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Abstract. Assortativity or assortative mixing is the tendency of a net-
work’s vertices to connect to others with similar characteristics, and has
been shown to play a vital role in the structural properties of com-
plex networks. Most of the existing assortativity measures have been
developed on the basis of vertex degree information. However, there is
a significant amount of additional information residing in the edges in a
network, such as the edge directionality and weights. Moreover, the von
Neumann entropy has proved to be an efficient entropic complexity level
characterization of the structural and functional properties of both undi-
rected and directed networks. Hence, in this paper we aim to combine
these two methods and propose a novel edge assortativity measure which
quantifies the entropic preference of edges to form connections between
similar vertices in undirected and directed graphs. We apply our novel
assortativity characterization to both artificial random graphs and real-
world networks. The experimental results demonstrate that our measure
is effective in characterizing the structural complexity of networks and
classifying networks that belong to different complexity classes.

Keywords: Assortative mixing · Von Neumann entropy · Entropic edge
assortativity

1 Introduction

Over the past decade there has been a considerable interest in studying the prop-
erties of complex networks since they play a crucial role in revealing essential
features of the structure, function and dynamics of many large-scale systems in
biology, physics and the social sciences. To render such networks tractable, it
is imperative to have to hand measures that efficiently reflect their structural,
functional and dynamical diversity. An important example is the vertex degree
assortativity, which expresses a bias in favor of connections between network
vertices with similar degree [8]. Although the vertex degree provides a number
of useful characterizations of network structure, significant information also re-
sides in the edges of a network, including the direction of interaction between
components and the information conveyed by a random walk on a network.
In this paper we present an edge assortativity measure, making use of the von
Neumann entropy, which is an effective structural complexity measure designed
for complex networks [4][11].
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Assortativity is often formalized as a correlation between the degree distinc-
tion of two vertices in a graph. Recently, Foster et al. [3] have pointed out that
the classification based on network assortativity is not always efficient for undi-
rected networks. They further achieved that the fundamental feature of edge
direction in a network also plays an important role. Thus they propose a set of
four directed assortativity measures based on vertex in-degree and out-degree
combinations. Recently, computing the importance of edges in a network has
attracted considerable interest since many structural and functional features in
networks have been shown to reside in the connections between vertices. For in-
stance, the edge betweenness centrality, which is shown to be superior to graph
planarization techniques, has been developed as an extension of betweenness
centrality from vertices to edges [2].

The von Neumann entropy (or quantum entropy) associated with a density
matrix, has proved to provide a highly effective complexity level characterization
of a network. Han et al. [4] have taken this work further and have shown how to
approximate the calculation of von Neumann entropy in terms of simple degree
statistics rather than the normalized Laplacian eigenvalues. Recently, Ye et al.
[11] have extended this entropy to the domain of directed graphs. In addition, the
distribution of von Neumann entropy associated with edges in a graph, can be
encoded as a multi-dimensional histogram, which not only captures the structure
of a graph but also reflects its complexity [13] [12].

In this paper, we propose a novel edge assortativity measure based on the
edge von Neumann entropy for both undirected and directed graphs. We use this
measure to analyze how the entropy is distributed over edges. We show that the
measure encodes a number of properties of the intrinsic structural properties of
a graph, leading to the possibility of characterizing graphs of different structure.

The remainder of the paper is organized as follows. In Sec. II, we introduce
briefly how the von Neumann entropy is defined and computationally simplified
for both undirected and directed graphs. In Sec. III, we detail the development of
the edge assortativity measure. In Sec. IV, we undertake experiments to demon-
strate the usefulness of our method. Finally, in Sec. V we conclude our paper
with a summary of our contribution and suggestions for future work.

2 Preliminaries

In this section, we give the definition of the von Neumann entropy for both
undirected graph and directed graph, and show the entropy can be simplified in
terms of edge entropy contributions.

2.1 Entropy Contribution for Undirected Edges

Suppose G(V,E) is an undirected graph with vertex set V and edge set E ⊆
V × V , then the adjacency matrix A is defined as follows



An Entropic Edge Assortativity Measure 25

Auv =

{
1 if (u, v) ∈ E
0 otherwise.

(1)

The degree of vertex u is du =
∑

v∈V Auv.

