wel(F ) ≤ C1 + C2|F |p (6.11)

for 1 < p <∞. Suppose furthermore that we have a Lipschitz domain Ω ⊂ R
3

and that we have (u, Fpl) on Ω, such that u ∈ W 1,p satisfies a Dirichlet
condition on a Lipschitz subset of ∂Ω, Fpl satisfies the relaxed-slip condition
(RSC) with the j-th slip normal active only on Ωj ⊂ Ω, and the relaxed
energy (6.6) is finite. Assume that the sets {Ωj}Nj=1 where Fpl = Id+ s⊗mj

satisfy the regularity condition H2(∂Ωj \ FΩj) = 0.
Then, for each ε > 0, there exists a pair of test functions (uε, Fpl,ε) satis-

fying the same Dirichlet condition and the single-slip condition (SSC), such
that uε ∈W 1,p, Fpl,ε ∈ L∞ and

E(uε, Fpl,ε) ≤ Erel(u, Fpl) + ε. (6.12)

This theorem provides an upper bound for the relaxation of the original
functional at points with a certain regularity. The question of whether it is
in fact the relaxation is open at present, in particular, it is not clear that the
Erel is necessarily lower-semicontinuous. For a partial result see Section 6.4.
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A major technical obstacle to proving this result is to show that a non-
smooth Fpl satisfying the relaxed slip condition can be approximated by a
smooth Fpl,ε without violating (RSC) or increasing the curl. This, however,
can be done by a double-mollification-and-cut-off procedure, provided the
slip patches Ωj satisfy the mild (but rather irksome) regularity condition
H2(∂Ωj \ FΩj) = 0—i.e., the reduced boundary of each Ωj should be H2-
almost-all of ∂Ωj , which very roughly means that Ωj must have no cuts.

The necessary single-slip lamination of an Fpl which satisfies (RSC) is
done as follows. We fill each Ωj with a stack of bi-layers, each parallel to m⊥

j

and having thickness 1
2n , n ∈ N, and then define on each successive bi-layer

an alternating (in the mj-direction), single-slip plastic strain, Fn
pl, by

Fn
pl =

{
2c1jb1j ⊗mj : top slice,
2c2jb2j ⊗mj : bottom slice,

(6.13)

where the sij (coming from (6.1)) are evaluated on the centre-plane of the bi-
layer in (6.13), all slices have the same thickness, and the (n+1)-th laminate
is obtained from the n-th by bisecting each of the bi-layers along a slip plane.

The laminated curl and hardening which result from this construction has
the following property which is useful for obtaining the energy scalings in our
proposed shear experiment (Section 6.5).

Proposition 1. If we have a fixed mj ∈ M, then for a finite-energy Fpl =

Id+ s⊗mj with s =
∑2

i=1 cijbij, we have

∫
Ω

N∑
j=1

∣∣∣∇m⊥
j
s
∣∣∣ ≤ (|b2j .b1j |+ |b2j.b⊥1j |)

∫
Ω

Glam(Fpl) ≤
√
2

∫
Ω

Glam(Fpl)

(6.14)
and ∫

Ω

Glam(Fpl) ≤
√
2

(
1 + |b1j .b2j|
|b⊥1j .b2j |

)∫
Ω

N∑
j=1

∣∣∣∇m⊥
j
s
∣∣∣ (6.15)

and an analogous statement holds for the laminated dissipation.

Furthermore, a convexity property regarding the laminated curl and dissi-
pation holds [AD14b, Proposition 2.3]. This ensures that the laminated curl
is lower-semicontinuous with respect to weak convergence of the gradient of
s, despite its somewhat cumbersome definition involving the gradients of the
decomposition in Burgers’ vectors.

A final ingredient in the proof of Theorem 1 is to note that, in order to
accommodate the laminated plastic strain without excessive expenditure of
elastic energy, a small zig-zag perturbation must be added to the displace-
ment of the relaxed test function, u. This perturbation, denoted by ûn, is
constructed as follows. On a given bi-layer of the Fn

pl-laminate, we set ûn = 0
on the bottom boundary, then on the bij-slice we set
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Fig. 6.2 Laminate construction of the plastic displacement. The figure illustrate
the decomposition of a deformation with gradient in the direction [011]⊗(100), i.e.,
s = [011] and m = (100), into alternating components in Burgers’ vector directions
[010] ⊗ (100) and [001] ⊗ (100). The curl of such a construction vanishes if s is
constant.

∂ûn

∂tj
= s− 2cijbij , (6.16)

where the right-hand side of (6.16) is evaluated on the centre-plane of the
bi-layer. By construction, this implies that ûn = 0 on top of the bi-layer,
and so this procedure can be carried out consistently on the whole slip patch
Ωj . Also, by the differentiability of Fpl, both ûn and ∇m⊥

j
ûn are O

(
1
2n

)
,

uniformly on Ωj . Thus, by defining un = u+ ûn and F̂n
pl = Fn

pl − Fpl, we get

∇ûn = F̂n
pl +O

(
1

2n

)
, (6.17)

and then an easy calculation shows that the elastic energy of (un, F
n
pl) con-

verges to that of (u, Fpl) as n→∞: in other words, the lamination commutes
sufficiently well with the multiplicative decomposition of the strain.

Strictly speaking, the above perturbation applies to u away from ∂Ωj .
However, since we only need to assume that the support of our relaxed plastic
strain restricted to any Ωj is Lipschitz and compactly included in Ωj , a
standard argument can be made to taper the displacement perturbation down
to zero near each ∂Ωj with negligible cost in elastic energy. An illustration
of the laminate construction is given in Figure 6.2.
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6.4 Some Remarks about Existence of Minimizers

While a complete existence theory regarding the relaxed energy has not yet
been obtained, the following result is very promising, since it demonstrates
the lower semicontinuity of the plastic energy along minimizing sequences.

Theorem 2. In a domain Ω ⊂ Rn, for n = 2 or n = 3, consider F j
pl ⇀ Fpl in

Lq, q ≥ 1, as j →∞, such that F j
pl satisfies (RSC) and that

∫
Ω
Glam(F j

pl) <
∞. Assume furthermore that there are either four non-degenerate slip-plane
normals, in the sense that any set of three is a basis (as in fcc crystals, for
example), or that all slip plane normals are linearly independent. Then Fpl

also satisfies (RSC).

This result is proved by contradiction, with the aid of a very useful lemma
which encodes the relaxed slip condition, due to Conti & Ortiz (Lemma
4.3,[CO05]). The lemma basically allows us to show that arbitrarily fine mix-
tures of slip patches are inconsistent with finite curl. In some sense the proof
is reminiscent of that of a div-curl-lemma.

Thus, if the limit Fpl does not satisfy (RSC), then ‘phase-mixing’ occurs on
a set of positive measure, S: assume the slip normals m1 and m2 are active
on S. The set S can be covered by small parallelepipeds whose edges are
aligned with m1, m2 and m1 ×m2. Then, since Fn

pl satisfies (RSC), one can
show that Lemma 4.3 of Conti & Ortiz, together with the Poincaré inequality,
implies that the modified curl is large if the parallelepipeds are small and n
is large enough. Finally, letting the size of the parallelepipeds tend to zero,
while n→∞, we see that the curl becomes infinite, which is a contradiction.

6.5 Energy Estimates for a Shear Experiment

In this section we address the following question: can one devise an experi-
ment to determine whether the single-slip condition (introduced above), taken
together with a surface energy which penalises geometrically necessary dislo-
cations, is a relevant constraint which needs to be factored into macroscopic
models of crystal plasticity? The model considered will, for analytical sim-
plicity, be a geometrically linear version of the energy E introduced earlier.

Kinematically, we restrict ourselves to the case of a cubic crystal structure
with 〈011〉 {100} slip systems. This means that plastic deformation occurs
only on planes with normal parallel to one of the three cube axes, and in the
direction of one of two Burgers’ vectors lying diagonally in these planes. The
reference configuration is a cuboid, given by ΩL = (0, 1)×(0, L)×(0, 1) ⊂ R

3,
and we consider the geometrically linear problem of minimizing the energy

EL(y, Fpl) =

∫
ΩL

|(F − Fpl)sym|2 dx+ σ

∫
ΩL

Glam(Fpl) + τ

∫
ΩL

|Fpl|lam dx,

(6.18)
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L

Burgers’ Vectors

Slip planes

Fig. 6.3 Geometry of the sample and arrangement of slip systems. There are
three slip planes corresponding to the faces of the 45 degree rotated cube, and two
Burgers’ vectors in each slip plane (on the edges of the rotated cube).

among vector-valued displacements y : ΩL → R3 and matrix-valued plastic
strains Fpl : ΩL → R3×3, for non-negative coefficients σ and τ , such that
F = ∇y. Here, the subscript ‘sym’ denotes taking the symmetric part of the
matrix in parenthesis. The first term in (6.18) is the linearised elastic energy
of the specimen, and the second and third term are as in the geometrically
nonlinear E: the third term will mostly be neglected by taking τ = 0.

The setup we describe here is the same as in [AD14a]. For convenience, we
repeat the main points in this review. The admissible displacements for the
minimisation problem are all functions y(x) = x+ u(x) such that u(·, 0, ·) =
(0, 0, 0), u(·, L, ·) = γ(1, 0, 0) for some parameter γ ≥ 0, and such that (y, Fpl)
has finite energy for some Fpl. This results in a clamped specimen undergoing
a shear of magnitude γ with free boundary conditions on the sides (since other
conditions here would not be realizable in an experiment). The plastic strain
Fpl is not constrained by any boundary conditions, however its row-wise curl
must be a finite measure.

The single slip condition is as follow. For β = Fpl − Id, we have

β(x) ∈
{
s(x)

⎛⎝ 1/
√
2

−1/
√
2

1

⎞⎠⊗
⎛⎝1
1
0

⎞⎠ , s(x)

⎛⎝ 1/
√
2

−1/
√
2

−1

⎞⎠⊗
⎛⎝1
1
0

⎞⎠ , (6.19)

s(x)

⎛⎝ 1/
√
2

1/
√
2

1

⎞⎠⊗
⎛⎝ 1
−1
0

⎞⎠ , s(x)

⎛⎝ 1/
√
2

1/
√
2

−1

⎞⎠⊗
⎛⎝ 1
−1
0

⎞⎠ ,

s(x)

⎛⎝1
1
0

⎞⎠⊗
⎛⎝0
0
1

⎞⎠ , s(x)

⎛⎝ 1
−1
0

⎞⎠⊗
⎛⎝0
0
1

⎞⎠},
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a.e. in ΩL for some s : ΩL → R. Materials with B2 (caesium-chloride) struc-
ture, such as the intermetallic compounds Yttrium-Zinc [CBW+10] or Nickel-
Aluminium, indeed exhibit such a slip-system structure. The arrangement of
slip systems and the geometry of the specimen are illustrated in Figure 6.3.

Given these assumptions, it is then possible to prove the following state-
ment.

Theorem 3. Let ΩL = (0, 1) × (0, L) × (0, 1), and consider EL(u, Fpl) =∫
ΩL
||(∇u − β)sym||2 + σ

∫
ΩL
Glam(Fpl), i.e., (6.18) with τ = 0, subject to the

boundary conditions u(·, 0, ·) = 0, u(·, L, ·) = (γ, 0, 0). Then

inf EL = 0 : L ≥ 2,
cLσγ2

σ+
√

σ2+2cLγ2
≤ inf EL ≤ min

{
γ2

2L , 2
√
2γσ

}
: 1 ≤ L < 2,

γ2

2L (1− L) ≤ inf EL ≤ min
{

γ2

2L ,
γ2

2L (1− L) + cLσγ
}
: L < 1,

if σ > 0 and the single slip side condition (6.19) is enforced, and

inf EL = 0 : L ≥ 1,

inf EL = γ2

2L (1− L) : L < 1,

otherwise.

As usual, the upper bounds are proved by construction of explicit test
functions, while the lower bounds require a little more analysis. In particular,
for the intermediate case when σ > 0 and (6.19) holds, we have to use a new
version of Korn’s inequality which is specially adapted to the L1 curl penalty
in order to get the required energy scaling.

These results can be described heuristically as follows. We have shown that
the inclusion of both cross-hardening and surface energy significantly affects
the energetic scaling in a very specific simple-shear experiment which is real-
isable for single crystals with B2 structure. Without either cross hardening or
surface energy, the energy infimum in our system is zero (or equal to a certain
amount of plastic work if a strain-hardening energy is included) when the as-
pect ratio of the crystal (base-square side-length/height) is below one, while
the energy increases quadratically with the imposed shear magnitude when
the aspect ratio is above one. The behaviour is qualitatively different when
multiple slip is forbidden and geometrically necessary dislocations penalised:
now the energy only vanishes for aspect ratios smaller than one half, while,
again, for aspect ratios above one, the energy grows quadratically with the
strain imposed by the boundary conditions. For intermediate aspect ratios,
a new regime of linearly growing energy arises. Thus, we conclude that the
experiment proposed here can be used to discriminate between those models
with surface energy and cross hardening, and those without, and hence to
determine whether the inclusion of these effects in macroscopic models for
single-pass plastic deformation is physically reasonable.
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6.6 Conclusions

We have shown that, in crystal plasticity, instead of the single-slip side con-
dition, one should use a relaxed condition such that mixing coplanar slip is
allowed, but slip in two or more different slip planes is still forbidden at every
point of the crystal domain. Such a relaxation should improve numerical sim-
ulations by removing the need to resolve an artificial small length scale, which
would otherwise be required to prevent mesh-dependent microstructures from
forming.

There are two main open questions relating to the relaxed model. First, in
our existence result, we assume weak convergence of the plastic strain. This
is of course perfectly fine if one introduces an Lq, q > 1-type dissipation into
the hardening. However, there are some indications that such a hardening is
not present in single crystals undergoing single slip [FCO14]. Thus, if one only
relies on a more natural L1-bound on Fpl, the limits of minimising sequences
will in general be measures, and then lower-semicontinuity results are much
more difficult to obtain.

The second open question is whether minimizers of our energy, assuming
for example Lq, q > 1 hardening, are regular enough to allow the lamination
necessary for relaxation. As indicated in Theorem 1, up until now, we have
only managed to derive an upper bound for the relaxed energy evaluated at
test functions with sufficient regularity.
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Chapter 7
Gradient Theory for Geometrically Nonlinear
Plasticity via the Homogenization of Dislocations

Stefan Müller, Lucia Scardia, and Caterina Ida Zeppieri

Abstract. This article gives a short description and a slight refinement of recent work
[MSZ15], [SZ12] on the derivation of gradient plasticity models from discrete dislo-
cations models. We focus on an array of parallel edge dislocations. This reduces the
problem to a two-dimensional setting. As in the work Garroni, Leoni & Ponsiglione
[GLP10] we show that in the regime where the number of dislocation Nε is of the or-
der log 1

ε (where ε is the ratio of the lattice spacing and the macroscopic dimensions
of the body) the contributions of the self-energy of the dislocations and their inter-
action energy balance. Upon suitable rescaling one obtains a continuum limit which
contains an elastic energy term and a term which depends on the homogenized dis-
location density. The main novelty is that our model allows for microscopic energies
which are not quadratic and reflect the invariance under rotations. A key mathemat-
ical ingredient is a rigidity estimate in the presence of dislocations which combines
the nonlinear Korn inequality of Friesecke, James & Müller [FJM02] and the linear
Bourgain & Brezis estimate [BB07] for vector fields with controlled divergence. The
main technical improvement of this article compared to [MSZ15] is the removal of
the upper bound W (F)≤Cdist2(F,SO(2)) on the stored energy function.

7.1 Introduction

Classical theories of plasticity are scale independent. Nonetheless experiments show
a notable size dependence of plastic behaviour in the micron and submicron range.
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A number of phenomenological strain gradient theories have been developed to cap-
ture this behaviour, see, e.g., Fleck & Hutchinson [FH93] or Hutchinson [Hut00] for
a discussion and further references to the literature.

Here our goal is to understand how strain gradient theories can arise from a math-
ematical limiting process if one starts with dislocation based models.

One option is to start with fully discrete dislocation models. Recent models in-
clude the model of Ariza & Ortiz [AO05], which is based on the concept of discrete
eigenstrains and harmonic interactions and employs ideas of algebraic topology. An-
other recent model is the general nonlinear model of Luckhaus & Mugnai [LM10]
which is set purely in the actual configuration and avoids the recourse to any global
reference configuration (see also Luckhaus & Wohlgemuth [LW14] for further de-
velopment of this model).

Another option is to start from a continuum model of dislocations (see the clas-
sical works by Kröner [Krö58] and Kondo [Kon64] and further developments in
the physics literature by Kleman & Toulouse [TK76, KT77], Mermin [Mer77] and
Michel [Mic80]; in the mathematics literature Davini & Parry [DP91a, DP91b] have
classified all invariants and Cermelli [Cer99] has put the idea of patching together
local deformations in the natural setting of flat torsion-free connections and uses
DeRham currents supported on the defect manifold to describe the singularities).
One then uses a cut-off on the lattice scale to avoid diverging strains. Such a cut-off
seems reasonable if one focusses on the total energy of the system since the energy
in the lattice-size core of the dislocation is by a factor of | logε| smaller than the
self-energy of the dislocation (here and in the following ε denotes the lattice size
or, more precisely, the ratio between the lattice size and the macroscopic size of the
body under consideration). This heuristic argument has been made precise, e.g., in
the case of an array for screw dislocations, see Ponsiglione [Pon07]. In the follow-
ing we will use the continuum model of dislocations with a lattice-scale cut-off as
our starting point.

To simplify the geometry and the analysis we focus on an ensemble of straight
and parallel edge dislocations. This reduces the problem to a two-dimensional do-
main Ω ⊂ R

2. So far most rigorous results have been restricted to this setting, but
in recent work of Conti, Garroni & Ortiz [CGO15] the line tension limit has been
derived in a full three-dimensional setting for linear elasticity and in the dilute limit
(see also [CGM14], [SvG14]). Thus an extension of the results below to a more
general three-dimensional setting might be possible, but is far from obvious. In the
following we will always assume that Ω ⊂ R2 is simply connected, bounded and
has a Lipschitz boundary. We will also focus solely on the stored energy and will
not discuss dissipation or dynamics. To set the stage we first recall the conventional
setting of linearized elasticity.

In this case we consider the elastic strain γ : Ω →R2×2 and the quadratic elastic
energy ∫

Ω
W (γ)dx with W (ξ ) =

1
2
Cξ ·ξ ,

where C is a symmetric linear operator from R
2×2 to itself which satisfies
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c1|symξ |2 ≤ Cξ ·ξ ≤ c2|symξ |2 ∀ξ ∈ R
2×2 with 0 < c1 ≤ c2. (7.1)

Note that the elastic energy is independent of the skew-symmetric part of γ , reflect-
ing invariance under infinitesimal rotations. If no dislocations are present then the
elastic strain γ is the gradient of the displacement field: γ = ∇u where u : Ω → R2.
This in particular implies that along any closed curve c in Ω one has

∫
c γ t ds = 0,

where t is the unit tangent vector of the curve and ds denotes the length measure. If
a dislocation with Burgers vector b is present at a point x0 ∈Ω then we have instead∫

c
γ t ds = b

for any curve which does not contain x0 and encircles x0 once (and in the positive
sense). In particular we have for sufficiently small ε∫

∂Bε(x0)
γ t ds = b. (7.2)

Local minimization of the elastic energy subject to the constraint curlγ = bδx0

gives the strain field of a single dislocation. This field diverges like |x− x0|−1 near
x0. Hence the integral

∫
Ω\Bδ (x0)

Cγ · γ dx diverges logarithmically in δ . Let ε denote
the lattice spacing. One introduces a core cut-off and looks at the regularized energy∫

Ω\Bε(x0)
W (γ)dx.

As mentioned above this is motivated by the observation that in fully discrete models
one expects the energy in a lattice size core to be a factor of log 1

ε smaller than the

energy in a region Bρ(x0)\Bε(x0) (see also Section 7.3).
We are interested in the cumulative effect of many dislocations. Assume that

there are N dislocations at positions xi with Burgers vectors bi. We assume that the
dislocations are well separated, i.e., there exists ρε & ε such that

|xi− x j| ≥ 2ρε if i �= j.

We consider the total dislocation density

μ =
N

∑
i=1

biδxi

and set

Ωε =Ω \
N⋃

i=1

Bε(xi).

Then we seek to minimize∫
Ωε

W (γ)dx subject to
∫
∂Bε (xi)

γ t ds = bi ∀i = 1, . . . ,N. (7.3)
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In order to make connection with the continuum theory of strain gradient plas-
ticity we want to take a limit as ε → 0 and N = Nε → ∞. From the point of view
of physics it is more natural to fix the lattice spacing and to consider domains 1

ε Ω
of increasing size. Upon elasticity scaling both points of view are equivalent and
fixing Ω rather than the lattice spacing is more convenient for the analysis. Thus
ε really is a dimensionless parameter of the order of lattice spacing divided by the
macroscopic dimension of the body. For brevity we will nonetheless often refer to ε
as the lattice spacing.

