
A First Step Towards Exact Graph Edit

Distance Using Bipartite Graph Matching

Miquel Ferrer1(�), Francesc Serratosa2, and Kaspar Riesen1

1 Institute for Information Systems, University of Applied Sciences and Arts,
Riggenbachstrasse 16, Olten, 4600, Switzerland

miquel.ferrer@fhnw.ch
2 Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili,

Avda. Päısos Catalans 26, 43007 Tarragona, Spain

Abstract. In recent years, a powerful approximation framework for
graph edit distance computation has been introduced. This particular ap-
proximation is based on an optimal assignment of local graph structures
which can be established in polynomial time. However, as this approach
considers the local structural properties of the graphs only, it yields sub-
optimal solutions that overestimate the true edit distance in general. Re-
cently, several attempts for reducing this overestimation have been made.
The present paper is a starting point towards the study of sophisticated
heuristics that can be integrated in these reduction strategies. These
heuristics aim at further improving the overall distance quality while keep-
ing the low computation time of the approximation framework. We pro-
pose an iterative version of one of the existing improvement strategies. An
experimental evaluation clearly shows that there is large space for further
substantial reductions of the overestimation in the existing approximation
framework.

1 Introduction

Graph edit distance [1, 2] is one of the most flexible and versatile approaches to
error-tolerant graph matching. In particular, graph edit distance is able to cope
with directed and undirected, as well as with labeled and unlabeled graphs. In
addition, no constraints have to be considered on the alphabets for node and/or
edge labels. Moreover, through the concept of cost functions graph edit distance
can be adapted and tailored to diverse applications [3, 4]. An extensive survey
about graph edit distance can be found in [5].

The major drawback of graph edit distance is its high computational complex-
ity that restrict its applicability to graphs of rather small size. In fact, graph edit
distance belongs to the family of quadratic assignment problems (QAPs), which
belong to the class of NP-complete problems. Therefore, exact computation of
graph edit distance can be solved in exponential time complexity only.

In recent years, a number of methods addressing the high computational com-
plexity of graph edit distance have been proposed (e.g. [6–9]). Beyond these
works, an algorithmic framework based on bipartite graph matching has been

c© Springer International Publishing Switzerland 2015
C.-L. Liu et al. (Eds.): GbRPR 2015, LNCS 9069, pp. 77–86, 2015.
DOI: 10.1007/978-3-319-18224-7_8

78 M. Ferrer et al.

introduced recently [10, 11]. The main idea behind this approach is to convert
the difficult problem of graph edit distance to a linear sum assignment problem
(LSAP). LSAPs basically constitute the problem of finding an optimal assign-
ment between two independent sets of entities, for which a collection of poly-
nomial algorithms exists [12]. In [10, 11] the LSAP is formulated on the sets of
nodes including local edge information. The main advantage of this approach is
that it allows the approximate computation of graph edit distance in a substan-
tially faster way than traditional methods. However, during the node assignment
only local instead of global structural information is taken into account. Hence,
this might lead to incorrect node assignments compared with an exact matching
and thus, the derived edit distance is equal to, or larger than, the exact graph
edit distance.

In order to overcome this problem and reduce the overestimation of the true
graph edit distance, a variation of the original framework [10] has been pro-
posed in [13]. Given the initial assignment found by the bipartite framework,
the main idea is to introduce a post-processing step such that the number of
incorrect assignments is decreased (which in turn reduces the overestimation).
The proposed post-processing varies the original node assignment by systemati-
cally swapping the target nodes of two node assignments. In order to search the
space of assignment variations a beam search (i.e. a tree search with pruning) is
used. One of the most important observations derived from [13] is that given an
initial node assignment, one can substantially reduce the overestimation using
this local search method. Yet, beam search is sub-optimal in the sense of possibly
pruning the optimal solution in an early stage of the search process.

Now the crucial question arises, how the space of assignment variations could
be explored such that promising parts of the search tree are not (or at least not
too early) pruned. In [13] the initial assignment is systematically varied without
using any kind of heuristic or additional information to keep the best poten-
tial assignment unpruned in the tree. In particular it is not taken into account
that certain nodes and/or local assignments have greater impact than other on
the graph edit distance approximation and should thus be considered first in
the beam search process. Clearly, considering more important node assignments
and/or nodes in an early stage of the beam search process might reduce the risk
of pruning the optimal assignment. In this sense we argue that the introduction
of procedures and heuristics that guide the order in which the assignments are
varied during beam search is a rewarding line of research.