According to [9], the normalized Laplacian matrix L = D−1/2(D − A)D−1/2

(D is the degree matrix with the degree of the vertices of the undirected graph
along the diagonal and zeros elsewhere) can be interpreted as the density matrix
of an undirected graph. As a result, the undirected graph von Neumann entropy
can be defined and calculated from the eigenvalues of the normalized Laplacian
matrix. With this choice of density matrix, the von Neumann entropy of the
undirected graph is the Shannon entropy associated with the normalized Lapla-

cian eigenvalues, i.e., HU
VN = −∑|V |

i=1(λ̃i/|V |) ln(λ̃i/|V |) where λ̃i, i = 1, . . . , |V |,
are the eigenvalues of L.

Commencing from this definition and making use of the quadratic approxi-
mation to the Shannon entropy, the von Neumann entropy can be approximated

by a quadratic entropy [4] HU
Q =

∑|V |
i=1 λ̃i/|V |(1 − λ̃i/|V |), which can be ex-

pressed in terms of the trace of the normalized Laplacian (is equal to the sum of
the normalized Laplacian eigenvalues) and the trace of the squared normalized
Laplacian (is equal to the sum of the squares of the normalized Laplacian eigen-
values). Here, the accuracy of the above expression depends on the veracity of
the quadratic approximation to the Shannon entropy −x lnx ≈ x(1 − x). This
approximation is known to hold well when either x → 0 or x → 1, which guar-
antees the accuracy of the quadratic entropy since λ̃i/|V | → 0 when the graph
size is very large. Moreover, the trace of normalized Laplacian can be simply
computed in terms of vertex degree in a graph, this leads to a more simplified
form of the von Neumann entropy of an undirected graph:

HU
VN = 1− 1

|V | −
1

|V |2
∑

(u,v)∈E

1

dudv
. (2)

This approximation clearly contains two measures of graph structure. The first
term measures the effect of graph size and the second term of this formula simply
calculates the sum of each edge contribution to the entropy of a graph. This leads
to the possibility of defining a normalized local entropic measure for a single edge
in the graph.

To this end, we normalize the von Neumann entropy with respect to the total
number of edges in the graph in order to obtain the normalized edge entropy
contribution, i.e.,

IUuv =
1

|V ||E|dudv . (3)

For an arbitrary graph, this normalized local entropic measure clearly avoids
graph size bias and gives the von Neumann entropy contribution associated
with each edge in the graph.
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2.2 Entropy Contribution for Directed Edges

More recently, Ye et al. [11] have extended the calculation of von Neumann
entropy from undirected graphs to directed graphs, using Chung’s definition of
the normalized Laplacian of a directed graph [1]. The resulting approximate
entropy has the following form:

HD
V N = 1− 1

|V | −
1

2|V |2
{ ∑

(u,v)∈E

(
1

doutu doutv

+
dinu

dinv dout2u

)
−

∑
(u,v)∈Eu

1

doutu doutv

}
(4)

or equivalently,

HD
VN = 1− 1

|V | −
1

2|V |2
{ ∑

(u,v)∈E

dinu
dinv dout2u

+
∑

(u,v)∈Eb

1

doutu doutv

}
, (5)

where Eu = {(u, v)|(u, v) ∈ E and (v, u) /∈ E} is the set of unidirectional edges
while Eb = {(u, v)|(u, v) ∈ E and (v, u) ∈ E} is the set of bidirectional edges in
the graph.

In particular, when |Eu| � |Eb|, i.e., few of the edges are unidirectional and
the graph is weakly directed (WD), we ignore the summation over Eu in Eq.(4)
in order to obtain the approximate von Neumann entropy for WD graphs:

HWD
V N = 1− 1

|V | −
1

2|V |2
∑

(u,v)∈E

{ din
u

dout
u

+
din
v

dout
v

doutu dinv

}
. (6)

The term 1 − 1
|V | tends to unity as the graph size becomes large. In the sum-

mation, the numerator is given in terms of the sum of the ratios of in-degree
and out-degree of the vertices. Since the directed edges cannot start at a sink
(a vertex of zero out-degree), the ratios do not become infinite. Moreover, it is
natural to realize that in our analysis an undirected graph is equivalent to a
WD graph, since their von Neumann entropy expressions Eq.(2) and Eq.(6) are
equivalent if we consider each undirected edge as a bidirectional one.