The main result of [GLP10] is the following (see Section 7.4 for a more precise
statement in the context of the geometrically nonlinear theory). Assume that

Nε ∼ log
1
ε

and that we are given dislocations at (well separated) points xεi (i = 1, . . . ,Nε ) with
Burgers vectors εξ ε

i , where ξ ε
i are of order one. Define the (R2-valued) measure

με :=
Nε

∑
i=1

ε ξ ε
i δxεi

and set Ωε =Ω \⋃i Bε(xεi ). Then the functionals

1
ε2| logε|2

∫
Ωε

1
2
Cγ · γ dx subject to

∫
∂Bε (xi)

γ t ds = εξ ε
i ∀i = 1, . . . ,Nε

(7.4)
Γ -converge as ε → 0 to the functional∫

Ω

1
2
Cγ · γ dx+

∫
Ω
ϕ
(

dμ
d|μ |

)
d|μ | subject to curlγ = μ . (7.5)

Here ϕ :R2→R is a function which can be determined explicitly by solving an aux-
iliary problem for a single dislocation in R2 and dμ

d|μ| denotes the Radon-Nikodym

derivative of the R
2-valued Radon measure μ (see Section 7.4 for a more detailed

description).
Moreover for any family (γε ,με) which satisfies the constraint in (7.4) and for

which the energy in (7.4) is uniformly bounded there exists subsequence ε j → 0
such that 1

ε j | logε j |γε j converges weakly to γ in L2 (after subtraction of constant

skew-symmetric matrices) and 1
ε j | logε j |με j converges weak* in the sense of Radon

measures to μ . Together with the Γ -convergence this implies that a subsequence of
minimizers of the problem (7.4) converges to a minimizer of the problem (7.5). Of
course the minimization of the limit functional in μ and γ yields the trivial solution
μ = 0 and γ = 0, but since Γ -convergence is a very robust notion it is not difficult
to show that convergence of (a subsequence of) minimizers still holds if one adds a
Dirichlet type boundary condition of the form
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γε t = ε| logε|g on ∂Ω where t denotes the unit tangent of ∂Ω .

Note that the relation between γε and με implies the compatibility conditions∫
∂Ω

g =
1

ε| logε|με (Ω) =
1

| logε|∑i

ξi,

where ∂Ω is positively oriented. Then in the limit problem one obtains the boundary
condition γt = g on ∂Ω and this in general leads to nontrivial minimizers.

The first term in the limit functional (7.5) is the usual elastic energy of the con-
tinuum theory and the second term reflects the strain gradient energy. In this setting
the strain gradient energy depends only on the dislocation density μ = curlγ and
is one-homogeneous in μ . The first term arises from the interaction energy of the
dislocations while the second term arises from the self-energy of the dislocations.
The scaling Nε ∼ log 1

ε is distinguished because only in this scaling both terms are
of equal strength. If Nε � | logε| then the self-energy of the dislocations domi-
nates, while for Nε & | logε| the interaction energy dominates, see Section 7.3 for
a heuristic discussion of the scaling regimes and [GLP10], Theorems 12, 15 and 18
for precise statements.

To go beyond the linearized theory and in particular to incorporate invariance
under rigid motions (and not just infinitesimal rigid motions) one has to replace the
quadratic elastic energy density by a frame indifferent energy density W (β ) where β
now denotes the local elastic deformation gradient (i.e., γ = β − Id in the linearized
theory). Natural assumptions on W are

W (RF) =W (F) ∀R ∈ SO(2), F ∈ R
2×2 (frame indifference), (7.6)

W (F)≥W (Id) = 0 ∀F ∈ R
2×2 (normalization) (7.7)

W is C2 in a neighbourhood of SO(2) (local smoothness), (7.8)

∃c > 0 such that W (F)≥ cdist2(F,SO(2)) ∀F ∈ R
2×2. (7.9)

Assumption (7.9) is a natural counterpart of (7.1). Indeed if we assume (7.8) and set
C := D2W (Id), then (7.1) holds if and only if (7.9) holds for all F close to SO(2).
Requiring the inequality W (F)≥ dist2(F,SO(2)) for all F amounts to the additional
assumptions that W (F) > 0 if F /∈ SO(2) and that W (F) grows quadratically as
F → ∞.

Since ∫
∂Bε (x0)

Id t ds = 0

the constraint (7.2) corresponds to∫
∂Bε (x0)

β t ds = b.



180 S. Müller, L. Scardia, and C.I. Zeppieri

In [MSZ15] it is shown that in the same scaling regime as above and under an
additional technical growth condition one obtains the same limiting problem (7.5),
after the elimination of a global constant rotation. We give a precise statement and
a slightly improved result in Section 7.4.

In the nonlinear setting it is actually more natural to use a map from the actual (or
‘deformed’ or ‘spatial’) configuration back to a (locally defined) reference lattice to
define the Burgers vector. Thus let Ω sp ⊂ R

2 now denote the actual configuration
and let G : Ω sp→R2×2 denote a field of linear maps such that G(x) infinitesimally
maps the actual configuration back to a (local) reference lattice (in a setting without
dislocations and a global reference configuration G(x) is just the inverse of the de-
formation gradient). If c is a curve in Ω sp which encircles a single dislocation at x0

then the Burgers vector b is defined as∫
∂Bε (x0)

Gt ds =−b (7.10)

(the change of sign is natural if one notes that G = β−1 and considers the lineariza-
tion β ≈ Id+γ which implies G≈ Id−γ). If W (A) denotes as before the energy (per
unit reference volume) needed to perform an affine deformation A of the reference
lattice then the elastic energy associated to the field G is given by∫

Ω sp
W (G−1) detGdx.

Thus if we define
W̃ (G) =W (G−1) detG

then we are back to the previous formulation with W replaced by W̃ , β replaced
by G, Ω replaced by Ω sp and b replaced by −b. Note that assumption (7.6) is
equivalent to

W̃ (GR) = W̃ (G) ∀R ∈ SO(2), ∀G ∈ R
2×2. (7.11)

The assumptions (7.7) and (7.8) hold for W̃ if and only if they hold for W . The
inequality W̃ (G) ≥ cdist2(G,SO(2)) holds for G close to SO(2) if and only if it
holds for W and G close to SO(2). Moreover it is easy to give reasonable conditions
on W such that this inequality holds for all G.

To put the results discussed so far in perspective let us briefly mention some
related work in scaling limits of nonlinear elasticity and elastoplasticity. First, im-
mediately after the appearance of the nonlinear counterpart of Korn’s inequality
(see (7.14) below) Dal Maso, Negri & Percivale [DMNP02] realized that it could
be used to show rigorously that nonlinear elasticity converges to linearized elas-
ticity in the low-energy limit. Our scaling also corresponds to a low-energy limit,
so it should not be surprising that the limit problem is essentially linear (up to the
freedom of a single rotation). Very recently Mielke & Stefanelli [MS13] solved the
much more difficult problem to rigorously show that the evolutionary problem of fi-
nite strain elastoplasticity converges to linearized plasticity. A key idea is to extend
variational concepts such as Γ -convergence to evolution equations, see Mielke’s
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survey [Mie15] in this book. An existence theory for a single time step in elasto-
plasticity theory with multiplicative decomposition was developed in [MM06]. For
an existence theory for energies

∫
Ω W (β )dx with the constraint that curlβ is given

by a single dislocation loop see [MP08]. In the static setting a hierarchy of scaling
limits of a discrete dislocation model is discussed in [GPPS13] and [SPPG14] in the
context of dislocation pile-ups.

It is also interesting to compare the setting discussed above to the setting of min-
imization problems in crystal plasticity which is discussed in the articles by An-
guige & Dondl [AD15] and by Dmitrieva el al. [DRMD15] in this book (see also
[AD14b, AD14a]). For this comparison consider first a single dislocation in the ge-
ometrically linear setting. For definiteness assume that the dislocation is at 0 with
Burgers vector εe1. In the geometrically linear setting we have been looking for
γ : Ω \Bε(0)→ R2×2 with∫

∂Bε (0)
γ t ds = b = εe1, curlγ = 0 in Ω \Bε(0).

No such γ can be the gradient ∇u of a C1 map u : Ω \Bε(0)→ R2. There exist,
however, maps u which are smooth away from a half-line Σ , satisfy∫

∂Br(0)\Σ
∇ut ds = εe1 for all r ≥ ε with Br(0)⊂Ω

and jump across Σ . Indeed one can take, e.g.,

u(x) = εe1
1

2π
θ , where x = r(cosθ ,sinθ ), with r > 0, 0≤ θ < 2π.

Then u jumps across the half-line Σ := {(x1,0) : x1 > 0} and is smooth other-
wise. The distributional derivative Du of u consists of a smooth part (written as
∇uL 2, where L 2 denotes the two-dimensional Lebesgue measure) and a singular
part which is given by a one-dimensional measure concentrated on the half-line Σ :

Du = ∇u− εe1⊗ e2H
1∠Σ .

Note that e2 is the normal to Σ . The space of L1 functions for which the distributional
derivative is the sum of an L1 function and a Radon measure concentrated on a
codimension 1 set is known as SBV (special functions of bounded variation).

One usually interprets the regular part as the elastic strain γ and the singular part
as the plastic strain

γp :=−εe1⊗ e2H
1∠Σ .

The plastic strain then corresponds to a tangential slip with Burgers vector εe1 along
the slip line Σ with normal e2. Note that curlDu = 0 and

curlγp =−curl∇u =−εe1δx0

in the sense of distributions in Ω .
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One is thus led to consider the minimization of

1
2

∫
Ω\Bε(0)

C(Du− γp) · (Du− γp)dx

over SBV functions u and plastic strains γp. If one admits all plastic strains γp which
satisfy

curlγp = 0 in Ω \Bε(0),
∫
∂Bε (0)

γp t ds =−εe1

then one recovers the minimization problem (7.3) discussed above (in the special
case of a single dislocation). In crystal plasticity one considers only those fields γp

which correspond to a superposition of slips across a given set of slip planes and
corresponding Burgers vectors, see, e.g., [AD15] or [CGO15]. Similarly one can
consider multiple dislocations and their corresponding slip lines.

In some simple cases one can see easily that both approaches yield the same
minimal energy. Consider, e.g., as above the geometrically linear two dimensional
setting and let γ : Ωε → R2×2 be the elastic strain satisfying∫

∂Bε(xi)
γ t ds = bi, curlγ = 0 in Ωε ,

where xi are the dislocation locations. Assume that the admissible slip lines are
parallel to the two coordinate directions and that the Burgers vectors are of the form

bi = εze1 or bi = εze2 with z ∈ Z.

Then for a dislocation at xi there exists a line segment Σi parallel to bi (and hence to
one of the coordinate axes) whose endpoints are xi and a point on ∂Ω as well as a
map v(i) which is smooth outside Σi and jumps by −bi across Σi. For bi = εze1 such
a map was constructed above; for bi = εze2 one can rotate the previous construction
by 90 degrees. Set v = ∑i v(i). As above let ∇v denote the density of the absolutely
continuous part of Dv and let γp denote the singular part of Dv. Then by construction
γp is of the form required in crystal plasticity. Moreover curl(γ−∇u) = 0 in Ωε and∫

∂Bε(xi)
(γ −∇v)tds = 0

for all i. Thus there exists a function w ∈ SBV such that Dw = γ−∇v in Ωε . Note
that the singular part of Dw vanishes (and w is hence in the Sobolev space W 1,1).
Set u = v+w. Then

Du− γp = Dv− γp+Dw = ∇v+(γ−∇v) = γ.

Thus in this example every field γ : Ωε → R2×2 which satifies the circulation con-
straints can be written in the form Du− γp where u is in SBV and γp corresponds to
a superposition of single slips across the allowed slip lines.



7 Gradient Theory for Geometrically Nonlinear Plasticity 183

Taking a slightly different point of view we can view the minimization problem
in (7.3) (or the minimization of

∫
Ω sp W̃ (G)dx subject to (7.10)) as a global min-

imization problem which involves only the elastic strain, but no global reference
configuration. The maps G capture only the local deviation of the actual configura-
tion from a perfect lattice and the strains γ are the linearized counterparts of G−1.
A ‘plastic strain’ is not required in this approach. By contrast, in crystal plasticity
(and other versions of elastoplasticity which keep track of both the elastic and the
plastic strain) one starts from a global defectless reference configuration and the
plastic strain keeps track of global reordering of the lattice, while the elastic strain
measures the local distorsion of the lattice. If one has an atomistic picture in mind
the elastic strain only cares about the actual position of the atoms while the plas-
tic strain keeps track of where they have come from. For a recent discussion in the
context of the multiplicative decomposition in elastic and plastic strain see [RC14].

7.2 Key Mathematical Challenges

In the linearized setting one key difficulty is that the energy density Cγ · γ depends
only on the symmetric part of γ . Hence control of the energy alone is not sufficient
to get control on γ . If μ = curlγ = 0 (and if Ω is simply connected) then γ = ∇u.
Thus Korn’s inequality allows one to estimate the L2 norm of the skew-symmetric
part of ∇u in terms of the L2 norm of the symmetric part (up to an irrelevant skew-
symmetric constant). If μ �= 0 one can use the Hodge decomposition γ = ∇u+∇⊥v
with Δv = μ . Hence by standard elliptic regularity one obtains that if μ is in Lp

(with 1 < p < 2) then ∇⊥v is in Lp∗ with 1
p∗ =

1
p−

1
2 with a corresponding estimate.

Unfortunately we only have control of the total mass of the measure μ . This
corresponds to the borderline case p = 1 and in this case standard elliptic regularity
does not provide an estimate for ∇⊥v in L2 but only in the weaker Marcinkiewicz
space L2,∞. This difficulty is overcome by a striking estimate of Bourgain & Brezis
[BB07] which states that for f ∈ L1(Ω ;R2) with div f ∈ H−2(Ω)

‖ f‖H−1 ≤C(‖ f‖L1 + ‖div f‖H−2). (7.12)

This estimate extends to the case that f is a Radon measure with bounded mass and
applying this estimate to f = (curlγ)⊥ and using that div f equals a linear combina-
tion of second derivatives of symγ we get f ∈ H−1 and

‖skwγ‖L2 ≤C(‖symγ‖L2 + ‖curlγ‖M ) if
∫
Ω

skwγ = 0, (7.13)

see [GLP10], Theorem 11.
In the geometrically nonlinear setting the natural counterpart of Korn’s inequality

is the rigidity estimate of Friesecke et al. [FJM02]. If U ⊂ R
n is a bounded domain

with Lipschitz boundary then there exists a constant C(U) such that for every u ∈
W 1,2(U ;Rn) there exists a rotation R ∈ SO(n) with

‖∇u−R‖L2 ≤C(U) ‖dist(∇u,SO(n))‖L2 . (7.14)
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In our setting we do not have β = ∇u, but we only have curlβ = μ where μ is a
Radon measure with finite mass. A key idea in [MSZ15] is to show that one can
combine (7.12) and (7.14) to establish the following result.

Theorem 1 (Rigidity estimate with dislocations, see [MSZ15], Theorem 3.3). Let
Ω ⊂R2 be a bounded and simply connected domain with Lipschitz boundary. Then
there exists a constant C(Ω) with the following property. For every β ∈ L2(Ω ;R2×2)
with curlβ ∈M (Ω ;R2) there exists an R ∈ SO(2) such that

‖β −R‖L2 ≤C(Ω)(‖dist(β ,SO(2))‖L2 + ‖curlβ‖M ) . (7.15)

This is the key ingredient to extend the analysis of Garroni et al. [GLP10] to the
geometrically nonlinear setting. The proof of Theorem 1 proceeds in two steps.
One first shows an estimate in the weak-L2 space L2,∞ using [CDM14]. Then one
improves this estimate to an L2 estimate by a careful Taylor expansion.

A version of the estimate in the language for 1-forms and exterior derivatives and
in dimensions d ≥ 2 (with ‖curlβ‖M replaced by ‖curlβ‖Lp , p= 2d

2+d if d ≥ 3) can
be found in a recent preprint by Aumann [Aum15].

7.3 Heuristics for Scaling Regimes

7.3.1 The Core Energy of a Single Dislocation

A toy energy

Set Br = Br(x0) and assume that γ ∈ L2(Bρ \Bε ;R2×2) and

curlγ = 0 in Bρ \Bε , (7.16)∫
∂Bε

γ t ds = b. (7.17)

Here the first identity is understood in the sense of distributions. It follows from
curlγ = 0 and γ ∈ L2 that the tangential trace γ t is well defined as a distribution in
H−1/2(∂Bε) so that the second identity makes sense.

From (7.16) and (7.17) one easily obtains the lower bound∫
B2r\Br

|γ|2 dx≥ 1
2π

log2 |b|2, ∀r ∈ [ε,ρ/2] (7.18)

and it follows that ∫
Bρ\Bε

|γ|2 dx � log
(ρ
ε

)
|b|2. (7.19)

To prove (7.18) note that (7.16) and (7.17) imply that∫
∂Br′

γ t ds = b (7.20)
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for all r′ ∈ (ε,ρ). Since |γ| ≥ |γ t| it follows from Fubini’s theorem and Jensen’s
inequality that ∫

B2r\Br

|γ|2 dx≥
∫ 2r

r

∫
∂Br′
|γ t|2 ds dr′

≥
∫ 2r

r

1
2πr′

∣∣∣∣∫∂Br′
γ t ds

∣∣∣∣2 dr′ =
1

2π
log2 |b|2.

This lower bound is in fact sharp as can be seen from the choice γ = 1
2π b⊗ x⊥

|x|2 .

A lower bound in linear elasticity

The estimate (7.19) suggests the natural scaling of the core energy, but is not im-
mediately relevant since the linear elastic energy depends only on symmetric part
symγ and Jensen’s inequality does not give a lower bound for

∫
∂Br′
|symγ|2 ds. We

claim that nonetheless there exists a c > 0 such that∫
B2r\Br

|symγ|2 dx≥ c |b|2, ∀r ∈ [ε,ρ/2]. (7.21)

To see this, we follow [GLP10] and use the condition curlγ = 0 to apply Korn’s
inequality. We first note that in view of the rescaling γ̃(x) = γ(rx), b̃ = b/r it suf-
fices to prove the estimate for r = 1. We claim that Korn’s inequality holds in the
following form

curlγ = 0 in B2 \B1 =⇒
∃ A skew-symmetric ‖skwγ−A‖L2(B2\B1)

≤C‖symγ‖L2(B2\B1)
. (7.22)

To prove this set δ := ‖symγ‖L2(B2\B1)
and write B2 \B1 as the union of two open,

simply connected sets U+ und U− with Lipschitz boundaries. Then there exist u± ∈
H1(U±;R2) such that ∇u± = γ in U±. Thus by the usual Korn inequality there exist
skew-symmetric matrices A± such that

‖skwγ−A±‖L2(U±) ≤C‖symγ‖L2(U±) ≤Cδ .

Since U+∩U− has positive measure it follows that

|A+−A−| ≤Cδ .

Thus we also have ‖skwγ−A−‖L2(U+) ≤Cδ and this implies ‖γ−A−‖L2(B2\B1)
≤

Cδ as claimed.
To prove (7.21) let A be as in (7.22) and note that

∫
∂Br′

At ds = 0 and thus

b =

∫ 2

1

∫
∂Br′

γ t ds dr′ =
∫ 2

1

∫
∂Br′

(γ−A)t ds dr′ =
∫

B2\B1

(γ−A)
x⊥

|x| dx.
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Hence
|b| ≤C‖γ−A‖L2(B2\B1)

≤C‖symγ‖L2(B2\B1)

which is the assertion.

Geometrically nonlinear setting

As observed in Scardia & Zeppieri [SZ12] one can extend the lower bound to the
nonlinear setting if one replaces the Korn inequality by the rigidity estimate in
[FJM02]. More precisely if β ∈ L2(Bρ \Bε ,R

2×2) and

curlβ = 0 in Bρ \Bε ,
∫
∂Bε

β t ds = b (7.23)

then ∫
B2r\Br

dist2(β ,SO(2))dx≥ c |b|2 ∀r ∈ [ε,ρ/2] (7.24)

and thus ∫
Bρ\Bε

dist2(β ,SO(2))dx � log
(ρ
ε

)
|b|2. (7.25)

Note that in view of the rescaling β̃ (x) = β (rx) and b̃ = b
r it suffices to show the

result for r = 1. To do so we argue exactly as in the case of linearized elasticity. First
we note that

curlβ = 0 in B2 \B1 =⇒
∃ R ∈ SO(2) ‖β −R‖L2(B2\B1)

≤C‖dist(β ,SO(2))‖L2(B2\B1)
. (7.26)

This is deduced from (7.14) in the same way (7.22) was deduced from Korn’s in-
equality. Now

b =

∫ 2

1

∫
∂Br′

β t ds dr′ =
∫ 2

1

∫
∂Br′

(β −R)t ds dr′ =
∫

B2\B1

(β −R)
x⊥

|x| dx.

Thus
|b| ≤C‖β −R‖L2(B2\B1)

≤C‖dist(β ,SO(2))‖L2(B2\B1)

which is the assertion.

7.3.2 The Core Energy of Many Dislocations

We now consider Nε dislocations at points xεi ∈Ω and we assume that these points
are well separated, i.e., there exists s ∈ (0,1) such that

|xεi − xεj | ≥ 2εs if i �= j and dist(xεi ,∂Ω) ≥ εs.

We assume that the Burgers vectors are of the order of the lattices spacing, i.e.,
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bεi = εξ ε
i ,

where ξ ε
i belong to a given lattice of order 1. We assume that

curlγ = 0 in Ωε :=Ω \⋃Nε
i=1 Bε(xεi )

and ∫
∂Bε (xεi )

γ t ds = bεi = εξ ε
i ∀i = 1, . . . ,Nε .

Then ∫
Ωε
|symγ|2 dx≥

Nε

∑
i=1

∫
Bεs (xεi )\Bε(xεi )

|symγ|2 dx � Nε sε2 log

(
1
ε

)
.

A similar lower bound holds in the geometrically nonlinear setting where symγ is
replaced by dist(β ,SO(2)). Thus the total core energy of the dislocations scales like

Ecore ∼ Nε ε2 | logε|.

