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Abstract. One of the most important processes related to structural pattern 
recognition is to compare the involved objects through representing them as 
attributed graphs and using error-tolerant graph matching methods. To do so, it 
is needed a first step to extract the graphs given the original objects and deduct 
the whole attribute values of nodes and edges. Depending on the application, 
there are several methods to obtain these graphs and so, the object at hand can 
be represented by several graphs, not only with different nodes and edges but 
also with different attribute domains. In the case that we have several graphs to 
represent the same object, we can deduct several correspondences between 
graphs. In this work, we want to solve the problem of having these 
correspondences by exploding this diversity to announce a final correspondence 
in which the incongruences introduced in the graph extraction and also the 
graph matching could be reduced. We present a consensus method which, given 
two correspondences between two pairs of attributed graphs generated by 
separate entities and with different attribute domains, enounces a final 
correspondence consensus considering the existence of outliers. Our method is 
based on a generalisation of the Bipartite graph matching algorithm that 
minimises the Edit cost of the consensus correspondence while forcing (to the 
most) to be the mean correspondence of the two original correspondences. 

Keywords: Bipartite graph matching · Graph correspondence · Consensus 
correspondence 

1 Introduction 

When two parties decide to solve the assignment problem between two images, 
differences in the mappings may occur. In [1], it is explained how consensus 
methodologies are used to combine two different mappings between images to obtain 
a final consensus mapping. That work was inspired on [2], where a weighted mean 
consensus of a pair of clustering was obtained. In this paper, we generalise the paper 
presented in [1] since the input of our method is composed of two correspondences 
between attributed graphs instead of two correspondences between two sets of points 
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that represent images. In this way, attributed graphs can represent any type of object, 
being images one of them. This is a useful property, since in the image registration 
domain, some techniques have appeared that represent images as an attributed graph 
and then a correspondence between graphs is deducted, such as in [3] and [4]. 

Suppose we have two images and we have used two different salient point 
extractors (for instance, SIFT and SURF) on these two images to represent them as a 
set of points. Figure 1.a shows the two images and the extracted salient points. Red 
circles and blue squares represent the two different extractors. We first realise there 
are some points that have been selected from both methods but other ones have been 
selected by only one of the methods. Then, from each image and from each set of 
points we generate a graph using any structural method such as Delaunay 
triangulation or K-Nearest neighbours. Therefore, we have graphs ܩ௔ and ܩ௕  that 
represent the left image and graphs ܩԢ௔ and ܩԢ௕  that represent the right image (graph 
edges are not drawn). Nodes in ܩ௔ and ܩԢ௔ are drawn in red circles and nodes in ܩ௕  
and ܩԢ௕  are drawn in blue squares. If we want to compare these images, we need to 
apply an error-tolerant graph matching method to deduct the node correspondences 
and also a distance. There are some options, for instance, Graduated Assignment [5] 
or Bipartite Graph Matching [6], [7], [8], [9], [10]. Figure 1.b shows the obtained 
correspondences between both pairs of graphs. Note there are some discrepancies not 
only on the selected points, but also in the node mappings. Moreover, some new 
nodes (we call them null nodes) have been introduced to assure correspondences ݂௔ 
(red lines) and ݂௕ (blue lines) be bijective. Figure 1.c shows the final obtained 
consensus ݂௔,௕. Notice ܩ௔,௕ has one null node and ܩԢ௔,௕ has two null nodes. 

In summary, the input of our method consists of two bijective correspondences ݂௔: ௔ܩ ՜ :Ԣ௔ and ݂௕ܩ ௕ܩ ՜  Ԣ௕, as well as two node mappings that mark whichܩ
points in [ܩ௔ and ܩ௕] and [ܩԢ௔ and ܩԢ௕] have to be considered the same ones, forcing 
the node intersection between them. Contrarily of the method presented in [1] that has 
to be used on images, our method is independent of the domain of these graphs. 