The main objective of the present paper is to start the investigation towards
new heuristics that improve the overall quality of the node assignment. In partic-
ular, we propose an iterative version of [13] to derive randomized permutations
of the original mapping which serve as starting point for beam search improve-
ments. Hence, the present paper introduces a heuristic in order to answer the
general question to what extent the ordering of the nodes affects the mapping
quality.

A First Step Towards Exact Graph Edit Distance 79

Next, in Section 2, the original bipartite framework for graph edit distance
approximation [10] as well as its recent extension [13], named BP-Beam, are
summarized. In Section 3 our novel iterative version of BP-Beam is described.
An experimental evaluation on diverse data sets is carried out in Section 4.
Finally, in Section 5 we draw conclusions and outline some possible tasks and
extensions for future work.

2 Approximate Graph Edit Distance Computation

Given two graphs, g1 and g2, the basic idea of graph edit distance is to transform
g1 into g2 using edit operations, namely, insertions, deletions, and substitutions
of both nodes and edges. The substitution of two nodes u and v is denoted by
(u → v), the deletion of node u by (u → ε), and the insertion of node v by
(ε → v)1. A sequence of edit operations e1, . . . , ek that transform g1 completely
into g2 is called an edit path between g1 and g2.

To find the most suitable edit path out of all possible edit paths between
two graphs, a cost measuring the strength of the corresponding operation is
introduced. The edit distance between two graphs g1 and g2 is then defined by
the minimum cost edit path between them. Exact computation of graph edit
distance is usually carried out by means of a tree search algorithm (e.g. A*)
which explores the space of all possible mappings of the nodes and edges of the
first graph to the nodes and edges of the second graph.

2.1 Bipartite Graph Edit Distance Approximation

The computational complexity of exact graph edit distance is exponential in the
number of nodes of the involved graphs. That is considering n nodes in g1 and
m nodes in g2, the set of all possible edit paths contains O(nm) solutions to be
explored. This means that for large graphs the computation of edit distance is in-
tractable. In order to reduce its computational complexity, in [10], the graph edit
distance problem is transformed into a linear sum assignment problem (LSAP).
To this end, based on the node sets V1 = {u1, . . . , un} and V2 = {v1, . . . , vm} of
g1 and g2 respectively, a cost matrix C is first established as follows:

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 · · · c1m c1ε ∞ · · · ∞
c21 c22 · · · c2m ∞ c2ε · · · ∞
...

...
. . .

...
...

...
. . .

...
cn1 cn2 · · · cnm ∞ ∞ · · · cnε
cε1 ∞ · · · ∞ 0 0 · · · 0
∞ cε2 · · · ∞ 0 0 · · · 0
...

...
. . . ∞ ...

...
. . .

...
∞ ∞ · · · cεm 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 Similar notation is used for edges.

80 M. Ferrer et al.

Entry cij denotes the cost of a node substitution (ui → vj), ciε denotes the
cost of a node deletion (ui → ε), and cεj denotes the cost of a node insertion
(ε → vj). The left upper corner of the cost matrix represents the costs of all
possible node substitutions, the diagonal of the right upper corner the costs of
all possible node deletions, and the diagonal of the bottom left corner the costs of
all possible node insertions. In each entry cij , not only the cost of node operation
is taken into account but also the minimum sum of edge edit operation costs,
implied by the corresponding node operation. That is, the matching cost of the
local edge structure is encoded in the individual entries of C.

In a second step of [10], an assignment algorithm is applied to the square cost
matrix C = (cij) in order to find the minimum cost assignment of the nodes (and
their local edge structure) of g1 to the nodes (and their local edge structure) of
g2. Note that this task exactly corresponds to an instance of an LSAP and can
thus be optimally solved in polynomial time by several algorithms [12].

Any of the LSAP algorithms will return a permutation (ϕ1, . . . , ϕn+m) of

the integers (1, 2, . . . , (n+m)), which minimizes the overall mapping cost
∑(n+m)

i=1

ciϕi . This permutation corresponds to the mapping

ψ = {u1 → vϕ1, u2 → vϕ2, . . . , um+n → vϕm+n}
of the nodes of g1 to the nodes of g2. Note that ψ does not only include node
substitutions (ui → vj), but also deletions and insertions (ui → ε), (ε → vj) and
thus perfectly reflects the definition of graph edit distance (mappings of the form
(ε → ε) can be dismissed, of course). Hence, mapping ψ can be interpreted as
partial edit path between g1 and g2, which considers operations on nodes only.