7.3.3 The Interaction Energy

Here we want to understand the behaviour of γ (or β , in the geometrically nonlinear
setting) away from the immediate neighbourhood of the dislocations. In this region
γ is not dominated by the behaviour of the nearest dislocation but rather by the
cumulative effect of all dislocations. At this point we are only interested in a rough
estimate of orders of magnitude. We thus assume that Ω has area of order 1 and
contains Nε & 1 dislocations. We assume that the dislocations are roughly equally
spaced, i.e., the typical distance between two neighbouring dislocations is

lε ∼
1√
Nε

.

We also assume that each dislocation has a Burgers vector of order ε . The strain
field of a single dislocation at xεi is of order ε

|x−xεi |
. Now fix a point x ∈ Ω and

let r ≥ lε . Then the annulus B2r(x) \ Br(x) contains approximately r2/l2
ε ∼ Nε r2

dislocations. The strain field of a single dislocation in this annulus generates a strain
field of order ε

r at x. If we ignore possible cancellations the total strain field of
the dislocations in the annulus is given by εNε r. Applying this with r = 2klε for
k = 0, . . . ,Kε where Kε ∼ log2 l−1

ε and summing over k we see that the total field of
all dislocations outside Blε (x) is of order εNε . The disc Blε (x) contains only finitely
many dislocations. Let xεi be the position of the dislocation closest to x. Its strain
field at x is of order ε

|x−xεi |
. Thus we have two cases
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• If |x− xεi | ≥ 1
Nε
∼ l2

ε then the strain field of the dislocations outside Blε (x) domi-
nates and we have the bound

|γ(x)|� εNε .

• If |x−xεi |< 1
Nε
∼ l2

ε then the strain field of the single dislocation at xεi dominates
γ(x) and we have

|γ(x)|� ε
1

|x− xεi |
≥ εNε .

Thus we get ∫
Ω

l2ε

|γ|2 dx � ε2N2
ε .

If we believe that the cancellations between the strain fields of different dislocations
do not change the order of magnitude we expect that the interaction energy is of
order

Einter ∼ ε2N2
ε .

Thus we see that the core energy (concentrated near the dislocations, i.e., in⋃
i Bl2

ε
(xεi )) and the interaction energy have the same scaling if

Nε ∼ | logε|.

This is the regime we will consider below. If Nε � | logε| then the core energy
dominates, if Nε & | logε| then the interaction energy dominates.

For a slightly different view we consider the normalized dislocation measure

λε =
1

εNε
με =

1
Nε

Nε

∑
i=1

bεi
ε
δxεi

=
1

Nε

Nε

∑
i=1

ξ ε
i δxεi

where the ξ ε
i are of order 1. Then

curl
γ

εNε
= λε .

If the xεi are roughly equidistributed then λε converges (in the weak* topology) to a
uniform measure λ . Solving the equation curl γ̄ = λ we see that γ̄ is of order 1. This
again suggests that γ is of order εNε . More generally one can show that the equation
curlγ = με has a solution such that 1

εNε
γ is globally bounded in the weak-L2 space

L2,∞. By removing small regions near the dislocations one can show that outside this
regions one actually has a uniform bound in L2 rather than L2,∞.
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7.4 Main Result

7.4.1 Set-Up

Let Ω ⊂ R2 be a simply connected, bounded, Lipschitz domain representing the
horizontal cross section of an infinite cylindrical crystal. Let S be a set of admissible
normalized Burgers vectors, e.g., S = {e1,e2}. Let

S := SpanZS = {z1b1 + z2b2 : z1,z2 ∈ Z}.

For 0 < ε < 1 let ρε be such that

lim
ε→0

ρε
εs = ∞ ∀s ∈ (0,1), (7.27)

lim
ε→0
| logε|ρ2

ε = 0. (7.28)

One possible choice is ρε = | logε|−1.
We denote by M (Ω ;R2) the set of R2-valued Radon measures on Ω with finite

total mass. Given ε > 0 we define the set of admissible dislocation densities as

Xε := {μ ∈M (Ω ;R2) : μ =
M

∑
i=1

εξi δxi , M ∈ N, Bρε (xi)⊂Ω , (7.29)

|x j− xk| ≥ 2ρε for every j �= k, ξi ∈ S\ {0} for every i}. (7.30)

For μ ∈ Xε and r > 0 we define

Ωr(μ) :=Ω \
⋃

xi∈suppμ
Br(xi). (7.31)

Given μ ∈ Xε the set of admissible strains is defined as

A Sε(μ) := {β ∈ L2(Ω ;R2×2) : β = Id in Bε(suppμ)

curlβ = 0 in Ωε(μ),
∫
∂Bε (y)

β t ds = μ(y) ∀y ∈ suppμ}. (7.32)

The choice β = Id in Bε(suppμ) is somewhat arbitrary (we could also set β = 0
in Bε(suppμ)), but sufficient for our purposes. Note that for every measure μ ∈ Xε
there exists a unique finite set {x1, . . . ,xM} and unique vectors ξ1, . . .ξM such that
μ = ∑M

i=1 εξiδxi . Then the conditions in the definition of A Sε(μ) can be written
more explicitly as

β = Id in
M⋃

i=1

Bε(xi),

∫
∂Bε (xi)

β t ds = εξi ∀i = 1, . . . ,M.
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Let W : R2×2→ [0,∞] be an elastic energy density. Then we set

Eε(μ ,β ) :=
∫
Ω

W (β )dx.

Motivated by the heuristic considerations in Section 7.3 we define the rescaled en-
ergy functional as

Eε(μ ,β ) :=

{
1

ε2| logε|2 Eε(μ ,β ) if μ ∈ Xε , β ∈A Sε(μ),
+∞ otherwise in M (Ω ;R2)×L2(Ω ;R2×2).

(7.33)

The last ingredient in the set-up is a formula for the energy of a single dislocation
and its relaxation. For ξ ∈ R2 and C which satisfies (7.1) we define

ψ(ξ ) := lim
δ→0

1
| logδ |

1
2

∫
B1\Bδ

Cη0 ·η0 dx (7.34)

where η0 : R2→R2×2 is a distributional solution of{
curlη = ξ δ0 in R

2,

divCη = 0 in R2.
(7.35)

Note that two different solutions of (7.35) differ only by a smooth function and
hence give the same limit in (7.34). Moreover there exists a unique−1 homogeneous
distributional solution

η0,ξ (x) =
1
r
Γξ (θ ) (7.36)

where (r,θ ) are polar coordinates and the map ξ →Γξ is linear (see, e.g., [BBS78]).
For η0 of the form (7.36) one sees immediately that the limit δ → 0 in (7.34) exists.

In [GLP10] it is shown that ψ(ξ ) corresponds to the minimal core energy of a
dislocation, i.e.,

ψ(ξ ) = lim
ε→0

1
| logε| min

{
1
2

∫
Bρε \Bε

Cη ·η dx : η ∈A Sε,ρε (ξ )
}
, (7.37)

where

A Sε,r(ξ ) :=

{
η ∈ L2(Br \Bε ;R2) : curlη = 0 in Br \Bε ,

∫
∂Bε

η t ds = ξ
}
.

We want to approximate dislocation measures μ ∈M (Ω ;R2) which are abso-
lutely continuous with respect to the Lebesgue measure by linear combinations of
Dirac masses ∑εξiδxi where ξi ∈ S. Since there are many different ways to approx-
imate a uniform measure ξ dx it is natural to define the following relaxation of ψ .
Here we also incorporate the effect of possible constant rotations which will emerge
naturally in the proof. For ξ ∈R2 and R ∈ SO(2) define
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ϕ(R,ξ ) := inf

{
M

∑
k=1

λkψ(RTξk) :
M

∑
k=1

λkξk = ξ , M ∈ N, λk ≥ 0, ξk ∈ S

}
. (7.38)

From this definition it follows easily that ξ �→ϕ(R,ξ ) is convex and 1-homogeneous.
Note also that ψ is 2-homogeneous and in particular ψ(ξ )≥ c|ξ |2 with c > 0. From
this one deduces easily that there exists a constant M̄ (which only depends on the ra-
tio c2/c1 of the constants in (7.1)) such that the minimum in the definition of ϕ(R,ξ )
does not change if we add the constraint |ξk| ≤ M̄. This argument also shows that the
infimum in (7.38) is actually attained and we can write min instead of inf in (7.38).

7.4.2 Results

Theorem 2 (Compactness, see [MSZ15], Proposition 4.3). Assume that

∃c > 0 such that W (F)≥ cdist2(F,SO(2)) ∀F ∈R
2×2.

Assume that ε j → 0 and let (μ j,β j) ∈M (Ω ;R2)×L2(Ω ;R2×2) be such that

sup
j
E j(μ j,β j)< ∞.

Then
sup

j
(‖β j‖L2 + ‖μ j‖M )< ∞. (7.39)

Moreover there exist constant rotations R j ∈ SO(2), a measure μ ∈ H−1(Ω ;R2)∩
M (Ω ;R2) and a map β ∈ L2(Ω ;R2×2) such that (after passage to subsequences)

μ j

ε j | logε j|
∗
⇀ μ in M (Ω ;R2), (7.40)

RT
j β j− Id

ε j | logε j |
⇀ β in L2(Ω ;R2×2), (7.41)

R j → R in SO(2). (7.42)

In addition we have
curlβ = RTμ .

Definition 1 ([MSZ15], Definition 4.5). Let ε j → 0. We say that a sequence of
triplets (μ j,β j,R j) ∈ M (Ω ;R2)× L2(Ω ;R2×2)× SO(2) converges to a triplet
(μ ,β ,R) if (7.40)–(7.42) hold.

We extend Eε trivially to triplets, i.e., we set

Eε(μ ,β ,R) := Eε(μ ,β ) ∀R ∈ SO(2).

Theorem 3. Assume that W : R2×2→ [0,∞] satisfies

W (RF) =W (F) ∀R ∈ SO(2), (7.43)
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W is C2 in a neighbourhood of SO(2) and W (Id) = 0, (7.44)

∃c > 0 such that W (F)≥ cdist2(F,SO(2)) ∀F ∈ R
2×2, (7.45)

for all δ > 0 sup{W(F) : |F | ≤ δ−1, detF > δ}< ∞. (7.46)

Then the functionals Eε are Γ -convergent, with respect to the convergence in Defi-
nition 1, to a functional E on M (Ω ;R2)×L2(Ω ;R2×2)×SO(2) given by

E (μ,β ,R) :=

⎧⎪⎪⎨⎪⎪⎩
1
2

∫
Ω Cβ ·β +

∫
Ω ϕ

(
R, dμ

d|μ|

)
d|μ| if μ ∈ H−1(Ω ;R2)∩M (Ω ;R2)

and curlβ = RT μ ,

+∞ otherwise,
(7.47)

where C := D2W (Id) and where ϕ is given by (7.38) and (7.37).
More specifically the following two inequalities hold true.

Γ -liminf inequality:
If (μ ,β ,R) ∈M (Ω ;R2)×L2(Ω ;R2×2)×SO(2), if ε j → 0 and if (μ j,β j,R j) con-
verge to the triplet (μ ,β ,R) then

liminf
j→∞

Eε j(μ j,β j,R j)≥ E (μ ,β ,R).

Γ -limsup inequality:
If (μ ,β ,R) ∈M (Ω ;R2)×L2(Ω ;R2×2)×SO(2) with curlβ = RTμ and if ε j → 0
then there exist (μ j,β j,R j) which converge to the triplet (μ ,β ,R) and

limsup
j→∞

Eε j (μ j,β j,R j)≤ E (μ ,β ,R).

In [MSZ15] the assumption (7.46) was replaced by the stronger assumption

W (F)≤Cdist2(F,SO(2)),

for some C > 0. This makes it easier to handle the exceptional sets where the β j are
large, but for a usual elastic material we expect that the energy blows up for infinite
compression, i.e., if detF ↓ 0. Therefore (7.46) is more realistic. Note that we also
allow W (F) to take the value ∞. This makes it possible to incorporate a constraint
like detF > 0 in the definition of the energy.

An interesting technical question is whether in the definition of the class of
admissible measure Xε the separation condition

|x j− xk| ≥ 2ρε
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with ρε satisfying ρε/εs → ∞ as ε → 0 for all s ∈ (0,1) can be relaxed. For the
compactness result it certainly suffices to assume that ρε ≥Cεs for some s ∈ (0,1),
but whether this suffices for a Gamma-convergence result is open in the nonlinear
setting. In the case of linear elasticity, and in the diluted, core energy dominated
regime Nε � | logε|, De Luca et al. [DLGP12] relaxed the separation condition by
extending the so called ‘ball construction’ for Ginzburg-Landau functionals [San98,
San00, Jer99, SS11] to the setting of elasticity. Loosely speaking the Ginzburg-
Landau functional corresponds to the toy energy

∫
Ω |β |2 dx where β is now a vector

field (not a matrix field) and thus the Burgers vector is replaced by scalar and the
lattice S ⊂ R2 is replaced by 2πZ⊂ R. Thus for the Ginzburg-Landau functionals
Korn’s inequality is not needed.

7.5 Ideas of Proof

Proof (of Theorem 2). The compactness result follows from the lower bound (7.25)
and the new rigidity estimate (7.15). Indeed if we apply (7.25) around each of the
Nε j points x

ε j
i ∈ suppμ j we get

E j(μ j,β j)≥
c

ε2
j | logε j |2

log

(ρε j

ε j

)
ε2

j

Nε j

∑
i=1
|ξ ε j

i |2 ≥
c

| logε j |

Nε j

∑
i=1
|ξ ε j

i |2.

The ξ ε j
i belong to S\ {0} and are thus bounded from below. Hence

‖μ j‖M = ε j

Nε j

∑
i=1

|ξ ε j
i | ≤Cε j

Nε j

∑
i=1

|ξ ε j
i |2 ≤Cε j | logε j |E j(μ j ,β j).

This proves the bound for 1
ε j | logε j | μ j and hence the weak* compactness. Since |ξ ε j

i |
is bounded from below we also obtain a bound on the number Nε j of dislocations

Nε j ≤C
1
ε j
‖μ j‖M ≤C| logε j |. (7.48)

For β j we have by (7.45)∫
Ω

dist2(β j,SO(2))dx≤Cε2
j | logε j |2 E j(μ j,β j)

and the L2 bound for β j follows from (7.15). Actually one has to be a little bit
careful here since curlβ j and μ j are closely related but not identical. It can be shown,
however, that there exists β̃ j such that ‖curl β̃ j‖M = ‖μ j‖M and ‖β j− β̃ j‖L2 can be
controlled, see [MSZ15], pp. 1380–1382. In this argument one uses (7.24). ��

Proof (of Theorem 3). Γ -liminf inequality: Using the Taylor expansion
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W (β j) =W (RT
j β j)≈

1
2
C(RT

j β j− Id) · (RT
j β j− Id)

one can essentially reduce the proof to the argument in the linear theory [GLP10].
One subtlety is that the convergence (7.41) does not guarantee that RT

j β j− Id con-
verges uniformly to zero and therefore Taylor expansion cannot be used at all points.
To get the lower bound by the linear interaction energy

∫
Ω Cβ ·β dx we can use that

the measure of the set where |RT
j β j− Id| ≥ ε1/2

j goes to zero and argue as in [FJM02]
to apply Taylor expansion as if we had uniform convergence. For this argument we

can actually also remove the set
⋃Nε j

i=1 Bρε j
(x

ε j
i ) since by (7.48) and (7.28) the mea-

sure of this set goes to zero. For further details, see [MSZ15], pp. 1385–1387.
To show that the limes inferior of

∫
Ωε j\Ωρε j

W (β j)dx is bounded from below by∫
Ω ϕ

(
R, dμ

d|μ|

)
d|μ | one establishes a nonlinear counterpart of (7.37), using again

Taylor expansion with the exception of a small set, see [MSZ15], pp. 1386–1387
and [SZ12], Proposition 3.11 for the details.

Γ -limsup inequality: Here we provide more details since compared to [MSZ15]
we no longer assume an upper bound W (F) ≤ Cdist2(F,SO(2)). The proof still
follows closely the argument in [MSZ15]. The main difference is that we change the
definition of the recovery sequence in the regions BLε j (x

ε j
i )\Bε j(x

ε j
i ) to ensure that

the nonlinear energy remains controlled. Specifically we use the following results.

Lemma 1 (Existence of a core field which is compatible with the nonlinear en-
ergy). For every ξ ∈R2 there exists a −1 homogeneous smooth map γ : R2 \{0}→
R2×2 such that

curlγ = 0 in R
2 \ {0},

∫
∂Br(0)

γ t ds = ξ ∀r > 0, (7.49)

|γ(x)| ≤ 1
|x| |ξ | ∀x ∈ R

2 \ {0} (7.50)

and
det(Id+ γ)≥ 1. (7.51)

Proof (of Lemma 1). We first show that it suffices to prove the result for vectors ξ
of the form ae1 with a > 0. To see this, note that if R ∈ SO(2) and γ̂(x) = γ(Rx)R
then

curl γ̂(x) = curlγ(Rx) and
∫
∂Br

γ̂ t ds =
∫
∂Br

γ t ds.

Thus if γ has the desired properties for ξ = ae1 then γ̃(x) = RT γ̂(x) has the desired
properties for ξ = RT (ae1) because

det(Id+ γ̃(x)) = det(RT (Id+ γ(Rx))R) = det(Id+ γ(Rx))≥ 1.

Thus assume that ξ = ae1 with a > 0. We will define γ using Polar coordinates.
Let δ ∈ (0, 1

2) and let g : R→R be a smooth 2π-periodic function such that
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g = 0 in [0,π+ δ ]∪ [2π− δ ,2π ],
0≤ g ≤ 1,∫ 2π

0
g(t)dt = 1.

Set

G(t) :=
∫ t

0
g(s)ds for t ∈ [0,2π ].

With x = (r cosθ ,r sinθ ) define

γ(x) := ae1⊗
1
r2 g(θ )x⊥ = ag(θ )

1
r2

(
−x2 x1

0 0

)
.

Note that γ is well-defined and smooth in R2 \ {0} since g is 2π-periodic. We also
have |γ| ≤ a/r = |ξ |/r. Moreover for θ �= 0

γ(x) = ae1⊗ g(θ )∇θ = ae1⊗∇(G◦θ )

and hence curlγ = 0 in the region in R2 \ [0,∞)×{0}. Since γ is smooth it follows
that curlγ = 0 in R2 \ {0}. Moreover∫

∂Br

γ t ds = ae1[G(2π)−G(0)] = ae1.

The explicit form of γ gives

det(Id+ γ) = 1− a
r2 g(θ )x2.

Now g(θ ) = 0 for θ ∈ [0,π ] and hence g(θ ) = 0 if x2 > 0. Thus det(Id+γ)≥ 1. ��

Lemma 2 (Interpolation between core field and far field). Assume that C is a
linear symmetric operator on R2×2 which satisfies

c1|symξ |2 ≤ Cξ ·ξ ≤ c2|symξ |2

with c1 > 0. Then there exists a constant C̄ ≥ 1, which only depends on c1 and c2,
with the following property. Let ξ ∈R2 and as in (7.36) let η0,ξ (x) =

1
rΓξ (θ ) be the

−1 homogeneous distributional solution of

curlη0,ξ = ξδ0, divCη0,ξ = 0 in R2.

Let L≥ 1. Then there exists a smooth map ηξ : R2 \ {0}→R
2×2 such that
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curlηξ = 0 in R2 \ {0}, (7.52)∫
∂Br

ηξ t ds = ξ ∀r > 0, (7.53)

ηξ = η0,ξ in R2 \B2L(0), (7.54)

|ηξ (x)| ≤
C̄
|x| |ξ | in R

2 \BL(0), (7.55)

|ηξ (x)| ≤
1
|x| |ξ | in BL(0)\ {0}, (7.56)

det(Id+ηξ ) ≥ 1 in BL(0)\ {0}. (7.57)

Proof (of Lemma 2). Since Γξ is smooth by elliptic regularity and ξ → Γξ is linear
there exists a constant C′ (which depends only on c1 and c2) such that

|η0,ξ (x)| ≤
C′

|x| |ξ |.

Let γ be the function in Lemma 1. Then

curl(γ−η0,ξ ) = 0 in R2 \ {0},
∫
∂Br(0)

(γ−η0,ξ )t ds = 0 ∀r > 0.

Thus there exists a smooth function u : R2 \ {0}→ R
2 such that

γ−η0,ξ = ∇u.

We have |∇u| ≤ (1+C′)|ξ |/|x| and we may assume that u(Le1) = 0. Thus

|u| ≤ (1+C′)(π+ 1)|ξ | in B2L(0)\BL(0).

Let α ∈C∞
0 (R

2) be a cut-off function with suppα ⊂ B2L(0), 0 ≤ α ≤ 1, α = 1 on
BL(0), |∇α| ≤ 2/L and define

ηξ := η0,ξ +∇(αu) on R2 \ {0}.

Thus (7.52) and (7.53) follow. Moreover ηξ = γ in BL(0) and ηξ = η0,ξ in R2 \
B2L(0). This yields (7.54), (7.56) and (7.57). Moreover the bound (7.55) holds for
x /∈ B2L(0)\BL(0). To verify that (7.55) holds true also in B2L(0)\BL(0) note that

ηξ = αγ+(1−α)η0,ξ + u⊗∇α.

Now the bounds on γ , η0,ξ and u imply that for x ∈ B2L(0)\BL(0)

|ηξ (x)| ≤
(1+C′)

L
(2π+ 3)|ξ |.

Thus (7.55) holds with C̄ = (1+C′)(2π+3). ��
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Proof of Γ -limsup inequality (continued):
Step 1. We show the result first for β ∈ L∞(Ω ;R2×2) and piecewise constant
measures of the form

μ = ξ χU dx

where dx denotes the Lebesgue measure, U is a cube with U ⊂ Ω and χU is the
characteristic function of U . To simplify the notation slightly we only consider the
case R = Id.