On the other hand, if the cardinality of Eb is very small (|Eb| � |Eu|), i.e., a
graph is strongly directed (SD), this approximate entropy can be simplified one
step further by ignoring the summation over Eb in Eq.(5):

HSD
VN = 1− 1

|V | −
1

2|V |2
∑

(u,v)∈E

{
dinu

dinv dout2u

}
. (7)

This approximation clearly sums the entropy contribution from each directed
edge, which is based on the in and out-degree statistics of the vertices connected
by the edge. In other words, by using the same method in the previous subsection,
we can compute a normalized local entropy measure for each directed edge in the
SD graph. To do this, we remove the term 1− 1

|V | and normalize the remaining

term with respect to the number of edges in the graph so that we obtain
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IDuv =
dinu

|V ||E|dinv dout2u

(8)

as the von Neumann entropy contribution for edge (u, v) ∈ E.

3 Entropic Edge Assortativity Measure for Graphs

In this section, we propose a novel assortativity measure for both undirected
and directed graphs based on the von Neumann entropy contributions associated
with undirected and directed edges. This method provides useful underpinning
at the use of entropy in determining graph structure. For instance, a high edge
assortativity indicates that edges with large entropy associate preferentially and
form some high entropy clusters in a graph. By contrast, a negative assortativity
results from edges with high and low entropies that connect to each other.

The traditional assortativity is usually defined as the Pearson correlation co-
efficient (r) of the degrees of pairs of linked vertices [8]:

r =
|E|−1

∑
(u,v)∈E dudv − [|E|−1

∑
(u,v)∈E

du+dv

2 ]2

|E|−1
∑

(u,v)∈E
d2
u+d2

v

2 − [|E|−1
∑

(u,v)∈E
du+dv

2 ]2
∈ [−1, 1]. (9)

When r = 1, the network is said to be perfectly assortative, when r = 0 the
network is non-assortative, and when r = −1 the network is completely disas-
sortative.

Furthermore, according to Foster et al. [3], in a directed graph, a set of four
directed assortativity measures are defined as follows. Let α, β ∈ {in, out} be
the directionality index for an edge at a vertex (i.e., whether it is incoming or
outgoing). Then the directed assortativity measures are

r(α, β) =
|E|−1

∑
(u,v)∈E [(d

α
u − d̄αu)(d

β
v − ¯

dβv )]

σασβ
(10)

where d̄αu = |E|−1
∑

(u,v)∈E dαu and σα =
√
|E|−1

∑
(u,v)∈E(d

α
u − d̄αu)

2;
¯
dβv and

σβ are similarly defined.

3.1 Entropic Edge Assortativity Measure for Undirected Graphs

SupposeG(V,E) is an undirected graph, or equivalently, a weakly directed graph,
then for an edge (u, v) ∈ E, we define the entropy contribution associated with
the end vertex u of this edge Suv as the summation of the entropies on the
edges connected with u except the edge (u, v), i.e., Suv =

∑
(t,u)∈E,t�=v I

U
tu. The

entropy contribution associated with another end vertex v is therefore Svu =∑
(v,w)∈E,w �=u I

U
vw .
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Fig. 1. The illustration of the
calculation of quantities Suv

and Svu associated with an
undirected edge (u, v) ∈ E

With these to hand, we define the edge as-
sortativity as the Pearson correlation coefficient
between all the entropy contributions associated
with the two end vertices connected by the edge
in the graph G(V,E), with the result that

RU =

∑
(u,v)∈E(Suv − S̄uv)(Svu − S̄vu)

σS
uσ

S
v

(11)

where S̄uv = |E|−1
∑

(u,v)∈E Suv and σS
u =

√∑
(u,v)∈E(Suv − S̄uv)2; S̄vu and

σS
v are similarly defined. Clearly, this edge assortativity index provides a novel

way to understand the entropic preference of edges to form connections between
similar vertices in a graph.

3.2 Entropic Edge Assortativity Measure for Directed Graphs

We turn our attention to the domain of directed graphs. Here we mainly focus on

Fig. 2. The illustration of the
calculation of quantities Hu

uv

and Hv
uv associated with a di-

rected edge (u, v) ∈ E

the strongly directed graphs. Assume G(V,E) is
an SD graph, then for a directed edge starting
from vertex u, ending at vertex v, we define the
edge assortativity as the Pearson correlation co-
efficient between the edge entropy contribution
Hu

uv associated with all the outgoing edges of ver-
tex u (exclude edge (u, v)) and the contribution
Hv

uv associated with all the incoming connections
of vertex v (except edge (u, v)). The reason we
use such definition is that this expression con-
forms to the structure of the approximate von
Neumann entropy for SD graphs given in Eq.(7). Mathematically, we have
Hu

uv =
∑

(u,s)∈E,s�=v I
D
us and Hv

uv =
∑

(p,v)∈E,p�=u I
D
pv. Therefore the edge as-

sortativity coefficient for SD graphs is given by

RD =

∑
(u,v)∈E(H

u
uv − H̄u

uv)(H
v
uv − H̄v

uv)