In a third step, the partial edit path ψ between g1 and g2 is completed with
respect to the edges. This can be accomplished since edge edit operations are
implied by edit operations on their adjacent nodes. That is, whether an edge is
substituted, deleted, or inserted, depends on the edit operations performed on
its adjacent nodes. The total cost d〈ψ〉(g1, g2) of the completed edit path between
graphs g1 and g1 is finally returned as approximate graph edit distance. We refer
to this graph edit distance approximation algorithm as BP(g1, g2).

2.2 Improving the Approximation Using Beam Search

Several experimental evaluations indicate that the suboptimality of BP, i.e. the
overestimation of the true edit distance, is very often due to a few incorrectly
assigned nodes in ψ with respect to the optimal edit path. The extension pre-
sented in [13] ties in at this observation. In particular, the node assignment ψ is
used as a starting point for a subsequent search in order to improve the quality
of the distance approximation.

In [13], the original node assignment ψ is systematically varied by swapping
the target nodes vϕi and vϕj of two node assignments (ui → vϕi) ∈ ψ and
(uj → vϕj) ∈ ψ. For each swap it is verified whether (and to what extent) the
derived distance approximation stagnates, increases or decreases. For a system-
atic variation of mapping ψ a tree search is used.

A First Step Towards Exact Graph Edit Distance 81

Algorithm 1. BP-Beam(g1, g2, ψ, b)

1. dbest = d〈ψ〉(g1, g2)
2. Initialize open = {(ψ, 0, d〈ψ〉(g1, g2))}
3. while open is not empty do
4. Remove first tree node in open: (ψ, q, d〈ψ〉(g1, g2))
5. for j = (q + 1), . . . , (m + n) do
6. ψ′ = ψ \ {uq+1 → vϕq+1

, uj → vϕj
} ∪ {uq+1 → vϕj

, uj → vϕq+1
}

7. Derive approximate edit distance d〈ψ′〉(g1, g2)
8. open = open ∪ {(ψ′, q + 1, d〈ψ′〉(g1, g2))}
9. if d〈ψ′〉(g1, g2) < dbest then

10. dbest = d〈ψ′〉(g1, g2)
11. end if
12. end for
13. while size of open > b do
14. Remove tree node with highest approximation value d〈ψ〉 from open

15. end while
16. end while

17. return dbest

The tree nodes in the search procedure correspond to triples (ψ, q, d〈ψ〉), where
ψ is a certain node assignment, q denotes the depth of the tree node in the
search tree and d〈ψ〉 is the approximate distance value corresponding to ψ. The
root node of the search tree refers to the optimal node assignment ψ found by
BP. Hence, the root node (with depth = 0) is given by the triple (ψ, 0, d〈ψ〉).
Subsequent tree nodes (ψ′, q, d〈ψ′〉) with depth q = 1, . . . , (m+ n) contain node
assignments ψ′ with swapped element (uq → vϕq).

As usual in tree search based methods, a set open is employed that holds all of
the unprocessed tree nodes. The tree nodes in open are kept sorted in ascending
order according to their depth in the search tree (known as breadth-first search).
As a second order criterion the approximate edit distance d〈ψ〉 is used.

The extended framework with the tree search based improvement is given
in Alg. 1. As long as open is not empty, we retrieve (and remove) the triple
(ψ, q, d〈ψ〉) at the first position in open, generate the successors of this specific
tree node and add them to open. To this end all pairs of node assignments
(uq+1 → vϕq+1) and (uj → vϕj) with j = (q + 1), . . . , (n +m) are individually
swapped resulting in two new assignments (uq+1 → vϕj) and (uj → vϕq+1). In
order to derive node mapping ψ′ from ψ, the original node assignment pair is
removed from ψ and the swapped node assignment is added to ψ′. Since index j
starts at (q + 1) we also allow that a certain assignment uq+1 → vϕq+1 remains
unaltered at depth (q + 1) in the search tree.