As in [MSZ15] we first undo the effect of the minimization in the definition of ϕ
and reduce the problem to vectors ξk in the lattice S. By definition (7.38) of ϕ and
the comments following (7.38) there exist M ∈N, λk ≥ 0 and ξk ∈ S\{0} such that

ϕ(Id,ξ ) =
M

∑
k=1

λkψ(ξk), ξ =
M

∑
i=k

λkξk and |ξk| ≤ M̄,

where M̄ depends only on C= D2W (Id). We set

Λ :=
M

∑
k=1

λk, r j :=
1

2
√
Λ | logε j |

.

Since ϕ(Id,ξ ) ≤ C|ξ | and ψ(ξk) ≥ c|ξk|2 ≥ c′ > 0 we see that Λ ≤ C where C
depends only on C (or, more generally, only on the constants c1 and c2 in (7.1)).
Note also that by (7.28)

r j& ρε j .

By [GLP10], Lemma 14, there exists a sequence of admissible measures μ j ∈ Xε j

of the form

μ j =
M

∑
k=1

ε jξk μk
j , where μk

j =

M j
k

∑
i=1

δ
x j

i,k

with the following properties:

Br j(x
j
i,k)⊂U, |x j

i,k− x j
i′,k′ | ≥ 2r j if (i,k) �= (i′,k′)

and

μk
j

| logε j|
∗
⇀ λk χU dx in M (Ω ,R2) for k = 1, . . . ,M as j→ ∞, (7.58)

μ j

ε j | logε j|
∗
⇀ μ in M (Ω ,R2) as j→ ∞. (7.59)

In the following it is useful to combine the two summations in the definition of μ j

into a single sum and to rewrite μ j as μ j = ∑
Mj
i=1 ε j ξ j

i δx j
i
.

By assumption there exists a δ > 0 such that W is C2 in the set {F : dist(F,SO(2))
< 3δ}. It follows that
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W (F)≤Cdist2(F,SO(2)) if dist(F,SO(2))≤ 2δ (7.60)

with

C = max

{
1
2
‖D2W (G)‖ : dist(G,SO(2))≤ 2δ

}
. (7.61)

Let C̄ denote the constant in Lemma 2 and choose

L = max

(
C̄M̄
δ

,1

)
in Lemma 2. Then the function ηξ in Lemma 2 satifies

|ηξ | ≤ δ in R2 \BL(0) whenever |ξ | ≤ M̄.

Define

η j
i (x) := ηξ j

i

(
x− x j

i

ε j

)
α

(
x− x j

i

r j

)
, η j =

Mj

∑
i=1

η j
i ,

where α ∈ C∞
0 (R

2) with suppα ⊂ B1(0) is a standard cut-off function, i.e., 0 ≤
α ≤ 1, α = 1 in B1/2(0) and |∇α| ≤ 4. By the properties of ηξ j

i
and the change of

variables x �→ x j
i + ε jx we have∫

∂Bε j (x
j
i )
η j

i t ds = ε j

∫
∂B1(0)

ηξ j
i

t ds = ε jξ j
i .

Moreover curlη j
i vanishes outside {x j

i }∪Br j(x
j
i )\Br j/2(x

j
i ) and∫

Br j (x
j
i )\Bε j (x

j
i )

curlη j
i dx = −

∫
∂Br j/2(x

j
i )
η j

i t ds =−ε jξ j
i , (7.62)

|curlη j
i (x)| ≤

C

r2
j

ε j|ξ j
i | ≤Cε j | logε j | for x �= x j

i . (7.63)

Set
ν j := χΩε j

curlη j. (7.64)

We would like to define β j ≈ Id+η j+ε j | logε j|β , so that η j captures the behaviour
near the dislocations and β the behaviour away from the dislocations. The right
hand side is, however, not curl-free in Ωε j , indeed curl(η j + ε j | logε j|β ) = ν j +
ε j | logε j |μ . We will show below that

1
ε j| logε j|

ν j + μ ∗
⇀ 0 in L∞(Ω ;R2). (7.65)

We define
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β j :=

{
Id+η j + ε j | logε j|β + β̃ j in Ωε j

Id in
⋃

i Bε j(x
j
i ),

(7.66)

with β̃ j = ∇wj J, where J is the 90 degree anticlockwise rotation and wj is the
solution of {

Δwj = ε j | logε j|μ+ν j in Ω ,

wj ∈ H1
0 (BR(0))

(7.67)

for some ball BR(0)⊃Ω . Now curl β̃ j =−Δwj and thus

curlβ j = 0 in Ωε j

and

curl(ε j| logε j|β + β̃ j) = ε j | logε j|μ j− ε j | logε j |μ j−ν j = 0 in
⋃

i Bε j (x
j
i ).

It follows that∫
∂Bε j (x

j
i )
β j t ds =

∫
∂Bε j (x

j
i )
η j

i t ds+
∫

Bε j (x
j
i )

curl(ε j | logε j |β + β̃ j)dx = ε jξ j
i ,

thus β j ∈A Sε j (μ j).
We next show that

β j− Id
ε j | logε j |

⇀ β in L2(Ω ;R2×2). (7.68)

Since |ηξ |(x)≤C|ξ |/|x| and since the ξ j
i are uniformly bounded it follows that

‖η j‖L1 ≤CMjε jr j ≤C| logε j | ε jr j, ‖η j‖2
L2(Ωε j )≤CMjε2

j | logε j | ≤C| logε j|2 ε2
j .

Thus η jχΩε j
/(ε j|log ε j |) is bounded in L2 and converges to zero in L1. Hence

η j

ε j| logε j |
⇀ 0 in L2(Ω ;R2×2).

By elliptic regularity, from (7.65) and (7.67) we get wj/(ε j | logε j |) ⇀ 0 in W 2,p

(BR(0)) for all p < ∞. Hence by the compact Sobolev embedding W 1,p ↪→C0 (for
p > 2)

β̃ j

ε j| logε j|
→ 0 uniformly in Ω . (7.69)

Together with the weak convergence of
η jχΩε j
ε j | logε j | this implies (7.68).

Before we turn to the upper bound for Eε j(μ j,β j, Id) we first prove (7.65). By the

assumption μ ∈ L∞ and by (7.63) we know that 1
ε j | logε j |ν

j + μ is bounded in L∞. It

thus suffices to show that
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〈
1

ε j | logε j |
ν j + μ ,Φ

〉
=

1
ε j| logε j |

〈
ν j + μ j,Φ

〉
+

〈
μ− 1

ε j| logε j|
μ j,Φ

〉
→ 0

for every Lipschitz continuous function Φ . The second term converges to zero by
(7.59). To estimate the first term we use (7.62). This yields

∣∣〈ν j + μ j,Φ〉
∣∣ =

∣∣∣∣∣∑i

∫
Br j (x

j
i )\Bε j (x

j
i )

curlη j
i (x)Φ(x)dx+ ε jξ j

i Φ(x j
i )

∣∣∣∣∣
=

(7.62)

∣∣∣∣∣∑i

∫
Br j (x

j
i )\Bε j (x

j
i )

curlη j
i (x)(Φ(x)−Φ(x j

i ))dx

∣∣∣∣∣
≤

(7.63)
C∑

i

ε j |ξ j
i | r j LipΦ ≤Crj LipΦ ‖μ j‖M

and the assertion follows since r j → 0.

The upper bound

limsup
j→∞

Eε j (μ j,β j, Id)≤ E (μ ,β , Id)

can now be proved as in [MSZ15] if one uses the following observations

• In the core regions BLε j (x
j
i ) \Bε j (x

j
i ) we have det(Id+η j) ≥ 1 and |η j| ≤ C.

Since β ∈ L∞ and since β̃ j converges uniformly to zero we also have detβ j ≥ 1
2

and |β j| ≤ C in this region if j is sufficiently large. Thus by assumption (7.46)
we have W (β j)≤C and hence∫

BLε j (x
j
i )\Bε j (x

j
i )

W (β j)dx≤CL2ε2
j

which implies that

1

ε2
j | logε j |2 ∑i

∫
BLε j (x

j
i )\Bε j (x

j
i )

W (β j)dx = 0.

• In the region ΩLε j (μ j) we have |η j | ≤ δ and hence |β j− Id| ≤ 2δ if j is large
enough. Thus in this region we can use the estimate (7.60) which was assumed
in [MSZ15].

• Finally the construction above differs slightly from the one in [MSZ15] in the
region Br j(x

j
i ) \Br j/2(x

j
i ) (cut-off with a smooth function α vs. cut-off with a

characteristic function). Since |ηξ (x)| ≤ C|ξ |/|x| the total energy contribution
from these regions is bounded by | logε j |ε2

j � | logε j |2ε2
j and hence irrelevant.
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If we define Eε j(μ ,β , Id;U) and E (μ ,β , Id;U) by replacing Ω by U we also get

limsup
j→∞

Eε j(μ j,β j, Id;U)≤ E (μ ,β , Id;U).

In fact the same arguments as above show that if in addition 1
ε j | logε j |α j → 0 uni-

formly in U and curlα j = 0 in U then

limsup
j→∞

Eε j(μ j,β j +α j, Id;U)≤ E (μ ,β , Id;U). (7.70)

Step 2. Assume that β ∈ L∞ and that there exist finitely many cubes Uk with
disjoint interior such that

μ =
K

∑
k=1

μk, μk = ξk χUk dx.

Let μk, j, η
j

k and β̃k, j be the sequences corresponding to μk constructed in Step 1.
Note that all sequences depend only on μk and not on β . Then

η j
k = 0 in Ω \Uk, (7.71)

lim
j→∞

1
ε j| logε j|

sup |β̃k, j| = 0 ∀k ∈ {1, . . . ,K}, (7.72)

curl β̃k, j = 0 in Ω \Uk. (7.73)

Let

β j := Id+ ε j| logε j |β +
K

∑
k=1

(
η j

k + β̃k, j

)
.

Then β j ∈A Sε j (μ j) (here we use Step 1 as well as (7.71) and (7.73)). Since η j
k ⇀ 0

in L2 as j→ ∞ we get from (7.72)

β j− Id
ε j| logε j |

⇀ β in L2(Ω ;R2×2).

Using (7.72) and (7.70) we get

limsup
j→∞

Eε j(μ j,β j, Id;Uk)≤ E (μ ,β , Id;Uk)

for all k = 1, . . .K. Moreover by (7.71) and (7.72) and Taylor expansion

lim
j→∞

Eε j (μ j,β j, Id;Ω \
K⋃

k=1

Uk) =

∫
Ω\⋃K

k=1 Uk

1
2
Cβ ·β dx = E (μ ,β , Id;Ω \

K⋃
k=1

Uk)

since |μ |(Ω \⋃K
k=1 Uk) = 0. Thus
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limsup
j→∞

Eε j(μ j,β j, Id)≤ E (μ ,β , Id).

Step 3. The general case follows by standard approximation and diagonalization
arguments, see [MSZ15] for the details. In general one has to be careful in using
diagonalization arguments in connection with the weak or weak* topology since
these topologies are not metrizable on the whole space but only on bounded sets.
We can, however, use the bound (7.39) to ensure that we work in bounded sets of L2

and M , so that weak and weak* convergence are metrizable. ��
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Chapter 8

Microstructure in Plasticity,
a Comparison between Theory
and Experiment

Olga Dmitrieva, Dierk Raabe, Stefan Müller, and Patrick W. Dondl

Abstract. We review aspects of pattern formation in plastically deformed
single crystals, in particular as described in the investigation of a copper sin-
gle crystal shear experiment in [DDMR09]. In this experiment, the specimen
showed a band-like microstructure consisting of alternating crystal orienta-
tions. Such a formation of microstructure is often linked to a lack of con-
vexity in the free energy describing the system. The specific parameters of
the observed bands, namely the relative crystal orientation as well as the
normal direction of the band layering, are thus compared to the predictions
of the theory of kinematically compatible microstructure oscillating between
low-energy states of the non-convex energy. We conclude that this theory
is suitable to describe the experimentally observed band-like structure. Fur-
thermore, we link these findings to the models used in studies of relaxation
and evolution of microstructure.

8.1 Introduction

Plastically deformed single crystals often exhibit the formation of complex
microstructure [BHHK92, Han90, HBO10], where dislocations in the crystal
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arrange in intricate patterns. Since the creation and propagation of disloca-
tions ultimately mediates the plastic behavior of crystals, and these disloca-
tions interact through the elastic field and the local lattice distortion they
generate over many length scales, understanding the macroscopic plastic be-
havior of crystalline specimen is strongly dependent on understanding the
microstructure formation.

The seminal work by Ortiz and Repetto [OR99] introduced an incremen-
tal implicit time-stepping approach in order to study the evolution of plastic
deformation. In this approach, in each time-step, the sum of the stored elas-
tic energy and an incremental dissipation is minimized. The elastic energy
is usually assumed to be polyconvex, the dissipation in single crystals, how-
ever, is naturally non-convex: plastic deformation is easier in single-slip since
otherwise sessile atomistic products of dislocations on different slip planes—
so-called Lomer-Cottrell locks—form [RP99]. This non-convexity of the dis-
sipation potential due to latent- (or cross-)hardening is a candidate for the
description of plastic microstructure. Basically, the homogeneously deformed
state becomes energetically unfavourable, so the plastic strain oscillates be-
tween favourable energy wells in the dissipation potential, i.e., states of single
slip. This, however, can create long-range elastic effects which can only be
avoided if the generated microstructure is kinematically compatible, in the
sense that the plastic strain is the gradient of a continuous deformation. This
links the study of plastic microstructure to the study of Martensitic phase
transformations in shape-memory materials, where a non-convexity in the
elastic energy (due to the underlying phase transformation) is the source
of microstructure [BJ87]. In this context of phase transformations, sharply
delineated, laminated, zones of alternating deformation states are often ob-
served. At first glance, these laminates bear a striking resemblance to some
of the microstructure seen in experiments in single-crystal plasticity.

In [OR99], there is already a number of experimental studies referenced
in order to link such kinematically compatible laminates to observed plastic
microstructure in a more rigorous manner [RP80, JW84]. Many of these ex-
periments, however, were performed in fatigue, i.e., using repeated oscillating
small amplitude plastic deformation. The goal in [DDMR09] was to exam-
ine the pattern formation in a well-controlled single pass shear experiment,
thus bringing it closer to applications in deep-drawing and related industrial
deformation methods.

The remainder of this chapter is organized as follows. In section 8.2 we will
briefly review some approaches to the continuum modeling of microstructure
in crystal plasticity. Section 8.3 describes the experiment from [DDMR09].
We then offer some conclusions in the final section 8.4.
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8.2 Modeling Continuum Plasticity

The goal of this chapter is to test the underlying modeling assumptions
that are used, for example, in the studies of energy relaxation in [CDK13b,
CDK13a, CDK11, ACD09, CDK09] and in the studies of plastic evolu-
tion [HHK12, HK11, KH11] in continuum plasticity. We thus consider, in the
framework of multiplicative continuum plasticity, a deformation y : Ω → R3,
for Ω ⊂ R

3, with appropriate boundary conditions. The deformation gradi-
ent F = ∇y is decomposed multiplicatively into an elastic contribution and
a purely plastic part (neither of which necessarily have to be kinematically
compatible) as

F = FelFpl.

For further discussion on the subject of multiplicative strain decomposition
see [RC14]. As mentioned in the introduction, we follow the approach by
Ortiz and Repetto [OR99] in studying a time-discrete problem instead of a
continuous time evolution problem. We will furthermore restrict ourselves
here to the analysis of microstructure formation in a single time step. A
suitable functional for such a time step now reads, with a suitable elastic
energy density Wel and a plastic dissipation Wpl,

E(y, Fpl) =

∫
Ω

Wel(Fel) +

∫
Ω

Wpl(Fpl). (8.1)

The assumption of strong latent hardening now leads to the assumption that
the plastic deformation necessarily has to occur in single slip only. Given a set

{mj}Mj=1 slip plane normals in the crystal and a set {bij}Nj

i=1 Burgers’ vectors
(orthogonal to mj , respectively) in each slip plane, we thus assume that

Wpl =

⎧⎨⎩ 0 if Fpl = Id+
∑M

j=1

∑Nj

i=1 γijbij ⊗mj ,

with γijγkl = 0 for i �= k or j �= l,
+∞ otherwise,

where we have (for simplicity) disregarded dissipation, which is small for
plastic deformation in single slip and introduced the single-slip side condition
as an infinite penalty on the energy. We remark that we expect that our results
in section 8.3 below would not change substantially if this side condition was
made somewhat less strict by introducing a hardening matrix with large off-
diagonal entries instead.

Commonly, a higher-gradient curl-type term is introduced to such an en-
ergy in order to account for geometrically necessary dislocations [Nye53,
Kon52, CG01]. Even with such an additional regularization (certainly also
without), one relaxation of the model that can immediately be performed
is that of considering a single-plane side condition instead of the single-slip
condition above. See [AD14] for more information. After this relaxation, the
plastic dissipation can be written as
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Wpl =

⎧⎨⎩
0 if Fpl = Id+

∑M
j=1 sj ⊗mj ,

with sj ∈ m⊥
j and |sj | |sl| = 0 for j �= l,

+∞ otherwise,

(8.2)

The investigations in the aforementioned articles usually start with an en-
ergy of this kind, often assuming a limited number of slip systems (i.e., one
or two) and then studying further relaxation, evolution, or computational
problems [MRF10].

Our approach, as mentioned above, was somewhat different but comple-
mentary: we wanted to check whether a configuration admitting low en-
ergy can be found that reproduces observed microstructure. The experiment
performed and its outcome are described in the following section.

8.3 A Single-Pass Shear Deformation Experiment and
the Resulting Microstructure

This section is a review of material published in [DDMR09] and [DSDR10].
We briefly recapitulate the experimental methods and observations and then
answer the question posed at the end of section 8.2 by explicitly construct-
ing a low-energy microstructure that reproduces the experimentally observed
parameters.

8.3.1 Sample Preparation and Shear Deformation
Experiments

The specimens were cut by spark erosion from 99.98% pure copper single
crystals produced by the melt-grow method to a dimension of 3mm× 2mm
with a height of 10−15mm. They were then polished, first mechanically and
finally electrolytically. The specimen is illustrated in Fig. 8.1a.

The shear experiments were performed on a special miniaturized testing
device made by Kammrath Weiss GmbH (44141 Dortmund, Germany). The
specimen is fixed in a stable, centered position between two movable cross-
heads in the device. These cross-heads were sheared with respect to each
other at a rate of 5µm/s as measured by the machine extensometer, the load
was controlled to a maximal load value of 1 kN by the device’s load cell. For a
schematic of the position of the specimen in the device see Fig. 8.1a. As seen
in the figure, the freestanding part of the specimen has a length of 2.4mm.

To an accuracy of 0.5◦, the orientation of the undeformed single crystal spec-
imen in the device is (101)[121̄] with the shear load applied along the [121̄] di-
rection. Fig. 8.1b shows the shear load with respect to the crystal orientation
in the context of the relevant f.c.c. slip systems in the {111}-plane given by
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the normal of the applied shear load. Under the given loading conditions, there
are two primarily active coplanar slip systems with Schmid factors of maximal
magnitude.

8.3.2 Digital Image Correlation for Strain Mapping
and EBSD for Texture Mapping

In the course of the shear deformation, the strain on the surface of the sample
was measured using the digital image correlation (DIC) method. The basic
idea of this method is that an optical pattern (graphite spray for optical
decoration on white acrylic spray) is applied to the surface of the sample
and geometrical changes of this pattern are recognized by means of digital
image analysis. For DIC we used a GOM Inc. Aramis System (version 6.0.0-3)
with two digital cameras (CCD-1300, maximal resolution 1280 × 1024 pixels)
placed behind the testing device. The recording time for each frame was 1 s.

After the deformation of the specimen, the surface of the samples was
characterized structurally and crystallographically. In order to perform this
characterization, a scanning electron microscope (SEM)1 with a field emis-
sion gun operated at 15 kV was used. The microscope was equipped with
a detector for the imaging of backscattered electrons (BSE imaging). The
EBSD patterns were then recorded and evaluated by an EDAX/TSL EBSD

(a) (b)

Fig. 8.1 a: Specimen in the specimen holder. b: Illustration of the crystallographic
orientation of the specimen, displaying the slip systems (according to the Schmid-
Boas nomenclature (also used in [OR99]). From [DSDR10], c© IOP Publishing.
Reproduced by permission of IOP Publishing. All rights reserved.

1 The device used was a JEOL JSM 6500F microscope.
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System equipped with a Digiview camera. In the high-resolution EBSD mea-
surements the exposure time for each frame was set to about 0.5 s at the
smallest binning size, and for the calculation of the Hough transformation a
binned pattern size 240 × 240 and an angular spacing control of 0.5◦ were
chosen.

8.3.3 Outcome of the Single Crystal Shear
Deformation Experiments

Shear Deformation and DIC Analysis: The specimens were deformed
in simple shear up to a deformation of γ = 0.23 as measured in the machine
extensometer. The load/displacement dependence was recorded during the
shear deformation, the data can be seen in Fig. 8.2a. The digital images
of the initial and final deformation state as captured for DIC are shown in
Fig. 8.2b. A closer inspection of the DIC data of the deformed sample revealed
some strain concentration in the sample near the clamps and a large central
region of homogeneously deformed material.

This homogeneously deformed part of the sample was then examined more
closely. In particular, we found that it can be very well approximated by a
completely homogeneous deformation in simple shear with a shear magnitude
of γ = 0.20, but with a normal of shear rotated clockwise by ϕ = 4.5◦ from
the vertical direction.