σH
u σH

v

(12)

where H̄u
uv = |E|−1

∑
(u,v)∈E Hu

uv and σH
u =

√∑
(u,v)∈E(H

u
uv − H̄u

uv)
2; H̄v

uv and

σH
v are similarly defined. This measure is bounded between -1 and 1: a high coef-

ficient of a graph indicates that most of the directed edges in the graph start from
the vertex with outgoing edges that have high entropy contributions, and point
to the vertex with incoming edges with high entropy contributions. Conversely, a
negative coefficient results from most of the directed edges connect two vertices
that have significantly different von Neumann edge entropy contributions.
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4 Experiments and Discussion

We have proposed a novel edge assortativity characterization for quantifying
the assortative mixing properties for both undirected and directed graphs based
on the von Neumann entropy associated with edges. In this section, we explore
whether this measure can reveal more useful features of the graph structure
than the traditional degree assortativity measures. To this end, we confine our
attention to two main tasks. We first apply the edge assortativity measure to
some real-world complex networks to show that it can effectively reflect to what
extent the vertices are connected preferentially in a network. We then demon-
strate one advantage of this novel assortativity characterization, namely that it
is more efficient in distinguishing between different classes of complex networks
than the traditional measures.

4.1 Experiments and Discussion on Undirected Graphs

We commence by comparing the performance of traditional assortativity co-
efficients and our novel edge assortativity measure on real-world collaboration
networks. These include the Arxiv Astro Physics, Condensed Matter, General
Relativity, High Energy Physics and High Energy Physics Theory networks [7].
Table 1 gives the network size, edge number and value of both the degree and
edge assortativity measures. From the table it is clear that all the coauther-
ship networks have positive degree assortativity coefficients. This is a reasonable
result since productive authors prefer to collaborate. However, the traditional
assortativity coefficient has difficultly in distinguishing between CA-HepPh and
CA-GrQc networks as their values are similar. The edge assortativity coefficient,
on the other hand, is able to characterize these two networks. One of the reasons
for this is that the edge assortativity measure can capture not only the degree
properties of vertices, but also the underlying entropic structural complexity
associated with the edges in a network.

Table 1. Degree assortativity coefficients and edge assortativity measures of real-world
undirected complex networks

Datasets HepTh HepPh GrQc CondMat AstroPh

Network size 9877 12008 5242 23133 18772
Edge number 51971 237010 28980 186936 396160
Degree assort. 0.2674 0.6322 0.6592 0.1339 0.2051

Edge entropy assort. 0.2012 0.6035 0.3910 0.3435 0.5458

Next we show that the edge assortativity measure is more efficient than the
traditional assortativity coefficient in classifying graphs that belong to different
random graph models. To do this we first randomly produce a large number
of undirected graphs according to one of three models, namely a) the classical
Erdős-Rényi model, b) the “small-world” model, and c) the “scale-free” model.
The different graphs in the database are generated using a variety of model
parameters, e.g. the graph size and the connection probability in the Erdős-
Rényi model, the edge rewiring probability in the “small-world” model and the
number of added connections at each time step in the “scale-free” model.
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Figure 3 shows the mean value of both the degree assortativity coefficients
(Eq.(9)) and edge assortativity measures (Eq.(11)) as a function of graph size
(standard deviation as an error bar). In the left panel, all three classes of graphs
tend to have zero assortative mixing when the graph size becomes very large, and
it is difficult to separate the ‘small-world” and “scale-free” graphs. Turning our
attention to the right panel, the difference in mean edge assortativity coefficients
for different models is much larger than the standard deviation of the coefficients
for the different models, even when the graph size is large. This suggests that the
variance in the edge assortativity measure due to different parameter settings
is much smaller than that due to differences in structure. This indicates that
different network models have different values of edge assortativity coefficients
for a given size. This accords with our expectations since the entropy itself is
sensitive to the different graph models.
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Fig. 3. Mean and standard deviation of vertex degree assortativity coefficients (Eq.(9))
and edge assortativity measures (Eq.(11)) for different models of undirected graphs.
Red square solid line: Erdős-Rényi; blue circle solid line: “small-world”; black square
dotted line: “scale-free”.