Since every tree node in our search procedure corresponds to a complete solu-
tion and the cost of these solutions neither monotonically decrease nor increase
with growing depth in the search tree, we need to buffer the best possible dis-
tance approximation found during the tree search in dbest (which is returned as
soon as open is empty)

As stated before, given a mapping ψ from BP, the derived edit distance over-
estimates the true edit distance in general. This overestimation is due to some
incorrect node mappings in ψ. Hence, the objective of any post-processing should

82 M. Ferrer et al.

be to find a variation ψ′ of the original mapping ψ such that d〈ψ′〉 < d〈ψ〉.
However, the search space of all possible permutations of ψ contains (n + m)!
possibilities, making an exhaustive search (starting with ψ) both unreasonable
and intractable. Therefore, only the b assignments with the lowest approximate
distance values are kept in open at all time (known as beam search). Note that
parameter b can be used as trade-off parameter between run time and approxi-
mation quality. That is, it can be expected that larger values of b lead to both
better approximations and increased run time (and vice versa). From now on we
refer to this variant of the approximation framework as BP-Beam(g1, g2, ψ, b).

3 Iterative BP-Beam

Note that the the successors of tree node (ψ, q, d〈ψ〉) are generated in fixed order
in BP-Beam. In particular, the assignments of the original node matching ψ
are processed according to the depth q of the current search tree node. That
is, at depth q the assignment (uq → vϕq) is processed and swapped with other
assignments. Note that beam search prunes quite large parts of the tree during
the search process. Hence, processing correct node assignments at the top of
the search tree is somewhat useless and moreover runs the risk of potentially
pruning crucial parts of the tree at an early stage of the search. That is, the
fixed order processing, which does not take any information about the individual
node assignments into account, is a clear drawback of the procedure described
in [13].

Clearly, it would be highly favorable to process important node assignments
as early as possible in the tree search. Our hypothesis is that there should exist
some heuristics that indicate which node assignments of ψ are the most impor-
tant or critical ones and should thus be processed first. Finding such heuristics
that indicate the impact of a single node assignment on the approximation qual-
ity turns out to be a highly non-trivial task. Moreover, it is not yet proven
whether the order of the assignment processing actually has a great impact on
the resulting distance quality.

As a starting point towards the question of whether or not the ordering of
the assignment processing in BP-Beam has great influence on the quality of
the distance approximation, we propose a procedure with random re-orderings
of the individual assignments. Thus, given a mapping ψ obtained from BP,
we propose to perform several iterations over BP-Beam. In every iteration the
original mapping ψ is randomly reordered and fed into BP-Beam. This leads
to an iterative version of BP-Beam called IBP-Beam from now on. IBP-Beam
takes two parameters, namely the number of iterations k and the beam size b.

The algorithm IBP-Beam is given in Alg. 2. The first three lines correspond
to the three major steps of the original approximation. Then, the main loop is
carried out k times. In each iteration a newly ordered assignment ψ′ is generated
by randomly permuting the original assignment ψ derived from BP. Then, the
assignment and the corresponding distance are possibly improved using BP-
Beam taking ψ′ as starting point for the tree search. Whenever the BP-Beam

A First Step Towards Exact Graph Edit Distance 83

Algorithm 2. IBP-Beam(g1,g2, k, b)

1. Build cost matrix C = (cij) according to the input graphs g1 and g2
2. Compute optimal node assignment ψ = {u1 → vϕ1, . . . , um+n → vϕm+n

} on C

3. dbest = d〈ψ〉(g1, g2)
4. i = 1
5. while i ≤ k do
6. ψ′ = RandomPermutation(ψ)
7. dbeam = BP-Beam(g1, g2, ψ

′, b)
8. dbest = min{dbest, dbeam}
9. i + +
10. end while

11. return dbest

is able to further decrease the distance approximation, the best solution dbest is
replaced by the novel approximation.

Clearly, further reductions of the overestimation with this random iterative
procedure, would highly encourage the hypothesis that there might be heuris-
tics that would solve the same task of reordering in a deterministic manner (in
particular when the number of iterations k needed remains small).

4 Experimental Evaluation

The goal of the experimental evaluation is to verify whether the proposed exten-
sion is able to reduce the overestimation of graph edit distance approximation
returned by BP and in particular BP-Beam, and how the iterative process affects
the computation time. Three data sets from the IAM graph database repository
involving molecular compounds (AIDS), fingerprint images (Fingerprint), and
symbols from architectural and electronic drawings (GREC) are used to carry
out this experimental part. For further details about these data sets we refer
to [14]. For all data sets, subsets of 100 graphs are randomly selected on which
10,000 pairwise graph edit distance computations are performed.