Fig. 8.2 a: Stress/shear angle dependence obtained from the load/displacement
measurement (grey curve) and using the DIC method (black curve). b: Digital im-
ages of the sample surface decorated for the DIC method before (upper image) and
after the deformation (lower image). Image from [DDMR09], c©Elsevier. Reproduced
by permission of Elsevier. All rights reserved.
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Microstructural Characterization of the Sample: As mentioned above,
the specimen was analyzed in an SEM after deformation. The BSE micro-
graph of the single crystal sample is shown in Fig. 8.3a, with the direction
of the applied shear load indicated by the white arrows. Some glide bands
can be observed; their orientation in relation to the nearest plane trace of a
{111}-plane is indicated by a grey line. The central area containing the glide
bands was then analyzed using EBSD.

Fig. 8.3b shows the EBSD image of the deformed part of the crystal
recorded with a step size 2µm. The mismatch of orientation to the orien-
tation of an arbitrarily chosen point in the image is plotted. One can observe
a variation of the orientation within 3◦. The formation of a microscopic band
structure with a different orientation compared to the material in between
the bands can be observed from this map. The averaged orientation of the
sample in the image was used to calculate the the plane traces of the {111}-
slip planes displayed in the upper right hand corner of the image. The plane
trace of the {111}-slip plane containing the two slip systems with maximal
modulus of the Schmid factor (as illustrated in Fig. 8.1 above) is shown as
a black line in the center of the image. Comparing this direction with the
orientation of the microbands (illustrated by the grey line), a deviation of
approximately 7◦ can be determined. Note that the orientation of the mi-
crobands is not crystallographic. A further feature of the generated bands is

Fig. 8.3 a: BSE overview micrograph with white arrows indicating the applied
shear load. The black line is a plane trace of a slip-plane (i.e., a {111}-plane). b:
EBSD characterization of the local lattice orientation. The band-like structure can
be clearly observed here. In the upper right corner of the image, the set of {111}-
plane traces is displayed, and in the center the orientation of the laminates with
respect to the nearest {111}-plane trace is shown. The 7◦ mismatch between the
two is characteristic for the microstructure. From [DDMR09], used with permission.
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the additional substrcuture inside of the microbands (which are subdivided
by orthogonal lines). For an analysis of this substructure see section 8.3.5.

A high-resolution EBSD image is shown in Fig. 8.4a, taken with a step-size
of 0.1µm. Again, this image presents the local deviation of the orientation
with respect to a reference orientation. The grey scale displays that the crys-
tal lattice inside of the microbands is rotated by 3◦ in comparison to the
material outside. Fig. 8.4b, on the other hand, demonstrates the variation of
the the crystal orientation out of the defined crystallographic direction, which
is nearly parallel to the normal of the frontal face. The grey scale range is
the same as in Fig. 8.4a and displays no significant tilt on that order of mag-
nitude. We therefore conclude that the microbands’ orientation is rotated 3◦

clockwise with respect to the outside material and with a rotation axis that
is perpendicular to the front face of the specimen.

8.3.4 Energy Minimizing Microstructure

Our hypothesis is that a non-convexity in the energy landscape is the basic
mechanism underlying the formation of the patterns described in the previous
section. The idea, as pioneered by Ball and James [BJ87], is the following:
Consider the deformation of a body from a reference configuration Ω ⊂ R3

Fig. 8.4 a: High resolution EBSD map showing the edge of a microband. The grey
scale indicates the the crystal orientation relative to a reference point. A graphical
illustration of the observed local lattice rotation is shown on the right hand side.
b: EBSD map of the same area showing the variation of the orientation away
from the normal direction (same scale as above). From [DDMR09], c© Elsevier.
Reproduced by permission of Elsevier. All rights reserved.
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by a sufficiently smooth function y : Ω → R3 mapping each point in the
reference configuration to its current location. The free energy density of
this continuum body is given by a frame indifferent function W depending
on the deformation gradient F = ∇y. Assume now that the deformation
admits two preferred states (energy minima) F1 and F2. Due to material
frame indifference, the energy must not change under rigid body motions,
i.e., W (F ) = W (QF ) with Q ∈ SO(3). Assuming the body is elastically
rigid, a good free energy functional can be written as

W (F ) =

{
0 if F = QF1 or F = QF2 for Q ∈ SO(3),
∞ otherwise.

(8.3)

A natural question to ask now is which boundary conditions such a material
can accommodate in an averaged sense. After relaxing the elastic rigidity to a
strong growth away from the minima, one can also introduce small boundary
layers in the deformation. In general, this is an open question. However, it is
possible to give an interesting upper bound for the relaxation of such a non-
convex W . If one assumes that there exists an invariant plane between the
two minimizers of the energy, i.e., a plane that is deformed in the same way
by both deformation gradients, then one can alternate these two deformation
gradients to form a fine scale mixture known as a laminate. The condition
for this can be written in the following way: There must exist Q ∈ SO(3)
and a, n ∈ R

3 such that
QF1 − F2 = a⊗ n. (8.4)

In other words, modulo a rigid body motion, the difference between the de-
formation gradients must be a rank one matrix. Under these conditions, it is
possible to find a continuous, piecewise affine deformation y whose gradient
is at any point given either by QF1 or F2. Alternating these deformations
with volume fraction λ and 1 − λ results in affine boundary conditions of
the form λQF1 +(1−λ)F2 that can be accommodated by the material. This
situation is illustrated in Fig. 8.5.

To this end, we first determine the macroscopic strain of the sample, which
will act a side condition to minimizing an elasto-plastic energy functional. An
analysis of the DIC-measurement illustrated in Fig. 8.2 revealed a central,
homogeneously deformed section of the specimen with measured macroscopic
strain

U =

⎛⎝0.9555 −0.0198 0.0445
1.1036 0.0198

0.9555

⎞⎠ (8.5)

in the final deformation state. This calculation of the average strain assumed
that the deformation in the direction normal to the crystal surface was the
identity. Apart from this we only performed a basis change from the basis
used in the DIC measurement to the basis of the f.c.c. lattice.

Subsequently, a MATLAB program was employed to find a deformation
that satisfies the twinning equation (8.4) with the two deformation gradients
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Fig. 8.5 Lamination of a piecewise affine deformation: the two subdomains, Ω1

and Ω2, are deformed in an affine manner such that the resulting deformation y is
continuous. From [DDMR09], c© Elsevier. Reproduced by permission of Elsevier.
All rights reserved.

being simple shear in f.c.c. slip systems, while averaging to the strain (8.5)
from the measurement. The program simply employs a gradient flow method
for the magnitudes of slip in two specifically chosen slip systems with respect
to the elasto-plastic energy

E =

∥∥∥∥√(UP−1)T · (UP−1)− Id

∥∥∥∥2 , (8.6)

where P = (1−λ)Q(γ1P1+Id)+λ(γ2P2+Id). Here, λ is the volume fraction
of one part of the laminate, P1 and P2 are the displacement gradients of the
two chosen slip systems, and Q is the lattice rotation as calculated in the
twinning equation (8.4). Equation (8.6) can be seen as a relaxation of the
energy in (8.3) allowing for elastic deformation.

As the main component P1 of plastic deformation we choose an equal
activity in the A2 and A6 slip systems (in the following, we refer to slip
systems by the Schmid-Boas nomenclature, also used in [OR99]). We note
that these slip systems are naturally compatible without a lattice rotation—
they are coplanar slip systems. Following [AD14], we thus consider coplanar
slip systems to be lumped into one.

For the secondary component of plastic deformation, there are a number
of different choices for a kinematically compatible complementary slip activ-
ity. Noting that we are solely looking for a low energy state, we restrict our
investigation to two particular possibilities, which guarantee kinematic com-
patibility independently of the choice of γ1 and γ2: first, an equal activity in
C1 and C5, and second, an equal activity in B4 and D4.

Which volume fraction is attributed to which slip is a further degree of
freedom in our construction. Using the histogram of the distribution of lat-
tice rotations on the whole homogeneously deformed part of the face of the
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crystal, we determined that one component of the microstructure occupies
approximately two thirds of the total area in the picture. This larger area can
now be associated with either the primary component or with the secondary
component of the plastic deformation. Note that from the experiments alone,
we can not determine this directly, since only the lattice orientation, and not
the shear strain was measured microscopically.

We note that if we find such a laminate as described above that also results
in a small energy E in (8.6), we immediately have found a deformation state
that admits a small energy in the plastic deformation model (8.1) with non-
convex dissipation of type (8.2) which averages to the given macroscopic
deformation. The reason is the following: the laminate of consisting of two
different plastic deformation states as constructed above is automatically
admissible with vanishing energy for (8.2). Furthermore, since the laminate
is itself a gradient (modulo rigid body motions), it does not require any elastic
strain to be made compatible. The only elastic strain appearing in (8.1) is
thus the strain from the inexact recovery of the given average strain, i.e., the
strain in the energy E in (8.6).

The parameters of the energy minimizers determined by the gradient flow
are displayed in Table 8.1. It can be observed that some of the slip-system
combinations yield lamination parameters (i.e., direction of the lamination
normal, and relative lattice orientation) matching very well the experimental
data. The resulting deformations are illustrated in Fig. 8.6, to be compared
with the EBSD-results.

Table 8.1 Results from the energy minimization algorithm used to find a low
energy laminate of slip systems recovering the average strain in (8.5). The value of
λ is the volume fraction of slip in P2. The values γi are the amount of slip in the
respective slip system, α is the (clockwise) angle of orientation of the lamination
normal with respect to the nearest 〈111〉-direction. The value β is the (clockwise)
angle of lattice misorientation. The value E is the energy at the minimizing state.
All rotations are exactly in the plane with normal [101].

Choice of λ γP1 γP2 α β E

slip systems

P2 = B4+D4 1/3 0.18 0.082 −7.5◦ 3.8◦ 5.0 · 10−6

P2 = C1−C5 2/3 0.28 −0.040 −6.3◦ 3.3◦ 5.0 · 10−6

8.3.5 An Analysis of the Substructure Within the
Lamination Bands

In Fig. 8.3 one can clearly see the formation of a substructure within the
microbands of an orientation variation of 1◦. The reasons for the formation
of this substructure were examined in [DSDR10]. There, a discrete disloca-
tion dynamics model was used to determine the equilibrium distribution of
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Fig. 8.6 Illustration of the two laminates from Table 8.1 that agree well with
the EBSD result from Fig. 8.3b. From [DDMR09], c© Elsevier. Reproduced by
permission of Elsevier. All rights reserved.

dislocations within the microbands. Given the boundary conditions of bend-
ing near the clamped edges of the specimen, the formation of domain walls
within the microbands in quantitative agreement with the observed orienta-
tion variation was found.

8.4 Conclusions

Here we presented the findings of a copper single crystal shear experiment
as published in [DDMR09, DSDR10], in relation to modeling plasticity mi-
crostructure by variational approaches. These experiments show that the the-
ory of kinematically compatible microstructures, in particular laminate mi-
crostructures, can indeed be used to predict the formation of microstructure
in plasticity. We demonstrated that there exist low-energy states consisting of
plastic laminates whose macroscopic deformation averages to the measured
macroscopic strain, while at the same time their microstructural properties
do match the measured properties of the local lattice orientation pattern-
ing. In this sense, our work justifies the energy minimization approach to
plasticity used for example in [CDK13b, CDK13a, CDK11, ACD09, CDK09,
HHK12, HK11, KH11].

A main question that remains open regards the evolution of such laminate
microstructures, in particular, whether those structures can arise in finite-
strain deformation, where the lamination normal depends on the amount
of shear. Some ideas for modeling the evolution of laminates have been ex-
plored in [KH11]. In this particular case, we see that during the course of
the deformation, only a minor change in the lamination normal was neces-
sary [DDMR09].
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Chapter 9
Construction of Statistically Similar RVEs

Lisa Scheunemann, Daniel Balzani, Dominik Brands, and Jörg Schröder

Abstract. In modern engineering, micro-heterogeneous materials are designed to
satisfy the needs and challenges in a wide field of technical applications. The ef-
fective mechanical behavior of these materials is influenced by the inherent mi-
crostructure and therein the interaction and individual behavior of the underlying
phases. Computational homogenization approaches, such as the FE2 method have
been found to be a suitable tool for the consideration of the influences of the mi-
crostructure. However, when real microstructures are considered, high computa-
tional costs arise from the complex morphology of the microstructure. Statistically
similar RVEs (SSRVEs) can be used as an alternative, which are constructed to pos-
sess similar statistical properties as the real microstructure but are defined by a lower
level of complexity. These SSRVEs are obtained from a minimization of differences
of statistical measures and mechanical behavior compared with a real microstructure
in a staggered optimization scheme, where the inner optimization ensures statistical
similarity and the outer optimization problem controls the mechanical comparativity
of the SSRVE and the real microstructure. The performance of SSRVEs may vary
with the utilized statistical measures and the parameterization of the microstructure
of the SSRVE. With regard to an efficient construction of SSRVEs, it is necessary to
consider statistical measures which can be computed in reasonable time and which
provide sufficient information of the real microstructure. Minkowski functionals are
analyzed as possible basis for statistical descriptors of microstructures and com-
pared with other well-known statistical measures to investigate the performance. In
order to emphasize the general importance of considering microstructural features
by more sophisticated measures than basic ones, i.e. volume fraction, an analysis
of upper bounds on the error of statistical measures and mechanical response is
presented.
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9.1 Introduction

The description of the effective mechanical behavior of micro-heterogeneous ma-
terials is a large field of interest in research. This behavior is determined by the
underlying microstructure and therein the behavior of the individual phases and their
interaction. From the viewpoint of computational simulation, homogenization ap-
proaches such as the direct micro-macro transition approach, also known as mul-
tilevel Finite Element (FE) method or FE2 method, provide a framework for the
direct incorporation of the microstructure, see e.g. [GTK97], [SBM98], [MS98],
[MSS99], [FS99], [Fey99], [FC00], [KBB01], [GKB03] and [Sch14]. In this ap-
proach, a microscopic FE boundary value problem is attached at every gauss-point of
the macroscopic FE boundary value problem with the macroscopic quantities being
obtained from suitable volumetric averages over their microscopic counterparts. The
microscopic problem can be more efficiently solved using spectral methods, see e.g.
[LLR11] and [EDLR13]. The solution of the microscopic boundary value problem
replaces the evaluation of an analytical material law. At the microscale a representa-
tive volume element (RVE), is considered. There exist various definitions of RVEs in
the literature, for an overview see e.g. [Zem03] and the references therein. Especially
the estimation of the size of an RVE is important to ensure representativity and min-
imize computational costs. An approach for the computation of an appropriate size
of an RVE for composites is presented in [KFG+03] and was later on extended by
[PBMP09], lowering computational costs for the determination of RVEs. For dual
phase steel, represented by inclusion-matrix microstructures with 35% martensite,
suitable sizes for RVEs are determined in [RMPB12] based on equiaxed and banded
inclusions by comparing different RVE sizes under varying boundary conditions. A
suitable size of 24µm with a necessary number of 12 and 19 martensite inclusions
was found for equiaxed and banded microstructures, respectively. An overview on
different methods to analyze RVEs can be found in [ZW05].

For RVEs defined as subsections of real microstructures, typically large por-
tions are necessary to obtain representativity, leading to high computational costs.
Even if smaller subsections are admissible as RVEs, the complex nature of a
real microstructure’s morphology leads to disadvantages with respect to compu-
tational expenses. An alternative use of artificial microstructures governed by a
lower complexity while maintaining similarities with respect to the original mi-
crostructure is desirable. Thereby aside from advantages in computational homog-
enization, other method defined on microscale level, e.g analysis of dislocation
patterns, could benefit from the use of artificial microstructures. The concept of sta-
tistically similar RVEs (SSRVEs) is a possible method for the construction of such
artificial microstructures. Therein a least-square functional is minimized, which
compares statistical measures evaluated for a real microstructure and the SSRVE.
The method was proposed for two-dimensional microstructures in [BSB09], see
also [SBB11], [BBSC10] and [BBS14a], the extension to three-dimensional mi-
crostructures is proposed in [BSBS14]. Similar methods are utilized in [Pov95] and
[KBC06] to reconstruct real microstructures. The latter one shows a good represen-
tation of stress distribution, peak stresses as well as nucleation strains and hot spot
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regions in the reconstructed microstructures compared with the original microstruc-
tures. The concept of SSRVEs was adapted in [RPBP11] and is applied in [RKP14]
for a simulation of stamping. In [ABRP12] the authors have used SSRVEs in crash
box stamping using scalar statistical descriptors for the construction.

The reconstruction of real microstructures to obtain samples for an analysis of
microstructure properties is a topic of current research in order to circumvent costly
microscopy analyses. In [KBC06], a least-square functional considering lineal-path
function and spectral density is minimized in a simulated annealing process to re-
construct 2D complex microstructures, which are found to possess similar mechan-
ical properties as the original microstructure. A Monte-Carlo approach is used for
the reconstruction of three-dimensional microstructures based on a minimization
of a least-square functional taking into account two-point correlation function and
two-point cluster function achieving a comparability of statistical and mechani-
cal properties of the reconstructed microstructures compared with the real one in
[BMH+12]. When aiming for a description of a real microstructure for reconstruc-
tion purposes, the statistical measures used play a crucial role. The quality of recon-
structed microstructures and SSRVEs in terms of comparability with the original
one is strongly influenced by the choice of statistical measures used in the con-
struction process. There exist numerous statistical descriptors in the literature, an
overview can be found in e.g. [OM00], [Tor02], [Zem03] and [EH86]. It is obvi-
ous that hybrid approaches utilizing combinations of statistical measures perform
better in the reconstruction of microstructures, as shown in [YT98], providing that
the different measures capture different aspects of the microstructure. A sensitivity
analysis presented in [BBSC10] showed that a combination of phase fraction and
spectral density as statistical measures performs well in the construction of 2D SS-
RVEs compared to using solely classical scalar descriptors. The class of Minkowski
functionals, which describe geometric objects using integral geometry, offers a set of
descriptors for the characterization of microstructure morphologies. The Minkowski
functionals, forming scalar, vectorial or tensorial measures, are defined as integrals
over curvatures, position vectors and normal vectors on the volume or surface of
a geometric object, for detailed information see [MS00]. While the scalar mea-
sures are correlated to basic measures describing area, boundary length and Euler
characteristics in 2D and volume, surface area, mean curvature and Euler charac-
teristics in 3D, the vectorial measures are e.g. related to center of mass and the
tensorial measures are related to the well know mechanical measure tensor of in-
ertia. In [AKM10], scalar Minkowski functionals are applied for the characteriza-
tion of three-dimensional structures while in [MJM08] they are utilized in the field
of 2D image analysis. Minkowski functionals of tensorial form have been used in
[STKB+10] and [STMK+11] for a characterization of multiphase structures, i.e.
planar microscopy data, granular materials and foam structures, focusing on mor-
phological anisotropy properties. Local anisotropy in fluids has been characterized
using Minkowski tensors in [KMS+10]. Since Minkowski tensors are defined for in-
dividual geometrical objects, a consideration of probability density functions based
on specific measures derived for single inclusions seems reasonable to obtain a de-
scriptor for a two-phase microstructure consisting of a matrix phase with multiple
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embedded inclusions. The analysis of such measures for the construction of SSRVEs
is a main objective of this contribution.

The outline of the paper is as follows: Section 9.2, the concept of SSRVEs is de-
scribed, first focusing on the general method and lower and upper bounds on RVEs
regarding statistical similarity and similar mechanical behavior compared with a real
microstructure. Furthermore, a summary of the statistical measures used later on in
the construction of SSRVEs is presented. Here, a detailed elaboration of the statis-
tical measures given by probability density functions based on Minkowski tensors
is presented. Section 9.3 discusses different aspects of the construction of SSRVEs,
including parameterization of SSRVEs and size determination as well as giving spe-
cific objective functions and briefly resuming the FE2 method. The second part of the
section presents SSRVEs based on a minimization of the specific objective functions
and discusses the results. An analysis of the microscopic mechanical response is per-
formed for selected SSRVEs. Exemplarily, a construction of upper and lower bounds
for RVEs is carried out. Section 9.4 concludes and summarizes the main outcome.

9.2 Statistically Similar RVEs

In computational homogenization, the choice of a representative volume element
(RVE) is an important aspect for an appropriate consideration of the microstruc-
ture of the material. There exist several definitions of an RVE in the literature, an
overview can be found in e. g. [Hil63], [DW96] and [Zem03]. However, the def-
inition of an RVE obtained from experimental measurements of a real material’s
microstructure is constrained by the limitations of microscopy techniques, as the
measurable volume is limited. Typically, the largest measurable portion of a mi-
crostructure is assumed as a representative portion, thus an RVE. Due to the highly
complex composition of micro-constituents on this scale, the resultant discretiza-
tion necessary for computational purposes leads to very high costs making effi-
cient computations unachievable. If a smaller subsection of this cutout still exhibits
similar overall mechanical properties, it could be instead considered as an RVE.
The definition of statistically similar RVEs (SSRVEs) in this context is an alter-
native to circumvent the issue of high computational costs. These artificial struc-
tures possess a microstructural morphology which is statistically similar to a real
microstructure while being smaller in size and governed by a lower complexity.
Still, they exhibit a similar mechanical behavior. The method resumes the idea pro-
posed in [Pov95] and [KBC06], where a special class of microstructures is taken
into account in the former. The construction of SSRVEs is proposed in [BSB09]
and [SBB11] for two-dimensional microstructures and extended to 3D in [SBBS13]
and [BSBS14]. The method is adapted in [RPBP11] and [RKP14]. In [ABRP12],
SSRVEs are used for the simulation of crash box stamping. The general premises
for the application of this method are the representativity of the real microstruc-
ture by a periodic microstructure consisting of SSRVEs as periodic subvolumes, as
illustrated in Figure 9.1. Furthermore, the macroscopic material behavior must be
solely depending on the local microscopic mechanical behavior and the microstruc-
ture morphology. The behavior of the individual constituents of the microstructure is
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Fig. 9.1 Random target microstructure (left) of an inclusion-matrix microstructure (phase
reconstruction of a 3D EBSD/FIB measurement of a DP steel performed at Max-Planck In-
stitute for Iron Research, Düsseldorf, Prof. D. Raabe, details see [BBSR11], [BBS+14b]) and
associated periodic microstructure (right) with periodic SSRVEs. Taken from [BSBS14].

assumed to be known. Note that real microstructures and RVEs obtained therefrom
are mostly non-periodic by nature. This section presents the method of construction
of SSRVEs and the statistical descriptors used therein. Furthermore some aspects
on bounds of RVEs will be discussed.