 

   
  (a): Two feature extractors on two images    (b): ݂௔and ݂௕ correspondences  (c): ݂௔,௕correspondence 

Fig. 1. The process of obtaining a consensus correspondence from the original extracted salient 
points 

One of the most well-known and practical options to reduce the complexity of a 
combinatorial calculation of all the possible consensus options is combinatorial 
optimisation. The concept of optimisation is related to the selection of the “best” 
configuration or set of parameters to achieve a certain goal [9]. Functions involved in 
an optimisation problem can be either conformed by continuous values or discrete 
values, often called as combinatorial scenarios. These scenarios have been largely 
studied and applied for matching problems, particularly the case of the Hungarian 
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algorithm [10] and the Jonker-Volgenant solver [11]. This method converts a 
combinatorial problem into a correspondence problem, which will eventually derive 
in an optimal configuration for a cost-based correspondence. Recently, some 
collaborative methods have been proposed that given a set of classifiers; return the 
most promising class [12]. These methods learn some weights that gauge the 
importance of each classifier and also of the sample through several techniques, such 
as voting [13] or hierarchical methods [14]. Nevertheless, these methods cannot be 
directly adapted to our problem, since their output is a class index and our output is a 
whole correspondence between two sets of salient points. 

To generate a correspondence between graphs, several proposals can be found on 
literature. One of the most relevant in recent years is Bipartite Graph Matching (BP) 
[8], which has demonstrated to be the efficient and error-tolerant. Also, in [6] and [7] 
a version to calculate BP in a fast and efficient form has been presented, called Fast 
bipartite and Square Fast Bipartite (FBP and SFBP). In the Bipartite algorithms, it is 
important to consider which local sub-structure has been used. This situation, 
acknowledged in [15] and [16], is also a matter of discussion on this paper. 

The paper is structured as follows. In section 2 we briefly define and explain 
attributed graphs and Bipartite graph matching. In section 3 and 4 we explain how we 
generalise the BP algorithm to obtain the consensus correspondence and we 
demonstrate our method. In section 5 we show the experimental evaluation. There is a 
first explanation of the used database, which we defined and made public [17]. Its 
main feature is that it is composed of pairs of graphs and some ground truth 
correspondences between them. Moreover, there is also some information of which 
nodes of different graphs have to be considered the same ones in the consensus 
process. Finally, section 6 concludes the paper and presents our future work. 