4.1 Impact of Meta Parameter b and k

In this first experiment we aim at researching the impact of the two parameters b
and k on IBP-Beam. To this end we perform several executions of the IBP-Beam
with b, k ∈ {1, 5, 10, 15, 20}, leading to 25 different distance approximations. We
compute the sum of the difference between the exact distance (A∗) and the
distance obtained by IBP-Beam. Figure 1 shows such sum of differences as a
function of the number of iterations k (x-axis) and the beam size b (y-axis).

First, we observe that the sum of differences is monotonically reduced as long
as k and b are increased. We can also observe that we are able to obtain distance
values very close to the exact distance on all data sets. Finally (and probably
most importantly), we note that the major part of the reduction in the sum of
differences is already obtained with values of k and b of 5. Further increases of
both parameters lead to relatively small further reductions of the overestimation.

84 M. Ferrer et al.

(a) AIDS (b) Fingerprint (c) GREC

Fig. 1. Sum of difference between A∗ and IBP-Beam(k,b) as a function of the number
of iterations k (x-axis) and the beam size b (y-axis)

4.2 Relative Overestimation and Computation Time

Next we measure the mean relative overestimation φo [%] and the mean compu-
tation time φt [ms] for all algorithms (see Table 1). The mean relative overesti-
mation φo of a certain approximation is computed as the relative difference to
the sum of distances returned by A∗. The relative overestimation of A∗ is thus
zero and the value of φo for BP is taken as reference value and corresponds to
100%. The computation times φt measures the average matching time for a pair
of graphs. Note that for both BP-Beam and IBP-Beam the beam size b is fixed
to 5 (thus this parameter is not shown in the Table 1, but only k).

Table 1. The mean relative overestimation of the exact distance (φo) in %, and the
mean run time for one matcing (φt) in ms. for each data set and for a given algorithm.
The beam size for BP-Beam and IBP-Beam algorithm is set to 5, and parameter k is
varied from 5 to 20 for IBP-Beam.

AIDS Fingerprint GREC

Algorithm φo φt φo φt φo φt

A∗ 0.00 25750.22 0.00 31645.08 0.00 7770.81

BP 100.00 0.28 100.00 0.35 100.00 0.27

BP-Beam 15.09 1.82 24.57 1.45 16.98 2.62

IBP-Beam(5) 9.27 7.81 8.63 5.70 8.53 12.01

IBP-Beam(10) 6.11 15.27 6.11 10.98 5.72 23.57

IBP-Beam(15) 4.85 22.79 5.21 16.14 4.57 35.81

IBP-Beam(20) 4.26 30.41 4.51 20.94 3.73 47.19

Regarding the overestimation φo we observe a substantial improvement of the
distance quality using BP-Beam rather than BP. For instance, on the AIDS data
the overestimation is reduced by 85% (similar results are obtained on the other
data sets). By using IBP-Beam further substantial reductions of the overesti-
mation are possible on all data sets. For instance, on the AIDS data set using
IBP-Beam with k = 5 rather than BP-Beam enables a reduction from 15.09%
to 9.27% (similar or even better results are obtained on the other data sets).
Increasing the number of iterations further decreases the overestimation such
that a distance accuracy very near to the exact edit distance is possible with our

A First Step Towards Exact Graph Edit Distance 85

novel approach. These substantial reductions of the overestimation from BP to
BP-Beam and from BP-Beam to IBP-Beam can also be seen in Figure 2 where
for each pair of graphs the exact distance (x-axis) is plotted vs. the distance
obtained by an approximation algorithm (y-axis). In fact, for IBP-Beam the
line-like scatter plot along the diagonal suggests that the approximation is very
near to the optimal distance.

(a) BP (b) BP-Beam(5) (c) IBP-Beam(20,5)

Fig. 2. Exact (x-axis) vs. approximate (y-axis) edit distance on the AIDS dataset
computed with (a) BP, (b) BP-Beam(5), (c) IBP-Beam(20,5)

Regarding the computation time φt we can report that BP provides the lowest
computation time on all data sets (approximately 0.3ms per matching on all data
sets). Yet, remember that this fast matching time is at the expense of the highest
overestimation. BP-Beam increases the computation time to approximately 2ms
per matching and IBP-Beam further increases the average run time to several
milliseconds per matching. As expected, the run time of IBP-Beam linearly
grows with parameter k. However, it is important to remark that in all cases
the computation time is much lower than those of A∗. Overall IBP-Beam(5)
seems to be a good trade-off between computation time and reduction of the
overestimation.