9.2.1 Method

The construction of SSRVEs is based on the minimization of a least-square func-
tional which compares the differences of statistical measures computed for the real
microstructure and the SSRVE. The SSRVE’s artificial inclusion morphology is de-
scribed by γi which considers different types i of descriptions for the inclusion mor-
phology. The least-square functional comparing a set of statistical measures G reads

EG ,ω (γi) := ∑
L∈G

ωLLL (γi) with LL (γi) :=
(
P real

L −PSSRVE
L (γi)

)2

(9.1)
with the least-square functional LL (γi) for an individual statistical measure L.
These functionals are weighted with weighting factors ωL of the set ω . P real

L
denotes the evaluation of a statistical measure L for the real microstructure and
PSSRVE

L (γi) gives the counterpart for the SSRVE. For a fixed set of statistical mea-
sures, a fixed set of weighting factors and a specific parameterization, the ideal inclu-
sion morphology γ̃i, in a statistical sense, can be found by solving the optimization
problem

γ̃i = arg

[
min
γi

[
EG ,ω (γi)

]]
. (9.2)

The construction of an optimal SSRVE is influenced by many factors. Depending
on the statistical measures taken into account, different properties of the microstruc-
ture are captured and similarities thereon are enforced in the SSRVE. It was found
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that hybrid approaches combining multiple statistical descriptors lead to benefi-
cial results opposed to considering only one measure, cf. [YT98]. Furthermore, in
[BBSC10] the authors emphasize the importance of considering higher order statis-
tical measures. For an efficient construction of SSRVEs, the individual evaluation
time of the statistical measure has to be considered, since the measures have to be
computed multiple times during the optimization process. Additionally, the differ-
ent types of parameterization of inclusion morphology affect the resulting SSRVE.
Here, the parameterization describes the morphology of the inclusion phase in a mi-
crostructure consisting of two materials, an inclusion phase embedded in a matrix
phase. Therefore, different shapes of inclusions could be considered as well as dif-
ferent number of inclusions. Permitting a parameterization leading to an arbitrary
inclusion morphology would be beneficial for the quality of the SSRVE, since fea-
tures of the real microstructure can be adjusted more easily. However, it would also
imply a high effort regarding discretization and computation. In order to evaluate the
performance of different sets of statistical measures and weighting factors as well
as types of parameterization, an optimization problem related to (9.2) can be used.
Therein, the obtained parameterizations γ̃i are compared with the real microstruc-
ture regarding their mechanical response. In view of this staggered optimization pro-
cess, (9.2) can be considered as an inner optimization problem and the evaluation
considering the mechanical performance represents an outer optimization problem.
The full optimization problem to be solved reads

γ̃ = arg

⎧⎪⎪⎪⎨⎪⎪⎪⎩min
γ̃i

⎡⎢⎢⎢⎣r̃∅

⎛⎜⎜⎜⎝arg

[
min
γi

[
EG ,ω (γi)

]]
︸ ︷︷ ︸

inner problem, compare (9.2)

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭︸ ︷︷ ︸

outer problem

, (9.3)

with the overall optimal inclusion morphology γ̃ and the objective function compar-
ing the mechanical responses given by r̃∅. In this sense, the staggered optimization
process ensures the best possible statistical similarity of the inclusion morphology
compared with the real microstructure morphology and then evaluates the obtained
morphologies regarding their mechanical performance. This scheme is favorable if
the inner optimization problem can be solved at less computational costs compared
to the outer problem, because it limits the number of evaluations of r̃∅. For an ef-
ficient solution of the inner optimization problem, a high efficiency regarding the
statistical measures is important. In Sec. 9.2.3, different sets of statistical measures
are presented.

9.2.2 Lower and Upper Bounds of RVEs

Using the inner optimization problem in (9.3), bounds related to the statistical sim-
ilarity of the microstructure morphology can be computed. These bounds repre-
sent the “best” and “worst” scenario of a microstructure morphology in a volume
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element for a fixed parameterization i, a fixed set of weighting factors ω and a fixed
set of statistical descriptors G . Note that a considered volume portion is here de-
noted as volume element (VE), since a representativity for the “worst” case is not
given. They are obtained by

E best = min
γi

[
EG ,ω (γi)

]
and E worst = max

γi

[
EG ,ω (γi)

]
, (9.4)

with the “best“ and “worst“ possible scenario of a microstructure morphology de-
fined by

γ̃best
i = arg

[
E best

]
and γ̃worst

i = arg
[
E worst] . (9.5)

Note that here γ̃best
i coincides with the definition of an SSRVE. These cases of a mi-

crostructure describe extrema with respect to similarity of the VE and the real mi-
crostructure. It can be expected that for an infinite flexibility of microstructure mor-
phology and a set of statistical measures describing the microstructure perfectly, the
mechanical response of the resulting “best” and “worst” VEs becomes extremal, thus
in the “best” case, the mechanical response should coincide with the one of the real
microstructure under the assumptions made in the end of Section 9.2 on the represen-
tativity of the real microstructure. The bounds contain valuable information since they
describe the range of a VE which could be obtained for a given parameterization and
given set of statistical descriptors. Under the consideration of a sufficient set of statis-
tical descriptors for the description of the microstructure morphology, the bounds are
expected to expand with respect to greater flexibility of the parameterization of the mi-
crostructure morphology. A greater flexibility of parameterization in this sense allows
for more complex microstructure morphologies. For the lower bound, representing
the SSRVE, a decreasing value of the objective function E best should be observed
with increasing flexibility. Only together with the general premises of Section 9.2 for
the application of SSRVEs, a suitable set of statistical descriptors and a reasonable
parameterization for the microstructure morphology, the increase of flexibility is ex-
pected to coincide with a qualitative decrease of the mechanical error compared to
the real microstructure, again due to a wider range of possible microstructure mor-
phologies. Additionally, a converging behavior to optimal bounds is expected with
continuing increase of flexibility of microstructure morphology.

9.2.3 Statistical Measures

There exist various statistical descriptors for the characterization of microstructures,
an overview can be found in [EH86], [OM00], [Tor02] and [Zem03]. The detailed
description of microstructures is indispensable for high-performance materials, for
which a rapid development has taken place in the last decades. For characterizing
position, size, orientation and shape of a microstructural constituent, distribution
densities of specific properties go beyond the traditional approach of average val-
ues. Here, only the statistical descriptors used for the construction of SSRVEs in
Section 9.3 are recapitulated.
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9.2.3.1 Spectral Density and Lineal-Path Function

The notion of n-point probability functions is an important concept for the charac-
terization of microstructures, see [Ber68] and [Bro55]. Let D(P) be a domain occu-
pied by the microscopic phase P and x a position vector to a material point in the
microstructure, then the indicator function

χ (P)(x) :=

{
1 if x ∈ D(P),

0 otherwise,
(9.6)

describes the respective phase P, thus in every point x the indicator function fulfills
the condition∑P χ (P)(x) = 1. The n-point probability function for a specific phase P
is defined as the average of the products of indicator functions at different positions
x1, ...xn over an ensemble of individual samples α as

S
(P)

n (x1, ...,xn) := χ (P)(x1,α) χ (P)(x2,α) . . .χ (P)(xn,α), (9.7)

where (•) denotes the ensemble average of (•). This function is also referred to as
n-point correlation function and represents the probability of n points x1...xn being
located in the same phase P. The ensemble average over a set of samples can be
replaced by the average over one sample B with infinite sample size providing that
the microstructure fulfills ergodicity assumptions. The definition then transforms to

S
(P)

n (x1, ...,xn) := lim
V→∞

1
V (B)

∫
B
χ (P)(y+x1)χ (P)(y+x2) . . .χ (P)(y+xn) dy,

(9.8)
where V (•) describes the volume of a domain • and y denotes a position vec-
tor to material points located in the phase P. Note that for practicable application
the integral over an infinite volume is replaced by the integral over a sufficiently
large amount of a microstructure. For most application, it is feasible to consider the
1-point and 2-point probability function. The 1-point probability function

S
(P)

1 (x) := lim
V→∞

1
V (B)

∫
B
χ (P)(y+x) dy, (9.9)

describes the probability of finding a material point in the inclusion phase, thus it is
equal to the phase fraction

P
(P)
V :=V (B(P))/V (B), (9.10)

with B(P) characterizing the domain of phase P. The 2-point probability function,
also denoted as second-order correlation function or autocorrelation function, is
described by

S
(P)

2 (x1,x2) := lim
V→∞

1
V (B)

∫
B
χ (P)(y+x1)χ (P)(y+x2)dy, (9.11)
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and gives the probability of two points x1 and x2 both being located in the same
phase P for an infinite volume V (B). The two-point probability is strongly cor-
related to the spectral density, which can be used as an alternative descriptor. The
spectral density for a discrete three-dimensional data set is calculated based on the
discrete Fourier transform

F (P)(kx,ky,kz) :=
Nx

∑
nx=1

Ny

∑
ny=1

Nz

∑
nz=1

exp

(
−π i

(
nx kx

Nx
+

ny ky

Ny
+

nz kz

Nz

))
χ (P)(nx,ny,nz),

(9.12)
where a discrete material point in the data set of size Nx, Ny and Nz in the three
respective directions is given by x = [nx ny nz] with nx = 1...Nx, ny = 1...Ny and
nz = 1...Nz. The coordinates in the frequency domain are defined by kx, ky and kz,
respectively. The spectral density is defined by

P
(P)
SD :=

(F (P))∗F (P)

2π Nx Ny Nz
(9.13)

with the conjugate complex (F (P))∗ of the Fourier transform F (P). The spectral
density and two-point probability function capture information in the sense of peri-
odicity of a microstructure. The spectral density gains its popularity in many fields,
e.g. image analysis, from the fact that fast numerical algorithms, e.g. the “FFTW”
(“Fastest Fourier Transform in the West”), developed at the Massachusetts Insti-
tute of Technology by M. Frigo and S.G. Johnson (www.fftw.org), can be used to
perform the computation of the discrete Fourier transform for discrete data sets.

Another statistical measure for the description of microstructures is the lineal-
path function, cf. [LT92]. The function describes the probability that an entire line
segment −→z := −−−→x1x2 connecting the points x1 and x2 is located in the same phase.
The modified indicator function

χ (P)
LP (−→z ) :=

{
1 if −→z ∈ D(P),

0 otherwise,
(9.14)

examines whether the line segment−→z is located in the domain D(P) of phase P. The
lineal-path function is then characterized by the ensemble average over a series of
samples α by

P
(P)
LP (−→z ) := χ (P)

LP (−→z ,α), (9.15)

whereas for ergodic microstructures the volumetric average can be considered
instead of the ensemble average, thus leading to

P
(P)
LP (−→z ) := lim

V→∞

∫
B

χ (P)
LP (y+−→z ) dy. (9.16)

Therein, y+−→z denotes a shift of the line segment−→z by the position vector y rela-
tive to an origin of the considered domain B. Again, note that the infinite volume B
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can be replaced by a sufficiently large portion of microstructure for practical rea-
sons. The lineal-path function captures information about the connectedness of a
phase in a microstructure and therefore accounts for some kind of long-range prop-
erties of a phase.

9.2.3.2 Tensorial Minkowski Functionals

For a description of spatial structures, which can e. g. be of cellular, periodic or
porous type, the class of Minkowski tensors (MTs) offers a robust alternative to
the concept of correlation functions. Due to their tensorial nature, anisotropy and
orientational aspects are particularly captured. MTs are defined as integrals of nor-
mal and position vectors as well as surface curvatures. A detailed description on
the topic can be found in [MS00] and [BDMW02]. Let R3 be a three-dimensional
space, then MTs are defined as

W a,b
ν =

1
3

∫
∂Ω

Gν r
a⊗nb dS with ν = 1,2,3. (9.17)

The special case ν = 0 is given by

W a,0
0 =

∫
Ω

ra dΩ (9.18)

for a convex body Ω with the boundary surface ∂Ω and the scalar functions Gν are
given by G1 = 1, the mean curvature G2 = (κ1 +κ2)/2 and the Gaussian curvature
G3 = κ1κ2, with the principle curvatures κ1 and κ2 in 3D. The tensor products of
position vectors r and normal vectors n on the boundary ∂Ω are defined as

ra⊗nb := r⊗ . . .⊗r︸ ︷︷ ︸
a times

⊗n⊗ . . .⊗n︸ ︷︷ ︸
b times

(9.19)

with the symmetric tensor product (a⊗ b)i j = (aib j + a jbi)/2. In the case of MTs
of rank a+ b = 2, ten second order tensor measures are obtained with the respec-
tive tensor products r⊗ r, r⊗n and n⊗n. Linear dependencies exist between
these tensors, cf. [STKB+10]. A number of six linearly independent MTs result, cf.
[STMK+11], i.e.

W 2,0
0 :=

∫
Ω
r⊗r dV, W 2,0

1 :=
1
3

∫
∂Ω

r⊗r dA, (9.20)

W 2,0
2 :=

1
3

∫
∂Ω

G2(r)r⊗r dA, W 2,0
3 :=

1
3

∫
∂Ω

G3(r)r⊗r dA, (9.21)

W 0,2
1 :=

1
3

∫
∂Ω

n⊗n dA, W 0,2
2 :=

1
3

∫
∂Ω

G2(r)n⊗n dA. (9.22)



9 Construction of Statistically Similar RVEs 229

Higher order MTs are well defined but will not be considered here, for further in-
formation the reader is referred to [SGM08]. MTs can be related to the well-known
engineering measure tensor of inertia II by

II(Ω) =

∫
Ω
(−r⊗r+ |r|21) dV =−W 2,0

0 + tr(W 2,0
0 )1, (9.23)

with the three dimensional unit tensor 1, cf. [STMK+11]. From the above MTs
(9.20) to (9.22), motion invariant and motion covariant measures can be distin-
guished considering a pure translational shift of the considered body. Obviously
due to the consideration of position vectors, (9.20)1, (9.20)2, (9.21)1 and (9.21)2,
change under a pure translational shift of body Ω . However, (9.22)1 and (9.22)2 re-
main unchanged under a shift, since only normal vectors on the surface contribute
to the tensor product. A change in orientation, i. e. rotation of the considered body
would result in changes in all measures (9.20) through (9.22).

MTs are generally defined for convex bodies. Due to the additivity theorem, their
definition can also be applied to non-convex bodies, cf. [STMK+11]. In the analysis
of spatial structures, one typically uses discrete data in the form of images or 3D data
sets. MTs can be evaluated for this type of data, e. g. by considering a triangulation
as an approximation of the convex body. The specific formulas for the computation
of MTs for convex and non-convex polytopes are given in [STMK+13].

9.2.3.3 Anisotropy Measure Based on MT

For the application as a descriptor of microstructures, the aim is to deduce relevant
measures from a MT. A measure describing the anisotropy of a body can be defined
following [KMS+10] by considering the eigenvalue ratio of the respective MT. Us-
ing the minimal and maximal eigenvalue given by μmin and μmax, respectively, with
|μmax| ≥ |μmin|, one obtains

β a,b
ν :=

|μmin|
|μmax|

∈ [0,1] (9.24)

for a considered MT W a,b
ν . The different MTs in (9.20) to (9.22) describe differ-

ent properties of the underlying body. While W 2,0
0 describes the distribution of

mass inside the body, W 0,2
1 characterizes the surface orientation. In [STMK+11]

two-dimensional boolean models of overlapping ellipses with varying values of pre-
ferred orientation are analyzed regarding β 0,2

1 . A constant value of the average value〈
β 0,2

1

〉
= 1 is found for a sufficiently large number of particles in the isotropic case,

whereas the average value
〈
β 0,2

1

〉
≈ 0.44 results from the analysis of aligned el-

lipses, which equals the result from the analysis of a single pixelized ellipse in the
analysis. An analysis of local properties of a turing pattern system is carried out
in [STKB+10], where regions of interest are the ones with non-lamellar concen-
tration of one chemical. Here, the Minkowski tensor W 0,2

1 can identify the local
non-lamellar regions in the pattern, corresponding to regions with an isotropic value
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of β 0,2
1 . Based on these observations, the MT W 0,2

1 is used for the description of mi-
crostructures in this sequel. Certainly, the procedure can be adapted for other MTs.

9.2.3.4 Orientation Measure Based on W 0,2
1

From the eigenvalue analysis of the MT W 0,2
1 , the eigenvectors carry information

about the orientation of the analyzed body. In the case of ellipsoidal bodies in three-
dimensional space, the eigenvectors correspond to the direction of orientation axes
of the ellipsoid. For a more detailed analysis, the bodies of ellipsoidal shape can be
separated into three cases regarding their symmetry properties: (a) ellipsoids with-
out any axial rotational symmetry, i. e. three differing radii, (b) ellipsoids exhibiting
rotational symmetry about one axis, i. e. two radii are equal and (c) spheres, where
all three radii are equal. The eigenvalues and eigenvectors show specific properties
related to the cases (a), (b) and (c).

(a) An ellipsoidal body with no rotational symmetry properties yields a MT W 0,2
1

with three distinct eigenvalues μ1 �= μ2 �= μ3, with μi for i = 1,2,3 being the
eigenvalues of W 0,2

1 in ascending order, thus μ1 ≥ μ2 ≥ μ3, one eigenvector
associated to each distinct eigenvalue. The directions of these eigenvectors v1,
v2 and v3 correspond to the three axis of the ellipsoid, which represent the main
directions of orientation of the body. This case is depicted in Figure 9.2 (a).

(b) Bodies of ellipsoidal shape which possess one axis of rotational symmetry re-
sult in a MT W 0,2

1 with one double and one single eigenvalue, i. e. μ1 = μ2 �= μ3

or μ1 �= μ2 = μ3 and associated eigenvectors. It is observed that the direction
of the eigenvector associated to the distinct eigenvalue coincides with the di-
rection of rotational symmetry axis. Thus, this eigenvector gives information
about a preferred direction of orientation of the ellipsoidal body. This is illus-
trated in Figure 9.2(b). The eigenvectors associated to the double eigenvalue
span a plane perpendicular to the axis of symmetry which represents the space
of all possible eigenvectors associated to the double eigenvalue.

(c) Ellipsoids of spherical shape show an isotropic distribution of surface orien-
tation, thus a value of β 0,2

1 = 1 results due to the fact that a triple eigenvalue
μ1 = μ2 = μ3 is found. Consequently, three ambiguous eigenvectors are ob-
tained. This observation is in accordance with the arbitrariness of rotational
symmetry axis in a sphere, where an infinite number of symmetry axes exist
due to spherical symmetry. In this special case no distinct axis of symmetry or
direction of orientation of the body can be detected. An illustration of this case
is given in Figure 9.2(c). The three eigenvectors span a space of all permissible
eigenvectors, i.e. any vector originating in the center of the sphere.

The above described observations for the analysis of eigenvalues and eigenvec-
tors suggest that the direction of eigenvectors associated to distinct eigenvalues cor-
respond to preferred orientation directions of an ellipsoidal body. Thus, this class of
eigenvectors is considered in the analysis of the microstructure together with their
separation due to the different types of ellipsoids (a), (b) and (c). The direction of
the distinct eigenvectors can be described in spherical coordinates by two angles, θ



9 Construction of Statistically Similar RVEs 231

v3 v1

v2

(a) Ellipsoid without
rotational symmetry:
three distinct eigenvalues
μ1 �= μ2 �= μ3 with associ-
ated eigenvectors v1, v2
and v3.

v2

v3

v1

(b) Ellipsoid with ro-
tational symmetry: one
distinct eigenvalue and
a double eigenvalue
μ1 �= μ2 = μ3 with a
distinct eigenvector v1
and a plane of possible
eigenvectors v2 and v3

v3

v1

v2

(c) Sphere: triple eigen-
value μ1 = μ2 = μ3
and three ambiguous
vectors v1, v2 and v3
spanning the associated
eigenspace.

Fig. 9.2 Illustration of possible cases for an ellipsoid and associated eigenvectors of W 0,2
1 .

Dashed lines denote directions of eigenvectors associated to multiple eigenvalues, which span
the possible space of all eigenvectors associated to these eigenvalues (gray plane or space).
Red solid lines denote directions of eigenvectors associated to distinct eigenvalues, describing
distinct orientation directions of the ellipsoidal bodies. Taken from [SBBS14].

and ϕ . The admissible range of θ and ϕ can be reduced due to joint consideration
of a direction and its inversion with θ ,ϕ ∈ [−π/2,π/2].