2 Attributed Graphs and Bipartite Graph Matching 

Let ܩ௔ ൌ ሺΣ୴ୟ, Σ௔ୣ, γ୴௔, γ௔ୣሻ and ܩԢ௔ ൌ ሺΣԢ୴ୟ, ΣԢ௔ୣ, γԢ୴௔, γԢ௔ୣሻ be two attributed graphs.  
To allow maximum flexibility in the matching process, these graphs have been 
extended with null nodes to be of order nୟ. Σ୴ୟ ൌ ሼv୧ୟ | i ൌ  1, … , nୟሽ is the set of 
vertices and Σ௔ୣ ൌ ൛e୧,୨ୟ หi, j א 1, … , nୟൟ is the set of edges. Functions γ୴௔: Σ୴ୟ ՜ Δ୴ୟ  and γ௔ୣ: Σ௔ୣ ՜ Δୟୣ  assign attribute values in any domain to vertices and edges. Coherent 
definitions hold for ܩԢ௔ ൌ ሺΣԢ୴ୟ, ΣԢ௔ୣ, γԢ୴௔, γԢ௔ୣሻ. One of the most widely used methods to 
evaluate an error-correcting graph isomorphism is the Graph edit distance [18], [19], 
[20]. The dissimilarity is defined as the minimum amount of required distortion to 
transform one graph into the other. To this end, a number of distortion or edit 
operations, consisting of insertion, deletion and substitution of nodes and edges are 
defined. Edit cost functions are introduced to quantitatively evaluate the edit 
operations. The basic idea is to assign a penalty cost to each edit operation according 
to the amount of distortion that it introduces in the transformation. Deletion and 
insertion operations are transformed to assignations of a non-null node of the first or 
second graph to a null node of the second or first graph. Substitutions simply indicate 
node-to-node assignations. Using this transformation, given two graphs ܩ௔ and ܩԢ௔, 
and a bijection between their nodes ݂௔, the graph edit cost ݐݏ݋ܥݐ݅݀ܧሺܩ௔, ,Ԣ௔ܩ ݂௔ሻ is 
computed [20]. It is based on the following constants and functions: ܥ௩௦ is a function 
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that represents the cost of substituting node ݒ௜௔  of ܩ௔ by node ݂௔ሺݒ௜௔ሻ of ܩԢ௔. ܥ௘௦ is a 
function that represents the cost of substituting edge ݁௜,௞௔  of ܩ௔ by edge݂௔൫݁௜,௞௔ ൯ of ܩԢ௔. Constant ܭ௩ is the cost of deleting node ݒ௜௔  of ܩ௔(mapping it to a null node) or 
inserting node ݒԢ௝௔ of ܩԢ௔ (or being mapped from a null node). Likewise for the edges, ܭ௘ is the cost of assigning edge ݁௜,௞௔  of ܩ௔ to a null edge of ܩԢ௔or assigning edge ݁Ԣ௝,௣௔  
of ܩԢ௔ to a null edge of ܩ௔. Note that we have not considered the cases in which two 
null nodes or null edges are mapped; this is because this cost is zero by definition. 

The Graph edit distance ݐݏ݅ܦݐ݅݀ܧ is defined as the minimum cost under any 
bijection in ܶ: 

,௔ܩሺݐݏ݅ܦݐ݅݀ܧ  Ԣ௔ሻܩ ൌ min௙ೌ்אሼݐݏ݋ܥݐ݅݀ܧሺܩ௔, ,Ԣ௔ܩ ݂௔ሻሽ 

(1) 
We say the optimal bijection, ݂௔כ, is the one that obtains the minimum cost. 
BP algorithm [8] is composed of three main steps. The first step defines a cost 

matrix, the second step applies a linear solver such as the Hungarian method or the 
Jonker-Volgenant method to this matrix and obtains the correspondence ݂௔כ. The 
third step computes the Edit distance cost given this correspondence between both 
graphs, ݐݏ݅ܦݐ݅݀ܧሺܩ௔, Ԣ௔ሻܩ ൌ ,௔ܩሺݐݏ݋ܥݐ݅݀ܧ ,Ԣ௔ܩ ݂௔כሻ. Figure 2 shows the cost matrix 
of the BP algorithm. 

 

Fig. 2. Cost matrix of the BP algorithm 

Quadrant Q1 denotes the combination of substituting costs ܥ௜,௝ and their local sub-
structures. The diagonal of quadrant Q2 denotes the whole costs C௜,க of deleting nodes ݒ௜௔  and its local sub-structures. Similarly, the diagonal of quadrant Q3 denotes the 
whole costs Cக,୨ of inserting nodes ݒԢ௝௔ and its local sub-structures. Q4 quadrant is filled 
with zero values since the substitution between null nodes has a zero cost. In this 
paper, we propose a method to perform a consensus of two initial correspondences 
using the most used local sub-structures, viz. node, degree and clique. In the node case, 
edges are not considered. The degree is composed of the set of neighbouring edges and 
the clique is composed of the set of neighbouring edges and also the neighbouring 
nodes. Other structures have been presented in [15], [16]. 