5 Conclusions and Future Work

In recent years a framework based on bipartite graph matching to derive ap-
proximate solutions of the graph edit distance has been presented. In its original
version it suffers from a high overestimation of the computed distance with re-
spect to the true edit distance. In this paper, we propose an iterative extension
of one of the existing bipartite-based graph edit distance approximation algo-
rithm. The aim of the paper is to empirically investigate the influence of the
order in which the assignments are explored in a post processing search process
on the distance quality. The experimental evaluation on three different databases
verifies that this order is actually one of the critical factors to improve the over-
all distance quality. Though the run times are increased when compared to our
former framework (as expected), they are still far below the run times of the
exact algorithm. The presented approach can be seen as a first step towards

86 M. Ferrer et al.

finding determinant heuristics to guide the search through the space of possible
assignment variants (starting with ψ).

Acknowledgements. This work has been supported by the Swiss National Science
Foundation (SNSF) project Nr. 200021 153249, the Hasler Foundation Switzerland,
and by the Spanish CICYT project DPI2013–42458–P and TIN2013–47245–C2–2–R.

References

1. Sanfeliu, A., Fu, K.-S.: A distance measure between attributed relational graphs for
pattern recognition. IEEE Transactions on Systems, Man and Cybernetics SMC-
13(3), 353–362 (1983)

2. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recogni-
tion. Pattern Recognition Letters 1(4), 245–253 (1983)

3. Neuhaus, M., Bunke, H.: A graph matching based approach to fingerprint clas-
sification using directional variance. In: Kanade, T., Jain, A., Ratha, N.K. (eds.)
AVBPA 2005. LNCS, vol. 3546, pp. 191–200. Springer, Heidelberg (2005)

4. Robles-Kelly, A., Hancock, E.R.: Graph edit distance from spectral seriation. IEEE
Trans. Pattern Anal. Mach. Intell. 27(3), 365–378 (2005)

5. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal.
Appl. 13(1), 113–129 (2010)

6. Boeres, M.C., Ribeiro, C.C., Bloch, I.: A randomized heuristic for scene recognition
by graph matching. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS,
vol. 3059, pp. 100–113. Springer, Heidelberg (2004)

7. Sorlin, S., Solnon, C.: Reactive tabu search for measuring graph similarity. In:
Brun, L., Vento, M. (eds.) GbRPR 2005. LNCS, vol. 3434, pp. 172–182. Springer,
Heidelberg (2005)

8. Justice, D., Hero, A.O.: A binary linear programming formulation of the graph
edit distance. IEEE Trans. PAMI 28(8), 1200–1214 (2006)

9. Neuhaus, M., Riesen, K., Bunke, H.: Fast suboptimal algorithms for the compu-
tation of graph edit distance. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F.,
de Ridder, D. (eds.) SSPR&SPR 2006. LNCS, vol. 4109, pp. 163–172. Springer,
Heidelberg (2006)

10. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image Vision Comput. 27(7), 950–959 (2009)

11. Serratosa, F.: Fast computation of bipartite graph matching. Pattern Recognition
Letters 45, 244–250 (2014)

12. Burkard, R.E., Dell’Amico, M., Martello, S.: Assignment Problems. SIAM (2009)
13. Riesen, K., Fischer, A., Bunke, H.: Combining bipartite graph matching and beam

search for graph edit distance approximation. In: El Gayar, N., Schwenker, F.,
Suen, C. (eds.) ANNPR 2014. LNCS, vol. 8774, pp. 117–128. Springer, Heidelberg
(2014)

14. Riesen, K., Bunke,H.: IAMgraph database repository for graph based pattern recog-
nition and machine learning. In: da Vitoria Lobo, et al. (eds.) [15], pp. 287–297

15. da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M.,
Anagnostopoulos, G.C., Loog, M. (eds.): SSPR&SPR 2008. LNCS, vol. 5342.
Springer, Heidelberg (2008)

	A First Step Towards Exact Graph Edit Distance Using Bipartite Graph Matching
	1 Introduction
	2 Approximate Graph Edit Distance Computation
	2.1 Bipartite Graph Edit Distance Approximation
	2.2 Improving the Approximation Using Beam Search

	3 Iterative BP-Beam
	4 Experimental Evaluation
	4.1 Impact of Meta Parameter b and k
	4.2 Relative Overestimation and Computation Time

	5 Conclusions and Future Work