9.2.3.5 Microstructural Descriptors Based on Probability Density Functions

In order to analyze the microstructure of a two-phase material consisting of an in-
clusion phase embedded in a matrix phase, the afore-mentioned measures based on
MT W 0,2

1 will be used. Since this MT is defined as the integral over a single body
and based on the above described interpretation of the measures of anisotropy and
orientation drawn from W 0,2

1 , the following procedure is proposed to compute sta-
tistical descriptors for the complete microstructure. First, the measures β 0,2

1 and the
orientation given by θ and ϕ are computed for each inclusion in the microstructure.
Next, a probability density function is considered in order to take into account the
distribution of the respective measure in the complete microstructure. The definition
of the probability density functionPMA for the scalar anisotropy measure βm = β 0,2

1
for an inclusion Ωm is straight forward, hence

PMA(iβ ) :=
1

dβ nincl

nincl

∑
m=1

ξ (iβ ) with ξ :=

{
1 if βm = β 0,2

1 ∈ ciβ

0 else,
(9.25)



232 L. Scheunemann et al.

with a number nβ of categories ciβ , iβ = 1...nβ with an equal category size dβ =

1/nβ , since β ∈ [0,1] and a total number of inclusions given by nincl. The probability
density function is estimated by the use of a histogram over the distribution of values
β 0,2

1 obtained for the inclusions in the microstructure, which is then normalized such
that the total area of the histogram is equal to one to satisfy

∫ 1
0 (PMA) = 1 with the

admissible values of β 0,2
1 between 0 and 1.

For the estimation of the probability density function describing the orientation
measure introduced above, a similar approach is applied. Since the random variable
describing the orientation is two-dimensional (described by two angles θ and ϕ), a
number of nθ × nϕ categories ciθ ,iϕ with iθ = 1...nθ and iϕ = 1...nϕ and an equal
category size dθ = π/nθ and dϕ = π/nϕ , due to θ ,ϕ ∈ [−π/2,π/2], is obtained.
The probability density function then reads

PMO,k(iθ , iϕ ) :=
1

dθ dϕ nincl

nincl

∑
m=1

ξ (iθ , iϕ )

with ξ :=

{
1 if Ωm ∈Bk ∪

{
θm ∈ ciθ ,ϕm ∈ ciϕ

}
0 else,

(9.26)

with individual sets of inclusions Bk and an individual inclusion Ωm . These sets
are determined by the composition of eigenvalues, according to the characterization
of ellipsoids described in Section 9.2.3.4 as

Bk=1,2,3 := {Ωm|μ1 > μ2 > μ3} → case (a),

Bk=4 := {Ωm|μ1 = μ2 > μ3} → case (b),

Bk=5 := {Ωm|μ1 > μ2 = μ3} → case (b),

Bk=6 := {Ωm|μ1 = μ2 = μ3} → case (c).

(9.27)

In detail, the different types of ellipsoids and their orientations represented by di-
rection of eigenvectors are treated separately. In the case of an ellipsoid without
rotational symmetry, case (a), three distinct eigenvectors are obtained. The accord-
ing eigenvectors to each eigenvalue are represented by k = 1 for μ1, k = 2 for μ2 and
k = 3 for μ3. For case (b), where a rotationally symmetric ellipsoid about one axis
is treated, only one distinct eigenvalue exists, with the according eigenvector treated
by k = 4 for μ1 = μ2 > μ3 and k = 5 for μ1 > μ2 = μ3. For case (c), i.e. a spherical
inclusion, no distinct eigenvalue and thus no distinct direction of eigenvectors can
be observed. In this case simply the existence and not the direction of an eigenvec-
tor is captured in PMO,6. Hence, in this special case there exists only one category
ciθ ,iϕ with nθ = nϕ = 1 and dθ = dϕ = π .

Using the presented microstructural descriptors based on the Minkowski tensor
W 0,2

1 , a real DP-steel microstructure is analyzed in the following. It was recon-
structed from 3D Electron Backscatter Diffraction measurements at the
Max-Planck Institute for Iron Research in Düsseldorf, Germany (Prof. D. Raabe),
cf. Figure 9.3(a), for details see [ZRS+06], [BBS+14b], [BBSR11]. The respective
probability density distribution of the anisotropy measure is depicted in
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(a)

PMA

β = β 0,2
1(b)

Fig. 9.3 (a) Realistic DP-steel microstructure (green indicating the martensitic inclusion
phase and red indicating the ferritic matrix phase) and (b) probability density function PMA

versus β = β 0,2
1 , see (9.25). Taken from [SBBS14].

Figure 9.3(b). Figure 9.4 shows the probability distribution of orientation for the
relevant cases (k = 1,2,3). The other cases were rarely found in the analysis.

9.3 Construction and Analysis of SSRVEs

In this section, SSRVEs based on combinations of different statistical measures
will be constructed and analyzed for a real DP steel microstructure. Therefore,
specific objective functions are proposed based on different sets of statistical de-
scriptors as well as an objective function for the evaluation of the mechanical re-
sponse. The DP steel microstructure is obtained from 3D EBSD measurements
(electron backscatter diffraction combined with focused ion beam sectioning), cf.
[ZRS+06], [BBS+14b], [BBSR11]. The physical size of the microstructure portion
is 15.9µm×16.45µm×5.0µm. For the solution of the optimization problem, a dif-
ferential evolution algorithm incorporated in the optimization framework Mystic,
see [MHA09, MSS+11], is used. Based on each objective function, SSRVEs for
different parameterization types are constructed. Here, the inclusion morphology of
the SSRVEs is described by different numbers of ellipsoidal inclusions which are
defined in terms of generalized ellipsoids, whose outer surface is defined by

3

∑
l=1

(
|vl · (X−Xc)|

rl

)pl

= 1. (9.28)

The shape of the generalized ellipsoid is defined by pl , here a value of pl = 2 is
chosen for (classical) ellipsoids. The orientation of semi-axis of the ellipsoid is de-
fined by the vectors vl , the radii on the semi-axis are defined by rl and the ellipsoid’s
center position is given by Xc = [Xc Yc Zc]. With a restriction to an orthogonal semi-
axis coordinate system, the direction of this system can be represented in spherical
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θ
ϕ

PMO,1

(a)

θ
ϕ

PMO,2

(b)

θ
ϕ

PMO,3

(c)

Fig. 9.4 Relevant cases of probability distribution of orientation: (a) PMO,1, (b) PMO,2 and
(c) PMO,3 for realistic DP-steel microstructure. Taken from [SBBS14].

coordinates by three angles, i. e. ϑ , ϕ and ζ . All position X satisfying (9.28) de-
scribe points on the boundary of the ellipsoid. Thereby, every ellipsoidal inclusion
can be described by

γ( j) =
[
X ( j)

c Y ( j)
c Z( j)

c ϑ ( j) ϕ( j) ζ ( j) r( j)
1 r( j)

2 r( j)
3

]T
. (9.29)

The different types of parameterization considered here describe SSRVEs with dif-
ferent numbers of ellipsoidal inclusions, thus the vector for parameterization type i
is given by

γi =
[
(γ(1))T (γ(2))T . . . (γ(i))T

]T
. (9.30)

The SSRVEs are constructed such that periodic extensibility is provided. Note that
the center coordinates of the first ellipsoid are fixed in order to avoid redundancy
due to pure translational movement of the inclusion phase. Here, SSRVEs with one
to four ellipsoidal inclusions, i.e. i = 1,2,3,4, are constructed.
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9.3.1 Objective Functions

The different statistical measures presented in Sec. 9.2.3.1 and Sec. 9.2.3.5 have the
ability to capture different features of a microstructure morphology. For the con-
struction of SSRVEs for a real (target) microstructure it is beneficial to incorporate
multiple measures to account for more statistical information. In order to compare
the performance of the statistical measures describing the real microstructure, three
objective functions are defined based on weighted sums of least-square functionals
of different statistical descriptors. A first objective function taking into account the
volume fraction and spectral density is given by

EI = ωVLV +ωSDLSD (9.31)

with the weighting factors for the volume fraction and spectral density given by ωV

and ωSD, respectively. The least-square functional

LV(γi) =

(
1−PSSRVE

V (γi)

P target
V

)2

(9.32)

describes the deviation of the volume fraction of the SSRVE, PSSRVE
V , and the one

of the real (target) microstructure,P target
V . The least-square functional of the spectral

density reads

LSD(γi) =
1

ÑSD

ÑSD

∑
m=1

(
P target

SD (ym)−PSSRVE
SD (ym,γi)

)2
(9.33)

accounting for the difference of the spectral density of the SSRVE, PSSRVE
SD , and

the real (target) microstructure, P target
SD , respectively. In contrast to the comparison

of the volume fraction, where scalar values are compared, the spectral density re-
quires a more sophisticated handling. Reasons for this are firstly the higher dimen-
sionality (here a three-dimensional data field) and secondly the difference in data
resolution for the SSRVE and the real (target) microstructure. In a preprocessing
step, the complete spectral density of the real (target) microstructure is computed
in the original resolution of the input data. Using a threshold value to identify the
relevant entries of the spectral density, a relevant section of the spectral density is
identified and stored. In the subsequent optimization process, only this relevant sec-
tion of the SSRVE is compared to the one stored for the real (target) microstructure.
This requires a rebinning process1, since the real microstructures input data and the
SSRVE do not necessarily have the same resolution. It was noted by [Pov95] that
the degree of rebinning strongly influences the accuracy of the overall results and
should be performed such that the main characteristics of the spectral density are
still captured. The number of relevant entries in (9.33) is denoted by ÑSD with the
vector ym defining the position vector of the individual entry.

1 Here, rebinning stands for the standard procedure to change the resolution of data, which
is well-known from image processing.
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Another objective function can be considered as an extension of (9.31) by addi-
tionally considering the lineal-path function. The resulting objective function reads

EII = ωVLV +ωSDLSD +ωLPLLP (9.34)

with the least square functional computed in a similar manner as for (9.33) by

LLP(γi) =
1

ÑLP

ÑLP

∑
m=1

(
P target

LP (ym)−PSSRVE
LP (ym,γi)

)2
(9.35)

with the lineal-path function computed for the SSRVE and the real microstruc-
ture given by PSSRVE

LP and P target
LP , respectively. Since the computation of complete

lineal-path functions is rather costly, only a subset of line segments is evaluated
here, provided that this set of line segments still characterizes the important proper-
ties of the microstructure adequately. As for the spectral density, a threshold value
is used to determine a relevant section of the lineal-path function, which is later
on compared to the respective part of the lineal-path function of the SSRVE in the
optimization process. This is again done in a preprocessing step, since the relevant
part has to be determined only once for the real (target) microstructure. The relevant
section of the lineal-path function is then defined by a total number of ÑLP entries
and the position vector to the individual entries is given by ym.

In order to analyze the performance of statistical measures computed based on the
Minkowski functional W 0,2

1 proposed in Section 9.2.3.5, a third objective function
is defined by

EIII = ωVLV +ωSDLSD +ωMALMA +ωMOLMO (9.36)

with the respective least-square functionals

LMA =
1

NMA

NMA

∑
m=1

(
V target

MA (m)

V target P target
MA (m) − V SSRVE

MA (m)

V SSRVE PSSRVE
MA (m,γi)

)2

, (9.37)

LMO =
1

6
∑

k=1
NMO,k

6

∑
k=1

NMO,k

∑
m=1

(
V target

MO,k (m)

V target
k

P target
MO,k(m) −

V SSRVE
MO,k (m)

V SSRVE
k

PSSRVE
MO,k (m,γi)

)2

.

(9.38)

Here, the number of categories in the probability density function describing
aniso-tropy is given by NMA, whereas the number of categories in the probability
density function characterizing the orientation measure PMO,k is denoted by NMO,k

for the different cases k = 1...6 described in (9.27). The individual categories in the
functions are denoted by m. In the prefactors of the probability density function, the

quantities V target|SSRVE
MA (m) and V target|SSRVE denote the volume of all inclusions asso-

ciated to the category m for the anisotropy measure and the volume of the inclusion
phase in the considered microstructure, respectively. In the case of the orientation
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measure, the quantity V target|SSRVE
MO,k (m) describes the volume of inclusions associ-

ated to category m of case k and V target|SSRVE
k gives the total volume of inclusions

of case k in the real (target) microstructure and the SSRVE. Subsequently, the pref-
actors V target|SSRVE

MA (m)/V target|SSRVE and V target|SSRVE
MO,k (m)/V target|SSRVE

k define phase
fractions of inclusion phase for individual categories. These factors enable a higher
weighting for categories associated to large fractions of inclusion phase and thus
enforce the influence of larger inclusions compared to smaller ones.

The objective function r̃∅ for the comparison of the mechanical response is based
on the evaluation of a set of virtual experiments performed for the real (target) mi-
crostructure and the SSRVE. Here, the macroscopic stress-strain response is com-
pared and the deviation re, j is defined by

re, j =
σ target

e, j (εe, j)−σSSRVE
e, j (εe, j)

σ target
e, j (εe, j)

, (9.39)

with the individual evaluation point j = 1...nep and a total number of evaluation
points nep for each virtual experiment e, σ denotes the macroscopic Cauchy stress
evaluated at the macroscopic engineering strain ε . Only values with non-zero de-
nominator are considered in (9.39). An average error for each virtual experiment is
computed by

r̃e =

√√√√ 1
nep

nep

∑
j=1

[re, j(εe, j)]
2 with εe, j =

j
nep

εmax
e , j = 1...nep (9.40)

where the maximum strain in each experiment is denoted by εmax
e . As an overall

error measure to compare the individual SSRVEs to each other, the average

r̃∅ =

√
1

nexp

nexp

∑
e=1

r̃2
e (9.41)

for a total number of virtual experiments nexp is defined. (9.41) also represents the
objective function comparing the mechanical response of the SSRVE and the real
(target) microstructure. In this contribution, the following virtual experiments are
considered: two uniaxial tension tests in x- and z- direction, denoted by subscript x
and z in the following, and two simple shear tests with a displacement of the xy-plane
in x-direction and in y- direction, respectively, denoted by subscript xy and yx.

In view of the staggered optimization scheme, cf. (9.3), it has to be noted that a
fully automated procedure is expensive. To evaluate the outer optimization problem
in a reasonable amount of time, the following procedure is used for the construction
of the SSRVEs:
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1.) Initialize the parameterization type i = 1, i.e. consider one inclusion.
2.) Solve the inner optimization problem with the respective objective function

given in Sec.9.3.1 in order to identify γ̃i, which reproduces the real microstruc-
ture best in terms of statistical measures.

3.) Evaluate r̃∅(γ̃i). If the value does not deceed a certain tolerance, increase the
complexity of the SSRVE’s microstructure morphology by increasing the num-
ber of inclusions i, go back to step 2.

The maximum number of inclusions in the SSRVEs was limited to i = 4. For the
evaluation of the mechanical response using coupled two-scale simulations, the real
microstructure and the SSRVEs are discretized using quadratic tetrahedral elements.
For the real microstructure, approximately 8.5 million degrees of freedom were ob-
tained. For the SSRVEs, the resulting number of elements is given in the respective
sections. Note that mesh convergence studies have been performed to verify the use
of a suitable mesh density. Furthermore, in the case of the SSRVEs, which are gov-
erned by a periodic geometry, periodic boundary conditions are applied. As the real
microstructure does not show a periodic geometry, linear displacement boundary
conditions are applied here.

In the description of the staggered optimization problem in (9.3), an optimiza-
tion with respect to a suitable set of weighting factors is proposed. The weighting
factors can be used to emphasize one statistical measure against another and trigger
the optimization process. Subsequently, different weighting factors determine dif-
ferent objective functions which pronounce the importance of a certain feature of
the function. Since a thorough analysis of the weighting factors is costly, suitable
sets of weighting factors are used for the construction of the SSRVEs instead. An
analysis of their relevance can be found in [SBBS14] from which suitable sets of
weighting factors are taken. These sets focus on a good fitting of the statistical mea-
sures of the SSRVE to the ones of the real microstructure. The specific weighting
factors are ωV = 1, ωSD = 1, ωLP = 1000, ωMA = ωMO = 1.

9.3.1.1 Definition of SSRVE Size

The size of the SSRVE plays an important role, because the statistical measures
are not necessarily dimensionless. For example, the lineal-path function contains
information about the characteristic size of an inclusion in the microstructure and
is observed to interfere with the inclusion phase fraction if the size of the SSRVE
is chosen too small. Consequently, the SSRVE size is not variable and has to be
defined apriori. Therefore, for an estimation of the size of the SSRVE, the following
approach is used to circumvent a contradiction between phase fraction and lineal-
path function:

1.) Based on the lineal-path function, an estimation for an average inclusion vol-
ume in the real (target) microstructure can be made. For this purpose, a thresh-
old pthres is defined and all entries/voxel in the lineal-path function smaller
than pthres are deleted, leaving a number of nthres

LP entries/voxel. The remain-
ing entries are associated to line segments with a relevant probability and
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Fig. 9.5 Section with lineal-path function values higher than the threshold of 0.02 represent-
ing an estimation for the average inclusion size computed for the microstructure shown in
Figure 9.3 (a). Taken from [BSBS14]

therefore define the average inclusion. The volume of this inclusion is com-

puted by V
target
inc = ∑

nthres
LP

i=1 Vi, where Vi denotes the unit volume of one voxel in
the lineal-path function, cf. Figure 9.5.

2.) With a prescribed number of inclusions i in the SSRVE and the same average
size of inclusions as in the real (target) microstructure,i.e. V SSRVE

inc =V
target
inc , the

SSRVE’s inclusion phase fraction can be estimated by

PSSRVE
V =

i V SSRVE
inc

V SSRVE =
i V

target
inc

V SSRVE (9.42)

with the total volume of the SSRVE denoted by VSSRVE. By claiming the same
inclusion phase fraction in the SSRVE and in the real (target) microstructure,
i.e. PSSRVE

V ≡P target
V , and rearranging (9.42) with respect to VSSRVE an esti-

mation of the required SSRVE volume is obtained by

V SSRVE =
i V

target
inc

P target
V

. (9.43)

3.) Based on the assumption of a cubic SSRVE with equal edge lengths in all di-
rections one obtains for the required edge lengths

LSSRVE = LSSRVE
x = LSSRVE

y = LSSRVE
z = 3

√
i V

target
inc

P target
V

. (9.44)

The associated unit volume of one voxel is 0.1µm×0.1µm×0.1µm. Following
the previously described method, the prescribed SSRVE’s sizes, i.e. the edge length
LSSRVE, with i = 1,2,3,4 inclusions is computed using the above described method
to LSSRVE

i=1 = 3.0µm for i = 1, i.e. one inclusion, LSSRVE
i=2 = 3.8µm for i = 2, i.e. two
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inclusions, LSSRVE
i=3 = 4.3µm for i = 3, i.e. three inclusions and LSSRVE

i=4 = 4.8µm for
i= 4, thus four inclusions. Since the other statistical measures used here do not show
a similar behavior regarding an interference with other measures, the computed size
of SSRVEs is used in all cases for better comparability, regardless of whether the
lineal-path function is incorporated in the objective function or not.

9.3.2 Coupled Micro-macro Simulations

In the following section, a brief resume of the direct two-scale micro-macro ap-
proach, also known as FE2 method, is given. For details on the framework, the reader
is referred to e.g. [Fey99], [SBM98], [MSS99], [Sch14]. The computational homog-
enization of micro-heterogeneous materials using a direct two-scale homogenization
approach is based on a separation of scales into the macroscale and the microscale,
where the microscale can be represented by a representative volume element (RVE).
This RVE is attached to every gauss point in the macroscopic boundary value prob-
lem (BVP), leading to an additional BVP which has to be solved in every macro-
scopic integration step. On the microscale, deformations are described in terms of
a microscopic deformation gradient F with J := det[F (X)] > 0, where X is the
position vector to a material point in the reference configuration. The first Piola-
Kirchhoff stress tensor P is the associated work-conjugated stress measure, which
is related to the microscopic Cauchy stresses by σ := 1

JPF T. For the macroscale,
all measures are marked by an overline. Here, the deformation gradient is given by
F with J := det[F ] > 0 and the macroscopic first Piola-Kirchhoff stress tensor P
and macroscopic Cauchy stress σ can be calculated by volumetric averaging over
the associated microscopic quantity, i.e.

P =
1
V

∫
B
P dV → σ :=

1

J
P F

T
, (9.45)

where the domain of the RVE is denoted by B with the associated volume V .
From the macro-homogeneity condition, also known as Hill-Mandel condition, see
[Hil63], boundary conditions on the microscale can be derived. Three well-known
types are uniform traction boundary conditions, linear displacement boundary con-
ditions and periodic boundary conditions. For increased efficiency in the calcula-
tions, the consistent macroscopic moduli are considered here, see [MSS99],[Sch14]
and [TW08]. The material behavior of the two phases in a dual phase steel, i.e.
martensite and ferrite, are modeled using an isotropic finite elasto-plasticity for-
mulation based on the multiplicative decomposition of the deformation gradient
F = F eF p, with the elastic part F e and the plastic part F p, see [Krö60], [Lee69].
In this contribution, the plastic behavior of the materials is described by an exponen-
tial hardening law, which is superimposed with linear hardening. The plastic strain
energy function, cf. [Voc55], is given by

ψP = y∞α−
1
η
(y0− y∞)exp(−ηα)+ 1

2
hα2 (9.46)
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Table 9.1 Material parameters for individual phases

λ / MPa μ / MPa y0 / MPa y∞/ MPa η h

ferrite 118,846.2 79,230.77 260.0 580.0 9.0 70.0
martensite 118,846.2 79,230.77 1,000.0 2,750.0 35.0 10.0

with the equivalent plastic strains α . The material parameters for both materials are
given in Table 9.1 with the Lamé constants λ and μ , the initial yield strength y0,
plastic yield strength at initialization of linear hardening y∞, the degree of expo-
nential hardening η and the slope of superimposed linear hardening h. An implicit
exponential update algorithm is used to integrate the flow rule, preserving plastic
incompressibility, see [WA90], [Sim92], [MS92], [Kli00]. Kinematic hardening is
not considered due to a lack of experimental data for the individual phases of the
material.