 Consensus of Two Graph Correspondences Through a Generalisation 91 

3 Consensus of a Pair of Correspondences Between Graphs 

Assume ݂௔: Σ୴ୟ  ՜  ΣԢ୴ୟ and ݂௕: Σ୴ୠ  ՜  ΣԢ୴ୠ are two correspondence functions between 
nodes of two attributed graphs ܩ௔ ൌ ሺΣ୴ୟ, Σ௔ୣ, γ୴௔, γ௔ୣሻ and ܩ௕ ൌ ൫Σ୴ୠ, Σ௕ୣ, γ୴௕, γ௕ୣ൯ and two 
attributed graphs ܩԢ௔ ൌ ሺΣԢ୴ୟ, ΣԢ௔ୣ, γԢ୴௔, γԢ௔ୣሻ and ܩԢ௕ ൌ ൫ΣԢ୴ୠ, ΣԢ௕ୣ , γԢ୴௕, γԢ௕ୣ൯. The order of ܩ௔ and ܩԢ௔ is ݊௔ and the order of ܩ௕  and ܩԢ௕  is ݊௕ since the correspondences ݂௔ and ݂௕ are defined to be bijective (some null nodes in these graphs may have been added to 
consider insertion and deletion operations). We can only assure Δ୴ୟ ൌ ΔԢ୴ୟ and Δ୴ୠ ൌ ΔԢ୴ୠ 
yet Δ୴ୟ  may be deferent of Δ୴ୠ and ΔԢ୴ୟ may be deferent of ΔԢ୴ୠ (and similarly for the 
edges). Moreover, we assume there is some level of intersection between both input 
node sets and also both output node sets, although it is not strictly necessary, and also it 
may happen that ݊௔ ് ݊௕. Note this intersection is imposed through mappings ߞ: Σ୴ୟ ݔ Σ୴ୠ ՜ ሼ0,1ሽ and ߞԢ: ΣԢ୴ୟ ݔ ΣԢ୴ୠ ՜ ሼ0,1ሽ. Mapping ߞ൫v୧ୟ, v୨ୟ൯ ൌ 1 means v୧ୟ has to 

be considered the same node as v୨ୠ and 0 means they are not the same node. In the same 

way, mapping ߞԢ൫vԢ୧ୟ, vԢ୨ୟ൯ ൌ 1 means vԢ୧ୟ has to be considered the same node as vԢ୨ୠ and 
0 means they are not the same node. If this function is expressed in a matrix form, there 
is only one cell with a value of 1 in each row and column. Moreover, the number of 1’s 
in the matrix is the number of nodes that are considered the same in both graphs. 

Note these two mappings relate nodes but not edges since they may cause some 
edge inconsistencies. The problem at hand is to define a consensus correspondence ݂௔,௕: Σ୴ୟ,ୠ  ՜  ΣԢ୴ୟ,ୠ given the four graphs ܩ௔, ܩ௕ Ԣ௕ܩ Ԣ௔ andܩ  ,  , bijections  ݂௔ and ݂௕ 
and mappings ߞ and ߞԢ. The set Σ୴ୟ,ୠ is composed of the union of sets Σ୴ୟ and Σ୴ୠ but 
the ones mapped by ߞ are considered only once. In this case, some null nodes are 
added to have the possibility of deleting the whole graph. ݊௔,௕is the cardinality of Σ୴ୟ,ୠ 
and ΣԢ୴ୟ,ୠ. The set ΣԢ୴ୟ,ୠ is composed of the union of sets ΣԢ୴ୟ and ΣԢ୴ୠ where the 
elements mapped by ߞԢ are considered only once. For this set, some null nodes are 
added to have the possibility of inserting the whole graph. In this work, we do not 
want to find the attributed graphs ܩ௔,௕ and ܩԢ௔,௕ that could represent the union of 
graphs ܩ௔ and ܩ௕  and also of graphs ܩԢ௔ and ܩԢ௕ . There are some methods, such as 
median graphs [21], dedicated to it. This is because we suppose the nature of graphs ܩ௔ and ܩ௕  and also of graphs ܩԢ௔ and ܩԢ௕  is different and, as commented, they have 
different attribute domains. The only operation that we do on these four graphs is to 
extend them with null nodes to have the same order ݊௔,௕. The extended graphs are called ܩ෠௔, ܩ෠௕ ෠Ԣ௕ܩ ෠Ԣ௔ andܩ , . Accordingly to these graph extensions, the correspondences ݂௔ and ݂௕ are also extended to መ݂௔ and መ݂௕ such that the new null nodes are mapped to each other. 
Thus, ݐݏ݋ܥݐ݅݀ܧሺܩ௔, ,Ԣ௔ܩ ݂௔ሻ ൌ ݐݏ݋ܥݐ݅݀ܧ൫ܩ෠௔, ,෠Ԣ௔ܩ መ݂௔൯ and ݐݏ݋ܥݐ݅݀ܧሺܩ௕, ,Ԣ௕ܩ ݂௕ሻ ൌݐݏ݋ܥݐ݅݀ܧ൫ܩ෠௕, ,෠Ԣ௕ܩ መ݂௕൯. 