4.2 Experiments and Discussion on Directed Graphs

For directed graphs, we first provide a comparison of our new directed edge as-
sortativity measure, and the four assortativity coefficients that can be computed
from the four combinations of in and out-degree on the two vertices of an edge.
We commence with a study on some real-world networks, and these include the
Wikipedia vote network, provided by Leskovec et al. [5], the Gnutella peer-to-
peer networks from August 5 to 9, 2002, which are a sequence of snapshots of
the Gnutella peer-to-peer file sharing network [10] and the Arxiv HEP-TH ci-
tation network [6]. Table 2 gives the network size, edge number and the values
of in/in-degree, in/out-degree, out/in-degree, out/out-degree and edge assorta-
tivity measures. There are a number of observations concerning this data. In
the Wikipedia vote network, a person who receives many votes is more likely to
vote a person who also obtains a large number of votes, rather than voting for
individuals who vote many times. In the file sharing networks, computers that
receive a great number of documents preferentially share files with one-another.
Computers that send many files are unlikely to share files with computers that
receive many documents. For the citation network, important papers are those
cited most heavily and this can be reflected accurately by the degree assorta-
tivity measures. Although when taken in combination the four types of directed
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Table 2. Degree assortativity coefficients and edge assortativity measures of real-world
directed complex networks

Datasets Wiki-Vote p2p-G05 p2p-G06 p2p-G08 p2p-G09 Arxiv HEP-TH

Network size 7115 8846 8717 6301 8114 27751
Edge number 103689 31839 31525 20777 26013 352807

In/in deg. assort. 0.0051 0.0312 0.0880 0.1079 0.1042 0.0405
In/out deg. assort. 0.0071 -0.0002 0.0322 0.0315 0.0190 0.0055
Out/in deg. assort. -0.0832 -0.0034 -0.0032 -0.0285 -0.0327 0.0016
Out/out deg. assort. -0.0161 -0.0017 0.0082 -0.0157 -0.0062 0.0951
Edge entropy assort. 0.0006 0.0053 -0.0092 -0.0038 -0.0055 0.1126
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Fig. 4. Mean and standard deviation of vertex degree assortativity coefficients
(Eq.(10)) and edge assortativity measures (Eq.(12)) for different models of directed
graphs. Red square solid line: Erdős-Rényi; blue circle solid line: “small-world”; black
square dotted line: “scale-free”.

degree assortativity coefficients are useful in characterizing different networks,
it is difficult to use a single measure alone to do this. However, when using the
novel edge assortativity measure developed for directed graphs, networks with
different structures are efficiently characterized.

In Fig. 4 we plot the values of the edge assortativity coefficient, and compare
them to the assortativity coefficients obtainedwith the four different combinations
of vertex in and out-degree on an edge (see Eq.(10)). Here we use randomly gener-
ateddata for three different directed graphmodels.The figure shows the assortativ-
ity measures versus graph size, and shows the mean value and standard deviation.
Themost important feature in the figure is that although the “scale-free” networks
are easily separated, the Erdős-Rényi and “small-world” networks are overlapped
significantly, for eachof the four degree assortativity coefficients.However,Fig. 4(e)
suggests that as the graph size increases, for all threemodels themean values of the
edge assortativity measures grow slowly and approach zero, with clear separations
between them. The result obtained here demonstrates that the edge assortativity
measure provides a powerful tool for capturing both the degree properties and the
entropic information on edges in a directed network.
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5 Conclusions

To conclude, this paper is motivated by the aim of proposing novel measures
that quantify the assortative mixing properties for both undirected and directed
networks. We commence from the recently developed simplified approximations
to the von Neumann entropy for both undirected and directed graphs, which are
dependent on the graph size and degree statistics of vertices that are connected.
From these approximations we then derive a local measure for quantifying the
von Neumann entropy contribution for each edge in the undirected and directed
graph respectively. This leads to the possibility of designing a correlation co-
efficient that measures the average assortative properties of how the entropy
contributions that reside in edges are connected in a network, which we name
the edge assortativity measure. The resulting expressions for such measures of
both undirected and directed graphs are simply related to some graph invariants,
including the graph size, number of edges and the vertex degree.

The work reported in this paper can be extended in a number of ways. First,
it would be interesting to explore how the distribution of the edge entropy con-
tributions in a network can contribute to the development of novel information
theoretic divergence, distance measures and relative entropies. Another interest-
ing line of investigation would be to investigate whether this measure can be
applied further to weighted graphs and hypergraphs.
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