9.3.3 SSRVEs Based on Different Sets of Statistical Measures

The following section presents SSRVEs based on different sets of statistical de-
scriptors and compares the statistical and mechanical error compared with the real
DP steel microstructure.

Table 9.2 Results of SSRVEs based on volume fraction and spectral density - values of
objective function EI, and individual least square functionals, number of tetrahedral elements
nele and mechanical errors r̃ in % for the individual SSRVEs, compare [SBBS14].

ninc EI/ 10−3 LV/ 10−7 LSD/ 10−3 nele r̃x r̃z r̃xy r̃yx r̃∅

1 4.17 8.83 4.17 1638 3.3 3.7 5.0 5.0 4.32

2 2.03 1.35 2.03 8455 4.2 3.9 2.0 2.0 3.20

3 1.16 0.97 1.16 10759 2.6 1.2 3.9 3.9 3.11

4 0.74 3.38 0.74 17118 2.7 0.5 3.2 3.2 2.65

9.3.3.1 SSRVEs Based on Volume Fraction and Spectral Density

It has been shown for two-dimensional SSRVEs in [BBS14a] that SSRVEs based
on volume fraction and spectral density can be improved by additionally consider-
ing the lineal-path function in view of a comparison of the mechanical error with
the real target microstructure. A similar behavior is assumed in the 3D case, how-
ever the results of SSRVEs based on volume fraction and spectral density enable to
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observe the improvement of an additional consideration of other statistical mea-
sures. The resulting SSRVEs constructed based on a minimization of (9.31) can be
found in Figure 9.6 for one, two, three and four ellipsoidal inclusions. The results of
the statistical and mechanical comparison are presented in Table 9.2. A decreasing
error in the objective function as well as in the overall mechanical error r̃∅ can be
observed with an error of 2.65% for an SSRVE with four inclusions.

9.3.3.2 SSRVEs Based on Volume Fraction, Spectral Density and
Lineal-Path Function

From the minimization of EII given in (9.34), representations of SSRVEs with dif-
ferent numbers of inclusions are obtained, which are depicted in Figure 9.7. The
results of the comparison of statistical measures and mechanical response are given
in Table 9.3. It can be observed that a higher number of inclusions in the SSRVE
is accompanied by a lower error in the objective function, which implies a closer
match of the statistical measures. This behavior appears to converge with more than
three inclusions in the SSRVE as the value of objective function does not decrease
significantly. It can be seen that for an increased morphology complexity, i.e. adding
more inclusions to the SSRVE, a higher number of finite elements is needed for a
sufficient discretization. Note that mesh convergence studies have been carried out
to ensure a reasonable mesh density for the SSRVEs. From the comparison of the
mechanical response, i.e. r̃∅, it is observed that the SSRVEs with three and four
inclusions lead to reasonably low errors, r̃∅ = 1.45% and r̃∅ = 1.47%, respectively.
Comparing the results with the ones of the SSRVEs constructed based on volume
fraction and spectral density, a better approximation of the mechanical behavior is
found. Based on the above results, the SSRVE with three inclusions is considered as
the best representation of the real microstructure based on the statistical descriptors
volume fraction, spectral density and lineal-path function, with a good degree of
accurateness in the mechanical response and a moderate number of finite elements.
This SSRVE is denoted by SSRVEbest

LP in the following.

Fig. 9.6 SSRVEs based on volume fraction and spectral density, i.e. objective function EI,
with different numbers of inclusions ninc = 1,2,3,4 from left to right. Taken from [SBBS14].
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Table 9.3 Results of SSRVEs based on volume fraction, spectral density and lineal-path
function - values of objective function EII, and individual least square functionals, number of
tetrahedral elements nele and mechanical errors r̃ in % for the individual SSRVEs, compare
[SBBS14].

ninc EII/ 10−2 LV/ 10−4 LSD/ 10−3 LLP/ 10−4 nele r̃x r̃z r̃xy r̃yx r̃∅

1 8.432 485.29 4.5 0.31 2851 5.3 4.6 5.5 5.5 5.24

2 0.98 32.07 3.5 0.031 5015 0.5 3.6 4.4 4.4 3.60

3 0.53 3.37 3.3 0.017 15714 0.2 2.4 1.2 1.1 1.45

4 0.38 3.11 2.33 0.014 19196 1.2 2.5 0.7 0.7 1.47

9.3.3.3 SSRVEs Based on Volume Fraction, Spectral Density and Minkowski
Anisotropy and Orientation Probability Density Function

The SSRVEs constructed based on a minimization of EIII , cf. (9.36), are shown in
Figure 9.8, the results of the statistical and mechanical comparison are summarized
in Table 9.4. Again, it is observed that with a higher number of inclusions the value
of objective function and mechanical error decrease. From this set, the SSRVE with
four inclusion is considered as the best representation of the real microstructure,
showing a mechanical error of r̃∅ = 1.92% and requiring a number of 12133 el-
ements for the discretization. It is denoted by SSRVEbest

MA|MO is the following. A
decrease of the mechanical error compared with the SSRVEs based on volume frac-
tion and spectral density only is observable for each pair of SSRVEs with the same
inclusion number in Table 9.2 and Table 9.4. From the different sets of SSRVEs,
it is observed that the individual statistical errors are found to be in varying ranges
from EI , EII and EIII . As an example, the value of least-square error for the volume
fraction is found in a range of 10−7 for EI , and in a range of 10−4 and 10−5 for EII

and EIII . The degree of approximation of an individual statistical measure seems to
be influenced by the other measures incorporated in the objective function and the
weighting factors leveling the individual errors. Furthermore, the ranges of errors of
the different statistical measures are naturally located in different ranges, which is
why a direct comparison of the individual statistical errors is difficult without further
analysis of the range of individual statistical measures and weighting factors.

Fig. 9.7 SSRVEs based on volume fraction, spectral density and lineal-path function, i.e.
objective function EII, with different numbers of inclusions ninc = 1,2,3,4 from left to right.
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Fig. 9.8 SSRVEs based on volume fraction, spectral density and Minkowski measures, i.e.
objective function EIII, with different numbers of inclusions ninc = 1,2,3,4 from left to right.
Taken from [SBBS14].

Table 9.4 Results of SSRVEs based on volume fraction, spectral density and Minkowski
measures - values of objective function EIII, and individual least square functionals, number
of tetrahedral elements nele and mechanical errors r̃ in % for the individual SSRVEs, compare
[SBBS14].

ninc EIII/ 10−2 LV/ 10−4 LSD/ 10−3 LMA/ 10−2 LMO/ 10−2 nele r̃x r̃z r̃xy r̃yx r̃∅

1 6.47 0.001 4.56 5.88 1.27 2519 4.0 3.7 5.4 5.4 4.69

2 4.20 0.006 2.48 1.55 2.39 5358 3.4 1.9 3.4 3.5 3.12

3 1.95 1.65 3.3 0.39 1.2 10087 2.5 0.7 3.5 3.5 2.79

4 1.41 0.19 2.01 0.38 0.82 12133 3.3 1.1 1.1 1.2 1.92

9.3.4 Comparison of Stress on Microscale

For a detailed comparison of the mechanical response of the best SSRVEs, i.e.
SSRVEbest

LP and SSRVEbest
MA|MO, with the real microstructure, the stresses on the mi-

croscale are taken into consideration. By volumetrically averaging the stresses only
over the individual phases, the individual error measures rfer

e and rmar
e are obtained for

the ferrite and martensite phase, respectively, and therein for each virtual experiment
e = x,y,xy,yx. These error measures denote the average stress deviation in the ferrite
phase and martensite phase, respectively. The results of the individual phase stress
deviation for all four virtual experiments are depicted in Figure 9.9-9.12, where the
average error rfer

e , respectively rmar
e , is plotted versus the macroscopic deformation of

the complete SSRVE, i.e. )l̄e/l̄e,0. The averaged errors are computed analogously
to (9.39)-(9.41) and are summarized in Table 9.5. Therein, a very good accordance
of the average stress in the ferrite phase is observed, with overall averages r̃fer

∅ lower
than 1% for both SSRVEs. A slight advantage for SSRVEbest

MA|MO can be detected,
however both errors are in the same range. In the martensite phase, the average stress
in the SSRVEs does not reproduce the average stress in the target microstructure as
well. Overall average errors of r̃mar

∅ = 13.38% for SSRVEbest
LP and r̃mar

∅ = 17.69% for
SSRVEbest

MA|MO are computed, leading to an advantage for SSRVEbest
LP . These discrep-

ancies are not recognizable in the overall errors computed for the full macroscopic
mechanical behavior, since the low martensite phase fraction compared with the fer-
rite phase fraction reduces the significance of the martensite microscopic response.
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In general, the deficiencies in resemblance of the average stress in the martensite
phase can be related to the different boundary conditions applied for the SSRVE
and the target microstructure. With the application of linear displacement bound-
ary conditions needed for the non-periodic target microstructure, a stiffening effect
occurs predominantly in the stiffer phase, i.e. in the martensite. This can also be ob-
served in Figure 9.13, where the von Mises stresses σvm are depicted for the target
microstructure, SSRVEbest

LP and SSRVEbest
MA|MO in tension test in x-direction with a cut

through each microstructure. This boundary stiffening effect does not occur in the
SSRVE, where periodic boundary conditions are applied.

9.3.4.1 Comparison of Computational Efficiency

In the following the aspect of computational efficiency is considered. Here, not only
the computation time of SSRVEs in FE2 simulations is of interest but also the op-
timization time needed for the generation of an SSRVE. Both SSRVEs considered
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Fig. 9.9 Deviation rx of averaged stress in x-direction of SSRVEbest
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Table 9.5 Comparison of stresses on microscale for individual phases in SSRVEbest
LP and

SSRVEbest
MA|MO evaluated for all four virtual experiments. Taken from [SBBS14].

Ferrite r̃fer
x in % r̃fer

z in % r̃fer
xy in % r̃fer

yx in % r̃fer
∅ in %

SSRVEbest
LP 0.43 1.55 0.40 0.36 0.85

SSRVEbest
MA|MO 0.90 0.75 0.29 0.30 0.62

Martensite r̃mar
x in % r̃mar

z in % r̃mar
xy in % r̃mar

yx in % r̃mar
∅ in %

SSRVEbest
LP 9.94 2.08 17.82 17.19 13.38

SSRVEbest
MA|MO 23.59 11.36 16.56 16.10 17.69
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Fig. 9.12 Deviation of averaged stress in shear test yx of SSRVEbest
LP and SSRVEbest

MA|MO with

(a) rfer
yx for ferrite and (b) rmar

yx for martensite. Taken from [SBBS14].

here, SSRVEbest
LP and SSRVEbest

MA|MO, are discretized with a similar number of ele-

ments, 15714 for SSRVEbest
LP and 12113 for SSRVEbest

MA|MO, leading to the conclu-
sion that the efficiency of numerical two-scale calculations will also be similar, with
a slight advantage for SSRVEbest

MA|MO. With respect to the optimization time required
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(a) (b) (c)

〈σvM〉= 393.5 〈σvM〉= 391.0 〈σvM〉= 389.3 σvM

Fig. 9.13 Von Mises stress σvM in MPa for tension test in x-direction showing the cross-
section obtained from cutting through (a) the target structure (15.9µm × 16.45µm ×
5.0µm), (b) SSRVEbest

LP (4.3µm × 4.3µm × 4.3µm) and (c) SSRVEbest
MA|MO (4.3µm ×

4.3µm × 4.3µm) and respective volume average values 〈σvM〉. Taken from [SBBS14].

Table 9.6 Average evaluation times tLP and tMA|MO for the minimization of the objective

functions EII and EIII for SSRVEbest
LP and SSRVEbest

MA|MO in seconds. Taken from [SBBS14].

tLP/s tMA|MO/s tLP/tMA|MO

5.98 0.0031 1929.03

to solve the optimization problem and to identify the SSRVE, the two candidate ob-
jective functions EII and EIII differ significantly. The time needed for one function
evaluation of the objective function depends on the incorporated statistical mea-
sures and in some cases also on the inclusion morphology. For specific inclusion
morphologies, the evaluation of the lineal-path function and Minkowski functionals
is more expensive than for others, while the inclusion morphology has negligible
effect on the evaluation time of spectral density and volume fraction. In the con-
sidered evolutionary algorithm, the evaluation time of one generation of candidate
solutions can differ significantly, depending on the evaluated inclusion morpholo-
gies. For a decent comparison of evaluation time of the optimization processes, only
the evaluation time of the objective function for the best candidate of every gener-
ation will be summed up. Dividing this value by the total number of generations
to identify the SSRVE, a convincing comparative measure is obtained as an aver-
age evaluation time. These values tLP and tMA|MO are shown in Table 9.6 as well as
their ratio tLP/tMA|MO. With a factor of almost 2000, the objective function based
on Minkowski functionals offers a large speedup in the optimization compared to
the objective function using the lineal-path function. With regard to an efficient so-
lution of the inner optimization problem in an automated process, measures based
on Minkowski functionals show a higher efficiency.
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9.3.5 Analysis of Bounds

In the previous section, SSRVEs are presented as the “best” representation of a real
microstructure. As described in Section 9.2.2, the upper bound or the “worst” case
scenario of a VE is constructed in the following, cf. [BSBS14]. With regard to the
maximization of the inner optimization problem based on EII , i.e. using volume
fraction, spectral density and lineal-path function, one would obviously obtain a mi-
crostructure only containing ferrite or martensite, yielding a maximization of the
error of the volume fraction, hence trivial bounds are represented with no inherent
microstructure in the RVE. Considering a minimization of the error of volume frac-
tion together with a maximization of the error of the remaining statistical measures,
a more sophisticated “worst” VE scenario can be constructed by

�
E

worst
= min

γi

[ �
E (γi)

]
, (9.47)

with the modified objective function given by

�
E (γi) = ωVLV(γi)+ [ωSDLSD(γi)+ωLPLLP(γi)]

−1 . (9.48)

Thereby a VE is constructed with a reasonable phase fraction while the spectral
density and lineal-path function, statistical measures which provide information on
shape and distance of inclusions, are as dissimilar as possible compared to the mea-
sures of the target microstructure. Here, a parameterization with three ellipsoidal
inclusions is considered. The parameterization of the “worst” VE is obtained by

�
γi= arg

[
�
E

worst
]
. (9.49)

Figure 9.14 shows the representation of the obtained “worst” VE (top picture) and
the according “best” RVE (bottom picture), which coincides with the SSRVE con-
structed in Section 9.3. It shall be noted that the “worst” VE here represents ap-
proximately the Voigt-bound in y- and z-direction, where a parallel arrangement of
the phases occurs and the Reuss-bound in x-direction, due to the serial composition
of the phases. In order to compare the results regarding a similarity of statistical

Table 9.7 Values of the objective function EII following (9.34) and associated mechanical
errors r̃ for the “worst” case VE and SSRVE based on (9.34) depicted in Figure 9.14, nele de-
notes the number of degrees of freedom of the microscopic FE-discretization, cf. [BSBS14].

EII LV LSD LLP nele r̃x r̃z r̃xy r̃yx r̃∅

[×10−3] [×10−3] [×10−3 ] [×10−3] [%] [%] [%] [%] [%]

worst 132.62 1.245 11.322 6.4797 4723 33.65 37.26 6.35 6.5 25.5
best 5.3 0.34 3.3 0.0017 15714 0.2 2.4 1.2 1.1 1.45
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Fig. 9.14 (a) “Worst”- and “best”-case scenario of a VE or RVE with 3 inclusions and (b) in-
tervals between bounds of values of least-square functionals and their associated mechanical
errors. Taken from [BSBS14].

descriptors, the individual least-square errors of the “best” case, the SSRVE, given
byLV(γi), LSD(γi) andLLP(γi) and the value of objective function EII(γi), as well

as the respective values for the “worst” case, i.e. LV(
�
γi), LSD(

�
γi) and LLP(

�
γi) and

the value of objective function EII(
�
γi), see Table 9.7, are used. Figure 9.14 shows the

differences between the lower and the upper bound of the objective function, indi-
vidual least-square errors and individual errors of mechanical tests r̃x, r̃z, r̃xy and r̃yx

as well as the overall average mechanical error r̃∅ to emphasize the magnitude of the
difference. Here, a logarithmic scaling on the y-coordinate is used, additionally the
errors are shown in different decimal powers. It can be seen that the value of objec-
tive function differs by more than one order of magnitude, the error of the lineal-path
function even varies by over three orders of magnitude. This strong deviation results
in a large difference of the mechanical errors, which show a difference of up to one
order of magnitude in r̃∅ and individual errors as high as two orders of magnitude
for the tension test in x-direction. An illustration of the individual mechanical errors
re is shown in Figure 9.15, where the error is plotted over the macroscopic strain
)le/le,0, where e denotes the respective virtual experiment, cf. Section 9.3.1. Here,
a difference of the mechanical response in a tension test in x-direction of up to 50%
for the “worst” VE is observed, while the SSRVE results in an error of only 1%, a
similar behavior is prevalent in the tension test in z-direction. For the shear tests, the
error differs not as significantly, with a range of 2% for the SSRVE and 8% for the
“worst” VE. The analysis of upper and lower bounds emphasizes the importance of
considering further statistical measures aside from the volume fraction. A severe er-
ror can result from disregarding further measures, which might only become visible
in certain mechanical tests.
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Fig. 9.15 Mechanical errors for “best” and “worst” RVE considering 3 ellipsoidal inclusions.
Taken from [BSBS14].

9.4 Conclusion

This contribution details the method of constructing three-dimensional SSRVEs,
which has been proposed for the two-dimensional case in [BSB09], [SBB11] and
[BBS14a] and generalized to 3D SSRVEs in [BSBS14]. SSRVEs are characterized
by a microstructure of reduced complexity compared with RVEs based on real ran-
dom microstructures. Due to this reduction, SSRVEs can lead to advantages in di-
rect two-scale simulations by vastly reducing computational costs. The method of
construction of SSRVEs here uses a staggered optimization scheme, as proposed
in [BSBS14] and extended in [SBBS14]. Therein, an outer optimization problem
controls the similarity of the SSRVE with a real target microstructure regarding me-
chanical behavior, whereas the inner optimization problem ensures similarity with
respect to statistical measures. A variation of statistical measures as well as different
parameterization types for the SSRVE have been investigated. The statistical mea-
sures play an essential role in the construction of SSRVEs, since they determine the
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properties of the SSRVE being fitted to the ones of the real target microstructure.
For an efficient construction of SSRVEs, it is advantageous to consider statistical
measures which capture necessary information of the microstructure while being
realizable in low computation time. Therefore, Minkowski functionals, as a base for
microstructural descriptors, have been investigated here. As Minkowski functionals
are defined as integrals over single geometrical objects, probability density func-
tions have been proposed as a measure for a consideration of a microstructure built
up by multiple inclusions in a matrix phase.

SSRVEs have been constructed with different numbers of inclusions considering
different sets of statistical descriptors, in detail combinations of volume fraction,
spectral density, lineal-path function and probability density functions based on the
tensorial Minkowski functionalW 0,2

1 are used. It turns out that SSRVEs solely based
on volume fraction and spectral density are outperformed by SSRVE additionally
taking into account either the lineal-path function or probability density functions
based on a Minkowski tensor regarding the comparability of mechanical behav-
ior, regardless of the parameterization of the SSRVE, i.e. the number of inclusions.
Overall, an SSRVE with three inclusions based on volume fraction, spectral density
and lineal-path function performed best, with an overall error of r̃∅ = 1.45 and a
discretization using 15714 elements, whereas four inclusions are needed when con-
sidering volume fraction, spectral density and probability density functions based on
the Minkowski tensor W 0,2

1 instead to achieve r̃∅ = 1.92 using a discretization of
12113 elements, cf. [SBBS14]. Hence, from the number elements in the discretiza-
tions, no strong advantage is expected for either on the SSRVEs regarding com-
putation time. In order to take a closer look at the stress behavior in the individual
phases, the average stress in each phase is calculated and compared with the average
stress per phase in the target structure. Here, a very good accordance in both “best”
SSRVEs mentioned above is visible in the ferrite phase, while the comparison of
the average stress in the martensite phase shows some deficiencies. This difference
of average stress can be ascribed to the different boundary conditions used in the
virtual experiments for the real microstructure and the SSRVEs. While the SSRVEs
are constructed obeying periodic extensibility and modeled using periodic boundary
conditions, the real microstructure is modeled using linear displacement boundary
conditions. The latter ones lead to a stiffening primarily in the stiffer phase, i.e.
martensite, which does not occur under periodic boundary conditions.

In view of efficiency of the optimization procedure, a comparison of an aver-
age optimization time per generation in a differential evolution algorithm has been
carried out for the “best” SSRVEs. It turns out that the measures based on the
Minkowski tensor offer a speedup factor of 2000 compared to considering the lineal-
path function, cf. [SBBS14]. In view of an efficient solution of the inner optimiza-
tion problem, this plays an important role, especially when aiming for an automated
optimization procedure of the staggered optimization problem.

The general importance of considering more sophisticated statistical measures for
the construction of SSRVEs is underlined in an analysis of upper bounds of RVEs.
A “worst” case RVE is constructed by a maximization of the error of statistical
measures, whereas the volume fraction is matched to the according value of the real
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microstructure, cf. [BSBS14]. The comparison of the range of error of statistical
measures and especially the range of mechanical error, which can be up to 50%
for the “worst” case VE while the SSRVE leads to an error of 1%, emphasizes the
need for a detailed regard of microstructure morphology, which can be described by
statistical measures. This is not only valid for the construction of SSRVEs but for
other types of reconstructions based on real microstructures.
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