We seek for the correspondence ݂௔,௕  such that ݐݏ݋ܥݐ݅݀ܧ൫ܩ෠௔, ,෠Ԣ௔ܩ ݂௔,௕൯ and ݐݏ݋ܥݐ݅݀ܧ൫ܩ෠௕, ,෠Ԣ௕ܩ ݂௔,௕൯ are minimised, and also that it is restricted to be a mean of 
bijections  ݂௔ and ݂௕. The degree of restriction depends on weight λ, which is a real 
positive number. Moreover  dH is the Hamming distance. ݂௔,௕஛כ ൌ argmin׊௙ೌ,್: ஊ౬౗,ౘ՜ ஊᇱ౬౗,ౘ ቊݐݏ݋ܥݐ݅݀ܧ൫ܩ෠௔, ,෠Ԣ௔ܩ ݂௔,௕൯ ൅ EditCݐݏ݋൫ܩ෠௕, ,෠Ԣ௕ܩ ݂௔,௕൯ ൅ λ · ൣ dH൫ መ݂௔, ݂௔,௕൯ ൅ dH൫ መ݂௕, ݂௔,௕൯൧ ቋ (2) 
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where ܥ௔ and ܥ௕ are extended cost matrices and ܨ௔ and ܨ௕ are extended 
correspondence matrices. ૚ is a matrix with all ones. The four matrices have been 
extended to have ݊௔,௕ݔ ݊௔,௕ cells. That is, to assure the whole combinations of 
substituting, deleting and inserting nodes is possible for the whole nodes. 
Nevertheless, these matrix extensions have to consider mappings ߞ and ߞԢ between 
nodes. Figure 3 shows the extended cost matrix ܥ௕. Rows have been split depending 
on nodes belong to Σ୴ୟ, Σ୴ୠ, both or none of them. And similarly for columns and 
nodes in ΣԢ୴ୟ and ΣԢ୴ୠ. Correspondingly, figure 4 shows the extended matrix ܨ௕.  

The consensus method we propose is based on applying a linear solver such as the 
Hungarian method or the Jonker-Volgenant method to obtain ݂௔,௕஛כ  as it is defined in 
equation 3, but using the following matrix and the BP algorithm [8]. 

ܪ  ൌ ௔ܥ ൅ ௕ܥ ൅ λ ൉ ሾ૛ െ ሺܨ௔ ൅  ௕ሻሿ                        (4)ܨ

where ૛ is a matrix with all two. 

4 Minimising the Functional Through Matrices 

We have to demonstrate that ݐݏ݋ܥݐ݅݀ܧ൫ܩ෠௔, ,෠Ԣ௔ܩ ݂௔,௕൯ ൅ EditCݐݏ݋൫ܩ෠௕, ,෠Ԣ௕ܩ ݂௔,௕൯ ൅ λ · ൣ dH൫ መ݂௔, ݂௔,௕൯ ൅ dH൫ መ݂௕, ݂௔,௕൯൧ equals to ܥ௔௙ೌ,್ ൅ ್,௕௙ೌܥ ൅ λ · ൣ൫૚௙ೌ,್ െ ௔௙ೌ,್൯ܨ ൅൫૚௙ೌ,್ െ ,෠௔ܩ൫ݐݏ݋ܥݐ݅݀ܧ ,௕௙ೌ,್൯൧. By constructionܨ ,෠Ԣ௔ܩ ݂௔,௕൯ ൅ EditCݐݏ݋൫ܩ෠௕, ,෠Ԣ௕ܩ ݂௔,௕൯ ൌ C௙ೌ,್ୟ ൅ C௙ೌ,್ୠ  and also ૚௙ೌ,್ ൌ ݊௔,௕, for this reason we only 

need that,  dH൫ መ݂௔, ݂௔,௕൯ ൅ dH൫ መ݂௕, ݂௔,௕൯ ൌ 2 ൉ ݊௔,௕ െ ್,௔௙ೌܨ െ  ௕௙ೌ,್  (5)ܨ

Table 1. Four cases of nodes on ܩ෠௔ respectcorrespondences መ݂௔ and መ݂௕  

Respect ࢌ෠ࢇ Respect ࢌ෠࢈ Nodes in ઱۶܌ ܊,܉ܞ൫ࢌ෠ࢇ, ൯࢈,ࢇࢌ ,࢈෠ࢌ۶൫܌ ൯࢈,ࢇࢌ መ݂௔ሺv୧ୟሻ് ࢈,ࢇࢌ࢈ࡲ ࢈,ࢇࢌࢇࡲ ݂௔,௕ሺv୧ୟሻ 

መ݂௕൫v୧ୠ൯് ݂௔,௕൫v୧ୠ൯ 

A A A 0 0 

መ݂௔ሺv୧ୟሻ് ݂௔,௕ሺv୧ୟሻ 

መ݂௕൫v୧ୠ൯ൌ ݂௔,௕൫v୧ୠ൯ 

B B 0 0 B 

መ݂௔ሺv୧ୟሻൌ ݂௔,௕ሺv୧ୟሻ 

መ݂௕൫v୧ୠ൯് ݂௔,௕൫v୧ୠ൯ 

C 0 C C 0 

መ݂௔ሺv୧ୟሻൌ ݂௔,௕ሺv୧ୟሻ 

መ݂௕൫v୧ୠ൯ൌ ݂௔,௕൫v୧ୠ൯ 

D 0 0 D D 

 TOTAL: ࢈,ࢇ࢔ A+B A+C C+D B+D 

 
holds. Then, we can confirm that it is valid to use equation 4 to solve our problem. 
Considering the relation between correspondences ݂௔,௕, መ݂௔ and መ݂௕, we have split the 
node  set Σ୴ୟ,ୠ in four cases. The first two rows of table 1 show these four 
combinations. The third row shows the supposed number of nodes that hold this case 
(we use A, B, C and D to represent these number of nodes). Clearly, the addition of 
these four values is the number of nodes in Σ୴ୟ,ୠ. In the next two columns, we show 
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the Hamming distance between the subsets of nodes that hold each specific case. And 
in the last two columns, we show the obtained values of the correspondence matrices 
applied only to the specific nodes. 

Considering the third and fourth columns, we deduct  dH൫ መ݂௔, ݂௔,௕൯ ൅ dH൫ መ݂௕, ݂௔,௕൯ ൌ 2A ൅ B ൅ C. Besides, considering the last two 
columns, we obtain ܨ௔௙ೌ,್ ൅ ್,௕௙ೌܨ ൌ 2D ൅ B ൅ C. Therefore, 2 ൉ ݊௔,௕ െ ್,௔௙ೌܨ െܨ௕௙ೌ,್ ൌ 2A ൅ 2B ൅ 2C ൅ 2D െ 2D െ B െ C ൌ 2A ൅ B ൅ C which is exactly the same 

number than the one obtained for  dH൫ መ݂௔, ݂௔,௕൯ ൅ dH൫ መ݂௕, ݂௔,௕൯ז 

5 Experimental Validation 

5.1 Database Used 

To validate our method, we decided to use the “Tarragona Exteriors” dataset [17], 
defined through five public image databases called “BOAT”, “EAST_PARK”, 
“EAST_SOUTH”, “RESIDENCE” and “ENSIMAG [22]. These databases are 
composed of a sequence of images taken from the same object, but from different 
positions and using a different zoom. Together with the images, the homography 
estimations ݄௜  that convert the first image (img00) of the set into the other ones 
(img01 through img10) are provided. From each of the images, the 50 most reliable 
salient points were extracted using 5 methodologies: FAST, HARRIS, MINEIGEN, 
SURF (native Matlab 2013b libraries) and SIFT (own library). From these five sets of 
salient points, we were able to build five representative graph of each image, where 
the nodes represented the position of the salient points, and the edges were conformed 
using the Delaunay triangulation method. Notice that the key difference between the 
salient point data and the graph data is solely the addition of the edges, since the 
location and features of both the salient points and the graph’s nodes is the same.  

Between the first image (img00) of the sequence and the other ten images (img01 
through img10), we computed correspondences using the five different extracted 
structures and four different matching functions which are: a) the Matlab’s 
MatchFeatures function for salient points’ matching (native Matlab 2013b libraries)  
and the FastBipartite function for graph matching using b) node, c) degree and d) 
clique local sub-structures (own library). Note that for the MatchFeatures function, 
the MaxRatio parameter was set to 1 to find as many mappings as possible, although 
we removed the non-bijective labellings, since this function often maps a salient point 
more than twice. Thus, the database has a total of 5 sequences ൈ 10 pairs of images ൈ 
5 extractor methods ൈ 4 matching options = 1000 quartets ௜ܳ  composed of two 
structures ௜ܵଵ and ௜ܵଶ (each representing the salient point’s location and features plus 
the graph’s edges) for two given images, one correspondence ݂௜ and one homography ݄௜ , resulting in ௜ܳ ൌ ሼ ௜ܵଵ, ௜ܵଶ, ݂௜, ݄௜ሽ, where i א ሾ1 … 1000ሿ.  
5.2 Results and Interpretation 

The purpose of this section is to show that performing a consensus using FBP ([6] and 
[7]) and considering the local sub-structure (node, degree or clique) is better than 
performing a consensus on the set of points as done in [1]. Notice that for the 
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consensus of the graph matching, we only show the configuration that delivered the 
best results. ܥ௩௦ is the normalised Euclidean distance and ܥ௘௦ ൌ 0 due to edges do not 
have attributes.  Node: ܭ௩ ൌ 50, Degree: ܭ௩ ൌ ௘ܭ ൌ 50 and Clique: ܭ௩ ൌ ௘ܭ ൌ 250. 

Table 2. Average number of correct inlier mappings obtained by our consensus 
strategy with sub-structures Node, Degree and Clique combining two feature 
extractors (E୬,୫). We have added the number of inliers published in [1] in which the 
consensus method is based on points. Eଵ,ଶ Eଵ,ଷ Eଵ,ସ Eଵ,ହ Eଶ,ଷ Eଶ,ସ Eଶ,ହ Eଷ,ସ Eଷ,ହ Eସ,ହ Average 

 
CLIQUE

DEGREE

84 

74 

78 

72 

104 

82 

70 

60 

96 

68 

116 

109 

89 

61 

128 

111 

57 

52 

160 

42 

88.2 

73.1 

BOAT 

NODE 70 65 84 63 56 89 70 62 42 37 63,8 

POINTS 10 10 48 9 9 50 9 46 9 66 26,6 

CLIQUE

DEGREE

35 

29 

27 

27 

84 

31 

36 

27 

22 

33 

94 

42 

43 

42 

83 

35 

41 

40 

85 

32 

55 

33.8 

EAST NODE 11 23 43 35 18 38 32 46 37 46 32.9 

PARK POINTS 2 1 38 4 2 47 1 44 2 67 20.8 

CLIQUE

DEGREE

8 

11 

19 

7 

20 

34 

12 

18 

16 

3 

27 

29 

11 

14 

27 

25 

10 

12 

30 

30 

18 

18.3 

EAST NODE 9 2 18 10 4 17 10 19 12 18 11.9 

SOUTH POINTS 1 1 22 1 1 20 1 22 1 32 10.2 

CLIQUE

DEGREE

32 

16 

24 

19 

124 

36 

27 

26 

25 

12 

129 

26 

26 

20 

122 

29 

23 

21 

117 

21 

64.9 

22.5 

NODE 10 15 24 15 12 24 16 24 19 17 17.6 

RESID POINTS 1 1 59 1 2 51 1 39 1 106 26.2 

CLIQUE

DEGREE

4 

4 

3 

5 

47 

34 

4 

3 

5 

1 

44 

37 

6 

5 

43 

35 

5 

3 

52 

35 

21.3 

16.2 

ENSI NODE 2 3 30 5 3 37 6 31 5 36 15.8 

MAG POINTS 1 1 42 1 1 38 1 36 1 53 17.5 

Av 

CLIQUE

 

DEGREE

32.6 

 

25.8 

30.2 

 

23.8 

75.8 

 

147.6 

29.8

 

27.6 

32.8

 

23.8

82 

 

123.6

35 

 

28.4 

80.6 

 

120 

27.2

 

25 

68.8 

 

170.8 

  NODE 20.4 21.6 39.8 25.6 18.6 41 26.8 36.4 23 30.8 

POINTS 3 2.8 41.8 3.2 3 41.2 2.6 37.4 2.8 64.8   

 

Table 2 shows the number of correct mappings found after applying the consensus 
for each possible combination of the five feature extractors. Consider 1=FAST, 
2=HARRIS, 3=MINEIGEN, 4=SURF, 5=SIFT. 

In this experimental validation, the results show that when performing a consensus 
between two graph matching correspondences and using the new model, we obtain a 
bigger improvement than when performing salient point’s correspondence consensus 
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using the previous method. For example, in the case of the “BOAT” dataset using Eଷ,ସ, the clique consensus obtained 128 correct inliers (31 more than the sum of the 
individual correspondences) whereas the previous consensus obtained 46 correct 
inliers, even though the sum of the individual methods is of 73 correct inliers. 

6 Conclusions and Further Work 

We have presented a consensus method that obtains a correspondence between two 
attributed graphs given two correspondences between two pairs of attributed graphs 
generated by separate entities. The method is based on a generalisation of the BP 
algorithm. We have shown in the experimental section the validity of our method.  
In this paper, we are able to show that graph representation and matching helps not only 
to increase the number of correct mappings in the initial proposals, but also to increase 
the improvement of a consensus correspondence respect representing the objects as a set 
of points. As a future work, we propose to extend this method such that the consensus 
can be applied to several correspondences and not only on a pair of them as done in [23] 
for the salient point case and in [24] for the clustering case. To do so, we are 
investigating on weighting and voting consensus methods. Nevertheless, the method we 
present is the first step for the several-correspondences method. Since we have defined 
the basic mechanism of the method, a several-correspondences method could be applied 
simply by using the 2-correspondence method iteratively. As we have seen, our method 
achieves a good accuracy when there are discrepancies between both labellings. Due to 
in the several-correspondences case the number of discrepancies would increase, our 
first intuition is that our method would obtain a good consensus correspondence. 
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